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Abstract

High-dimensional time series are increasingly ubiquitous, which leads to an urgent
need for statistical methodologies correspondingly. The emergence of tensor time
series, where data are arranged as general tensors (e.g. vectors, matrices) at each
timestamp, poses new challenges to researchers and practitioners. This thesis sheds
light on time series analysis from factor modelling to spatiotemporal analysis.

First, we explore how to estimate the factor structure in a tensor factor model
with missing data and weak factors. With a rank estimator proposed, we introduce
an imputation procedure by leveraging all estimators and discuss how to perform
practical inference. We elaborate on the performance of our method with two real
data examples on portfolio returns and national economic indicators, respectively.

We also attempt to answer a fundamental question on tensor factor modelling:
can we test if a factor structure is violated on a given tensor time series while
preserved on the flattened series? Generally put, we are interested to understand
whether the factor structure is mode-related or not. We formulate the testing prob-
lem and provide a residual test with theoretical guarantees, followed by extensive
data examples.

For matrix time series, we design a factor model with time-varying main effects
in addition to a common component to disentangle row and column information of
the observed matrix. It assumes a more general structure than the prevalent matrix
factor model with Tucker decomposition in the common component governing only
the “joint” effect. We establish theories for statistical inference and propose a test
on the necessity of our model. We apply our model to study a set of taxi traffic
data and discover an “hour” effect within.

Lastly, we contribute to the field of spatial econometrics by presenting a spatial
autoregressive model with time-varying spatial weights, featuring the spill-over ef-
fects among cross-sectional units contemporaneously in the observed vector time
series. We circumvent the difficulty of selecting spatial weight matrices by pe-
nalised estimation. A set of industrial profits is analysed through our approach.
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Chapter 1

Introduction

Large dimensional panel data is easier to obtain than ever thanks to quickly evolving computa-
tional technology and more diverse platforms. Due to the nature of time series data, method-
ologies particularly designed for independent data could give misleading conclusions. This has
motivated an active field of research to understand the dynamics of observed time series in the
presence of temporal and cross-sectional dependence.

One prominent approach is factor modelling which attributes the dependence within data
sets to only a few factors, i.e., the observed time series is assumed to be driven by latent factors
with a much smaller dimension (e.g. Chamberlain and Rothschild, 1983; Stock and Watson,
1998; Bai and Ng, 2002; Onatski, 2009; Lam et al., 2011; Zhang et al., 2024a). This is often
promising due to large data dimensions or the nature of data per se. While factor analyses have
been well developed for vector-valued time series, researchers nowadays have opened up to
studying generally multi-way time series, namely tensor-valued time series, which can be seen
as a generalisation of vector time series. Through exploiting the tensor structure of observed
data, instead of stacking them into vectors, more in-depth analyses can be available to retrieve
mode-wise information. For instance, Chen et al. (2022a) studies the monthly import-export
volume of products among different countries by proposing a tensor factor model based on
Tucker decomposition; Lettau (2022) applies both CP and Tucker decompositions to study mu-
tual fund characteristics; Guan (2024) adapts CP decomposition in immunological and clinical
studies; Liu et al. (2022) applies tensor PCA to study the spatiotemporal patterns in human
brains, to name but a few works.

Another useful methodology among others is spatiotemporal modelling, which reads cross-
sectional dependence as different kinds of spatial relations (e.g. Anselin, 1988; LeSage and
Pace, 2009). In other words, it is desirable to learn the interaction between individual units and
their neighbourhoods. One general form to describe spatial dependence is spatial autoregres-
sive models. A large body of literature focuses on how to specify appropriate spatial weight
matrices, which can be difficult in practice. See e.g., the development in Sun (2016), where
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a spatial autoregressive model with nonparametric spatial weights is leveraged to analyse na-
tional economic growths; Lam and Souza (2020) and Higgins and Martellosio (2023) propose
to use a linear combination of multiple spatial weight matrices with constant coefficients.

This thesis contains two parts, respectively addressing the two fields discussed above. The
first part (Chapter 3–5) consists of three projects spanning important areas of factor modelling
for matrix- and general tensor-valued time series, whereas the second (Chapter 6) concerns a
project on spatial autoregressive models. In particular, the contribution of those projects on
factor modelling can be viewed from three different aspects, as summarised below.

1. Application – Chapter 3 develops a missing value imputation scheme based on tensor
factor models. The main contributions are twofold. To the best of our knowledge, it is
new to impute general tensor time series while all existing literatures focus on vector
time series. Moreover, we propose a consistent estimator on the number of factors under
missingness, which is also new to the community of factor models for missing data.

2. Testing – Chapter 4 introduces a tensor reshape operator and tests the Kronecker product
structure in the loading matrix for factor models. It is a first in the literature to formulate a
(series of) testing problems on the validity of Tucker-decomposition tensor factor models,
which is arguably the most fundamental problem for higher-order tensor factor models.
We hope our dedication enlightens a mindset to understand tensor factor models.

3. Modelling – Chapter 5 proposes a matrix factor model with time-varying main effects
to greatly enhance interpretability. Although certain efforts have been made on ma-
trix/tensor factor modelling, it still remains challenging to effectively utilise the infor-
mation along each mode. Our presented model aims to address this.

On our project related to spatiotemporal analysis, Chapter 6 introduces a spatial autore-
gressive model with time-varying spatial correlation coefficients. It incorporates multiple spa-
tial weight matrices through their linear combinations with varying coefficients and hence en-
compasses existing literature on changepoint/threshold spatial autoregressive models as special
cases. With adaptive LASSO estimators, the flexibility of our model is further enhanced.

From the above overview, we may conclude the main theme of our developed models as
“nested models” in the sense that traditional models are nested in our proposed frameworks.
The rest of this thesis is organised as follows. Chapter 2 introduces the (tensor) notations, which
are solidified in subsequent surveys on the existing literature of factor models. We review
recent works on spatial autoregressive models separately in Chapter 6. Chapter 3 discusses
our imputation procedure for a tensor time series with very mild observational patterns. In
Chapter 4, we design a test on the existence of Kronecker product structure for general tensor
factor models, where we formally define the concept of factor models with Kronecker product
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structure and pinpoint the equivalence of Tucker-decomposition tensor factor models under a
reshape operator along any selection of modes. Chapter 5 proposes a matrix-valued (i.e., order-
2 tensor) factor model with time-varying main effects, and more importantly, we lay down a test
on the necessity of our model. Finally, Chapter 6 develops a framework of spatial autoregressive
models that can be versatile in variable selection and change point detection.
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Chapter 2

Literature Review

2.1 Notations and Tensor Basics

Throughout this thesis and unless otherwise specified, we use the lower-case or capital letter,
bold lower-case letter, bold capital letter, and calligraphic letter, i.e., x or X , x, X, X , to
denote a scalar, a vector, a matrix, and a tensor (introduced later), respectively. We also use
xi, Xi,j,Xi·,X·i to denote, respectively, the i-th element of x, the (i, j)-th element of X, the
i-th row (as a column vector) of X, and the i-th column of X. We use a ≍ b to denote a = O(b)

and b = O(a), while a ≍P b to denote a = OP (b) and b = OP (a). Hereafter, given a positive
integer m, define [m] := {1, . . . ,m}. We use 1m to denote a vector of ones of length m, 0 a
vector of conformable length, and Im an m × m identity matrix. The i-th largest eigenvalue
(resp. singular value) ofX is denoted by λi(X) (resp. σi(X)). We useX′ (resp. x′) to denote the
transpose ofX (resp. x), and diag(X) to denote a diagonal matrix with the diagonal elements of
X, while diag({x1, . . . , xn}) represents the diagonal matrix with {x1, . . . , xn} on the diagonal.
A random variable X is sub-Gaussian with variance proxy σ2, denoted as X ∼ subG(σ2), if
E[exp{s(X−E[X])}] ≤ exp(s2λ2/2) for all s ∈ R. A random variableX is sub-exponential
with parameter λ, denoted as X ∼ subE(λ), if E[exp{s(X − E[X])}] ≤ exp(s2λ2/2) for all
|s| ≤ 1/λ.

Norm notations: Sets are also denoted by calligraphic letters. For a given set, we denote
by |·| its cardinality. We use ∥·∥ to denote the spectral norm of a matrix or the L2 norm of
a vector, and ∥·∥F to denote the Frobenius norm of a matrix or a tensor. We use ∥·∥max to
denote the maximum absolute value of the elements in a vector, a matrix or a tensor. The
notations ∥·∥1 and ∥·∥∞ denote the L1- and L∞-norm of a matrix respectively, defined by
∥X∥1 := maxj

∑
i |Xi,j| and ∥X∥∞ := maxi

∑
j |Xi,j|. For q > 0, we define the Lq-norm of

a given real-valued random variable x as ∥x∥q := (E|x|q)1/q. Without loss of generality, we
always assume the eigenvalues of a matrix are arranged by descending orders, and so are their
corresponding eigenvectors.

5



6 Chapter 2. Literature Review

Tensor-related notations: For the rest of this section, we briefly introduce the notations
and operations for tensor data, which will be sufficient for this thesis. For more details on
tensor manipulations, readers are referred to Kolda and Bader (2009). To begin with, a vector
and a matrix are respectively order-1 and order-2 tensors. In general, an order-K tensor is a
multidimensional array with K ways, denoted by X = (Xi1,...,iK ) ∈ RI1×···×IK . Its k-th way is
termed as mode-k, Ik as the mode-k dimension, and a column vector (Xi1,...,ik−1,i,ik+1,...,iK )i∈[Ik]

as one of its mode-k fibers. We denote by matk(X ) ∈ RIk×I-k (or sometimes X(k), with I-k :=

(
∏K

j=1 Ij)/Ik) the mode-k unfolding/matricization of X , defined by placing all mode-k fibers
into a matrix, see Figure 2.1 for an illustration (figure from Tao et al. (2019)). We use vec(·)
to denote the vectorisation of a matrix or the vectorisation of the mode-1 unfolding of a tensor.
The refolding/tensorisation of a vector x ∈ RI1···IK on {I1, . . . , IK} is defined to be an order-K
tensor fold(x, {I1, . . . , IK}) ∈ RI1×···×IK such that x = vec

{
fold(a, {I1, . . . , IK})

}
. The

refolding/tensorisation of a matrix X ∈ RIk×I-k on {I1, . . . , IK} along mode-k is defined to
be foldk(X, {I1, . . . , IK}) ∈ RI1×···×IK such that X = matk

{
foldk(X, {I1, . . . , IK})

}
. The

reshape(·, ·) operator is only involved in Chapter 4 and hence introduced in Section 4.2.

Figure 2.1: Illustration of the mode-k fibers and its corresponding unfolding matrix.

Product notations: We use ∗ to denote the Hadamard product (i.e., element-wise product),
◦ the tensor outer product defined between an order-K tensor X and an order-L tensor Y as an
order-(K + L) tensor such that (X ◦ Y)i1,...,iK ,j1,...,jL := Xi1,...,iKYj1,...,jL , X ×k A the mode-k
product defined between a tensor X and a conformable matrix A as

matk(X ×k A) := Amatk(X ),

⊙ the Khatri–Rao product defined between X ∈ Ra×b and Y ∈ Rc×b as a ac× b matrix

X⊙Y :=
(
X·1 ⊗Y·1, . . . ,X·b ⊗Y·b

)
,
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and ⊗ the Kronecker product defined between X ∈ Ra×b and Y ∈ Rc×d as a ac× bd matrix

X⊗Y :=

Ü
X1,1Y . . . X1,bY

... . . . ...
Xa,1Y . . . Xa,bY

ê
.

By convention, the total Kronecker product for an index set is computed in descending order.
Useful properties related to products: All the above products are bilinear and associative.

For the mode-k product, distinct mode products are commutative in the sense that for n ̸= m,

X ×n A×m B = X ×m B×n A,

where we do not distinguish the special case when the matrix A or B appears as a vector, as
long as during the mode products, we maintain the order ofX even if it is degenerate, i.e., some
mode dimensions are 1. For identical mode products,

X ×n A×n B = X ×n (BA).

Over the Kronecker product, transpose and inverse are distributive. More importantly, it holds
for any conformable matrices and tensors that

vec(AXB) = (B′ ⊗A)vec(X), (2.1)

(A⊗B)(X⊗Y) = (AX)⊗ (BY), (2.2)

matk(X ×Kj=1 Aj) = Ak matk(X )(AK ⊗ · · · ⊗Ak+1 ⊗Ak−1 ⊗ · · · ⊗A1)
′. (2.3)

2.2 Preliminaries: Tensor Decompositions

On the aspect of storage and computation, useful structures are often imposed on the data of
interest. Tensor, a mathematical object, has been developed since its initial introduction in the
19th century as a representation and computational tool; see Favier (2019) for the historical
background. Similar to matrices, general order tensors can be represented by elements in cer-
tain forms, namely different decompositions (also coined in some literature as “factorisations”
or “formats”). Throughout the development, there are two fundamental decompositions, which
are the CP decomposition (e.g. Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970;
Kiers, 2000) and the Tucker decomposition (e.g. Tucker, 1963; De Lathauwer et al., 2000).

Although CP decomposition dates back as early as in Hitchcock (1927), we first focus on
Tucker decomposition, which is the form of factor models used in Chapter 3–5. Simply put,
Tucker decomposition is a generalisation of matrix singular value decomposition (SVD) to
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order-3 tensors when originally proposed by Tucker (1963), and further to general order tensors
by Wansbeek et al. (1986) using vectorisation and De Lathauwer et al. (2000) using mode
products. Therefore, Tucker decomposition is also known as higher-order SVD (De Lathauwer
et al., 2000). Formally, Tucker decomposition writes an order-K tensor X ∈ RI1×···×IK as

X = G ×1 A1 ×2 · · · ×K AK , (2.4)

where G ∈ Rr1×···×rK is the core factor with ranks {rk}k∈[K] and Ak ∈ RIk×rk (k ∈ [K]) are
the factor matrices. Notice first (2.4) is trivial if G = X and every Ak = IIk . On the other
hand, the

∏K
k=1 Ik entries ofX can be represented by (

∏K
k=1 rk+

∑K
k=1 Ikrk) entries according

to (2.4). This effectively reduces the amount of data when the tensor order is high and rk ≪ Ik.
Hence it is often, if not always, assumed in the context of factor analysis that G’s size is much
smaller than X ’s, so that X admits a low-rank structure. The study of Tucker decomposition
remains active in modern research. For instance, Zhang and Xia (2018) studies the optimality
for tensor SVD, whereas Zhang (2019) proposes a “Cross” measurement scheme to efficiently
recover tensor data.

The element-wise representation for a tensor decomposition is generally helpful to bridge
different products and hence tensor decompositions. Such a representation for (2.4) is

Xi1,...,iK =

r1∑
j1=1

· · ·
rK∑
jK=1

Gj1,...,jKA1,i1,j1 . . . AK,iK ,jK , (2.5)

which used the fact that the (i1, . . . , iK)-th element of X corresponds to the element on the
ik-th row of matk(X ) for all k ∈ [K], followed by a simple induction argument. Immediately
from (2.5), Tucker decomposition can be equivalently represented by outer products that

X =

r1∑
j1=1

· · ·
rK∑
jK=1

Gj1,...,jK (A1,·j1 ◦ · · · ◦AK,·jK ). (2.6)

Suppose G in (2.4) is (super)diagonal, i.e., r ≡ r1 = · · · = rK and Gj1,...,jK ̸= 0 only if
j ≡ j1 = · · · = jK . This special case of Tucker decomposition boils down to the CP decom-
position. Historically, CP decomposition has many names (even “CP” can be read as “CAN-
DECOMP/PARAFAC” or “Canonical Polyadic”), see Table 3.1 in Kolda and Bader (2009) for
some of them; we simply use “CP decomposition” in this thesis. It is convenient to represent
CP decomposition directly by outer products such that for an order-K tensor X ∈ RI1×···×IK ,

X =
r∑
j=1

Gj,...,j(A1,·j ◦ · · · ◦AK,·j), (2.7)
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which indeed coincides with a special case of (2.6).
In essence, CP decomposition can be understood as a further data-sparse structure on top

of Tucker decomposition. To see this, consider Tucker decomposition and apply (2.1) and (2.3)
on the mode-1 unfolding of (2.4), then we arrive at

vec(X ) = (AK ⊗ · · · ⊗A1)vec(G),

where (AK ⊗ · · · ⊗A1) has
∏K

k=1 rk columns in general. Under CP decomposition in (2.7),
the above core factor G is diagonal and hence we have

vec(X ) =
(
AK,·1 ⊗ · · · ⊗A1,·1, . . . ,AK,·r ⊗ · · · ⊗A1,·r

)ÜG1,...,1

...
Gr,...,r

ê
= (AK ⊙ · · · ⊙A1)

Ü
G1,...,1

...
Gr,...,r

ê
,

where (AK⊙· · ·⊙A1) has r columns only, regardless of the order ofX . The discussion above
also suggests that the mode interaction within Tucker decomposition is governed through Kro-
necker products, while that within CP decomposition is through Khatri–Rao products. It is
worth to point out that this specific structure of CP decomposition is less of our interest for
dimension reduction when the tensor order and the core factor rank are assumed fixed. One
scenario where Tucker decomposition is particularly considered is the testing problem in Chap-
ter 4. We would restrict the test on tensor factor models in the form of Tucker decomposition
only, although the test can also be directly extended to the form of CP decomposition. In a
nutshell, Tucker decomposition features a general structure for dimension reduction, while CP
decomposition holds more stringently but allows us to potentially further exploit its structure.

2.3 Factor Modelling

2.3.1 Factor models

Due to the surge of big data, dependence across measurements is often inevitable and hence
ubiquitous. In the presence of multivariate or high-dimensional data, low-rank structure is often
seen, and ignoring it could lead to inefficient use of data and inaccurate conclusions. Therefore,
people have endeavoured to exploit such structures with either known or latent factors through
factor analyses which, stemming from the earliest work by Spearman (1904) to investigate psy-
chical activities, have been useful tools in multivariate analyses with widespread applications in
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psychology (e.g. Spearman, 1927; Bartlett, 1950; McCrae and John, 1992), biology (e.g. Hirzel
et al., 2002; Hochreiter et al., 2006), economics and finance (e.g. Chamberlain and Rothschild,
1983; Fama and French, 1993; Stock and Watson, 2002a,b), etc.

Throughout this thesis, we focus on (latent) factor models which we define as the factor
analyses for time series data. In factor models, there are two frameworks whose developments
are relatively independent of each other until recent decades. The first framework branches
from the literature of financial econometrics and was motivated by the study of pricing mod-
els CAPM (Sharpe, 1964) and APT (Ross, 1972). Tracing back, Ross (1976) first introduced
the exact/strict factor model as an alternative pricing model, which was later generalised by
Chamberlain and Rothschild (1983) proposing the approximate factor model. See also e.g. Bai
and Ng (2002) and Bai (2003). To illustrate, suppose yt ∈ Rd is observed at each timestamp
t ∈ [T ], then a (vector) factor model assumes that the time series admits a decomposition

yt = µ+Aft + et, (2.8)

where µ is a vector accounting for the mean of yt, A ∈ Rd×r is the factor loading with the
number of factors (or rank) r ≪ d, ft ∈ Rr is the zero-mean core factor (or factor score),
and et is the idiosyncratic noise. We refer to Aft the common component of the factor model.
Generally, the time series can be demeaned by its sample mean, so thatµ = 0which is assumed
for the remaining discussion on vector factor models. The model (2.8) is characterised by its
noise covariance Σe := E[ete

′
t]. An exact factor model assumes Σe to be diagonal, while an

approximate factor model allows for weak cross-sectional dependence in noise in the sense that
Σe has uniformly bounded entries, i.e., Σe can have nonzero sparsely on its off-diagonal.

The main idea in a factor model is that there exists a small number of factors driving all
dynamics of the series of interest. Notice the decomposition (2.8) always exists if we relax
r ≪ d, but it is only useful with a low rank r to reduce the dimensionality. As a simple example,
consider the problem of covariance estimation given (2.8) being an exact factor model. Assume
for simplicity that any entry in ft is uncorrelated with et, then we can read Σy := E[yty

′
t] as

Σy = AΣfA
′ +Σe, (2.9)

where Σf := E[ftf
′
t]. Now we only need to estimate [dr + r(r + 1)/2 + d] parameters, rather

than d(d + 1)/2 parameters in Σy, hence achieving dimension reduction. For a more general
treatment under approximate factor models, see e.g. Fan et al. (2013).

The second framework branches from the statistics literature, where researchers sought
dimension reduction in vector time series on both time and frequency domains. See Peña and
Box (1987), Pan and Yao (2008), Lam et al. (2011), Lam and Yao (2012), and the references
within. The difference between the two frameworks mainly lies in the temporal dependence
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among the idiosyncratic noise. The noise can be serially correlated in the first framework,
but set as white noise in the second with the core factor accounting for all serial correlation.
With such modification, the second framework allows for a greater cross-sectional dependence
in noise by relaxing the uniform boundedness of Σe. Another significant consequence of the
second framework is to allow for naturally leveraging nonzero-lag autocovariance matrices in
parameter estimation (e.g. Lam et al., 2011; Lam and Yao, 2012), see (2.12) in Section 2.3.2.

Remark 2.1 Both aforementioned frameworks are represented by static loading matrices as
in (2.8), and hence they are all referred to as static factor models. On the other hand, Geweke
(1977) proposes dynamic factor models by considering dynamic loading matrices in the form
of A(L) :=

∑∞
w=0 AwL

w, where L is the lag operator. There is a large body of literature on
this topic (e.g. Forni et al., 2000; Forni and Lippi, 2001; Stock and Watson, 2005; Doz et al.,
2011; Hallin and Lippi, 2013), see Barigozzi and Hallin (2024) for an overview.

2.3.2 Estimation: factor loading

For either framework in Section 2.3.1, (2.8) (with µ = 0) can be equivalently written in a
matrix form Y = AF+E, where Y = (y1, . . . ,yT ), and F and E are similarly defined. Even
with an identification (or sometimes normalisation) on the loading matrix that A′A/d = Ir,
A and F are identifiable only up to some rotation matrix H due to the indeterminacy incurred
by the multiplication AF = (AH)(H′F). However, the common component and the factor
loading spaceM(A) can be identified, whereM(A) denotes the column space of A.

The above identification can be taken advantage of to facilitate estimation of the loading
matrix which, once obtained, leads to straightforward estimation of the core factor. Recall that
the number of factors r is also unknown, and hence there are two main steps in estimating the
factor structure in (2.8) – factor loading estimation and rank estimation.

First, let r be specified (known a priori or estimated). Consider (2.8) as an approximate
factor model, we may use asymptotic principal components to estimate the factor loading and
core factor at the same time (e.g. Connor and Korajczyk, 1986; Stock and Watson, 1998; Bai
and Ng, 2002), by solving a least squares problem

V (r) = min
F,A

1

Td
∥Y −AF∥2F subj. to A′A/d = Ir. (2.10)

Concentrating out the core factor in (2.10), we can show the optimisation problem is equivalent
to maximise tr{A′(YY′)A}, which gives a set of least-squares-type estimators (i.e. solutions
of some least squares problems)

Â =
√
d
[
γ1(Σ̂y), . . . ,γr(Σ̂y)

]
, F̂ = Â′Y/d, (2.11)
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where Σ̂y := YY′/T is the sample version of Σy in (2.9), and γj(·) denotes the eigenvector
corresponding to the j-th largest eigenvalue of a matrix. The estimation is closely related to
eigenanalysis, as discussed at the end of this subsection. The least-squares-type estimators are
also adapted under different settings, see for instance, Onatski (2012) and Bai and Ng (2023)
develop the estimators for weak factor models.

As discussed in Section 2.3.1, if the idiosyncratic noise is a white noise process, the factor
structure can be estimated from a different perspective (e.g. Lam et al., 2011). With (2.8)
(µ = 0) and notations therein, given a pre-specified positive integer h0, we define

Σ̂y(h) =
1

T − h
T−h∑
t=1

yt+hy
′
t, M̂ =

h0∑
h=1

Σ̂y(h)Σ̂y(h)
′. (2.12)

The matrix Σ̂y(h) is the sample autocovariance matrix at lag h, and M̂ can be regarded as a
matrix accumulating the autocovariance information (from lag 1) up to lag h0. A factor loading
estimator (and hence the corresponding core factor estimator) is then feasible by the principal
component analysis (PCA) and constructed similarly as in (2.11), with Σ̂y replaced by M̂. In
essence, we now leverage the autocovariance structure rather than the covariance structure in
(2.11). There are also extensions using both covariance and autocovariance structures, such as
Zhang et al. (2024a). One shortcoming of using autocovariance matrices (at nonzero lags) is
the difficulty in constructing asymptotic distributions for the loading or core factor estimators,
which is less challenging for (2.11); see Bai (2003), Bai and Ng (2023), etc.

Estimators obtained directly from PCA on some covariance-like matrices are referred to as
the PCA-type estimators. Notably, if we replace M̂ in (2.12) by Σ̂y, the two types of estimators
are equivalent (sometimes up to a scale transformation). They remain so until we consider fac-
tor models for higher-order tensor time series; see Section 2.3.4. Recent developments include,
for instance, Barigozzi and Cho (2020) where a PCA-type estimator scaled by the eigenvalues
of the sample covariance matrix is proposed to remedy the potentially over-estimated number
of factors, and He et al. (2022a) where a PCA-type estimator based on the spatial Kendall’s tau
matrix is proposed to address heavy-tailedness under the elliptical distribution framework.

2.3.3 Estimation: number of factors

Except for performing hypothesis tests (e.g. Pan and Yao, 2008; Onatski, 2009) or incorporat-
ing both eigenvalues and eigenvectors (e.g. Freyaldenhoven, 2022, to discover local factors),
literatures on determining the number of factors use eigenvalue information in mainly three
forms, beyond which there are e.g. bootstrap-based estimators (Yu et al., 2024b). Extended
from the discussion in Section 4.1 in Freyaldenhoven (2022), we briefly summarise the main
types of estimators in the following, under the setup of (2.8) so that we only focus on static
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factor models for vector time series.

1. Threshold-based estimators select the number of factors by thresholding the eigenvalue
distribution. They usually appear in literatures as certain information criteria dated back
to Bai and Ng (2002) where the number of factors is estimated as

r̂ = argmin
1≤k≤rmax

{
V (k) + k · g(T, d)

}
, (2.13)

where V (k) is from (2.10), g(T, d) is some information criteria, and rmax is some posi-
tive integers (such as ⌊d/2⌋ in practice) representing the upper bound for searching the
number of factors. Since V (k) virtually requires AF to be the best rank-k approximation
of Y, we can rewrite V (k) and hence (2.13) is equivalent to

r̂ = argmin
1≤k≤rmax

{ 1

Td

(
∥Y∥2F −

k∑
j=1

λj(YY′)
)
+ k · g(T, d)

}
= argmax

1≤k≤rmax

{ k∑
j=1

λj(Σ̂y)− kd · g(T, d)
}

= max
1≤k≤rmax

{
k | λk(Σ̂y) ≥ d · g(T, d)

}
,

(2.14)

which effectively sets a lower bound on the sample covariance matrix eigenvalues which
should be sufficiently inflated by all r factors. The estimator in (2.13) (or with V (k)

replaced by log(V (k))) is shown consistent by Bai and Ng (2002); see also the discussion
in Section 4.2 in Bai and Ng (2019).

Fan et al. (2022) proposes a scale-invariant estimator similar to (2.14) with Σ̂y replaced
by the sample correlation matrix and the threshold value replaced correspondingly. For
more threshold-based estimators, see e.g. Li et al. (2017a) and Su and Wang (2017).

2. Difference-based estimators identify the number of factors with sufficiently large eigen-
gaps, i.e., differences between adjacent eigenvalues. Their motivation is from threshold-
based estimators based on the eigenvalues of sample covariance matrices, which typically
requires r eigenvalues to grow proportionally with d while the others remain bounded.
This should display on the scree plot a cut-off, whereas a gradual decrease is often seen
empirically (see e.g. Figure 1 in Freyaldenhoven (2019)), suggesting the existence of
“less pervasive” factors. To formalise this, let

∥A·j∥2 ≍ dδj , (2.15)

where the factor strength δj ∈ (0, 1] can be heterogeneous across factors j ∈ [r]. We
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have pervasive/strong factors if δj = 1 or weak factors otherwise, and we do not seek
further classification of weakness in this thesis. An immediate example is (2.10) where
all factors are strong.

To handle weak factors, Onatski (2010), assuming a similar fashion as δj > 0, proposes
the ED (edge distribution) estimator resulting from an iterative algorithm based on

r̂(ξ) = max
1≤k≤rmax

{
k | λk(Σ̂y)− λk+1(Σ̂y) ≥ ξ

}
,

where ξ is a calibrated constant, and the other notations are borrowed from (2.14). See
also Kapetanios (2010) using eigenvalue differences to construct test statistics.

3. Ratio-based estimators are constructed by the ratio between certain functions of (in most
literatures, consecutive) eigenvalues. For example, Lam and Yao (2012) uses M̂ defined
in (2.12) and for arbitrary weak factors (with technical restrictions), introduce

r̂ = argmin
1≤k≤rmax

{
λk+1(M̂)

λk(M̂)

}
, (2.16)

with onlyP(r̂ ≥ r)→ 1 constructed. Such estimator is further developed in e.g. Li et al.
(2017b) and Zhang et al. (2024a), where consistent estimators are proposed.

On the other hand, Ahn and Horenstein (2013) independently proposes the ER (eigen-
value ratio) estimator similar to (2.16) except for M̂ replaced by Σ̂y, together with the
GR (growth ratio) estimator which is also ratio-based. Both were shown to cope with
weak factors by simulations, but consistency was only obtained under strong factors.

2.3.4 Higher-order tensor factor models: from matrices to beyond

With the advancement of statistical analyses for large dimensional panel data over the past
decade, researchers also open up more to time series data with higher order, namely, tensor
time series such that a tensor is observed at each timestamp; see Section 2.1 for an introduction
to tensor. A prominent example, compared with vector time series, would be order-2 tensor time
series, i.e., matrix(-valued) time series. Chen et al. (2021), Wu and Bi (2023), and Zhang (2024)
propose autoregressive and moving-average models for matrix time series. More recently, Yu
et al. (2024a) proposes matrix generalised autoregressive conditional heteroscedasticity mod-
els, and Han et al. (2024b) proposes a decorrelation scheme to transform matrix time series
into blocks of cross-uncorrelated submatrices. See Tsay (2024) for a comprehensive review of
matrix time series analysis.

Beyond matrix time series, general order tensor time series is also more of interest. Ex-
amples include different tensor autoregressive models proposed by Li and Xiao (2021) which



2.3. Factor Modelling 15

extends Chen et al. (2021) and is based on CP decomposition, and by Wang et al. (2024) with
a low-rank structure using “generalised inner products” (or sometimes “contracted tensor inner
products” in the community of tensor regression), respectively.

As promised, we focus on factor modelling which, for matrix or general order tensor time
series, is a subject still in its infancy. As vector factor models achieve dimension reduction in the
form of singular value decomposition, it should not be surprising that higher-order tensor factor
models are closely related to tensor decompositions discussed in Section 2.2. For all existing
literatures and potential future works, we pinpoint the key theme in higher-order tensor factor
modelling – mode interaction, which is related to the flexibility of various frameworks and
naturally arises as there is more than one mode in higher-order tensors.

Compared to matrix/tensor factor models based on Tucker decompositions, those based on
CP decompositions are only studied to a limited extent. Generally speaking, there exist mainly
two independent series of approaches to address estimation/inference on factor models with the
common component governed by CP decomposition, as follows.

1. For matrix time series, Chang et al. (2023) develops a generalised eigenanalysis, where
as Chang et al. (2024) allows for rank-deficit loadings and proposes a non-orthogonal
joint diagonalisation scheme.

2. For general order tensor time series, Han et al. (2024c) proposes the HOPE (high-order
projection estimator) initialised by a composite PCA estimator, which is further investi-
gated by Chen et al. (2024b) using the sample covariance matrix.

See also Guan (2024) among others, where covariates can be taken into the loadings and pa-
rameters are estimated by an EM approach. For the rest of this subsection, we discuss Tucker-
decomposition factor models.

For matrix time series, factor models are first studied in Wang et al. (2019) based on Tucker
decomposition such that for each observed Yt ∈ Rd1×d2 (t ∈ [T ]), we can write

Yt = µ+A1FtA
′
2 + Et, (2.17)

where µ is the mean matrix, Ft ∈ Rr1×r2 is the zero-mean core factor matrix, A1 and A2 are
the row and column loadings, and Et is the noise. When Yt degenerates to a vector yt, the
model boils down to (2.8). Hence (2.17) can be understood as a matrix analogy of the vector
factor model, with the common component decomposed using Tucker decomposition (2.4), and
we refer to (2.17) the Tucker-decomposition matrix factor model (MFM).

To estimate the factor structure in (2.17), Wang et al. (2019) follows the idea of Lam et al.
(2011) by leveraging the sample autocovariance matrices respectively for the row and column
dimensions. Suppose Yt has been appropriately demeaned, then the row loading estimator Â1
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is a PCA-type estimator constructed by the eigenvectors corresponding to the first r1 largest
eigenvalues of M̂1 defined akin to (2.12) (but based on tensor outer products, c.f. Equation
(16) in Chen et al. (2022a)) as

Σ̂1(h, i, j) =
1

T − h
T−h∑
t=1

Yt,·iY
′
t+h,·j, M̂1 =

h0∑
h=1

d2∑
i=1

d2∑
j=1

Σ̂1(h, i, j)Σ̂1(h, i, j)
′. (2.18)

The column loading estimator Â2 is obtained similarly but using the columns of Y′
t instead of

Yt. With Â1, Â2, the core factor can be estimated by F̂t = Â′
1YtÂ2. In contrast, Chen and Fan

(2023) uses the sample covariance matrix, yet different from the estimator (2.11) only based
on second moment information, also incorporates first moment information by weighting the
sample mean. For example, denote Ȳ =

∑T
t=1Yt/T the sample mean and α ∈ [−1,∞) some

hyper-parameter to be tuned, their namely α-PCA estimator for the row loading is obtained as
the eigenvectors (corresponding to the first r1 largest eigenvalues) of the matrix

(1 + α)ȲȲ′ +
1

T

T∑
t=1

(Yt − Ȳ)(Yt − Ȳ)′.

On the other hand, Yu et al. (2022a) proposes the PE (projection estimator). To ease dis-
cussion, let µ = 0 for the rest of this section. To start up, PE requires initial estimators for the
row and column loadings (in fact, either one suffices); then the row/column loading estimators
are recursively updated by a PCA-type estimator using the data projected on the most updated
column/row loading estimator. With some stopping criteria, the resulting estimators are PE,
and the core factor estimator is again direct. He et al. (2024b) discovers that PE is nothing else
but a least-squares-type estimator corresponding to the least squares problem

min
A1,A2,Ft

1

T

T∑
t=1

∥Yt −A1FtA
′
2∥2F subj. to A′

1A1/d1 = Ir1 , A′
2A2/d2 = Ir2 . (2.19)

The optimisation problem is non-convex to all parameters, but convex to individual parame-
ter given others. Eventually, we can show that A1 (resp. A2) as the solution should be the
eigenvector matrix corresponding to the first r1 (resp. r2) largest eigenvalues of the matrix

1

T

T∑
t=1

YtA2A
′
2Y

′
t

(
resp.

1

T

T∑
t=1

Y′
tA1A

′
1Yt

)
.

Thus, we may start with sufficiently good estimators and iterate, which is only non-trivial for
tensor time series with order at least two. To estimate (2.17), Xu et al. (2024) also suggests a
quasi maximum likelihood approach encompassing PE as a special case. Instead of the square
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loss in (2.19), He et al. (2024b) uses Huber loss on the Frobenius norm to alleviate heavy-
tailedness, which is further studied in He et al. (2023b) by using element-wise Huber loss.
More on robust factor modelling, He et al. (2022b) generalises He et al. (2022a) (for vector
time series) to matrix factor models by proposing row and column matrix Kendall’s tau.

Extended from (2.17), Chen et al. (2020) incorporates pre-specified constraint matrices to
enhance interpretation; Chen and Chen (2022) adopts (2.17) to analyse transport network, with
the possible scenario A1 = A2 considered; Liu and Chen (2022) studies threshold MFM with
regime changes governed by an observed threshold variable; Chen et al. (2024a) applies kernel
estimation to study time-varying MFM; Kong et al. (2024) proposes quantile MFM; He et al.
(2024a) studies sequential detection on the changes of factor loadings; etc.

All the above matrix factor models employ only two-way structures (not to be confused with
the inconsistent use of “two-way” over different works below) such that the mode interaction
(between row and column here) is governed simultaneously by one term, i.e., the common
component. Researchers also introduce different structures to exploit the matrix nature of the
data. In particular, one-way structures are often included so that rows or columns independently
contribute to the data matrix. Given a zero-mean time series withYt ∈ Rd1×d2 observed at each
timestamp, Gao and Tsay (2023) assumes the noise has both one-way and two-way structures
partially shared by the same source that drives the factor Ft, i.e.,

Yt = A1

(
Ft E1,t

E2,t E3,t

)
A′

2, (2.20)

where E1,E2,E3 are noise components, A1,A2 are square matrices, and Ft ∈ Rr1×r2 is the
low-rank core factor with r1 ≪ d1, r2 ≪ d2; the estimation relies on PCA-type estimators
followed by projection which exploits the model structure. Yuan et al. (2023) proposes the
2w-DFM (two-way dynamic factor model) such that each observed Yt can be decomposed as

Yt = A1F
′
1,t + F2,tA

′
2 + Et, (2.21)

where F1,t ∈ Rr1×d2 and F2,t ∈ Rd1×r2 are two factor series with some unknown autoregres-
sive dynamics; all parameters are estimated in a two-step procedure based on quasi likelihood.
At the same time, He et al. (2023a) tests the existence of the two-way structure as in (2.17)
against the existence of only one-way factor structure as in (2.21), or just pure noise, through a
randomisation scheme based on the spectrum of the sample covariance matrices. Zhang et al.
(2024c) proposes the RaDFaM (rank-decomposition-based matrix factor model) incorporating
both one-way and two-way structures such that

Yt = A1FtA
′
2 +A1F

′
1,t + F2,tA

′
2 + Et,
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which can be either viewed as a combination of the Tucker-decomposition MFM and 2w-DFM,
or a similar form as (2.20) except for the absence of the particular structure implied by E3,t.

Frameworks or techniques from MFM can often be adapted to general order tensor factor
models (TFM). For example, Chen et al. (2022a) proposes the Tucker-decomposition TFM to
decompose each zero-mean order-K tensor Yt ∈ Rd1×···×dK into

Yt = Ft ×1 A1 ×2 · · · ×K AK + Et, (2.22)

where Ft ∈ Rr1×···×rK is an order-K core tensor, each Ak (k ∈ [K]) is the mode-k factor
loading, and Et has no serial correlation as in Lam et al. (2011). Define d =

∏K
k=1 dk and

d-k = d/dk. By generalising from Wang et al. (2019), Chen et al. (2022a) proposes the TOPUP
(time series outer-product unfolding procedure) to estimate each mode-k loading by PCA-type
estimators based on mat1(YTOPUP,k), where YTOPUP,k ∈ Rdk×d-k×dk×d-k×h0 is an order-5 tensor
formed by stacking all order-4 tensor (h ∈ [h0])

(YTOPUP,k)····h =
1

T − h
T−h∑
t=1

matk(Yt) ◦matk(Yt+h)

in its last mode. To see that forK = 2 (i.e., matrix time series), the TOPUP estimator coincides
with the PCA-type estimator by Wang et al. (2019), we may read M̂1 in (2.18) as a block-matrix
product with each block Σ̂1(h, i, j) so that

mat1(YTOPUP,1)mat1(YTOPUP,1)
′ = M̂1.

Besides, Chen et al. (2022a) also proposes the TIPUP (time series inner-product unfolding
procedure) based on mat1(YTIPUP,k), where YTIPUP,k ∈ Rdk×dk×h0 is an order-3 tensor formed
by stacking all matrix (h ∈ [h0])

(YTIPUP,k)··h =
1

T − h
T−h∑
t=1

matk(Yt)matk(Yt+h)′ (2.23)

in its last mode. See Remark 6 in Chen et al. (2022a) for the comparison between TOPUP and
TIPUP. Iterative procedures by projection (as in Yu et al. (2022a) for matrix time series) are
numerically demonstrated and later theoretically studied in Han et al. (2024a).

Almost concurrently, Barigozzi et al. (2023b) and Zhang et al. (2024b) independently pro-
pose the similar iterative projection estimator by extending Yu et al. (2022a) and He et al.
(2024b) from MFM to TFM; recall that the framework originates from approximate (vector)
factor models (Bai and Ng, 2002; Bai, 2003). The initial estimator is a PCA-type estimator
based on sample covariance matrices, i.e., (2.23) with h = 0. Instead of projecting on the
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space of loading estimators, Chen and Lam (2024b) proposes a pre-averaging estimator by
projecting on random sets of fibres to achieve superior results in the presence of weak factors.

Other developments include Chen et al. (2024c) on semi-parametric TFM, Barigozzi et al.
(2023a) on robust TFM which directly extends the Huber regression in He et al. (2024b), and
Barigozzi et al. (2024) on tail-robust TFM by element-wise truncation followed by iterative
projection, etc. There are also lots of studies on rank estimation for tensor (time series). Besides
those methods proposed within some aforementioned works, see e.g. Yokota et al. (2017), Lam
(2021), and Han et al. (2022).
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Chapter 3

Tensor Time Series Imputation through
Tensor Factor Modelling

3.1 Introduction

In large time series analysis, a less addressed topic is the treatment of missing data, in partic-
ular, imputation of missing data and the corresponding inferences. While there are numerous
data-centric methods in various scientific fields for imputing multivariate time series data (see
Chapon et al. (2023) for environmental time series, Kazijevs and Samad (2023) for health time
series, Zhao et al. (2023) and Zhang et al. (2021) for using deep-learning related architectures
for imputations, to name but a few), almost none of them address statistically how accurate
their methods are, and all of them are not for higher-order tensor time series. We certainly can
line up the variables in a tensor time series to make it a longitudinal panel, but in doing so we
lose special structures and insights that can be utilised for forecasting and interpretation of the
data. More importantly, transforming a moderate sized tensor to a vector means the length of
the vector can be much larger than the sample size, creating curse of dimensionality.

For imputing large panel of time series with statistical analyses, Bai and Ng (2021) define
the concept of “Tall” and “Wide” blocks of data and propose an iterative “TW” algorithm in
imputing missing values in a large panel, while Cahan et al. (2023) improve the TW algorithm
to a “Tall-Project” algorithm so that there is no iterations needed. Both papers use factor mod-
elling for the imputations, and derive rates of convergence when all factors are pervasive and the
number of factors known. Asymptotic normality for rows of estimated factor loadings and the
corresponding practical inferences are developed as well. Xiong and Pelger (2023) also base
their imputations on a factor model for a large panel of time series with pervasive factors and
number of factors known, and build a method for imputing missing values under very general
missing patterns, with asymptotic normality and inferences also developed.

To the best of our knowledge, for tensor time series with order larger than 1 (i.e., at least

21
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matrix-valued), there are no theoretical analyses on the imputation performance. Imputation
methodologies developed on tensor time series are also scattered around very different appli-
cations. See Chen et al. (2022b) on traffic tensor data and Pan et al. (2021) for RNA-sequence
tensor data for instance.

In view of all the above, as a first in the literature, we aim to develop a tensor imputation
method accompanied by theoretical analyses in this chapter. Like Cahan et al. (2023), we use
factor modelling for tensor time series as a basis for our imputation method. Unlike Cahan et al.
(2023), Bai and Ng (2021) or Xiong and Pelger (2023) though, we develop a method that can
consistently estimate the number of factors, or the core tensor rank, in a Tucker-decomposition
factor model for the tensor time series with missing values. Our method can be considered
a combination of Barigozzi et al. (2023b) for the tensor factor model, and Xiong and Pelger
(2023) for the imputation methodology with general missingness. In Section 3.2, we introduce
two motivating examples and our methodology at the same time. One is the Fama–French
portfolio return data with missing entries, to be analysed in Section 3.4.2. The other is a set
of monthly and quarterly OECD economic indicators, with missingness naturally occurring for
the quarterly recorded indicators relative to the monthly ones. We analyse this set of OECD
data in Section 3.4.3.

As a further contribution, we also allow factors to be weak. A weak factor corresponds to
a column in a factor loading matrix being sparse, or approximately sparse. This implies that
not all units in a tensor has dynamics contributed by all the factors inside the core tensor. In
Chen and Lam (2024b), they allow for weak factors and discovers that there are potentially
weak factors in the NYC taxi traffic data. We prove consistency of our imputations under
general missingness, and develop asymptotic normality and practical inferences for rows of
factor loading matrix estimators, with rates of convergence in all consistency results spelt out.

The rest of this chapter is organised as follows. Section 3.2 presents the Fama–French
portfolio returns data and the OECD data as two motivating examples, before describing the
tensor factor model and the imputation methodology we employ. Section 3.3 lays down the
main assumptions for this chapter, with consistent estimation and rates of convergence of all
factor loading matrix estimators and imputed values presented. Specifically, asymptotic nor-
mality and the estimators of the corresponding covariance matrices for practical inferences are
introduced as well in Section 3.3.3, before our proposed ratio-based estimators for the num-
ber of factors in Section 3.3.5. Section 3.4 presents extensive simulation results, together with
analyses for the Fama–French portfolio return data and the OECD economic data. Section 3.5
contains all the proofs of theorems and propositions. Our method is available in the R package
tensorMiss, which leveraged the Rcpp package to greatly boost computational speed.
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3.2 Motivating Examples and the Imputation Procedure

We first describe two motivating data examples in Section 3.2.1 and 3.2.2, before presenting our
imputation procedure for a general order-K mean-zero tensor Yt = (Yt,i1,...,iK ) ∈ Rd1×···×dK

(t ∈ [T ]). The two data examples are analysed in detail in Section 3.4.2 and 3.4.3 respectively.

3.2.1 Example: Fama–French portfolio returns

This is a set of Fama–French portfolio returns data with missingness. Stocks are categorised
into ten levels of market equity (ME) and ten levels of book-to-equity ratio (BE) which is the
book equity for the last fiscal year divided by the end-of-year ME. At the end of June each
year, both ME and BE use NYSE deciles as breakpoints, with stocks of NYSE, AMEX and
NASDAQ firms allocated accordingly. Moreover, the stocks in each of the 10× 10 categories
form exactly two portfolios, one being value weighted, and the other of equal weight. Hence,
there are two sets of 10 by 10 portfolios with their time series to be studied. We use monthly
data from January 1974 to June 2021, so that T = 570, and for both value weighted and equal
weighted portfolios we have each of our data set as an order-2 tensorXt ∈ R10×10 for t ∈ [570].
For more details, please visit
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/det 100 port sz.html.

If no stocks are allocated to a category (i.e., intersection of ME and BE categorisation) at a
timestamp, the corresponding return data is unavailable and hence missing. It is reasonable to
argue the missingness might depend on the rows of the loading matrix, i.e., extreme categories
tend to contain fewer stocks, but independent of latent factors and noise. The total number of
missing entries is 161 and hence the percentage of missing is 161/(10×10×570) = 0.28% for
both the value weighted and equal weighted series. However, the irregular missing pattern here
can be harmful if we are after a complete case analysis. For full observation after a timestamp,
we may only start from July 2009 and hence 74.7% of the data would be ditched. On the other
hand, we might ditch four categories to obtain a complete data set but lose the potential insights
on the return series of the four categories.

3.2.2 Example: OECD economic indicators

In this example, we study a group of economic indicators for a selection of countries obtained
from the Organization for Economic Co-operation and Development (OECD). The data con-
sists of monthly/quarterly observations of 11 economic indicators: current account balance as
percentage of GDP (CA-GDP), consumer price index (CP), merchandise exports (EX), mer-
chandise imports (IM), short-term interest rates (IR3TIB), long-term interest rates (IRLT), in-
terbank rates (IRSTCI), producer price index (PP), production volume (PRVM), retail trade

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_100_port_sz.html
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volume (TOVM) and unit labour cost (ULC). They are observed for 17 countries: Belgium
(BEL), Canada (CAN), Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU),
Greece (GRC), Italy (ITA), Luxembourg (LUX), Netherlands (NLD), Norway (NOR), Portugal
(PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), United Kingdom (GBR) and United
States (USA), with data spanning from January 1971 to December 2023. We correspond re-
spectively rows and columns to countries and indicators, so that we have our data as an order-2
tensor Yt ∈ R17×11 for t ∈ [636]. For more details, see key short-term economic indicators
available at https://data.oecd.org/.

The data is naturally missing for three reasons: unavailable indicator records for some coun-
tries at early time periods, quarterly indicators are only available at the end of each quarter, and
are sometimes unrecorded. Similar to the Fama–French data, we suppose the missing pattern is
dependent on the loading matrices by arguing that relatively less important indicators are only
available quarterly. The percentage of missing data is 26.2%, which leads to significantly inef-
ficient use of data if we hope to analyse a set of complete data. The fact that the data is observed
at least quarterly in the long run ensures the existence of a lower bound on the proportion of
available data, which in turn satisfies Assumption (O1) in Section 3.3.

3.2.3 The model and the imputation procedure

The Model: Suppose the order-K mean zero tensor Yt is modelled by

Yt = Ct + Et = Ft ×1 A1 ×2 · · · ×K AK + Et, t ∈ [T ], (3.1)

where Ct is the common component and Et the error tensor. The core tensor isFt ∈ Rr1×···×rK ,
and each mode-k factor loading matrix Ak has dimension dk×rk. See Barigozzi et al. (2023b)
amongst others using the same tensor factor model. Using the QR decomposition, if we can
decompose Ak = QkZ

1/2
k (see Assumption (L1) in Section 3.3.1 for details), then (3.1) can be

written as

Yt = FZ,t ×1 Q1 ×2 · · · ×K QK + Et, t ∈ [T ], where

FZ,t := Ft ×1 Z
1/2
1 ×2 · · · ×K Z

1/2
K .

(3.2)

Model (3.1) is an extension to the usual time series factor model (K = 1):

Yt = mat1(Yt) = mat1(Ft ×1 A1) + mat1(Et) = A1mat1(Ft) + mat1(Et) = A1Ft + Et,

and also for a matrix-valued time series factor model (K = 2):

Yt = mat1(Yt) = A1mat1(Ft)A′
2 + mat1(Et) = A1FtA′

2 + Et.

https://data.oecd.org/
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The Imputation Procedure: We only observe partial data. Define the missingness tensor
Mt = (Mt,i1,...,iK ) ∈ Rd1×···×dK with

Mt,i1,...,iK =

{
1, if Yt,i1,...,iK is observed;
0, otherwise.

Our aim is to recover the value for the common component Ct,i1,...,iK ifMt,i1,...,iK = 0. As-
suming first the number of factors rk is known for all modes, we want to obtain the estimators
of the factor loading matrices, Q̂k for k ∈ [K], and then the estimated core tensor series F̂Z,t
for t ∈ [T ]. See (3.2) for the definition of Qk and FZ,t. We can then estimate the common
components at time t by

Ĉt = F̂Z,t ×1 Q̂1 ×2 · · · ×K Q̂K . (3.3)

With (3.3), we can impute Yt using

Ỹt,i1,...,iK =

{
Yt,i1,...,iK , ifMt,i1,...,iK = 1;
Ĉt,i1,...,iK , ifMt,i1,...,iK = 0.

We leave the discussion of estimating rk to Section 3.3.5. See Section 3.2.4 in how to obtain
Q̂k and Section 3.2.5 in how to obtain F̂Z,t.

3.2.4 Estimation of factor loading matrices

In this chapter, we make use of the following notation:

ψk,ij,h :=
{
t ∈ [T ] | matk(Mt)ihmatk(Mt)jh = 1

}
. (3.4)

Hence ψk,ij,h is the set of time periods where both the i-th and j-th entries of the h-th mode-k
fibre are observed, i, j ∈ [dk], h ∈ [d-k] with d-k := d1 · · · dK/dk.

Inspired by Xiong and Pelger (2023) for a vector time series panel, our method relies on
the reconstruction of the mode-k sample covariance matrix Sk, defined for i, j ∈ [dk],

(Sk)ij :=
1

T

T∑
t=1

matk(Yt)′i·matk(Yt)j· =
d-k∑
h=1

1

T

T∑
t=1

matk(Yt)ihmatk(Yt)jh. (3.5)

With missing entries characterised byMt and ψk,ij,h in (3.4), we can generalise the above to

(Ŝk)ij =

d-k∑
h=1

{ 1

|ψk,ij,h|
∑

t∈ψk,ij,h

matk(Yt)ihmatk(Yt)jh
}
. (3.6)
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Intuitively, the cross-covariance between unit i and j at the h-th mode-k fibre is estimated
inside the curly bracket in (3.6) using only the corresponding available data. PCA can now be
performed on Ŝk, and Q̂k is obtained as the first rk eigenvectors of Ŝk.

3.2.5 Estimation of the core tensor series

With Q̂k available (which is estimating the factor loading space of Qk, with Q̂k having or-
thonormal columns), we can estimate FZ,t (equivalently vec(FZ,t)) by observing from (3.2),

vec
(
Yt
)
= Q⊗vec

(
FZ,t

)
+ vec

(
Et
)
, where Q⊗ := QK ⊗ · · · ⊗Q1.

If Q⊗ is known, then the least squares estimator of vec
(
FZ,t

)
is given by

vec
(
FZ,t

)
= (Q′

⊗Q⊗)
−1Q′

⊗vec
(
Yt
)
=
( d∑
j=1

Q⊗,j·Q
′
⊗,j·

)−1( d∑
j=1

Q⊗,j·[vec
(
Yt
)
]j

)
.

With missing data, using the missingness tensorMt, the above can be generalised to

vec
(
F̂Z,t

)
=
( d∑
j=1

[vec
(
Mt

)
]jQ̂⊗,j·Q̂

′
⊗,j·

)−1( d∑
j=1

[vec
(
Mt

)
]jQ̂⊗,j·[vec

(
Yt
)
]j

)
. (3.7)

3.3 Assumptions and Theoretical Results

3.3.1 Assumptions

We present our assumptions for consistent imputation and estimation of factor loading matrices,
with the corresponding theoretical results presented afterwards.

(O1) (Observation patterns).
1. Mt is independent of Fs and Es for any t, s ∈ [T ].
2. GivenMt with t ∈ [T ], for any k ∈ [K], i, j ∈ [dk], h ∈ [d-k], there exists a constant
ψ0 such that with probability going to 1, we have

|ψk,ij,h|
T

≥ ψ0 > 0.

(M1) (Alpha mixing). The vector processes {vec
(
Ft
)
} and {vec

(
Et
)
} are α-mixing, respec-

tively. A vector process {xt : t = 0,±1, . . . } is α-mixing if, for some γ > 2, the mixing
coefficients satisfy

∞∑
h=1

α(h)1−2/γ <∞,
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where α(h) = supτ supA∈Hτ
−∞,B∈H∞

τ+h
|P(A ∩ B) − P(A)P(B)| and Hs

τ is the σ-field
generated by {xt : τ ≤ t ≤ s}.

(F1) (Time series inFt). There isXf,t the same dimension asFt, such that we may writeFt =∑
q≥0 af,qXf,t−q. The time series {Xf,t} has i.i.d. elements with mean 0 and variance

1, with uniformly bounded fourth order moments. The coefficients af,q are such that∑
q≥0 a

2
f,q = 1 and

∑
q≥0 |af,q| ≤ c for some constant c.

(L1) (Factor strength). We assume for k ∈ [K], Ak is of full column rank and independent of
factors and errors series. Furthermore, as dk →∞,

Z
−1/2
k A′

kAkZ
−1/2
k → ΣA,k, (3.8)

whereZk = diag(A′
kAk) andΣA,k is positive definite with all eigenvalues bounded away

from 0 and infinity. We assume (Zk)jj ≍ d
αk,j

k for j ∈ [rk], and 1/2 < αk,rk ≤ · · · ≤
αk,2 ≤ αk,1 ≤ 1.

With Assumption (L1), we can denote Qk := AkZ
−1/2
k and hence Q′

kQk → ΣA,k. We need
αk,j > 1/2 so that the ratio-based estimator of the number of factors in Section 3.3.5 works.

(E1) (Decomposition of Et). We assume K is constant, and

Et = Fe,t ×1 Ae,1 ×2 · · · ×K Ae,K +Σϵ ∗ ϵt, (3.9)

whereFe,t is an order-K tensor with dimension re,1×· · ·×re,K , containing independent
elements with mean 0 and variance 1. The order-K tensor ϵt ∈ Rd1×···×dK contains
independent mean zero elements with unit variance, with the two time series {ϵt} and
{Fe,t} being independent. The order-K tensor Σϵ contains the standard deviations of
the corresponding elements in ϵt, and has elements uniformly bounded.

Moreover, for each k ∈ [K], Ae,k ∈ Rdk×re,k is such that
∥∥Ae,k

∥∥
1
= O(1). That is, Ae,k

is (approximately) sparse.

(E2) (Time series in Et). There isXe,t the same dimension asFe,t, andXϵ,t the same dimension
as ϵt, such thatFe,t =

∑
q≥0 ae,qXe,t−q and ϵt =

∑
q≥0 aϵ,qXϵ,t−q, with {Xe,t} and {Xϵ,t}

independent of each other, and each time series has independent elements with mean 0

and variance 1 with uniformly bounded fourth order moments. Both {Xe,t} and {Xϵ,t}
are independent of {Xf,t} from (F1).

The coefficients ae,q and aϵ,t are such that
∑

q≥0 a
2
e,q =

∑
q≥0 a

2
ϵ,q = 1 and for some

constant c it holds that
∑

q≥0 |ae,q|,
∑

q≥0 |aϵ,q| ≤ c.
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(R1) (Further rate assumptions). We assume that, with d :=
∏K

k=1 dk and gs :=
∏K

k=1 d
αk,1

k ,

dg−2
s T−1d

2(αk,1−αk,rk
)+1

k , dg−1
s T−1d

2(αk,1−αk,rk
)

k , dg−1
s d

αk,1−αk,rk
−1/2

k = o(1).

Assumption (O1) means that the missing mechanism is independent of the factors and the noise
series, which is also assumed in Xiong and Pelger (2023) for the purpose of identification. It
also means that the missing pattern can depend on the K factor loading matrices, allowing for
a wide variety of missing patterns that can vary over time and units in different dimensions.
Condition 2 of (O1) implies that the number of time periods that any two individual units
are both observed are at least proportional to T , which simplifies proofs and presentations,
and is also used in Xiong and Pelger (2023). Assumption (M1) is a standard assumption in
vector time series factor models, which facilitates proofs using central limit theorem for time
series without losing too much generality. Assumption (F1), (E1) and (E2) are exactly the
corresponding assumptions in Chen and Lam (2024b), allowing for serial correlations in the
factor series, and serial and cross-sectional dependence within and among the error tensor
fibres. These three assumptions facilitate the proof of asymptotic normality in Section 3.3.3,
and boil down to similar assumptions in Chen and Fan (2023) for matrix time series and in
Barigozzi et al. (2023b) for general tensor time series (see Proposition 3.2 in Section 3.5 for
the technical details). Together with Assumption (M1), we implicitly restrict the general linear
processes in (F1) and (E2) to be, for instance, of short rather than long dependence.

Assumption (L1) is quite different from assumptions in other existing works on factor mod-
els, in the sense that we allow for the existence of weak factors alongside the pervasive ones.
Chen and Lam (2024b) adapted the same assumption, which allows each column of Ak to be
completely dense (i.e., a pervasive factor) or sparse to a certain extent. A diagonal entry in Zk

then records how dense a column really is, and the corresponding strength of factors defined.
Assumption (L1) is similar to, yet technically more general than, Assumption 1(iii) in Onatski
(2012) which requires ΣA,k to be diagonal while the normalisation on the factor series is es-
sentially the same as ours. If all factors are pervasive, (3.8) can be read as d−1

k A′
kAk → ΣA,k

which is akin to Assumption 3 of Chen and Fan (2023) for K = 2. Modelling with weak
factors is closer to reality, and empirical evidence can be found in economics and finance, etc.
For instance, apart from a pervasive market factor, there can be weaker sector factors in a large
selection of stock returns (Trzcinka, 1986). More recent work on factor models specifically
focuses on weak factors with real data examples confirming the existence of weak factors, such
as Freyaldenhoven (2022) and Chen and Lam (2024b).

Finally, Assumption (R1) gives the technical rates needed for the proof of various theorems
in this chapter because of the existence of weak factors. If all factors are pervasive (i.e., αk,j =
1), then the conditions are automatically satisfied. Suppose K = 2, T ≍ d1 ≍ d2 and the
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strongest factors are all pervasive (i.e., αk,1 = 1), then we need αk,rk > 1/2 for (R1) to be
satisfied. This condition is the same as the one remarked right after we stated Assumption
(L1). A factor with αk,j close to 0.5 presents a significantly weak factor with only more than
d
1/2
k of elements are nonzero in the corresponding column of Ak.

Remark 3.1 To see Assumptions (F1) and (E1) do not imply (M1), a simple counterexample
which satisfies (F1) and (E1) but not (M1) can be an appropriate moving average process
not satisfying α-mixing, see e.g. Sidorov (2010). Rather than delving into specific classes of
processes that are α-mixing, (M1) should be general enough to facilitate theoretical results to
be smoothly spelt out. More generally, unless a Gaussian innovation process is assumed in
the linear processes, showing (M1) by additional assumptions is unnecessarily complicated to
be pursued. As discussed in Section 15.3 in Davidson (2021): “[...] allowing more general
distributions for the innovations yields surprising results. Contrary to what might be supposed,
having the θj tend to zero even at an exponential rate is not sufficient by itself for strong mixing
[...]”, where θj is the coefficient in the linear process; see also Theorem 15.9 in Davidson
(2021) for a fairly general result which requires certain non-trivial smoothness conditions on
the innovations’ p.d.f.’s and decays on the coefficients for a univariate linear process to be
α-mixing.

Remark 3.2 With the missing entries imputed by the estimated common components Ĉt,i1,...,iK ,
we have a completed data set which could be used for re-estimation and hence re-imputation.
The convergence could be shown empirically to be accelerated by such a procedure. The rate
improvement would be from the difference between T and ψ0T , where ψ0 is the lowest propor-
tion of observation among all entries from Assumption (O1). We omit the lengthy proofs as
eventually the rates only differ by a constant, but we note here that re-imputation can indeed
improve our imputation, which is essentially credited to the more observations used when we
have an initially good imputation.

Note that even if we adopt the iterative projection estimator from e.g. Barigozzi et al. (2023b),
the initial imputation inherits the rate from our procedure and hence there would be no improve-
ment on the theoretical rate. To potentially obtain a better rate, we should investigate how to
adapt the iterative projection estimator to cope with missing data, which is non-trivial both
on imputation procedure and theoretical derivation. Since it is not the main concern here, we
leave this as a future direction as it is certainly a worthy yet technical extension.
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3.3.2 Consistency: factor loadings and imputed values

We present consistency results in this subsection. For k ∈ [K], j ∈ [dk], define

Hk,j := D̂−1
k

dk∑
i=1

Q̂k,i·

d-k∑
h=1

1

|ψk,ij,h|∑
t∈ψk,ij,h

{ r-k∑
m=1

Λk,hmmatk(FZ,t)·m
}′
Qk,i·

{ r-k∑
m=1

Λk,hmmatk(FZ,t)·m
}′
, (3.10)

Ha
k :=

1

T

T∑
t=1

D̂−1
k Q̂′

kQkmatk(FZ,t)Λ′
kΛkmatk(FZ,t)′, (3.11)

where D̂k := Q̂′
kŜkQ̂k is a diagonal matrix of eigenvalues of Ŝk defined in (3.6). Hence

Hk,j = Ha
k if there are no missing entries, i.e., |ψk,ij,h| = T for each k ∈ [K], i, j ∈ [dk] and

h ∈ [d-k]. Furthermore, each Hk,j and Ha
k can be shown asymptotically bounded and invertible

(see Theorem 3.1 with Lemma 3.3 in Section 3.5).
We first present a consistency result for the factor loading matrix estimator Q̂k of Qk. In

particular, our theoretical rates are shown in the presence of potential weak factors. To compare
with results in similar literature, we will end this subsection with a simplified result. Readers
interested in the rates under only pervasive factors can go straight to Corollary 3.1.

Theorem 3.1 Under Assumptions (O1), (M1), (F1), (L1), (E1), (E2) and (R1), for any k ∈ [K],

1

dk

dk∑
j=1

∥∥Q̂k,j· −Hk,jQk,j·
∥∥2 = OP

{
d
2(αk,1−αk,rk

)−1

k

Å
1

Td-k
+

1

dk

ã
d2

g2s

}
= oP (1),

where gs is defined in Assumption (R1). Furthermore, define η := 1 − ψ0 with ψ0 from As-
sumption (O1). We have Ha

k is asymptotically invertible with ∥Ha
k∥F = OP (1), and

1

dk

dk∑
j=1

∥∥Q̂k,j· −Ha
kQk,j·

∥∥2 = 1

dk

∥∥Q̂k −QkH
a′

k

∥∥2
F

= OP

(
d
2(αk,1−αk,rk

)−1

k

ïÅ
1

Td-k
+

1

dk

ã
d2

g2s
+min

ß
1

T
,

η2

(1− η)2
™ò)

= oP (1).

The proof of the theorem is relegated to Section 3.5. The two results in Theorem 3.1 coincide
with each other if η = 0, i.e., there are no missing values.

We present the two results in the theorem to highlight the difficulty of obtaining consistency
when there are missing values. Since a factor loading matrix is not uniquely defined, in the
second result in Theorem 3.1 we are estimating how close Q̂k is to a version of Qk in Frobenius
norm, namely QkH

a
k, which is still defining the same factor loading space as Qk does. With
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missing data, such a feat is complicated, in the sense that for the j-th row of Qk, Q̂k,j·, there
corresponds an Hk,j different from Ha

k in general, so that Q̂k,j· is close to Hk,jQk,j·. The extra
rate min(1/T, η2/(1 − η)2) in the second result is essentially measuring how close each Hk,j

is to Ha
k. See Lemma 3.3 in Section 3.5 as well.

Theorem 3.2 Let all the assumptions in Theorem 3.1 hold, and define

gη := min
{ 1

T
,

η2

(1− η)2
}
, gw :=

K∏
k=1

d
αk,rk
k .

Suppose we further have d2αk,1−3αk,rk
k = o(d-k), then we have the following:

1. The error of the estimated factor series has rate∥∥vec(F̂Z,t)−
(
Ha′

K ⊗ · · · ⊗Ha′

1

)−1vec(FZ,t)
∥∥2

= OP

(
max
k∈[K]

{
T−1dd

3αk,1−2αk,rk
k g−1

s + d2g−1
s d

2αk,1−3αk,rk
−1

k + gηgsd
2αk,1−3αk,rk

+1

k

}
+

d

gw

)
.

2. For any k ∈ [K], ik ∈ [dk], t ∈ [T ], the squared individual imputation error is

(Ĉt,i1,...,iK − Ct,i1,...,iK )2 =
d

gw
·OP

{ 1

Td

T∑
t=1

d1,...,dK∑
i1,...,iK=1

(Ĉt,i1,...,iK − Ct,i1,...,iK )2
}
.

3. The average imputation error is given by

1

Td

T∑
t=1

d1,...,dK∑
i1,...,iK=1

(Ĉt,i1,...,iK − Ct,i1,...,iK )2

= OP

(
max
k∈[K]

{
T−1d

3αk,1−2αk,rk
k g−1

s + dg−1
s d

2αk,1−3αk,rk
−1

k + d−1gηgsd
2αk,1−3αk,rk

+1

k

}
+

1

gw

)
.

The proof can be found in Section 3.5, which utilises some rates from the proof of Theorem 3.3
(without the need for extra rate restrictions like Theorem 3.3 though). The complication of
missing data comes explicitly from the rate gη. The average squared imputation error in result
3 improves upon individual squared error in result 2 when weak factors exist, with degree of
improvements larger when the difference in strength of factors is larger.

Our rate can be considered a generalisation of approximate factor models to a general order
tensor, with general factor strengths and missing data, see the comparison of our results with
others’ below Corollary 3.1. Such generalisations have certainly revealed that when there are
weak factors, especially when the strongest and weakest factor strengths are quite different,
those rates of convergence greatly suffer.
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Corollary 3.1 (Simplified Theorem 3.1 and 3.2 under pervasive factors). Let Assumption (O1),
(M1), (F1), (L1), (E1) and (E2) hold. If all factors are pervasive such that αk,j = 1 for all
k ∈ [K], j ∈ [rk], then with the renormalised loading and core factor estimators defined as
Âk =

√
dk Q̂k and F̂t = F̂Z,t/

√
d, we have the following:

1. The (renormalised) loading estimator is consistent such that for any k ∈ [K],

1

dk

dk∑
j=1

∥∥Âk,j· −Hk,jAk,j·
∥∥2 = OP

( 1

Td-k
+

1

dk

)
= oP (1),

1

dk

dk∑
j=1

∥∥Âk,j· −Ha
kAk,j·

∥∥2 = OP

{ 1

Td-k
+

1

dk
+min

( 1
T
,

η2

(1− η)2
)}

= oP (1).

2. The (renormalised) core factor estimator is consistent such that for any t ∈ [T ],

∥∥vec(F̂t)−
(
Ha′

K⊗· · ·⊗Ha′

1

)−1vec(Ft)
∥∥2 = OP

{
max
k∈[K]

( 1

Td-k
+

1

d2k

)
+min

( 1
T
,

η2

(1− η)2
)}
.

3. The imputation is consistent both for each entry and on average (with the same rate), such
that for any k ∈ [K], ik ∈ [dk], t ∈ [T ],

(Ĉt,i1,...,iK − Ct,i1,...,iK )2 = OP

{
max
k∈[K]

( 1

Td-k
+

1

d2k

)
+min

( 1
T
,

η2

(1− η)2
)
+

1

d

}
.

When K = 1 with missing data, result 1 has rate 1/min(d1, T ), which is the same as the rate
in Theorem 1 of Xiong and Pelger (2023). If K = 2 and η = 0 (i.e, no missing values), result
1 has rate 1/min(dk, Td-k), which is consistent with Theorem 1 of Chen and Fan (2023), for
example. For a general order-K tensor without missing data (i.e., η = 0), our Lemma 3.5 in
Section 3.5 states that

∥Q̂k,j· −Ha
kQk,j·∥2 = OP

( 1

Td
+

1

d3k

)
, implying

1

dk
∥Âk −AkH

a
k∥2F = OP

( 1

Td-k
+

1

d2k

)
,

which aligns with Theorem 3.1 of Barigozzi et al. (2023b). Note that the rate in Lemma 3.5 is
improved at no cost if all factors are pervasive from the proof of the lemma. For more technical
details, see (4.40) in the proof of Lemma 4.5 where the decomposition therein shows how the
rate of convergence for the loading estimators can be improved.

If K ≥ 2 and η = 0, result 3 has rate

max
k∈[K]

Å
1

Td-k
+

1

d2k

ã
+

1

d
≍ 1

min(Td-1, . . . , Td-K , d21, . . . , d
2
K)
.

This rate is the same as the result in Theorem 4 of Chen and Fan (2023) for K = 2, which is a
rate for estimating the common component. On the other hand, if η is a constant and K = 1,
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then result 3 becomes d−1
1 +T−1 ≍ 1/min(d1, T ), which is the same rate as result 3 of Theorem

2 in Xiong and Pelger (2023).

Remark 3.3 From the discussion below Corollary 3.1, our result would boil down to that in
Xiong and Pelger (2023), but we point out that the rate of convergence, e.g. for the imputation,
suffers from large portion of missing data due to the rate min(1/T, η2/(1 − η)2) which can
be neglected for K = 1, i.e., vector time series where 1/Td-k ≡ 1/T . This is also manifested
throughout the derivation of theoretical results, where the improved rate 1/Td-k from other
modes in a tensor factor models is undermined by the essentially the general missing pattern
considered in our setup. That said, we should expect to recover the classical rates on common
component estimators in tensor factor models if the observational pattern is regular, which then
becomes unrealistic and less useful for a general tensor time series. For example, we manage to
generalize the TALL-WIDE imputation algorithm in Bai and Ng (2021) for tensor time series,
also mentioned in Section 3.4.1, but this track of procedure is even hardly valid when the data
is missing at random. Hence it is celebrating to see how our procedure is capable of imputing
on even pessimistically observed tensor data. To further highlight the advantage of our method,
we refer to the comparison between our method and an iterative vectorisation-based algorithm
in Section 3.4.1.

3.3.3 Inference on the factor loadings

We establish asymptotic normality of the factor loadings for inference purpose. In Section 3.3.4
we present the covariance matrix estimator for practical use of our asymptotic normality result.
First, we define

Ha,∗
k := tr(A′

-kA-k))
1/2 ·D−1/2

k Υ′
kZ

1/2
k , (3.12)

where Dk := tr(A′
-kA-k) diag{λ1(A′

kAk), . . . , λrk(A
′
kAk)}, and Υk is the eigenvector matrix

of tr(A′
-kA-k) · g−1

s d
αk,1−αk,rk
k Z

1/2
k ΣA,kZ

1/2
k . It turns out Ha,∗

k is the probability limit of Ha
k

defined in (3.11). Before presenting our results, we need three additional assumptions.

(L2) (Eigenvalues). For any k ∈ [K], the eigenvalues of the rk × rk matrix ΣA,kZk from
Assumption (L1) are distinct.

(AD1) Define ωB := d−1
-k d

2αk,rk
−3αk,1

k g2s and the following,

Ξk,j := plim
T,d1,...,dK→∞

Var
{ dk∑

i=1

Qk,i·

d-k∑
h=1

1

|ψk,ij,h|
∑

t∈ψk,ij,h

matk(Et)jh(A-k)
′
h·matk(Ft)′Ak,i·

}
,

then we assume TωB ·
∥∥D−1

k Ha,∗
k Ξk,j(H

a,∗
k )′D−1

k

∥∥
F

is of constant order.
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(AD2) Define the filtration GT:=σ(∪Ts=1Gs) with Gs:=σ({Mt,i1,...,iK| t ≤ s},A1, . . . ,AK), and

∆F,k,ij,h:=
1

|ψk,ij,h|
∑

t∈ψk,ij,h

matk(Ft)vk,hv′
k,hmatk(Ft)′ −

1

T

T∑
t=1

matk(Ft)vk,hv′
k,hmatk(Ft)′,

where vk,h := [⊗l∈[K]\{k}Al]h·. With Qk being the normalised mode-k factor loading
defined below Assumption (L1), we have for every k ∈ [K], j ∈ [dk], for a function
hk,j : Rrk → Rrk×rk ,»

Td
αk,rk
k ·D−1

k Ha,∗
k

dk∑
i=1

Qk,i·A
′
k,i·

d-k∑
h=1

∆F,k,ij,hAk,j·

→ N (0,D−1
k Ha,∗

k hk,j(Ak,j·)(H
a,∗
k )′D−1

k ) GT -stably.

Assumption (AD1) guarantees a part of the covariance matrix of the asymptotic normality
in Theorem 3.3 is of constant order. It can be regarded as a lower bound condition which is
necessary for the dominance of a certain term involved in the asymptotic normality. Since we
show the upper bound of TωB ·

∥∥D−1
k Ha,∗

k Ξk,j(H
a,∗
k )′D−1

k

∥∥
F

is of constant order in the proof
of Theorem 3.3, this assumption is not particularly strong.

Assumption (AD2) is required since the missing data creates a discrepancy term ∆F,k,ij,h

as defined in the assumption. This assumption is also parallel to Assumption G3.5 in Xiong
and Pelger (2023). We demonstrate how this assumption is satisfied with Assumption (O1),
(F1), (L1) and two additional but simpler assumptions in Proposition 3.1 in Section 3.3.6.

Theorem 3.3 Let all the assumptions under Theorem 3.2 hold, in addition to (L2), (AD1) and
(AD2) above. With rk fixed and dk, T →∞ for k ∈ [K], suppose Td-k = o(d

αk,1+αk,rk
k ), then»

Td
αk,rk
k · (Q̂k,j· −Ha

kQk,j·)
D−→ N (0,D−1

k Ha,∗
k (Td

αk,rk
k ·Ξk,j + hk,j(Aj·))(H

a,∗
k )′D−1

k ).

Furthermore, if Td−1g2sgηd
1+αk,1−3αk,rk
k = o(1) is also satisfied, then√

TωB · (Q̂k,j· −Ha
kQk,j·)

D−→ N (0, TωB ·D−1
k Ha,∗

k Ξk,j(H
a,∗
k )′D−1

k ).

If all factors are pervasive, the rate condition Td-k = o(d
αk,1+αk,rk
k ) reduces to Td-k = o(d2k),

which is equivalent to the condition needed for asymptotic normality in Bai (2003) for K = 1

and Chen and Fan (2023) for K = 2. The first asymptotic normality result is compatible to
Theorem 2.1 of Xiong and Pelger (2023) when all factors are pervasive. In their Theorem 2.1,
the ΓobsΛ,j is in fact of rate N−1, so that the normalising rate is

√
TN , which is exactly

√
Td1 in

our first result when K = 1.
Suppose all factors are pervasive. The rate condition Td−1g2sgηd

1+αk,1−3αk,rk
k = o(1) is
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automatically satisfied when there is no missing data, i.e., η = 0 so that gη = 0. If so, the rate
of convergence is

√
TωB =

√
Td, which is compatible to Theorem 2.1, Theorem 2.2 of Chen

and Fan (2023) and Theorem 3.2 of Barigozzi et al. (2023b) (after our normalisation to their
factor loading matrices). The condition is also satisfied when there is only finite number of
missing data, so that η ≍ T−1 and gη ≍ T−2, and d1, d2 = o(T ) for K = 2.

Remark 3.4 We do not establish asymptotic normality for the estimated factor series and com-
mon components. The reason is that for tensor withK > 1, the decomposition in the estimated
factor series and the common components cannot be dominated by terms that are asymptoti-
cally normal. This is also the reason why Chen and Fan (2023) does not include asymptotic
normality for the estimated factor series and common components. Barigozzi et al. (2023b)
constructs asymptotic normality for the core factor built upon their projection estimator F̃t,
which is sensible as the projecting loading estimator already has an improved rate. In compar-
isons, the rate of any PCA-type estimators, such as the one in Chen and Fan (2023) for matrix
data and the one in our case for general tensors, is insufficient for a potentially asymptotically
Gaussian term to be dominating. The main goal of this chapter is to impute missing entries,
and existing methods on tensor factor models using Tucker decomposition should be able to be
applied with all missing entries replaced by the consistent imputations.

3.3.4 Estimation of the asymptotic covariance matrix

In order to carry out inferences for the factor loadings using Theorem 3.3, we need to es-
timate the asymptotic covariance matrix for Q̂k,j· − Ha

kQk,j·. To this end, we use the het-
eroscedasticity and autocorrelation consistent (HAC) estimators (Newey and West, 1987) based
on {Q̂k,matk(Ĉt),matk(Êt)}t∈[T ], where

matk(Ĉt) := (Q̂k)matk(F̂Z,t)(Q̂K ⊗ · · · ⊗ Q̂k+1 ⊗ Q̂k−1 ⊗ · · · ⊗ Q̂1)
′,

matk(Êt) := matk(Yt)−matk(Ĉt).

With a tuning parameter β that β →∞, β/(Tdαk,rk
k )1/4 → 0, we define two HAC estimators

Σ̂HAC := Dk,0,j +

β∑
ν=1

(
1− ν

1 + β

)(
Dk,ν,j +D′

k,ν,j

)
,

Σ̂∆
HAC := D∆

k,0,j +

β∑
ν=1

(
1− ν

1 + β

)(
D∆
k,ν,j + (D∆

k,ν,j)
′
)
, where
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Dk,ν,j :=
T∑

t=1+ν

{ dk∑
i=1

( 1
T

T∑
s=1

D̂−1
k Q̂′

kĈ(k),sĈ(k),s,i·

) d-k∑
h=1

1{t ∈ ψk,ij,h}
|ψk,ij,h|

Ê(k),t,jhĈ(k),t,ih

}
·
{ dk∑

i=1

( 1
T

T∑
s=1

D̂−1
k Q̂′

kĈ(k),sĈ(k),s,i·

) d-k∑
h=1

1{t− ν ∈ ψk,ij,h}
|ψk,ij,h|

Ê(k),t−ν,jhĈ(k),t−ν,ih

}′
,

D∆
k,ν,j :=

T∑
t=1+ν

{ dk∑
i=1

( 1
T

T∑
s=1

D̂−1
k Q̂′

kĈ(k),sĈ(k),s,i·

)
·
d-k∑
h=1

(
1{t ∈ ψk,ij,h}
|ψk,ij,h|

Ĉ(k),t,ihĈ(k),t,jh

− 1

T
Ĉ(k),t,ihĈ(k),t,jh

)}
·
{ dk∑

i=1

( 1
T

T∑
s=1

D̂−1
k Q̂′

kĈ(k),sĈ(k),s,i·

)
·
d-k∑
h=1

(
1{t− ν ∈ ψk,ij,h}

|ψk,ij,h|
Ĉ(k),t−ν,ihĈ(k),t−ν,jh −

1

T
Ĉ(k),t−ν,ihĈ(k),t−ν,jh

)}′
,

where Ĉ(k),s := matk(Ĉs) and Ê(k),s := matk(Ês).

Theorem 3.4 Let all the assumptions under Theorem 3.2 hold, in addition to (L2), (AD1) and
(AD2) above. With rk fixed and dk, T →∞ for k ∈ [K], suppose also the rate for the individual
common component imputation error in result 2 of Theorem 3.2 is o(1), together with Td-k =

o(d
αk,1+αk,rk
k ) and d2(αk,1−αk,rk

)

k [(Td-k)
−1 + d−1

k ]d2g−2
s = o(1). Then

1. D̂−1
k Σ̂HACD̂

−1
k is consistent for D−1

k Ha,∗
k Ξk,j(H

a,∗
k )′D−1

k ;

2. D̂−1
k Σ̂∆

HACD̂
−1
k is consistent for (Tdαk,rk

k )−1D−1
k Ha,∗

k hk,j(Ak,j·)(H
a,∗
k )′D−1

k ;

3. (Σ̂HAC + Σ̂∆
HAC)

−1/2D̂k(Q̂k,j· −Ha
kQk,j·)

D−→ N (0, Irk).

The extra rate assumption d2(αk,1−αk,rk
)

k [(Td-k)
−1 + d−1

k ]d2g−2
s = o(1) makes sure that we have

Frobenius norm consistency for Q̂k from Theorem 3.1. The imputation error from result 2 of
Theorem 3.2 also has rate going to 0 when are all factors are pervasive, for instance. With
result 3 in particular, we can perform inferences on any rows of Q̂k. Practical performances of
result 3 is demonstrated in Section 3.4.1. The reason that we need two HAC estimators is that
similar to Theorem 3.1, there is a component for missing data, arising from the fact that Hk,j

is different from Ha
k for each j ∈ [dk] in general.

3.3.5 Estimation of number of factors

The reconstructed mode-k sample covariance matrix Ŝk is in fact estimating a complete-sample
version of a matrix R∗

k, where

R∗
k :=

1

T

T∑
t=1

Qkmatk(FZ,t)Λ′
kΛkmatk(FZ,t)′Q′

k, (3.13)
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and FZ,t and Λk are defined in (3.2). It turns out that λj(Ŝk) ≍P λj(R∗
k) for j ∈ [rk], and

λj(R
∗
k) ≍P d

αk,j−αk,1

k gs, gs :=
K∏
k=1

d
αk,1

k as defined in (R1).

We have the following theorem.

Theorem 3.5 Let Assumption (O1), (M1), (F1), (L1), (E1), (E2) and (R1) hold. Moreover,
assume{

dg−1
s d

αk,1−αk,rk
k [(Td-k)

−1/2 + d
−1/2
k ] = o(d

αk,j+1−αk,j

k ), j ∈ [rk − 1] with rk ≥ 2;
dg−1

s [(Td-k)
−1/2 + d

−1/2
k ] = o(1), rk = 1.

Then r̂k is a consistent estimator of rk, where

r̂k := argmin
ℓ

{
λℓ+1(Ŝk) + ξ

λℓ(Ŝk) + ξ
, ℓ ∈

[
⌊dk/2⌋

]}
, ξ ≍ d

[
(Td-k)

−1/2 + d
−1/2
k

]
. (3.14)

The extra rate assumption is satisfied, for instance, when all factors corresponding to Ak are
pervasive. An eigenvalue-ratio estimator is considered in Lam and Yao (2012) and Ahn and
Horenstein (2013), while a perturbed eigenvalue ratio estimator is considered in Pelger (2019).
However, all of these estimators are for a vector time series factor model. Our estimator r̂k
in (3.14) extracts eigenvalues from Ŝk, which is not necessarily positive semi-definite. The
addition of ξ can make Ŝk + ξIdk positive semi-definite, while stabilizing the estimator. We
naturally assume that rk < dk/2, which is a very reasonable assumption for all applications of
factor models. In fact, our recommended choice of ξ is

ξ =
1

5
d
[
(Td-k)

−1/2 + d
−1/2
k

]
.

The requirement ξ ≍ d
[
(Td-k)

−1/2+d
−1/2
k

]
ensures ξ = oP (λrk(Ŝk)) from our rate assumption

in the theorem. Our simulations in Section 3.4.1 suggest that this proposal works well.

3.3.6 *How Assumption (AD2) can be implied

This section details how Assumption (AD2) can be implied from simpler assumptions. Readers
can skip this part and go straight to the next section for a more integral reading experience. We
begin by presenting a proposition.

Proposition 3.1 Let Assumption (O1), (F1), (L1) hold. For a given k ∈ [K], j ∈ [dk], assume:

1. The mode-k factor is strong enough such that αk,rk > 4/5, and dαk,1−αk,rk
k T−ϵ/2 = o(1)

with some ϵ ∈ (0, 1).
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2. There exists some ψk,ij such that ψk,ij = ψk,ij,h for any i ∈ [dk], h ∈ [d-k]. Furthermore,
there exists ωψ,k,j such that for any t ∈ [T ], as dk, T →∞,

d−2
k

dk∑
i=1

dk∑
l=1

(T · 1{t ∈ ψk,ij}
|ψk,ij|

− 1
)(T · 1{t ∈ ψk,lj}

|ψk,lj|
− 1
)

p−→ ωψ,k,j.

With the above, Assumption (AD2) is satisfied. Moreover, condition 2 can be replaced by miss-
ing at random over all elements such that P(Mt,i1,...,iK = 1) is the same for any t, i1, . . . , iK .

Condition 1 and 2 in Proposition 3.1 are on the factor strength and missingness pattern, respec-
tively. Condition 1 is trivially satisfied if all factors are pervasive. If the data is also missing at
random, Proposition 3.1 holds.

Remark 3.5 Condition 2 can be satisfied by assuming that in matk(Yt), all the elements are
missing at random over rows with probability 1−p0, and meanwhile missing dependently over
columns such that ψk,ij,1 = · · · = ψk,ij,d-k (which still allows the pattern to be different to
certain extent over columns). We then have for each t ∈ [T ], as dk, T →∞,

d−2
k

dk∑
i=1

dk∑
l=1

(T · 1{t ∈ ψk,ij}
|ψk,ij|

− 1
)(T · 1{t ∈ ψk,lj}

|ψk,lj|
− 1
)

= d−2
k

dk∑
i=1

dk∑
l=1

(T 2 · 1{t ∈ ψk,ij} · 1{t ∈ ψk,lj}
|ψk,ij| · |ψk,lj|

− T · 1{t ∈ ψk,ij}
|ψk,ij|

− T · 1{t ∈ ψk,lj}
|ψk,lj|

+ 1
)

p−→ p−1
0 − 1,

which is ωψ,k,j . Similar to Assumption S3.2 in Xiong and Pelger (2023), the value of ωψ,k,j can
be regarded as a measure of missingness complexity. It is a parameter related to the variance
of the stable convergence, and tends to increase when there is a larger portion of data missing.

3.4 Numerical Results

3.4.1 Simulations

We demonstrate the empirical performance of our estimators in this subsection. Note that we
do not have comparisons to other imputation methods since to the best of our knowledge, there
are no other general imputation methods available for K > 1 apart from tensor completion
methods for very specific applications as mentioned in the introduction. However, we will
make comparison with an alternative approach to impute tensor time series combining Xiong
and Pelger (2023) and Chen and Lam (2024b). Under different missing patterns which will
be described later, we investigate the performance of the factor loading matrix estimators, the
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imputation, and the estimator of the number of factors. We also demonstrate asymptotic nor-
mality as described in Theorem 3.3, followed by an example plot of a statistical power function
using result 3 of Theorem 3.4. Throughout this subsection, each simulation experiment of a
particular setting is repeated 1000 times, unless stated otherwise.

For the data generating process, we use model (3.1) together with Assumption (E1), (E2)
and (F1). More precisely, the elements in Ft are independent standardised AR(5) with AR
coefficients 0.7, 0.3, -0.4, 0.2, and -0.1. The elements inFe,t and ϵt are generated similarly, but
their AR coefficients are (-0.7, -0.3, -0.4, 0.2, 0.1) and (0.8, 0.4, -0.4, 0.2, -0.1) respectively.
The standard deviation of each element in ϵt is generated by i.i.d. |N (0, 1)|.

For each k ∈ [K], each factor loading matrix Ak is generated independently with Ak =

UkBk, where each entry of Uk ∈ Rdk×rk is i.i.d. N (0, 1), and Bk ∈ Rrk×rk is diagonal with
the j-th diagonal entry being d−ζk,jk , 0 ≤ ζk,j ≤ 0.5. Pervasive (strong) factors have ζk,j = 0,
while weak factors have 0 < ζk,j ≤ 0.5. Each entry of Ae,k ∈ Rdk×re,k is i.i.d. N (0, 1), but
has independent probability of 0.95 being set exactly to 0. We set re,k = 2 for all k ∈ [K]

throughout this subsection.
To investigate the performance with missing data, we consider four missing patterns:

• (M-i) Random missing with probability 0.05.

• (M-ii) Random missing with probability 0.3.

• (M-iii) The missing entries have index (t, i1, . . . , iK), where

0.5T ≤ t ≤ T, 1 ≤ ik ≤ 0.5dk for all k ∈ [K].

• (M-iv) Conditional random missing such that the unit with index j along mode-1 is miss-
ing with probability 0.2 if (A1)j,1 ≥ 0, and with probability 0.5 if (A1)j,1 < 0.

To test how robust our imputation is under heavy-tailed distribution, we consider two distribu-
tions for the innovation process in generating Ft, Fe,t and ϵt: 1) i.i.d. N (0, 1); 2) i.i.d. t3.

Accuracy in the factor loading matrix estimators and imputations

For both the factor loading matrix estimators and the imputations, since our procedure for vector
time series (K = 1) is essentially the same as that in Xiong and Pelger (2023), we show here
only the performance for K = 2, 3. We use the column space distance

D(Q, Q̂) =
∥∥Q(Q′Q)−1Q′ − Q̂(Q̂′Q̂)−1Q̂′∥∥
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for any given Q, Q̂, which is a commonly used measure in the literature. For measuring the
imputation accuracy, we report the relative mean squared errors (MSE) defined by

relative MSES =

∑
j∈S(Ĉj − Cj)2∑

j∈S C
2
j

, (3.15)

where S either denotes the set of all missing, all observed, or all available units.
We consider the following simulation settings:

(Ia) K = 2, T = 100, d1 = d2 = 40, r1 = 1, r2 = 2. All factors are pervasive with ζk,j = 0

for all k, j. All innovation processes in constructing Ft,Fe,t and ϵt are i.i.d. standard
normal, and missing pattern is (M-i).

(Ib) Same as (Ia), but one factor is weak with ζk,1 = 0.2 for all k ∈ [K].

(Ic) Same as (Ia), but all innovation processes are i.i.d. t3, and all factors are weak with
ζk,j = 0.2 for all k, j.

(Id) Same as (Ic), but T = 200, d1 = d2 = 80.

(Ie) K = 3, T = 80, d1 = d2 = d3 = 20, r1 = r2 = r3 = 2. All factors are pervasive with
ζk,j = 0 for all k, j. All innovation processes in constructing Ft,Fe,t and ϵt are i.i.d.
standard normal, and missing pattern is (M-i).

(If) Same as (Ie), but all factors are weak with ζk,j = 0.2 for all k, j.

(Ig) Same as (If), but T = 200, d1 = d2 = d3 = 40.

Settings (Ia)–(Id) have K = 2, and settings (Ie)–(Ig) have K = 3. They all have missing
pattern (M-i), but we have considered all settings with missing patterns (M-ii)–(M-iv), with
performance of the factor loading matrix estimators very similar to those with missing pattern
(M-i). Hence we are only presenting the results for settings (Ia)–(Ig) in Figure 3.1 for the
missing pattern (M-i). The imputation results for the above settings are collected in Table 3.1,
together with those under different missing patterns.

We can see from Figure 3.1 that the factor loading matrix estimators perform worse when
there are weak factors or when the distribution of the innovation processes is fat-tailed. How-
ever, larger dimensions ameliorate the worsen performance. The increase in the loading space
distance from k = 1 to k = 2 in settings (Ia)–(Id) is due to more factors along mode-2, which
naturally incurs more errors compared to smaller rk. In comparison, the loading space error
shown in the right panel of Figure 3.1 are in line for all modes due to the same number of factors
along each mode.
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Figure 3.1: Plot of the column space distanceD(Qk, Q̂k) (in log-scale) for k ∈ [K] for missing
pattern (M-i), with K = 2 on the left panel and K = 3 on the right. The horizontal axis is
indexed from (a) to (g) to represent Settings (Ia) to (Ig), with the k-th boxplot of each setting
corresponding to the k-th factor loading matrix Qk therein. Performance on other missing
patterns are very similar, and are omitted.

From Table 3.1, we can see that missing pattern (M-iii) is uniformly more difficult in all
settings for imputation. This is understandable as there is a large block of data missing in setting
(M-iii), so that we obtain less information towards the “centre” of the missing block. This is
also the reason why under (M-iii), the imputation performance for the missing set is worse than
the observed set, unlike for other missing patterns where all imputation performances are close.

Random missing in (M-i) and (M-ii) are relatively easier for our imputation procedure to
handle. Note that if the TALL-WIDE algorithm in Bai and Ng (2021) were to be extended
to the case for K > 1, it can handle missing pattern (M-iii), but not (M-i) and (M-ii). The
design of our method allows us to handle a wider variety of missing patterns, including random
missingness. We want to stress that we have attempted to generalise the TALL-WIDE algorithm
to impute high-order time series data for comparisons, yet the method is almost impossible to
use in tensor data. The generalisation is also too complicated, and hence is not shown here.

Performance for the estimation of the number of factors

We now demonstrate the performance of our ratio estimator r̂k in (3.14) for estimating rk for
K = 1, 2, 3. For each k ∈ [K], we set the value of ξ in Theorem 3.5 as ξ = d[(Td-k)

−1/2 +

d
−1/2
k ]/5. We have tried a wide range of values other than 1/5 for ξ in all settings, but 1/5 is

working the best in vast majority of settings; see simulation results on the sensitivity of different
ξ in Table 3.4. Hence we do not recommend treating it as a tuning parameter in this section for
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Setting K=2 K=3
Missing Pattern S (Ia) (Ib) (Ic) (Id) (Ie) (If) (Ig)

(M-i)
obs .002 .020 .066 .039 2.61 120 .293
miss .002 .020 .066 .039 2.63 121 .294
all .002 .020 .066 .039 2.61 120 .293

(M-ii)
obs .003 .025 .079 .045 5.97 154 .702
miss .003 .025 .079 .045 6.06 155 .703
all .003 .025 .079 .045 6.00 154 .702

(M-iii)
obs .004 .025 .079 .048 6.64 136 1.75
miss .009 .036 .107 .061 14.7 164 4.02
all .005 .026 .083 .050 7.19 138 1.89

(M-iv)
obs .004 .027 .086 .047 7.75 173 .888
miss .004 .028 .088 .047 8.49 179 .964
all .004 .027 .086 .047 8.00 175 .914

Table 3.1: Relative MSE for settings (Ia) to (Ig), reported for S as the set containing respec-
tively observed (obs), missing (miss), and all (all) units. For K = 3, all results presented are
multiplied by 104.

saving computational time.
We present the results under a fully observed scenario and a missing data scenario for each

of the following setting:

(IIa) K = 1, T = d1 = 80, r1 = 2. All factors are strong with ζ1,j = 0 for all j. All innovation
processes involved are i.i.d.N (0, 1). We try missing patterns (M-ii), (M-iii) and (M-iv).

(IIb) Same as (IIa), but ζ1,1 = 0.1 and we only try missing pattern (M-ii).

(IIc) Same as (IIb), but factors are weak with ζ1,1 = 0.1 and ζ1,2 = 0.15.

(IId) Same as (IIc), but T = 160.

(IIIa) K = 2, T = d1 = d2 = 40, r1 = 2, r2 = 3. For all k, j, we set ζk,j = 0. All innovation
processes involved are i.i.d. N (0, 1), and we only try missing pattern (M-ii).

(IIIb) Same as (IIIa), but all factors are weak with ζk,j = 0.1 for all k, j.

(IIIc) Same as (IIIb), but T = d1 = d2 = 80.

(IVa) K = 3, T = d1 = d2 = d3 = 20, r1 = 2, r2 = 3, r3 = 4. For all k, j, we set ζk,j = 0. All
innovation processes involved are i.i.d. N (0, 1), and we only try missing pattern (M-ii).

(IVb) Same as (IVa), but all innovation processes are i.i.d. t3.
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(IVc) Same as (IVa), but T = 40.

Since estimating the number of factors with missing data is new to the literature, it is of
interest to explore the accuracy of the estimator under different missing patterns. Hence we
explore different missing patterns in setting (IIa). Extensive experiments (not shown here) on
the imputation accuracy using misspecified number of factors show that underestimation is
harmful, while slight overestimation hardly worsen the performance of the imputations. Thus,
for each of the above settings, we also compare the performance using re-imputation and iTIP-
ER by Han et al. (2022), where the re-imputation is done by using both r̂k and r̂k + 1 to avoid
information loss due to underestimating the number of factors, see Table 3.2 and Table 3.3.

Setting (IIa) (True r1 = 2)
Missing Pattern r̂ r̂re,0 r̂re,1 r̂iTIP,re,0 r̂iTIP,re,1 r̂full r̂iTIP,full

Mean(SD)

(M-ii) 1.98(.13) 1.98(.13) 2.00(.06) 1.97(.18) 1.97(.22)

(M-iii) 1.92(.27) 1.93(.26) 1.97(.20) 1.90(.30) 1.92(.31)

(M-iv) 1.98(.14) 1.98(.14) 2.01(.08) 1.97(.17) 1.98(.24)

1.99(.10) 1.92(.28)

Correct Proportion
(M-ii) .982 .982 .996 .967 .949
(M-iii) .921 .93 .96 .901 .898
(M-iv) .979 .979 .993 .97 .943

.99 .917

Table 3.2: Results for setting (IIa). Each column reports the mean and SD (subscripted, in
bracket) of the estimated number of factors over 1000 replications, followed by the correct
proportion of the estimates. The estimator r̂ is our proposed estimator; r̂re,0 and r̂re,1 are similar
but used imputed data where the imputation is done using the number of factors as r̂ and r̂+1,
respectively; r̂iTIP,re,0 and r̂iTIP,re,1 are iTIP-ER on imputed data (using r̂ and r̂+1 respectively);
r̂full and r̂iITP,full are our estimator and iTIP-ER on fully observed data (in green), respectively.

From both Table 3.2 and 3.3, it is easy to see that our proposed method generally gives
more accurate estimates than iTIP-ER, and it is clear that the re-imputation estimate is at least
as good as the initial estimate. In fact, r̂re,1 outperforms r̂full which is based on full observation.

Sensitivity for the tuning parameter in Theorem 3.5

We provide some simulation results on the performance of our number of factor estimator r̂k
relative to the choice of ξ in Theorem 3.5. For demonstration purpose, we adapt the general
setup depicted in Section 3.4 to generate the loading matrices, factor and noise series, except
that only N (0, 1) is used to generate the innovation process. On the dimension of data, we
consider order K = 1, 2, 3 such that
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Correct Proportion
Setting r̂ r̂re,0 r̂re,1 r̂iTIP,re,0 r̂iTIP,re,1 r̂full r̂iITP,full

K = 1 (True r1 = 2)
(IIb) .556 .556 .886 .526 .765 .633 .53
(IIc) .626 .626 .762 .594 .668 .67 .539
(IId) .791 .791 .817 .794 .837 .812 .767

K = 2 (True (r1, r2) = (2, 3))
(IIIa) 1 1 1 .995 .995 1 .994
(IIIb) .978 .978 .987 .985 .989 .981 .986
(IIIc) .999 .999 1 1 .996 .999 1

K = 3 (True (r1, r2, r3) = (2, 3, 4))
(IVa) 1 1 1 .987 .987 1 .988
(IVb) .996 .996 .999 .991 .991 1 .991
(IVc) 1 1 1 .999 1 1 1

Table 3.3: Results for settings (II), (III), and (IV), excluding (IIa). Refer to Table 3.2 for the
definitions of different estimators. The missing pattern concerned in all settings is (M-ii).

• K = 1: T = 160, d1 = 80;

• K = 2: T = d1 = d2 = 40;

• K = 3: T = d1 = d2 = d3 = 20;

where we assume two pervasive factors on each mode, i.e. true rk = 2 and ζk,j = 0 for all k, j.
To show the robustness of our choice of ξ, each setting is repeated 1000 times under four

missing patterns: fully observed, (M-i), (M-ii) and (M-iii). See Section 3.4 for the description
of these missing patterns.

As the dimension and the number of factors along each tensor mode is the same (within any
setting), it suffices to study the correct proportion of r̂1 = r1 = 2. The result for different values
of ξ ∈ {0.002, 0.02, 0.2, 2, 20} is shown in Table 3.4. It is clear from the results that relatively
small values of ξ should help to estimate the number of factors consistently. In particular, ξ
ranges from 0.02 to 0.2 should work sufficiently well.

Asymptotic normality

We present the asymptotic normality results for K = 1, 2, 3 respectively. When the data is
a vector time series (K = 1), our approach is similar to Xiong and Pelger (2023), but their
proposed covariance estimator for the asymptotic normality includes information at lag 0 only
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Correct Proportion of r̂1 = r1 = 2

Missing Pattern ξ = 0.002 ξ = 0.02 ξ = 0.2 ξ = 2 ξ = 20

K = 1 (T = 160, d1 = 80)
Fully observed .999 999 1 .986 .909

(M-i) .999 .999 1 .985 .906
(M-ii) .997 .997 .995 .985 .903
(M-iii) .99 .989 .987 .934 .791

K = 2 (T = d1 = d2 = 40)
Fully observed 1 1 1 .992 .843

(M-i) 1 1 1 .993 .842
(M-ii) 1 1 1 .986 .842
(M-iii) .994 .995 .996 .972 .815

K = 3 (T = d1 = d2 = d3 = 20)
Fully observed .999 .999 .997 .967 .732

(M-i) .999 .999 .997 .967 .73
(M-ii) .998 .998 .996 .959 .718
(M-iii) .995 .997 .995 .95 .695

Table 3.4: Results of correct proportion for the number of factor estimator r̂k relative to the
choice of ξ in Theorem 3.5 on mode-1 in 1000 replications.

(i.e., the estimator of the asymptotic variance of the loading estimator), while we use the HAC-
type estimator facilitating more serial information. For all K considered, we present the result
on (Q̂)11, with the parameter β of our HAC-type estimator set as ⌊1

5
(Td1)

1/4⌋. We use (M-i)
as the missing pattern for all settings.

The data generating process is similar to the ones for assessing the factor loading matrix
estimators and imputations, but the parameters are slightly adjusted. All elements in Ft, Fe,t,
and ϵt are now independent standardised AR(1) with AR coefficients 0.05, and we use i.i.d.
N (0, 1) as the innovation process. We stress that we include contemporary and serial depen-
dence among the noise variables following Assumption (E1) and (E2), while most existing
literature demonstrating asymptotic normality display results only for i.i.d. Gaussian noise.

We assume all factors are pervasive in this subsection. For all K = 1, 2, 3, given d1,
we set T, di = d1/2, i ̸= 1. We generate a two-factor model for K = 1, and a one-factor
model for K = 2, 3. For the settings (K, d1) = (1, 1000), (2, 400) and (3, 160), we consider
(Σ̂HAC+Σ̂∆

HAC)
−1/2D̂1(Q̂1,1·−Ha

1Q1,1·). In particular, we plot the histograms of the first and
second entry in Figure 3.2, whereas the corresponding QQ plots are presented in Figure 3.3.

The plots in Figure 3.2 provide empirical support to Theorem 3.3 and result 3 of Theo-
rem 3.4. For K = 3, there are some heavy-tail issues, as seen in the bump at the right tail in
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the histogram (confirmed by its corresponding QQ plot). The QQ plot for K = 2 also hints
on this, but the tail is thinned as the dimension increases. Our simulation is similar to that in
Chen and Fan (2023) forK = 2, but we allow partial data unobserved and we generalise to any
tensor order K. We remark that the convergence rate of the HAC-type estimator is not com-
pletely satisfactory, such that relatively large dimension is needed, and it becomes less feasible
for some applications. We leave the improvements of the HAC-type estimator to future work.
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Figure 3.2: Histograms of the first entry of (Σ̂HAC+ Σ̂∆
HAC)

−1/2D̂1(Q̂1,1·−Ha
1Q1,1·). In each

panel, the curve (in red) is the empirical density, and the other curve (in green) in the left panel
depicts the empirical density of the second entry of (Σ̂HAC+Σ̂∆

HAC)
−1/2D̂1(Q̂1,1·−Ha

1Q1,1·).
The density curve for N (0, 1) (in black, dotted) is also superimposed on each histogram.
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Figure 3.3: QQ plots of the first entry of (Σ̂HAC + Σ̂∆
HAC)

−1/2D̂1(Q̂1,1· − Ha
1Q1,1·). The

horizontal and vertical axes are theoretical and empirical quantiles respectively.

Lastly, we demonstrate an example of statistical testing for the above one-factor model for
K = 2. More precisely, we want to test the null hypothesis H0 : Q1,11 = 0 with a two-sided
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test. A 5% significance level is used so that we reject the null if (Σ̂HAC + Σ̂∆
HAC)

−1/2D̂1Q̂1,11

is not in [−1.96, 1.96]. Each experiment is repeated 400 times and the power function for Q1,11

ranging from −0.02 to 0.02 is presented in Figure 3.4. The power function is approximately
symmetric, and suggests that our test can successfully reject the null if the true value for Q1,11

is away from 0. WhenQ1,11 = 0, the false positive probability is 7.25%which is slightly higher
than the designated size of test. This is due to the slow convergence of the HAC estimators,
and an increase in dimensions would improve this.
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Figure 3.4: Statistical power of testing the nullH0 : (Q1,1·)1 = Q1,11 = 0 against the two-sided
alternative. The null is rejected when |(Σ̂HAC + Σ̂∆

HAC)
−1/2D̂1Q̂1,11| > 1.96.

Comparison with an iterative vectorisation-based approach

We compare our proposed tensor factor-based imputation method with the following procedure.

Iterative vectorisation-based imputation

1. Given an order-K tensor with missing entries, Yt ∈ Rd1×···×dK for t ∈ [T ], obtain yt =

vec
(
Yt
)
∈ Rd for all timestamps. Impute the vector time series {yt}t∈[T ] by Xiong and

Pelger (2023) and denote by the tensorised imputation data {Ŷvec,t}t∈[T ].
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2. Replace missing entries in Yt by corresponding entries in Ŷvec,t. On the resulting series,
estimate the loading matrices, core factors and hence the common components by Chen
and Lam (2024b). Denote the series of estimated common components by {Ŷpreavg,t}t∈[T ].

3. Iterate from step 2, except that the missing entries in Yt are replaced by entries of Ŷpreavg,t

from the previous iteration.

The above algorithm is a natural way of leveraging the vector imputation of Xiong and
Pelger (2023) to tensor time series, and the iteration step is akin to Appendix A of Stock and
Watson (2002b). For demonstration, all innovation processes in constructingFt,Fe,t and ϵt are
i.i.d.N (0, 1), and all factors are pervasive. In particular, the following settings are considered:

(Va) K = 2, T = 20, d1 = d2 = 40, r1 = r2 = 2, and missing pattern is (M-ii).

(Vb) Same as (Va), except that the missing pattern is (M-iii).

(Vc) K = 3, T = 10, d1 = d2 = d3 = 10, r1 = r2 = r3 = 2, and missing pattern is (M-ii).

(Vd) Same as (Vc), except that the missing pattern is (M-iii).

The results for settings (Va) to (Vd) are shown in Figure 3.5. From both panels, our pro-
posed method (in dashed lines) performs better than the direct vectorised imputation. One
intuition can be the following. Suppose we have a matrix-valued time series Yt ∈ Rd1×d2 , and
assume d1 ≍ d2 and the data is asymptotically observed with the rate η ≍ 1/

√
Td1. According

to Corollary 3.1, the squared imputation error has rate 1/(Td1) + 1/d21. In comparison, if we
choose to vectorise the data and impute, the squared error rate is 1/T +1/d21 which is inflated.

The performance of the vectorisation-based imputation can be further improved by iterative
imputation in the context of tensor data. However, Figure 3.5 demonstrates the low efficiency of
such iterative method if the missing pattern is unbalanced to a certain extent. We also point out
that the computation time of the initial vectorised imputations can be significantly larger than
the our proposed method if the order of the data is large. In fact, the computational complexity
(given the number of factors) of direct vectorised imputation is (ignoring the cost of vectorisa-
tion and unfolding) O(Td2 + d3), while our proposed method is O(Kmaxk∈[K]{Tddk + d3k}),
which can be of significantly smaller order than d3.

3.4.2 Real data analysis: Fama–French portfolio returns

We analyse the set of Fama–French portfolio returns data described in Section 3.2.1. With suf-
ficient observed samples of each category along its time series, Assumption (O1) in Section 3.3
can be satisfied and our imputation approach is applicable under such missing pattern. Since



3.4. Numerical Results 49

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Relative MSE for K=2

Iteration step

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Relative MSE for K=2

Iteration step

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Relative MSE for K=3

Iteration step

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Relative MSE for K=3

Iteration step

Figure 3.5: Plot of the relative MSE for Setting (Va) to (Vd), averaged over 1000 replications.
Setting (Va), (Vb), (Vc) and (Vd) are represented by symbols in red on left panel, green on left
panel, red on right panel and green on right panel, respectively. Dashed lines denote our tensor-
based approach (without iteration); points denote the iterative vectorisation-based method with
step 0 corresponding to the initial imputation.

the market factor is pervasive in financial returns, we remove the market effect by modelling
the data with CAPM as

vec
(
Xt
)
= vec

(
X̄
)
+ β(rt − r̄) + vec

(
Yt
)
,

where vec
(
Xt
)
∈ R

100 is the vectorised returns at time t, vec
(
X̄
)

is the sample mean of
vec
(
Xt
)

based on all observed data, β is the coefficient vector to be estimated, rt is the return
of the NYSE composite index at time t, r̄ is the sample mean of rt, and vec

(
Yt
)

is the CAPM
residual. We compute the sample mean using only the observed data, and more sophisticated
methods could be studied in the future. The least squares solution is

β̂ =

∑T
t=1(rt − r̄){vec

(
Xt
)
− vec

(
X̄
)
}∑T

t=1(rt − r̄)2
.

Hence for the rest of this subsection, we focus on the matrix series {Ŷt}t∈[570] with Ŷt ∈ R10×10,
constructed from the estimated CAPM residual {vec

(
Xt
)
− vec

(
X̄
)
− β̂(rt − r̄)}t∈[570].

To estimate the rank of the core factors, we first use our proposed rank estimator to obtain
initial estimates (r̂1, r̂2) = (1, 1) for both series, followed by re-estimating the rank based on
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initial Miss-ER BCorTh iTIP-ER RTFA-ER

r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2

Value Weighted 1 1 1 1 2 1 1 1 1 2

Equal Weighted 1 1 1 1 2 1 1 1 1 2

Table 3.5: Rank estimators for Fama–French portfolios. Miss-ER represents the rank re-
estimated by our proposed eigenvalue-ratio estimator for missing data.

the imputed series using (r̂1 + r∗, r̂2 + r∗) with some pre-specified integer r∗ to capture any
omitted weak factors. We have seen in Table 3.2 and Table 3.3 where such rank re-estimation
with r∗ = 1 is stable and accurate. However, factors can be empirically too weak to detect
in the initial estimation under various missing patterns. According to previous studies by e.g.
Wang et al. (2019), we choose r∗ = 3 here to ensure sufficient information of factors is carried
in the imputation, at the cost of including more noise. For re-estimation, in addition to our
eigenvalue-ratio estimator, we also experiment BCorTh by Chen and Lam (2024b), iTIP-ER by
Han et al. (2022) and RTFA-ER by He et al. (2022b). The results are presented in Table 3.5.
To ease demonstration, we use (2, 2) as the core factor rank for both series hereafter.

ME1 ME2 ME3 ME4 ME5 ME6 ME7 ME8 ME9 ME10
Factor 1 -15 -14 -9 -7 -6 -3 -1 0 2 3
Factor 2 5 3 -3 -6 -7 -9 -10 -11 -10 -10

BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10
Factor 1 2 -1 -2 -3 -5 -6 -7 -8 -10 -18
Factor 2 16 12 9 7 5 3 3 2 1 -7

Table 3.6: Estimated loading matrices Q̂1 and Q̂2 for the value weighted portfolio series, after
varimax rotation and scaling (entries rounded to the nearest integer). Magnitudes larger than
9 are in red to highlight units with heavy loadings. All null hypotheses of a row of Q1 or Q2

being zero (see (3.16)) are rejected at 5% significance level.

With the chosen rank, we perform imputation which is further refined by re-imputation.
The results are similar on the two portfolio series, so we only present the one for the value
weighted series. The estimated loading matrices are presented in Table 3.6, after a varimax
rotation and scaling. It is clear from the entries in red that on the size factor (i.e., ME loading),
ME1 and ME2 form one group (“small size”) and ME7 to ME10 form the other (“large size”).
On the book-to-equity factor (i.e., BE loading), BE1 and BE2 form a group and BE9 and BE10
form the other, which can be interpreted as “undervalued” and “overvalued” respectively. This
grouping effect is similarly seen in Table 9 and 10 in Wang et al. (2019).

Moreover, we apply our Theorem 3.3 and Theorem 3.4 to test if any rows of the loading
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matrices are zero. For each k ∈ [2], i ∈ [10], we test

H0 : Qk,i· = 0, H1 : Qk,i· ̸= 0. (3.16)

The above can be tested sinceHa
kQk,i· = 0 under the null, and no matter what varimax rotations

we use, it retains its meaning. For instance, if Q1,i· = 0, then it means the i-th category of the
row factor (here, the i-th Market Equity category) is useless in explaining any data variability.

It turns out that at 5% significance level, we cannot reject any null hypotheses for Q1,i· = 0

or Q2,i· = 0, meaning that individual market equity and book-to-equity ratio categories are
tested to be meaningful in explaining some variations of the data. We remark that, since the
dimensions of our data are not very large, the accuracy of the asymptotic normality and the
HAC estimators are weakened, and there can be false positives as a result.

Lastly, two imputation examples for the category (ME10, BE10) are displayed in Figure 3.6.
From the timestamps on which the portfolio series is observed, we see that the estimated series
(in green) does capture some patterns of fluctuations on the true CAPM residual series (in red)
and hence can be a good reference for the CAPM residual of portfolios consisted of large size,
overvalued stocks. This is certainly more revealing than a naive imputation using zeros or local
means. From the above discussions, the estimated factors can be potentially used to replace the
Fama—French size factor (SMB) and book-to-equity factor (HML) in a Fama—French factor
model for asset pricing, factor trading etc., with a further sophisticated analysis of the data.

3.4.3 Real data analysis: OECD economic indicators for countries

We analyse the OECD economic data described in Section 3.2.2. After investigating the esti-
mated number of factors (Table 3.7) in a similar re-imputation approach as in Section 3.4.2, we
decide to use (r̂1, r̂2) = (3, 3) for the rest of this section due to the potentially weak factors sug-
gested by iTIP-ER and RTFA-ER. The estimated loading matrices for countries are presented
in Table 3.8 after a varimax rotation and scaling, with entries highlighted in red to facilitate
interpretation. The first factor is mainly formed by European countries except the Northern
European ones which, together with Canada, form the third factor. Such regional grouping
effects are also confirmed in the second factor which mainly consists of the United States, and
the fact that Germany loads also heavily on this factor suggests their similar economic patterns
as large economic entities. For the estimated loading for indicators reported in Table 3.9, CP,
PRVM and TOVM form the first factor (“consumption factor”), PP and ULC form the second
(“production factor”), and EX and IM form the third (“international trade factor”).

Moreover, we apply Theorem 3.3 and Theorem 3.4 to test if a particular row in the two
factor loading matrices is zero, meaning that if a country (if a row in Q1 is 0) or an economic
indicator (if a row in Q2 is 0) cannot explain any variations in the data. The meaning here
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Figure 3.6: Two 50-day examples for the value weighted series in the category (ME10, BE10),
with horizontal axis of both panels indexed by each day of the selected period. Green triangles
denote the estimated series and red squares denote the observed true series. Bold symbols
represent the imputed series which consists of the observed series whenever available and the
estimated series otherwise.

initial Miss-ER BCorTh iTIP-ER RTFA-ER

r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2

OECD 1 1 1 1 1 2 4 5 3 3

Table 3.7: Rank estimators for economic indicators. Refer to Table 3.5 for the definitions of
different estimators.

is independent of the varimax rotation performed. For each k ∈ [2], i ∈ [dk], j ∈ [3] with
(d1, d2) = (17, 11), we form the hypothesis

H0 : Qk,i· = 0, H1 : Qk,i· ̸= 0. (3.17)

Similar to the Fama–French data analysis, all null hypotheses of a row of Q1 or Q2 being zero
are rejected at 5% significance level. It means that all individual country and economic indi-
cator are tested to be meaningful categories in explaining some variations of the data. Similar
to a reminder in Section 3.4.2, there could be false positives due to the fact that the dimension
of the data is not very large.

In Figure 3.7, we present two examples of the imputed series overlaid on the observed se-
ries. One panel plots ULC of the United States and the other plots PP of the United Kingdom.
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BEL CAN DNK FIN FRA DEU GRC ITA LUX NLD NOR PRT ESP SWE CHE GBR USA
1 -10 4 -3 -7 -8 -8 -9 -7 -1 -2 1 -1 -10 0 -15 -13 1
2 -1 -6 2 5 -2 -12 7 -1 2 -7 0 2 1 -2 0 -1 -24
3 1 -12 -8 -5 -2 3 -6 -4 -11 -6 -12 -11 -2 -10 5 4 -1

Table 3.8: Estimated loading matrix Q̂1 on three country factors for the OECD data, after
varimax rotation and scaling (entries rounded to the nearest integer). Magnitudes larger than
9 are in red to highlight units with heavy loadings. All null hypotheses of a row of Q1 being
zero (see (3.17)) are rejected at 5% significance level.

CA-GDP CP EX IM IR3TIB IRLT IRSTCI PP PRVM TOVM ULC
1 0 -20 1 3 0 0 0 0 -20 -11 -1
2 0 -6 2 3 1 1 1 20 1 9 18
3 0 9 18 22 -2 -2 -2 1 -4 -2 -1

Table 3.9: Estimated loading matrix Q̂2 on three indicator factors for OECD data, after varimax
rotation and scaling (entries rounded to the nearest integer). Magnitudes larger than 9 are in
red to highlight units with heavy loadings. All null hypotheses of a row of Q2 being zero (see
(3.17)) are rejected at 5% significance level.

ULC is a quarterly observed index and the peak pattern in-between each reported timestamp
suggests potentially high labour cost in the United States from 1971 to 1975. The PP data in
our OECD data is unavailable for the United Kingdom until December 2008. Our imputation
implies a gradual increase of the PP before the data is reported, which is reasonable by the
impact of the financial crisis. Lastly, we compare between our tensor imputation (matrix impu-
tation for this example) and the vectorised imputation using Xiong and Pelger (2023). We use
different models to perform imputations whose results are summarised in Table 3.10 similar
to Wang et al. (2019), except that the reported residual sum of squares are computed on the
observed entries. Although we require a larger number of factors in general for matrix models,
the imputation by matrix models with less parameters can perform better than those by vector
models with a much larger number of parameters. This is consistent with the conclusion of
Table 11 in Wang et al. (2019).

3.5 Proof of Theorems and Auxiliary Results

From Section 3.2.4, Q̂k contains the eigenvectors corresponding to the first rk largest eigen-
values of Ŝk. Hence with D̂k an rk × rk diagonal matrix containing all the eigenvalues of Ŝk
(WLOG from the largest on the top-left element to the smallest on the bottom right element),
we have ŜkQ̂k = Q̂kD̂k, so that

Q̂k = ŜkQ̂kD̂
−1
k . (3.18)
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Figure 3.7: 50-day examples for unit labour cost of the United States (left panel) and production
price index of the United Kingdom (right panel), with horizontal axis of both panels indexed by
each day of the selected period. Refer to Figure 3.6 for the explanations of different symbols.

Factor RSS # factors # parameters
Matrix model (3,3) 7,087,373 9 84
Matrix model (4,4) 4,542,956 16 112
Matrix model (5,5) 3,066,851 25 140
Matrix model (6,6) 1,973,321 36 168
Vector model 2 8,240,976 2 374
Vector model 3 3,954,554 3 561
Vector model 4 2,093,001 4 748

Table 3.10: Comparison of different models for the OECD data. The total sum of squares of
the observation is 324,402,709.

To simplify notations, hereafter we fix k and only focus on the mode-k unfolded data. Define

D̂ := D̂k, Yt := matk(Yt), Ŝ := Ŝk, ψij,h := ψk,ij,h, Q := Qk,

Λ := Λk, FZ,t := matk(FZ,t), Et := matk(Et), Hj := Hk,j, H
a := Ha

k,
(3.19)

where Hk,j and Ha
k are defined in (3.10) and (3.11) respectively, and similarly to all respective

hat versions of the above.
Before proving any theorems, we present and prove the following Proposition first.
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Proposition 3.2 Let Assumption (E1), (E2) and (F1) hold. Then

1. there exists a constant c > 0 so that for any k ∈ [K], t ∈ [T ], ik ∈ [dk] and h ∈ [d-k], we
have EEt,i1,...,iK = 0, EE4t,i1,...,iK ≤ c, and

dk∑
j=1

d-k∑
l=1

∣∣∣E[matk(Et)ihmatk(Et)jl]
∣∣∣ ≤ c,

d-k∑
l=1

∑
s∈ψk,ij,l

∣∣∣∣Cov
(

matk(Et)ihmatk(Et)jh,matk(Es)ilmatk(Es)jl
)∣∣∣∣ ≤ c;

2. there exists a constant c > 0 so that for any k ∈ [K], i, j ∈ [dk], and any deterministic
vectors u ∈ Rrk and v ∈ Rr-k with constant magnitudes,

E

(
1

d
1/2
-k

d-k∑
h=1

1

|ψk,ij,h|1/2
∑

t∈ψk,ij,h

matk(Et)jhu′matk(Ft)v
)2

≤ c;

3. for any k ∈ [K], i, j ∈ [dk], h ∈ [d-k],

1

|ψk,ij,h|
∑

t∈ψk,ij,h

matk(Ft)matk(Ft)′,
1

T

T∑
t=1

matk(Ft)matk(Ft)′ p−→ Σk := r-kIrk ,

with the number of factors rk fixed as min{T, d1, . . . , dK} → ∞. For each t ∈ [T ], all
elements in Ft are independent of each other, with mean 0 and unit variance.

Our consistency results in Theorem 3.1 can be proved assuming the three implied results from
Proposition 3.2, on top of Assumption (O1), (M1), (L1) and (R1). Result 1 from Proposition 3.2
can be a stand alone assumption on the weak correlation of the noise Et across different dimen-
sions and times, while result 2 can be on the weak dependence between the factor Ft and the
noise Et. Finally, result 3 can be a stand alone assumption on the factors Ft.

Proof of Proposition 3.2. We have E(Et) = 0 from Assumption (E1). Next we want to
show that for any k ∈ [K], t ∈ [T ] and ik ∈ [dk], EE4t,i1,...,iK is bounded uniformly. From (3.9),
each entry in Et is a sum of two parts: a linear combination of the elements in Fe,t, and the
corresponding entry in ϵt. By Assumption (E2), we have

E[(ϵt)
4
i1,...,iK

] = E

ßï∑
q≥0

aϵ,q(Xϵ,t−q)i1,...,iK
ò4™
≤
Å∑

q≥0

|aϵ,q|
ã4

sup
t
E

[
(Xϵ,t)4i1,...,iK

]
≤ C,

where C > 0 is a generic constant. It holds similarly that E[(Fe,t)4i1,...,iK ] ≤ C uniformly on
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all indices. With this, defining A(∗m) := A ∗ · · · ∗A (element-wise m-th power),

∥EE (∗4)t ∥max = ∥E[matk(Et)](∗4)∥max

≤ 8
(
∥E[Ae,kmatk(Fe,t)A′

e,-k]
(∗4)∥max + ∥Σ(∗4)

ϵ ∥max · ∥Eϵ(∗4)t ∥max

)
≤ 8
(∥∥Ae,k

∥∥4
∞ ·
∥∥Ae,-k

∥∥4
∞ ·
∥∥EF (∗4)

e,t

∥∥
max

+ ∥Σ(∗4)
ϵ ∥max · ∥Eϵ(∗4)t ∥max

)
= 8
( K∏
j=1

∥∥Ae,j

∥∥4
∞ ·
∥∥EF (∗4)

e,t

∥∥
max

+ ∥Σ(∗4)
ϵ ∥max · ∥Eϵ(∗4)t ∥max

)
≤ C,

where C > 0 is again a generic constant, and we used Assumption (E1) in the last line and the
fact that rj is a constant for j ∈ [K]. This is equivalent to EE4t,i1,...,iK ≤ c for some constant c.

With (3.9) in Assumption (E1), we have

matk(Et) = Ae,kmatk(Fe,t)A′
e,-k + matk(Σϵ) ∗matk(ϵt),

where Ae,-k := Ae,K ⊗ · · · ⊗Ae,k+1 ⊗Ae,k−1 ⊗ · · · ⊗Ae,1. Each mode-k noise fibre et,k,l for
l ∈ [d-k] can then be decomposed as

et,k,l := Ae,kmatk(Fe,t)Ae,-k,l· +Σ
1/2
ϵ,k,lϵt,k,l, (3.20)

where Σϵ,k,l = diag((matk(Σϵ))·l(matk(Σϵ))
′
·l), and ϵt,k,l contains independent elements each

with mean 0 and variance 1.
Given h ∈ [d-k], i ∈ [dk], from (3.20) and Assumption (E1) and (E2), we have

d-k∑
l ̸=h

dk∑
j=1

∣∣∣E[matk(Et)ihmatk(Et)jl]
∣∣∣ ≤ ∥Ae,-k,h·∥∥Ae,-k,l·∥∥Ae,k∥1∥Ae,k∥∞ = O(1).

Moreover,

dk∑
j=1

∣∣∣E[matk(Et)ihmatk(Et)jh]
∣∣∣ ≤ ∥Cov(et,k,h, et,k,h)∥1

≤ ∥Ae,-k,h·∥2∥Ae,k∥1∥Ae,k∥∞ + ∥Σϵ,k,h∥1 = O(1),

where the last equality is from Assumption (E1).
To finish the proof of the first result in the Proposition, fix indices k, t, i, j, h. From As-

sumption (E2) and (3.20), we have

[matk(Et)]il =
∑
q≥0

ae,qA
′
e,k,i·matk(Xe,t−q)Ae,-k,l· + [matk(Σϵ)]il

∑
q≥0

aϵ,qmatk(Xϵ,t−q)il.

(3.21)
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Hence when l ̸= h, from the independence between {Xe,t} and {Xϵ,t} and the independence
of the elements within {Xϵ,t} in Assumption (E2), we have for any s ∈ ψk,ij,l,

Cov
(

matk(Et)ihmatk(Et)jh,matk(Es)ilmatk(Es)jl
)

= Cov
{(∑

q≥0

ae,qA
′
e,k,i·matk(Xe,t−q)Ae,-k,h·

)(∑
q≥0

ae,qA
′
e,k,j·matk(Xe,t−q)Ae,-k,h·

)
,(∑

q≥0

ae,qA
′
e,k,i·matk(Xe,s−q)Ae,-k,l·

)(∑
q≥0

ae,qA
′
e,k,j·matk(Xe,s−q)Ae,-k,l·

)}
.

(3.22)

By (E2), all mixed covariance terms are zero except for Cov
(
matk(Xe,t−q)2nm,matk(Xe,t−q)2nm

)
for all q ≥ 0, n ∈ [re,k],m ∈ [re,-k], with coefficient a2e,qa2e,q+|t−s|A

2
e,k,inA

2
e,k,jnA

2
e,-k,hmA

2
e,-k,lm.

Thus we have

d-k∑
l=1,l ̸=h

∣∣∣∣Cov
(

matk(Et)ihmatk(Et)jh,matk(Es)ilmatk(Es)jl
)∣∣∣∣

=

d-k∑
l=1,l ̸=h

∣∣∣∣ re,k∑
n=1

re,-k∑
m=1

∑
q≥0

a2e,qa
2
e,q+|t−s|A

2
e,k,inA

2
e,k,jnA

2
e,-k,hmA

2
e,-k,lm

· Cov
(
matk(Xe,t−q)2nm,matk(Xe,t−q)2nm

)∣∣∣∣
=O

{∑
q≥0

a2e,qa
2
e,q+|t−s|

( re,k∑
n=1

A2
e,k,inA

2
e,k,jn

)( re,-k∑
m=1

A2
e,-k,hm

d-k∑
l=1,l ̸=h

A2
e,-k,lm

)}
=
∑
q≥0

O(a2e,qa
2
e,q+|t−s|),

where we use Assumption (E2) in the second last equality, and (E1) in the last. Consequently,

d-k∑
l=1,l ̸=h

∑
s∈ψk,ij,l

∣∣∣∣Cov
(

matk(Et)ihmatk(Et)jh,matk(Es)ilmatk(Es)jl
)∣∣∣∣

=
∑
q≥0

T∑
s=1

O(a2e,qa
2
e,q+|t−s|) = O(1),

where the last equality uses Assumption (E2). Now consider lastly l = h. All arguments
starting from (3.21) follow exactly, except the following term is added in (3.22):∑
q≥0

a2ϵ,qa
2
ϵ,q+|t−s|Σϵ,k,h,iiΣϵ,k,h,jj

· Cov
(

matk(Xϵ,t−q)ihmatk(Xϵ,t−q)jh,matk(Xϵ,s−q)ihmatk(Xϵ,s−q)jh
)
= O

(∑
q≥0

a2ϵ,qa
2
ϵ,q+|t−s|

)
,



58 Chapter 3. Tensor Time Series Imputation through Tensor Factor Modelling

which is O(1) and we used again Assumption (E2) in the last line. Finally,

∑
s∈ψk,ij,h

∣∣∣∣Cov
(

matk(Et)ihmatk(Et)jh,matk(Es)ihmatk(Es)jh
)∣∣∣∣ = O(1).

This completes the proof of result 1 in the Proposition.
To prove the second result, fix k ∈ [K], i, j ∈ [dk] and deterministic vectors u ∈ Rrk and

v ∈ Rr-k with ∥u∥, ∥v∥ = O(1). Note that

E[matk(Ft)vv′matk(Fs)′] = v′v(r-k
∑
q≥0

af,qaf,q+|t−s|)Irk ,

as the series {Xf,t} has i.i.d. elements from Assumption (F1). Similarly, from (3.20) and As-
sumption (E1) and (E2),

Cov(matk(Et)jh,matk(Es)jl)
= E[A′

e,k,j·matk(Fe,t)Ae,-k,h·A
′
e,-k,l·matk(Fe,s)′Ae,k,j·] +E[ϵ

′
t,k,h(Σϵ,k,h,j·Σ

′
ϵ,k,l,j·)

1/2ϵs,k,l]

= A′
e,-k,l·Ae,-k,h· · ∥Ae,k,j·∥2 ·

∑
q≥0

ae,qae,q+|t−s| + 1{h=l} · Σϵ,k,h,jj

∑
q≥0

aϵ,qaϵ,q+|t−s|.

Hence if we fix h ∈ [d-k], t ∈ ψk,ij,h, then together with Assumption (E2), we have

d-k∑
l=1

∑
s∈ψk,ij,l

1

|ψk,ij,l|
·E
[
matk(Et)jhu′matk(Ft)v ·matk(Es)jlv′matk(Fs)′u

]

=

d-k∑
l=1

∑
s∈ψk,ij,l

1

|ψk,ij,l|
· Cov(matk(Et)jh,matk(Es)jl) ·E

[
u′matk(Ft)vv′matk(Fs)′u

]

=

d-k∑
l=1

1

|ψk,ij,l|
{
O(A′

e,-k,l·Ae,-k,h· · ∥Ae,k,j·∥2) ·
∑
q≥0

∑
p≥0

∑
s∈ψk,ij,l

ae,qae,q+|t−s|af,paf,p+|t−s|

+O(1{h=l} · Σϵ,k,h,jj) ·
∑
q≥0

∑
p≥0

∑
s∈ψk,ij,l

aϵ,qaϵ,q+|t−s|af,paf,p+|t−s|

}

=

d-k∑
l=1

1

|ψk,ij,l|
·O(A′

e,-k,l·Ae,-k,h· · ∥Ae,k,j·∥2 + 1{h=l} · Σϵ,k,h,jj) = O
( 1
T

)
,

(3.23)

where for the second last equality, we argue for the first term in the second last line only, as the
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second term could be shown similarly:∑
q≥0

∑
p≥0

∑
s∈ψk,ij,h

ae,qae,q+|t−s|af,paf,p+|t−s| =
∑
q≥0

∑
p≥0

ae,qaf,p
∑

s∈ψk,ij,h

ae,q+|t−s|af,p+|t−s|

≤
∑
q≥0

∑
p≥0

|ae,q||af,p|
( ∑
s∈ψk,ij,h

a2e,q+|t−s|

)1/2( ∑
s∈ψk,ij,h

a2f,p+|t−s|

)1/2
≤
∑
q≥0

∑
p≥0

|ae,q||af,p| ≤ c2,

where the constant c is from Assumption (F1) and (E2). Finally,

E

ß d-k∑
h=1

∑
t∈ψk,ij,h

1

d-k · |ψk,ij,h|
matk(Et)jhu′matk(Ft)v

™2

=
1

d2-k

d-k∑
h,l=1

∑
t∈ψk,ij,h

∑
s∈ψk,ij,l

1

|ψk,ij,h||ψk,ij,l|
E

(
matk(Et)jhu′matk(Ft)vmatk(Es)jlv′matk(Fs)′u

)

=
1

d2-kT

d-k∑
h=1

∑
t∈ψk,ij,h

O
( 1
T

)
= O

( 1

d-kT

)
,

which then implies result 2 of the Proposition.
Finally, we prove result 3 of the Proposition. From Assumption (F1), we have E[Ft] = 0.

Next, for any t ∈ [T ], it is direct from Assumption (F1) that all elements in Ft are independent.
Moreover,

E[matk(Ft)matk(Ft)′] = E

{(∑
q≥0

af,qmatk(Xf,t−q)
)(∑

q≥0

af,qmatk(Xf,t−q)′
)}

=
∑
q≥0

a2f,qE[matk(Xf,t−q)matk(Xf,t−q)′] =
(∑
q≥0

a2f,q

)
· r-kIrk = r-kIrk ,

where we use Assumption (F1) in the last line. To complete the proof, without loss of generality,
consider the variance of the j-th diagonal element of matk(Ft)matk(Ft)′. From Assumption



60 Chapter 3. Tensor Time Series Imputation through Tensor Factor Modelling

(F1), we have

Var
{ 1

T

T∑
t=1

[matk(Ft)]′j·[matk(Ft)]j·
}

=
1

T 2
Var
{ T∑

t=1

(∑
q≥0

af,q[matk(Xf,t−q)]′j·
)(∑

q≥0

af,q[matk(Xf,t−q)]j·
)}

=
1

T 2

T∑
t=1

T∑
s=1

Cov
{(∑

q≥0

af,q[matk(Xf,t−q)]′j·
)(∑

q≥0

af,q[matk(Xf,t−q)]j·
)
,(∑

q≥0

af,q[matk(Xf,s−q)]′j·
)(∑

q≥0

af,q[matk(Xf,s−q)]j·
)}

=
1

T 2

T∑
t=1

∑
q≥0

a4f,qVar
(
[matk(Xf,t−q)]′j·[matk(Xf,t−q)]j·

)
+

1

T 2

T∑
t=1

∑
q≥0

∑
p ̸=q

a2f,qa
2
f,pVar

(
[matk(Xf,t−q)]′j·[matk(Xf,t−p)]j·

)

=
r-k

T 2

T∑
t=1

∑
q≥0

a4f,qVar
(
[matk(Xf,t−q)]2j1

)
+
r-k

T 2

T∑
t=1

∑
q≥0

∑
p̸=q

a2f,qa
2
f,p

=
1

T 2
O
( T∑
t=1

∑
q≥0

a4f,q +
T∑
t=1

∑
q≥0

∑
p ̸=q

a2f,qa
2
f,p

)
= O

{ 1

T 2

T∑
t=1

(∑
q≥0

a2f,q

)2}
= O

( 1
T

)
= o(1),

where the third equality uses the independence in Assumption (E2). This completes the proof
of result 3, and hence the Proposition. □

To prove Theorem 3.1, we first present some lemmas and prove them. From (3.18),

Q̂j· = D̂−1

dk∑
i=1

Q̂i·Ŝij = D̂−1

dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Yt,ihYt,jh. (3.24)

With the notations in (3.19), (3.1) can be written as Yt = QFZ,tΛ
′ + Et, and hence for i, j ∈

[dk], h ∈ [d-k],

Yt,ih =
( rk∑
n=1

r-k∑
m=1

QinΛhmFZ,t,nm

)
+ Et,ih

= Q′
i·

( r-k∑
m=1

ΛhmFZ,t,·m

)
+ Et,ih =

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi· + Et,ih.
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Hence the product Yt,ihYt,jh in (3.24) can be written as

Yt,ihYt,jh =
( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj· + Et,ihEt,jh

+ Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi· + Et,ih

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj·.

(3.25)

We then have, from (3.24) and (3.25) that

Q̂j· −HjQj· = D̂−1
{ dk∑

i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

+

dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

+

dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj·

}
=: D̂−1

(
Ij + IIj + IIIj

)
,

(3.26)

where

Ij :=
dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh,

IIj :=
dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·,

IIIj :=
dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj·.

The following lemma bounds the terms Ij, IIj , and IIIj .

Lemma 3.1 Under Assumptions (O1), (F1), (L1), (E1) and (E2), we have

1

dk

dk∑
j=1

∥Ij∥2F = OP

( d
T

+ d2-k

)
, (3.27)

1

dk

dk∑
j=1

∥IIj∥2F = OP

(d-kd
αk,1

k

T

)
=

1

dk

dk∑
j=1

∥IIIj∥2F . (3.28)
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Proof of Lemma 3.1. To prove (3.27), we decompose

Ij =
dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

=

dk∑
i=1

Q̂i·

d-k∑
h=1

{∑
t∈ψij,h

(
Et,ihEt,jh −E[Et,ihEt,jh]

)
|ψij,h|

+

∑
t∈ψij,h

E[Et,ihEt,jh]

|ψij,h|

}

=:

dk∑
i=1

Q̂i·ξij +

dk∑
i=1

Q̂i·ηij, where

(3.29)

ξij :=

d-k∑
h=1

∑
t∈ψij,h

(
Et,ihEt,jh −E[Et,ihEt,jh]

)
|ψij,h|

, ηij :=

d-k∑
h=1

∑
t∈ψij,h

E[Et,ihEt,jh]

|ψij,h|
.

We want to show the following:

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·ξij

∥∥∥2
F
= OP

(ddk
T

)
, (3.30)

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·ηij

∥∥∥2
F
= OP

(
dd-k

)
. (3.31)

To show (3.30), first note that Eξij = 0, and also by Assumption (O1),

E|ξij|2 = Var(ξij) ≤
1

ψ2
0T

2
Var
{ d-k∑
h=1

∑
t∈ψij,h

(
Et,ihEt,jh −E

[
Et,ihEt,jh

])}

≤ 1

ψ2
0T

2

d-k∑
h=1

d-k∑
l=1

∑
t∈ψij,h

∑
s∈ψij,l

∣∣∣∣Cov
(
Et,ihEt,jh −E

[
Et,ihEt,jh

]
, Es,ilEs,jl −E

[
Es,ilEs,jl

])∣∣∣∣
=

1

ψ2
0T

2

d-k∑
h=1

∑
t∈ψij,h

d-k∑
l=1

∑
s∈ψij,l

∣∣∣∣Cov
(
Et,ihEt,jh, Es,ilEs,jl

)∣∣∣∣ ≤ cd-k

ψ2
0T
, (3.32)

where the last inequality and the constant c are from result 1 of Proposition 3.2 (hereafter
Proposition 3.2.1, etc.). Then by the Cauchy–Schwarz inequality,

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·ξij

∥∥∥2
F
≤

dk∑
j=1

Å dk∑
i=1

∥∥Q̂i·
∥∥2
F

ãÅ dk∑
i=1

ξ2ij

ã
= OP

(ddk
T

)
,

which is (3.30). To show (3.31), note that if we define

ρij,h :=

1
|ψij,h|

∑
t∈ψij,h

E[Et,ihEt,jh](
1

|ψij,h|
∑

t∈ψij,h
E[E2

t,ih]
)1/2( 1

|ψij,h|
∑

t∈ψij,h
E[E2

t,jh]
)1/2 ,
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then |ρij,h| < 1 and hence ρ2ij,h ≤ |ρij,h|. It is then easy to prove also that

ρij :=

∑d-k
h=1

1
|ψij,h|

∑
t∈ψij,h

E[Et,ihEt,jh](∑d-k
h=1

1
|ψij,h|

∑
t∈ψij,h

E[E2
t,ih]
)1/2(∑d-k

h=1
1

|ψij,h|
∑

t∈ψij,h
E[E2

t,jh]
)1/2 ,

also satisfy |ρij| ≤ 1 and ρ2ij ≤ |ρij|. By Proposition 3.2.1,

∣∣∣∣ d-k∑
h=1

∑
t∈ψij,h

E[E2
t,ih]

|ψij,h|

∣∣∣∣ = OP (d-k),

and hence

η2ij =

Å d-k∑
h=1

∑
t∈ψij,h

E[Et,ihEt,jh]

|ψij,h|

ã2

= ρ2ij

Å d-k∑
h=1

∑
t∈ψij,h

E[E2
t,ih]

|ψij,h|

ãÅ d-k∑
h=1

∑
t∈ψij,h

E[E2
t,jh]

|ψij,h|

ã
= |ρij|

Å d-k∑
h=1

∑
t∈ψij,h

E[E2
t,ih]

|ψij,h|

ã1/2Å d-k∑
h=1

∑
t∈ψij,h

E[E2
t,jh]

|ψij,h|

ã1/2
·OP (d-k)

=

∣∣∣∣ d-k∑
h=1

∑
t∈ψij,h

E[Et,ihEt,jh]

|ψij,h|

∣∣∣∣ ·OP (d-k) =
∣∣ηij∣∣OP (d-k).

Using the above, we then have

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·ηij

∥∥∥2
F
≤

dk∑
j=1

Å dk∑
i=1

∥∥Q̂i·
∥∥2
F

ãÅ dk∑
i=1

η2ij

ã
≤ rk

dk∑
j=1

dk∑
i=1

η2ij

= OP (d-k) ·
dk∑
j=1

dk∑
i=1

∣∣ηij∣∣ = OP (d-k) ·
1

|ψ0T |
∑
t∈ψij,h

d-k∑
h=1

dk∑
j=1

dk∑
i=1

∣∣E[Et,ihEt,jh]∣∣ = OP (dd-k),

(3.33)

where the second last equality used Assumption (O1), and the last equality used Proposi-
tion 3.2.1. This proves (3.31). Using (3.30) and (3.31), from (3.29) we have

1

dk

dk∑
j=1

∥∥Ij∥∥2F =
1

dk

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·

d-k∑
h=1

ξij,h +

dk∑
i=1

Q̂i·

d-k∑
h=1

ηij,h

∥∥∥2
F

≤ 2

dk

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·ξij

∥∥∥2
F
+

2

dk

dk∑
j=1

∥∥∥ dk∑
i=1

Q̂i·ηij

∥∥∥2
F
= OP

( d
T

+ d2-k

)
.
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This completes the proof of (3.27). To prove (3.28), consider

1

dk

dk∑
j=1

∥IIj∥2F =
1

dk

dk∑
j=1

∥∥∥∥ dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

∥∥∥∥2
F

≤ 1

dk

dk∑
j=1

( dk∑
i=1

∥Q̂i·∥2F
)
·
dk∑
i=1

{ d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

}2

=
rk
dk

dk∑
j=1

dk∑
i=1

{ d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

}2

=
rkd

2
-k

dk

dk∑
j=1

dk∑
i=1

(
d-k∑
h=1

∑
t∈ψij,h

1

d-k · |ψij,h|
Et,jh[⊗l∈[K]\{k}Al]

′
h·F

′
tAi·

)2

=
rkd

2
-k

dk

dk∑
j=1

dk∑
i=1

∥ui∥2F

(
d-k∑
h=1

∑
t∈ψij,h

1

d-k · |ψij,h|
Et,jhv

′
hF

′
t

1

∥ui∥F
ui

)2

,

(3.34)

where A = Ak and Ft = matk(Ft) above, and we define vh := [⊗l∈[K]\{k}Al]h·, ui := Ai·.
By Proposition 3.2.2, the last bracket in the last line of (3.34) is OP (d

−1
-k T

−1), and hence

1

dk

dk∑
j=1

∥IIj∥2F = OP

( d-k

dkT

) dk∑
j=1

dk∑
i=1

∥ui∥2F = OP

( d-k

dkT

) dk∑
j=1

∥∥A∥∥2
F
= OP

(d-kd
αk,1

k

T

)
,

where the last equality follows since for any l ∈ [K], ∥Al∥2F = OP

(
tr(Zl)

)
= OP

(
d
αl,1

l

)
by

Assumption (L1). The bound corresponding to IIIj can be proved similarly (omitted), and
hence (3.28) is established. This concludes the proof of Lemma 3.1. □

Lemma 3.2 Under Assumptions (O1), (M1), (F1), (L1), (E1), (E2) and (R1), with Hj and D̂

from (3.19), we have

∥∥D̂−1
∥∥
F
= OP

Å
d
αk,1−αk,rk
k

K∏
j=1

d
−αj,1

j

ã
, (3.35)

1

dk

dk∑
j=1

∥∥∥Q̂j· −HjQj·

∥∥∥2
F
= OP

ß
d
2(αk,1−αk,rk

)−1

k

Å
1

Td-k
+

1

dk

ã K∏
j=1

d
2(1−αj,1)
j

™
. (3.36)

Proof of Lemma 3.2. First, we bound the term
∥∥D̂−1

∥∥2
F

by finding the lower bound of
λrk(D̂). To do this, define ωk := d

αk,rk
−αk,1

k

∏K
j=1 d

αj,1

j , and consider the decomposition

Ŝ = R∗ + (R̃−R∗) +R1 +R2 +R3, (3.37)
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where for a unit vector γ,

R(γ) :=
1

ωk
γ ′Ŝγ =

1

ωk

dk∑
i=1

dk∑
j=1

γiγjŜij =
1

ωk

dk∑
i=1

dk∑
j=1

γiγj

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Yt,ihYt,jh

=: R∗(γ) + (R̃(γ)−R∗(γ)) +R1 +R2 +R3, with

R̃(γ) :=
1

ωk
γ ′R̃γ :=

1

ωk

dk∑
i=1

dk∑
j=1

d-k∑
h=1

γiγj
|ψij,h|

∑
t∈ψij,h

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj·,

R∗(γ) :=
1

ωk
γ ′R∗γ :=

1

ωk

dk∑
i=1

dk∑
j=1

d-k∑
h=1

γiγj
T

T∑
t=1

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj·,

R1 :=
1

ωk
γ ′R1γ :=

1

ωk

dk∑
i=1

dk∑
j=1

d-k∑
h=1

γiγj
|ψij,h|

∑
t∈ψij,h

Et,ihEt,jh,

R2 :=
1

ωk
γ ′R2γ :=

1

ωk

dk∑
i=1

dk∑
j=1

d-k∑
h=1

γiγj
|ψij,h|

∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·,

R3 :=
1

ωk
γ ′R3γ :=

1

ωk

dk∑
i=1

dk∑
j=1

d-k∑
h=1

γiγj
|ψij,h|

∑
t∈ψij,h

Et,ih

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qj·, (3.38)

and we used (3.25) for the expansion above. Then we have the decomposition

R(γ)−R∗(γ) = R(γ)− R̃(γ) + R̃(γ)−R∗(γ). (3.39)

Similar to the treatment of the term Ij in the proof of Lemma 3.1, since ∥γ∥ = 1,

|R1| ≤
1

ωk

∣∣∣∣ dk∑
i=1

dk∑
j=1

γiγjξij

∣∣∣∣+ 1

ωk

∣∣∣∣ dk∑
i=1

dk∑
j=1

γiγjηij

∣∣∣∣ ≤ 1

ωk

( dk∑
i=1

dk∑
j=1

ξ2ij

) 1
2

+
1

ωk

( dk∑
i=1

dk∑
j=1

η2ij

) 1
2

= OP

{
d
αk,1−αk,rk
k

(
1

T 1/2d
1/2
-k

+
1

d
1/2
k

)
K∏
j=1

d
1−αj,1

j

}
= OP

(
d [(Td-k)

−1/2 + d
−1/2
k ]/ωk

)
,

(3.40)

where the second last equality is from (3.32) and part of (3.33). Together with Assumption
(R1), (3.40) implies that as T, dk, d-k →∞, we have R1

p−→ 0.
From (3.34) and the arguments for IIj immediately afterwards, we see that

|R2| ≤
1

ωk

{
dk∑
j=1

dk∑
i=1

(
d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh

( r-k∑
m=1

ΛhmFZ,t,·m

)′
Qi·

)2}1/2
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= OP (ω
−1
k ) ·OP

(
T−1/2d1/2

K∏
j=1

d
αj,1/2
j

)
= OP

(
(dgs)

1/2 T−1/2/ωk

)
= oP (1), (3.41)

where the last equality is from Assumption (R1). The term R3 can be proved to have the same
rate with same lines of proof as for R2. Hence we have

sup
∥γ∥=1

|R(γ)− R̃(γ)| = sup
∥γ∥=1

|R1 +R2 +R3| p−→ 0. (3.42)

Similar to the proof of (R6) in Lemma 4 in Xiong and Pelger (2023), using the definition
vh := [⊗l∈[K]\{k}Al]h· as before,

R̃(γ)−R∗(γ)

=
1

ωk

dk∑
i=1

dk∑
j=1

γiγj

d-k∑
h=1

( 1

|ψij,h|
∑
t∈ψij,h

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,tQj· −

1

T

T∑
t=1

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,tQj·

)

=
1

ωk

dk∑
i=1

dk∑
j=1

γiγj

d-k∑
h=1

A′
i·

( 1

|ψij,h|
∑
t∈ψij,h

Ftvhv
′
hF

′
t −

1

T

T∑
t=1

Ftvhv
′
hF

′
t

)
Aj·

=:
1

ωk

dk∑
i=1

dk∑
j=1

γiγj

d-k∑
h=1

A′
i·∆F,k,ij,hAj·, where (3.43)

∆F,k,ij,h :=
1

|ψij,h|
∑
t∈ψij,h

Ftvhv
′
hF

′
t −

1

T

T∑
t=1

Ftvhv
′
hF

′
t.

By the Cauchy–Schwarz inequality, we then have

∣∣R̃(γ)−R∗(γ)
∣∣ ≤ 1

ωk

{ dk∑
i=1

dk∑
j=1

[
A′
i·

( d-k∑
h=1

∆F,k,ij,h

)
Aj·

]2}1/2

. (3.44)

With Assumption (M1), using the standard rate of convergence in the weak law of large number
for α-mixing sequence and the fact that the elements in Ft are independent from Assumption
(F1), since ∆F,k,ij,h has fixed dimension, we have for each k ∈ [K], i, j ∈ [dk] and h ∈ [d-k],

∥∆F,k,ij,h∥F≤
∥∥∥∥ ∑
t∈ψij,h

Ftvhv
′
hF

′
t

|ψij,h|
− v′

hvhΣk

∥∥∥∥
F

+

∥∥∥∥ T∑
t=1

Ftvhv
′
hF

′
t

T
− v′

hvhΣk

∥∥∥∥
F

= OP

(∥vh∥2
T 1/2

)
.

(3.45)
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From Assumption (L1), we then have

dk∑
i=1

dk∑
j=1

{
A′
i·

( d-k∑
h=1

∆F,k,ij,h

)
Aj·

}2

≤
dk∑
i=1

dk∑
j=1

∥Ai·∥2F∥Aj·∥2F
( d-k∑
h=1

∥∆F,k,ij,h∥F
)2

≤ ∥Ak∥4F ·OP

{ 1

T

( d-k∑
h=1

∥vh∥2
)2}

= ∥Ak∥4F ·OP

( 1
T
∥ ⊗j∈[K]\{k} Aj∥4F

)
= OP

( 1
T

K∏
j=1

∥∥Aj

∥∥4
F

)
= OP

( 1
T

K∏
j=1

d
2αj,1

j

)
, (3.46)

and hence from (3.44), we have by Assumption (R1) that

∣∣R̃(γ)−R∗(γ)
∣∣ = OP

( 1√
T
d
αk,1−αk,rk
k

)
= oP (d

−1/2g1/2s ) = oP (1), (3.47)

where the second last equality is from Assumption (R1). Next, with Proposition 3.2.3, consider

λrk(R
∗) = λrk

( 1
T

T∑
t=1

QFZ,tΛ
′ΛF′

Z,tQ
′
)

= λrk

( 1
T

T∑
t=1

AkFt

[
⊗j∈[K]\{k} Aj

]′[⊗j∈[K]\{k} Aj

]
F′
tA

′
k

)
≥ λrk(A

′
kAk) · λrk

( 1
T

T∑
t=1

Ft

[
⊗j∈[K]\{k} Aj

]′[⊗j∈[K]\{k} Aj

]
F′
t

)
≍P d

αk,rk
k · λrk(tr(⊗j∈[K]\{k}A

′
jAj)Σk) ≍P d

αk,rk
k

∏
j∈[K]\{k}

d
αj,1

j = ωk.

With this, going back to the decomposition (3.37),

ω−1
k λrk(D̂) =

λrk(Ŝ)

ωk
≥ λrk(R

∗)

ωk
− sup

∥γ∥=1

|R̃(γ)−R∗(γ)| − sup
∥γ∥=1

|R1 +R2 +R3| ≍P 1,

where we used (3.42) and (3.47). Hence finally,

∥∥D̂−1
∥∥
F
= OP

(
λ−1
rk
(D̂)

)
= OP (ω

−1
k ) = OP

(
d
αk,1−αk,rk
k

K∏
j=1

d
−αj,1

j

)
,

which completes the proof of (3.35).
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To prove (3.36), from (3.26) we obtain

1

dk

dk∑
j=1

∥∥∥Q̂j· −HjQj·

∥∥∥2
F
=

1

dk

dk∑
j=1

∥∥∥D̂−1
(
Ij + IIj + IIIj

)∥∥∥2
F

≤
∥∥D̂−1

∥∥2
F

( 1

dk

dk∑
j=1

∥∥∥Ij + IIj + IIIj∥∥∥2
F

)

≤
∥∥D̂−1

∥∥2
F

{( 2

dk

dk∑
j=1

∥∥Ij∥∥2F)+ ( 4

dk

dk∑
j=1

∥∥IIj∥∥2F)+ ( 4

dk

dk∑
j=1

∥∥IIIj∥∥2F)}
= OP

{
d
2(αk,1−αk,rk

)−1

k

( 1

Td-k
+

1

dk

) K∏
j=1

d
2(1−αj,1)
j

}
,

where the last line used (3.35) and Lemma 3.1. This concludes the proof of Lemma 3.2. □

Lemma 3.3 Let all the assumptions in Lemma 3.2 hold. For any j ∈ [dk], with Hj and Ha

from (3.19) and the notation η = 1− ψ0,

∥∥Hj −Ha
∥∥2
F
= OP

{
min

( 1
T
,

η2

(1− η)2
)
d
2(αk,1−αk,rk

)

k

}
= oP (1).

Proof of Lemma 3.3. Firstly, consider ∆F,k,ij,h from (3.43), where

∥∆F,k,ij,h∥F =

∥∥∥∥ 1

|ψij,h|
∑
t∈ψij,h

Ftvhv
′
hF

′
t −

1

T

T∑
t=1

Ftvhv
′
hF

′
t

∥∥∥∥
F

=

∥∥∥∥ 1

|ψij,h|
∑
t∈ψc

ij,h

Ftvhv
′
hF

′
t

∥∥∥∥
F

+

∥∥∥∥Å 1

|ψij,h|
− 1

T

ã T∑
t=1

Ftvhv
′
hF

′
t

∥∥∥∥
F

≤ OP

( Tη

T − Tη
∥∥vh∥∥2)+ Tη

T (T − Tη) ·OP

(
T
∥∥vh∥∥2) = OP

( η

1− η
∥∥vh∥∥2).

Combining this with (3.45), we have

∥∥∆F,k,ij,h

∥∥
F
= OP

{
min

( 1√
T
,

η

1− η
)∥∥vh∥∥2}. (3.48)
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Note also the following two results that

Hj = D̂−1

dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Λ′
h·F

′
Z,tQi·Λ

′
h·F

′
Z,t

= D̂−1

dk∑
i=1

Q̂i·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,t;

Ha = D̂−1

dk∑
i=1

Q̂i·

d-k∑
h=1

1

T

T∑
t=1

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,t.

We then have, for Âi· = Z
1/2
k Q̂i· and using (3.48),∥∥Hj −Ha

∥∥2
F

=

∥∥∥∥D̂−1

dk∑
i=1

Q̂i·

d-k∑
h=1

( 1

|ψij,h|
∑
t∈ψij,h

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,t −

1

T

T∑
t=1

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,t

)∥∥∥∥2
F

=

∥∥∥∥D̂−1

dk∑
i=1

Q̂i·A
′
i·

d-k∑
h=1

∆F,k,ij,hZ
1/2
k

∥∥∥∥2
F

≤
∥∥D̂−1

∥∥2
F
·
∥∥∥∥ dk∑
i=1

Âi·A
′
i·

d-k∑
h=1

∆F,k,ij,h

∥∥∥∥2
F

= OP (ω
−2
k ) ·max

i∈[dk]

∥∥∥∥ d-k∑
h=1

∆F,k,ij,h

∥∥∥∥2
F

·
( dk∑
i=1

∥Âi·∥ · ∥Ai·∥
)2

= OP (ω
−2
k ) ·OP

{
min

( 1
T
,

η2

(1− η)2
)
·
∥∥⊗j∈[K]\{k} Aj

∥∥4
F

}
·
∥∥Âk

∥∥2
F
· ∥Ak∥2F

= OP

{
min

( 1
T
,

η2

(1− η)2
)
d
2(αk,1−αk,rk

)

k

}
= oP (1),

where we used (3.48) in the second last line, Assumption (L1) in the second last equality, and
Assumption (R1) in the last equality. This completes the proof of Lemma 3.3. □
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Proof of Theorem 3.1. The first result is shown in Lemma 3.2. Together with Lemma 3.3,

1

dk

dk∑
j=1

∥∥Q̂j· −HaQj·
∥∥2 ≤ 1

dk

dk∑
j=1

∥∥Q̂j· −HjQj·
∥∥2
F
+

1

dk

dk∑
j=1

∥∥∥(Hj −Ha
)
Qj·

∥∥∥2
F

≤ 1

dk

dk∑
j=1

∥∥Q̂j· −HjQj·
∥∥2
F
+

1

dk

dk∑
j=1

∥∥Hj −Ha
∥∥2
F

∥∥Qj·
∥∥2
F

= OP

{
d
2(αk,1−αk,rk

)−1

k

( 1

Td-k
+

1

dk

) K∏
j=1

d
2(1−αj,1)
j

}
+OP

{
min

( 1
T
,

η2

(1− η)2
)
d
2(αk,1−αk,rk

)−1

k

}
= OP

(
d
2(αk,1−αk,rk

)−1

k

ïÅ
1

Td-k
+

1

dk

ã
d2

g2s
+min

ß
1

T
,

η2

(1− η)2
™ò)

,

where we used d−1
k

∑dk
j=1 ∥Qj·∥2F = d−1

k ∥Qk∥2F = O(d−1
k ) by Assumption (L1).

Thus together with Assumption (R1), we may note that

Irk = Q̂′Q̂ = Q̂′[Q̂−QHa′
]
+ Q̂′QHa′ = Q′Q̂Ha′ + oP (1)

= HaQ′QHa′ + oP (1) = HaΣA,kH
a′ + oP (1),

where the last equality used Assumption (L1) and it is immediate that Ha has full rank asymp-
totically. We also have

σ1(H
a) · σrk(ΣA,k) · σrk(Ha′) ≤ σ1(H

a) · σrk(ΣA,kH
a′)

≤ σ1(H
aΣA,kH

a′) = OP (σ1(Irk)) = OP (1),

which implies ∥Ha∥F = OP (1) by (L1). This completes the proof of the theorem. □
Before we prove the consistency results for our imputations, we want to prove asymptotic

normality for our factor loading estimators first. Consistency for the imputations will then
use the rate obtained from asymptotic normality of the estimated factor loading matrices. We
present a lemma first before proving Theorem 3.3.

Lemma 3.4 Let Assumption (O1), (M1), (F1), (L1), (L2), (E1), (E2) and (R1) hold. For a
given k ∈ [K], let R∗ be from (3.37) and ωk := d

αk,rk
−αk,1

k gs. Then

ω−1
k R∗ p−→ tr(A′

-kA-k) · ω−1
k AkA

′
k,

ω−1
k D̂k

p−→ ω−1
k Dk := ω−1

k tr(A′
-kA-k) · diag{λj(A′

kAk) | j ∈ [rk]},
Ha
k

p−→ Ha,∗
k := (tr(A′

-kA-k))
1/2 ·D−1/2

k Υ′
kZ

1/2
k ,
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where Υk is the eigenvector matrix of tr(A′
-kA-k) · ω−1

k Z
1/2
k ΣA,kZ

1/2
k .

Proof of Lemma 3.4. First, let Ŝ, Q̂, D̂,Ha be from (3.19), and R∗, R̃,R1,R2,R3 from
(3.37). Define also Ha,∗ := Ha,∗

k , then we have

1

ωk
(D̂− Q̂′R∗Q̂) =

1

ωk
Q̂′(Ŝ−R∗)Q̂

=
1

ωk
Q̂′(R̃−R∗)Q̂+

1

ωk
Q̂′R1Q̂+

1

ωk
Q̂′R2Q̂+

1

ωk
Q̂′R3Q̂ = oP (1),

(3.49)

where the last equality follows from the proof of Lemma 3.2.
Using the structure in Assumption (F1), we have

E

( 1

ωk
R∗
)
=

1

ωkT

T∑
t=1

E

{
Ak

(∑
q≥0

af,qXf,t−q

)
A′

-kA-k

(∑
q≥0

af,qX
′
f,t−q

)
A′
k

}
= tr(A′

-kA-k) ·
1

ωkT

T∑
t=1

∑
q≥0

a2f,qAkA
′
k = tr(A′

-kA-k) ·
1

ωk
AkA

′
k.

Meanwhile, we have

Var
(R∗

ij

ωk

)
=

1

ω2
kT

2

T∑
t=1

T∑
s=1

Cov
{
A′
k,i·

(∑
q≥0

af,qXf,t−q

)
A′

-kA-k

(∑
q≥0

af,qX
′
f,t−q

)
Ak,j·,

A′
k,i·

(∑
q≥0

af,qXf,s−q

)
A′

-kA-k

(∑
q≥0

af,qX
′
f,s−q

)
Ak,j·

}
=

1

ω2
kT

2

T∑
t=1

∑
q≥0

∑
p≥0

a2f,qa
2
f,p · Var

(
A′
k,i·Xf,t−qA

′
-kA-kX

′
f,t−pAk,j·

)
=

1

ω2
kT

2

T∑
t=1

∑
q,p≥0

a2f,qa
2
f,pOP

(
∥A-k∥2F

)
= OP

(
T−1d

−2αk,rk
k

∏
j∈[K]\{k}

d
−αj,1

j

)
= oP (1),

where we used Assumption (E2) in the third last equality, both (L1) and (F1) in the second last,
and (R1) in the last. We can then conclude ω−1

k R∗ p−→ tr(A′
-kA-k) · ω−1

k AkA
′
k. Together with

(3.49) and Assumption (L2), we obtain the limit of ω−1
k D̂ as

ω−1
k D̂

p−→ ω−1
k D = ω−1

k tr(A′
-kA-k) · diag{λj(A′

kAk) | j ∈ [rk]}. (3.50)

Define further

Rres := ω−1
k Z

1/2
k Q′((R̃−R∗) +R1 +R2 +R3)Q̂.

With similar arguments in the proof of Lemma 3.2, we have ∥Rres∥F = oP (∥Z1/2
k ∥F ). Left-
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multiply both sides of ŜQ̂ = Q̂D̂ by ω−1
k Z

1/2
k Q′, we can write

(Z
1/2
k Q′Q̂)(ω−1

k D̂) = ω−1
k Z

1/2
k Q′ŜQ̂ = ω−1

k Z
1/2
k Q′R∗Q̂+Rres

=
[
ω−1
k Z

1/2
k Q′R∗Q̂(Z

1/2
k Q′Q̂)−1 +Rres(Z

1/2
k Q′Q̂)−1

]
(Z

1/2
k Q′Q̂).

Hence, each column of Z1/2
k Q′Q̂ is an eigenvector of the matrix

ω−1
k Z

1/2
k Q′R∗Q̂(Z

1/2
k Q′Q̂)−1 +Rres(Z

1/2
k Q′Q̂)−1.

We have (Z1/2
k Q′Q̂)′(Z

1/2
k Q′Q̂)

p−→ (tr(A′
-kA-k))

−1 ·D, since

ω−1
k

{
(Z

1/2
k Q′Q̂)′(Z

1/2
k Q′Q̂)− (tr(A′

-kA-k))
−1 ·D

}
=
{ 1

ωk
Q̂′A′

kAkQ̂−
1

ωk
(tr(A′

-kA-k))
−1Q̂′R∗Q̂

}
+
{ 1

ωk
(tr(A′

-kA-k))
−1Q̂′R∗Q̂− 1

ωk
(tr(A′

-kA-k))
−1D

}
,

which is oP (1) from the limit of ω−1
k R∗ (for the first square bracket) and from (3.49) and

(3.50) (for the second square bracket). Hence the eigenvalues of (Q′Q̂)′(Q′Q̂) are asymptoti-
cally bounded away from zero and infinity by Assumption (L1), and also ∥(Z1/2

k Q′Q̂)−1∥F =

OP (∥Z−1/2
k ∥F ). Let

Υ∗
k := (tr(A′

-kA-k))
1/2 · (Z1/2

k Q′Q̂)D−1/2.

Using the limit of ω−1
k R∗, we have

ω−1
k Z

1/2
k Q′R∗Q̂(Z

1/2
k Q′Q̂)−1 p−→ tr(A′

-kA-k) · ω−1
k Z

1/2
k Q′QZkQ

′Q̂(Q′Q̂)−1Z
−1/2
k

= tr(A′
-kA-k) · ω−1

k Z
1/2
k Q′QZ

1/2
k

= tr(A′
-kA-k) · ω−1

k Z
1/2
k ΣA,kZ

1/2
k ,

and ∥Rres(Z
1/2
k Q′Q̂)−1∥F = oP (1) from the above. By Assumption (L2) and eigenvector per-

turbation theories, there exists a unique eigenvector matrixΥk of tr(A′
-kA-k)·ω−1

k Z
1/2
k ΣA,kZ

1/2
k

such that ∥Υk −Υ∗
k∥ = oP (1). Therefore, we have

Q′Q̂ = (tr(A′
-kA-k))

−1/2 · Z−1/2
k Υ∗

kD
1/2 p−→ (tr(A′

-kA-k))
−1/2 · Z−1/2

k ΥkD
1/2.
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Thus, we have

Ha = D̂−1 1

T

T∑
t=1

Q̂′AkFtA
′
-kA-kF

′
tZ

1/2
k = D̂−1Q̂′R∗Ak(A

′
kAk)

−1Z
1/2
k = D̂−1Q̂′R∗QΣ−1

A,k

= tr(A′
-kA-k) ·D−1Q̂′QZkQ

′QΣ−1
A,k + oP (1)

p−→ (tr(A′
-kA-k))

1/2 ·D−1/2Υ′
kZ

1/2
k .

(3.51)

This completes the proof of Lemma 3.4. □

Proof of Theorem 3.3. Suppose we focus on the k-th mode, and hence we adapt all nota-
tions by omitting the subscript k for the ease of notational simplicity; see (3.19) for example.
Moreover, we set Xe,t := matk(Xe,t),Xϵ,t := matk(Xϵ,t) and Xf,t := matk(Xf,t).

To proceed, we first decompose

Q̂j· −HaQj· = (Q̂j· −HjQj·) + (Hj −Ha)Qj·. (3.52)

Consider the first term (Q̂j· −HjQj·). Using the decomposition in (3.26),

Q̂j· −HjQj· = D̂−1

dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

+ D̂−1

dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih(A-k)
′
h·F

′
tAj·

+ D̂−1

dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

+ IH,j + I∗H,j + IIH,j + IIIH,j, where

(3.53)

IH,j := D̂−1

dk∑
i=1

HaQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·,

I∗H,j := D̂−1

dk∑
i=1

(Hj −Ha)Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·,

IIH,j := D̂−1

dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih(A-k)
′
h·F

′
tAj·,

IIIH,j := D̂−1

dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh, with A-k := ⊗l∈[K]\{k}Al.

We want to show that IH,j is the leading term among those in (3.53). To this end, we will
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show
√
TωB · IH,j converges to a normal distribution with mean zero and variance of constant

order (see (3.63) later), so that IH,j is of order (TωB)−1/2 exactly. Then it suffices to show
that the rate (TωB)

−1 is dominating the following rates multiplied by the rate of ∥D̂−1∥2F =

OP

{
d
2(αk,1−αk,rk

)

k g−2
s

}
from Lemma 3.2:

∥∥∥∥ dk∑
i=1

(Hj −Ha)Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2, (3.54)

∥∥∥∥ dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih(A-k)
′
h·F

′
tAj·

∥∥∥∥2, (3.55)

∥∥∥∥ dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

∥∥∥∥2, (3.56)

∥∥∥∥ dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2, (3.57)

∥∥∥∥ dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih(A-k)
′
h·F

′
tAj·

∥∥∥∥2, (3.58)

∥∥∥∥ dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

∥∥∥∥2. (3.59)

Note that we can easily see the rates of (3.55) and (3.56) are greater than those of (3.58)
and (3.59) respectively, using Lemma 3.2 and the Cauchy–Schwarz inequality.

Consider (3.54) first. We have

∥∥∥∥ dk∑
i=1

(Hj −Ha)Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2

≤
( dk∑
i=1

∥Hj −Ha∥2F · ∥Qi·∥2
)
·
dk∑
i=1

( d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

)2
= O(d2-k) · ∥Hj −Ha∥2F ·

dk∑
i=1

( d-k∑
h=1

∑
t∈ψij,h

1

d-k · |ψij,h|
Et,jh(A-k)

′
h·F

′
tAi·

)2
= O(d2-k) · ∥Hj −Ha∥2F ·

dk∑
i=1

∥ui∥2
( d-k∑
h=1

∑
t∈ψij,h

1

d-k · |ψij,h|
Et,jhv

′
hF

′
t

1

∥ui∥
ui

)2
= OP

{
d
2(αk,1−αk,rk

)

k

(d-k

T 2

)
d
αk,1

k

}
, with vh := (A-k)h·, ui := Ai·,

where we used Lemma 3.3, Proposition 3.2.2 and (L1) in the last equality.
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To bound (3.55), note from Assumption (E1) and (E2) that we can write

Et,ih =
∑
q≥0

ae,qA
′
e,k,i·Xe,t−qAe,-k,h· + [matk(Σϵ)]ih

∑
q≥0

aϵ,q(Xϵ,t−q)ih.

Consider first
∑d-k

h=1

∑
t∈ψij,h

(∑
q≥0 ae,qA

′
e,k,i·Xe,t−qAe,-k,h·

)
(A-k)

′
h·F

′
tAj·. By Assumption

(O1), (E1), (E2) and (F1), we have

E

{[ d-k∑
h=1

∑
t∈ψij,h

(∑
q≥0

ae,qA
′
e,k,i·Xe,t−qAe,-k,h·

)
(A-k)

′
h·F

′
tAj·

]2}

= Cov
{ d-k∑
h=1

∑
t∈ψij,h

(A-k)
′
h·

(∑
q≥0

af,qX
′
f,t−q

)
Aj·

(∑
q≥0

ae,qA
′
e,k,i·Xe,t−qAe,-k,h·

)
,

d-k∑
h=1

∑
t∈ψij,h

(A-k)
′
h·

(∑
q≥0

af,qX
′
f,t−q

)
Aj·

(∑
q≥0

ae,qA
′
e,k,i·Xe,t−qAe,-k,h·

)}

=

d-k∑
h=1

d-k∑
l=1

∑
t∈ψij,h∩ψij,l

∑
q≥0

a2f,qa
2
e,q · ∥Aj·∥2 ∥(A-k)h·∥ ∥(A-k)l·∥ ∥Ae,-k,h·∥ ∥Ae,-k,l·∥ ∥Ae,k,i·∥2

= O(T ) · ∥Aj·∥2 · ∥Ae,k,i·∥2.
(3.60)

Consider also
∑dk

i=1

∑d-k
h=1

∑
t∈ψij,h

Qi·
(
[matk(Σϵ)]ih

∑
q≥0 aϵ,q(Xϵ,t−q)ih

)
(A-k)

′
h·F

′
tAj·. Sim-

ilarly, by Assumption (O1), (E1), (E2) and (F1), we have

E

{∥∥∥ dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h

Qi·

(
[matk(Σϵ)]ih

∑
q≥0

aϵ,q(Xϵ,t−q)ih

)
(A-k)

′
h·F

′
tAj·

∥∥∥2}

= Cov
{ dk∑

i=1

d-k∑
h=1

∑
t∈ψij,h

Qi·(A-k)
′
h·

(∑
q≥0

af,qX
′
f,t−q

)
Aj·

(
[matk(Σϵ)]ih

∑
q≥0

aϵ,q(Xϵ,t−q)ih

)
,

dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h

Qi·(A-k)
′
h·

(∑
q≥0

af,qX
′
f,t−q

)
Aj·

(
[matk(Σϵ)]ih

∑
q≥0

aϵ,q(Xϵ,t−q)ih

)}

=

dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h

∑
q≥0

a2f,qa
2
ϵ,qΣϵ,k,h,ii · ∥Aj·∥2 ∥(A-k)h·∥2 ∥Qi·∥2= O(T ) · ∥Aj·∥2 ∥A-k∥2 ∥Q∥2.

(3.61)
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Hence it holds that∥∥∥∥ dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih(A-k)
′
h·F

′
tAj·

∥∥∥∥2

≤ ∥Hj∥2F ·
{∥∥∥∥ dk∑

i=1

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Qi·

{
[matk(Σϵ)]ih

∑
q≥0

aϵ,q(Xϵ,t−q)ih

}
(A-k)

′
h·F

′
tAj·

∥∥∥∥2

+
( dk∑
i=1

∥Qi·∥2
) dk∑
i=1

∥∥∥∥ d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

{∑
q≥0

ae,qA
′
e,k,i·Xe,t−qAe,-k,h·

}
(A-k)

′
h·F

′
tAj·

∥∥∥∥2
}

= OP

{
d
−αk,1

k

( 1
T

) K∏
j=1

d
αj,1

j

}
,

where we used Assumption (L1), (3.60) and (3.61) in the last equality.
For (3.56), by Assumption (O1), (E1), (E2), and the proof of Proposition 3.2 we have

Var
( dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h

Qi·Et,ihEt,jh

)

= O
( dk∑
i,w=1

d-k∑
h,l=1

∑
t∈ψij,h∩ψwj,l

re,k∑
n=1

re,-k∑
m=1

∑
q≥0

a4e,qAe,k,inAe,k,wnA
2
e,k,jnA

2
e,-k,hmA

2
e,-k,lm

· ∥Qi·∥ · ∥Qw·∥ · Var((Xe,t−q)
2
nm)
)
+O

( dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h∩ψwj,l

∑
q≥0

a4ϵ,qΣϵ,k,h,iiΣϵ,k,h,jj

· ∥Qi·∥2 · Var((Xϵ,t−q)ih(Xϵ,t−q)jh)
)
= O(T + Td-k) = O(Td-k).

Moreover, it holds that

E

( dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h

Et,ihEt,jh

)
=

dk∑
i=1

d-k∑
h=1

∑
t∈ψij,h

(
∥Ae,-k,h·∥2 ∥Ae,k,i·∥ ∥Ae,k,j·∥+Σϵ,k,h,ij

)
=O(Td-k),

and with maxi ∥Qi·∥2 ≤ ∥Aj·∥2 · ∥Z−1/2
k ∥2 = OP

(
d
−αk,rk
k

)
, we thus have

∥∥∥∥ dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

∥∥∥∥2 ≤ ∥Hj∥2F ·
∥∥∥∥ dk∑
i=1

Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

∥∥∥∥2
= O

(d-k

T
+ d2-kd

−αk,rk
k

)
.
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Now consider (3.57). Similar to (3.54), we have

∥∥∥∥ dk∑
i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2

≤
( dk∑
i=1

∥Q̂i· −HjQi·∥2F
)
·
dk∑
i=1

( d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

)2
= O(d2-k) ·

( dk∑
i=1

∥Q̂i· −HjQi·∥2F
)
·
dk∑
i=1

∥ui∥2
( d-k∑
h=1

∑
t∈ψij,h

1

d-k · |ψij,h|
Et,jhv

′
hF

′
t

1

∥ui∥
ui

)2
= OP

{
d
3αk,1−2αk,rk
k

(d-k

T

)( 1

Td-k
+

1

dk

) K∏
j=1

d
2(1−αj,1)
j

}
,

where we used Lemma 3.2, Proposition 3.2.2 and (L1) in the last equality.
Finally, we consider the following ratios with d1, . . . , dK , T →∞:

∥∥∥∥ dk∑
i=1

(Hj −Ha)Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2d2(αk,1−αk,rk
)

k g−2
s

¡
(TωB)

−1

= OP

(
d
2(αk,1−αk,rk

)

k · 1
T

)
= oP (1),∥∥∥∥ dk∑

i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ih(A-k)
′
h·F

′
tAj·

∥∥∥∥2d2(αk,1−αk,rk
)

k g−2
s

¡
(TωB)

−1

= OP

(
d
−αk,1

k

∏
j∈[K]\{k}

d
αj,1−1
j

)
= oP (1),

∥∥∥∥ dk∑
i=1

HjQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,ihEt,jh

∥∥∥∥2d2(αk,1−αk,rk
)

k g−2
s

¡
(TωB)

−1

= OP

(
Td-kd

−αk,rk
−αk,1

k

)
= oP (1),∥∥∥∥ dk∑

i=1

(Q̂i· −HjQi·)

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2d2(αk,1−αk,rk
)

k g−2
s

¡
(TωB)

−1

= OP

{
d
2(αk,1−αk,rk

)

k

( 1

Td-k
+

1

dk

) K∏
j=1

d
2(1−αj,1)
j

}
= oP (1),

by Assumptions (R1) and the rate assumptions d2αk,1−3αk,rk
k = o(d-k) (from the statement of

Theorem 3.2) and Td-k = o(d
αk,1+αk,rk
k ). Hence IH,j is indeed the dominating term in (3.53).

In other words, we have
Q̂j· −HjQj· = IH,j + oP (1). (3.62)
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Then we want to show that

√
TωB · IH,j =

√
TωB · D̂−1Ha

dk∑
i=1

Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

p−→
√
TωB ·D−1Ha,∗

k

dk∑
i=1

Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

D−→ N (0, TωB ·D−1Ha,∗
k Ξk,j(H

a,∗
k )′D−1),

(3.63)

where D and Ha,∗
k are from Lemma 3.4, and we require Assumption (AD1) for the covariance

matrix to have constant rate. In fact, using Lemma 3.4 and Proposition 3.2, the upper bound is
of constant order by∥∥∥TωB ·D−1Ha,∗

k Ξk,j(H
a,∗
k )′D−1

∥∥∥
F

= O
(
TωB

)
·
∥∥D−1

∥∥2
F
·
∥∥∥∥ dk∑
i=1

Qi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2

= O
{ T

d-kd
αk,1

k

·
( dk∑
i=1

∥Qi·∥2
)
·
dk∑
i=1

( d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

)2}
= OP (1).

We will adapt the central limit theorem for α-mixing processes (Fan and Yao (2003), Theo-
rem 2.21). Due to the existence of missing data and the general missing patterns that we allow,
we construct an auxiliary time series to facilitate the proof. Formally, define {Bj,t}t∈[T ] as

Bj,t :=
√
ωB ·D−1Ha,∗

k

dk∑
i=1

d-k∑
h=1

Qi·
T

|ψij,h|
· Et,jh(A-k)

′
h·F

′
tAi· · 1{t ∈ ψij,h}.

Hence we have the following,

√
TωB · IH,j p−→ 1√

T

T∑
t=1

Bj,t.

It is easy to see that E[Bj,t] = 0 by Assumption (E1), (E2) and (F1). Moreover, Bj,t is also
α-mixing over t. To see this, consider

Et,jh(A-k)
′
h·F

′
tAi·

=
(∑
q≥0

ae,qA
′
e,k,i·Xe,t−qAe,-k,h· + Σ

1/2
ϵ,k,h,ii

∑
q≥0

aϵ,q(Xϵ,t−q)ih

)
A′

-k,h·

(∑
q≥0

af,qX
′
f,t−q

)
Ai·.

Define be,t :=
∑

q≥0 ae,qXe,t−q, bϵ,ih,t :=
∑

q≥0 aϵ,q(Xϵ,t−q)ih and bf,t :=
∑

q≥0 af,qXf,t−q
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which are independent of each other by Assumption (E2), we can then rewrite

Bj,t = h
(
be,t, (bϵ,ih,t)i∈[dk],h∈[d-k],bf,t

)
,

for some function h, and hence Theorem 5.2 in Bradley (2005) implies the α-mixing property.
Then similar to Chen and Fan (2023), it is left to show that there exists an m > 2 such that
E[∥Bj,t∥m] ≤ C for some constant C. With Assumption (E1), (E2) and (F1) and similar to the
proof of Proposition 3.2, we have

E

( d-k∑
h=1

T

|ψij,h|
· Et,jhu′Ftv · 1{t ∈ ψij,h}

)2
= O(d-k),

where u ∈ Rrk and v ∈ Rr-k are any deterministic vectors of constant order. Hence

E
(
∥Bj,t∥m

)
≤ ω

m/2
B ∥D−1∥mF ∥Ha,∗

k ∥mF
( dk∑
i=1

∥Qi·∥2
)m/2

·E
({ dk∑

i=1

( d-k∑
h=1

T

|ψij,h|
Et,jh(A-k)

′
h·F

′
tAi· · 1{t ∈ ψij,h}

)2}m/2)

= O
{(
ωBd-kd

αk,1

k

)m/2}
· ∥D−1∥mF = OP

{(
ωBd-kd

3αk,1−2αk,rk
k

K∏
j=1

d
−2αj,1

j

)m/2}
= OP (1),

where we used Lemma 3.2 and the definition of ωB in the last line. Theorem 2.21 in Fan and
Yao (2003) then applies. With (3.62), (3.63) and Lemma 3.4, we can directly establish that√

TωB · (Q̂j· −HjQj·)
D−→ N

(
0, TωB ·D−1Ha,∗

k Ξk,j(H
a,∗
k )′D−1

)
. (3.64)

Consider now the second term in (3.52). By Lemma 3.3 and 3.4, we have

∥∥(Hj−Ha)Qj·
∥∥2 ≤ ∥Hj−Ha∥2F ·∥Aj·∥2·∥Z−1/2

k ∥2 = OP

{
min

( 1
T
,

η2

(1− η)2
)
d
2αk,1−3αk,rk
k

}
,

implying

∥∥(Hj −Ha)Qj·
∥∥2¡∥∥∥∥D̂−1

dk∑
i=1

HaQi·

d-k∑
h=1

1

|ψij,h|
∑
t∈ψij,h

Et,jh(A-k)
′
h·F

′
tAi·

∥∥∥∥2
= OP

{
min

(
1,

T η2

(1− η)2
)
d
3(αk,1−αk,rk

)

k

∏
j∈[K]\{k}

d
2αj,1−1
j

}
,
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which is unrealistic to be oP (1) in the presence of missing data in general. Thus (Hj−Ha)Qj·

contributes to the asymptotic distribution of (Q̂j· −HaQj·). Rewrite

(Hj −Ha)Qj·

= D̂−1

dk∑
i=1

Q̂i·

d-k∑
h=1

( 1

|ψij,h|
∑
t∈ψij,h

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,t −

1

T

T∑
t=1

Q′
i·FZ,tΛh·Λ

′
h·F

′
Z,t

)
Qj·

= D̂−1

dk∑
i=1

Q̂i·A
′
i·

d-k∑
h=1

∆F,k,ij,hZ
1/2
k Qj·

= D̂−1

dk∑
i=1

(Q̂i· −HaQi·)A
′
i·

d-k∑
h=1

∆F,k,ij,hZ
1/2
k Qj· + D̂−1Ha

dk∑
i=1

Qi·A
′
i·

d-k∑
h=1

∆F,k,ij,hZ
1/2
k Qj·.

Note the first term is dominated by the second term due to Theorem 3.1. Using Assumption
(AD2) and the Slutsky’s theorem, we have»

Td
αk,rk
k · D̂−1Ha

dk∑
i=1

Qi·A
′
i·

d-k∑
h=1

∆F,k,ij,hZ
1/2
k Qj·

→ N
(
0,D−1Ha,∗

k hk,j(Aj·)(H
a,∗
k )′D−1

)
GT -stably. (3.65)

Furthermore, IH,j and (Hj −Ha)Qj· are asymptotically independent since the randomness of
IH,j comes fromEt,jh(A-k)

′
h·F

′
t while that of (Hj−Ha)Qj· comes from ∆F,k,ij,h. From (3.64)

and (3.65), we conclude that»
Td

αk,rk
k · (Q̂j· −HaQj·)

D−→ N
(
0,D−1Ha,∗

k (Td
αk,rk
k ·Ξk,j + hk,j(Aj·))(H

a,∗
k )′D−1

)
.

On the other hand, if we have finite missingness or asymptotically vanishing missingness such
that

min
{
1,

T η2

(1− η)2
}
· d3(αk,1−αk,rk

)

k

∏
j∈[K]\{k}

d
2αj,1−1
j = Td−1g2sgηd

1+αk,1−3αk,rk
k = o(1),

then (3.65) is dominated by (3.64), and hence it holds at the absence of (AD2) that√
TωB · (Q̂j· −HaQj·)

D−→ N (0, TωB ·D−1Ha,∗
k Ξk,j(H

a,∗
k )′D−1).

This completes the proof of Theorem 3.3. □

Proof of Theorem 3.4. By Lemma 3.4, D̂k is consistent for Dk, and Ha
k is consistent

for Ha,∗
k . Similar to the proof of Theorem 5 in Chen and Fan (2023), it suffice to prove that

the HAC estimator Σ̂HAC based on {Q̂k,matk(Ĉt),matk(Êt)}t∈[T ] is a consistent estimator for
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Ha
kΞk,j(H

a
k)

′. Recall that

Ha
kΞk,j(H

a
k)

′

= Var
( dk∑
i=1

Ha
kQk,i·

d-k∑
h=1

1

|ψk,ij,h|
∑

t∈ψk,ij,h

Et,jh(A-k)
′
h·F

′
tAk,i·

)

= Var
{ dk∑

i=1

(
D̂−1
k

1

T

T∑
t=1

Q̂′
kQkFZ,tΛ

′ΛF′
Z,t

)
Qk,i·

d-k∑
h=1

1

|ψk,ij,h|
∑

t∈ψk,ij,h

Et,jh(A-k)
′
h·F

′
tAk,i·

}

= Var
{ dk∑

i=1

( 1
T

T∑
t=1

D̂−1
k Q̂′

k ·matk(Ct)matk(Ct)i·
) d-k∑
h=1

1

|ψk,ij,h|
∑

t∈ψk,ij,h

matk(Et)jh matk(Ct)ih
}
.

By Theorem 3.1, and the rate assumption in the statement of Theorem 3.4, we have Q̂k being
consistent for a version of Qk (in Frobenius norm) for any k ∈ [K]. By Theorem 3.2 and
the assumption that the rate for individual common component imputation error is going to 0,
Ĉt,i1,...,iK is consistent for Ct,i1,...,iK for any k ∈ [K], ik ∈ [dk], t ∈ [T ]. Hence, it also holds that
Êt,i1,...,iK is consistent for Et,i1,...,iK for any k ∈ [K], ik ∈ [dk], t ∈ [T ]. We can finally conclude
that Σ̂HAC is estimating Ha

kΞk,j(H
a
k)

′ consistently (Newey and West, 1987), which is result 1.
We can also show a similar result for Σ̂∆

HAC , which is result 2 (details omitted). Combining
both results, and consider the general statement of Theorem 3.3, we can easily conclude result
3. This completes the proof of the theorem. □

We will present two other lemmas before proving Theorem 3.2. While we stick with the
notations in (3.19), we use the following also hereafter:

yt := vec
(
Yt
)
, mt := vec

(
Mt

)
, fZ,t := vec

(
FZ,t

)
, εt := vec

(
Et
)
, ct := vec

(
Ct
)
,

ft := vec
(
Ft
)
, H⊗ := Ha

K ⊗ · · · ⊗Ha
1, A⊗ := AK ⊗ · · · ⊗A1, Z⊗ := ZK ⊗ · · · ⊗ Z1,

(3.66)

where the hat versions (if any) of the above are defined similarly.

Lemma 3.5 Under the assumptions in Theorem 3.2, for any k ∈ [K] and j ∈ [dk],∥∥Q̂k,j· −Ha
kQk,j·

∥∥2
F
= OP

(
T−1d-kd

3αk,1−2αk,rk
k g−2

s +d2g−2
s d

2αk,1−3αk,rk
−2

k +gηd
2αk,1−3αk,rk
k

)
.

(3.67)

Proof of Lemma 3.5. First, consider the case when Td-k = o
(
d
αk,rk

+αk,1

k

)
. From (3.64) in

the proof of Theorem 3.3, we have ∥Q̂k,j· −Hk,jQk,j·∥2F = OP (T
−1ω−1

B ). Thus,

∥Q̂k,j· −Ha
kQk,j·∥2F = OP

(
∥Q̂k,j· −Hk,jQk,j·∥2F + ∥(Hk,j −Ha

k)Qk,j·∥2F
)



82 Chapter 3. Tensor Time Series Imputation through Tensor Factor Modelling

= OP

(
(TωB)

−1 + gηd
2αk,1−3αk,rk
k

)
= OP

(
T−1d-kd

3αk,1−2αk,rk
k g−2

s + gηd
2αk,1−3αk,rk
k

)
,

(3.68)

where we used Lemma 3.3 in the second equality, and

∥∥Qk,j·
∥∥2 = ∥Z−1/2

k Ak,j·∥2 = OP (d
−αk,rk
k ).

Now suppose Td-k = o
(
d
αk,rk

+αk,1

k

)
fails to hold. From the decomposition of Q̂k,j· −

Hk,jQk,j· in (3.53), IH,j is not the leading term anymore, and the leading term among the
expressions from (3.54) to (3.59) will be (3.56). It has rate

OP

(d-k

T
+ d2-kd

−αk,rk
k

)
= OP

(
d2-kd

−αk,rk
k

)
,

where the above equality used the fact that Td-k = o
(
d
αk,rk

+αk,1

k

)
does not hold. Together with

the bound on ∥D̂−1
k ∥F from Lemma 3.2 , we have

∥∥Q̂k,j· −Hk,jQk,j·
∥∥2
F
= OP

(
d2g−2

s d
2αk,1−3αk,rk

−2

k

)
. (3.69)

Combining (3.68) and (3.69), we arrive at the statement of the lemma. □

Lemma 3.6 Under the Assumptions in Theorem 3.2, with the notations in (3.19) and (3.66),
we have the following for any j ∈ [d]:

∥∥Q⊗H
′
⊗
∥∥2
F
= OP (1), (3.70)∥∥Q̂⊗,j· −H⊗Q⊗,j·

∥∥2
= OP

{
max
k∈[K]

(
T−1d-kd

3αk,1−αk,rk
k g−2

s g−1
w + d2g−2

s g−1
w d

2αk,1−2αk,rk
−2

k + gηg
−1
w d

2αk,1−2αk,rk
k

)}
,

(3.71)∥∥Q̂⊗ −Q⊗H
′
⊗
∥∥2
F

= OP

{
max
k∈[K]

(
T−1dd

3αk,1−2αk,rk
k g−2

s + d2g−2
s d

2αk,1−3αk,rk
−1

k + gηd
2αk,1−3αk,rk

+1

k

)}
. (3.72)

Proof of Lemma 3.6. For (3.70), with Assumption (L1) we have

∥∥Q⊗H
′
⊗
∥∥2
F
≤
∥∥H⊗

∥∥2
F
·
K∏
k=1

∥∥Qk

∥∥2
F
= OP (1).
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To show (3.71), for any j ∈ [dk], by a simple induction argument (omitted),∥∥Q̂⊗,j· −H⊗Q⊗,j·
∥∥2 = ∥∥(Q̂⊗ −Q⊗H

′
⊗)j·
∥∥2

=
∥∥∥{(Q̂K ⊗ · · · ⊗ Q̂1)− (QKH

′
K ⊗ · · · ⊗Q1H

′
1)
}
j·

∥∥∥2
≤

K∑
k=1

(
max
j∈[dk]

∥∥Q̂k,j· −Ha
kQk,j·

∥∥2 ∏
ℓ∈[K]\{k}

max
j∈[dℓ]

∥∥Q̂ℓ,j·
∥∥2)

= OP

(
max
k∈[K]

{(
T−1d-kd

3αk,1−2αk,rk
k g−2

s +d2g−2
s d

2αk,1−3αk,rk
−2

k +gηd
2αk,1−3αk,rk
k

) ∏
ℓ∈[K]\{k}

d
−αℓ,rℓ
ℓ

})
= OP

{
max
k∈[K]

(
T−1d-kd

3αk,1−αk,rk
k g−2

s g−1
w + d2g−2

s g−1
w d

2αk,1−2αk,rk
−2

k + gηg
−1
w d

2αk,1−2αk,rk
k

)}
,

where the second last equality used (3.67) and

∥∥Q̂ℓ,j·
∥∥2 ≤ 2

(∥∥Q̂ℓ,j· −Ha
kQℓ,j·

∥∥2 + ∥∥Ha
ℓQℓ,j·

∥∥2)
= OP

(∥∥Q̂ℓ,j· −Ha
ℓQℓ,j·

∥∥2 + ∥∥Ha
ℓZ

−1/2
ℓ Aℓ,j·

∥∥2)
= OP

{∥∥Q̂ℓ,j· −Ha
ℓQℓ,j·

∥∥2 + ∥∥Ha
ℓ

∥∥2
F
·
(
d
−αℓ,rℓ

/2

ℓ

)2
· 1
}
= OP

(
d
−αℓ,rℓ
ℓ

)
.

Finally it also holds that

∥∥Q̂⊗ −Q⊗H
′
⊗
∥∥2
F
=
∥∥(Q̂K ⊗ · · · ⊗ Q̂1)− (QKH

a′

K ⊗ · · · ⊗Q1H
a′

1 )
∥∥2
F

= O(1) ·
K∑
k=1

∥∥Q̂k −QkH
a′

k

∥∥2
F
= O

(
max
k∈[K]

dk∑
j=1

∥∥Q̂k,j· −Ha
kQk,j·

∥∥2)
= OP

{
max
k∈[K]

(
T−1dd

3αk,1−2αk,rk
k g−2

s + d2g−2
s d

2αk,1−3αk,rk
−1

k + gηd
2αk,1−3αk,rk

+1

k

)}
,

where the second equality could be shown by a simple induction argument using
∥∥Qk

∥∥ = O(1)

(omitted), and the last equality is from (3.67). □

Proof of Theorem 3.2. The equation (3.7) is essentially

f̂Z,t =
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·yt,j

)
=
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·(Q
′
⊗,j·fZ,t + εt,j)

)
=
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·Q
′
⊗,j·fZ,t

)
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+
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·εt,j

)
=
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)
(H′

⊗)
−1fZ,t

+
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·εt,j

)
+
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·(H⊗Q⊗,j· − Q̂⊗,j·)
′
)
(H′

⊗)
−1fZ,t

=: (H′
⊗)

−1fZ,t + ε̃H,t + ε̃t + f̃Z,t, where (3.73)

ε̃H,t :=
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jH⊗Q⊗,j·εt,j

)
,

ε̃t :=
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,j(Q̂⊗,j· −H⊗Q⊗,j·)εt,j

)
,

f̃Z,t :=
( d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

)−1( d∑
j=1

mt,jQ̂⊗,j·(H⊗Q⊗,j· − Q̂⊗,j·)
′
)
(H′

⊗)
−1fZ,t.

Then we have

∥∥∥ d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j· −

d∑
j=1

mt,jH⊗Q⊗,j·Q
′
⊗,j·H

′
⊗

∥∥∥
F

≤
d∑
j=1

∥∥Q̂⊗,j·Q̂
′
⊗,j· −H⊗Q⊗,j·Q

′
⊗,j·H

′
⊗
∥∥
F

≤
d∑
j=1

∥∥Q̂⊗,j· −H⊗Q⊗,j·
∥∥2 + 2

d∑
j=1

∥∥Q̂⊗,j· −H⊗Q⊗,j·
∥∥ · ∥∥H⊗Q⊗,j·

∥∥
= OP

(∥∥Q̂⊗ −Q⊗H
′
⊗
∥∥2
F
+
∥∥Q̂⊗ −Q⊗H

′
⊗
∥∥
F

)
= OP

{
max
k∈[K]

(
T−1dd

3αk,1−2αk,rk
k g−2

s + d2g−2
s d

2αk,1−3αk,rk
−1

k + gηd
2αk,1−3αk,rk

+1

k

) 1
2
}
= oP (1),

where we used the Cauchy–Schwarz inequality, (3.70) and (3.72) in the last equality, and As-
sumption (R1). Hence we have

d∑
j=1

mt,jQ̂⊗,j·Q̂
′
⊗,j·

p−→
d∑
j=1

mt,jH⊗Q⊗,j·Q
′
⊗,j·H

′
⊗. (3.74)
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Note that by (3.51) we have ∥H−1
⊗ ∥F = OP (1) · ∥Q′

KQ̂K ⊗· · ·⊗Q′
1Q̂1∥ = OP (1), which will

be used later in the proof. To bound fZ,t, from Assumption (F1), we have

E∥ft∥2 = r = O(1),

and hence with Assumption (L1),

∥fZ,t∥2 ≤ ∥Z1/2
⊗ ∥2F · ∥ft∥2 = OP

(
K∏
j=1

d
αj,1

j

)
= OP (gs).

With (3.72), (3.74) and the above result,

∥f̃Z,t∥2 = OP (1) ·
( d∑
j=1

∥∥Q̂⊗,j·
∥∥2)( d∑

j=1

∥∥H⊗Q⊗,j· − Q̂⊗,j·
∥∥2)

·
∥∥(ΣA,K ⊗ · · · ⊗ΣA,1)

−1
∥∥2
F
·
∥∥H−1

⊗
∥∥6
F
· ∥fZ,t∥2

= OP

{
max
k∈[K]

(
T−1dd

3αk,1−2αk,rk
k g−1

s + d2g−1
s d

2αk,1−3αk,rk
−1

k + gηgsd
2αk,1−3αk,rk

+1

k

)}
,

(3.75)

where we also used Assumption (L1) in the last equality. Similarly, by (3.71),

∥ε̃t∥2=OP

(∥∥(ΣA,K⊗. . .⊗ΣA,1)
−1
∥∥2
F
∥H−1

⊗ ∥4F max
j∈[d]

∥∥H⊗Q⊗,j· − Q̂⊗,j·
∥∥2 d∑

j,ℓ=1

|Eεt,jεt,ℓ|
)

=OP

{
max
k∈[K]

(
T−1dd-kd

3αk,1−αk,rk
k g−2

s g−1
w +d3g−2

s g−1
w d

2αk,1−2αk,rk
−2

k +dgηg
−1
w d

2αk,1−2αk,rk
k

)}
,

(3.76)

since
∑d

j,ℓ=1 |Eεt,jεt,ℓ| = O(d) by Assumption (E1). By the same token,

∥ε̃H,t∥2 = OP (1) ·
∥∥(ΣA,K ⊗ · · · ⊗ΣA,1)

−1
∥∥2
F
· ∥H−1

⊗ ∥2F

·
∥∥Z−1/2

⊗
∥∥2
F
·
∥∥∥ d∑
j=1

mt,jA⊗,j·εt,j

∥∥∥2 = OP (d/gw),
(3.77)

where we used

E

∥∥∥ d∑
j=1

mt,jA⊗,j·ϵt,j

∥∥∥2 ≤ max
j∈[d]

∥∥A⊗,j·
∥∥2
F
·

d∑
j,ℓ=1

∣∣Eϵt,jϵt,ℓ∣∣ = O(d).
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Therefore, we have from (3.75), (3.77) and (3.76),

∥∥f̂Z,t − (H′
⊗)

−1fZ,t
∥∥2 ≤ ∥ε̃H,t∥2 + ∥ε̃t∥2 + ∥f̃Z,t∥2

= OP

{
max
k∈[K]

(
T−1dd

3αk,1−2αk,rk
k g−1

s + d2g−1
s d

2αk,1−3αk,rk
−1

k + gηgsd
2αk,1−3αk,rk

+1

k

)
+

d

gw

}
,

where we also used 1/2 < αk,rk ≤ αk,1 ≤ 1 from Assumption (L1) to conclude that dg−1
s g−1

w =

o(1), so that in fact ∥ε̃t∥2 = oP
(
∥f̃Z,t

∥∥2).
Now from (3.73) and using the notations in (3.66), we can obtain the vectorised imputed

values, which are the vectorised estimated common components, as ĉt = Q̂⊗f̂Z,t for any t ∈
[T ]. Then for j ∈ [d], we have the squared individual imputation error as

(Ĉt,i1,...,iK − Ct,i1,...,iK )2 = (ĉt − ct)
2
j =

(
Q̂′

⊗,j·f̂Z,t −Q′
⊗,j·fZ,t

)2
=
{(

Q̂⊗,j· −H⊗Q⊗,j·
)′(

(H′
⊗)

−1fZ,t+ ε̃H,t+ ε̃t+ f̃Z,t
)
+A′

⊗,j·Z
−1/2
⊗ H′

⊗
(
ε̃H,t+ ε̃t+ f̃Z,t

)}2
= OP

{
max
k∈[K]

(
T−1dd

3αk,1−2αk,rk
k g−1

s g−1
w

+ d2g−1
s g−1

w d
2αk,1−3αk,rk

−1

k + gηgsg
−1
w d

2αk,1−3αk,rk
+1

k

)
+

d

g2w

}
,

where we used (3.71), (3.72) and Assumption (R1) in the last equality.
Lastly, we have the average imputation error as the following,

1

Td

T∑
t=1

d1,...,dK∑
i1,...,iK=1

(Ĉt,i1,...,iK − Ct,i1,...,iK )2

=
1

Td

T∑
t=1

∥ĉt − ct∥2 =
1

Td

T∑
t=1

∥∥Q̂⊗f̂Z,t −Q⊗fZ,t
∥∥2

=
1

Td

T∑
t=1

∥∥∥(Q̂⊗ −Q⊗H
′
⊗
)
(H′

⊗)
−1fZ,t + Q̂⊗

(
ε̃H,t + ε̃t + f̃Z,t

)∥∥∥2
= OP

{
max
k∈[K]

(
T−1d

3αk,1−2αk,rk
k g−1

s + dg−1
s d

2αk,1−3αk,rk
−1

k + d−1gηgsd
2αk,1−3αk,rk

+1

k

)
+

1

gw

}
,

(3.78)

where we used (3.75), (3.77), (3.76) and Lemma 3.6 in the last equality, and the fact that
∥Q̂⊗∥2F = r = O(1). This completes the proof of Theorem 3.2. □

Proof of Corollary 3.1. It is direct from Theorem 3.1 and Theorem 3.2. □

Proof of Theorem 3.5. Firstly, we use the notations in (3.19), and define also Z := Zk and
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R∗ := R∗
k, which coincides with the R∗ defined in (3.37). Then for j ∈ [rk],

λj(R
∗) = λj

( 1
T

T∑
t=1

QFZ,tΛ
′ΛF′

Z,tQ
′
)

= λj

( 1
T

T∑
t=1

AkFt

[
⊗j∈[K]\{k} Aj

]′[⊗j∈[K]\{k} Aj

]
F′
tA

′
k

)
= λj

(
A′
kAk ·

1

T

T∑
t=1

Ft[⊗ℓ∈[K]\{k}Aℓ]
′[⊗ℓ∈[K]\{k}Aℓ]F

′
t

)
≍P λj

(
A′
kAk · tr(⊗ℓ∈[K]\{k}A

′
ℓAℓ)

)
= λj(A

′
kAk)

∏
ℓ∈[K]\{k}

tr(A′
ℓAℓ)

≍ λj(ZQ
′Q)

∏
ℓ∈[K]\{k}

rk∑
i=1

d
αℓ,i

ℓ ≍ λj
(
Σ

1/2
A,kZΣ

1/2
A,k

)
·
∏

ℓ∈[K]\{k}

d
αℓ,1

ℓ

≍ λj(Z)d
−αk,1

k gs ≍ gsd
αk,j−αk,1

k , (3.79)

where the third line uses Assumption (F1), and Assumption (L1) in the second last line. The
last line uses Theorem 1 of Ostrowski (1959) on the eigenvalues of a congruent transformation
Σ

1/2
A,kZΣ

1/2
A,k of Z, and from Assumption (L1) that ΣA,k has eigenvalues uniformly bounded

away from 0 and infinity.
Since Ŝ = R∗ + (Ŝ−R∗), for j ∈ [rk], we have by Weyl’s inequality that

|λj(Ŝ)− λj(R∗)| ≤
∥∥Ŝ−R∗∥∥ ≤ ∥∥R̃−R∗∥∥+ ∥∥R1

∥∥+ ∥∥R2

∥∥+ ∥∥R3

∥∥
≤ ωk

(
sup
∥γ∥=1

|R̃(γ)−R∗(γ)|+ sup
∥γ∥=1

R1 + sup
∥γ∥=1

R2 + sup
∥γ∥=1

R3

)
= oP (ωk), (3.80)

where we use the decomposition in (3.37) in the first line, and ωk := gsd
αk,rk

−αk,1

k is defined at
the beginning of the proof of Lemma 3.2. The second line uses R̃(γ), R∗(γ), R1, R2 and R3

defined in (3.38), and the convergence in probability in (3.42) and (3.47).
Secondly, with Assumption (R1) and our choice of ξ (see also (3.40)),

ξ/ωk ≍ dg−1
s d

αk,1−αk,rk
k [(Td-k)

−1/2 + d
−1/2
k ] = o(1). (3.81)

For rk > 1, if j ∈ [rk − 1], using (3.80) and (3.81), consider

λj+1(Ŝ) + ξ

λj(Ŝ) + ξ
≤ λj+1(R

∗) + ξ + |λj+1(Ŝ)− λj+1(R
∗)|

λj(R∗) + ξ − |λj(Ŝ)− λj(R∗)|
=
λj+1(R

∗) + oP (ωk)

λj(R∗) + oP (ωk)

=
λj+1(R

∗)

λj(R∗)
(1 + oP (1)) ≍P dαk,j+1−αk,j

k , (3.82)
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where the last line uses (3.79). Also, for j ∈ [rk − 1],

λrk+1(Ŝ) + ξ

λrk(Ŝ) + ξ
=

λrk+1(Ŝ) + ξ

ωk(1 + oP (1))
= OP

Å
λrk+1(Ŝ)

ωk
+

ξ

ωk

ã
(3.83)

= OP

(
sup
∥γ∥=1

(R̃(γ)−R∗(γ) +R1 +R2 +R3) + ξ/ωk

)
= OP (ξ/ωk) = oP (d

αk,j+1−αk,j

k ), (3.84)

where the second last equality uses (3.40), (3.41) and (3.47) together with our choice of ξ, and
the last equality uses the extra rate assumption in the statement of the theorem. In the third
equality, we assume the following is true (to be shown at the end of this proof):

λj(Ŝ) = λj((R̃−R∗) +R1 +R2 +R3), j = rk + 1, . . . , dk, (3.85)

so that

λj(Ŝ)

ωk
= λj

( 1

ωk
((R̃−R∗)+R1+R2+R3)

)
≤ sup

∥γ∥=1

((R̃(γ)−R∗(γ)) +R1 +R2 +R3).

Hence for j = rk + 1, . . . , ⌊dk/2⌋ (true also for rk = 1),

λj+1(Ŝ) + ξ

λj(Ŝ) + ξ
≥ ξ/ωk

sup∥γ∥=1((R̃(γ)−R∗(γ)) +R1 +R2 +R3) + ξ/ωk
≥ 1

C
(3.86)

in probability for some generic constant C > 0, where the last inequality uses (3.40), (3.41)
and (3.47) together with our choice of ξ. Combining (3.82), (3.84) and (3.86), we can easily
see that our proposed r̂k is a consistent estimator for rk.

If rk = 1, then (3.84) becomes

λrk+1(Ŝ) + ξ

λrk(Ŝ) + ξ
= OP (ξ/ωk) = oP (1).

When combined with (3.86) which is true also for rk = 1, we can see that r̂k = 1 in probability,
showing that r̂k is a consistent estimator of rk.

It remains to show (3.85). To this end, from (3.79) and (3.80), the first rk eigenvalues of
Ŝ coincides with those of R∗ asymptotically, so that the first rk eigenvectors corresponding to
Ŝ coincides with those for R∗ asymptotically as T, dk → ∞, which are necessarily in N⊥ :=

Span(Q), the linear span of the columns of Q (see (3.13), where R∗ is sandwiched by Q and
Q′). This means that the (rk + 1)-th largest eigenvalue of Ŝ and beyond will asymptotically
have eigenvectors inN , the orthogonal complement ofN⊥. Then for any unit vectors γ ∈ N ,
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we have from the definitions of R∗, R̃. R1, R2 and R3 in (3.38) that

γ ′Ŝγ = γ ′(R∗ + (R̃−R∗) +R1 +R2 +R3

)
γ = γ ′((R̃−R∗) +R1 +R2 +R3

)
γ,

which is equivalent to (3.85). This completes the proof of the theorem. □

Proof of Proposition 3.1. For simplicity, first consider the scenario with conditions 1 and
2 satisfied. We can show stable convergence in law similar to Proposition 3.1 in Xiong and
Pelger (2023). First, using Assumption (F1) we can write»

Td
αk,rk
k ·D−1Ha,∗

k

dk∑
i=1

Qk,i·A
′
k,i·

d-k∑
h=1

∆F,k,ij,hAk,j·

=
T∑
t=1

 
d
αk,rk
k

T
·
dk∑
i=1

d-k∑
h=1

(
T · 1{t ∈ ψk,ij,h}

|ψk,ij,h|
− 1

)
·D−1Ha,∗

k Qk,i·A
′
k,i·
(
matk(Ft)vk,hv′

k,hmatk(Ft)′ − v′
k,hvk,hΣk

)
Ak,j·.

Define the filtration GT := σ(∪Ts=1Gs) where the sigma-algebra Gs := σ({Mt,i1,...,iK | t ≤
s},A1, . . . ,AK). Let u ∈ Rrk be a non-random unit vector. For a given k ∈ [K], j ∈ [dk],
define also the random variable

gk,j,t := u′

 
d
αk,rk
k

T
·
dk∑
i=1

d-k∑
h=1

(T · 1{t ∈ ψk,ij,h}
|ψk,ij,h|

− 1
)

·D−1Ha,∗
k Qk,i·A

′
k,i·(matk(Ft)vk,hv′

k,hmatk(Ft)′ − v′
k,hvk,hΣk)Ak,j·.

Since each entry in Ft is i.i.d. by Assumption (F1) and is independent of (Mt,A1, . . . ,AK)

by Assumptions (O1) and (L1), we have E[gk,j,t | Gt−1] = 0. Define

ΞF,k := Var
{

vec
(
matk(Ft)A′

-kA-kmatk(Ft)′ − tr(A-kA
′
-k)Σk

)}
,

xF,k,j,il := vec
(
[A′

k,j· ⊗ (D−1Ha,∗
k Qk,i·A

′
k,i·)]ΞF,k[A

′
k,j· ⊗ (D−1Ha,∗

k Qk,l·A
′
k,l·)]

′),
so that we have

∥∥xF,k,j,il∥∥2 ≤ ∥∥ΞF,k

∥∥2
F
·
∥∥D−1

∥∥4
F
·
∥∥Z−1/2

k

∥∥4
F

= OP

(
d
4αk,1−6αk,rk
k

K∏
j=1

d
−4αj,1

j

∏
j∈[K]\{k}

d
4αj,1

j

)
= OP

(
d
−6αk,rk
k

)
,
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leading to

d
αk,rk
k E

∥∥∥∥ dk∑
i=1

dk∑
l=1

Å
T · 1{t ∈ ψk,ij}

|ψk,ij|
− 1

ãÅ
T · 1{t ∈ ψk,lj}

|ψk,lj|
− 1

ã(
xF,k,j,il −E[xF,k,j,il]

)∥∥∥∥2
= OP

(
d
4−5αk,rk
k

)
= oP (1).

Hence, it holds that

T∑
t=1

E
[
g2k,j,t | Gt−1

]
=
d
αk,rk
k

T
·

T∑
t=1

E

{
u′

dk∑
i=1

dk∑
l=1

(T · 1{t ∈ ψk,ij}
|ψk,ij|

− 1
)(T · 1{t ∈ ψk,lj}

|ψk,lj|
− 1
)

·D−1Ha,∗
k

[
A′
k,j· ⊗ (Qk,i·A

′
k,i·)
]
vec
(
matk(Ft)A′

-kA-kmatk(Ft)′ − tr(A-kA
′
-k)Σk

)
· vec

(
matk(Ft)A′

-kA-kmatk(Ft)′ − tr(A-kA
′
-k)Σk

)′
·
[
A′
k,j· ⊗ (Qk,l·A

′
k,l·)
]′
(Ha,∗

k )′D−1u | Gt−1

}
p−→ d

2+αk,rk
k · lim

dk→∞

1

d2k

dk∑
i=1

dk∑
l=1

(T · 1{t ∈ ψk,ij}
|ψk,ij|

− 1
)(T · 1{t ∈ ψk,lj}

|ψk,lj|
− 1
)

· u′D−1Ha,∗
k

[
A′
k,j· ⊗ (Q′

kAk)
]
ΞF,k

[
A′
k,j· ⊗ (Q′

kAk)
]′
(Ha,∗

k )′D−1u
p−→ d

2+αk,rk
k ωψ,k,j · u′D−1Ha,∗

k

[
A′
k,j· ⊗ (Q′

kAk)
]
ΞF,k

[
A′
k,j· ⊗ (Q′

kAk)
]′
(Ha,∗

k )′D−1u,

which satisfies the nesting condition of Theorem 6.1 in Häusler and Luschgy (2015). From
Assumption (O1), we have |(T · 1{t ∈ ψk,ij,h}/|ψk,ij,h|)− 1| ≤ max(ψ−1

0 − 1, 1). Hence with
ϵ from Proposition 3.1, we have

T∑
t=1

E
[
g2+ϵk,j,t | Gt−1

]
≤ ∥Ak,j·∥2+ϵ · d

αk,rk
(1+ϵ/2)

k T−(1+ϵ/2) ·
∥∥D−1Ha,∗

k

∥∥2+ϵ T∑
t=1

∥∥∥ dk∑
i=1

d-k∑
h=1

(T · 1{t ∈ ψk,ij,h}
|ψk,ij,h|

− 1
)

·Qk,i·A
′
k,i·

{
matk(Ft)vk,hv′

k,hmatk(Ft)′ − v′
k,hvk,hΣk

}∥∥∥2+ϵ
= OP

{
(d
αk,1−αk,rk
k g−1

s )2+ϵ · d
αk,rk

(1+ϵ/2)

k

T ϵ/2
· d−αk,rk

(1+ϵ/2)

k g2+ϵs

}
= OP

(dαk,1−αk,rk
k

T ϵ/2

)
= oP (1),

which is sufficient for the conditional Lindeberg condition in Häusler and Luschgy (2015) to
hold. Then by the stable martingale central limit theorem (Theorem 6.1 in Häusler and Luschgy
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(2015)), we have

T∑
t=1

gk,j,t → N
(
0,D−1Ha,∗

k

[
hk,j(Ak,j·)

]
(Ha,∗

k )′D−1
)
GT -stably as T →∞,

where hk,j(Ak,j·) = d
2+αk,rk
k ωψ,k,j ·

[
A′
k,j· ⊗ (Q′

kAk)
]
ΞF,k

[
A′
k,j· ⊗ (Q′

kAk)
]′.

When condition 2 is relaxed, all the previous steps can be repeated by noticing that we now
have |ψk,ij,h| p−→ c∗k,ij for some constant c∗k,ij , and there exists some constant p∗k,ij such that as
T, d1, . . . , dK →∞,

d-k∑
h=1

(T · 1{t ∈ ψk,ij,h}
|ψk,ij,h|

− 1
)
(matk(Ft)vk,hv′

k,hmatk(Ft)′ − v′
k,hvk,hΣk)

p−→
(Tp∗k,ij
c∗k,ij

− 1
){

matk(Ft)A′
-kA-kmatk(Ft)′ − tr(A-kA

′
-k)Σk

}
,

with ω∗
ψ,k,j := d−2

k

∑dk
i=1

∑dk
l=1(Tp

∗
k,ij/c

∗
k,ij − 1)(Tp∗k,lj/c

∗
k,lj − 1). Then the convergence of∑T

t=1E[g
2
k,j,t | Gt−1] can be similarly constructed, etc. This completes the proof of Proposi-

tion 3.1. □
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Chapter 4

On Testing Kronecker Product Structure
in Tensor Factor Models

4.1 Introduction

With rapid advance in information technology, high-dimensional time series data observed in
tensor form are becoming more readily available for analysis in fields such as finance, eco-
nomics, bioinformatics or computer science, to name but a few areas. In many cases, low-
rank structures in the tensor time series observed can be exploited, facilitating analysis and
interpretations. The most commonly used devices are the CP-decomposition and the multilin-
ear/Tucker decomposition of a tensor, leading to CP-decomposition tensor factor models and
Tucker-decomposition tensor factor models, respectively. See Section 2.3 for a review on factor
models. While tensor time series can be transformed back to vector time series through vectori-
sation and be analysed using traditional factor models for vector time series, the tensor structure
of the data is lost and hence any corresponding interpretations from it. Moreover, vectorisation
increases the dimension of the factor loading matrix significantly relative to the sample size,
leading potentially to less accurate estimation and inferences (Chen and Lam, 2024b).

However, a tensor factor model comes with its assumptions. For using the Tucker decom-
position in particular, a tensor factor model assumes that the factor loading matrix for the vec-
torised data is the Kronecker product of smaller dimensional factor loading matrices. For in-
stance, suppose at each t ∈ [T ], a mean-zero matrix Yt ∈ Rd1×d2 is observed. Consider a
matrix factor model of the form

Yt = A1FtA
′
2 + Et, (4.1)

where Ft ∈ Rr1×r2 is the core factor, Ak ∈ Rdk×rk is the mode-k factor loading matrix, i.e.,
A1 and A2 are respectively the row and column loading matrices, and Et is the noise matrix.

93



94 Chapter 4. On Testing Kronecker Product Structure in Tensor Factor Models

The vectorisation of (4.1) is

vec(Yt) = (A2 ⊗A1) vec(Ft) + vec(Et) ≡ AV vec(Ft) + vec(Et), (4.2)

where AV := A2⊗A1, which is a vector factor model for the time series data {vec(Yt)} with
factor loading matrix AV . Clearly, the implicit assumption of a Kronecker product structure
for AV when using a matrix factor model for matrix-valued time series data should be the first
thing to check before such a factor model is applied.

Motivated by this simple example, we propose a test in this chapter to test the Kronecker
product structure of the factor loading matrix implied in the vectorised data when using a
Tucker-decomposition tensor factor model (TFM), and extend it to higher order tensors. He
et al. (2023a) has also noted this implicit assumption in a Tucker-decomposition matrix factor
model, and proposes to test the “boundary” cases of each column (resp. row) of the data fol-
lowing a factor model with a common factor loading matrix, but with possibly distinct factors,
or the whole matrix is just pure noise. Model (4.2) with a general AV also implies a vector fac-
tor model with potentially different factor loading matrices for each column (resp. row) of the
data, but they share the same factors. To explore the data as a matrix, connectedness through
having a set of shared common factors rather than having the same factor loading matrix with
all distinct factors is more meaningful. Practically, (4.2) is an alternative model easier to be
satisfied by data than the “boundary” cases in He et al. (2023a), since the data still follows a
more general factor model, just the implied Kronecker product structure in the factor loading
matrix AV is lost. This comes as no surprise then, that in all of the tests in He et al. (2023a)
for their real data analyses, they cannot reject the null hypothesis of a matrix factor model. An
easier alternative such as (4.2) with just a general AV can provide a more critical test for the
null hypothesis of a matrix factor model. See our portfolio return example in Section 4.5.2 for
cases where our test can reject the null hypothesis of a matrix factor model, when He et al.
(2023a) cannot.

We also stress that our model is fundamentally different from those used in testing for Kro-
necker product structure in the covariance matrix of the data. For example, Yu et al. (2022b)
and Guggenberger et al. (2023) both propose tests for the Kronecker product structure of the
covariance matrix of a vectorised matrix data. For model (4.1), even in the simplest hypotheti-
cal case of Et and Ft being independent and Ft contains independent standard normal random
variables, we have

Cov{vec(Yt)} = A2A
′
2 ⊗A1A

′
1 + Cov{vec(Et)},

so that the covariance matrix is never exactly of Kronecker product structure because of Et.
Moreover, even with Et = 0, both A1A

′
1 and A2A

′
2 are of low rank, which is different from
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the full rank component matrices in the two papers mentioned above.
Our contributions in this chapter are threefold. Firstly, as a first in the literature, we propose

a test to test directly a Tucker-decomposition TFM against the alternative of a (tensor) factor
model with Kronecker product structure lost in some of its factor loading matrices. As shown
in Section 4.3, for higher order tensors, testing against a tensor-decomposition TFM can be
against a tensor factor model for the reshaped data, but not necessarily the vectorised data.
This gives rise to flexibility and in fact statistical power in practical situations. Secondly, our
analysis allows for weak factors, with our theoretical results developed to spell out rates of
convergence explicitly. Last but not least, as a useful by-product, we developed tensor reshape
theorems which can be useful in their own rights.

The rest of this chapter is organised as follows. Section 4.2 defines the tensor reshape opera-
tion used for our tests. Section 4.3 introduces the Kronecker product structure set and pinpoints
exactly through a theorem when a tensor time series {Yt} follows a Tucker-decomposition TFM.
This becomes the basis for the construction of our test statistics. Section 4.4 lays down all the
assumptions for this chapter, and presents the main theoretical results for our test statistics to
be valid. Section 4.5 presents our simulation results and two sets of real data analyses. Finally,
Section 4.6 provides details for model identification. Both our test and the tensor reshape op-
erator can be implemented by the R package KOFM, available on R CRAN. Section 4.7 includes
all the proofs. Hereafter in this chapter, we use the following definition

d :=
K∏
k=1

dk, d-k := d/dk, r :=
K∏
k=1

rk, r-k := r/rk.

4.2 Introduction to Tensor Reshape

In this section, we introduce tensor reshape. Given an order-K tensor X ∈ RI1×···×IK and a
set with ordered, strictly ascending elements {a1, . . . , aℓ} ⊆ [K], the reshape(·, ·) operator is
defined as follows:

If ℓ = 1, reshape(X , {a1}) = foldK
{

mata1(X ), {I1, . . . , Ia1−1, Ia1+1, . . . , IK , Ia1}
}
;

if ℓ = 2, reshape(X , {a1, a2})
= foldK−1(Xa1∼a2 , {I1, . . . , Ia1−1, Ia1+1, . . . , Ia2−1, Ia2+1, . . . , IK , Ia1Ia2}),

where Xa1∼a2 =

Ö
mata1

[
fold{mata2(X )1·, {I1, . . . , Ia2−1, Ia2+1, . . . , IK}}

]
. . .

mata1
[
fold

{
mata2(X )Ia2 ·, {I1, . . . , Ia2−1, Ia2+1, . . . , IK}

}]
è

;

if ℓ ≥ 3, reshape(X , {a1, . . . , aℓ})
= reshape

{
reshape(X , {aℓ−1, aℓ}), {a1, . . . , aℓ−2, K − 1}

}
.
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Hence, reshaping an order-K tensor along {a1, . . . , aℓ} results in an order-(K − ℓ+ 1) tensor.
A heuristic view of reshape(X , {a1, . . . , aℓ}) is that all modes of X with indices {a1, . . . , aℓ}
are “merged” into a single mode acting as the last mode as a result. Note that one may recover
X from reshape(X , {a1, . . . , aℓ}) given the original dimension ofX and {a1, . . . , aℓ}. To help
readers to understand the reshape operator, we also present Figure 4.1 as an visualization.

As a simple example on tensor reshape, consider a matrix X ∈ RI1×I2 . Trivially, we have

reshape(X, {2}) = X, reshape(X, {1}) = X′.

Moreover, reshape(X, {1, 2}) = fold1(X1∼2, {I1I2}) = X1∼2 = vec(X) since

X1∼2 =

Ö
mat1

[
fold

{
mat2(X)1·, {I1}

}]
. . .

mat1
[
fold

{
mat2(X)I2·, {I1}

}]
è

=

Ö
(X′)1·

. . .

(X′)I2·

è
= vec(X).

In fact, it holds for any order-K tensor X that reshape(X , [K]) = vec(X ).
We discuss some useful algebra of tensor reshape in the following. First, the reshape oper-

ator is linear in the first argument, i.e.,

reshape(b1X1 + b2X2, {a1, . . . , aℓ})
= b1 · reshape(X1, {a1, . . . , aℓ}) + b2 · reshape(X2, {a1, . . . , aℓ}).

Moreover, for two sets {a1, . . . , aℓ}, {b1, . . . , bg} such that aℓ < b1 (i.e., all elements in the first
set are less than those in the second), it holds that

reshape(X , {a1, . . . , aℓ, b1, . . . , bg})
= reshape

{
reshape(X , {b1, . . . , bg}), {a1, . . . , aℓ, K − g + 1}

}
,

where {a1, . . . , aℓ, K − g + 1} is indeed strictly ascending since

aℓ ≤ b1 − 1 ≤ bg − (g − 1)− 1 = bg − g ≤ K − g.

4.3 A Factor Model and Kronecker Product Structure Test

4.3.1 Factor models and Kronecker product structure

This subsection introduces the concept of factor models with Kronecker product structure and
lays down the technical details for the testing problem. For an integral reading experience,
readers can go straight to Section 4.3.2 where equations and terms can be referred back to
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X ∈ Rd1×d2×d3×d4

Mode 2

Mode 1

Mode 3
Mode 4

d4

d1d2d3

mat4(X )

Mode-4 unfolding

d3

d3d4

d1d2

X3∼4

Each row: fold and
mode-3 unfolding

reshape(X , {3, 4}) ∈ Rd1×d2×(d3d4)

Mode 2

Mode 1

Merged mode (3,4)

Fold

d2

d2d3d4

d1

[reshape(X , {3, 4})]2∼3

Each row: fold and
mode-2 unfolding

reshape(X , {2, 3, 4}) ∈ Rd1×(d2d3d4)

Fold (transpose
in this case)

d1d2d3d4

[reshape(X , {2, 3, 4})]1∼2

Each row: as a
vector and stack

reshape(X , {1, 2, 3, 4}) ∈ Rd1d2d3d4

Figure 4.1: Illustration of the reshape operator for an order-4 tensor X along A. The last step
in the reshape with A = {3, 4}, {2, 3, 4}, and {1, 2, 3, 4}, are respectively denoted by green,
blue, and red arrows.
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Section 4.3.1 whenever necessary. We begin by introducing the Kronecker product structure
set which facilitates description of our models.

Definition 4.1 (Kronecker product structure set). Given an ordered set of positive integers
{b1, . . . , bκ}, the Kronecker product structure set is defined as

Kb1×···×bκ :=
{
A |A = Aκ ⊗ · · · ⊗A1

with Aj ∈ Rbj×uj of finite rank uj ≤ bj, ∥Aj,·i∥2 ≍ b
δj,i
j , δj,i ∈ (0, 1]

}
.

The Kronecker product structure set defined by Definition 4.1 characterises the factor load-
ing matrix, and requiring δj,i > 0 is to ensure certain factor strength in each loading matrix.
See Assumptions (L1) and (L2) in Section 4.4.1 for the technical details. The form of factor
models is depicted below, with the feature of Kronecker product structure.

Definition 4.2 (Factor models and Kronecker product structure). Given a series of mean-zero
order-K tensors Yt ∈ R

d1×···×dK for t ∈ [T ] and a set with ordered, ascending elements
A = {a1, . . . , aℓ} ⊆ [K], we say {Yt} follows a factor model along A if for t ∈ [T ],

reshape(Yt,A) = Creshape,t + Ereshape,t = Freshape,t ×K−ℓ+1
j=1 Areshape,j + Ereshape,t, (4.3)

where reshape(Yt,A) ∈ Rp1×···×pK−ℓ+1 (for some p1, . . . , pK−ℓ+1) is the order-(K − ℓ + 1)

tensor by reshaping Yt along A, the common component Creshape,t consists of the core factor
Freshape,t ∈ Rπ1×···×πK−ℓ+1 and loading matrices Areshape,j ∈ Rpj×πj with finite rank πj ≤ pj

for j ∈ [K − ℓ+ 1], and Ereshape,t is the noise. We further make the following classifications.

1. {Yt} has a Kronecker product structure if Areshape,K−ℓ+1 ∈ Kda1×···×daℓ ;

2. {Yt} has no Kronecker product structure along A if Areshape,K−ℓ+1 /∈ Kda1×···×daℓ .

Definition 4.2 formally defines the form of factor models considered in this chapter. A key
information lying in Definition 4.2.1 is that if the Kronecker product structure holds along some
A, the structure holds along any A; see the discussion below Theorem 4.1 for details. Note
that if ℓ = 1 in Definition 4.2, i.e.,A contains only one element (representing the mode index),
for each order-K tensor Yt, reshape(Yt, {a1}) is the order-K tensor constructed from Yt by
treating mode-a1 as mode-K. Hence, the factor model of Yt along {a1} returns to a Tucker-
decomposition TFM (Chen et al., 2022a; Barigozzi et al., 2023b) of Yt with mode indices
changed. For instance, we may read (4.3) along A = {K} as

Yt = Creshape,t + Ereshape,t = Freshape,t ×1 Areshape,1 ×2 · · · ×K Areshape,K + Ereshape,t.



4.3. A Factor Model and Kronecker Product Structure Test 99

Hence Definition 4.2.1 automatically describes {Yt} if ℓ = 1, implying that Kronecker product
structure is only non-trivial for ℓ ≥ 2 (hence K ≥ 2). To demystify Definition 4.2.1, we next
present Theorem 4.1 which, as a first in the literature, spells out the equivalence of Tucker-
decomposition TFM under tensor reshape.

Theorem 4.1 (Tensor Reshape Theorem I). With the notations in Definition 4.2, {Yt} following
(4.3) along any givenA = {a1, . . . , aℓ} ⊆ [K]with a Kronecker product structure is equivalent
to {Yt} following a Tucker-decomposition factor model such that

Yt = Ct + Et = Ft ×1 A1 ×2 · · · ×K AK + Et, (4.4)

where Ct is the common component, Ft ∈ Rr1×···×rK is the core factor, each Ak ∈ Rdk×rk is
the mode-k loading matrix, and Et is the noise. More importantly, with A∗ := [K] \ A,

Freshape,t = reshape(Ft,A), Ereshape,t = reshape(Et,A),
Areshape,K−ℓ+1 = ⊗i∈AAi, Areshape,j = AA∗

j
for j ∈ [K − ℓ].

Moreover, the model (4.4) uniquely determines parameters in (4.3), and (4.3) determines those
in (4.4) up to an arbitrary set {Ai}i∈A.

Theorem 4.1 reveals that a factor model on {Yt} with Kronecker product structure in Def-
inition 4.2 is in fact a Tucker-decomposition TFM on {Yt}. This forms the foundation for the
hypothesis test design later. The identification of (4.3) and (4.4) are relegated to Section 4.6.

Remark 4.1 Both (4.3) and (4.4) are based on a Tucker decomposition for the observed tensor.
Other tensor decompositions are possible, such as the CP decomposition (Kolda and Bader,
2009) and the Low Separation Rank (LSR) decomposition (Taki et al., 2024), etc. As CP de-
composition is a special Tucker decomposition, our defined factor model is more general. The
LSR decomposition is generalised further from Tucker decomposition, but the structure is less
helpful here and brings in unnecessary complication due to the arbitrary separation rank.

4.3.2 A test on Kronecker product structure

The testing problem on Kronecker product structure is formally defined in this subsection, with
an example on an order-2 tensor (i.e., a matrix) time series given at the end. For each t ∈ [T ],
we observe a mean-zero order-K tensor Yt ∈ Rd1×···×dK with K ≥ 2 (otherwise the test is
trivial as explained in Section 4.3.1). Without loss of generality, let v < K be a given positive
integer and denote A = {v, v + 1, . . . , K − 1, K} which contains the mode indices along
which the Kronecker product structure might be lost; see the alternative hypothesis H1 below.
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Suppose {Yt} follows a factor model alongA as in Definition 4.2, with notations therein except
that we now read (4.3) as

reshape(Yt,A) = Creshape,t + Ereshape,t = Freshape,t ×v−1
j=1 Aj ×v AV + Ereshape,t, (4.5)

where Aj ∈ R
dj×rj for j ∈ [v − 1] (if v > 1) and AV ∈ R

dV ×rV with dV :=
∏K

i=v di.
Essentially, the order-v tensor reshape(Yt,A) follows a Tucker-decomposition TFM. The set
{r1, . . . , rv−1, rV } is assumed known and any consistent estimators (e.g. Han et al., 2022; Chen
and Lam, 2024b) can be used in practice. WithKdv×···×dK defined in Definition 4.1, we consider
a hypothesis test as follows:

H0 : {Yt} has a Kronecker product structure, i.e., AV ∈ Kdv×···×dK ;

H1 : {Yt} has no Kronecker product structure along A, i.e., AV /∈ Kdv×···×dK .
(4.6)

Besides the complexity of being a composite testing problem, the difficulty of (4.6) is ele-
vated by the fact that Yt under the alternative has no explicit form without reshaping along A.
Fortunately, the factor structure in (4.5) is stable under both hypotheses. That is, the estimation
of {Freshape,t,A1, . . . ,Av−1,AV } is always feasible. In particular, thanks to Theorem 4.1, we
have the following under H0:

Yt = Ct + Et = Ft ×1 A1 ×2 · · · ×v−1 Av−1 ×v Av ×v+1 · · · ×K AK + Et, (4.7)

where Ak ∈ Rdk×rk for k ∈ [K] (hence the first v − 1 loading matrices are exactly those in
(4.5)), and that

reshape(Ft,A) = Freshape,t, reshape(Et,A) = Ereshape,t, AK ⊗AK−1 ⊗ · · · ⊗Av = AV .

Example 4.1 Let Yt ∈ Rd1×d2 (t ∈ [T ]) be matrix-valued observations. For the setup, we can
only specifyA = {1, 2} (which is the only non-trivial case here as discussed in Section 4.3.1).
The hypothesis test (4.6) is simplified as follows, with A reflected by the vectorisation:

H0 : Yt = A1FtA
′
2 + Et;

H1 : vec
(
Yt

)
= AV vec

(
Ft

)
+ vec

(
Et

)
, with AV /∈ Kd1×d2 .

4.3.3 Constructing the test statistic

Despite the obscure Kdv×···×dK in (4.6), we may resort to the Tucker-decomposition TFM in
(4.7) under H0. To construct the test, we first obtain estimators for the (standardised) loading
matrices in (4.5). For j ∈ [v− 1], Q̃j is defined as the eigenvector matrix corresponding to the
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rj largest eigenvalues of

1

T

T∑
t=1

reshape(Yt,A)(j) reshape(Yt,A)′(j),

where reshape(Yt,A)(j) represents the mode-j unfolding matrix of reshape(Yt,A). Simi-
larly, Q̃V is the eigenvector matrix corresponding to the rV largest eigenvalues of

1

T

T∑
t=1

reshape(Yt,A)(v) reshape(Yt,A)′(v).

Then Creshape,t and Ereshape,t are respectively estimated by

C̃reshape,t := reshape(Yt,A)×v−1
j=1 (Q̃jQ̃

′
j)×v (Q̃V Q̃

′
V ), (4.8)

Ẽreshape,t := reshape(Yt,A)− C̃reshape,t. (4.9)

For (4.7), Q̂j for j ∈ [v − 1] is defined as the eigenvector matrix corresponding to the rj
largest eigenvalues of T−1

∑T
t=1Yt,(j)Y

′
t,(j). Next, denoteR as the set of all divisor combina-

tions of rV , i.e.,

R :=
{
(π1, π2, . . . , πK−v+1)

∣∣K−v+1∏
j=1

πj = rV with each πj ∈ Z+, πj ≤ dj+v−1

}
. (4.10)

Let the m-th element of R be (πm,1, . . . , πm,K−v+1). Then for i ∈ {v, v + 1, . . . , K}, we
obtain Q̂m,i as the eigenvector matrix corresponding to the πm,i−v+1 largest eigenvalues of
T−1

∑T
t=1Yt,(i)Y

′
t,(i). The common component and residual estimators are hence obtained as

Ĉm,t := Yt ×v−1
j=1 (Q̂jQ̂

′
j)×Ki=v (Q̂m,iQ̂

′
m,i), (4.11)

Êm,t := Yt − Ĉm,t. (4.12)

Let Ẽt be the order-K tensor with the same dimension as Yt such that reshape(Ẽt,A) =

Ẽreshape,t. Define k∗ := argmink∈[K]{dk} and denote the mode-k∗ unfolding of Ẽt and Êm,t
as Ẽt,(k∗) and Êm,t,(k∗), respectively. Theorem 4.2 (in Section 4.4.2) tells us that there exists
m ∈ [|R|] such that for each t ∈ [T ], j ∈ [d/dk∗ ], both

xj,t :=
1

dk∗

dk∗∑
i=1

Ẽ2
t,(k∗),ij, ym,j,t :=

1

dk∗

dk∗∑
i=1

Ê2
m,t,(k∗),ij,

are asymptotically distributed the same under H0, and xj,t in particular is distributed the same
under either H0 or H1. Let Px,j and Py,m,j respectively denote the empirical probability mea-
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sures induced by the empirical cumulative distribution functions for {xj,t}t∈[T ] and {ym,j,t}t∈[T ]:

Fx,j(c) :=
1

T

T∑
t=1

1{xj,t ≤ c}, Fy,m,j(c) :=
1

T

T∑
t=1

1{ym,j,t ≤ c}. (4.13)

Let q̂x,j(α) := inf
{
c | Fx,j(c) ≥ 1 − α

}
. The intuition here is that if H0 is satisfied, then

over different j ∈ [d/dk∗ ], the cumulative distribution functions Fx,j(·) and Fy,m,j(·) should
be similar. However, if H1 is true, then we expect the residuals in Êm,t,(k∗) to be inflated, so
that Py,m,j{ym,j,t ≥ q̂x,j(α)} is expected to be larger than α; see the theoretical statement in
Theorem 4.3. To incorporate it across different j ∈ [d/dk∗ ], we compare the 5% quantile of
T−1

∑T
t=1 1{ym,j,t ≥ q̂x,j(α)} over j ∈ [d/dk∗ ] to α, and expect it to be larger than α underH1.

Since with the wrong number of factors, a particular m ∈ [|R|] will in general inflate the
residuals ym,j,t further, in practice, to be on the conservative side, we reject H0 if

min
m∈[|R|]

{
5% quantile of

1

T

T∑
t=1

1{ym,j,t ≥ q̂x,j(α)} over j ∈ [d/dk∗ ]
}
> α, (4.14)

noting that exactly one element in R represents the true number of factors on the modes with
indices in A. We also point out that there are other possible ways to aggregate the informa-
tion from each j, but (4.14) empirically works well and circumvents possible issues such as
heavy-tailed noise, under- or over-estimation on the number of factors, and insufficient data
dimensions; see Section 4.5.1.

Remark 4.2 (Explanation of R in (4.10)). It is possible to perform the test directly using the
number of factors for modes inA, i.e.,R only contains the number of factors rj , j = v, . . . , K,
in (4.7). This is guaranteed by the Tucker-decomposition TFM under H0 in (4.6). However,
usually in practice we need to estimate the number of factors which are invalid under H1 in
(4.6). This leads to unstable estimated number of factors and hence unstable test statistic, which
we address by introducingR in (4.10).

4.4 Assumptions and Theoretical Results

4.4.1 Assumptions

This subsection presents all the assumptions for testingH0 againstH1 in (4.6). Another version
(with only different notations) of Assumptions (L1) and (L2) for the identification of (4.3) and
(4.4) is included in Section 4.6, with identification theorem presented and proved there.
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(L1) For each j ∈ [v − 1], we assume that Aj in (4.5) is of full rank and as dj →∞,

Z
−1/2
j A′

jAjZ
−1/2
j → ΣA,j, (4.15)

whereΣA,j is positive definite with all eigenvalues bounded away from 0 and infinity, and
Zj is a diagonal matrix with (Zj)hh ≍ d

δj,h
j for h ∈ [rj] and the ordered factor strengths

1/2 < δj,rj ≤ · · · ≤ δj,1 ≤ 1.

We assume that AV also has the above form with ZV and ΣA,V , except that only the
maximum and minimum factor strengths are ordered, i.e., 1/2 < δV,rV ≤ δV,h ≤ δV,1 ≤ 1

for any h ∈ [rV ].

(L2) With A = {v, v + 1, . . . , K}, we assume that for each i ∈ A, Ai in (4.7) is of full rank
and as di →∞,

Z
−1/2
i A′

iAiZ
−1/2
i → ΣA,i, (4.16)

where ΣA,i is positive definite with all eigenvalues bounded away from 0 and infinity, and
Zi is a diagonal matrix with (Zi)hh ≍ d

δi,h
i for h ∈ [ri] and the ordered factor strengths

1/2 < δi,ri ≤ · · · ≤ δi,1 ≤ 1.

(F1) (Time series in Freshape,t). There is Xreshape,f,t the same dimension as Freshape,t such that
Freshape,t =

∑
w≥0 af,wXreshape,f,t−w. The time series {Xreshape,f,t} has i.i.d. elements with

mean 0, variance 1 and uniformly bounded fourth order moments. The coefficients af,w
satisfy

∑
w≥0 a

2
f,w = 1 and

∑
w≥0 |af,w| ≤ c for some constant c.

(E1) (Decomposition of Et). The noise Et (such that Ereshape,t = reshape(Et,A)) can be de-
composed as

Et = Fe,t ×1 Ae,1 ×2 · · · ×K Ae,K +Σϵ ∗ ϵt, (4.17)

where order-K tensors Fe,t ∈ Rre,1×···×re,K and ϵt ∈ Rd1×···×dK contain independent
mean zero elements with unit variance, with the two time series {ϵt} and {Fe,t} being
independent. The order-K tensor Σϵ contains the standard deviations of the correspond-
ing elements in ϵt, and has elements uniformly bounded.

Moreover, Ae,k ∈ Rdk×re,k (k ∈ [K]) is approximately sparse such that ∥Ae,k∥1 = O(1).

(E2) (Time series in Et). There isXe,t the same dimension asFe,t, andXϵ,t the same dimension
as ϵt, such thatFe,t =

∑
q≥0 ae,qXe,t−q and ϵt =

∑
q≥0 aϵ,qXϵ,t−q, with {Xe,t} and {Xϵ,t}

independent of each other. {Xe,t} has independent elements while {Xϵ,t} has i.i.d. ele-
ments, and all elements have mean zero with unit variance and uniformly bounded fourth
order moments. Both {Xe,t} and {Xϵ,t} are independent of {Xreshape,f,t} from (F1).
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The coefficients ae,q and aϵ,t are such that for some constant c,∑
q≥0

a2e,q =
∑
q≥0

a2ϵ,q = 1,
∑
q≥0

|ae,q|,
∑
q≥0

|aϵ,q| ≤ c.

(R1) (Rate assumptions). With gs :=
∏K

k=1 d
δk,1
k and γs := d

δV,1

V

∏v−1
j=1 d

δj,1
j , we assume that

dg−2
s T−1d

2(δk,1−δk,rk )+1

k , dg−1
s d

δk,1−δk,rk−1/2

k ,

dγ−2
s T−1d

2(δV,1−δV,rV
)+1

V , dγ−1
s d

δV,1−δV,rV
−1/2

V = o(1).

(R2) (Further rate assumptions). With gw :=
∏K

k=1 d
δk,rk
k and γw := d

δV,rV
V

∏v−1
j=1 d

δj,rj
j , we

assume that

max
k∈[K]

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

gsgw

}
,

max
j∈[v−1]

{
d
2(δj,1−δj,rj )
j

(
1

Td-kd
1−δj,1
j

+
1

d
1+δj,rj
j

)
d2

γsγw

}
,

d
2(δV,1−δV,rV

)

V

(
1

Tdd
−δV,1

V

+
1

d
1+δV,rV
V

)
d2

γsγw
,

d

γ2w
,

d

g2w
= o
(
max
k∈[K]
{d−1

k }
)
.

With (L1), the standardised loading matrix Qj := AjZ
−1/2
j satisfies Q′

jQj → ΣA,j for
j ∈ [v − 1], and QV := AVZ

−1/2
V satisfies Q′

VQV → ΣA,V . Similar implication holds for
(L2), except that (L2) is only valid under H0. Hence with (L2), ZV and ΣA,V in (L1) satisfy

ZV = ZK ⊗ · · · ⊗ Zv, ΣA,V = ΣA,K ⊗ · · · ⊗ΣA,v. (4.18)

Note that the factor strength requirement for AV in (L1) is satisfied by (L2), since from (4.18)
(ZV )rV rV ≍

∏K
i=v d

δi,ri
i ≥ d

minKi=v δi,ri
V > d

1/2
V . Assumption (L1) characterises the loading

matrix behaviour generally for (4.6), and the additional (L2) is specific for the null. Both
assumptions allow for weak factors which are common feature in the literature (Lam and Yao,
2012; Onatski, 2012; Cen and Lam, 2025b). When all factors are pervasive, for instance, (4.15)
can be interpreted as d−1

j A′
jAj → ΣA,j if all factors are pervasive, which coincides with

Assumption 3 of Chen and Fan (2023) for matrix time series.
Assumption (F1) assumes that Freshape,t is a general linear process with weakly serial de-

pendence. Theorem 4.1 ensures that the core factor in (4.7) (underH0) reserves its structure of
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(F1) such that

Ft =
∑
w≥0

af,wXf,t−w, with reshape(Xf,t,A) = Xreshape,f,t. (4.19)

Note that it holds for each k ∈ [K], as T →∞,

1

T

T∑
t=1

matk(Ft)matk(Ft)′ p−→ r-k Irk , (4.20)

which is direct from Proposition 1.3 in the supplement of Cen and Lam (2025b). In comparison,
Barigozzi et al. (2023b) assumes the form of (4.20) with r-k Irk replaced by a positive definite
matrix. This does not imply (F1) is particularly stronger as our factor loading matrices already
incorporate some positive definite matrices by (L1) and (L2).

Assumptions (E1) and (E2) depict a general noise time series on the factor models (4.5)
and (4.7). It is worth noting that the noise tensor Et is allowed to be (weakly) dependent across
modes and time, regardless of the existence of Kronecker product structure. From (4.17),

reshape(Et,A) = reshape(Fe,t,A)×1 Ae,1 ×2 · · · ×v−1 Ae,v−1 ×v (AK ⊗ · · · ⊗Av)

+ reshape(Σϵ,A) ∗ reshape(ϵt,A),
(4.21)

so that the structure of (E1) and (E2) are preserved by reshape(Et,A). Assumption (R1) details
the rate assumptions on factor strengths and is hence satisfied automatically when all factors
are pervasive. Assumption (R2) also concerns factor strength and would hold for all strong
factors if v > 1; for v = 1, (R2) holds when mink∈[K] dk = o(T ) in addition to strong factors.

Remark 4.3 When v = 1 and all factors are strong, (R2) requires dk∗ = mink∈[K] dk = o(T )

which seems restricted. This is to ensure the asymptotic normality when we aggregate dk∗
number of estimated residuals in xj,t and ym,j,t in Section 4.3.3. However, from the proof
of Theorem 4.2 in Section 4.7, it is feasible to aggregate dβk∗ for any 0 < β < 2 such that
dβk∗ = o(T ). Therefore, (R2) is arguably as mild as Assumption B5 in He et al. (2023a). We
only briefly discuss how to construct the test statistic differently in the following, and choose not
to pursue such an aggregation scheme to keep the practical procedure as simple as possible.

Suppose we follow the same procedure in Section 4.3.3 with Ẽt and Êm,t obtained. Next,
we need to specify some d† → ∞ that divides d and is small enough (such that ρ = o(1) in
Theorem 4.3 with dk∗ replaced by d†). With this, we simply re-arrange the two residual tensors
and construct Ẽ†

t = fold
{

vec
(
Ẽt
)
, {d†, d/d†}

}
and Ê†

m,t = fold
{

vec
(
Êm,t

)
, {d†, d/d†}

}
.

Then the remaining procedure is the same as in Section 4.3.3 with Ẽt,(k∗) and Êm,t,(k∗) replaced
by Ẽ†

t and Ê†
m,t, respectively.
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4.4.2 Main results and practical test design

We first present below the results for our residual estimators in (4.9) and (4.12), which inspire
the testing procedure in Section 4.3.3. Following Theorem 4.2, the theoretical guarantee of the
test is also provided.

Theorem 4.2 Let Assumptions (F1), (L1), (L2), (E1), (E2), (R1) and (R2) hold. With the nota-
tions in Section 4.3.3, under H0, there exists m ∈ [|R|] such that for each t ∈ [T ], j ∈ [d/d∗k],∑dk∗

i=1

(
Ê2
m,t,(k∗),ij − Σ2

ϵ,(k∗),ij

)»∑dk∗
i=1 Var(ϵ2t,(k∗),ij)Σ4

ϵ,(k∗),ij

,

∑dk∗
i=1

(
Ẽ2
t,(k∗),ij − Σ2

ϵ,(k∗),ij

)»∑dk∗
i=1 Var(ϵ2t,(k∗),ij)Σ4

ϵ,(k∗),ij

p−→ Zj,t,

where Zj,t
D−→ N (0, 1) and Zh,t is independent of Zℓ,t for h ̸= ℓ. Under H1, the asymptotic

result for Ẽt,(k∗),ij above still holds true.

Theorem 4.3 Let all the assumptions in Theorem 4.2 hold. In addition, each element in the
time series {Xreshape,f,t}, {Xe,t} and {Xϵ,t} has sub-Gaussian tail. With the notations in Sec-
tion 4.3.3, we have the following for any j ∈ [d/dk∗ ] under H0. There exists m ∈ [|R|] such
that, as T, d1, . . . , dK →∞,

Py,m,j{ym,j,t > q̂x,j(α)} ≤ α +OP (ρ), where

ρ =

ï
max
k∈[K]

ß
d
δk,1−δk,rk
k

Å
1

(Td-kd
1−δk,1
k )1/2

+
1

d
(1+δk,rk )/2

k

ã
d

(gsgw)1/2

™
+
d1/2

gw

ò
· log2(T )

Å K∏
k=1

log2(dk)

ã
d
1/2
k∗ + log2(T ) log(dV )

Å v−1∏
k=1

log(dk)

ãÅ K∏
k=1

log2(dk)

ã
d
1/2
k∗

·
ï
max
j∈[v−1]

ß
d
δj,1−δj,rj
j

Å
1

(Td-kd
1−δj,1
j )1/2

+
1

d
(1+δj,rj )/2

j

ã
d

(γsγw)1/2

™
+ d

δV,1−δV,rV
V

Å
1

(Tdd
−δV,1

V )1/2
+

1

d
(1+δV,rV

)/2

V

ã
d

(γsγw)1/2
+
d1/2

γw

ò
.

Theorem 4.3 suggests that if some factors are weaker, then the rate in the probability state-
ment above will be inflated. When all factors are pervasive, define dmax = maxk∈[K]{dk}, and
we may simplify ρ as

ρ =

ß
1

d
1/2
k∗

+
(dk∗dmax

Td

)1/2
+
(dk∗dV

Td

)1/2
log(dV )

Å v−1∏
k=1

log(dk)

ã™
log2(T )

Å K∏
k=1

log2(dk)

ã
.

Hence ρ = o(1) as long as T, d1, . . . , dK are of the same order, but it appears that when dV = d,
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i.e., A = [K], the current test requires dk∗ log(d) log2(T )
∏K

k=1 log
2(dk) = o(T ). However,

this can be circumvented as explained in Remark 4.3. Theorem 4.3 presents the grounds for
our construction of the test statistic in (4.14). For related explanations, see the discussions
immediately after (4.13), and before Remark 4.2.

We also point out that the result in Theorem 4.3 holds exactly the same with all quantities
constructed from ym,j,t and xj,t replaced by quantities from maxj∈[d-k] ym,j,t and maxj∈[d-k] xj,t,
respectively; see also Theorem 5.8 which shows such a result but on testing nested model struc-
tures in a matrix-valued time series.

The setup of the problem (4.6) specifies the set A which is only needed in H1 due to (4.7)
under H0. It is direct to specify A for a series of matrix-valued observations (i.e., order-2
tensor), see Example 4.1. However, for a general order-K tensor with K ≥ 3, A might be
misspecified without any prior knowledge. To resolve this, we present the second theorem on
tensor reshape as follows.

Theorem 4.4 (Tensor Reshape Theorem II). Consider a tensor time series {Yt} and a set of
mode indicesA. With Definition 4.2, the time series

{
reshape(Yt,A)

}
has a Kronecker prod-

uct structure if and only if {Yt} either has a Kronecker product structure or has no Kronecker
product structure along a subset of A.

Suppose now {Yt} has no Kronecker product structure along some A∗. Theorem 4.4 tells
us that testing the Kronecker product structure of the reshaped series

{
reshape(Yt,A)

}
effec-

tively tests if A∗ ⊆ A. In light of this, a testing design is feasible when A is unspecified, with
a minimal assumption that reshape(Yt, [K]) = vec

(
Yt
)

has a factor structure, i.e., the vec-
torised Yt follows a vector factor model. For illustration, consider reshape(Yt, [K] \ {1}) =
reshape(Yt, {2, . . . , K}) which is a matrix. Using the property of Reshape(·, ·), we have

reshape
(
reshape(Yt, {2, . . . , K}), {1, 2}

)
= reshape(Yt, {1, 2, . . . , K}) = vec

(
Yt
)
.

According to Definition 4.2,
{

reshape(Yt, {2, . . . , K})
}

follows a factor model along {1, 2}.
This is always correctly specified since

{
vec
(
Yt
)}

follows a factor model (which also implies
A∗ ⊆ [K]). By Theorem 4.4, reshape(Yt, {2, . . . , K}) has no Kronecker product structure if
and only if 1 ∈ A∗. Hence on testing (4.6) with Yt replaced by {reshape(Yt, {2, . . . , K})}
and A = {1, 2}, rejection of the null implies 1 ∈ A∗.

By the fact that
{

vec
(
Yt
)}

with any permutation on vec
(
Yt
)

also follows a factor model,
the above scheme is in fact valid on reshape(Yt, [K] \ {k}) for any k ∈ [K]. Eventually, A∗

can be identified, and the above procedure is summarised into the following algorithm.

Practical testing algorithm
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1. Given an order-K tensor time series {Yt} with K ≥ 2 and vec
(
Yt
)

following a factor
model with rvec number of factors, initialise Â∗ = ϕ, the empty set.

2. Initialise k = 1. Define a test as (4.6) with {Yt} replaced by
{

reshape(Yt, [K] \ {k})
}

and A by {1, 2}.

3. Follow the steps in Section 4.3.3 to test the problem in step 2, with rV replaced by rvec.
If the null is rejected, include k in the set Â∗.

4. Repeat from step 2 to step 3 with k = 2, 3, . . . , K. Output Â∗.

With the algorithm output, we interpret that {Yt} has no Kronecker product structure along
Â∗. In practice, Â∗ being an empty set implies {Yt} has a Kronecker product structure.

Remark 4.4 Definition 4.2 considers the absence of Kronecker product structure over a single
setA only, which does not fully characterise all scenarios forYt with order at least 4. However,
we do not pursue this complication here, albeit our practical design can be readily adapted.

4.5 Numerical Results

4.5.1 Simulations

In this subsection, we demonstrate the empirical performance of our test by Monte Carlo sim-
ulations. As discussed in Section 4.3.1, the test is only non-trivial when the data order K is at
least 2. We hence consider from K = 2 to K = 4.

The data generating processes adapt Assumptions (F1), (E1) and (E2). Specifically, we set
the number of factors as rk = 2 for any k ∈ [K], and first generateFt in (4.7) with each element
being independent standardised AR(2) with AR coefficients 0.7 and -0.3. The elements in Fe,t
and ϵt are generated similarly, but their AR coefficients are (-0.5, 0.5) and (0.4, 0.4) respectively.
The standard deviation of each element in ϵt is generated by i.i.d. |N (0, 1)|. Unless otherwise
specified, all innovation processes in constructingFt,Fe,t and ϵt are i.i.d. standard normal. For
each j ∈ [v − 1], each factor loading matrix Aj is generated independently with Aj = UjBj ,
where each entry of Uj ∈ Rdj×rj is i.i.d. N (0, 1), and Bj ∈ Rrj×rj is diagonal with the h-th
diagonal entry being d−ζj,hj , 0 ≤ ζj,h ≤ 0.5. Pervasive factors have ζj,h = 0, while weak factors
have 0 < ζj,h ≤ 0.5. Each entry of Ae,j ∈ Rdj×re,j is i.i.d. N (0, 1), but has independent
probability of 0.95 being set exactly to 0. We set re,k = 2 for all j ∈ [v − 1] throughout all
experiments. For any A (specified later), we obtain

reshape(Ft,A) = Freshape,t, reshape(Et,A) = Ereshape,t.
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Lastly, similar to {Aj}j∈[v−1], we generate {Av, . . . ,AK} and let AV = AK⊗· · ·⊗Av under
H0, or generate AV directly under H1. Whenever rV is required, it is computed as

∏
j∈A rj .

According to (4.5) and (4.7), we then respectively construct reshape(Yt,A) (and hence the
corresponding Yt) and Yt directly.

We consider a series of performance indicators and each simulation setting is repeated 500
times. With notations in Section 4.3.3, we calculate the following with α ∈ {0.01, 0.05}:

α̂ := min
m∈[|R|]

{ 1

T

T∑
t=1

1{ym,1,t ≥ q̂x,1(α)}
}
,

p̂ := 1{q̂α ≤ α}, where

q̂α := min
m∈[|R|]

{
5% quantile of

1

T

T∑
t=1

1{ym,j,t ≥ q̂x,j(α)} over j ∈ [d/dk∗ ]
}
,

(4.22)

where α̂ is the significance level under the measure Py,m,1 taken minimum over m ∈ [|R|],
and p̂ is an indicator function of the decision rule (4.14) leading to retainingH0. UnderH0, we
expect α̂ to be close to α and p̂ to be 1 according to Theorem 4.3.

Test size and power

Consider first H0 with A containing the last two modes of Yt, i.e., A = {1, 2} for K = 2,
A = {2, 3} for K = 3 and A = {3, 4} for K = 4. We experiment on all pervasive factors.
Table 4.1 presents the simulation results under various settings for K = 2, 3, 4, and all of
them well align with Theorem 4.3. Note that for K = 3, 4, all p̂’s are 1, and for K = 2,
the proportion of repetitions with p̂ = 1 is increasing with dimensions and time in general.
The results under H1 are presented in Table 4.2 which confirms the power of our test. While
larger dimensions generally improve the test performance, it is unsurprising from Table 4.2 that
under the same (T, dk) setting, testing the Kronecker product structure along two modes onYt is
harder for higher-orderYt. This is reasonable since the testing problem (4.6) is genuinely harder
when AV plays a less significant role in a higher-order data. To demonstrate this, suppose
K = 3, (T, d1, d2, d3) = (360, 10, 15, 20), and all factors are pervasive. We experiment through
A = {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. The results reported in Table 4.3 indeed shows that when
the tested loading matrix AV has a larger size, the test has larger power in general. The setting
withA = {2, 3} is an exception, suggesting a potential issue of unbalanced spatial dimensions.

Robustness for weak factor, heavy-tailed noise and misspecified number of factors

In the following, we fix K = 3 and A = {2, 3} to investigate the robustness of our test.
Consider Setting I and II, each with four sub-settings:
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K = 2 K = 3 K = 4

T = 120 dk = 15 dk = 30 dk = 15 dk = 30 dk = 10 dk = 15

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .020 .071 .020 .078 .013 .055 .013 .055 .012 .054 .012 .053
p̂ .974 .836 .996 .860 1 1 1 1 1 1 1 1

T = 360 dk = 15 dk = 30 dk = 15 dk = 30 dk = 10 dk = 15

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .011 .057 .012 .059 .010 .051 .010 .052 .010 .051 .010 .051
p̂ .988 .862 1 .842 1 1 1 1 1 1 1 1

T = 720 dk = 15 dk = 30 dk = 15 dk = 30 dk = 10 dk = 15

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .011 .053 .012 .054 .010 .051 .010 .051 .010 .050 .010 .051
p̂ .994 .916 1 .920 1 1 1 1 1 1 1 1

Table 4.1: Results of α̂ and p̂ underH0 in (4.6) forK = 2, 3, 4. For each setting, dk is the same
for all k ∈ [K]. Each cell is the average of α̂ or p̂ computed under the corresponding setting
over 500 runs.

K = 2 K = 3 K = 4

T = 120 dk = 15 dk = 30 dk = 15 dk = 30 dk = 10 dk = 15

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .839 .898 .928 .956 .674 .742 .790 .834 .583 .655 .649 .712
p̂ 0 0 0 0 0 0 0 0 .012 .002 0 0

T = 360 dk = 15 dk = 30 dk = 15 dk = 30 dk = 10 dk = 15

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .818 .888 .917 .951 .659 .738 .776 .832 .571 .653 .636 .709
p̂ 0 0 0 0 0 0 0 0 .002 0 0 0

T = 720 dk = 15 dk = 30 dk = 15 dk = 30 dk = 10 dk = 15

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .817 .885 .918 .951 .652 .731 .787 .837 .559 .640 .629 .701
p̂ 0 0 0 0 0 0 0 0 .002 0 0 0

Table 4.2: Results of α̂ and p̂ under H1 in (4.6) for K = 2, 3, 4. Refer to Table 4.1 for the
explanation of each cell.
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H0 A = {1, 2} A = {1, 3} A = {2, 3} A = {1, 2, 3}
α 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .010 .051 .010 .052 .010 .052 .014 .063
p̂ 1 1 1 1 1 1 1 .956

H1 A = {1, 2} A = {1, 3} A = {2, 3} A = {1, 2, 3}
α 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .702 .775 .705 .779 .673 .748 .927 .959
p̂ 0 0 0 0 0 0 0 0

Table 4.3: Results of α̂ and p̂ over different A’s in (4.6) for (T, d1, d2, d3) = (360, 15, 20, 25).
Refer to Table 4.1 for the explanation of each cell. For eachA = {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
the number of rows of AV in (4.6) is respectively 300, 375, 500, 7500.

(Ia) T = 180, d1 = d2 = d3 = 15. All factors are pervasive with ζj,h = 0.

(Ib) Same as (Ia), but one factor is weak with ζj,1 = 0.1.

(Ic) Same as (Ia), but both factors are weak with ζj,1 = ζj,2 = 0.1.

(Id) Same as (Ia), but all innovation processes in constructing Ft, Fe,t and ϵt are i.i.d. t3.

(IIa–d) Same as (Ia) to (Id) respectively, except that rV is randomly specified from {2, 3, 4, 5, 6}
with equal probability.

Setting (Ia) is our benchmark and all other settings feature some defects from weak factors,
heavy-tailed noise, or misspecified number of factors. Table 4.4 reports the results for both H0

andH1. In contrast to (Ia), all other settings have lower test power to various extents. However,
the size of the test is hardly influenced by weak factors or heavy-tailed noise from the results
of (Ib), (Ic) and (Id). Although number-of-factor misspecification is detrimental, our decision
rule p̂ still has satisfying performance.

Numerical performance of the practical testing algorithm

On the practical testing algorithm which does not requireA to be specified, we consider Setting
III and IV with K = 3, and each has three sub-settings:

(IIIa) T = 360, d1 = d2 = d3 = 10. All factors are strong and the data has a Kronecker
product structure.

(IIIb) Same as (IIIa), but the data has no Kronecker product structure along {2, 3}.

(IIIc) Same as (IIIa), but the data has no Kronecker product structure along {1, 2, 3}.

(IVa–c) Same as (IIIa) to (IIIc) respectively, except that T = 720.
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Setting I
H0 (Ia) (Ib) (Ic) (Id)
α 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .008 .054 .008 .053 .008 .053 .008 .053
p̂ 1 1 1 1 1 1 1 1

H1 (Ia) (Ib) (Ic) (Id)
α 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .691 .765 .593 .684 .441 .553 .519 .693
p̂ 0 0 .014 0 .034 .004 .070 .002

Setting II

H0 (IIa) (IIb) (IIc) (IId)
α 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .054 .113 .035 .091 .021 .074 .030 .092
p̂ .972 .932 .988 .966 .998 .996 .996 .964

H1 (IIa) (IIb) (IIc) (IId)
α 1% 5% 1% 5% 1% 5% 1% 5%

α̂ .553 .652 .504 .620 .378 .509 .424 .596
p̂ .034 0 .018 .002 .036 .006 .128 .004

Table 4.4: Results of α̂ and p̂ under H0 and H1 in (4.6) over sub-settings of Setting I and II.
Refer to Table 4.1 for the explanation of each cell.
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Setting III Setting IV
(IIIa) (IIIb) (IIIc) (IVa) (IVb) (IVc)

α 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Mode 1 0 .024 .030 .202 1 1 0 0 .004 .228 1 1
Mode 2 0 .036 1 1 1 1 0 .004 1 1 1 1
Mode 3 0 .034 .998 1 1 1 0 .002 1 1 1 1

Table 4.5: Results of Setting III and IV for the practical testing algorithm. Each cell is the
fraction of the corresponding mode identified over 500 runs for the corresponding sub-settings.

Table 4.5 verifies that our algorithm is able to test the Kronecker product structure of a
given data without pre-specifying A. The performance is improved with more observations,
and the level of α = 0.01 works particularly well.

4.5.2 Real data analysis

We apply our test on two real data examples described as follows.

1. New York City taxi traffic. The data considered includes all individual taxi rides operated
by Yellow Taxi within Manhattan Island of New York City, published at

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

The dataset contains trip records within the period of January 1, 2018 to December 31,
2022. We focus on the pick-up and drop-off dates/times, and pick-up and drop-off loca-
tions which are coded according to 69 predefined zones in the dataset. Moreover, each
day is divided into 24 hourly periods to represent the pick-up and drop-off times, with the
first hourly period from 0 a.m. to 1 a.m. Hence each day we have Yt ∈ R69×69×24, where
yi1,i2,i3,t is the number of trips from zone i1 to zone i2 and the pick-up time is within
the i3-th hourly period on day t. We consider business days and non-business days sep-
arately, so that we will analyse two tensor time series. The business-day series and the
non-business-day series are 1,260 and 566 days long, respectively.

2. Fama–French portfolio returns. This is a set of portfolio returns data, where stocks are
respectively categorised into ten levels of market equity and book-to-equity ratio which
is the book equity for the last fiscal year divided by the end-of-year market equity; both
criteria use NYSE deciles as breakpoints at the end of June each year. See details in
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/det 100 port sz.html.

The stocks in each of the 10 × 10 categories form exactly two portfolios, one being
value-weighted, and the other of equal-weight. That is, we will study two sets of 10 by
10 portfolios with their time series. We use monthly data from January 2010 to June

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_100_port_sz.html
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2021, and hence for both value-weighted and equal-weighted portfolios we have each of
our data set as an order-2 tensor Xt ∈ R10×10 for t ∈ [138].

The two taxi series are order-3 tensor time series, and we only test their Kronecker product
structure along A = {1, 2}, i.e., we speculate that there is a merged “location” factor instead
of “pick-up” and “drop-off” factors along mode-1 and -2 respectively. On the other hand, the
two portfolio series are order-2 tensor time series, hence naturally we test along A = {1, 2}.
Furthermore, we remove the market effect via the capital asset pricing model (CAPM) as

vec
(
Xt
)
= vec

(
X̄
)
+ (rt − r̄)β + vec

(
Yt
)
,

where vec
(
Xt
)
∈ R

100 is the vectorised returns at time t, vec
(
X̄
)

is the sample mean of
vec
(
Xt
)
, β is the coefficient vector, rt is the return of the NYSE composite index at time t, r̄

is the sample mean of rt, and vec
(
Yt
)

is the CAPM residual. The least squares solution is

β̂ =

∑138
t=1(rt − r̄){vec

(
Xt
)
− vec

(
X̄
)
}∑138

t=1(rt − r̄)2
,

so that the estimated residual series {Ŷt}t∈[138] with Ŷt ∈ R10×10 is constructed as {vec
(
Xt
)
−

vec
(
X̄
)
− (rt − r̄)β̂}t∈[138].

Hence, we study six time series in total: business-day taxi series, non-business-day taxi
series, value-weighted portfolio series, equal-weighted portfolio series, value-weighted resid-
ual series and equal-weighted residual series. For each series, we perform the test described
in Section 4.3.3. To estimate the rank, we use BCorTh by Chen and Lam (2024b), iTIP-ER by
Han et al. (2022) and RTFA-ER by He et al. (2022b) directly on each time series due to their
large dimensions. Each mode of the six series has one or two estimated number of factors.
Since the test results are similar for those rank settings, we present the results with two factors
each mode and hence r̂V = 4.

In addition, we also conduct the hypotheses tests in He et al. (2023a) on our matrix time
series data sets. To explain their hypotheses, for a matrix time series {Yt} with Yt ∈ Rd1×d2 ,
under the null we have (4.7) for K = 2:

H0 : Yt = A1FtA
′
2 + Et,

where Ft ∈ Rr1×r2 . However, under their two alternatives we test

H1,row : r2 = 0, H1,col : r1 = 0,

where according to He et al. (2023a), r1 > 0, r2 = 0 (resp. r2 > 0, r1 = 0) denotes a one-way
factor model along the row dimension, so that Yt = A1F1,t+Et with F1,t ∈ Rr1×d2 (resp. the
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α̂ q̂α Tests in He et al. (2023a)

1% 5% 1% 5% H0 versus H1,row H0 versus H1,col

Business-day taxi .020 .093 .002 .003 - -
Non-business-day taxi .018 .095 .004 .011 - -
Value-weighted portfolio .058 .087 .011 .053 Not reject Not reject
Equal-weighted portfolio .036 .051 .018 .039 Not reject Not reject
Value-weighted residual .022 .065 .011 .047 Not reject Not reject
Equal-weighted residual .014 .051 .011 .047 Not reject Not reject

Table 4.6: Test results for the studied series. The first two columns report the results for our
hypothesis of interest (4.6) withA = {1, 2}; q̂α larger than the corresponding α level is in bold.
The last two columns report the results according to He et al. (2023a).

column dimension, so that Yt = F2,tA
′
2 + Et with F2,t ∈ Rd1×r2), and r1 = r2 = 0 denotes

the absence of any factor structure, so that Yt = Et. All hyperparameter setups in Table 8 and
9 in He et al. (2023a) are experimented and all conclusions are the same.

Table 4.6 reports α̂ and q̂α defined in (4.22), with α = 0.01, 0.05, together with the cor-
responding tests by He et al. (2023a). For our hypothesis of interest, there is no evidence to
reject the null for the two taxi series, but there is mild evidence (especially at 1% level, with α̂
observed to be mildly larger than 1%) to conclude that for the Fama–French time series, there
is no Kronecker product structure along {1, 2}. In other words, there is evidence to suggest
that the portfolio return series has structures deviating from the low-rank structure along its re-
spective categorisations by market equity and book-to-equity ratio, meaning the vectorised data
may have a more distinct factor structure. The comparisons between the portfolio and residual
series justifies the removal of the market effect, which is intuitive as the market effect should
be pervasive in financial returns and is irrelevant of our categorisations. In contrast, we cannot
reject the null by considering those alternative hypotheses considered in He et al. (2023a).

4.6 Details on Identification

This section concerns the identification of the model in Definition 4.2, following a discussion
on Definition 4.1. First, consider Definition 4.2.1 so that in (4.3), we have Areshape,K−ℓ+1 ∈
Kda1×···×daℓ . Given a general A = {a1, . . . , aℓ}, the ordered set of matrices {Aj}j∈[κ] de-
composing (as in Definition 4.1) Areshape,K−ℓ+1 might not be unique. For instance, suppose
K = 2, d1 = d2,A = {1, 2} (hence Areshape,K−ℓ+1 ≡ Areshape,1 has d21 rows) and let Areshape,1 =

d
−1/4
1 1d21 , then we have

Areshape,1 =
(
d
−1/4
1 1d1︸ ︷︷ ︸

A1

)
⊗ 1d1︸︷︷︸

A2

= 1d1︸︷︷︸
Ä1

⊗
(
d
−1/4
1 1d1︸ ︷︷ ︸

Ä2

)
, (4.23)
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where it is clear that ∥A1,·1∥2 ≍ d
1/2
1 and ∥Ä1,·1∥2 ≍ d1. Such defeat can be rectified by allo-

cating the “factor strength” in Areshape,K−ℓ+1 to each mode inA; see the following Assumption
(S1) as one example.

(S1) For (4.4) such that Areshape,K−ℓ+1 = ⊗i∈AAi for a given A, we assume for any i ∈ A,

∥Ai∥2F
ridi

=

(
∥Areshape,K−ℓ+1∥2F∏

i∈A ridi

)1/|A|

.

The issue of indeterminacy in the factor strength is fixed by (S1) which has same spirit of
Assumption (IC) in Chen and Lam (2024a). Its heuristic is to allocate the factor strength in
Areshape,K−ℓ+1 to each mode according to their number of factors and dimensions. Note that As-
sumption (S1) holds automatically if all factors are pervasive. Now recall the example (4.23),
A1 = A2 = d

−1/8
1 1d1 are identified by (S1). Note that the discussion above is only for com-

pleteness and would not influence our testing problem.
Next, we identify models in Definition 4.2 and Theorem 4.1. For (4.3) and (4.4), we state

below the two assumptions (L1’) and (L2’), which are (notation-wise) general versions of (L1)
and (L2), respectively.

(L1’) (Factor strength in Areshape,j). For each j ∈ [K − ℓ], we assume that Areshape,j in (4.3) is
of full rank and as Ij →∞,

Z
−1/2
reshape,jA

′
reshape,jAreshape,jZ

−1/2
reshape,j → Σreshape,A,j, (4.24)

where Σreshape,A,j is positive definite with all eigenvalues bounded away from 0 and infin-
ity, and Zreshape,j is a diagonal matrix with (Zreshape,j)hh ≍ I

δreshape,j,h
j for h ∈ [πj] and the

ordered factor strengths 1/2 < δreshape,j,πj ≤ · · · ≤ δreshape,j,1 ≤ 1.

We assume that Areshape,j for j = K − ℓ + 1 also has the above form, except that
only the maximum and minimum factor strengths are ordered, i.e., 1/2 < δreshape,j,πj ≤
δreshape,j,h ≤ δreshape,j,1 ≤ 1 for any h ∈ [πj].

(L2’) (Factor strength in Ai). For (4.4) with a given A, we assume that for each i ∈ A, Ai is
of full rank and as di →∞,

Z
−1/2
i A′

iAiZ
−1/2
i → ΣA,i, (4.25)

where ΣA,i is positive definite with all eigenvalues bounded away from 0 and infinity, and
Zi is a diagonal matrix with (Zi)hh ≍ d

δi,h
i for h ∈ [ri] and the ordered factor strengths

1/2 < δi,ri ≤ · · · ≤ δi,1 ≤ 1.
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Theorem 4.5 presents the identification of the model (4.3) both in general and with Kro-
necker product structure (equivalently (4.4) according to Theorem 4.1). Its proof is given di-
rectly after the statement.

Theorem 4.5 (Identification). Let Assumption (F1) and (L1’) hold, and A is given. Then the
factor structure in (4.3) is asymptotically identified up to some invertible matrix Mj ∈ Rπj×πj

such that the following sets of factor structure are equivalent,(
Freshape,t,

{
Areshape,j

}
j∈[K−ℓ+1]

)
=
(
Freshape,t ×K−ℓ+1

j=1 M−1
j ,
{
Areshape,jMj

}
j∈[K−ℓ+1]

)
.

Let Assumption (L2’) further holds. With a Kronecker product structure on (4.3), we have
(4.4) where for each k ∈ [K], Ak has unique rank and the factor structure in (4.4) is asymp-
totically identified up to some invertible matrices.

Proof of Theorem 4.5. Consider first (4.3). Let
(
F̈reshape,t,

{
Äreshape,j

}
j∈[K−ℓ+1]

)
be another

set of parameters such that F̈reshape,t ×K−ℓ+1
j=1 Äreshape,j = Freshape,t ×K−ℓ+1

j=1 Areshape,j . Define

Areshape,-j := Areshape,K−ℓ+1 ⊗ · · · ⊗Areshape,j+1 ⊗Areshape,j−1 ⊗ · · · ⊗Areshape,1.

Define Äreshape,-j similarly. Without loss of generality, for any j ∈ [K − ℓ+ 1] we write

Äreshape,j = Areshape,jMreshape,j + Γreshape,j, where Γ′
reshape,jAreshape,j = 0, (4.26)

with Mreshape,j ∈ Rπj×πj and Γreshape,j ∈ RIj×πj , but can have zero columns. Then

0 = Γ′
reshape,jAreshape,jFreshape,t,(j)A

′
reshape,-jÄreshape,-j

= Γ′
reshape,jÄreshape,jF̈reshape,t,(j)Ä

′
reshape,-jÄreshape,-j

= Γ′
reshape,jΓreshape,jF̈reshape,t,(j)Ä

′
reshape,-jÄreshape,-j,

which can only be true in general if Γreshape,j = 0 since F̈reshape,t,(j) is random by Assumption
(F1) and Ä′

reshape,-jÄreshape,-j converges to some full rank matrix by (L1’). Hence Mreshape,j has
full rank, and Äreshape,j and Areshape,j share the same column space. Freshape,t is identified once{
Areshape,j

}
j∈[K−ℓ+1]

is given correspondingly.
Suppose (4.3) has a Kronecker product structure and consider (4.4). By an argument similar

to (4.26) but over k ∈ [K] (omitted), each matrix Ak for k ∈ [K] has a unique rank and is iden-
tified up to some invertible matrix using (L2’). Hence Ft is also identified, which completes
the proof of the theorem. □
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4.7 Proof of Theorems and Auxiliary Results

A high-level summary of proofs: The design of (4.11) and (4.12) over all divisor combinations
of rV is due to pseudo-ranks from mode-v to mode-K of Yt under H1 in (4.6). On the other
hand, under H0, there must be one m ∈ [|R|] such that (πm,1, . . . , πm,K−v+1) = (rv, . . . , rK).
Hence we consider throughout the proof that {rk}k∈[K] in (4.7) (hence under H0) is correctly
specified. Hence, we simplify the notations Q̂m,i, Ĉm,t and Êm,t as Q̂i, Ĉt and Êt, respectively.
Whenever (L2) is assumed, we are implicitly considering H0 in (4.6), and

Q-k := QK ⊗ · · · ⊗Qk+1 ⊗Qk−1 ⊗ · · · ⊗Q1 for k ∈ [K],

FZ,t := Ft ×Kk=1 Z
1/2
k with Ft from (4.19).

Theorem 4.1 reveals the importance of the reshape operator and is the key to formalise the
testing problem. Lemma 4.1 to Lemma 4.4 serve as technical steps. The steps of all other
proofs are summarised as follows.

1. Under H0, consider (4.7). We first derive the rate of convergence for Q̂k as an estimator
of Qk for each k ∈ [K] (Lemma 4.5). Then the rates for the corresponding core factor
and hence the common component can also be obtained (Lemma 4.6).

2. Under H0, consider (4.5). We derive the rates of convergence for {Q̃j}j∈[v−1] and Q̃V

as estimators of {Qj}j∈[v−1] and QV , respectively. Similar to step 1, the rate for the
common component is obtained. See Lemma 4.7.

3. With Steps 1 and 2, we then show that
∑dk∗

i=1 Ê
2
m,t,(k∗),ij and

∑dk∗
i=1 Ẽ

2
t,(k∗),ij underH0 have

the same distribution asymptotically (Theorem 4.2).

4. With Step 3 and the uniform rates for the common components in Lemma 4.10, the test
statistic can be constructed with theoretical support (Theorem 4.3).

By the interplay between the core factor and the noise in Assumptions (F1), (E1) and (E2),
we state below Lemma 4.1 which is direct from Proposition 1.1 and 1.2 of Cen and Lam
(2025b).

Lemma 4.1 Let Assumptions (F1), (E1) and (E2) hold. Then

1. (Weak correlation of noise Et across different modes and time). There exists some positive
constant C < ∞ so that for any t ∈ [T ], k ∈ [K], ik, j ∈ [dk], h ∈ [d-k], we have
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EEt,i1,...,iK = 0, EE4t,i1,...,iK ≤ C, and

dk∑
j=1

d-k∑
l=1

∣∣∣E[Et,(k),ikhEt,(k),jl]∣∣∣ ≤ C,

d-k∑
l=1

T∑
s=1

∣∣∣Cov
(
Et,(k),ikhEt,(k),jh, Es,(k),iklEs,(k),jl

)∣∣∣ ≤ C.

2. (Weak dependence between factor Ft and noise Et). There exists some positive constant
C < ∞ so that for any k ∈ [K], j ∈ [dk], and any deterministic vectors u ∈ Rrk and
v ∈ Rr-k with constant magnitudes, it holds for Ft in (4.7) that

E

(
1

(d-kT )1/2

d-k∑
h=1

T∑
t=1

Et,(k),jhu
′Ft,(k)v

)2

≤ C.

3. Statement 2 holds similarly for reshape(Ft,A) and reshape(Et,A).

Lemma 4.2 Under Assumption (F1), with γv :=
∏v−1

j=1 rj , we have as T →∞,

1

T

T∑
t=1

Ft,(k)MF′
t,(k)

p−→ tr(M) · Irk , (4.27)

1

T

T∑
t=1

Freshape,t,(j)NF′
reshape,t,(j)

p−→ tr(N) · Irj , (4.28)

1

T

T∑
t=1

Freshape,t,(v)WF′
reshape,t,(v)

p−→ tr(W) · IrV , (4.29)

where Ft,(k) ∈ R
rk×r-k for k ∈ [K] is the mode-k unfolding of Ft in (4.7), and M is any

r-k × r-k matrix independent of {Ft}t∈[T ] with ∥M∥F bounded in probability; similarly for
Freshape,t,(j) ∈ Rrk×(rV γv/rj) for j ∈ [v − 1] in (4.5), and for Freshape,t,(v) ∈ RrV ×γv in (4.5).

Proof of Lemma 4.2. We show (4.27) and the other two follow similarly. With (F1),

T∑
s=1

(∑
w≥0

af,waf,w−(t−s)

)(∑
q≥0

af,qaf,q−(t−s)

)
≤
( T∑
s=1

∑
w≥0

|af,w||af,w−(t−s)|
)(∑

q≥0

|af,q|
)
·max

q
|af,q| = O(1) ·

(∑
w≥0

|af,w|
)2

= O(1),

(4.30)
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where the last two equality used Assumption (F1). Similarly, it holds that

T∑
s=1

∑
w≥0

a2f,wa
2
f,w−(t−s) ≤

(∑
w≥0

a2f,w

)2
= O(1). (4.31)

Now for i ̸= j ∈ [rk], by Assumption (F1) we have

E

( 1
T

T∑
t=1

F′
t,(k),i·MFt,(k),j·

)
= E

( 1
T

T∑
t=1

F′
t,(k),i·

)
E

(
MFt,(k),j·

)
= 0.

For i = j ∈ [rk], with Xf,t from (4.19), we have

E

( 1
T

T∑
t=1

F′
t,(k),i·MFt,(k),i·

)
=

1

T

T∑
t=1

∑
w≥0

∑
q≥0

af,waf,qE
(
X′
f,t−w,(k),i·MXf,t−q,(k),i·

)
=

1

T

T∑
t=1

∑
w≥0

∑
q≥0

af,waf,qtr(M)1{w = q} = tr(M)
∑
w≥0

a2f,w = tr(M),

so that E
(
T−1

∑T
t=1Ft,(k)MF′

t,(k)

)
= tr(M) · Irk . Finally, consider any i, j ∈ [rk],

Var
( 1
T

T∑
t=1

F′
t,(k),i·MFt,(k),j·

)
= Var

( 1
T

T∑
t=1

r-k∑
l=1

r-k∑
v=1

Ft,(k),ilMlvFt,(k),jv

)
=

1

T 2
Cov

( T∑
t=1

r-k∑
l=1

r-k∑
v=1

∑
w≥0

∑
q≥0

af,waf,qXf,t−w,(k),ilMlvXf,t−q,(k),jv,

T∑
s=1

r-k∑
g=1

r-k∑
u=1

∑
h≥0

∑
m≥0

af,haf,mXf,s−h,(k),igMguXf,s−m,(k),ju

)
=

1

T 2

T∑
t=1

T∑
s=1

(∑
w≥0

af,waf,w−(t−s)

)(∑
q≥0

af,qaf,q−(t−s)

)( r-k∑
l=1

r-k∑
v=1

M2
lv

)
+

1

T 2

T∑
t=1

∑
w≥0

∑
q≥0

T∑
s=1

∑
h≥0

∑
m≥0

af,waf,qaf,haf,m

( r-k∑
l=1

M2
ll

)
· Cov

(
Xf,t−w,(k),ilXf,t−q,(k),il, Xf,s−h,(k),ilXf,s−m,(k),il

)
= O

( 1
T

)
·
( r-k∑
l=1

r-k∑
v=1

M2
lv

)
+O

( 1
T

)
·
( r-k∑
l=1

M2
ll

)
= O

( 1
T

)
· ∥M∥2F = o(1),

where the third equality considered i = j and i ̸= j separately, and the fourth used (4.30) and
(4.31). This completes the proof of (4.27) and hence Lemma 4.2. □

Lemma 4.3 (Bounding
∑T

t=1 Rk,t). Under Assumptions (F1), (L1), (L2), (E1) and (E2), it
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holds that

∥∥∥ T∑
t=1

QkFZ,t,(k)Q
′
-kE

′
t,(k)

∥∥∥2
F
= OP

(
Td

1+δk,1
k d-k

)
, (4.32)

∥∥∥ T∑
t=1

Et,(k)E
′
t,(k)

∥∥∥2
F
= OP

(
Td2kd-k + T 2dkd

2
-k

)
. (4.33)

Hence, with Rk,t defined in (4.36), we have

∥∥∥ T∑
t=1

Rk,t

∥∥∥2
F
= OP

(
Td2kd-k + T 2dkd

2
-k

)
.

Proof of Lemma 4.3. It is not hard to see (4.32) holds as follows,

∥∥∥ T∑
t=1

QkFZ,t,(k)Q
′
-kE

′
t,(k)

∥∥∥2
F
=

dk∑
i=1

dk∑
l=1

( T∑
t=1

A′
k,i·Ft,(k)A

′
-kEt,(k),l·

)2
=

dk∑
i=1

∥Ak,i·∥2 ·
dk∑
l=1

( d-k∑
h=1

T∑
t=1

Et,(k),lh
1

∥Ak,i·∥
A′
k,i·Ft,(k)A-k,h·

)2
= OP

(
Td

1+δk,1
k d-k

)
,

where the last equality is from Assumptions (L1), (L2) and Lemma 4.1.
Consider now (4.33). First, from Assumption (E1), for any k ∈ [K], i ∈ [dk], j ∈ [d-k],

Et,(k),ij = A′
e,k,i·Fe,t,(k)Ae,-k,j· + Σϵ,(k),ijϵt,(k),ij,

where Ae,-k := Ae,K ⊗ · · · ⊗Ae,k+1 ⊗Ae,k−1 ⊗ · · · ⊗Ae,1. Then with Assumption (E2),

Cov(Et,(k),ij, Et,(k),lj) = A′
e,k,i·Ae,k,l·∥Ae,-k,j·∥2 + Σ2

ϵ,(k),ij1{i=l},

and together with Lemma 4.1,

E

(∥∥∥ T∑
t=1

Et,(k)E
′
t,(k)

∥∥∥2
F

)
=

dk∑
i=1

dk∑
l=1

E

{( T∑
t=1

d-k∑
j=1

Et,(k),ijEt,(k),lj

)2}

=

dk∑
i=1

dk∑
l=1

{ T∑
t=1

d-k∑
j=1

T∑
s=1

d-k∑
h=1

Cov(Et,(k),ijEt,(k),lj, Es,(k),ihEs,(k),lh)

+
( T∑
t=1

d-k∑
j=1

E[Et,(k),ijEt,(k),lj]
)2}

= O
(
Td2kd-k

)
+

dk∑
i=1

dk∑
l=1

O
(
TA′

e,k,i·Ae,k,l·∥Ae,-k∥2F + Td-k1{i=l}

)2
= O

(
Td2kd-k + T 2dkd

2
-k
)
.
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Recall from (4.36) it is defined that

Rk,t = QkFZ,t,(k)Q
′
-kE

′
t,(k) + Et,(k)Q-kF

′
Z,t,(k)Q

′
k + Et,(k)E

′
t,(k),

the rate on ∥∑T
t=1Rk,t∥2F is direct from (4.32) and (4.33). This completes the proof. □

Lemma 4.4 Let Assumptions (F1), (L1), (L2), (E1), (E2) and (R1) hold. For k ∈ [K], define
D̂k as the diagonal matrix with the first largest rk eigenvalues of T−1

∑T
t=1 Yt,(k)Y

′
t,(k) on the

main diagonal, such that D̂k=Q̂′
k

(
T−1

∑T
t=1Yt,(k)Y

′
t,(k)

)
Q̂k. Define ωk := d

δk,rk−δk,1
k gs, then

∥∥D̂−1
k

∥∥
F
= OP

(
ω−1
k

)
.

Proof of Lemma 4.4. Observe that D̂k has size rk × rk, it suffices to find the lower bound
of λrk(D̂k). To do this, consider the decomposition

1

T

T∑
t=1

Yt,(k)Y
′
t,(k) =

1

T

T∑
t=1

QkFZ,t,(k)Q
′
-kQ-kF

′
Z,t,(k)Q

′
k +

1

T

T∑
t=1

Rk,t, (4.34)

which is direct from (4.36). Then for a unit vector γ ∈ Rdk , we can define

Sk(γ) :=
1

ωk
γ ′
( 1
T

T∑
t=1

Yt,(k)Y
′
t,(k)

)
γ =: S∗

k(γ) + S̃k(γ), with

S∗
k(γ) :=

1

ωk
γ ′
( 1
T

T∑
t=1

QkFZ,t,(k)Q
′
-kQ-kF

′
Z,t,(k)Q

′
k

)
γ, S̃k(γ) :=

1

ωk
γ ′
( 1
T

T∑
t=1

Rk,t

)
γ.

Since ∥γ∥ = 1, we have by Lemma 4.3,

|S̃k(γ)|2 ≤
1

ω2
kT

2

∥∥∥ T∑
t=1

Rk,t

∥∥∥2
F

= OP

(
T−1d

1+2(δk,1−δk,rk )
k dg−2

s + d
2(δk,1−δk,rk−1/2)

k d2g−2
s

)
= oP (1),

where the last equality used Assumption (R1). Next, with Assumption (F1) and Lemma 4.2,

λrk

( 1
T

T∑
t=1

QkFZ,t,(k)Q
′
-kQ-kF

′
Z,t,(k)Q

′
k

)
= λrk

( 1
T

T∑
t=1

AkFt,(k)A
′
-kA-kF

′
t,(k)A

′
k

)
≥ λrk(A

′
kAk) · λrk

( 1
T

T∑
t=1

Ft,(k)A
′
-kA-kF

′
t,(k)

)
≍P d

δk,rk
k · λrk(tr(A′

-kA-k)Irk) ≍P ωk.
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With this, going back to the decomposition (4.34),

ω−1
k λrk(D̂k) = ω−1

k λrk

( 1
T

T∑
t=1

Yt,(k)Y
′
t,(k)

)
≥ ω−1

k λrk

( 1
T

T∑
t=1

QkFZ,t,(k)Q
′
-kQ-kF

′
Z,t,(k)Q

′
k

)
− sup

∥γ∥=1

|S̃k(γ)| ≍P 1,

implying
∥∥D̂−1

k

∥∥
F
= OP

(
λ−1
rk
(D̂k)

)
= OP

(
ω−1
k

)
. This completes the proof of Lemma 4.4. □

Lemma 4.5 (Consistency of {Q̂k}k∈[K]). Let Assumptions (F1), (L1), (L2), (E1), (E2) and
(R1) hold. For any k ∈ [K], define an rk × rk matrix

Hk := T−1D̂−1
k Q̂′

kQk

T∑
t=1

(
FZ,t,(k)Q

′
-kQ-kF

′
Z,t,(k)

)
.

As T, d1, . . . , dK →∞ we have Hk invertible with ∥Hk∥F = OP (1) and

∥∥Q̂k −QkH
′
k

∥∥2
F
= OP

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

g2s

}
.

Proof of Lemma 4.5. First, we may write (4.7) as

Yt = FZ,t ×1 Q1 ×2 · · · ×K QK + Et. (4.35)

For any k ∈ [K], taking the mode-k unfolding on (4.35), we have

Yt,(k) = QkFZ,t,(k)Q
′
-k + Et,(k),

where FZ,t,(k) denotes the mode-k unfolding of FZ,t. Hence,

Yt,(k)Y
′
t,(k) = QkFZ,t,(k)Q

′
-kQ-kF

′
Z,t,(k)Q

′
k +Rk,t, where

Rk,t := QkFZ,t,(k)Q
′
-kE

′
t,(k) + Et,(k)Q-kF

′
Z,t,(k)Q

′
k + Et,(k)E

′
t,(k).

(4.36)

Recall from Lemma 4.4 that D̂k is the rk×rk diagonal matrix with the first largest rk eigenvalues
of T−1

∑T
t=1 Yt,(k)Y

′
t,(k) on the main diagonal, and since Q̂k consists of the corresponding

eigenvectors, we have

Q̂kD̂k =
1

T

T∑
t=1

Yt,(k)Y
′
t,(k)Q̂k.
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With (4.36), we can write the j-th row of estimated mode-k factor loading as

Q̂k,j· =
1

T
D̂−1
k

dk∑
i=1

Q̂k,i·

T∑
t=1

(
Yt,(k)Y

′
t,(k)

)
ij

=
1

T
D̂−1
k

dk∑
i=1

Q̂k,i·Q
′
k,i·

T∑
t=1

(
FZ,t,(k)Q

′
-kQ-kF

′
Z,t,(k)

)
Qk,j· +

1

T
D̂−1
k

dk∑
i=1

Q̂k,i·

T∑
t=1

(Rk,t)ij.

Hence with the definition Hk = T−1D̂−1
k Q̂′

kQk

∑T
t=1

(
FZ,t,(k)Q

′
-kQ-kF

′
Z,t,(k)

)
, decompose

Q̂k,j· −HkQk,j· =
1

T
D̂−1
k

dk∑
i=1

Q̂k,i·

T∑
t=1

(Rk,t)ij (4.37)

=
1

T
D̂−1
k

dk∑
i=1

(
Q̂k,i· −HkQk,i·

) T∑
t=1

(Rk,t)ij +
1

T
D̂−1
k

dk∑
i=1

HkQk,i·

T∑
t=1

(Rk,t)ij. (4.38)

With the decomposition (4.37), it holds that

∥∥Q̂k −QkH
′
k

∥∥2
F
=

dk∑
j=1

∥∥Q̂k,j· −HkQk,j·
∥∥2 = dk∑

j=1

∥∥∥ 1
T
D̂−1
k

dk∑
i=1

Q̂k,i·

T∑
t=1

(Rk,t)ij

∥∥∥2
=

dk∑
j=1

∥∥∥ 1
T
D̂−1
k Q̂′

k

( T∑
t=1

Rk,t

)
j·

∥∥∥2 ≤ 1

T 2
· ∥D̂−1

k ∥2F · ∥Q̂k∥2F ·
∥∥∥ T∑
t=1

Rk,t

∥∥∥2
F

= OP

(
d
2(δk,1−δk,rk )
k

Å
1

Td-k
+

1

dk

ã
d2

g2s

)
= oP (1),

(4.39)

where the second last equality used Lemma 4.3 and 4.4, and the last used Assumption (R1).
Before improving the rate of (4.39), we now use it to show Hk has full rank and ∥Hk∥F =

OP (1) asymptotically. To this end, it is sufficient to observe

Irk = Q̂′
kQ̂k = Q̂′

k

(
Q̂k −QkH

′
k

)
+ Q̂′

kQkH
′
k = Q′

kQ̂kH
′
k + oP (1)

= HkQ
′
kQkH

′
k + oP (1) = HkΣA,kH

′
k + oP (1),

where the last equality used Assumption (L1) or (L2) and it is immediate that Hk has full rank
asymptotically. Let σi(X) denote the i-th largest singular value for any give matrix X, we have

σ1(Hk) · σrk(ΣA,k) · σrk(HT
k ) ≤ σ1(Hk) · σrk(ΣA,kH

T
k )

≤ σ1(HkΣA,kH
′
k) = OP (σ1(Irk)) = OP (1),

which implies ∥Hk∥F = OP (1) by Assumption (L1) or (L2).
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Consider the decomposition (4.38), we have

∥∥Q̂k −QkH
′
k

∥∥2
F
=

dk∑
j=1

∥∥Q̂k,j· −HkQk,j·
∥∥2

= OP

(
dk∑
j=1

∥∥∥ 1
T
D̂−1
k

dk∑
i=1

HkQk,i·

T∑
t=1

(Rk,t)ij

∥∥∥2
+

dk∑
j=1

∥∥∥ 1
T
D̂−1
k

dk∑
i=1

(
Q̂k,i· −HkQk,i·

) T∑
t=1

(Rk,t)ij

∥∥∥2)

= OP

(
dk∑
j=1

∥∥∥ 1
T
D̂−1
k Hk

dk∑
i=1

Qk,i·

T∑
t=1

(Rk,t)ij

∥∥∥2)

+OP

(
1

T 2

∥∥D̂−1
k

∥∥2
F
·
∥∥Q̂k −QkH

′
k

∥∥2
F
·
∥∥∥ T∑
t=1

Rk,t

∥∥∥2
F

)

= OP

(
T−2d

2(δk,1−δk,rk )
k g−2

s

)
·
dk∑
j=1

(
I1,j + I2,j + I3,j

)
+ oP

(∥∥Q̂k −QkH
′
k

∥∥2
F

)
,

(4.40)

where the last equality used ∥Hk∥F = OP (1), Lemma 4.3 and 4.4, and the definitions

I1,j :=
∥∥∥ dk∑
i=1

Qk,i·

T∑
t=1

Q′
k,i·FZ,t,(k)Q

′
-kEt,(k),j·

∥∥∥2,
I2,j :=

∥∥∥ dk∑
i=1

Qk,i·

T∑
t=1

E′
t,(k),i·Q-kF

′
Z,t,(k)Qk,j·

∥∥∥2,
I3,j :=

∥∥∥ dk∑
i=1

Qk,i·

T∑
t=1

E′
t,(k),i·Et,(k),j·

∥∥∥2.
By the Cauchy–Schwarz inequality,

I1,j =
∥∥∥ dk∑
i=1

Qk,i·

T∑
t=1

A′
k,i·Ft,(k)A

′
-kEt,(k),j·

∥∥∥2
≤
( dk∑
i=1

∥∥Qk,i·
∥∥2){ dk∑

i=1

( T∑
t=1

A′
k,i·Ft,(k)A

′
-kEt,(k),j·

)2}
=
∥∥Qk

∥∥2
F
·
{ dk∑

i=1

∥Ak,i·∥2
( d-k∑
h=1

T∑
t=1

A′
k,i·

∥Ak,i·∥
Ft,(k)A-k,h·Et,(k),jh

)2}
= OP

(
Td

δk,1
k d-k

)
,

where the last equality used Assumptions (L1), (L2) and Lemma 4.1.
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Consider I2,j . By Assumptions (E1) and (E2), for any t ∈ [T ], k ∈ [K], i ∈ [jk], h ∈ [d-k],

Et,(k),ih =
∑
w≥0

ae,wA
′
e,k,i·Xe,t−w,(k)Ae,-k,h· + Σϵ,(k),ih

∑
w≥0

aϵ,wXϵ,t−w,(k),ih.

By Assumptions (F1), (E1) and (E2), we first have

E

{( T∑
t=1

d-k∑
h=1

(
∑
w≥0

ae,wA
′
e,k,i·Xe,t−w,(k)Ae,-k,h·)A

′
-k,h·F

′
t,(k)Ak,j·

)2}

= Cov
( T∑
t=1

d-k∑
h=1

A′
-k,h·(

∑
w≥0

af,wX
′
f,t−w,(k))Ak,j·(

∑
w≥0

ae,wA
′
e,k,i·Xe,t−w,(k)Ae,-k,h·),

T∑
t=1

d-k∑
h=1

A′
-k,h·(

∑
w≥0

af,wX
′
f,t−w,(k))Ak,j·(

∑
w≥0

ae,wA
′
e,k,i·Xe,t−w,(k)Ae,-k,h·)

)

=

d-k∑
h=1

d-k∑
l=1

T∑
t=1

∑
w≥0

a2f,wa
2
e,w · ∥Ak,j·∥2 · ∥A-k,h·∥ · ∥A-k,l·∥ · ∥Ae,-k,h·∥ · ∥Ae,-k,l·∥ · ∥Ae,k,i·∥2

= O(T ) · ∥Ak,j·∥2∥Ae,k,i·∥2.
(4.41)

Similarly, it holds that

E

{∥∥∥ dk∑
i=1

d-k∑
h=1

T∑
t=1

Qk,i·

(
Σϵ,(k),ih

∑
w≥0

aϵ,wXϵ,t−w,(k),ih

)
A′

-k,h·F
′
t,(k)Ak,j·

∥∥∥2}

= Cov
( dk∑
i=1

d-k∑
h=1

T∑
t=1

Qk,i·

(
Σϵ,(k),ih

∑
w≥0

aϵ,wXϵ,t−w,(k),ih

)
A′

-k,h·F
′
t,(k)Ak,j·,

dk∑
i=1

d-k∑
h=1

T∑
t=1

Qk,i·

(
Σϵ,(k),ih

∑
w≥0

aϵ,wXϵ,t−w,(k),ih

)
A′

-k,h·F
′
t,(k)Ak,j·

)

=

dk∑
i=1

d-k∑
h=1

T∑
t=1

∑
w≥0

a2f,wa
2
ϵ,w · ∥Ak,j·∥2∥A-k,h·∥2Σ2

ϵ,(k),ih∥Qk,i·∥2 = O(T ) · ∥Ak,j·∥2∥A-k∥2.

(4.42)

Hence using Lemma 4.4, it holds that

I2,j =
∥∥∥ dk∑
i=1

Qk,i·

T∑
t=1

E′
t,(k),i·A-kF

′
t,(k)Ak,j·

∥∥∥2
=
∥∥∥ dk∑
i=1

Qk,i·

d-k∑
h=1

T∑
t=1

Et,(k),ihA
′
-k,h·F

′
t,(k)Ak,j·

∥∥∥2
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≤ 2
{∥∥∥ dk∑

i=1

d-k∑
h=1

T∑
t=1

Qk,i·

(
Σϵ,(k),ih

∑
w≥0

aϵ,wXϵ,t−w,(k),ih

)
A′

-k,h·F
′
t,(k)Ak,j·

∥∥∥2}

+ 2
{∥∥Qk

∥∥2 · dk∑
i=1

( T∑
t=1

d-k∑
h=1

(
∑
w≥0

ae,wA
′
e,k,i·Xe,t−w,(k)Ae,-k,h·)A

′
-k,h·F

′
t,(k)Ak,j·

)2}
= OP

(
∥Ak,j·∥2 · Td−δk,1k gs

)
where we used (4.41) and (4.42) in the last equality.

For I3,j , let re,-k :=
∏

p ̸=k re,p. By the noise structure in Assumptions (E1) and (E2),

Var
( dk∑
i=1

d-k∑
h=1

T∑
t=1

Qk,i·Et,(k),ihEt,(k),jh

)
= O

( dk∑
i=1

dk∑
u=1

d-k∑
h=1

d-k∑
l=1

T∑
t=1

re,k∑
n=1

re,-k∑
m=1

∑
w≥0

a4e,wAe,k,inAe,k,unA
2
e,k,jnA

2
e,-k,hmA

2
e,-k,lm

· ∥Qk,i·∥ · ∥Qk,u·∥ · Var(X2
e,t−w,(k),nm)

)
+O

( dk∑
i=1

d-k∑
h=1

T∑
t=1

∑
w≥0

a4ϵ,wΣ
2
ϵ,(k),ihΣ

2
ϵ,(k),jh · ∥Qk,i·∥2 · Var(Xe,t−w,(k),ihXe,t−w,(k),jh)

= O(T + Td-k) = O(Td-k).

Moreover, it also holds that

E

( dk∑
i=1

∣∣∣ d-k∑
h=1

T∑
t=1

Et,(k),ihEt,(k),jh

∣∣∣)
=

dk∑
i=1

∣∣∣ d-k∑
h=1

T∑
t=1

(
∥Ae,-k,h·∥2 · ∥Ae,k,i·∥ · ∥Ae,k,j·∥+ Σϵ,(k),ih1{i=j}

)∣∣∣ = O(Td-k),

together with maxi ∥Qk,i·∥2 ≤ ∥Ak,j·∥2 · ∥Z−1/2
k ∥2 = OP

(
d
−δk,rk
k

)
, we arrive at

I3,j =
∥∥∥ dk∑
i=1

d-k∑
h=1

Qk,i·

T∑
t=1

Et,(k),ihEt,(k),jh

∥∥∥2 = OP

(
Td-k + T 2d

−δk,rk
k d2-k

)
.

Finally, for (4.40) we have

∥∥Q̂k −QkH
′
k

∥∥2
F

= OP

{
T−2d

2(δk,1−δk,rk )
k g−2

s ·
(
Tdd

δk,1
k + T 2d

1−δk,rk
k d2-k

)}
+ oP

(∥∥Q̂k −QkH
′
k

∥∥2
F

)
= OP

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

g2s

}
.
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This completes the proof of Lemma 4.5. □

Lemma 4.6 (Consistency of Ĉt). Let all the assumptions in Lemma 4.5 hold. With {Zk}k∈[K]

from Assumptions (L1) and (L2) and {Hk}k∈[K] from the statement of Lemma 4.5, define

Z⊗ := ZK ⊗ · · · ⊗ Z1, H⊗ := HK ⊗ · · · ⊗H1, vec
(
F̂t
)
:=
(
Q̂K ⊗ · · · ⊗ Q̂1

)′vec
(
Yt
)
.

Then the estimators of the vectorised (renormalised) core factor and the i-th entry of the vec-
torised common component for (4.7) are consistent such that

∥∥vec
(
F̂t
)
− (H′

⊗)
−1vec

(
FZ,t

)∥∥2 = ∥∥vec
(
F̂t
)
− (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)∥∥2

= OP

(
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

gs

}
+

d

gw

)
, (4.43){(

vec
(
Ĉt
))
i
−
(
vec
(
Ct
))
i

}2

= OP

(
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

gsgw

}
+

d

g2w

)
. (4.44)

Proof of Lemma 4.6. By (4.7), we have

vec
(
F̂t
)
− (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)
=
(
Q̂K ⊗ · · · ⊗ Q̂1

)′vec
(
Yt
)
− (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)

=
(
Q̂K ⊗ · · · ⊗ Q̂1

)′vec
(
Ft ×Kk=1 Ak + Et

)
− (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)

=
(
Q̂K ⊗ · · · ⊗ Q̂1

)′{(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)
−
(
Q̂K ⊗ · · · ⊗ Q̂1

)}
(H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)

+
{(

Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)}′vec
(
Et
)

+
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)′vec
(
Et
)
=: If,1 + If,2 + If,3.

(4.45)

We first show by an induction argument that for any positive integer K,

∥∥(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)∥∥
F
= OP

(
max
k∈[K]

∥∥Q̂k −QkH
′
k

∥∥
F

)
. (4.46)

The initial case for K = 1 is trivial. Suppose (4.46) holds for K − 1, then

∥∥(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)∥∥
F

=
∥∥(Q̂K −QKH

′
K

)
⊗
(
Q̂K−1 ⊗ · · · ⊗ Q̂1

)
+QKH

′
K ⊗

{(
Q̂K−1 ⊗ · · · ⊗ Q̂1

)
−
(
QK−1H

′
K−1 ⊗ · · · ⊗Q1H

′
1

)}∥∥
F

= OP

(∥∥Q̂K −QKH
′
K

∥∥
F
+
∥∥(Q̂K−1 ⊗ · · · ⊗ Q̂1

)
−
(
QK−1H

′
K−1 ⊗ · · · ⊗Q1H

′
1

)∥∥
F

)
,
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which concludes (4.46). Hence for If,1, with Lemma 4.5 we immediately have

∥If,1∥2 =
∥∥∥(Q̂K ⊗ · · · ⊗ Q̂1

)′{(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)
−
(
Q̂K ⊗ · · · ⊗ Q̂1

)}
· (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)∥∥∥2

= OP

(∥∥(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)∥∥2
F
·
∥∥Z1/2

⊗ vec
(
Ft
)∥∥2)

= OP

(
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

gs

})
,

(4.47)

where the last equality used (4.46), Assumptions (F1), (L1) and (L2).
For If,2, observe first throughout the proof of Lemma 4.5, the consistency of Q̂k,j· for

k ∈ [K], j ∈ [dk] can be shown with the same argument (omitted), before eventually being
aggregated over all dk rows. That is,

∥∥Q̂k,j· −HkQk,j·
∥∥2 = OP

{
d
2(δk,1−δk,rk )−1

k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

g2s

}
. (4.48)

Then we have
∥∥Q̂k,j·

∥∥2 = OP

(∥∥Q̂k,j·−HkQk,j·
∥∥2+∥∥HkZ

−1/2
k Ak,j·

∥∥2) = OP

(
d
−δk,rk
k

)
which

used (4.48), Assumptions (L1) (or (L2)) and (R1). Note that this rate d−δk,rkk is the same as the
one for

∥∥Qk,j·
∥∥2, shown in the proof of Lemma 4.5. Moreover, it holds that for any positive

integer k that

max
ℓ∈[d]

∥∥∥[(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)]
ℓ·

∥∥∥2
= O

(
max
k∈[K]

{
max
j∈[dk]

∥∥Q̂k,j· −HkQk,j·
∥∥2 ∏

j∈[K]\{k}

max
i∈[dj ]

∥∥Q̂j,i·
∥∥2}), (4.49)

which can be shown by an induction argument for which the initial case for K = 1 is trivial,
and the induction step is seen by

max
ℓ∈[d]

∥∥∥[(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)]
ℓ·

∥∥∥2
= O

(
max
j∈[dK ]

∥∥Q̂K,j· −HKQK,j·
∥∥2 · K−1∏

k=1

max
i∈[dk]

∥∥Q̂k,i·
∥∥2

+ max
i∈[dK ]

∥QK,i·∥2 max
i∈
[∏K−1

k=1 dk

]∥∥∥[(Q̂K−1 ⊗ · · · ⊗ Q̂1

)
−
(
QK−1H

′
K−1 ⊗ · · · ⊗Q1H

′
1

)]
i·

∥∥∥2).
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Hence, for If,2 we have

∥If,2∥2 =
∥∥∥{(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)}′vec
(
Et
)∥∥∥2

= max
ℓ∈[d]

∥∥∥[(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)]
ℓ·

∥∥∥2
·

d∑
j,l=1

∣∣∣E(vec
(
Et
))
j

(
vec
(
Et
))
l

∣∣∣
= OP

(
max
k∈[K]

{
d
2δk,1−δk,rk
k

(
1

Td-kd
2−δk,1
k

+
1

d
2+δk,rk
k

)
d3

g2sgw

})
,

(4.50)

where the last equality used (4.48), (4.49) and the first result on Lemma 4.1.1.
Lastly, consider If,3. With Assumptions (L1) and (L2), we have

∥If,3∥2 =
∥∥∥(QKH

′
K ⊗ · · · ⊗Q1H

′
1

)′vec
(
Et
)∥∥∥2 = OP

(∥∥(Q′
K ⊗ · · · ⊗Q′

1

)
vec
(
Et
)∥∥2)

= OP

(∥∥Z−1/2
⊗

∥∥2
F
·
∥∥(A′

K ⊗ · · · ⊗A′
1

)
vec
(
Et
)∥∥2)

= OP

{
g−1
w ·

d∑
j=1

∥∥(vec
(
Et
))
j

(
AK ⊗ · · · ⊗A1

)
j·

∥∥2} = OP (d/gw),

(4.51)

where the last equality used (L1) and (L2) and the first result on Lemma 4.1.1 that

E

{ d∑
j=1

∥∥(vec
(
Et
))
j

(
AK ⊗ · · · ⊗A1

)
j·

∥∥2}
≤ max

j∈[d]

∥∥(AK ⊗ · · · ⊗A1

)
j·

∥∥2 d∑
j,l=1

∣∣∣E(vec
(
Et
))
j

(
vec
(
Et
))
l

∣∣∣ = O(d).

Combining (4.45), (4.47), (4.50) and (4.51), we obtain (4.43).
It remains to show (4.44). To this end, from (4.7) and (4.11) (where Ĉm,t is simplified as

Ĉt, explained in the summary of proofs), we have

vec
(
Ĉt
)
− vec

(
Ct
)
= (Q̂K ⊗ · · · ⊗ Q̂1)vec

(
F̂t
)
− vec

(
Ft ×Kk=1 Ak

)
= (Q̂K ⊗ · · · ⊗ Q̂1)vec

(
F̂t
)
− (QKH

′
K ⊗ · · · ⊗Q1H

′
1)(H

′
⊗)

−1Z
1/2
⊗ vec

(
Ft
)

= (Q̂K ⊗ · · · ⊗ Q̂1)
{

vec
(
F̂t
)
− (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)}

+
{
(Q̂K ⊗ · · · ⊗ Q̂1)− (QKH

′
K ⊗ · · · ⊗Q1H

′
1)
}
(H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)
,
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which implies that{(
vec
(
Ĉt
))
i
−
(
vec
(
Ct
))
i

}2

= OP

(
K∏
k=1

max
j∈[dk]

∥∥Q̂k,j·
∥∥2 · ∥∥vec

(
F̂t
)
− (H′

⊗)
−1Z

1/2
⊗ vec

(
Ft
)∥∥2

+max
ℓ∈[d]

∥∥∥[(Q̂K ⊗ · · · ⊗ Q̂1

)
−
(
QKH

′
K ⊗ · · · ⊗Q1H

′
1

)]
ℓ·

∥∥∥2 · ∥∥Z1/2
⊗
∥∥2
F

)

= OP

(
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

gsgw

}
+

d

g2w

)
,

where the last equality used (4.43), (4.48), (4.49), Assumptions (L1) and (L2). This completes
the proof of Lemma 4.6. □

Lemma 4.7 (Consistency of {Q̃j}j∈[v−1], Q̃V and C̃reshape,t). Let Assumptions (F1), (L1), (E1),
(E2) and (R1) hold, and consider the model (4.5). For j ∈ [v − 1], define D̃j as the rj × rj
diagonal matrix with the first largest rj eigenvalues of

1

T

T∑
t=1

reshape(Yt,A)(j)reshape(Yt,A)′(j)

on the main diagonal such that D̃j = Q̃′
j

(
T−1

∑T
t=1 reshape(Yt,A)(j)reshape(Yt,A)′(j)

)
Q̃j .

Similarly, D̃V denotes the rV × rV diagonal matrix with the first largest rV eigenvalues of

1

T

T∑
t=1

reshape(Yt,A)(v)reshape(Yt,A)′(v)

on the main diagonal. Correspondingly, define an rj × rj matrix and an rV × rV matrix that

H̃j := T−1D̃−1
j Q̃′

jQj

T∑
t=1

Freshape,Z,t,(j)F
′
reshape,Z,t,(j),

H̃V := T−1D̃−1
V Q̃′

VQV

T∑
t=1

Freshape,Z,t,(v)F
′
reshape,Z,t,(v),

where Freshape,Z,t := Freshape,t ×v−1
j=1 Z

1/2
j ×v Z

1/2
V . As T, d1, . . . , dv−1, dV → ∞ we have

{H̃j}j∈[v−1], H̃V are invertible, and for j ∈ [v−1] that ∥H̃j∥F = OP (1) and ∥H̃V ∥F = OP (1).
For each j ∈ [v − 1],

∥∥Q̃j −QjH̃
′
j

∥∥2
F
= OP

{
d
2(δj,1−δj,rj )
j

(
1

Td-kd
1−δj,1
j

+
1

d
1+δj,rj
j

)
d2

γ2s

}
, (4.52)
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∥∥Q̃V −QV H̃
′
V

∥∥2
F
= OP

{
d
2(δV,1−δV,rV

)

V

(
1

Tdd
−δV,1

V

+
1

d
1+δV,rV
V

)
d2

γ2s

}
, (4.53)

where γs is defined in Assumption (R1). Lastly, the i-th entry of the vectorised common com-
ponent in (4.5) is also consistent such that{(

vec
(
C̃reshape,t

))
i
−
(
vec
(
Creshape,t

))
i

}2

= OP

(
max
j∈[v−1]

{
d
2(δj,1−δj,rj )
j

(
1

Td-kd
1−δj,1
j

+
1

d
1+δj,rj
j

)
d2

γsγw

}

+ d
2(δV,1−δV,rV

)

V

(
1

Tdd
−δV,1

V

+
1

d
1+δV,rV
V

)
d2

γsγw
+

d

γ2w

)
,

(4.54)

where γw is defined in Assumption (R2).

Proof of Lemma 4.7. Consider (4.21), we have by Assumptions (E1) and (E2) that

reshape(Fe,t,A) =
∑
q≥0

ae,qreshape(Xe,t−q,A),

reshape(ϵt,A) =
∑
q≥0

aϵ,qreshape(Xϵ,t−q,A),

which implies that the structure depicted in (E1) and (E2) for the noise Et in (4.7) holds for
Ereshape,t in (4.5). Read reshape(Yt,A) as an order-v tensor and consider the factor model (4.5).
Statements (4.52) and (4.53) can be shown in exactly the same way as Lemma 4.5 (without (L2)
now; details omitted here), given that all rate conditions used in the proof of Lemma 4.5 are
fulfilled for (4.5). In other words, it remains to show the rate conditions similar to the last
equality of (4.39) are satisfied. For j ∈ [v − 1], (4.52) requires the same rate condition as
Lemma 4.5. Hence we are left with the rate conditions for (4.53), i.e.,

dγ−2
s T−1d

2(δV,1−δV,rV
)+1

V = o(1), dγ−1
s d

δV,1−δV,rV
−1/2

V = o(1),

which are included in Assumption (R1). With (4.52) and (4.53) shown, (4.54) follows similarly
as Lemma 4.6 (omitted). The proof of Lemma 4.7 is then complete. □

Lemma 4.8 Let Assumptions (F1), (E1) and (E2) hold. Then with the sub-Gaussian tail as-
sumption in the statement of Theorem 4.3, for any k ∈ [K] and any deterministic vectors
u ∈ Rrk and v ∈ Rr-k with constant magnitudes, for Ft in (4.7) we have

max
j∈[p]

1

(d-kT )1/2

d-k∑
h=1

T∑
t=1

Et,(k),jhu
′Ft,(k)v = OP{log(dk)}.
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The result holds similarly for reshape(Ft,A) and reshape(Et,A).

Proof of Lemma 4.8. From Assumption (F1), (E1) and (E2), we may rewrite Et,(k),jh and
u′Ft,(k)v as

Et,(k),jh = A′
e,r,j·

(∑
w≥0

ae,wXe,t−w,(k)

)
Ae,c,h· + Σϵ,(k),jh

(∑
g≥0

aϵ,gXϵ,t−g,(k),jh

)
,

u′Ft,(k)v =

rk∑
m=1

r-k∑
n=1

∑
l≥0

af,lXf,t−l,(k),mnumvn,

so that for any j ∈ [dk],

d-k∑
h=1

T∑
t=1

Et,(k),jhu
′Ft,(k)v

=

d-k∑
h=1

T∑
t=1

A′
e,r,j·

(∑
w≥0

ae,wXe,t−w,(k)

)
Ae,c,h·

rk∑
m=1

r-k∑
n=1

∑
l≥0

af,lXf,t−l,(k),mnumvn

+

d-k∑
h=1

T∑
t=1

Σϵ,(k),jh

(∑
g≥0

aϵ,gXϵ,t−g,(k),jh

) rk∑
m=1

r-k∑
n=1

∑
l≥0

af,lXf,t−l,(k),mnumvn.

(4.55)

Consider first the second term above, i.e.,

rk∑
m=1

r-k∑
n=1

umvn
∑
l≥0

∑
g≥0

af,laϵ,g

T∑
t=1

( d-k∑
h=1

Σϵ,(k),jhXϵ,t−g,(k),jh

)
Xf,t−l,(k),mn.

Fix l ≥ 0, g ≥ 0. By the sub-Gaussian tail assumption in the statement of Theorem 4.3, for each
t ∈ [T ], we have

∑d-k
h=1 Σϵ,(k),jhXϵ,t−g,(k),jh ∼ subG(C1d-k), with arbitrary constant C1 > 0

such that C1q =
∑d-k

h=1 Σ
2
ϵ,(k),jh, which is independent over g. Notice that Xf,t−l,(k),mn ∼

subG(1) by the sub-Gaussian tail, then

(

d-k∑
h=1

Σϵ,(k),jhXϵ,t−g,(k),jh)Xf,t−l,(k),mn ∼ subE(
√
C1d-k)

which is independent over t, and hence

T∑
t=1

(

d-k∑
h=1

Σϵ,(k),jhXϵ,t−g,(k),jh)Xf,t−l,(k),mn ∼ subE(
√
C1d-kT ).
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Then sum those sub-exponential random variables over l ≥ 0, g ≥ 0, we have by (E2),

∑
l≥0

∑
g≥0

af,laϵ,g

T∑
t=1

( d-k∑
h=1

Σϵ,(k),jhXϵ,t−g,(k),jh

)
Xf,t−l,(k),mn ∼ subE

(√
C2d-kT

)
,

with some arbitrary constantC2 > 0. As rk, r-k, re,k and re,-k are all constants, we conclude that
the entire second term in (4.55), together with the first term therein, are also sub-exponential
with parameter of the rate

√
d-kT . Therefore, for each j ∈ [dk], it holds that

(d-kT )
−1/2

d-k∑
h=1

T∑
t=1

Et,(k),jhu
′Ft,(k)v

is sub-exponential with parameter of constant rate. Using the union bound, with some arbitrary
constant C3 > 0, we have

P

(
max
j∈[dk]

1

(d-kT )1/2

d-k∑
h=1

T∑
t=1

Et,(k),jhu
′Ft,(k)v ≥ ε

)
≤ exp

{
log(dk)− C3ε

}
, (4.56)

implying that maxj∈[dk](d-kT )
−1/2

∑d-k
h=1

∑T
t=1Et,(k),jhu

′Ft,(k)v = OP{log(dk)}. This con-
cludes the proof for the display in the lemma, and such a result for reshape(Ft,A) and
reshape(Et,A) follows trivially by treating reshape(Ft,A) and reshape(Et,A) as another
tensor core factor and noise which have the same structure as Ft and Et, respectively. This
concludes the proof for the lemma. □

Lemma 4.9 Let all assumptions in Lemma 4.5 hold, and let the sub-Gaussian tail assumption
in the statement of Theorem 4.3 also hold. Then with Rk,t defined in (4.36) for any k ∈ [K],
we have

max
j∈[dk]

∥∥∥( T∑
t=1

Rk,t

)
·j

∥∥∥2 = OP

{
(Td+ T 2d2-k) log

2(dk)
}
.

Proof of Lemma 4.9. Essentially, we need to show similar results in Lemma 4.3. To this
end, we show the corresponding versions of (4.32) and (4.33). To start with, using Lemma 4.8,
we have for any k ∈ [K],

max
j∈[dk]

∥∥∥( T∑
t=1

QkFZ,t,(k)Q
′
-kE

′
t,(k)

)
·j

∥∥∥2
F

=

dk∑
i=1

∥Ak,i·∥2 max
j∈[dk]

( d-k∑
h=1

T∑
t=1

Et,(k),jh
1

∥Ak,i·∥
A′
k,i·Ft,(k)A-k,h·

)2
= OP

{
Td

δk,1
k d-k log

2(dk)
}
.
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Similarly,

max
j∈[dk]

∥∥∥( T∑
t=1

Et,(k)Q-kF
′
Z,t,(k)Q

′
k

)
·j

∥∥∥2
F

= max
j∈[dk]

{
∥Ak,j·∥2 ·

dk∑
l=1

( d-k∑
h=1

T∑
t=1

Et,(k),lh
1

∥Ak,j·∥
A′
k,j·Ft,(k)A-k,h·

)2}
≤ max

j∈[dk]
∥Ak,j·∥2 max

j∈[dk]

dk∑
l=1

( d-k∑
h=1

T∑
t=1

Et,(k),lh
1

∥Ak,j·∥
A′
k,j·Ft,(k)A-k,h·

)2
= OP

{
Td log2(dk)

}
.

Next, consider

max
j∈[dk]

∥∥∥ T∑
t=1

(
Et,(k)E

′
t,(k)

)
·j

∥∥∥2
F
= max

j∈[dk]

dk∑
i=1

( T∑
t=1

d-k∑
h=1

Et,(k),ihEt,(k),jh

)2
. (4.57)

Given j ∈ [dk], first consider first i ̸= j. By Assumption (E1) and (E2), we can write

Et,(k),jh =

re,k∑
m=1

re,-k∑
n=1

Ae,k,jmAe,-k,hn

(∑
w≥0

ae,wXe,t−w,(k),mn

)
+ Σϵ,(k),jh

(∑
g≥0

aϵ,gXϵ,t−g,(k),jh

)
,

Et,(k),ih =

re,k∑
τ=1

re,-k∑
γ=1

Ae,k,iτAe,-k,hγ

(∑
l≥0

ae,lXe,t−l,(k),τγ

)
+ Σϵ,(k),ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,(k),ih

)
.

Then among all terms in the expansion of
∑T

t=1

∑d-k
h=1Et,(k),ihEt,(k),jh, consider

∑
g≥0

∑
ξ≥0

aϵ,gaϵ,ξ

T∑
t=1

d-k∑
h=1

Σϵ,(k),jhΣϵ,(k),ihXϵ,t−g,(k),jhXϵ,t−ξ,(k),ih.

Fix g ≥ 0 and ξ ≥ 0, then it is direct from the sub-Gaussian tail that

Σϵ,(k),jhΣϵ,(k),ihXϵ,t−g,(k),jhXϵ,t−ξ,(k),ih

is sub-exponential with parameter of constant order and independent over h ∈ [d-k] and t ∈
[T ]. This implies

∑T
t=1

∑d-k
h=1 Σϵ,(k),jhΣϵ,(k),ihXϵ,t−g,(k),jhXϵ,t−ξ,(k),ih is sub-exponential with

parameter of order (Td-k)
1/2, which hence also holds true for

∑
g≥0

∑
ξ≥0

aϵ,gaϵ,ξ

T∑
t=1

d-k∑
h=1

Σϵ,(k),jhΣϵ,(k),ihXϵ,t−g,(k),jhXϵ,t−ξ,(k),ih
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by Assumption (E2). Thus,

max
j∈[dk]

dk∑
i ̸=j

{ T∑
t=1

d-k∑
h=1

Σϵ,(k),jh

(∑
g≥0

aϵ,gXϵ,t−g,(k),jh

)
Σϵ,(k),ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,(k),ih

)}2

= OP

{
Td log2(dk)

}
.

(4.58)

Using the same argument above, with the independence between {Xe,t} and {Xϵ,t} from
(E2), we have

max
j∈[dk]

dk∑
i=1

{ T∑
t=1

d-k∑
h=1

re,k∑
m=1

re,-k∑
n=1

Ae,k,jmAe,-k,hn

·
(∑
w≥0

ae,wXe,t−w,(k),mn

)
Σϵ,(k),ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,(k),ih

)}2

= OP

(
Td log2(dk)

)
,

max
j∈[dk]

dk∑
i=1

{ T∑
t=1

d-k∑
h=1

Σϵ,(k),jh

(∑
g≥0

aϵ,gXϵ,t−g,(k),jh

)
·
re,k∑
τ=1

re,-k∑
γ=1

Ae,k,iτAe,-k,hγ

(∑
l≥0

ae,lXe,t−l,(k),τγ

)}2

= OP

{
Td log2(dk)

}
.

(4.59)

In the expansion of
∑T

t=1

∑d-k
h=1Et,(k),ihEt,(k),jh for any i ∈ [dk], consider now

∑
w≥0

∑
l≥0

ae,wae,l

T∑
t=1

d-k∑
h=1

re,k∑
m,τ=1

re,-k∑
n,γ=1

Ae,k,iτAe,-k,hγAe,k,jmAe,-k,hnXe,t−w,(k),mnXe,t−l,(k),τγ,

which is sub-exponential with mean of order T and parameter of order ∥Ae,k∥∞ · (T )1/2 by
Assumption (E1), (E2) and the sub-Gaussian tail. Hence by the sparsity of Ae,k according to
(E1) again,

max
j∈[dk]

dk∑
i=1

{ T∑
t=1

d-k∑
h=1

re,k∑
m=1

re,-k∑
n=1

Ae,k,jmAe,-k,hn

(∑
w≥0

ae,wXe,t−w,(k),mn

)
re,k∑
τ=1

re,-k∑
γ=1

Ae,k,iτAe,-k,hγ

(∑
l≥0

ae,lXe,t−l,(k),τγ

)}2

= OP

{
T 2 log2(dk)

}
.

(4.60)

To bound (4.57), it remains to consider

∑
g≥0

∑
ξ≥0

aϵ,gaϵ,ξ

T∑
t=1

d-k∑
h=1

Σ2
ϵ,(k),jhX

2
ϵ,t−g,(k),jh,
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which is sub-exponential with parameter of order (Td-k)
1/2, similar to the case as in (4.58),

except that the mean is of order Td-k. Therefore,

max
j∈[dk]

1{i = j}
{ T∑

t=1

d-k∑
h=1

Σϵ,(k),jh

(∑
g≥0

aϵ,gXϵ,t−g,(k),jh

)
Σϵ,(k),ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,(k),ih

)}2

= OP

{
T 2d2-k log

2(dk)
}
.

(4.61)

Finally for (4.57), combining (4.58), (4.59), (4.60) and (4.61), we have

max
j∈[dk]

∥∥∥ T∑
t=1

(
Et,(k)E

′
t,(k)

)
·j

∥∥∥2
F
= OP

{
(Td+ T 2d2-k) log

2(dk)
}
.

This concludes the proof of the lemma. □

Lemma 4.10 Let all assumptions in Lemma 4.9 hold. Then we have

max
j∈[dk]

∥∥Q̂k,j· −HkQk,j·
∥∥2 = OP

{
d
2(δk,1−δk,rk )
k

( 1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)d2
g2s

log2(dk)
}
,

(4.62)

max
t∈[T ]

∥∥vec(F̂t)− (H′
⊗)

−1vec(FZ,t)
∥∥2

= OP

([
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

( 1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)d2
gs

}
+

d

gw

]
log2(T )

)
. (4.63)

Thus, we have

max
i∈[d],t∈[T ]

{(
vec(Ĉt)

)
i
−
(
vec(Ct)

)
i

}2

= OP

([
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

( 1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

) d2

gsgw

}
+

d

g2w

]
log2(T )

K∏
k=1

log2(dk)
)
.

Similarly,

max
i∈[d],t∈[T ]

{(
vec(C̃reshape,t)

)
i
−
(
vec(Creshape,t)

)
i

}2

= OP

([
max
j∈[v−1]

{
d
2(δj,1−δj,rj )
j

( 1

Td-kd
1−δj,1
j

+
1

d
1+δj,rj
j

) d2

γsγw

}

+ d
2(δV,1−δV,rV

)

V

( 1

Tdd
−δV,1

V

+
1

d
1+δV,rV
V

) d2

γsγw
+

d

γ2w

]
log2(T ) log2(dV )

v−1∏
k=1

log2(dk)
)
.
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Proof of Lemma 4.10. To see (4.62), from the proof of (4.39) in Lemma 4.5, we have

max
j∈[dk]

∥∥Q̂k,j· −HkQk,j·
∥∥2 = max

j∈[dk]

∥∥∥T−1D̂−1
k Q̂′

k

( T∑
t=1

Rk,t

)
·j

∥∥∥2
≤ T−2 · ∥D̂−1

k ∥2F · ∥Q̂k∥2F · max
j∈[dk]

∥∥∥( T∑
t=1

Rk,t

)
·j

∥∥∥2
F

= OP

{
d
2(δk,1−δk,rk )
k g−2

s (T−1d+ d2-k) log
2(dk)

}
,

where the last equality used Lemma 4.4 and Lemma 4.9. With the rate further refined as in and
(4.40) and repeat the procedures in the proof of Lemma 4.9, we conclude maxj∈[dk]

∥∥Q̂k,j· −
HkQk,j·

∥∥2 is inflated by log2(dk) compared to the rate in Lemma 4.5.
For (4.63), by inspecting (4.45), it suffices to characterize the change from the rate of ∥Ft∥2F

to the rate of maxt∈[T ] ∥Ft∥2F , while all other rates follow the similar arguments in the proof
of Lemma 4.9 by using sub-exponential distributions. With the sub-Gaussian tail, ∥Ft∥2F is
sub-exponential with both mean and parameter of constant order, so that maxt∈[T ] ∥Ft∥2F =

OP{log2(T )}. By checking all the rates in the expansion (4.45) are inflated by log2(T ), (4.63)
is hence concluded.

Finally, with all previous results and recall the expansion of vec(Ĉt)−vec(Ct) in the proof
of Lemma 4.6, the rate of maxi∈[d],t∈[T ]{(vec(Ĉt))i − (vec(Ct))i}2 is inflated by

log2(T )
K∏
k=1

log2(dk)

compared to the individual rate of {(vec(Ĉt))i − (vec(Ct))i}2. The result for C̃reshape,t holds
similarly by all previous arguments and the proof of Lemma 4.7, except that the dimension is
different. This ends the proof of the lemma. □

Proof of Theorem 4.1. Let A = {a1, . . . , aℓ} be given. We first show that the Tucker-
decomposition tensor factor model (4.4) implies (4.3) with Areshape,K−ℓ+1 ∈ Kda1×···×daℓ . Sup-
pose Yt = Ft ×Kk=1 Ak + Et.

Consider first ℓ = 1. With any A = {a1} (hence the corresponding A∗ = [K] \ A as
defined in Theorem 4.1), it is direct that

reshape
(
Yt,A

)
= reshape

(
Ft ×Kk=1 Ak + Et,A

)
= reshape

(
Ft ×Kk=1 Ak, {a1}

)
+ reshape

(
Et,A

)
= foldK

(
mata1(Ft ×Kk=1 Ak), {d1, . . . , da1−1, da1+1, . . . , dK , da1}

)
+ reshape

(
Et,A

)
= foldK

(
Aa1mata1(Ft)A′

-a1 , {d1, . . . , da1−1, da1+1, . . . , dK , da1}
)
+ reshape

(
Et,A

)
,

= reshape
(
Ft,A

)
×K−1
i=1 AA∗

i
×K Aa1 + reshape

(
Et,A

)
,
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where the last equality used the fact that

matK
{

reshape
(
Ft,A

)
×K−1
i=1 AA∗

i
×K Aa1

}
= Aa1matK

{
reshape

(
Ft, {a1}

)}
A′

-a1

= Aa1matK
{

foldK
(
mata1(Ft), {d1, . . . , da1−1, da1+1, . . . , dK , da1}

)}
A′

-a1

= Aa1mata1(Ft)A′
-a1 .

(4.64)

Hence, Yt follows (4.3) with variables defined according to Theorem 4.1, and the model has a
Kronecker structure product since Aa1 ∈ Kda1 .

Consider ℓ = 2 (implying at least K = 2). In the following, we use the neater notation that
mode-k unfolding of some tensor X is X(k). Without loss of generality, let A = {a, b} (with
a < b) and the correspondingA∗ = [K] \A. Take the mode-b unfolding on each Yt, we obtain

Yt,(b) = AbFt,(b)

(
AK ⊗ · · · ⊗Ab+1 ⊗Ab−1 ⊗ · · · ⊗Aa ⊗ · · · ⊗A1

)′
+ Et,(b),

then for each row (as a column vector) of Yt,(b), we fold it back to an order-(K − 1) tensor
along the remaining dimensions, i.e., for any i-th row Yt,(b),i· with i ∈ [db],

Yt,(b),i := fold
(
Yt,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)
= fold

{(
AK ⊗ · · · ⊗Ab+1 ⊗Ab−1 ⊗ · · · ⊗Aa ⊗ · · · ⊗A1

)
· F′

t,(b)Ab,i·, {d1, . . . , db−1, db+1, . . . , dK}
}
+ fold

(
Et,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)
= fold

(
F′
t,(b)Ab,i·, {r1, . . . , rb−1, rb+1, . . . , rK}

)
×b−1
k=1 Ak ×K−1

h=b Ah+1

+ fold
(
Et,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)
.

DefineA-b,-a := AK⊗· · ·⊗Ab+1⊗Ab−1⊗· · ·⊗Aa+1⊗Aa−1⊗· · ·⊗A1, where by convention
A-b,-a = 1 if K = 2. Take the mode-a unfolding on Yt,(b),i, we have

(
Yt,(b),i

)
(a)

= Aa

{
fold

(
F′
t,(b)Ab,i·, {r1, . . . , ra−1, ra+1, . . . , rK}

)}
(a)
A′

-b,-a

+
{

fold
(
Et,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)}
(a)

=

rb∑
j=1

Aa

{
fold

(
Ab,ijFt,(b),j·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)
A′

-b,-a

+
{

fold
(
Et,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)}
(a)

=
(
A′
b,i· ⊗ Ida

)(
Irb ⊗Aa

)Ü{
fold

(
Ft,(b),1·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)
A′

-b,-a

. . .{
fold

(
Ft,(b),rb·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)
A′

-b,-a

ê
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+
{

fold
(
Et,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)}
(a)

=
(
A′
b,i· ⊗Aa

)Ü{
fold

(
Ft,(b),1·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)

. . .{
fold

(
Ft,(b),rb·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)

ê
A′

-b,-a

+
{

fold
(
Et,(b),i·, {d1, . . . , db−1, db+1, . . . , dK}

)}
(a)
.

Therefore,

Yt,a∼b =

Ü (
Yt,(b),1

)
(a)

. . .(
Yt,(b),db

)
(a)

ê
=
(
Ab ⊗Aa

)Ü{
fold

(
Ft,(b),1·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)

. . .{
fold

(
Ft,(b),rb·, {r1, . . . , rb−1, rb+1, . . . , rK}

)}
(a)

ê
A′

-b,-a

+

Ü{
fold

(
Et,(b),1·, {d1, . . . , db−1, db+1, . . . , dK}

)}
(a)

. . .{
fold

(
Et,(b),db·, {d1, . . . , db−1, db+1, . . . , dK}

)}
(a)

ê
,

so that by definition of the reshape operator with ℓ = 2,

reshape(Yt, {a, b})=foldK−1(Yt,a∼b, {d1, . . . , da−1, da+1, . . . , db−1, db+1, . . . , dK , dadb})
= reshape(Ft, {a, b})×K−2

i=1 AA∗
i
×K−1 (Ab ⊗Aa) + reshape(Et, {a, b}),

where the last line used similar arguments (omitted) as (4.64). This implies Yt follows (4.3)
with a Kronecker structure product as (Ab ⊗Aa) ∈ Kda×db .

Finally, consider any ℓ ≥ 3. We use an induction argument. With the definition of tensor
reshape in Section 4.2 and the above for ℓ = 2, the initial case ℓ = 3 can be shown by

reshape(Yt, {a1, a2, a3}) = reshape
{

reshape(Yt, {a2, a3}), {a1, K − 1}
}

= reshape
{

reshape(Ft, {a2, a3})×K−2
i=1 A[[K]\{a2,a3}]i ×K−1 (Aa3 ⊗Aa2)

+ reshape(Et, {a2, a3}), {a1, K − 1}
}

= reshape
{

reshape(Ft, {a2, a3}), {a1, K − 1}
}
×K−3
i=1 A[([K]\{a2,a3})\{a1}]i

×K−2 (Aa3 ⊗Aa2 ⊗Aa1) + reshape
{

reshape(Et, {a2, a3}), {a1, K − 1}
}

= reshape(Ft, {a1, a2, a3})×K−3
i=1 A[[K]\{a1,a2,a3}]i ×K−2 (Aa3 ⊗Aa2 ⊗Aa1)

+ reshape(Et, {a1, a2, a3}),

(4.65)
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where the last equality used again the definition of tensor shape and that (Aa3 ⊗Aa2 ⊗Aa1) ∈
Kda1×da2×da3 . Now if for all ℓ ∈ [L] with L ≥ 3, (4.4) implies (4.3) with Areshape,K−ℓ+1 ∈
Kda1×···×daℓ , which is then also true for ℓ = L + 1 in a similar argument (omitted) as (4.65).
This completes the induction.

Given any A, note also that if Assumption (F1) holds with Xreshape,t and Freshape,t replaced
by Xt and Ft respectively (with Xt and Ft from (4.19)), then it is immediate from the linearity
of the reshape operator that

Freshape,t = reshape(Ft,A) = reshape
(∑
w≥0

af,wXf,t−w,A
)
=
∑
w≥0

af,wreshape(Xf,t−w,A),

which implies Freshape,t follows Assumption (F1) by Xreshape,t = reshape(Xf,t,A).
We have now proved that (4.4) uniquely implies (4.3) with Areshape,K−ℓ+1 ∈ Kda1×···×daℓ ,

and a version of Assumption (F1) on {Ft} (from (4.19)) implies Assumption (F1) on Freshape,t.
It remains to show the other way around (for some A), but all the previous steps are reversible
(note that in particular, the reshape operator is reversible as long as the dimension of the original
tensor is known) and Areshape,K−ℓ+1 ∈ Kda1×···×daℓ ensures the existence of an appropriate set
of low-rank matrices. Therefore, the proof for the theorem is completed. □

Proof of Theorem 4.2. Under H0, consider (4.7). Since there exists m ∈ [|R|] such that

(πm,1, . . . , πm,K−v+1) = (rv, . . . , rK),

we only consider such m and simplify Ĉm,t as Ĉt and Êm,t as Êt (see the explanation at the
beginning of Section 4.7). By (4.12) and Assumption (E1),

Êt,(k∗) = matk∗(Êt) = matk∗((Ct − Ĉt) + Fe,t ×1 Ae,1 ×2 · · · ×K Ae,K +Σϵ ∗ ϵt)
= (Ct − Ĉt)(k∗) +Ae,k∗Fe,t,(k∗)A

′
e,-k∗ +Σϵ,(k∗) ∗ ϵt,(k∗),

where Ae,-k∗ := Ae,K ⊗ · · · ⊗ Ae,k∗+1 ⊗ Ae,k∗−1 ⊗ · · · ⊗ Ae,1. Hence, for any t ∈ [T ] and
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j ∈ [d/d∗k], we have

1

dk∗

dk∗∑
i=1

(
Ê2
t,(k∗),ij − Σ2

ϵ,(k∗),ij

)
=

1

dk∗

(
Ê′
t,(k∗)Êt,(k∗)

)
jj
− 1

dk∗

dk∗∑
i=1

Σ2
ϵ,(k∗),ij =

6∑
h=1

Ie,h,

where Ie,1 :=
1

dk∗

{(
Σϵ,(k∗) ∗ ϵt,(k∗)

)′(
Σϵ,(k∗) ∗ ϵt,(k∗)

)}
jj
− 1

dk∗

dk∗∑
i=1

Σ2
ϵ,(k∗),ij,

Ie,2 :=
1

dk∗

{
(Ct − Ĉt)′(k∗)(Ct − Ĉt)(k∗)

}
jj
,

Ie,3 :=
1

dk∗

{
Ae,-k∗F

′
e,t,(k∗)A

′
e,k∗Ae,k∗Fe,t,(k∗)A

′
e,-k∗
}
jj
,

Ie,4 := OP

(
d−1
k∗

{
(Ct − Ĉt)′(k∗)Ae,k∗Fe,t,(k∗)A

′
e,-k∗
}
jj

)
,

Ie,5 := OP

(
d−1
k∗

{
(Ct − Ĉt)′(k∗)

(
Σϵ,(k∗) ∗ ϵt,(k∗)

)}
jj

)
,

Ie,6 := OP

(
d−1
k∗

{
Ae,-k∗F

′
e,t,(k∗)A

′
e,k∗

(
Σϵ,(k∗) ∗ ϵt,(k∗)

)}
jj

)
.

(4.66)

Consider Ie,2. From Lemma 4.6, recall that

{(
vec
(
Ĉt
))
i
−
(
vec
(
Ct
))
i

}2
= OP

(
max
k∈[K]

{
d
2(δk,1−δk,rk )
k

(
1

Td-kd
1−δk,1
k

+
1

d
1+δk,rk
k

)
d2

gsgw

}
+

d

g2w

)
,

which is the squared error for each entry of Ĉt. With Assumption (R2), the above squared error
rate is o

(
1/mink∈[K]{dk}

)
= o
(
d−1
k∗

)
. Hence Ie,2 = oP

(
d−1
k∗

)
.

With Assumption (E1), ∥Ae,k∗∥F = O(1), ∥Ae,-k∗∥F = O(1) and re,k for k ∈ [K] are
finite, so that Ie,3, Ie,6 = OP

(
d−1
k∗

)
. By the Cauchy–Schwarz inequality, immediately Ie,4 =

OP

(
I1/2e,2 · I1/2e,3

)
= oP

(
d−1
k∗

)
.

Consider Ie,1, noting that

Ie,1 =
1

dk∗

dk∗∑
i=1

Σ2
ϵ,(k∗),ij

(
ϵ2t,(k∗),ij − 1

)
,

so that with Theorem 1 in Ayvazyan and Ulyanov (2023), we have

Zj,t :=
d−1
k∗
∑dk∗

i=1 Σ
2
ϵ,(k∗),ij

(
ϵ2t,(k∗),ij − 1

)»
d−2
k∗
∑dk∗

i=1 Var
(
ϵ2t,(k∗),ij

)
Σ4
ϵ,(k∗),ij

D−→ N (0, 1),

implying Ie,1 is of the rate d−1/2
k∗ exactly. Note that Zj,t’s are independent of each other by
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Assumption (E1). It also follows that Ie,5 = OP

(
I1/2e,2 I1/2e,1

)
= oP

(
d
−3/4
k∗

)
. Finally, with (4.66),

∑dk∗
i=1

(
Ê2
t,(k∗),ij − Σ2

ϵ,(k∗),ij

)»∑dk∗
i=1 Var(ϵ2t,(k∗),ij)Σ4

ϵ,(k∗),ij

=
d−1
k∗
∑dk∗

i=1

(
Ê2
t,(k∗),ij − Σ2

ϵ,(k∗),ij

)»
d−2
k∗
∑dk∗

i=1 Var(ϵ2t,(k∗),ij)Σ4
ϵ,(k∗),ij

= Zj,t(1 + oP (1))
p−→ Zj,t

D−→ N (0, 1).

This shows the asymptotic result for Êt in Theorem 4.2 (i.e., the first asymptotic result). The
result for Ẽt can be shown in the same manner, except that for Ie,2, we use Assumption (R2) on
the squared error for each entry of C̃reshape,t which is the following from Lemma 4.7,

{(
vec
(
C̃reshape,t

))
i
−
(
vec
(
Creshape,t

))
i

}2
= OP

(
max
j∈[v−1]

{
d
2(δj,1−δj,rj )
j

(
1

Td-kd
1−δj,1
j

+
1

d
1+δj,rj
j

)
d2

γsγw

}

+ d
2(δV,1−δV,rV

)

V

(
1

Tdd
−δV,1

V

+
1

d
1+δV,rV
V

)
d2

γsγw
+

d

γ2w

)
.

Under H0, we arrive at the same conclusion with the same Zj,t’s. Moreover, the asymptotic
result for Êt holds true under H1. This concludes the proof of the theorem. □

Proof of Theorem 4.3. We work with the exact m ∈ [|R|] satisfying the statement of
Theorem 4.2. Firstly, using triangle inequality, for each t ∈ [T ], j ∈ [d/d∗k], consider

max
t∈[T ]
|xj,t − ym,j,t| ≤ max

t∈[T ]

∣∣∣ 1

dk∗

dk∗∑
i=1

(
Ê2
t,(k∗),ij − Ẽ2

t,(k∗),ij

)∣∣∣ ≤ 6∑
ℓ=2

max
t∈[T ]

(|Ie,ℓ|+ |Ĩe,ℓ|),

where Ie,ℓ, ℓ = 2, . . . , 6 is defined as in (4.66), and Ĩe,ℓ for ℓ = 2, . . . , 6 is defined exactly the
same as Ie,ℓ, except that Ĉt is replaced by C̃reshape,t.

From Lemma 4.10, the uniform error rates for Ĉt and C̃reshape,t is

max
i∈[d],t∈[T ]

{∣∣(vec
(
Ĉt
))
i
−
(
vec
(
Ct
))
i

∣∣, ∣∣(vec
(
C̃reshape,t

))
i
−
(
vec
(
Creshape,t

))
i

∣∣}
= OP

{[
max
k∈[K]

{
d
δk,1−δk,rk
k

(
1

(Td-kd
1−δk,1
k )1/2

+
1

d
(1+δk,rk )/2

k

)
d

(gsgw)1/2

}
+
d1/2

gw

]

· log(T )
K∏
k=1

log(dk) +

[
max
j∈[v−1]

{
d
δj,1−δj,rj
j

(
1

(Td-kd
1−δj,1
j )1/2

+
1

d
(1+δj,rj )/2

j

)
d

(γsγw)1/2

}

+ d
δV,1−δV,rV
V

(
1

(Tdd
−δV,1

V )1/2
+

1

d
(1+δV,rV

)/2

V

)
d

(γsγw)1/2
+
d1/2

γw

]
log(T ) log(dV )

v−1∏
k=1

log(dk)

}
,

(4.67)
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which is denoted by OP{ϱ(T, d1, . . . , dK)} for simplicity. From the proof of Theorem 4.2, we
can see that Ie,5 and also Ĩe,5 have the slowest rate of convergence for a fixed indices t ∈ [T ]

and i ∈ [d]. Taking maximum over all possible indices, using the sub-Gaussian tail and (4.67),
we thus have

max
t∈[T ]
|xj,t − ym,j,t| = OP (Ie,5 + Ĩe,5)

= max
i∈[d],t∈[T ]

{∣∣(vec
(
Ĉt
))
i
−
(
vec
(
Ct
))
i

∣∣, ∣∣(vec
(
C̃reshape,t

))
i
−
(
vec
(
Creshape,t

))
i

∣∣}
·OP ( max

i∈[d],t∈[T ]
|(Σϵ ∗ ϵt)i|)

= OP

{
ϱ(T, d1, . . . , dK) log(T )

K∏
k=1

log(dk)
}
.

(4.68)

Next, we assess the approximate “gap” size of the xj,t’s over t ∈ [T ]. To this end, using
Theorem 4.2, and the fact that

∑dk∗
i=1 var(ϵ2t,(k∗),ij)Σ4

ϵ,(k∗),ij has order dk∗ , we have

xj,t ≍P d−1
k∗

dk∗∑
i=1

Σ2
ϵ,(k∗),ij +

1

d
1/2
k∗

Zj,t ≍P d−1
k∗

dk∗∑
i=1

Σ2
ϵ,(k∗),ij + d

−1/2
k∗ , (4.69)

showing that the “gap” between two ordered xj,t’s is OP (T
−1d

−1/2
k∗ ).

With the “gap” size and uniform error in (4.68), consider

sup
c∈R
|Fy,m,j(c)− Fx,j(c)| = sup

c∈R

∣∣∣ 1
T

T∑
t=1

[
1{ym,j,t ≤ c} − 1{xj,t ≤ c}

]∣∣∣
≤ sup

c∈R

∣∣∣ 1
T

T∑
t=1

[
1{xj,t ±max

t∈[T ]
|xj,t − ym,j,t| ≤ c} − 1{xα,t ≤ c}

]∣∣∣
= OP

{ 1

T
max
t∈[T ]
|xα,t − yα,t|

/(
T−1d

−1/2
k∗

)}
= OP

{
ϱ(T, d1, . . . , dK)d

1/2
k∗ log(T )

K∏
k=1

log(dk)
}
,

where the last line used (4.68). Hence in particular,

Py,m,j{ym,j,t > q̂x,j(α)} = 1−Py,m,j{ym,j,t ≤ q̂x,j(α)} = 1− Fy,m,j(q̂x,j(α))
≤ 1− Fx,j(q̂x,j(α)) + sup

c∈R
|Fy,m,j(c)− Fx,j(c)|

≤ α +OP

{
ϱ(T, d1, . . . , dK)d

1/2
k∗ log(T )

K∏
k=1

log(dk)
}
,

which is the desired result we want, and this completes the proof of the theorem. □

Proof of Theorem 4.4. Let Yt ∈ Rd1×···×dK be an order-K tensor and A = {a1, . . . , aℓ}.
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Then each reshape(Yt,A) is an order-(K−ℓ+1) tensor. If
{

reshape(Yt,A)
}

has a Kronecker
product structure, then Theorem 4.1 allows us to write for t ∈ [T ],

reshape(Yt,A) = Freshape,t ×K−ℓ
j=1 Areshape,j ×K−ℓ+1 Areshape,K−ℓ+1 + Ereshape,t, (4.70)

for some core factor {Freshape,t}, loading matrices {Areshape,j}j∈[K−ℓ+1], and noise Ereshape,t. Im-
mediately by Definition 4.2, if Areshape,K−ℓ+1 ∈ Kda1×···×daℓ , then Yt has a Kronecker product
structure; otherwise, {Yt} has no Kronecker product structure along A.

It remains to show that if {Yt} either has a Kronecker product structure or has no Kronecker
product structure along some set A∗, then

{
reshape(Yt,A)

}
with A∗ ⊆ A has a Kronecker

product structure. The case where {Yt} has a Kronecker product structure is trivial. We then
only need to consider that {Yt} has no Kronecker product structure alongA∗, which implicitly
assume a factor model of {Yt} along A∗ by Definition 4.2. Without loss of generality, let
A∗ := {K − g + 1, . . . , K}, otherwise redefine the mode indices of Yt. For the set A with
A∗ ⊆ A, we now read A = {a1, . . . , aℓ−g, K − g + 1, . . . , K}. Using the last property of
tensor reshape in Section 4.2 (which can be easily seen by induction), we have

reshape(Yt,A) = reshape
{

reshape(Yt,A∗), {a1, . . . , aℓ−g, K − g + 1}
}
. (4.71)

Now that {Yt} has no Kronecker product structure along A∗, similar to the form (4.70), we
have for t ∈ [T ],

reshape(Yt,A∗) = F∗
reshape,t ×K−g

j=1 A∗
reshape,j ×K−g+1 A

∗
reshape,K−g+1 + E∗reshape,t,

which implies the time series {reshape(Yt,A∗)} follows a Tucker-decomposition TFM. Ac-
cording to Theorem 4.1, {reshape(Yt,A∗)} follows a factor model along any index set of
{reshape(Yt,A∗)} (with Kronecker product structure; but the factor model form is sufficient
for our claim). In particular, with the index set {a1, . . . , aℓ−g, K − g + 1}, we conclude from
(4.71) that {reshape(Yt,A)} has a Kronecker product structure. This also completes the proof
of the theorem. □
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Chapter 5

Matrix-Valued Factor Model with
Time-Varying Main Effects

5.1 Introduction

Matrix-valued time series factor models, a generalisation of vector time series factor models,
have been utilised a lot for dimension reduction and prediction in recent years in fields such
as finance, economics, medical science and meteorology. Important earlier theoretical and
methodological developments include Wang et al. (2019), Chen et al. (2020), Chen and Fan
(2023) and He et al. (2024b), which are all on matrix-valued factor models using the Tucker
decomposition for the common component. Chang et al. (2023) uses the CP decomposition for
the common component, while Guan (2024) considers Tucker decomposition of the common
component but taking in covariates in the loadings. See a detailed survey of matrix factor
models in Section 2.3.4. With Tucker decomposition, a matrix-valued time series factor model
(FM) can be written as

Yt = µ+RFtC
′ + Et, (5.1)

where Yt ∈ Rp×q is the observed matrix at time t, µ ∈ Rp×q is the mean matrix, R ∈
Rp×kr and C ∈ Rq×kc are the row and column factor loading matrices respectively, Ft ∈
Rkr×kc is the core factor matrix at time t, and finally Et ∈ Rp×q is the noise matrix at time
t. If we set R := (αp×r, R̃p×(kr−r−ℓ),1p×ℓ), C := (1q×r, C̃q×(kc−r−ℓ),γq×ℓ) and Ft :=

diag((gt)r×r, (F̃t)(kr−r−ℓ)×(kc−r−ℓ), (ht)ℓ×ℓ) (He et al., 2023a), where 1m×n is a matrix of ones
of size m× n, then (5.1) becomes

Yt = µ+αgt1r×q + 1p×ℓhtγ
′ + R̃F̃tC̃

′ + Et. (5.2)

If the rows of Yt represent different countries and the columns represent different economic
indicators, then since the j-th row of αgt1r×q is α′

j·gt1r×q, where αj· is the j-th row of α as
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a column vector, it means that each element in the j-th row is the same, with value α′
j·gt1r.

Hence we can argue that gt represents common global factors affecting all countries, although
each country loads differently on gt. Similarly, ht represents latent economic states across
different economic indicators. The term R̃F̃tC̃

′ can be viewed as an interaction term, while
αgt1r×q the countries’ main effects, and 1p×ℓhtγ

′ the economic states’ main effects.
Three problems arise upon inspecting (5.1) and (5.2) however. Firstly, for (5.1) to transform

to (5.2), R and C are both of reduced rank. In the literature for model (5.1), we always need R

and C to be of full rank at least asymptotically (see for example, Assumption (B2) in He et al.
(2023a) or Equation (8) in Chen and Fan (2023)) for estimation purpose.

Secondly, model (5.2) is not general enough, unless r and ℓ can be large. For example, if r is
small, each country is driven only by few global common factors affecting all countries, on top
of the factors in F̃t. This will not be a problem, if not for the fact that there can be latent common
factors only driving a small group of countries/economic indicators. For instance, there can be
a few small European countries which do not share global common factors with the majority
of European countries, but with other middle-Eastern countries. Such “grouping” of countries
usually comes with their corresponding groups of unique factors. These factors become “weak”
country effects, shared only among “small” number of countries, essentially inflating r while
inducing a sparse α. Constraint factor modelling in Chen et al. (2020) certainly helps, but we
do not always know the exact group of countries which share latent common factors.

The final problem is related to the second one. The inability of (5.2) to accommodate
“weak” country/economic states effects originates from the fact that R̃F̃tC̃

′ in (5.1) contains
only pervasive factors, which is essentially assumed across all past works in factor models for
matrix-valued time series. In a general order tensor setting, Cen and Lam (2025b) and Chen and
Lam (2024b) have both allowed weak factors in the common component of the factor model.

One way to generalise (5.2) to address all aforementioned problems is to note that

αgt1r×q = (αgt1r)1
′
q =: αt1

′
q, 1p×ℓhtγ

′ = 1p(γh
′
t1ℓ)

′ =: 1pβ
′
t,

where αt and βt are the time-varying row and column main effects respectively. If we manage
to estimate the two vectors αt and βt without any low-rank constraints as in the equation above,
then the second problem is naturally solved. Formally allowing for weak factors in the loading
matrices, like those in Lam and Yao (2012) for a vector factor model, solves the third problem.
Finally, with these problems solved, we can go back to assuming full rank row and column
factor loading matrices (see Assumption (L1) in Section 5.3.1) to solve the first problem.

In this chapter, we contribute to the literature in several important ways. Firstly, we gener-
alise model (5.2) to (5.3) which is the time-varying main effects factor model (MEFM), incor-
porating all relaxations described in the previous paragraph. Secondly, we provide estimation
and inference methods and the corresponding theoretical guarantees, on top of a separate ratio-
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based method for identifying the core rank of Ft, with consistency proved. Third and perhaps
the most important of all, we provide a statistical test on the null of FM in (5.1), with R and C

both of full rank, is sufficient against the more general MEFM in (5.3). A rejected null hypoth-
esis then implies there are row and/or column main effects that is not of a low rank structure
like those in (5.2), essentially pointing to the existence of “weak” main effects.

The rest of this chapter is organised as follows. Section 5.2 introduces MEFM formally,
laying down important identification conditions and estimation methodologies for all the com-
ponents in the model. Section 5.3 presents the assumptions for MEFM and the consistency
and asymptotic normality results for its estimators. In particular, the test for FM versus MEFM
is detailed in Section 5.3.6, while the core rank estimator for Ft is presented in Section 5.3.7.
Finally, Section 5.4 presents our extensive simulation results and details the NYC Taxi traffic
data analysis, pinpointing the presence of weak hourly main effects in the data. Our method
is available in the R package MEFM, with instruction in its reference manual on R CRAN. All
proofs of the theorems are relegated to Section 5.5.

5.2 Model and Estimation

5.2.1 Main effect matrix factor model

We propose the time-varying Main Effect matrix Factor Model (MEFM) such that for t ∈ [T ],

Yt = µt1p1
′
q +αt1

′
q + 1pβ

′
t +Ct + Et, (5.3)

where Yt is a p × q observed matrix at time t, µt is a scalar representing the grand mean of
Yt, αt ∈ Rp and βt ∈ Rq are the row and column main effects at time t, respectively. The
common component Ct := ArFtA

′
c is latent, where Ft ∈ Rkr×kc is the core factor series with

unknown number of factors kr and kc, and Ar and Ac are the row and column factor loading
matrices, with size p× kr and q × kc, respectively. Lastly, Et is the idiosyncratic noise series
with the same dimension as Yt.

Unlike FM in (5.2), the main effects αt and βt in MEFM are not restricted to be of low rank,
which significantly improves the flexibility of FM, and allows for a test of FM in (5.1) in the
end. In fact, setting concatenated matrices Är = (1p, Ip,Ar,1p) and Äc = (1q,1q,Ac, Iq),
block diagonal matrix F̈t = diag{µt,αt,Ft,β

′
t}, then we can read (5.3) as

Yt = ÄrF̈tÄ
′
c + Et.

However, we observe that the dimension of the factor series is now (2+p+kr)×(2+q+kc), and
hence there is not much dimension reduction for Yt, and both Är and Äc have no full column
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ranks. This observation suggests again that MEFM is more general than FM, and numerical
results in Section 5.4 actually show that even an approximate estimation by FM in general
comes at a cost of using very large number of factors.

Given the above motivation of MEFM, we point out that the form of MEFM can be obtained
by FM in general, see Remark 5.2 for details. For generality purpose,Yt can have nonzero mean
but we can always demean the data as the sample mean is not our main parameter of interest.
The right hand side of (5.3) is entirely latent and hence we propose Assumption (IC1) below
to identify the grand mean and the row and column effects.

(IC1) (Identification). For any t ∈ [T ], we assume that

1′
pαt = 1′

qβt = 0, 1′
pAr = 0, 1′

qAc = 0.

However, we require further identification between the factors and the factor loading ma-
trices. To do this, we normalise the loading matrices to Qr = ArZ

−1/2
r and Qc = AcZ

−1/2
c ,

where Zr = diag(A′
rAr) and Zc = diag(A′

cAc), measuring the sparsity of each column of
loading matrices and hence the factor strength. For example, Ft pervasive in the j-th row will
have the j-th column ofAr dense and hence the j-th diagonal entry ofZr will be of order p. For
technical details, see Assumption (L1). We leave the identification to Section 5.3.1. Assump-
tion (IC1) also facilitates the estimation of µt, αt and βt, and we discuss in the next subsection
how to estimate the grand mean, the row and column effects, and the row and column factor
loading matrices in (5.3).

Remark 5.1 One advantage of MEFM lies in Assumption (IC1) that potentially allows the
grand mean and main effects to be nonstationary. However, we should also warn that since the
model identification relies heavily on the identification assumption contemporaneously involv-
ing all entries in the row effect or column effect, any form of nonstationarity in the main effects
might be unnatural and restricted. For example, {(αt)1}t∈[T ] can potentially have seasonality
or even unit roots, but requires that each αt satisfies Assumption (IC1). One way to circumvent
this arguably unrealistic (IC1) is to use alternative identifications. For instance, in one of our
ongoing projects, we are exploring the direction of requiringmini∈[p](αt)i = minj∈[q](βt)j = 0

which is a valid identification condition and meanwhile provides a straightforward setup of
sparse main effects. More general nonstationarity structures merit further investigation, but
we do not expect the common component series to be nonstationary.

5.2.2 Estimation of the main effects and factor components

The factor structure is hidden in Yt and we need to estimate the time-varying grand mean and
main effects first. For the grand mean, right-multiplying by 1q and left-multiplying by 1′

p on
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both sides of (5.3) results in 1′
pYt1q = pqµt + 1′

pEt1q by Assumption (IC1). Hence for each
t ∈ [T ], we obtain the moment estimator for the time-varying grand mean as

µ̂t := 1′
pYt1q/pq.

Also, right-multiplying by 1q and left-multiplying by 1′
p lead respectively to Yt1q = qµt1p +

qαt +Et1q and 1′
pYt = pµt1

′
q + pβ′

t + 1′
pEt. Therefore, we obtain the time-varying row and

column effect estimators as

α̂t := q−1Yt1q − µ̂t1p, β̂′
t := p−11′

pYt − µ̂t1′
q.

Finally, we introduce the following to estimate the factor structure,

L̂t := Yt − µ̂t1p1′
q − α̂t1

′
q − 1pβ̂

′
t

= Yt + (pq)−11′
pYt1q1p1

′
q − q−1Yt1q1

′
q − p−11p1

′
pYt = MpYtMq, (5.4)

where Mm := Im − m−11m1
′
m for any positive integer m. From the above, L̂tL̂′

t admits 1p
in its null space, and L̂′

tL̂t admits 1q instead. The factor structure can hence be estimated,
with Q̂r constructed as the eigenvectors of T−1

∑T
t=1 L̂tL̂

′
t corresponding to the first kr largest

eigenvalues, and Q̂c the eigenvectors of T−1
∑T

t=1 L̂
′
tL̂t corresponding to the first kc largest

eigenvalues.
We can then estimate the factor time seriesFZ,t = Z

1/2
r FtZ

1/2
c , and the common component

Ct, respectively as

F̂Z,t := Q̂′
rL̂tQ̂c = Q̂′

rYtQ̂c, Ĉt := Q̂rF̂Z,tQ̂
′
c = Q̂rQ̂

′
rYtQ̂cQ̂

′
c. (5.5)

Finally, the residuals Et is estimated by

Êt := L̂t − Ĉt. (5.6)

Remark 5.2 Suppose we have a traditional matrix-valued factor model such that Ýt = Ćt+Ét

where Ýt, Ćt, and Ét are p × q matrices representing the observation, common component,
and noise, respectively. Suppose also Ćt = ArFtA

′
c. Then we can construct

µ́t := (pq)−11′
pĆt1q, άt := q−1Ćt1q − µ́t1p = q−1MpĆt1q,

β́t := p−1Ć′
t1p − µ́t1q = p−1MqĆ

′
t1p.
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Hence we can express FM in the following MEFM form satisfying (IC1):

Ýt = µ́t1p1
′
q + άt1

′
q + 1pβ́

′
t + (Ćt − µ́t1p1′

q − άt1
′
q − 1pβ́

′
t) + Ét,

where
Ćt − µ́t1p1′

q − άt1
′
q − 1pβ́

′
t = (MpAr)Ft(MqAc)

′,

is the common component. Since Mm1m = 0, it is easy to see that

1′
p(MpAr) = 0, 1′

q(MqAc) = 0.

It is also easy to verify that 1′
pάt = 1′

qβ́t = 0. Hence a traditional matrix-valued factor model
can be expressed as MEFM in (5.3) to satisfy (IC1).

5.3 Assumptions and Theoretical Results

5.3.1 Assumptions

A set of assumptions on the factor structure is imposed below, and in particular, we allow factors
to have different strengths, as in Lam and Yao (2012) and Chen and Lam (2024b).

(M1) (Alpha mixing). The vector processes {vec
(
Ft

)
} and {vec

(
Et

)
} are α-mixing, respec-

tively. A vector process {xt : t = 0,±1,±2, . . . } is α-mixing if, for some γ > 2, the
mixing coefficients satisfy the condition that

∞∑
h=1

α(h)1−2/γ <∞,

where α(h) = supτ supA∈Hτ
−∞,B∈H∞

τ+h
|P(A ∩ B) − P(A)P(B)| and Hs

τ is the σ-field
generated by {xt : τ ≤ t ≤ s}.

(F1) (Time series in Ft). There is Xf,t with the same dimension as Ft, such that Ft =∑
w≥0 af,wXf,t−w. The time series {Xf,t} has i.i.d. elements with mean 0 and variance

1, with uniformly bounded fourth order moments. The coefficients af,w are such that∑
w≥0 a

2
f,w = 1 and

∑
w≥0 |af,w| ≤ c for some constant c.

(L1) (Factor strength). We assume that Ar and Ac are of full rank and independent of factors
and errors series. Furthermore, as p, q →∞,

Z−1/2
r A′

rArZ
−1/2
r → ΣA,r, Z−1/2

c A′
cAcZ

−1/2
c → ΣA,c,
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where Zr = diag(A′
rAr), Zc = diag(A′

cAc), and both ΣA,r and ΣA,c are positive defi-
nite with all eigenvalues bounded away from 0 and infinity. We assume (Zr)jj ≍ pδr,j for
j ∈ [kr] and 1/2 < δr,kr ≤ · · · ≤ δr,2 ≤ δr,1 ≤ 1. Similarly, we assume (Zc)jj ≍ pδc,j

for j ∈ [kc], with 1/2 < δc,kc ≤ · · · ≤ δc,2 ≤ δc,1 ≤ 1.

With Assumption (L1), we can denote Qr := ArZ
−1/2
r and Qc := AcZ

−1/2
c . Hence Q′

rQr →
ΣA,r and Q′

cQc → ΣA,c.

(E1) (Decomposition of Et). We assume that

Et = Ae,rFe,tA
′
e,c +Σϵ ∗ ϵt,

where Fe,t is a matrix of size ke,r × ke,c, containing independent elements with mean
0 and variance 1. The matrix ϵt ∈ Rp×q contains independent elements with mean 0
and variance 1, with {ϵt} independent of {Fe,t}. The matrix Σϵ contains the standard
deviations of the corresponding elements in ϵt, and has elements uniformly bounded
away from 0 and infinity.

Moreover, Ae,r and Ae,c are (approximately) sparse matrices with sizes p × ke,r and
q × ke,c respectively, such that ∥Ae,r∥1, ∥Ae,c∥1 = O(1), with ke,r, ke,c = O(1).

(E2) (Time Series in Et). There is Xe,t the same dimension as Fe,t, and Xϵ,t the same dimen-
sion as ϵt, such that Fe,t =

∑
w≥0 ae,wXe,t−w and ϵt =

∑
w≥0 aϵ,wXϵ,t−w, with {Xe,t}

and {Xϵ,t} independent of each other. {Xe,t} has independent elements while {Xϵ,t}
has i.i.d. elements, and all elements have mean zero with unit variance and uniformly
bounded fourth order moments. Both {Xe,t} and {Xϵ,t} are independent of {Xf,t} from
(F1).

The coefficients ae,w and aϵ,w are such that
∑

w≥0 a
2
e,w =

∑
w≥0 a

2
ϵ,w = 1 and for some

constant c that
∑

w≥0 |ae,w|,
∑

w≥0 |aϵ,w| ≤ c.

(R1) (Rate assumptions). We assume that,

T−1p2(1−δr,kr )q1−2δc,1 = o(1), p1−2δr,kr q2(1−δc,1) = o(1),

T−1q2(1−δc,kc )p1−2δr,1 = o(1), q1−2δc,kcp2(1−δr,1) = o(1).

Assumption (F1) introduces serial dependence into the factors, and (E1) and (E2) intro-
duce both cross-sectional and temporal dependence in the noise. The factor structure depicted
by (F1), (E1) and (E2) is the same as the one in Cen and Lam (2025b). Note that although
Assumption (M1) also features in serial dependence, it is mainly used to construct asymptotic
normality of estimators. We refer to Remark 3.1 for further explanations.
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By (L1), we haveArFtA
′
c = QrZ

1/2
r FtZ

1/2
c Q′

c, so we aim to estimate (Qr,Qc,FZ,t)where
FZ,t := Z

1/2
r FtZ

1/2
c . Unlike the traditional approximate factor model which assumes all factors

are pervasive, we allow factors to have different strength similar to Lam and Yao (2012) and
Chen and Lam (2024b). To be precise, a column of Ar (resp. Ac) is dense (i.e., a pervasive
factor) if the corresponding δr,j = 1 (resp. δc,j = 1), otherwise the column represents a weak
factor as it is sparse to certain extent.

Due to the presence of potentially weak factors, we require rate conditions in Assumption
(R1) for consistency to hold. If all factors are pervasive, then (R1) holds trivially. We point out
that the first and second (or the third and fourth) conditions in (R1) are exactly the same as the
first and third conditions of Assumption (R1) in Cen and Lam (2025b) for matrix time series.

5.3.2 Identification of the model

With Assumptions (IC1) and (L1), the model (5.3) is identified according to Theorem 5.1 below.

Theorem 5.1 (Identification). With Assumption (IC1), each µt, αt, and βt can be identified.
The common component is hence identified, and if (L1) is also satisfied, the factor struc-
ture is identified up to some invertible matrices Mr ∈ Rkr×kr and Mc ∈ Rkc×kc such that
(Qr,Qc,FZ,t) = (QrMr,QcMc,M

−1
r FZ,tM

−1
c ).

5.3.3 Rate of convergence for various estimators

To present the consistency of the loading estimators, define

Hr := T−1D̂−1
r Q̂′

rQr

T∑
t=1

(FZ,tQ
′
cQcF

′
Z,t),

Hc := T−1D̂−1
c Q̂′

cQc

T∑
t=1

(F′
Z,tQ

′
rQrFZ,t),

where D̂r := Q̂′
r(T

−1
∑T

t=1 L̂tL̂
′
t)Q̂r is the kr × kr diagonal matrix consisting of eigenvalues

of T−1
∑T

t=1 L̂tL̂
′
t, and similarly D̂c := Q̂′

c(T
−1
∑T

t=1 L̂
′
tL̂t)Q̂c is the kc × kc diagonal matrix

of eigenvalues of T−1
∑T

t=1 L̂
′
tL̂t.



5.3. Assumptions and Theoretical Results 155

Theorem 5.2 Under Assumptions (IC1), (M1), (F1), (L1), (E1), (E2) and (R1), we have

(µ̂t − µt)2 = OP (p
−1q−1),

p−1∥α̂t −αt∥2 = OP (q
−1),

q−1∥β̂t − βt∥2 = OP (p
−1),

p−1∥Q̂r −QrH
′
r∥2F = OP

{
T−1p1−2δr,kr q1−2δc,1 + p−2δr,kr q2(1−δc,1)

}
,

q−1∥Q̂c −QcH
′
c∥2F = OP

{
T−1q1−2δc,kcp1−2δr,1 + q−2δc,kcp2(1−δr,1)

}
.

From Theorem 5.2, the consistency for the loading matrix estimators requires Assumption
(R1). If all factors are pervasive, the (squared) convergence rates for the row (resp. column)
loading matrix will be max(1/(Tpq), 1/p2) (resp. max(1/(Tpq), 1/q2)), which are consistent
with those in Chen and Fan (2023) after the same normalization of the loading matrices.

Theorem 5.3 Under the assumptions in Theorem 5.2, we have the following:

1. The error of the estimated factor series has rate

∥F̂Z,t − (H−1
r )′FZ,tH

−1
c ∥2F

= OP

(
p1−δr,kr q1−δc,kc + T−1p1+2δr,1−2δr,kr q1−δc,1 + p1+δr,1−3δr,kr q2−δc,1

+ T−1q1+2δc,1−2δc,kcp1−δr,1 + q1+δc,1−3δc,kcp2−δr,1
)
.

2. For any t ∈ [T ], i ∈ [p], j ∈ [q], the squared error of the estimated individual common
component is

(Ĉt,ij − Ct,ij)2

= OP

(
p1−2δr,kr q1−2δc,kc + T−1p1+2δr,1−3δr,kr q1−δc,1−δc,kc + p1+δr,1−4δr,kr q2−δc,1−δc,kc

+ T−1q1+2δc,1−3δc,kcp1−δr,1−δr,kr + q1+δc,1−4δc,kcp2−δr,1−δr,kr
)
.

We state the above results separating from Theorem 5.2 since they have used some arguments
from the proof of Theorem 5.5. If all factors are pervasive, it is clear that individual com-
mon components are consistent with rate (pq)−1/2 + T−1/2(q−1/2 + p−1/2) + p−1 + q−1 =

max(1/(Tq)1/2, 1/(Tp)1/2, 1/p, 1/q). This rate coincides with Theorem 4 of Chen and Fan
(2023) for instance.

5.3.4 Asymptotic normality of estimators

We present the asymptotic normality of various estimators in this subsection, together with the
estimation of the corresponding covariance matrices for practical inferences. Before that, we
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need three more assumptions.

(L2) (Eigenvalues). The eigenvalues of the kr × kr matrix ΣA,rZr from Assumption (L1) are
distinct, and so are those of the kc × kc matrix ΣA,cZc.

(AD1) Define Γ∗
r as the eigenvector matrix of tr(A′

cAc) · p−δr,kr q−δc,1Z1/2
r ΣA,rZ

1/2
r , Γ∗

c as the
eigenvector matrix of tr(A′

rAr) · q−δc,kcp−δr,1Z1/2
c ΣA,cZ

1/2
c , and

H∗
r := tr(A′

cAc)
1/2 ·D−1/2

r (Γ∗
r)

′Z1/2
r ,

H∗
c := tr(A′

rAr))
1/2 ·D−1/2

c (Γ∗
c)

′Z1/2
c ,

Dr := tr(A′
cAc) · diag{λ1(A′

rAr), . . . , λkr(A
′
rAr)},

Dc := tr(A′
rAr) · diag{λ1(A′

cAc), . . . , λkc(A
′
cAc)},

Ξr,j := plim
p,q,T→∞

Var
{ p∑

i=1

Qr,i·

T∑
t=1

(CtE
′
t)ij

}
,

Ξc,j := plim
p,q,T→∞

Var
{ q∑

i=1

Qc,i·

T∑
t=1

(C′
tEt)ij

}
.

We assume both Tp2δr,kr−δr,1q2δc,1−1 ·
∥∥D−1

r H∗
rΞr,j(H

∗
r)

′D−1
r

∥∥
F

and Tq2δc,kc−δc,1p2δr,1−1 ·∥∥D−1
c H∗

cΞc,j(H
∗
c)

′D−1
c

∥∥
F

are of constant order.

(R2) (Further rate assumptions). We have

T−1p1+2δr,1−3δr,kr q1−δc,1−δc,kc , p1+δr,1−4δr,kr q2−δc,1−δc,kc ,

T−1q1+2δc,1−3δc,kcp1−δr,1−δr,kr , q1+δc,1−4δc,kcp2−δr,1−δr,kr = o(1).

Assumption (AD1) appears in Cen and Lam (2025b) as well, and similar to the discussion
therein, it is a lower bound condition as we can show the upper bound in the theoretical proof.
Essentially, this assumption facilitates the proof of the asymptotic normality of each row of
Q̂r and Q̂c, by asserting that in the decomposition of Q̂r −QrHr (resp. Q̂c −QcHc), certain
terms are dominating others even in the lower bound, and hence is truly dominating rather
than just having the upper bounds dominating other upper bounds as in the proofs of similar
theorems in the broader literature of factor models. Assumption (R2) is needed to make sure
that the estimated common component Ĉt is consistent element-wise (see Theorem 5.3). This
is satisfied automatically when all factors are pervasive, for instance.

Theorem 5.4 Let all assumptions in Theorem 5.2 hold, and let Σϵ,ij be the (i, j) entry of Σϵ
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in Assumption (E1). Assume also for i ∈ [p] and j ∈ [q],

γ2α,i := lim
q→∞

1

q

q∑
j=1

Σ2
ϵ,ij, γ2β,j := lim

p→∞

1

p

p∑
i=1

Σ2
ϵ,ij, γ2µ := lim

p,q→∞

1

pq

∑
i∈[p],j∈[q]

Σ2
ϵ,ij.

Then for each t ∈ [T ],
√
pq(µ̂t − µt) D−→ N (0, γ2µ).

Take a finite integer m and integers i1 < · · · < im (iℓ ∈ [p]). Define θα,t := (αt,i1 , . . . , αt,im)
′

and similarly for θ̂α,t, where αt,i is the i-th element of αt. For a fixed t ∈ [T ],

√
q (θ̂α,t − θα,t)

D−→ N (0, diag(γ2α,i1 , . . . , γ
2
α,im)).

Similarly, take integers j1 < · · · < jm where jℓ ∈ [q]. Define θβ,t := (βt,j1 , . . . , βt,jm)
′ and

similarly for θ̂β,t, where βt,j is the j-th element of βt. Then for a fixed t ∈ [T ],

√
p(θ̂β,t − θβ,t)

D−→ N (0, diag(γ2β,j1 , . . . , γ
2
β,jm)).

Moreover, for i ∈ [p] and j ∈ [q], if the rate for Ĉt,ij − Ct,ij in Theorem 5.3 is o(1), then

γ̂2α,i := q−1(ÊtÊ
′
t)ii, γ̂2β,j := p−1(Ê′

tÊt)jj, γ̂2µ := p−1

p∑
i=1

γ̂2α,i = q−1

q∑
j=1

γ̂2β,j

are consistent estimators for γ2α,i, γ2β,j and γ2µ respectively under Assumption (R2), so that

√
pq γ̂−1

µ (µ̂t − µt) D−→ N (0, 1),
√
q diag(γ̂−1

α,i1
, . . . , γ̂−1

α,im
)(θ̂α,t − θα,t)

D−→ N (0, Im),
√
p diag(γ̂−1

β,j1
, . . . , γ̂−1

β,jm
)(θ̂β,t − θβ,t)

D−→ N (0, Im).

Recall from Remark 5.2 that FM can be expressed in MEFM, and hence the ability to make
inferences on the elements of αt and βt does not facilitate a test for the necessity of MEFM
over FM. For such a test, please see Section 5.3.6. Theorem 5.4 gives us the ability to infer on
the level of row and column main effects at each time point, which is important if we have target
comparisons we want to make for these effects. For instance, if each row represents a country,
we can easily compare the main effects at time t for the first country against the average of the
second and third simply by considering g := (1,−1/2,−1/2)′, θα,t := (αt,1, αt,2, αt,3)

′ and
using Theorem 5.4 to arrive at

√
q (g′diag(γ̂2α,1, γ̂2α,2, γ̂2α,3)g)−1/2g′(θ̂α,t − θα,t)

D−→ N (0, 1).
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Theorem 5.5 Let all the assumptions under Theorem 5.2 hold, in addition to (AD1) and (L2).
Suppose kr and kc are fixed and p, q, T →∞. If Tq = o(pδr,1+δr,kr ), we have

(Tp2δr,kr−δr,1q2δc,1−1)1/2 · (Q̂r,j· −HrQr,j·)

D−→ N
(
0, T−1p2δr,kr−δr,1q2δc,1−1 ·D−1

r H∗
rΞr,j(H

∗
r)

′D−1
r

)
.

On the other hand, if Tp = o(qδc,1+δc,kc ), we have

(Tq2δc,kc−δc,1p2δr,1−1)1/2 · (Q̂c,j· −HcQc,j·)

D−→ N
(
0, T−1q2δc,kc−δc,1p2δr,1−1 ·D−1

c H∗
cΞc,j(H

∗
c)

′D−1
c

)
.

Theorem 5.5 is essentially Theorem 3 of Cen and Lam (2025b) when K = 2 and η = 0 (full
observations), having the same rate of convergence under potentially weak factors. Hence our
MEFM estimation has successfully estimated and removed all time-varying main effects and
grand mean, leaving the estimation of the common component exactly the same as in FM.

5.3.5 Estimation of the asymptotic covariance matrix

To practically use Theorem 5.5 for inference, we need to estimate the covariance matrices for
Q̂r,j·−HrQr,j· and Q̂c,j·−HcQc,j·. Based on {D̂r, Q̂r, Ĉt, Êt}t∈[T ] and {D̂c, Q̂c, Ĉt, Êt}t∈[T ]
respectively, we use the heteroscedasticity and autocorrelation consistent (HAC) estimators
(Newey and West, 1987).

For Q̂r,j·−HrQr,j·, with ηr such that ηr →∞, ηr/(Tp2δr,kr−δr,1q2δc,1−1)1/4 → 0, define an
HAC estimator

Σ̂HAC
r,j := Dr,0,j +

ηr∑
ν=1

(
1− ν

1 + ηr

)(
Dr,ν,j +D′

r,ν,j

)
, where

Dr,ν,j :=
T∑

t=1+ν

{ p∑
i=1

(
T−1D̂−1

r Q̂′
r

T∑
s=1

ĈsĈs,i·

)
(ĈtÊ

′
t)ij

}
·
{ p∑

i=1

(
T−1D̂−1

r Q̂′
r

T∑
s=1

ĈsĈs,i·

)
(Ĉt−νÊ

′
t−ν)ij

}′
.

For Q̂c,j· −HcQc,j·, with ηc such that ηc →∞, ηc/(Tq2δc,kc−δc,1p2δr,1−1)1/4 → 0, define

Σ̂HAC
c,j := Dc,0,j +

ηc∑
ν=1

(
1− ν

1 + ηc

)(
Dc,ν,j +D′

c,ν,j

)
, where

Dc,ν,j :=
T∑

t=1+ν

{ q∑
i=1

(
T−1D̂−1

c Q̂′
c

T∑
s=1

Ĉ′
sĈs,·i

)
(Ĉ′

tÊt)ij

}
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·
{ q∑

i=1

(
T−1D̂−1

c Q̂′
c

T∑
s=1

Ĉ′
sĈs,·i

)
(Ĉ′

t−νÊt−ν)ij

}′
.

Theorem 5.6 Let all the assumptions under Theorem 5.2 hold, in addition to (L2), (AD1) and
(R2). Suppose kr and kc are fixed and p, q, T →∞. If Tq = o(pδr,1+δr,kr ), then

1. D̂−1
r Σ̂HAC

r,j D̂−1
r is consistent for D−1

r H∗
rΞr,j(H

∗
r)

′D−1
r ;

2. T ·
(
Σ̂HAC
r,j

)−1/2
D̂r(Q̂r,j· −HrQr,j·)

D−→ N (0, Ikr).

On the other hand, if Tp = o(qδc,1+δc,kc ), then

3. D̂−1
c Σ̂HAC

c,j D̂−1
c is consistent for D−1

c H∗
cΞc,j(H

∗
c)

′D−1
c ;

4. T ·
(
Σ̂HAC
c,j

)−1/2
D̂c(Q̂c,j· −HcQc,j·)

D−→ N (0, Ikc).

5.3.6 Testing the sufficiency of FM versus MEFM

In the last subsection, we introduce how to make inferences on various parameters of MEFM.
However, to test if FM is sufficient against our proposed MEFM, simple inferences on the model
parameters are not enough in the face of Remark 5.2. Formally, we want to test, for the time
horizon t ∈ [T ],

H0 : FM is sufficient over t ∈ [T ] ←→ H1 : MEFM is needed over t ∈ [T ].

The above problem is complicated by the fact that, in Section 5.2.1, we have seen that MEFM
can always be expressed as FM if we are willing to potentially consider a large number of
factors. So, how “large” an increase in the number of factors do we consider unacceptable?

Remark 5.2 tells us that a special form of MEFM can be expressed back in FM:

Yt = µt1p1
′
q +αt1

′
q + 1pβ

′
t +MpĆtMq + Et = ArFtA

′
c + Et, t ∈ [T ],

where Ćt := ArFtA
′
c and

µt := (pq)−11′
pĆt1q, αt := q−1MpĆt1q, βt := p−1MqĆ

′
t1p.

If Ar has rank kr satisfying Assumption (L1) and Ac has rank kc, the potential rank of MpAr

is kr − 1 (when a column in Ar is parallel to 1p), and that of MqAc is kc − 1 (when a column
in Ac is parallel to 1q), demonstrating that FM can have an increase in the number of factors,
albeit still finite.
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Another special example is when both αt and βt are zero, but µt ̸= 0. Then we can write
MEFM as

Yt = µt1p1
′
q +ArFtA

′
c + Et = (Ar,1p)

(
Ft 0

0′ µt/(pq)

)(
A′
c

1′
q

)
+ Et,

which is FM with loading matrices (Ar,1p) and (Ac,1q) respectively, and an increase by 1 for
both the number of row and column factors.

In light of the above examples, we deem FM sufficient if and only if the number of factors
in the FM is still finite and any model variables satisfy the Assumptions in Section 5.3.1.

To be able to test H0 against H1, define Ět to be the residual matrix after a fitting of FM (a
similar procedure to fitting MEFM but treating µt, αt and βt as zero), with

Ět := Yt − Čt, where Čt := ǍrǍ
′
rYtǍcǍ

′
c,

with Ǎr and Ǎc the p×ℓr and q×ℓc eigenmatrices of
∑T

t=1YtY
′
t and

∑T
t=1Y

′
tYt respectively.

Theorem 5.7 Let all the assumptions in Theorem 5.2 hold, on top of (R2). Also assume that
Ĉt,ij − Ct,ij = oP (min(p−1/2, q−1/2)) in Theorem 5.3. Suppose kr, kc, ℓr and ℓc are all fixed
and known. Then under H0, for each t ∈ [T ], we have

(ÊtÊ
′
t)ii −

∑q
j=1 Σ

2
ϵ,ij»∑q

j=1 Var(ϵ2t,ij)Σ4
ϵ,ij

,
(ĚtĚ

′
t)ii −

∑q
j=1 Σ

2
ϵ,ij»∑q

j=1 Var(ϵ2t,ij)Σ4
ϵ,ij

D−→ Zi,t
D−→ N (0, 1) for each i ∈ [p];

(Ê′
tÊt)jj −

∑p
i=1Σ

2
ϵ,ij»∑p

i=1 Var(ϵ2t,ij)Σ4
ϵ,ij

,
(Ě′

tĚt)jj −
∑p

i=1 Σ
2
ϵ,ij»∑p

i=1 Var(ϵ2t,ij)Σ4
ϵ,ij

D−→ Wj,t
D−→ N (0, 1) for each j ∈ [q],

where Zh,t is independent of Zℓ,t and Wh,t is independent of Wℓ,t for h ̸= ℓ. The same asymp-
totic results hold true under H1 for (ÊtÊ

′
t)ii and (Ê′

tÊt)jj respectively for i ∈ [p], j ∈ [q].

The assumption Ĉt,ij−Ct,ij = oP (min(p−1/2, q−1/2)) is satisfied, for instance, when all factors
are pervasive and T, p, q are of the same order. Theorem 5.7 tells us that for each t ∈ [T ], both

xα,t := max
i∈[p]

γ̂2α,i = max
i∈[p]
{q−1(ÊtÊ

′
t)ii}, yα,t := max

i∈[p]
γ̌2α,i := max

i∈[p]
{q−1(ĚtĚ

′
t)ii}

are distributed approximately the same for large q underH0, and xα,t in particular is distributed
the same no matter under H0 or H1. Similarly, define

xβ,t := max
j∈[q]

γ̂2β,j = max
j∈[q]
{p−1(Ê′

tÊt)jj}, yβ,t := max
j∈[q]

γ̌2β,j := max
j∈[q]
{p−1(Ě′

tĚt)jj},

which are distributed approximately the same for large p under H0 from Theorem 5.7, and xβ,t
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in particular is distributed the same no matter underH0 orH1. To utilize Theorem 5.7 in testing
H0, we impose an additional assumption on the core factor and idiosyncratic noise as follows.

(E3) (Tail condition in Ft and Et). Each element in the time series {Xf,t}, {Xe,t} and {Xϵ,t}
has sub-Gaussian tail.

This assumption allows us to make convergence statements in quantiles to be defined in Theo-
rem 5.8 below. DefineFx,α,Fy,α,Fx,β andFy,β the empirical cumulative distribution functions
for the series {xα,t}t∈[T ], {yα,t}t∈[T ], {xβ,t}t∈[T ] and {yβ,t}t∈[T ] respectively:

Fx,α(c) :=
1

T

T∑
t=1

1{xα,t ≤ c}, Fy,α(c) :=
1

T

T∑
t=1

1{yα,t ≤ c},

Fx,β(c) :=
1

T

T∑
t=1

1{xβ,t ≤ c}, Fy,β(c) :=
1

T

T∑
t=1

1{yβ,t ≤ c}.

Theorem 5.8 Let Assumption (E3) and all the assumptions in Theorem 5.7 hold. Moreover,
we assume for simplicity of presentation that all factors are pervasive. Define for 0 < θ < 1,

q̂x,α(θ) := inf{c | Fx,α(c) ≥ θ}, q̂x,β(θ) := inf{c | Fx,β(c) ≥ θ},

Then under H0, as T, p, q →∞, we have for each t ∈ [T ],

Py,α[yα,t > q̂x,α(θ)] ≤ 1− θ +OP

{( 1√
p
+

1√
q
+

1√
T

+

√
q

p
+

…
q

Tp

)
log2(T ) log(p) log2(q)

}
,

Py,β[yβ,t > q̂x,β(θ)] ≤ 1− θ +OP

{( 1√
p
+

1√
q
+

1√
T

+

√
p

q
+

…
p

Tq

)
log2(T ) log2(p) log(q)

}
,

wherePy,α andPy,β are empirical probability measures induced byFy,α andFy,β respectively.

The assumption of pervasive factors is for the ease of presentation of the rate added to the
two probability statements above. But if some factors are weaker, then the convergence rate of
the common components will be adversely affected, and the rate in the probability statements
above will be inflated.

With Theorem 5.8, we can test H0 at significance level 1− θ asymptotically using the test
statistics yα,t and yβ,t, and rejection rules yα,t ≥ q̂x,α(θ) and yβ,t ≥ q̂x,β(θ) respectively. Since
we have yα,t and yβ,t for t ∈ [T ], we can assess the significance level under H0 by calculating

Significance levels = T−1

T∑
t=1

1{yα,t ≥ q̂x,α(θ)}, T−1

T∑
t=1

1{yβ,t ≥ q̂x,β(θ)},

and see if they are close to 1− θ. If H0 is not true, then if any αt,i is large, we expect yα,t to be
large. Or, if any βt,j is large, we expect yβ,t to be large.
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In practice for testing H0 against H1, we estimate kr and kc, and set ℓr = kr + 1 and
ℓc = kc+1 in light of the previous argument on how a special form of MEFM can be expressed
back in FM. For the estimation of kr and kc, see Section 5.3.7.

Remark 5.3 The size of our test is theoretically guaranteed by Theorem 5.8, while the test
power is shown by numerical results later in Section 5.4.1. To appreciate the difficulty in deriv-
ing the test power, recall that any FM can be rewritten as a MEFM according to Remark 5.2.
Hence, any attempt in studying the power in terms of the magnitude of variables in MEFM, e.g.
L2-norm of αt, would fail, since a large αt could be present in an FM. A possible direction to
tackle this problem is to formalise some local alternative hypotheses that are relatively easier
to work on, which we defer to our future endeavours.

5.3.7 Estimation of the number of factors

From (5.4), we have T−1
∑T

t=1 L̂tL̂
′
t essentially being the row sample covariance matrix and

T−1
∑T

t=1 L̂
′
tL̂t the column sample covariance matrix. We then propose the eigenvalue-ratio

estimators for the number of factors as

k̂r := argmin
j

{λj+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

λj
(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

, j ∈ [⌊p/2⌋]
}
, ξr ≍ pq

[
(Tq)−1/2 + p−1/2

]
,

(5.7)

k̂c := argmin
j

{λj+1

(
T−1

∑T
t=1 L̂

′
tL̂t
)
+ ξc

λj
(
T−1

∑T
t=1 L̂

′
tL̂t
)
+ ξc

, j ∈ [⌊q/2⌋]
}
, ξc ≍ pq

[
(Tp)−1/2 + q−1/2

]
.

(5.8)

Ratio-based estimators are widely studied by researchers. For example, an eigenvalue-ratio
estimator is considered in Lam and Yao (2012) and Ahn and Horenstein (2013), while a cumu-
lative eigenvalue ratio estimator is proposed by Zhang et al. (2024a). Our proposed estimator
is similar to the perturbed eigenvalue-ratio estimators as in Pelger (2019). Technically, we can
minimise (5.7) (resp. (5.8)) over any j ∈ [p] (resp. j ∈ [q]), but it is very reasonable to assume
kr ≤ p/2 and kc ≤ q/2 in all applications of factor models. The correction terms ξr and ξc are
added to stabilise the ratio so that consistency follows from the theorem below.

Theorem 5.9 Under Assumptions (IC1), (M1), (F1), (L1), (E1), (E2) and (R1), we have:

1. k̂r is a consistent estimator of kr if{
p1−δr,kr q1−δc,1 [(Tq)−1/2 + p−1/2] = o(pδr,j+1−δr,j), j ∈ [kr − 1] with kr ≥ 2;
p1−δr,1q1−δc,1 [(Tq)−1/2 + p−1/2] = o(1), kr = 1.
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2. k̂c is a consistent estimator of kc if{
q1−δc,kcp1−δr,1 [(Tp)−1/2 + q−1/2] = o(qδc,j+1−δc,j), j ∈ [kc − 1] with kc ≥ 2;
q1−δc,1p1−δr,1 [(Tp)−1/2 + q−1/2] = o(1), kc = 1.

The extra rate conditions in the theorem are due to existence of potential weak factors and are
trivially satisfied for pervasive factors. The theorem is similar to the consistency result in Cen
and Lam (2025b) for matrix-valued factor models, and this implies that the number of factors
in MEFM can be well estimated just as in the case of FM.

5.4 Numerical Results

5.4.1 Simulations

We demonstrate the performance of our estimators in this subsection. We will experiment
different settings to assess consistency results as described in Theorem 5.2 and 5.3, followed
by the asymptotic normality of our estimators in Theorem 5.4 and 5.5, where the covariance
matrices can be constructed by their consistent estimators by Theorem 5.4 and Theorem 5.6,
respectively. We then showcase the results for the rank estimators described in Theorem 5.9.
As it is a first to consider matrix factor model with time-varying grand mean and main effects,
we unveil the differences between MEFM and FM using numerical results that will illustrate
Theorem 5.7.

For the data generating process, we use Assumptions (E1), (E2), and (F1) to generate gen-
eral linear processes for the noise and factor series in model (5.3). To be precise, the elements
in Ft are independent standardised AR(5) with AR coefficients 0.7, 0.3, -0.4, 0.2, and -0.1. The
elements in Fe,t and ϵt are generated similarly, but their AR coefficients are (-0.7, -0.3, -0.4,
0.2, 0.1) and (0.8, 0.4, -0.4, 0.2, -0.1) respectively. The standard deviation of each element in
ϵt is generated by i.i.d. |N (0, 1)|. To test how robust our method is under heavy-tailed distri-
bution, we consider two distributions for the innovation process in generating Ft, Fe,t and ϵt:
1) i.i.d. N (0, 1); 2) i.i.d. t3.

The row factor loading matrix Ar is generated with Ar = MpUrBr, where each entry
of Ur ∈ Rp×kr is i.i.d. N (0, 1), and Br ∈ Rkr×kr is diagonal with the j-th diagonal entry
being p−ζr,j , 0 ≤ ζr,j ≤ 0.5. Pervasive (strong) factors have ζr,j = 0, while weak factors have
0 < ζr,j ≤ 0.5. Note that Mp is defined in (5.4) so that (IC1) is satisfied. In a similar way,
the column factor loading matrix Ac is generated independently. Each entry of Ae,r ∈ Rp×ke,r

is i.i.d. N (0, 1) and has independent probability of 0.95 being set exactly to 0, and Ae,c is
generated similarly. We fix ke,r = ke,c = 2 throughout the subsection.

For any t ∈ [T ], we generate µt = vµ,t, αt = Mpvα,t and βt = Mqvβ,t, where vµ,t is
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N (mµ, σ
2
µ), each element of vα,t is i.i.d. N (mα, σ

2
α) and that of vβ,t is i.i.d. N (mβ, σ

2
β). We

set mµ = mα = mβ = 0 and σµ = σα = σβ = 1, and every experiment in this subsection is
repeated 1000 times unless specified otherwise.

Accuracy of various estimators

To assess the accuracy of our estimators, we define the relative mean squared errors (MSE) for
µt, αt, βt and Ct as the following, respectively,

relative MSEµ =

∑T
t=1(µt − µ̂t)2∑T

t=1 µ
2
t

, relative MSEα =

∑T
t=1 ∥αt − α̂t∥2∑T

t=1 ∥αt∥2
,

relative MSEβ =

∑T
t=1 ∥βt − β̂t∥2∑T

t=1 ∥βt∥2
, relative MSEC =

∑T
t=1 ∥Ct − Ĉt∥2F∑T

t=1 ∥Ct∥2F
.

For measuring the accuracy of our factor loading matrix estimators, we use the column space
distance,

D(Q, Q̂) =
∥∥Q(Q′Q)−1Q′ − Q̂(Q̂′Q̂)−1Q̂′∥∥,

for any given Q and Q̂, which is a common measure in the literature such as Chen et al. (2022a)
and Chen and Fan (2023).

We consider the following settings:

(Ia) T = 100, p = q = 40, kr = 1, kc = 2. All factors are pervasive with ζr,j = ζc,j = 0.
All innovation processes in constructing Ft, Fe,t and ϵt are i.i.d. standard normal.

(Ib) Same as (Ia), but one factor is weak with ζr,1 = 0.2 and ζc,1 = 0.2. Set also mα = −2.

(Ic) Same as (Ia), but all innovation processes are i.i.d. t3.

(Id) Same as (Ib), but T = 100, p = q = 80 and σα = 2.

(Ie) Same as (Id), but T = 200.

(IIa-e) Same as (Ia) to (Ie) respectively, except that we generate Ft, Fe,t and ϵt using white noise
rather than AR(5).

Setting (IIa)–(IIe) are to investigate how temporal dependence in the noise affects our results.
We report the boxplots of accuracy measures for our estimators from Figure 5.1–5.6. Note

first that stronger temporal dependence leads to larger variance of our estimators in general.
The serial dependence mainly undermines the performance of our loading matrix estimators as
shown in Figures 5.5 and 5.6, which in turn affects our common component estimator.

Considering the comparisons among (Ia) to (Ie), we see that relative MSEµ can be improved
by increasing the spatial dimensions, but is not affected by weak factors. Similar results can be
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Figure 5.1: Plot of the relative MSE for
µt (in log-scale) from Settings (Ia) to (Ie),
comparing with (IIa) to (IIe).
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Figure 5.2: Plot of the relative MSE for
Ct (in log-scale) from Settings (Ia) to (Ie),
comparing with (IIa) to (IIe).

seen from Figure 5.3 and Figure 5.4 for relative MSEα and relative MSEβ . The detrimental ef-
fects of heavy-tailed innovation processes in Setting (Ic) are most reflected in the corresponding
boxplots in Figure 5.4.

Weak factors can be detrimental to the accuracy of the factor loading matrix estimators, as
can be seen by the significant rise in the factor loading space errors from Setting (Ia) to (Ib) in
Figure 5.5 and 5.6. In fact, k̂c barely captures the second factor under Setting (Ib) and (IIb).
Comparing Setting (Ib) with (Id), Figure 5.5 and 5.6 show that increase in data dimensions
slightly improves our factor loading matrix estimators, which is consistent to the simulation
results in Wang et al. (2019) for instance.
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Figure 5.3: Plot of the relative MSE for
αt (in log-scale) from Settings (Ia) to (Ie),
comparing with (IIa) to (IIe).
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Figure 5.4: Plot of the relative MSE for
βt (in log-scale) from Settings (Ia) to (Ie),
comparing with (IIa) to (IIe).

Performance for the estimation of the number of factors

We demonstrate the performance of our estimators for the number of factors, as described in
Theorem 5.9. First, we set ξr = pq[(Tq)−1/2 + p−1/2]/5 and ξc = pq[(Tp)−1/2 + q−1/2]/5,
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Figure 5.5: Plot of the row space dis-
tance D(Qr, Q̂r) (in log-scale) from Set-
tings (Ia) to (Ie), comparing with (IIa) to
(IIe).
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Figure 5.6: Plot of the column space dis-
tance D(Qc, Q̂c) (in log-scale) from Set-
tings (Ia) to (Ie), comparing with (IIa) to
(IIe).

so that the conditions for ξr and ξc in (5.7) and (5.8) are respectively satisfied. A wide range
of values other than 1/5 for ξr and ξc are experimented, but 1/5 is working the best in vast
majority of settings, and hence we do not recommend treating this as a tuning parameter.

We present the results for each of the following settings:

(IIIa) kr = kc = 3. All factors are pervasive with ζr,j = ζc,j = 0 for all j ∈ [3]. All innovation
processes involved are i.i.d. standard normal.

(IIIb) Same as (IIIa), but some factors are weak with ζr,1 = ζc,1 = ζc,2 = 0.2.

(IIIc) Same as (IIIa), but all factors are weak with ζr,j = ζc,j = 0.2 for all j ∈ [3].

We experiment the above settings with (p, q) pairs among (10, 10), (10, 20) and (20, 20), with
the choice T = 0.5 · pq or T = pq. The setup is similar to Wang et al. (2019) and Chen and
Fan (2023), but we use smaller sets of dimensions since the accuracy of our estimators are
approaching 1 with larger dimensions, which reveal little intricacies among different settings.

From the results in Table 5.1, our eigenvalue-ratio estimators is working well with MEFM.
The accuracy of k̂r and k̂c suffers from the existence of weak factors, which is also seen in tra-
ditional FM (see for instance Chen and Lam (2024b) and Cen and Lam (2025b)). In particular,
the accuracy of our estimators drops significantly as we move from Setting (IIIa) to (IIIc), and
in general large dimensions are beneficial to our estimation. Lastly, note that although we have
two weak factors in the column loading matrix while there is only one weak factor in the row
loading matrix, the correct proportion of k̂c is much larger than that of k̂r for (p, q) = (10, 20).
This hints at the importance of data dimensions over factor strength, which can also be seen
from the fact that the results for (p, q) = (20, 20) under Setting (IIIc) are comparable with those
for (p, q) = (10, 10) under Setting (IIIa).
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p, q = 10, 10 p, q = 10, 20 p, q = 20, 20

(k̂r, k̂c) T = .5pq T = pq T = .5pq T = pq T = .5pq T = pq

Setting (IIIa)
(2, 3) 0.121 0.112 0.128 0.11 0 0.004
(3, 2) 0.124 0.111 0.004 0.003 0.001 0.001
(3, 3) 0.583 0.659 0.833 0.855 0.999 0.995
other 0.172 0.118 0.035 0.032 0 0

Setting (IIIb)
(2, 3) 0.135 0.13 0.23 0.257 0.228 0.149
(3, 2) 0.079 0.096 0.024 0.017 0.022 0.02
(3, 3) 0.136 0.17 0.289 0.347 0.556 0.637
other 0.65 0.604 0.457 0.379 0.194 0.194

Setting (IIIc)
(2, 3) 0.082 0.085 0.218 0.254 0.089 0.096
(3, 2) 0.075 0.124 0.04 0.035 0.088 0.089
(3, 3) 0.073 0.096 0.209 0.257 0.614 0.646
other 0.77 0.695 0.533 0.454 0.209 0.169

Table 5.1: Results for Setting (IIIa) to (IIIc). Each cell reports the frequency of (k̂r, k̂c) under
the setting in the corresponding column. The true number of factors is (kr, kc) = (3, 3), and
the cells corresponding to correct estimations are bolded.

Asymptotic normality

We numerically demonstrate the asymptotic normality results in Theorems 5.4 and 5.5 in the
following. For the ease of demonstration, we consider t = 10 only for the asymptotic distri-
bution of µ̂t, θ̂α,t = (α̂t,1, α̂t,2, α̂t,3)

′ and θ̂β,t = (β̂t,1, β̂t,2, β̂t,3)
′, and for θ̂α,t and θ̂β,t we will

only report results for the third component. We will also demonstrate the asymptotic normality
for (Q̂c)1· and present the results for (Q̂c)11, i.e., the first entry of the first row in the column
loading matrix estimator. To consistently estimate its covariance matrix, we use Theorem 5.6
with ηc = ⌊(Tpq)1/4/5⌋.

We use heavy-tailed innovations to investigate the robustness of our results, hence Setting
(Ic) is adapted except that we generate Ft, Fe,t and ϵt using AR(1) with coefficient −0.2. Due
to the different rates of convergence in Theorems 5.4 and 5.5, we specify different dimensions
(T, p, q) in the following settings:

µ̂t : (80, 100, 100), θ̂α,t : (60, 60, 300), θ̂β,t : (60, 300, 60), (Q̂c)1· : (60, 60, 300),

where the dimension setting for (Q̂c)1· is to align with the rate conditions in Theorem 5.5 that
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Figure 5.7: Histograms showing the asymptotic normality of √pq γ̂−1
µ (µ̂10 − µ10) (top-left),

[T (Σ̂HAC
c,1 )−1/2D̂c(Q̂c,1· − Ha

1Qc,1·)]1 (top-right), √q [diag(γ̂−1
α,1, γ̂

−1
α,2, γ̂

−1
α,3)(θ̂α,10 − θα,10)]3

(bottom-left), and √p [diag(γ̂−1
β,1, γ̂

−1
β,2, γ̂

−1
β,3)(θ̂β,10 − θβ,10)]3 (bottom-right). Each panel plots

the empirical density (red), with the density curve for N (0, 1) (black, dotted) also shown.

Tp/q2 → 0 under pervasive factors. Each setting is repeated 400 times, and we present the
histograms of our four estimators in Figure 5.7.

Our plots stand as empirical evidence of Theorem 5.4, 5.5, and 5.6. It might worth noting
that the spread of the normalised empirical density for β̂10,3 is slightly larger than expected
by comparing with the superimposed standard normal. The same problem is not seen in the
histogram for α̂10,3. With true (kr, kc) = (1, 2), the common component estimation using
(p, q) = (300, 60) is worse than that using (p, q) = (60, 300) due to insufficient column di-
mension relative to kc. Hence it leads to worse estimators for errors and (γ̂−1

β,1, γ̂
−1
β,2, γ̂

−1
β,3) under

(p, q) = (300, 60). Hence inference performances on the time-varying row and column effect
estimators are affected by the latent number of factors.

Testing MEFM versus FM

We now demonstrate numerical results for Corollary 5.8. Consider the two scenarios:

1. (Global effect.) The entries of at least one of αt and βt are in general nonzero for each t.
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Size Setting (IVa) Setting (IVb) Setting (IVc)

Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10

rejectα 5(4) 11(7) 63(31) 96(15) 13(8) 53(30) 86(23) 37(17) 77(24) 85(27)

rejectβ 5(4) 11(7) 52(28) 87(22) 13(8) 62(32) 96(16) 14(8) 28(16) 48(26)

Table 5.2: Results for Setting (IVa) to (IVc). Each cell reports the mean and SD (subscripted, in
bracket), both multiplied by 100. The parameters for Settings (IVa), (IVb) and (IVc) are uα, uβ
and ulocal, respectively. Setting (IVa) with uα = 0 is reported in the first column, representing
the size of the test.

2. (Local effect.) The entries of at least one of αt and βt are sparse at each t, i.e., there are
some nonzero entries in at least one of αt and βt with all other entries zero.

Throughout this subsection, we generate the time-varying grand mean and main effects
using Rademacher random variables such that vµ,t is i.i.d. Rademacher multiplied by some
uµ and each entry of vα,t, vβ,t is i.i.d. Rademacher multiplied by some uα, uβ respectively,
recalling that µt = vµ,t, αt = Mpvα,t and βt = Mqvβ,t. Hence, setting uµ = uα = uβ = 0

corresponds to generating a traditional FM. We set kr = kc = 2, and consider the settings:

(IVa) T = p = q = 40. All factors are pervasive with ζr,j = ζc,j = 0. All innovation processes
in constructing Ft, Fe,t and ϵt are i.i.d. standard normal. Set uµ = uβ = 0, and we select
uα from 0.1, 0.5, 1.

(IVb) Same as (IVa), but fix uα = 0.1 and select uβ from 0.1, 0.5, 1.

(IVc) Same as (IVa), except that uα = 1, and when generating αt = Mpvα,t as specified
previously, we only keep the first ulocal entries of vα,t as nonzero where ulocal is selected
from 2, 5, 10.

Setting (IVa) and (IVb) are designed for testing global effects, and Setting (IVc) for local
effects. For each setting, we construct yα,t, yβ,t and use θ = 0.95 in Corollary 5.8. Each ex-
periment is repeated 400 times and we report both rejectα := T−1

∑T
t=1 1{yα,t ≥ q̂x,α(0.95)}

and rejectβ := T−1
∑T

t=1 1{yβ,t ≥ q̂x,β(0.95)}.
As explained under Corollary 5.8, we expect rejectα and rejectβ to be close to 1 − θ =

0.05 if FM is sufficient. From Table 5.2, our proposed test works well since it suggests FM is
insufficient as we strengthenαt orβt. In particular, even if the signal ofαt is not strong enough
such as uα = 0.1, Setting (IVb) shows that additional signals from βt allows us to reject the use
of FM. The comparison between rejectα and rejectβ is indicative of which effect is stronger.
According to the results for (IVc) in the table, our test is capable of detecting local effect such
that rejectα is far from 0.05 even when only two entries in αt are nonzero.
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Figure 5.8: Statistical power curve of testing
the null hypothesis that FM is sufficient for
the given series, against the alternative that
MEFM is necessary. Each power value is com-
puted as the average over 400 runs of rejectα
(in red) and rejectβ (in green) under Setting
(IVa) except that (T, p, q) = (60, 80, 80).
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Figure 5.9: Statistical power curve of testing.
Refer to the caption of Figure 5.8 for details
on the hypothesis test and power computation.
The data is generated under Setting (IVc) ex-
cept that (T, p, q) = (60, 80, 80) andαt is gen-
erated such thatα1 = ũlocal(1, 1, -2, 0, . . . , 0)′,
α2 = ũlocal(1, 2, -3, 0, . . . , 0)′, and α3 =
ũlocal(2, -5, 3, 0, . . . , 0)′, followed by α3ℓ+i =
αi for positive integer ℓ and i = 1, 2, 3, so that
each αt has nonzero entries only in the first
three indices.

Extensive experiments on different dimensions, factor strengths or grand mean magnitudes
are performed. All indicate similar interpretation as the above settings and hence the results are
not shown here. The power curve for Setting (IVa) is also presented in Figure 5.8 to support the
use of our test, with (T, p, q) = (60, 80, 80) and uα ranging from 0.02 to 1. Besides, we also
show the power curve for local effect in Figure 5.9, for Setting (IVc) except that (T, p, q) =

(60, 80, 80) and we generate αt as described in the caption. Both power curves show that the
test is able to reject the use of FM if signals from the time-varying main effects are large, either
globally or locally. In both figures, when uα is close to 0.02 or ũlocal close to 0, the value of the
power curves are all very close to 0.05, which is exactly what we want for the size of the tests.

5.4.2 Real data analysis: NYC taxi traffic

We analyse a set of taxi traffic data in New York City in this example. The data includes all
individual taxi rides operated by Yellow Taxi in New York City, published at
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https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
For simplicity, we only consider the rides within Manhattan Island, which comprises most

of the data. The dataset contains 842 million trip records from January 1, 2013 to December 31,
2022. Each trip record includes features such as pick-up and drop-off dates/times, pick-up and
drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-reported
passenger counts. Our example here focuses on the drop-off dates/times and locations.

To classify the drop-off locations in Manhattan, they are coded according to 69 predefined
zones in the dataset. Moreover, each day is divided into 24 hourly periods to represent the
drop-off times each day, with the first hourly period from 0 a.m. to 1 a.m. The total number
of rides moving among the zones within each hour are recorded, yielding data Yt ∈ R69×24

each day, where yi1,i2,t is the number of trips to zone i1 and the pick-up time is within the i2-th
hourly period on day t.

We consider the non-business-day series which is 1,133 days long, within the period of
January 1, 2013 to December 31, 2022. Using MEFM, the estimated rank of the core factors
is (2, 2) according to our proposed eigenvalue ratio estimator. As mentioned in Section 5.3.6,
we therefore use (3, 3) as the number of factors to estimate FM and test if FM is sufficient.
We compute rejectα = 0.064 and rejectβ = 0.133 which are defined in Section 5.4.1. They
should be close to 1− θ = 0.05 according to Corollary 5.8 if FM is sufficient. Hence we reject
the use of traditional FM due to the signals in β̂t.

Legend
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0.3 ~ 0.5

0.1 ~ 0.3

−0.1 ~ 0.1

−0.3 ~ −0.1

−0.5 ~ −0.3

Figure 5.10: Estimated loading on three dropoff factors using MEFM, i.e., Q̂1,·1 (left), Q̂1,·2

(middle) and Q̂1,·3 (right).

To compare MEFM with FM, we use core rank (3, 3) to estimate MEFM for the rest of
this example. Figure 5.10 and 5.11 illustrate the heatmaps of the estimated loading columns
on the three dropoff factors using MEFM and FM, respectively. From both heatmaps, we can

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Figure 5.11: Estimated loading on three dropoff factors using FM, similar to Figure 5.10.

identify the first factor as active areas, the second as dining and sports areas and the third as
downtown areas. The three factors are similar to their corresponding counterparts, except that
the first factor estimated using MEFM is more indicative on the active areas to taxi traffic in
Manhattan by its emphasised orange zone which corresponds to East Harlem.

To gain further understanding on the taxi traffic, we show the scaled Q̂2 by MEFM and
FM in Tables 5.3 and 5.4, respectively. We can see that for the rush hours between 6 p.m.
to 11 p.m., the estimated loadings almost vanish for MEFM, which is consistent with the fact
that β̂t captures the common hour effect on Manhattan life style. This also provides an intu-
ition why the time-varying column/hour effect is strong, since in non-business days, the way
that daily hours affecting the taxi traffic can change drastically over time as compared to the
same when Manhattan zones are considered. For demonstration, we plot both β̂t,2 and β̂t,18 in
Figure 5.12, where the former series features the mid-night effects and the latter features the
night-life effects. Both series demonstrate seasonality before COVID-19 as shown on the plot.

The business-day series is also analysed, but since both rejectα and rejectβ are not signif-
icant, the estimated model is not shown here. The fact that the time-varying hour effect is not
strong for business days is probably due to a rather routine working hours. Thus the hour effect
is hardly changing and can be absorbed into a fixed mean, so that FM would be sufficient.

5.5 Proof of Theorems and Auxiliary Results

Proof of Theorem 5.1. Suppose we have another set of parameters, (µ̃t, α̃t, β̃t, Q̃r, Q̃c, F̃Z,t)

for t ∈ [T ], also satisfying (5.3). For each t ∈ [T ], left-multiplying by 1′
p and right-multiplying
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0am 2 4 6 8 10 12pm 2 4 6 8 10 12am

1 -2 -5 -6 -7 -7 -7 -6 -5 -3 0 3 5 6 6 5 5 4 4 5 5 2 0 0 -1
2 6 5 3 1 -1 -4 -5 -6 -7 -7 -6 -5 -3 -2 -1 -2 -1 -1 2 5 8 6 6 7
3 -1 -13 -9 -6 -2 2 4 5 6 4 2 -2 -4 -5 -4 -3 -2 -1 0 2 5 4 7 9

Table 5.3: Estimated loading matrix Q̂2 using MEFM, after scaling. Magnitudes larger than 6
are highlighted in red.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am

1 -5 -5 -4 -3 -2 -1 -1 -1 -2 -3 -4 -5 -5 -6 -5 -5 -5 -5 -6 -6 -6 -5 -5 -5
2 5 7 7 5 4 2 0 -2 -4 -6 -6 -6 -6 -5 -4 -4 -3 -3 -2 1 4 4 5 6
3 1 -13 -10 -9 -6 -3 -1 0 1 0 -1 -3 -3 -3 -3 -2 -1 0 3 6 6 6 8 11

Table 5.4: Estimated loading matrix Q̂2 using FM, after scaling. Magnitudes larger than 5 are
highlighted in red.

Estimated  β
^
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Figure 5.12: Plot of the estimated hour effects for periods from 1 a.m. to 2 a.m. (in blue) and
from 5 p.m. to 6.p.m. (in red). The date for the first confirmed case of COVID-19 in New York
is also shown (dotted yellow vertical line).
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by 1q on (5.3), we arrive at pqµ̃t = pqµt from (IC1), so µt is identified. Similarly, α̃t = αt

and β̃ = βt, by separately left-multiplying 1′
p and right-multiplying 1q on Yt.

We hence have Q̃rF̃Z,tQ̃
′
c = QrFZ,tQ

′
c, but the factor loading matrices and factor series

require further identification due to the multiplicative form. Without loss of generality, write

Q̃r = QrMr + Γr, where Γ′
rQr = 0,

with Mr ∈ Rkr×kr and Γr ∈ Rp×kr , but can have zero columns. Then we have

0 = Γ′
rQrFZ,tQ

′
cQ̃c = Γ′

rQ̃rF̃Z,tQ̃
′
cQ̃c = Γ′

rΓrF̃Z,tQ̃
′
cQ̃c,

which can only be true in general if Γr = 0 since F̃t is random and Q̃′
cQ̃c → ΣA,c due to (L1).

Using (L1), Mr is of full rank and hence Q̃r and Qr share the same column space. Similarly,
the factor loading space of Qc is identified, and FZ,t is hence identified once Qr and Qc are
given correspondingly. □

Proof of Theorem 5.2. By Assumption (IC1), we have µt = 1′
p(Yt −Et)1q/pq and hence

(µ̂t − µt)2 =
1

p2q2

(
1′
pEt1q

)2
=

1

p2q2

( p∑
i=1

q∑
j=1

Et,ij

)2
. (5.9)

Assumption (E1) implies each entry of Et has zero mean and bounded fourth moment, and

E

{( p∑
i=1

q∑
j=1

Et,ij

)2}
= Var

( p∑
i=1

q∑
j=1

Et,ij

)
=

p∑
i=1

p∑
l=1

q∑
j=1

q∑
h=1

Cov(Et,ij, Et,lh) = O(pq),

(5.10)
where we used Lemma 5.1 in the last equality. Thus with (5.9), (µ̂t − µt)2 = OP (p

−1q−1).
Similar to the rate for µ̂t, by again (IC1) we have αt = q−1Yt1q − µt1p − q−1Et1q and

βt = p−1Y′
t1p − µt1q − p−1E′

t1p. Then we have

1

p
· ∥α̂t −αt∥2 =

1

p
·
∥∥∥(µt − µ̂t)1p + q−1Et1q

∥∥∥2, (5.11)

1

q
· ∥β̂t − βt∥2 =

1

q
·
∥∥∥(µt − µ̂t)1q + p−1E′

t1p

∥∥∥2. (5.12)

From (5.9) we have ∥(µt− µ̂t)1p∥2 = OP (q
−1) and ∥(µt− µ̂t)1q∥2 = OP (p

−1). Furthermore,
by Lemma 5.1,

E

(
∥q−1Et1q∥2

)
= q−2 ·

p∑
i=1

Var
( q∑
j=1

Et,ij

)
= O(pq−1).
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Similarly, ∥p−1E′
t1p∥2 = OP (qp

−1). Then we have (5.11) and (5.12) as

1

p
· ∥α̂t −αt∥2 = OP (q

−1),
1

q
· ∥β̂t − βt∥2 = OP (p

−1).

In the rest of the proof, we show consistency of the factor loading estimators. From (5.4),

L̂t = Yt + (pq)−11′
pYt1q1p1

′
q − q−1Yt1q1

′
q − p−11p1

′
pYt,

L̂′
t = Y′

t + (pq)−11q1
′
p1

′
qY

′
t1p − q−11q1

′
qY

′
t − p−1Y′

t1p1
′
p,

and hence the following decomposition

L̂tL̂
′
t = YtY

′
t + (pq)−1Yt1q1

′
p1

′
qY

′
t1p − q−1Yt1q1

′
qY

′
t − p−1YtY

′
t1p1

′
p

+ (pq)−11′
pYt1q1p1

′
qY

′
t + (pq)−21′

pYt1q1p1
′
q1q1

′
p1

′
qY

′
t1p

− q−1(pq)−11′
pYt1q1p1

′
q1q1

′
qY

′
t − p−1(pq)−11′

pYt1q1p1
′
qY

′
t1p1

′
p

− q−1Yt1q1
′
qY

′
t − q−1(pq)−1Yt1q1

′
q1q1

′
p1

′
qY

′
t1p + q−2Yt1q1

′
q1q1

′
qY

′
t

+ q−1p−1Yt1q1
′
qY

′
t1p1

′
p − p−11p1

′
pYtY

′
t − (pq)−1p−11p1

′
pYt1q1

′
p1

′
qY

′
t1p

+ q−1p−11p1
′
pYt1q1

′
qY

′
t + p−21p1

′
pYtY

′
t1p1

′
p

= YtY
′
t + (pq)−11′

qY
′
t1pYt1q1

′
p − p−1YtY

′
t1p1

′
p − q−1Yt1q1

′
qY

′
t − p−11p1

′
pYtY

′
t

− (pq)−1p−11′
pYt1q1

′
qY

′
t1p1p1

′
p + (pq)−11′

pYt1q1p1
′
qY

′
t + p−21′

pYtY
′
t1p1p1

′
p

= YtY
′
t +Q1 −Q2 −Q3 −Q4 −Q5 +Q6 +Q7, where

Q1 := (pq)−11′
qY

′
t1pYt1q1

′
p, Q2 := p−1YtY

′
t1p1

′
p, Q3 := q−1Yt1q1

′
qY

′
t,

Q4 := p−11p1
′
pYtY

′
t, Q5 := (pq)−1p−11′

pYt1q1
′
qY

′
t1p1p1

′
p,

Q6 := (pq)−11′
pYt1q1p1

′
qY

′
t, Q7 := p−21′

pYtY
′
t1p1p1

′
p.

From (5.3), 1′
qY

′
t1p = pqµt + 1′

qE
′
t1p and Yt1q1

′
p = qµt1p1

′
p + qαt1

′
p + Et1q1

′
p. Thus,

Q1 = (pq)−1(pq2µ2
t1p1

′
p + pq2µtαt1

′
p + pqµtEt1q1

′
p

+ qµt1
′
qE

′
t1p1p1

′
p + q1′

qE
′
t1pαt1

′
p + 1′

qE
′
t1pEt1q1

′
p)

= qµ2
t1p1

′
p + qµtαt1

′
p + µtEt1q1

′
p + p−1µt1

′
qE

′
t1p1p1

′
p

+ p−11′
qE

′
t1pαt1

′
p + (pq)−11′

qE
′
t1pEt1q1

′
p.

(5.13)

Similarly, we haveYtY
′
t = (µt1p1

′
q+αt1

′
q+1pβ

′
t+Ct+Et)(µt1q1

′
p+1qα

′
t+βt1

′
p+C′

t+E′
t).
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Further with Assumption (IC1),

Q2 = p−1(µ2
t1p1

′
q1q1

′
p + µt1p1

′
q1qα

′
t + µt1p1

′
qβt1

′
p + µt1p1

′
qC

′
t + µt1p1

′
qE

′
t

+ µtαt1
′
q1q1

′
p +αt1

′
q1qα

′
t +αt1

′
qβt1

′
p +αt1

′
qC

′
t +αt1

′
qE

′
t

+ µt1pβ
′
t1q1

′
p + 1pβ

′1qα
′
t + 1pβ

′
tβt1

′
p + 1pβ

′
tC

′
t + 1pβ

′
tE

′
t

+ µtCt1q1
′
p +Ct1qα

′
t +Ctβt1

′
p +CtC

′
t +CtE

′
t

+ µtEt1q1
′
p + Et1qα

′
t + Etβt1

′
p + EtC

′
t + EtE

′
t)1p1

′
p

= qµ2
t1p1

′
p + p−1µt1

′
qE

′
t1p1p1

′
p + qµtαt1

′
p + p−11′

qE
′
t1pαt1

′
p + 1pβ

′
tβt1

′
p

+ p−1β′
tE

′
t1p1p1

′
p +Ctβt1

′
p + p−1CtE

′
t1p1

′
p + µtEt1q1

′
p + Etβt1

′
p + p−1EtE

′
t1p1

′
p.

(5.14)

Since Yt1q = qµt1p + qαt + Et1q, we have

Q3 = q−1(qµt1p + qαt + Et1q)(qµt1
′
p + qα′

t + 1′
qE

′
t)

= qµ2
t1p1

′
p + qµt1pα

′
t + µt1p1

′
qE

′
t + qµtαt1

′
p + qαtα

′
t +αt1

′
qE

′
t

+ µtEt1q1
′
p + Et1qα

′
t + q−1Et1q1

′
qE

′
t.

(5.15)

Similar to (5.14), we have

Q4 = qµ2
t1p1

′
p + qµt1pα

′
t + µt1p1

′
qβt1

′
p + µt1p1

′
qC

′
t + µt1p1

′
qE

′
t + µt1p1

′
pαt1

′
q1q1

′
p

+ p−11p1
′
pαt1

′
q1qα

′
t + p−11p1

′
pαt1

′
qβt1

′
p + p−11p1

′
pαt1

′
qC

′
t + p−11p1

′
pαt1

′
qE

′
t

+ µt1pβ
′
t1q1

′
p + 1pβ

′1qα
′
t + 1pβ

′
tβt1

′
p + 1pβ

′
tC

′
t + 1pβ

′
tE

′
t + p−1µt1p1

′
pCt1q1

′
p

+ p−11p1
′
pCt1qα

′
t + p−11p1

′
pCtβt1

′
p + p−11p1

′
pCtC

′
t + p−11p1

′
pCtE

′
t

+ p−1µt1p1
′
pEt1q1

′
p + p−11p1

′
pEt1qα

′
t + p−11p1

′
pEtβt1

′
p

+ p−11p1
′
pEtC

′
t + p−11p1

′
pEtE

′
t

= qµ2
t1p1

′
p + qµt1pα

′
t + µt1p1

′
qE

′
t + β′

tβt1p1
′
p + 1pβ

′
tC

′
t + 1pβ

′
tE

′
t

+ p−1µt1
′
pEt1q1p1

′
p + p−11′

pEt1q1pα
′
t + p−11′

pEtβt1p1
′
p

+ p−11p1
′
pEtC

′
t + p−11p1

′
pEtE

′
t,

(5.16)

where the last equality used Assumption (IC1). For Q5 and Q6, we have

Q5 = (pq)−1p−1(pqµt + 1′
pEt1q)(pqµt + 1′

qE
′
t1p)1p1

′
p

= qµ2
t1p1

′
p + p−1µt1

′
qE

′
t1p1p1

′
p + p−1µt1

′
pEt1q1p1

′
p + (pq)−1p−11′

pEt1q1
′
qE

′
t1p1p1

′
p,

(5.17)

Q6 = (µt + (pq)−11′
qE

′
t1p)(qµt1p1

′
p + q1pα

′
t + 1p1

′
qβt1

′
p + 1p1

′
qC

′
t + 1p1

′
qE

′
t)
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= qµ2
t1p1

′
p + qµt1pα

′
t + µt1p1

′
qE

′
t + p−1µt1

′
qE

′
t1p1p1

′
p

+ p−11′
qE

′
t1p1pα

′
t + (pq)−11′

qE
′
t1p1p1

′
qE

′
t. (5.18)

Lastly for Q7, we have similar to (5.14) that

Q7 = p−21′
p(µ

2
t1p1

′
q1q1

′
p + µt1p1

′
q1qα

′
t + µt1p1

′
qβt1

′
p + µt1p1

′
qC

′
t + µt1p1

′
qE

′
t

+ µtαt1
′
q1q1

′
p +αt1

′
q1qα

′
t +αt1

′
qβt1

′
p +αt1

′
qC

′
t +αt1

′
qE

′
t

+ µt1pβ
′
t1q1

′
p + 1pβ

′1qα
′
t + 1pβ

′
tβt1

′
p + 1pβ

′
tC

′
t + 1pβ

′
tE

′
t

+ µtCt1q1
′
p +Ct1qα

′
t +Ctβt1

′
p +CtC

′
t +CtE

′
t

+ µtEt1q1
′
p + Et1qα

′
t + Etβt1

′
p + EtC

′
t + EtE

′
t)1p1p1

′
p

= p−2(pqµ2
t1

′
p + pqµtα

′
t + pµt1

′
qE

′
t + pβ′

tβt1
′
p + pβ′

tC
′
t + pβ′

tE
′
t

+ µt1
′
pEt1q1

′
p + 1′

pEt1qα
′
t + 1′

pEtβt1
′
p + 1′

pEtC
′
t + 1′

pEtE
′
t)1p1p1

′
p

= qµ2
t1p1

′
p + p−1µt1

′
qE

′
t1p1p1

′
p + β′

tβt1p1
′
p + p−1β′

tE
′
t1p1p1

′
p

+ p−1µt1
′
pEt1q1p1

′
p + p−11′

pEtβt1p1
′
p + p−21′

pEtE
′
t1p1p1

′
p.

(5.19)
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With (5.13), (5.14), (5.15), (5.16), (5.17), (5.18) and (5.19), we have

L̂tL̂
′
t

= YtY
′
t +Q1 −Q2 −Q3 −Q4 −Q5 +Q6 +Q7

= qµ2
t1p1

′
p + qµt1pα

′
t + µt1p1

′
qE

′
t + qµtαt1

′
p + qαtα

′
t +αt1

′
qE

′
t + 1pβ

′
tβt1

′
p + 1pβ

′
tC

′
t

+ 1pβ
′
tE

′
t +Ctβt1

′
p +CtC

′
t +CtE

′
t + µtEt1q1

′
p + Et1qα

′
t + Etβt1

′
p + EtC

′
t + EtE

′
t

+ qµ2
t1p1

′
p + qµtαt1

′
p + µtEt1q1

′
p + p−1µt1

′
qE

′
t1p1p1

′
p + p−11′

qE
′
t1pαt1

′
p

+ (pq)−11′
qE

′
t1pEt1q1

′
p − qµ2

t1p1
′
p − p−1µt1

′
qE

′
t1p1p1

′
p − qµtαt1

′
p − p−11′

qE
′
t1pαt1

′
p

− 1pβ
′
tβt1

′
p − p−1β′

tE
′
t1p1p1

′
p −Ctβt1

′
p − p−1CtE

′
t1p1

′
p − µtEt1q1

′
p − Etβt1

′
p

− p−1EtE
′
t1p1

′
p − qµ2

t1p1
′
p − qµt1pα′

t − µt1p1′
qE

′
t − qµtαt1

′
p − qαtα

′
t −αt1

′
qE

′
t

− µtEt1q1
′
p − Et1qα

′
t − q−1Et1q1

′
qE

′
t − qµ2

t1p1
′
p − qµt1pα′

t − µt1p1′
qE

′
t − β′

tβt1p1
′
p

− 1pβ
′
tC

′
t − 1pβ

′
tE

′
t − p−1µt1

′
pEt1q1p1

′
p − p−11′

pEt1q1pα
′
t − p−11′

pEtβt1p1
′
p

− p−11p1
′
pEtC

′
t − p−11p1

′
pEtE

′
t − qµ2

t1p1
′
p − p−1µt1

′
qE

′
t1p1p1

′
p − p−1µt1

′
pEt1q1p1

′
p

− (pq)−1p−11′
pEt1q1

′
qE

′
t1p1p1

′
p + qµ2

t1p1
′
p + qµt1pα

′
t + µt1p1

′
qE

′
t + p−1µt1

′
qE

′
t1p1p1

′
p

+ p−11′
qE

′
t1p1pα

′
t + (pq)−11′

qE
′
t1p1p1

′
qE

′
t + qµ2

t1p1
′
p + p−1µt1

′
qE

′
t1p1p1

′
p + β′

tβt1p1
′
p

+ p−1β′
tE

′
t1p1p1

′
p + p−1µt1

′
pEt1q1p1

′
p + p−11′

pEtβt1p1
′
p + p−21′

pEtE
′
t1p1p1

′
p

= CtC
′
t +CtE

′
t + EtC

′
t + EtE

′
t + (pq)−11′

qE
′
t1pEt1q1

′
p + (pq)−11′

qE
′
t1p1p1

′
qE

′
t

− p−1CtE
′
t1p1

′
p − p−11p1

′
pEtC

′
t − p−1EtE

′
t1p1

′
p − p−11p1

′
pEtE

′
t − q−1Et1q1

′
qE

′
t

− (pq)−1p−1(1′
qE

′
t1p)

21p1
′
p + p−21′

pEtE
′
t1p1p1

′
p.

(5.20)

Swapping the roles of row and column factor loadings, we can arrive at similarly

L̂′
tL̂t = C′

tCt +C′
tEt + E′

tCt + E′
tEt + (pq)−11′

pEt1qE
′
t1p1

′
q + (pq)−11′

pEt1q1q1
′
pEt

− q−1C′
tEt1q1

′
q − q−11q1

′
qE

′
tCt − q−1E′

tEt1q1
′
q − q−11q1

′
qE

′
tEt − p−1E′

t1p1
′
pEt

− (pq)−1q−1(1′
pEt1q)

21q1
′
q + q−21′

qE
′
tEt1q1q1

′
q.

(5.21)

For ease of notation, we define

Rr,t := CtE
′
t + EtC

′
t + EtE

′
t + (pq)−11′

qE
′
t1pEt1q1

′
p + (pq)−11′

qE
′
t1p1p1

′
qE

′
t

− p−1CtE
′
t1p1

′
p − p−11p1

′
pEtC

′
t − p−1EtE

′
t1p1

′
p − p−11p1

′
pEtE

′
t − q−1Et1q1

′
qE

′
t

− (pq)−1p−1(1′
qE

′
t1p)

21p1
′
p + p−21′

pEtE
′
t1p1p1

′
p, (5.22)

Rc,t := C′
tEt + E′

tCt + E′
tEt + (pq)−11′

pEt1qE
′
t1p1

′
q + (pq)−11′

pEt1q1q1
′
pEt

− q−1C′
tEt1q1

′
q − q−11q1

′
qE

′
tCt − q−1E′

tEt1q1
′
q − q−11q1

′
qE

′
tEt − p−1E′

t1p1
′
pEt
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− (pq)−1q−1(1′
pEt1q)

21q1
′
q + q−21′

qE
′
tEt1q1q1

′
q, (5.23)

so that from (5.20) and (5.21), we can write

L̂tL̂
′
t = CtC

′
t +Rr,t, L̂′

tL̂t = C′
tCt +Rc,t.

Recall that we denote by D̂r the kr × kr diagonal matrix with the first largest kr eigenvalues of
T−1

∑T
t=1 L̂tL̂

′
t on the main diagonal, and since Q̂r consists of the corresponding eigenvectors,

Q̂rD̂r = T−1

T∑
t=1

L̂tL̂
′
tQ̂r. (5.24)

With (5.20) and CtC
′
t = QrFZ,tQ

′
cQcF

′
Z,tQ

′
r, we can write the j-th row of estimated row

factor loading as

Q̂r,j· = T−1D̂−1
r

p∑
i=1

Q̂r,i·

T∑
t=1

(L̂tL̂
′
t)ij

= T−1D̂−1
r

p∑
i=1

Q̂r,i·Q
′
r,i·

T∑
t=1

(FZ,tQ
′
cQcF

′
Z,t)Qr,j· + T−1D̂−1

r

p∑
i=1

Q̂r,i·

T∑
t=1

(Rr,t)ij.

Thus with the definition Hr = T−1D̂−1
r Q̂′

rQr

∑T
t=1(FZ,tQ

′
cQcF

′
Z,t), we have

Q̂r,j· −HrQr,j· = T−1D̂−1
r

p∑
i=1

Q̂r,i·

T∑
t=1

(Rr,t)ij,

and hence we have

∥Q̂r −QrH
′
r∥2F =

p∑
j=1

∥Q̂r,j· −HrQr,j·∥2 =
p∑
j=1

∥∥∥T−1D̂−1
r Q̂′

r

( T∑
t=1

Rr,t

)
·j

∥∥∥2
≤ T−2 · ∥D̂−1

r ∥2F · ∥Q̂r∥2F ·
∥∥∥ T∑
t=1

Rr,t

∥∥∥2
F
= OP

(
T−1p2(1−δr,kr )q1−2δc,1 + p1−2δr,kr q2(1−δc,1)

)
,

where the last equality used Lemma 5.2 and Lemma 5.3. The consistency of Q̂c can be similarly
shown (omitted here). This completes the proof of Theorem 5.2. □
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Proof of Theorem 5.3. From (5.4), we can first write

L̂t = Yt + (pq)−11′
pYt1q1p1

′
q − q−1Yt1q1

′
q − p−11p1

′
pYt

= µt1p1
′
q +αt1

′
q + 1pβ

′
t +QrFZ,tQ

′
c + Et

+ (pq)−11′
p(µt1p1

′
q +αt1

′
q + 1pβ

′
t +QrFZ,tQ

′
c + Et)1q1p1

′
q

− q−1(µt1p1
′
q +αt1

′
q + 1pβ

′
t +QrFZ,tQ

′
c + Et)1q1

′
q

− p−11p1
′
p(µt1p1

′
q +αt1

′
q + 1pβ

′
t +QrFZ,tQ

′
c + Et)

= µt1p1
′
q +αt1

′
q + 1pβ

′
t +QrFZ,tQ

′
c + Et + (pq)−11′

pµt1p1
′
q1q1p1

′
q

+ (pq)−11′
pαt1

′
q1q1p1

′
q + (pq)−11′

p1pβ
′
t1q1p1

′
q + (pq)−11′

pQrFZ,tQ
′
c1q1p1

′
q

+ (pq)−11′
pEt1q1p1

′
q − q−1µt1p1

′
q1q1

′
q − q−1αt1

′
q1q1

′
q − q−11pβ

′
t1q1

′
q

− q−1QrFZ,tQ
′
c1q1

′
q − q−1Et1q1

′
q − p−11p1

′
pµt1p1

′
q − p−11p1

′
pαt1

′
q

− p−11p1
′
p1pβ

′
t − p−11p1

′
pQrFZ,tQ

′
c − p−11p1

′
pEt

= QrFZ,tQ
′
c + Et + (pq)−11′

pEt1q1p1
′
q − q−1Et1q1

′
q − p−11p1

′
pEt,

where the last equality used Assumption (IC1). Thus, we have

F̂Z,t − (H−1
r )′FZ,tH

−1
c = Q̂′

rL̂tQ̂c − (H−1
r )′FZ,tH

−1
c

= Q̂′
r(QrH

′
r)(H

−1
r )′FZ,tH

−1
c (QcH

′
c)

′Q̂c − (H−1
r )′FZ,tH

−1
c + Q̂′

rEtQ̂c

+ (pq)−1Q̂′
r1

′
pEt1q1p1

′
qQ̂c − q−1Q̂′

rEt1q1
′
qQ̂c − p−1Q̂′

r1p1
′
pEtQ̂c

= Q̂′
r(QrH

′
r − Q̂r)(H

−1
r )′FZ,tH

−1
c (QcH

′
c − Q̂c)

′Q̂c + Q̂′
r(QrH

′
r − Q̂r)(H

−1
r )′FZ,tH

−1
c

+ (H−1
r )′FZ,tH

−1
c (QcH

′
c − Q̂c)

′Q̂c + (Q̂r −QrHr)
′Et(Q̂c −QcH

′
c)

+ (Q̂r −QrHr)
′EtQcH

′
c +H′

rQ
′
rEt(Q̂c −QcH

′
c) +H′

rQ
′
rEtQcH

′
c

+ (pq)−1Q̂′
r1

′
pEt1q1p1

′
qQ̂c − q−1(Q̂r −QrH

′
r)

′Et1q1
′
qQ̂c − q−1HrQ

′
rEt1q1

′
qQ̂c

− p−1Q̂′
r1p1

′
pEt(Q̂c −QcH

′
c)− p−1Q̂′

r1p1
′
pEtQcH

′
c

=: IF,1 + IF,2 + IF,3 + IF,4 + IF,5 + IF,6 + IF,7 + IF,8
− IF,9 − IF,10 − IF,11 − IF,12, where

(5.25)

IF,1 := Q̂′
r(QrH

′
r − Q̂r)(H

−1
r )′FZ,tH

−1
c (QcH

′
c − Q̂c)

′Q̂c,

IF,2 := Q̂′
r(QrH

′
r − Q̂r)(H

−1
r )′FZ,tH

−1
c , IF,3 := (H−1

r )′FZ,tH
−1
c (QcH

′
c − Q̂c)

′Q̂c,

IF,4 := (Q̂r −QrHr)
′Et(Q̂c −QcH

′
c), IF,5 := (Q̂r −QrHr)

′EtQcH
′
c,

IF,6 := H′
rQ

′
rEt(Q̂c −QcH

′
c), IF,7 := H′

rQ
′
rEtQcH

′
c, IF,8 := (pq)−1Q̂′

r1
′
pEt1q1p1

′
qQ̂c,

IF,9 := q−1(Q̂r −QrH
′
r)

′Et1q1
′
qQ̂c, IF,10 := q−1HrQ

′
rEt1q1

′
qQ̂c,

IF,11 := p−1Q̂′
r1p1

′
pEt(Q̂c −QcH

′
c), IF,12 := p−1Q̂′

r1p1
′
pEtQcH

′
c.
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First consider FZ,t, by its definition and Assumption (L1) we have

∥FZ,t∥2F ≤ ∥Ft∥2F · ∥Z1/2
r ∥2F · ∥Z1/2

c ∥2F = OP (p
δr,1qδc,1).

Then for IF,1, we have

∥IF,1∥2F = OP (p
δr,1qδc,1) · ∥QrH

′
r − Q̂r∥2F · ∥QcH

′
c − Q̂c∥2F

= OP

(
T−2p2−2δr,kr q2−2δc,kc + T−1p3−2δr,kr q2−δc,1−3δc,kc

+ T−1q3−2δc,kcp2−δr,1−3δr,kr + p3−δr,1−3δr,kr q3−δc,1−3δc,kc
)
,

where we used Lemma 5.6 in the last equality. Similarly for IF,2 and IF,3,

∥IF,2∥2F = OP

(
T−1p1+2δr,1−2δr,kr q1−δc,1 + p1+δr,1−3δr,kr q2−δc,1

)
,

∥IF,3∥2F = OP

(
T−1q1+2δc,1−2δc,kcp1−δr,1 + q1+δc,1−3δc,kcp2−δr,1

)
.

For IF,4, from Assumptions (E1) and (E2) we easily have ∥Et∥2F = O(pq), so we have

∥IF,4∥2F = OP (pq) · ∥QrH
′
r − Q̂r∥2F · ∥QcH

′
c − Q̂c∥2F

= OP

(
T−2p3−δr,1−2δr,kr q3−δc,1−2δc,kc + T−1p4−δr,1−2δr,kr q3−2δc,1−3δc,kc

+ T−1q4−δc,1−2δc,kcp3−2δr,1−3δr,kr + p4−2δr,1−3δr,kr q4−2δc,1−3δc,kc
)
,

For IF,5, consider first

E

{
∥EtAc∥2F

}
≤ pkc max

i∈[p],j∈[kc]
E

{
(E′

t,i·Ac,·j)
2
}

= pkc max
i∈[p],j∈[kc]

q∑
n=1

q∑
l=1

Cov(Et,in, Et,il) · Ac,njAc,lj = O(pq),
(5.26)

where the last equality used Assumptions (E1) and (E2). Thus,

∥IF,5∥2F = OP (pq) · ∥QrH
′
r − Q̂r∥2F · ∥Z−1/2

c ∥2F
= OP

(
T−1p2+δr,1−2δr,kr q2−2δc,1−δc,kc + p2−3δr,kr q3−2δc,1−δc,kc

)
,

where we used Lemma 5.6 and Assumption (L1). Similarly for IF,6,

∥IF,6∥2F = OP

(
T−1q2+δc,1−2δc,kcp2−2δr,1−δr,kr + q2−3δc,kcp3−2δr,1−δr,kr

)
.
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By Assumptions (E1) and (E2) again, we have

E

{
∥A′

rEtAc∥2F
}
≤ krkc max

i∈[kr],j∈[kc]
E

{
(A′

r,·iEtAc,·j)
2
}

= krkc max
i∈[kr],j∈[kc]

p∑
m=1

q∑
n=1

p∑
h=1

q∑
l=1

Cov(Et,mn, Et,hl) · Ar,miAc,njAr,hiAc,lj = O(pq),

hence for IF,7, it holds that

∥IF,7∥2F = OP (pq) · ∥Z−1/2
r ∥2F · ∥Z−1/2

c ∥2F = OP

(
p1−δr,kr q1−δc,kc

)
.

Consider IF,8, recall that (1′
pEt1q)

2 = OP (pq) from (5.10) and hence

∥IF,8∥2F = OP (p
−2q−2) · (1′

pEt1q)
2 · ∥1p1′

q∥2F = OP (1).

For IF,9, note that E[∥Et1q∥2F ] has the same rate as (5.26) since kc is fixed, and hence

∥IF,9∥2F = OP (q
−2) · ∥QrH

′
r − Q̂r∥2F · ∥Et1q∥2F · ∥1q∥2

= OP

(
T−1p2+δr,1−2δr,kr q1−2δc,1 + p2−3δr,kr q2−2δc,1

)
.

From (5.10), we also have E[∥A′
rEt1q∥2F ] = O(pq), so for IF,10 we have

∥IF,10∥2F = OP (q
−2) · ∥Z−1/2

r ∥2F · ∥A′
rEt1q∥2F · ∥1q∥2 = OP

(
p1−δr,kr

)
.

Lastly, the rates for IF,11 and IF,12 can be obtained similarly as IF,9 and IF,10,

∥IF,11∥2F = OP

(
T−1q2+δc,1−2δc,kcp1−2δr,1 + q2−3δc,kcp2−2δr,1

)
,

∥IF,12∥2F = OP

(
q1−δc,kc

)
.

Therefore, with all the rates from IF,1 to IF,12 in (5.25), by using Assumption (R1) we have

∥F̂Z,t − (H−1
r )′FZ,tH

−1
c ∥2F

= OP

(
p1−δr,kr q1−δc,kc + T−1p1+2δr,1−2δr,kr q1−δc,1 + p1+δr,1−3δr,kr q2−δc,1

+ T−1q1+2δc,1−2δc,kcp1−δr,1 + q1+δc,1−3δc,kcp2−δr,1
)
.

This shows the first statement of Theorem 5.3.
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For the remaining proof, consider Ĉt,ij − Ct,ij for any t ∈ [T ], i ∈ [p], j ∈ [q]. First,

Ĉt,ij − Ct,ij = Q̂′
r,i·F̂Z,tQ̂c,j· −Q′

r,i·FZ,tQc,j·

= (Q̂r,i· −HrQr,i·)
′(F̂Z,t − (H−1

r )′FZ,tH
−1
c )(Q̂c,j· −HcQc,j·)

+ (Q̂r,i· −HrQr,i·)
′(F̂Z,t − (H−1

r )′FZ,tH
−1
c )HcQc,j·

+ (Q̂r,i· −HrQr,i·)
′(H−1

r )′FZ,tH
−1
c (Q̂c,j· −HcQc,j·)

+ (Q̂r,i· −HrQr,i·)
′(H−1

r )′FZ,tQc,j· +Q′
r,i·H

′
r(F̂Z,t − (H−1

r )′FZ,tH
−1
c )(Q̂c,j· −HcQc,j·)

+Q′
r,i·H

′
r(F̂Z,t − (H−1

r )′FZ,tH
−1
c )HcQc,j· +Q′

r,i·FZ,tH
−1
c (Q̂c,j· −HcQc,j·).

(5.27)

Notice that from Assumption (L1),

∥Qr,i·∥2 = O(∥Ar,i·∥2) · ∥Z−1/2
r ∥2F = O(p−δr,kr ),

∥Qc,j·∥2 = O(∥Ac,j·∥2) · ∥Z−1/2
c ∥2F = O(q−δc,kc ).

Together with Lemma 5.6, the first statement of Theorem 5.3 and Assumption (R1), we have

(Ĉt,ij − Ct,ij)2

= OP

(
p1−2δr,kr q1−2δc,kc + T−1p1+2δr,1−3δr,kr q1−δc,1−δc,kc + p1+δr,1−4δr,kr q2−δc,1−δc,kc

+ T−1q1+2δc,1−3δc,kcp1−δr,1−δr,kr + q1+δc,1−4δc,kcp2−δr,1−δr,kr
)
.

This completes the proof of Theorem 5.3. □

Proof of Theorem 5.4. We first consider µ̂t, which is given by

µ̂t = 1′
pYt1q/(pq) = µt + 1′

pEt1q/(pq) = µt +
1

pq

∑
i,j

Et,ij, so that

µ̂t − µt =
1

pq
1′
pAe,rFe,tA

′
e,c1q +

1

pq

∑
i,j

Σϵ,ijϵt,ij =: Iµ,1 + Iµ,2.

By Assumption (E1), since ∥Ae,r∥1, ∥Ae,c∥1 = O(1), we have Iµ,1 = OP (1/(pq)). Also,
Iµ,2 = O((pq)−1/2) since E(Iµ,2) = 0 and Var(Iµ,2) = (pq)−2

∑
i,j Σ

2
ϵ,ij = O(1/(pq)). Hence

Iµ,1 is dominated by Iµ,2, and

√
pq(µ̂t − µt) =

√
pqIµ,2(1 + oP (1)) =

1√
pq

∑
i,j

Σϵ,ijϵt,ij(1 + oP (1))
D−→ N (0, γ2µ),

where we use Theorem 1 in Ayvazyan and Ulyanov (2023) for the convergence in distribution.
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For α̂t, consider the decomposition

α̂t −αt = (µt − µ̂t)1p + q−1Et1q

= (µt − µ̂t)1p + q−1Ae,rFe,tA
′
e,c1q + q−1(Σϵ ∗ ϵt)1q,

so that

α̂t,i − αt,i = (µt − µ̂t) + q−1(Ae,r)i·Fe,tA
′
e,c1q + q−1

q∑
j=1

Σϵ,ijϵt,ij.

From what we have proved above we have |µ̂t − µt| = OP (1/
√
pq). Since ∥Ae,r∥1, ∥Ae,c∥1 =

O(1), we also have q−1(Ae,r)i·Fe,tA
′
e,c1q = OP (1/q). Finally, E(q−1(Σϵ ∗ ϵt)1q) = 0

and Var(q−1
∑q

j=1 Σϵ,ijϵt,ij) = q−2
∑q

j=1Σ
2
ϵ,ij = O(q−1), implying that q−1(Σϵ ∗ ϵt)1q =

OP (q
−1/2) element-wise, thus dominating other terms. Hence for i ∈ [p], using Theorem 1 in

Ayvazyan and Ulyanov (2023),

√
q(α̂t,i − αt,i) = q−1/2

q∑
j=1

Σϵ,ijϵt,ij(1 + oP (1))
D−→ N (0, γ2α,i).

By Assumption (E1), each element of q−1(Σϵ ∗ ϵt)1q is independent of each other. Hence
with integers i1 < · · · < im, m being finite and θα,t := (αt,i1 , . . . , αt,im)

′, by Theorem 1 in
Ayvazyan and Ulyanov (2023),

√
q(θ̂α,t − θα,t)

D−→ N (0, diag(γ2α,i1 , . . . , γ
2
α,im)).

We omit the proof of asymptotic normality for β̂t since the arguments used are in parallel to
those used for α̂t, using the independence of the columns in Σϵ ∗ ϵt by Assumption (E1).

The rest of the proof is done if we can prove that γ̂α,i, γ̂β,j and γ̂µ are consistent estimators
for γα,i, γβ,j and γµ respectively. From (5.6), since we assume Ĉt,ij − Ct,ij = oP (1) from
Theorem 5.3, then element-wise we have

Êt = L̂t − Ĉt

= (µt − µ̂t)1p1′
q + (αt − α̂t)1

′
q + 1p(βt − β̂t)

′ + (Ct − Ĉt) + Et = Et(1 + oP (1)).

Hence we have

q−1(ÊtÊ
′
t)ii = {q−1(Ae,r)i·Fe,tA

′
e,cAe,cF

′
e,t(Ae,r)

′
i· + q−1(Ae,r)i·Fe,tA

′
e,c(Σϵ ∗ ϵt)′i·

+ q−1(Σϵ ∗ ϵt)i·(Σϵ ∗ ϵt)′i·}(1 + oP (1))

= OP (q
−1) +OP (q

−1) +
1

q

q∑
j=1

Σ2
ϵ,ij(ϵ

2
t,ij − 1)(1 + oP (1)) +

1

q

q∑
j=1

Σ2
ϵ,ij
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P−→ γ2α,i,

where we used the Markov inequality to arrive at q−1
∑q

j=1 Σ
2
ϵ,ij(ϵ

2
t,ij−1) = OP (q

−1/2), know-
ing that each Σϵ,ij is bounded away from infinity by Assumption (E1). A parallel argument
(omitted) can show that γ̂2β,j is consistent for γ2β,j . Finally,

γ̂2µ = p−1

p∑
i=1

q−1(ÊtÊ
′
t)ii

P−→ p−1

p∑
i=1

γ2α,i = γ2µ.

This completes the proof of the theorem. □

Proof of Theorem 5.5. We construct the asymptotic normality for rows of our factor loading
estimators. We only prove the result for the row loading estimator, and the proof for the column
loading estimator would be similar (omitted). For any j ∈ [p], consider the decomposition

Q̂r,j· −HrQr,j· = T−1D̂−1
r

p∑
i=1

Q̂r,i·

T∑
t=1

(Rr,t)ij

= T−1D̂−1
r

p∑
i=1

(Q̂r,i· −HrQr,i·)
T∑
t=1

(Rr,t)ij + T−1D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(Rr,t)ij

= I1 + I2 + I3 + I4 + I5 − I6 − I7 − I8 − I9 − I10 − I11 + I12 + I13, where

(5.28)

I1 :=
1

T
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(CtE
′
t)ij, I2 :=

1

T
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(EtC
′
t)ij,

I3 :=
1

T
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(EtE
′
t)ij, I4 :=

1

Tpq
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(1′
qE

′
t1pEt1q1

′
p)ij,

I5 :=
1

Tpq
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(1′
qE

′
t1p1p1

′
qE

′
t)ij,

I6 :=
1

Tp
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(CtE
′
t1p1

′
p)ij, I7 :=

1

Tp
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(1p1
′
pEtC

′
t)ij,

I8 :=
1

Tp
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(EtE
′
t1p1

′
p)ij, I9 :=

1

Tp
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(1p1
′
pEtE

′
t)ij,

I10 :=
1

Tp
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(Et1q1
′
qE

′
t)ij,

I11 :=
1

Tp2q
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

((1′
qE

′
t1p)

21p1
′
p)ij,

I12 :=
1

Tp2
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(1′
pEtE

′
t1p1p1

′
p)ij,
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I13 :=
1

T
D̂−1
r

p∑
i=1

(Q̂r,i· −HrQr,i·)
T∑
t=1

(Rr,t)ij.

We shall show that I1 is the leading term among the decomposition in (5.28). To obtain the
rate for I2, from Assumptions (E1) and (E2) we have for any i ∈ [p], h ∈ [q],

Et,ih =
∑
w≥0

ae,wA
′
e,r,i·Xe,t−wAe,c,h· + (Σϵ)ih

∑
w≥0

aϵ,w(Xϵ,t−w)ih.

Consider first
∑T

t=1

∑q
h=1

(∑
w≥0 ae,wA

′
e,r,i·Xe,t−wAe,c,h·

)
A′
c,h·F

′
tAr,j·. We have from As-

sumptions (F1), (E1) and (E2) that

E

{[ T∑
t=1

q∑
h=1

(∑
w≥0

ae,wA
′
e,r,i·Xe,t−wAe,c,h·

)
A′
c,h·F

′
tAr,j·

]2}
= Cov

{ T∑
t=1

q∑
h=1

A′
c,h·

(∑
w≥0

af,wX
′
f,t−w

)
Ar,j·

(∑
w≥0

ae,wA
′
e,r,i·Xe,t−wAe,c,h·

)
,

T∑
t=1

q∑
h=1

A′
c,h·

(∑
w≥0

af,wX
′
f,t−w

)
Ar,j·

(∑
w≥0

ae,wA
′
e,r,i·Xe,t−wAe,c,h·

)}
=

q∑
h=1

q∑
l=1

T∑
t=1

∑
w≥0

a2f,wa
2
e,w · ∥Ar,j·∥2 · ∥Ac,h·∥ · ∥Ac,l·∥ · ∥Ae,c,h·∥ · ∥Ae,c,l·∥ · ∥Ae,r,i·∥2

= O(T ) · ∥Ar,j·∥2 · ∥Ae,r,i·∥2.
(5.29)

Consider also
∑p

i=1

∑q
h=1

∑T
t=1Qr,i·((Σϵ)ih

∑
w≥0 aϵ,w(Xϵ,t−w)ih)A

′
c,h·F

′
tAr,j·. Similarly, by

Assumptions (E1), (E2) and (F1), we have

E

{∥∥∥ p∑
i=1

q∑
h=1

T∑
t=1

Qr,i·

(
(Σϵ)ih

∑
w≥0

aϵ,w(Xϵ,t−w)ih

)
A′
c,h·F

′
tAr,j·

∥∥∥2}
= Cov

{ p∑
i=1

q∑
h=1

T∑
t=1

Qr,i·

(
(Σϵ)ih

∑
w≥0

aϵ,w(Xϵ,t−w)ih

)
A′
c,h·F

′
tAr,j·,

p∑
i=1

q∑
h=1

T∑
t=1

Qr,i·

(
(Σϵ)ih

∑
w≥0

aϵ,w(Xϵ,t−w)ih

)
A′
c,h·F

′
tAr,j·

}
=

p∑
i=1

q∑
h=1

T∑
t=1

∑
w≥0

a2f,wa
2
ϵ,w · ∥Ar,j·∥2 · ∥Ac,h·∥2 · (Σϵ)

2
ih · ∥Qr,i·∥2

= O(T ) · ∥Ar,j·∥2 · ∥Ac∥2 · ∥Qr∥2.

(5.30)
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Hence using Lemma 5.3, it holds that

∥I2∥2 ≤
1

T 2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

q∑
h=1

Et,ihA
′
c,h·F

′
tAr,j·

∥∥∥2
= OP

( 1

T 2
p−2δr,kr q−2δc,1

){∥∥∥ p∑
i=1

q∑
h=1

T∑
t=1

Qr,i·

(
(Σϵ)ih

∑
w≥0

aϵ,w(Xϵ,t−w)ih

)
A′
c,h·F

′
tAr,j·

∥∥∥2
+
( p∑
i=1

∥Qr,i·∥2
) p∑
i=1

[ T∑
t=1

q∑
h=1

(∑
w≥0

ae,wA
′
e,r,i·Xe,t−wAe,c,h·

)
A′
c,h·F

′
tAr,j·

]2}
= OP

( 1

T 2
p−2δr,kr q−2δc,1 · Tqδc,1

)
= OP

(
T−1p−2δr,kr q−δc,1

)
,

where we used Assumption (L1), (5.29) and (5.30) in the last equality.
For I3, first notice from the noise structure in Assumptions (E1) and (E2), we have

Var
( p∑
i=1

q∑
h=1

T∑
t=1

Qr,i·Et,ihEt,jh

)
= O(1) ·

p∑
i=1

p∑
u=1

q∑
h=1

q∑
l=1

T∑
t=1

ke,r∑
n=1

ke,c∑
m=1

∑
w≥0

a4e,wAe,r,inAe,r,unA
2
e,r,jnA

2
e,c,hmA

2
e,c,lm

· ∥Qr,i·∥ · ∥Qr,u·∥ · Var((Xe,t−w)
2
nm)

+O(1) ·
p∑
i=1

q∑
h=1

T∑
t=1

∑
w≥0

a4ϵ,w(Σϵ)
2
ih(Σϵ)

2
jh · ∥Qr,i·∥2 · Var((Xϵ,t−w)ih(Xϵ,t−w)jh)

= O(T + Tq) = O(Tq).

Moreover, it holds that

E

( p∑
i=1

∣∣∣ q∑
h=1

T∑
t=1

Et,ihEt,jh

∣∣∣)
=

p∑
i=1

∣∣∣ q∑
h=1

T∑
t=1

(
∥Ae,c,h·∥2 · ∥Ae,r,i·∥ · ∥Ae,r,j·∥+ (Σϵ)ih1{i=j}

)∣∣∣ = O(Tq),

and with maxi ∥Qr,i·∥2 ≤ ∥Ar,j·∥2 · ∥Z−1/2
r ∥2 = OP

(
p−δr,kr

)
, we thus have

∥I3∥2 ≤
1

T 2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

q∑
h=1

Et,ihEt,jh

∥∥∥2
= OP

(
T−2p−2δr,kr q−2δc,1(Tq + T 2q2p−δr,kr )

)
= OP

(
T−1p−2δr,kr q1−2δc,1 + p−3δr,kr q2−2δc,1

)
.

(5.31)
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Consider now I4 and I5. From the proof of (5.49) in Lemma 5.2,

∥I4∥2 ≤
1

T 2p2q2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(1′
qE

′
t1pEt1q1

′
p)ij

∥∥∥2
≤ 1

T 2p2q2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
( p∑
i=1

∥Qr,i·∥2
) p∑
i=1

( T∑
t=1

1′
qE

′
t1pEt1q1

′
p

)2
ij

= OP

(
T−2p−2−2δr,kr q−2−2δc,1

)
·
∥∥∥( T∑

t=1

1′
qE

′
t1pEt1q1

′
p

)
·j

∥∥∥2
= OP

(
T−2p−2−2δr,kr q−2−2δc,1

)
·

p∑
k=1

E

{[ T∑
t=1

( p∑
i=1

q∑
u=1

Et,iu

) q∑
h=1

Et,kh

]2}
= OP

(
T−2p−2−2δr,kr q−2−2δc,1(Tp2q2 + T 2pq2)

)
= OP

(
T−1p−2δr,kr q−2δc,1 + p−1−2δr,kr q−2δc,1

)
,

where we used Lemma 5.3 in the third line and (5.63) in the second last equality. Similarly,

∥I5∥2 ≤
1

T 2p2q2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(1′
qE

′
t1p1p1

′
qE

′
t)ij

∥∥∥2
= OP

(
T−2p−2−2δr,kr q−2−2δc,1

)
·
∥∥∥( T∑

t=1

1′
qE

′
t1pEt1q1

′
p

)
j·

∥∥∥2
= OP

(
T−2p−2−2δr,kr q−2−2δc,1

)
· p ·E

[{ T∑
t=1

( p∑
i=1

q∑
u=1

Et,iu

) q∑
h=1

Et,jh

}2]
= OP

{
T−2p−2−2δr,kr q−2−2δc,1(Tp2q2 + T 2pq2)

}
= OP

(
T−1p−2δr,kr q−2δc,1 + p−1−2δr,kr q−2δc,1

)
,

where we used again Lemma 5.3 in the third line and (5.63) in the second last equality.
Consider now I6, note first from Assumptions (E1) and (E2),

Et,hu =
∑
w≥0

ae,wA
′
e,r,h·Xe,t−wAe,c,u· + (Σϵ)hu

∑
w≥0

aϵ,w(Xϵ,t−w)hu.

Thus, we have

Cov(Et,hu, Es,vl) = E[A′
e,r,h·Fe,tAe,c,u·A

′
e,c,l·F

′
e,sAe,r,v·] + 1{h=v}1{u=l} (Σϵ)

2
huE[ϵ

′
t,·uϵs,·l]

= A′
e,c,l·Ae,c,u·A

′
e,r,h·Ae,r,v· ·

∑
w≥0

ae,wae,w+|t−s| + 1{h=v}1{u=l} · (Σϵ)
2
hu

∑
w≥0

aϵ,waϵ,w+|t−s|.

Hence if we fix t ∈ [T ], h ∈ [p], u ∈ [q], then for any deterministic vectors n ∈ Rkr and
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g, j ∈ Rkc , we have

T∑
s=1

p∑
v=1

q∑
l=1

E
(
Et,hu n

′Ftg · Es,vl j′F′
sn
)
=

T∑
s=1

p∑
v=1

q∑
l=1

Cov(Et,hu, Es,vl) ·E
(
n′Ftgj

′F′
sn
)

=

p∑
v=1

q∑
l=1

{
O
(
A′
e,c,l·Ae,c,u·A

′
e,r,h·Ae,r,v·

)
·
∑
w≥0

∑
m≥0

T∑
s=1

ae,wae,w+|t−s|af,maf,m+|t−s|

+O
(
1{h=v}1{u=l} · (Σϵ)

2
hu

)
·
∑
w≥0

∑
m≥0

T∑
s=1

aϵ,waϵ,w+|t−s|af,maf,m+|t−s|

}
=

p∑
v=1

q∑
l=1

O
(
A′
e,c,l·Ae,c,u·A

′
e,r,h·Ae,r,v· + 1{h=v}1{u=l} · (Σϵ)

2
hu

)
= O(1),

where for the second last equality, we argue for the first term in the second last line only, as the
second term could be shown similarly:

∑
w≥0

∑
m≥0

T∑
s=1

ae,wae,w+|t−s|af,maf,m+|t−s| =
∑
w≥0

∑
m≥0

ae,waf,m

T∑
s=1

ae,w+|t−s|af,m+|t−s|

≤
∑
w≥0

∑
m≥0

|ae,w| |af,m| ·
( T∑
s=1

a2e,w+|t−s|

) 1
2
( T∑
s=1

a2f,m+|t−s|

) 1
2 ≤

∑
w≥0

∑
m≥0

|ae,w| |af,m| ≤ c2,

where the constant c is from Assumptions (F1) and (E2). Finally,

E

{( p∑
h=1

T∑
t=1

(CtE
′
t)ih

)2}
= E

{( q∑
u=1

p∑
h=1

T∑
t=1

Et,huA
′
c,u·F

′
tAr,i·

)2}
=

T∑
t=1

p∑
h=1

q∑
u=1

T∑
s=1

p∑
v=1

q∑
l=1

E

(
Et,huA

′
r,i·FtAc,u· · Es,vlA′

c,l·F
′
sAr,i·

)
= O(Tpq).

(5.32)

Thus, we have

∥I6∥2 ≤
1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(CtE
′
t1p1

′
p)ij

∥∥∥2
=

1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
h=1

p∑
i=1

Qr,i·

T∑
t=1

(CtE
′
t)ih(1p1

′
p)hj

∥∥∥2
≤ 1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F · ∥Qr∥2F ·
p∑
i=1

( p∑
h=1

T∑
t=1

(CtE
′
t)ih

)2
= OP

(
T−2p−2−2δr,kr q−2δc,1 · Tp2q

)
= OP

(
T−1p−2δr,kr q1−2δc,1

)
,

where we used Cauchy–Schwarz inequality in the third line, both Lemma 5.3 and (5.32) in the
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second last equality. Similarly, we have the following for I7,

∥I7∥2 ≤
1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(1p1
′
pEtC

′
t)ij

∥∥∥2
=

1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
h=1

p∑
i=1

Qr,i·

T∑
t=1

(1p1
′
p)ih(EtC

′
t)hj

∥∥∥2
≤ 1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F · ∥Qr∥2F · p
{ p∑
h=1

T∑
t=1

(CtE
′
t)jh

}2

= OP

(
T−2p−2−2δr,kr q−2δc,1 · Tp2q

)
= OP

(
T−1p−2δr,kr q1−2δc,1

)
.

For I8 and I9, their rates can be shown to be the same as that for I3 by the following,

∥I8∥2 ≤
1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(EtE
′
t1p1

′
p)ij

∥∥∥2
=

1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
h=1

p∑
i=1

q∑
l=1

T∑
t=1

Qr,i·Et,ilEt,hl

∥∥∥2
≤ 1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F · p
p∑

h=1

∥∥∥ p∑
i=1

q∑
l=1

T∑
t=1

Qr,i·Et,ilEt,hl

∥∥∥2
= OP

(
T−2p−2−2δr,kr q−2δc,1 · p2(Tq + T 2q2p−δr,kr )

)
= OP

(
T−1p−2δr,kr q1−2δc,1 + p−3δr,kr q2−2δc,1

)
,

where we used Lemma 5.3 and (5.31) in the second last equality. The proof for ∥I9∥2 is similar
to the above by using the proof of (5.31) previously and omitted here.

For I10, first observe from the proof of (5.63), we also have for any j ∈ [p],

p∑
i=1

E

{( T∑
t=1

q∑
l=1

Et,il

q∑
h=1

Et,jh

)2}
= O

(
Tpq2 + T 2q2

)
,

then together with Lemma 5.3, it holds that

∥I10∥2 ≤
1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(Et1q1
′
qE

′
t)ij

∥∥∥2
=

1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

q∑
l=1

Et,il

q∑
h=1

Et,jh

∥∥∥2
≤ 1

T 2p2
∥D̂−1

r ∥2F · ∥Hr∥2F · ∥Qr∥2F ·
p∑
i=1

( T∑
t=1

q∑
l=1

Et,il

q∑
h=1

Et,jh

)2
= OP

(
T−1p−1−2δr,kr q2−2δc,1 + p−2−2δr,kr q2−2δc,1

)
.
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Consider now I11, we have

∥I11∥2 ≤
1

T 2p4q2
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

(1′
qE

′
t1p)

2
∥∥∥2

≤ 1

T 2p4q2
∥D̂−1

r ∥2F · ∥Hr∥2F · ∥Qr∥2F · p
{ T∑

t=1

(1′
qE

′
t1p)

2
}2

= OP

(
T−2p−4−2δr,kr q−2−2δc,1 · T 2p3q2

)
= OP

(
p−1−2δr,kr q−2δc,1

)
,

where we used Lemma 5.3 and the rate from (5.10) in the second last equality.
For I12, we have

∥I12∥2 ≤
1

T 2p4
∥D̂−1

r ∥2F · ∥Hr∥2F ·
∥∥∥ p∑
i=1

Qr,i·

T∑
t=1

1′
pEtE

′
t1p

∥∥∥2
≤ 1

T 2p4
∥D̂−1

r ∥2F · ∥Hr∥2F · ∥Qr∥2F · p
( T∑
t=1

1′
pEtE

′
t1p

)2
= OP

(
T−2p−4−2δr,kr q−2δc,1 · T 2p3q2

)
= OP

(
p−1−2δr,kr q2−2δc,1

)
,

where the last line used the following result which can be shown similar to (5.56),

E

{( T∑
t=1

1′
pEtE

′
t1p

)2}
= E

{( T∑
t=1

q∑
h=1

p∑
i=1

p∑
j=1

Et,ihEt,jh

)2}
=

T∑
t=1

q∑
h=1

p∑
i=1

p∑
j=1

T∑
s=1

q∑
l=1

p∑
m=1

p∑
n=1

Cov(Et,ihEt,jh, Es,mlEs,nl)

+
( T∑
t=1

q∑
h=1

p∑
i=1

p∑
j=1

E[Et,ihEt,jh]
)2

= O
(
Tp2q2 + T 2p2q2

)
= O

(
T 2p2q2

)
.

Lastly, ∥I13∥2 is dominated by the terms from I1 to I12 using Cauchy–Schwarz inequality
and Theorem 5.2. We require the term I1 to be truly dominating by using Assumption (AD1)
and we equivalently compare the rates without the term D̂−1

r . Notice the rates for ∥I2∥2, ∥I4∥2,
∥I5∥2, ∥I6∥2, ∥I7∥2, ∥I10∥2, ∥I11∥2 and ∥I12∥2 are bounded above by the rate for ∥I3∥2 which
is the same as ∥I8∥2 and ∥I9∥2. Thus, it suffices to consider the following ratio as p, q, T →∞,

∥I3∥2/∥I1∥2 = OP

(
1/pδr,1 + Tq/pδr,1+δr,kr

)
= oP (1),

by the rate assumption Tq = o(pδr,1+δr,kr ). Therefore, I1 is dominating over other terms in
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(5.28) and hence we have

Q̂r,j· −HrQr,j· = I1 + oP (1) =
1

T
D̂−1
r

p∑
i=1

HrQr,i·

T∑
t=1

(CtE
′
t)ij + oP (1)

p−→ 1

T
D−1
r H∗

r

p∑
i=1

Qr,i·

T∑
t=1

(CtE
′
t)ij,

(5.33)

where the last line used Lemma 5.4 and Lemma 5.5 in which Dr and H∗
r are defined, respec-

tively. In the rest of the proof, we show

√
TωB ·

1

T
D−1
r H∗

r

p∑
i=1

Qr,i·

T∑
t=1

(CtE
′
t)ij

D−→ N
(
0, T−1ωB ·D−1

r H∗
rΞr,j(H

∗
r)

′D−1
r

)
,

with ωB := p2δr,kr−δr,1q2δc,1−1 and Ξr,j := plimp,q,T→∞ Var
(∑p

i=1Qr,i·
∑T

t=1(CtE
′
t)ij
)
. We

will adapt the central limit theorem for α-mixing processes as depicted in Theorem 2.21 in
Fan and Yao (2003). First, define Bj,t :=

√
ωB · D−1

r H∗
r

∑p
i=1 Qr,i·(CtE

′
t)ij , and also let

be,t :=
∑

w≥0 ae,wXe,t−w, bϵ,il,t :=
∑

w≥0 aϵ,w(Xϵ,t−w)il and bf,t :=
∑

w≥0 af,wXf,t−w which
are independent of each other by Assumption (E2).

Since we may write Bj,t = h(be,t, (bϵ,il,t)i∈[p],l∈[q],bf,t) for some function h, we conclude
Bj,t is α-mixing using Theorem 5.2 in Bradley (2005). Observe thatE[Bj,t] = 0, and we show
in the following that there exists an m > 2 such that E[∥Bj,t∥m] ≤ C for some constant C,

E[∥Bj,t∥m] ≤ ω
m/2
B · ∥D−1

r ∥mF · ∥H∗
r∥mF · ∥Qr∥mF ·E

[{ p∑
i=1

( q∑
l=1

Et,jlA
′
c,h·F

′
tAr,i·

)2}m/2]
= O

(
(p2δr,kr q2δc,1)m/2

)
· ∥D−1

r ∥mF = O(1),

where we used Lemma 5.1.2 and the definition of ωB in the second last equality, and Lemma 5.4
in the last equality. Theorem 2.21 in Fan and Yao (2003) then applies, and hence

√
TωB ·

1

T
D−1
r H∗

r

p∑
i=1

Qr,i·

T∑
t=1

(CtE
′
t)ij =

1√
T

T∑
t=1

Bj,t

D−→ N
(
0, T−1ωB ·D−1

r H∗
rΞr,j(H

∗
r)

′D−1
r

)
.

Together with (5.33), we arrive at

(Tp2δr,kr−δr,1q2δc,1−1)1/2 · (Q̂r,j· −HrQr,j·)

D−→ N
(
0, T−1p2δr,kr−δr,1q2δc,1−1 ·D−1

r H∗
rΞr,j(H

∗
r)

′D−1
r

)
.

(5.34)

This completes the proof of Theorem 5.5. □
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Proof of Theorem 5.6. We only prove the scenario for Tq = o(pδr,1+δr,kr ), which is on
showing the constructed estimator for the row loading estimator is consistent. Note D̂r consis-
tently estimates Dr by Lemma 5.4, and Hr consistently estimates H∗

r by Lemma 5.5. Then

HrVar
{ p∑

i=1

Qr,i·

T∑
t=1

(CtE
′
t)ij

}
H′
a = Var

{ p∑
i=1

HrQr,i·

T∑
t=1

(CtE
′
t)ij

}
= Var

{ p∑
i=1

(
T−1D̂−1

r Q̂′
rQr

T∑
s=1

FZ,sQ
′
cQcF

′
Z,s

)
Qr,i·

T∑
t=1

(CtE
′
t)ij

}
= Var

{ T∑
t=1

p∑
i=1

(
T−1D̂−1

r Q̂′
r

T∑
s=1

CsCs,i·

)
(CtE

′
t)ij

}
.

By Theorem 5.2, (µ̂t, α̂t, β̂t) is consistent for (µt,αt,βt). By Theorem 5.3 and the rate as-
sumption in the statement of Theorem 5.6, Ĉt is consistent for Ct and hence Êt is consistent
for Et. Thus, we conclude that Σ̂HAC

r,j is estimating HrΞr,jH
′
r consistently (Newey and West

(1987)) and hence result 1 is implied. Result 2 then follows, and results 3 and 4 can be shown
similarly (details omitted). This completes the proof of the Theorem 5.6. □

Proof of Theorem 5.7. Combining (5.4) and (5.6), we have

Êt = L̂t − Ĉt = MpYtMq − Ĉt = MpCtMq +MpEtMq − Ĉt

= (Ct − Ĉt) +MpAe,rFe,tA
′
e,cMq +Mp(Σϵ ∗ ϵt)Mq,

where the second line used (IC1) being satisfied, so that MpAr = Ar and MqAc = Ac. Hence

q−1(ÊtÊ
′
t)ii − q−1

q∑
j=1

Σ2
ϵ,ij =

6∑
i=1

Ii, where

I1 := q−1{Mp(Σϵ ∗ ϵt)Mq(Σϵ ∗ ϵt)′Mp}ii − q−1

q∑
j=1

Σ2
ϵ,ij,

I2 := q−1{(Ĉt −Ct)(Ĉt −Ct)
′}ii,

I3 := q−1{MpAe,rFe,tA
′
e,cMqAe,cF

′
e,tA

′
e,rMp}ii,

I4 := OP (q
−1{(Ct − Ĉt)MqAe,cF

′
e,tA

′
e,rMp}ii),

I5 := OP (q
−1{(Ct − Ĉt)Mq(Σϵ ∗ ϵt)′Mp}ii),

I6 := OP (q
−1{MpAe,rFe,tA

′
e,cMq(Σϵ ∗ ϵt)′Mp}ii).

(5.35)

By an assumption in the statement of the theorem, we have I2 = oP (q
−1). Since ∥MpAe,r∥1 ≤

∥Mp∥1∥Ae,r∥1 = O(1), with the finiteness of kr and kc, we have I3, I6 = OP (q
−1), and by the

Cauchy–Schwarz inequality, I4 = OP (I
1/2
2 I

1/2
6 ) = oP (q

−1). Writing ηt,ij := (Σϵ ∗ ϵt)ij , we
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can expand

I1 =
1

q

q∑
j=1

Σ2
ϵ,ij(ϵ

2
t,ij − 1)− 2

q

q∑
j=1

Å
1

p

p∑
ℓ=1

ηt,ℓj

ã
ηt,ij

+
2

q

Å
1′
pηt1q

pq

ã q∑
j=1

ηt,ij +
1

q

q∑
j=1

Å
1

p

p∑
i=1

ηt,ij

ã2
−
Å
1′
pηt1q

pq

ã2
−
Å
1

q

q∑
j=1

ηt,ij

ã2
,

=
1

q

q∑
j=1

Σ2
ϵ,ij(ϵ

2
t,ij − 1)− 2

pq

q∑
j=1

η2t,ij −
2

pq

q∑
j=1

∑
ℓ̸=i

ηt,ℓjηt,ij

+OP (q
−1p−1/2) +OP (p

−1) +OP (p
−1q−1) +OP (q

−1)

=
1

q

q∑
j=1

Σ2
ϵ,ij(ϵ

2
t,ij − 1)(1 + oP (1)),

(5.36)

where all rates of convergence above are obtained from applying the Markov inequality. Hence

(ÊtÊ
′
t)ii −

∑q
j=1Σ

2
ϵ,ij»∑q

j=1 Σ
4
ϵ,ijVar(ϵ2t,ij)

=
q−1(ÊtÊ

′
t)ii − q−1

∑q
j=1Σ

2
ϵ,ij»

q−2
∑q

j=1 Var(ϵ2t,ij)Σ4
ϵ,ij

=
q−1

∑q
j=1Σ

2
ϵ,ij(ϵ

2
t,ij − 1)(1 + oP (1))»

q−2
∑q

j=1 Var(ϵ2t,ij)Σ4
ϵ,ij

D−→ Zi,t
D−→ N (0, 1),

where the last line follows from Theorem 1 in Ayvazyan and Ulyanov (2023), with

Zi,t :=
q−1

∑q
j=1 Σ

2
ϵ,ij(ϵ

2
t,ij − 1)»

q−2
∑q

j=1 Var(ϵ2t,ij)Σ4
ϵ,ij

, i ∈ [p],

so that we can easily see that the Zi,t’s are independent of each other by Assumption (E1). The
proof for (ÊtÊ

′
t)ii completes since from the calculations for I1, we see that

I5 = OP (I
1/2
2 · 1) = oP (q

−1/2).

For (ĚtĚ
′
t)ii under H0, note that we have

Ět = (Ct − Čt) +Ae,rFe,tA
′
e,c + (Σϵ ∗ ϵt),

with the rate for Čt,ij−Ct,ij the same as that for Ĉt,ij−Ct,ij since the estimation procedure for
FM is essentially the same with the same assumptions on the factor loadings (apart from (IC1)
which is not important for FM), the factors and the noise. Hence the proof we employed so far
can be replicated with Mp and Mq replaced by the corresponding sized identity matrices, and
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we arrive at the same conclusion with the same Zi,t’s.
For (Ê′

tÊt)jj under both H0 and H1 and (Ě′
tĚt)jj under H0, the proofs are parallel to that

for (ÊtÊ
′
t)ii, and we omit them here. □

Proof of Theorem 5.8. We provide the details of proof for the inequality concerning
Py,α(yα,t ≥ q̂y,α(θ)). The other one involves similar details and its proof is omitted.

Firstly, using triangle inequality, consider

max
t∈[T ]
|xα,t − yα,t| ≤ max

i∈[p],t∈[T ]
|q−1(ÊtÊ

′
t)ii − q−1(ĚtĚ

′
t)ii|

≤ max
i∈[p],t∈[T ]

|I∗1 |+
6∑
ℓ=2

max
i∈[p],t∈[T ]

(|Iℓ|+ |Ĩℓ|),

where Iℓ, ℓ = 2, . . . , 6 is defined as in (5.35), and Ĩℓ for ℓ = 2, . . . , 6 is defined exactly the same
as Iℓ, except that Mp and Mq in the definitions of the Iℓ’s are replaced by identity matrices of
appropriate sizes, and Ĉt is replaced by Čt. The definition of I∗1 is the same as I1 in (5.35),
except that the term q−1

∑q
j=1Σ

2
ϵ,ij(ϵ

2
t,ij − 1) is absent in (5.36).

With pervasive factors, the uniform error rates for Ĉt (and Čt, since the form of Čt is
the same as that in (5.5), with rates for Q̌r and Q̌c similar to Q̂r and Q̂c respectively) from
Lemma 5.9 is

max
i∈[p],j∈[q],t∈[T ]

{|Ct,ij − Ĉt,ij|, |Ct,ij − Čt,ij|}

= OP{((pq)−1/2 + (Tq)−1/2 + (Tp)−1/2 + p−1 + q−1) log(T ) log(p) log(q)}. (5.37)

From the proof of Theorem 5.7, we can see that I∗1 has faster convergence rate than other terms,
and in fact I5 (and hence Ĩ5) has the slowest rate of convergence for a fixed indices t ∈ [T ] and
i ∈ [p]. Taking maximum over all possible indices, using Assumption (E3) and (5.37), we have

max
t∈[T ]
|xα,t − yα,t| = OP (I5) = OP ( max

t∈[T ],i∈[p],j∈[q]
|Ct,ij − Ĉt,ij| · max

t∈[T ],i∈[p],j∈[q]
|(Σϵ ◦ ϵt)ij|)

= OP{((pq)−1/2 + (Tq)−1/2 + (Tp)−1/2 + p−1 + q−1) log2(T ) log2(p) log2(q)}. (5.38)

Next, we assess the approximate “gap” size of the xα,t’s over t ∈ [T ]. To this end, using
Theorem 5.7, and the fact that

∑q
j=1 Var(ϵ2t,ij)Σ4

ϵ,ij has order q uniformly over i ∈ [p], we have

xα,t ≍P max
i∈[p]

{
q−1

q∑
j=1

Σ2
ϵ,ij +

1√
q
max
i∈[p]

Zi,t

}
≍P max

i∈[p]

{
q−1

q∑
j=1

Σ2
ϵ,ij

}
+

log(p)√
q
, (5.39)

showing that the “gap” between two ordered xα,t’s is OP{log(p)/(Tq1/2)}.
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With the “gap” size and uniform error in (5.38), consider

sup
c∈R
|Fy,α(c)− Fx,α(c)| = sup

c∈R

∣∣∣∣∣ 1T
T∑
t=1

[
1{yα,t ≤ c} − 1{xα,t ≤ c}

]∣∣∣∣∣
≤ sup

c∈R

∣∣∣∣∣ 1T
T∑
t=1

[
1{xα,t ±max

t∈[T ]
|xα,t − yα,t| ≤ c} − 1{xα,t ≤ c}

]∣∣∣∣∣
= OP

Å
1

T
max
t∈[T ]
|xα,t − yα,t|

/( log(p)
T
√
q

)ã
= OP

{( 1√
p
+

1√
q
+

1√
T

+

√
q

p
+

…
q

Tp

)
log2(T ) log(p) log2(q)

}
,

where the last line used (5.38). Hence in particular,

Py,α(yα,t ≤ q̂x,α(θ)) = Fy,α(q̂x,α(θ)) ≥ Fx,α(q̂x,α(θ))− sup
c∈R
|Fy,α(c)− Fx,α(c)|

≥ θ +OP

{( 1√
p
+

1√
q
+

1√
T

+

√
q

p
+

…
q

Tp

)
log2(T ) log(p) log2(q)

}
,

which is the result we want. □

Proof of Theorem 5.9. First consider k̂r, i.e., result 1 in Theorem 5.9. For j ∈ [kr],

λj

( 1
T

T∑
t=1

CtC
′
t

)
= λj

( 1
T

T∑
t=1

ArFtA
′
cAcF

′
tA

′
r

)
= λj

(
A′
rAr ·

1

T

T∑
t=1

FtA
′
cAcF

′
t

)
≍P tr(A′

cAc) · λj(A′
rAr) = ∥Ac∥2F · λj(Σ1/2

A,rZrΣ
1/2
A,r) ≍ qδc,1 · λj(Zr) = pδr,jqδc,1 ,

(5.40)

where in the second line, we used Assumption (F1) in the first step and Assumption (L1) in the
second. For the second last step, we used Theorem 1 of Ostrowski (1959) on the eigenvalues
of a congruent transformation Σ

1/2
A,rZrΣ

1/2
A,r of Zr, where we further used Assumption (L1) that

all eigenvalues of ΣA,r are bounded away from 0 and infinity.
Since we have T−1

∑T
t=1 L̂tL̂

′
t = T−1

∑T
t=1CtC

′
t + T−1

∑T
t=1Rr,t from (5.22), it holds

by Weyl’s inequality that for j ∈ [kr],

∣∣∣λj( 1
T

T∑
t=1

L̂tL̂
′
t

)
− λj

( 1
T

T∑
t=1

CtC
′
t

)∣∣∣ ≤ ∥∥∥ 1
T

T∑
t=1

Rr,t

∥∥∥ = oP (ωr), (5.41)

where ωr = pδr,kr qδc,1 is defined in Lemma 5.3, and the last equality used from the proof of
Lemma 5.3 that γ ′(T−1

∑T
t=1Rr,t)γ = oP (ωr) for any unit vector γ ∈ Rp. With our choice
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of ξr, we also have

ξr/ωr ≍ p1−δr,kr q1−δc,1
[
(Tq)−1/2 + p−1/2

]
= o(1), (5.42)

where we used Assumption (R1) in the last equality. Hence for kr > 1, if j ∈ [kr − 1], using
(5.41) and (5.42) we have

λj+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

λj
(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

≤ λj+1

(
T−1

∑T
t=1CtC

′
t

)
+ ξr +

∣∣λj+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
− λj+1

(
T−1

∑T
t=1CtC

′
t

)∣∣
λj
(
T−1

∑T
t=1 CtC′

t

)
+ ξr −

∣∣λj(T−1
∑T

t=1 L̂tL̂
′
t

)
− λj

(
T−1

∑T
t=1CtC′

t

)∣∣
=
λj+1

(
T−1

∑T
t=1CtC

′
t

)
+ oP (ωr)

λj
(
T−1

∑T
t=1CtC′

t

)
+ oP (ωr)

=
λj+1

(
T−1

∑T
t=1CtC

′
t

)
λj
(
T−1

∑T
t=1CtC′

t

) (1 + oP (1)
)
≍P pδr,j+1−δr,j ,

(5.43)

where the last line used (5.40). Moreover, for any j ∈ [kr − 1],

λkr+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

λkr
(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

=
λkr+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

ωr(1 + oP (1))

= OP

{λkr+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
ωr

+
ξr
ωr

}
= OP

{
OP

(
pq[(Tq)−1/2 + p−1/2]/ωr

)
+ ξr/ωr

}
= OP (ξr/ωr) = oP (p

δr,j+1−δr,j),

(5.44)

where we used (5.42) and the proof of Lemma 5.3 in the first equality, our choice of ξr in the
second last, and the extra rate assumption in the statement of the theorem in the last. In the
third equality, we used the following (which will be shown at the end of the this proof),

λj

( 1
T

T∑
t=1

CtC
′
t

)
= OP (T

−1/2pq1/2 + p1/2q), j = kr + 1, . . . , p. (5.45)

Hence for j = kr + 1, . . . , ⌊p/2⌋ (true also for kr = 1),

λj+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

λj
(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

≥ ξr/ωr
OP (ξr/ωr) + ξr/ωr

≥ 1

C
(5.46)

in probability for some generic positive constant C, where we used again our choice of ξr
and (5.45) in the first inequality. Combining (5.43), (5.44) and (5.46), we may conclude our
proposed k̂r is consistent for kr.
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If kr = 1, then from our choice of ξr, (5.44) becomes

λkr+1

(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

λkr
(
T−1

∑T
t=1 L̂tL̂

′
t

)
+ ξr

= OP (ξr/ωr) = oP (1).

Together with (5.46) which holds true for kr = 1, we also conclude k̂r is consistent for kr.
It remains to show (5.45). To this end, from (5.40) and (5.41), the first kr eigenvalues

of T−1
∑T

t=1 L̂tL̂
′
t coincides with those of T−1

∑T
t=1CtC

′
t asymptotically, so that the first kr

eigenvectors corresponding to T−1
∑T

t=1 L̂tL̂
′
t coincides with those for T−1

∑T
t=1CtC

′
t asymp-

totically as T, p → ∞, which are necessarily in N⊥ := Span(Qr), the linear span of the
columns of Qr. This means that the (kr + 1)-th largest eigenvalue of T−1

∑T
t=1 L̂tL̂

′
t and be-

yond will asymptotically have eigenvectors inN , the orthogonal complement ofN⊥. Then for
any unit vectors γ ∈ N , we have from (5.64) and Lemma 5.2 that

γ ′
(
T−1

T∑
t=1

L̂tL̂
′
t

)
γ = γ ′

( 1
T

T∑
t=1

Rr,t

)
γ

= OP

(
T−1

∥∥∥ T∑
t=1

Rr,t

∥∥∥
F

)
= OP (T

−1/2pq1/2 + p1/2q),

which is equivalent to (5.45). This completes the proof of Theorem 5.9. □
As we have the same factor structure as Cen and Lam (2025b), we state Lemma 5.1 below

for further use and refer readers to Cen and Lam (2025b) for the proof in detail.

Lemma 5.1 Let Assumptions (F1), (E1) and (E2) hold. Then

1. (Weak correlation of noise Et across different rows, columns and times). there exists
some positive constant C <∞ so that for any t ∈ [T ], i, j ∈ [p], h ∈ [q],

p∑
k=1

q∑
l=1

∣∣∣E[Et,ihEt,kl]∣∣∣ ≤ C,

q∑
l=1

T∑
s=1

∣∣∣cov(Et,ihEt,jh, Es,ilEs,jl)
∣∣∣ ≤ C.

2. (Weak dependence between factor Ft and noise Et). there exists some positive constant
C < ∞ so that for any j ∈ [p], i ∈ [q], and any deterministic vectors u ∈ Rkr and
v ∈ Rkc with constant magnitudes,

E

{ 1

(qT )1/2

q∑
h=1

T∑
t=1

Et,jhu
′Ftv

}2

≤ C, E

{ 1

(pT )1/2

p∑
h=1

T∑
t=1

Et,hiv
′F′

tu
}2

≤ C.
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3. (Further results on factor Ft). for any t ∈ [T ], all elements in Ft are independent of each
other, with mean 0 and unit variance. Moreover,

1

T

T∑
t=1

FtF
′
t

p−→ Σr := kcIkr ,
1

T

T∑
t=1

F′
tFt

p−→ Σc := krIkc ,

with the number of factors kr and kc fixed as min{T, p, q} → ∞.

Lemma 5.2 (Bounding
∑T

t=1Rr,t). Under Assumptions (F1), (L1), (E1) and (E2), we have

∥∥∥ T∑
t=1

CtE
′
t

∥∥∥2
F
= OP (Tp

1+δr,1q), (5.47)

∥∥∥ T∑
t=1

EtE
′
t

∥∥∥2
F
= OP (Tp

2q + T 2pq2), (5.48)

∥∥∥ T∑
t=1

1′
qE

′
t1pEt1q1

′
p

∥∥∥2
F
= OP (Tp

3q2 + T 2p2q2), (5.49)

∥∥∥ T∑
t=1

CtE
′
t1p1

′
p

∥∥∥2
F
= OP (Tp

3+δr,1q), (5.50)

∥∥∥ T∑
t=1

EtE
′
t1p1

′
p

∥∥∥2
F
= OP (Tp

4q + T 2p3q2), (5.51)

∥∥∥ T∑
t=1

Et1q1
′
qE

′
t

∥∥∥2
F
= OP (Tp

2q2 + T 2pq2), (5.52)

∥∥∥ T∑
t=1

(1′
qE

′
t1p)

21p1
′
p

∥∥∥2
F
= OP (T

2p4q2), (5.53)

∥∥∥ T∑
t=1

1′
pEtE

′
t1p1p1

′
p

∥∥∥2
F
= OP (Tp

6q + T 2p5q2). (5.54)

Thus, with Rr,t defined in (5.22), we have

∥∥∥ T∑
t=1

Rr,t

∥∥∥2
F
= OP (Tp

2q + T 2pq2).

Proof of Lemma 5.2. Using Ct = ArFtA
′
c, we have (5.47) holds as follows,

∥∥∥ T∑
t=1

CtE
′
t

∥∥∥2
F
=
∥∥∥ T∑
t=1

ArFtA
′
cE

′
t

∥∥∥2
F
=

p∑
i=1

p∑
l=1

( T∑
t=1

A′
r,i·FtA

′
cEt,l·

)2
=

p∑
i=1

∥Ar,i·∥2 ·
p∑
l=1

( q∑
h=1

T∑
t=1

Et,lh
1

∥Ar,i·∥
A′
r,i·FtAc,h·

)2
= OP

(
Tp1+δr,1q

)
,
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where the last equality is from Assumption (L1) and Lemma 5.1.
To show (5.48), first notice from Assumption (E1),

Et,ij = A′
e,r,i·Fe,tAe,c,j· + Σϵ,ijϵt,ij.

With Assumption (E2), we have

Cov(Et,ij, Et,kj) = A′
e,r,i·Ae,r,k·∥Ae,c,j·∥2 + Σ2

ϵ,ij1{i=k},

and hence using Lemma 5.1,

E

(∥∥∥ T∑
t=1

EtE
′
t

∥∥∥2
F

)
=

p∑
i=1

p∑
k=1

E

{( T∑
t=1

q∑
j=1

Et,ijEt,kj

)2}
=

p∑
i=1

p∑
k=1

{ T∑
t=1

q∑
j=1

T∑
s=1

q∑
l=1

Cov(Et,ijEt,kj, Es,ilEs,kl) +
( T∑
t=1

q∑
j=1

E[Et,ijEt,kj]
)2}

= O(Tp2q) +

p∑
i=1

p∑
k=1

O
(
T ·A′

e,r,i·Ae,r,k·∥Ae,c∥2F + Tq · 1{i=k}
)2

= O(Tp2q + T 2pq2).

For (5.49), consider first

T∑
t=1

T∑
s=1

Cov(Et,ijEt,kh, Es,lmEs,kn)

=
T∑
t=1

T∑
s=1

Cov
{
(A′

e,r,i·Fe,tAe,c,j· + Σϵ,ijϵt,ij)(A
′
e,r,k·Fe,tAe,c,h· + Σϵ,khϵt,kh), (5.55)

(A′
e,r,l·Fe,sAe,c,m· + Σϵ,lmϵs,lm)(A

′
e,r,k·Fe,sAe,c,n· + Σϵ,knϵs,kn)

}
=

T∑
t=1

T∑
s=1

Cov
(
A′
e,r,i·Fe,tAe,c,j·A

′
e,r,k·Fe,tAe,c,h·,A

′
e,r,l·Fe,sAe,c,m·A

′
e,r,k·Fe,sAe,c,n·

)
+

T∑
t=1

T∑
s=1

E

(
A′
e,r,i·Fe,tAe,c,j·A

′
e,r,l·Fe,sAe,c,m·

)
·E
(
Σϵ,khϵt,khΣϵ,knϵs,kn

)
+

T∑
t=1

T∑
s=1

E

(
A′
e,r,i·Fe,tAe,c,j·A

′
e,r,k·Fe,sAe,c,n·

)
·E
(
Σϵ,khϵt,khΣϵ,lmϵs,lm

)
+

T∑
t=1

T∑
s=1

E

(
A′
e,r,k·Fe,tAe,c,h·A

′
e,r,l·Fe,sAe,c,m·

)
·E
(
Σϵ,ijϵt,ijΣϵ,knϵs,kn

)
+

T∑
t=1

T∑
s=1

E

(
A′
e,r,k·Fe,tAe,c,h·A

′
e,r,k·Fe,sAe,c,n·

)
·E
(
Σϵ,ijϵt,ijΣϵ,lmϵs,lm

)
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+
T∑
t=1

T∑
s=1

Cov
(
Σϵ,ijϵt,ijΣϵ,khϵt,kh,Σϵ,lmϵs,lmΣϵ,knϵs,kn

)
=

T∑
t=1

T∑
s=1

Cov
{
A′
e,r,i·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,j·A

′
e,r,k·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·,

A′
e,r,l·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,m·A

′
e,r,k·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,n·

}
+

T∑
t=1

T∑
s=1

E

{
A′
e,r,i·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,j·A

′
e,r,l·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,m·

}
·E
(
Σϵ,khϵt,khΣϵ,knϵs,kn

)
+

T∑
t=1

T∑
s=1

E

{
A′
e,r,i·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,j·A

′
e,r,k·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,n·

}
·E
(
Σϵ,khϵt,khΣϵ,lmϵs,lm

)
+

T∑
t=1

T∑
s=1

E

{
A′
e,r,k·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·A

′
e,r,l·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,m·

}
·E
(
Σϵ,ijϵt,ijΣϵ,knϵs,kn

)
+

T∑
t=1

T∑
s=1

E

{
A′
e,r,k·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·A

′
e,r,k·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,n·

}
·E
(
Σϵ,ijϵt,ijΣϵ,lmϵs,lm

)
+

T∑
t=1

T∑
s=1

Cov
(
Σϵ,ijϵt,ijΣϵ,khϵt,kh,Σϵ,lmϵs,lmΣϵ,knϵs,kn

)
. (5.56)

Consider the six terms in the last equality above, we have the first term as

T∑
t=1

T∑
s=1

Cov
{
A′
e,r,i·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,j·A

′
e,r,k·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·,

A′
e,r,l·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,m·A

′
e,r,k·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,n·

}
=

T∑
t=1

∑
w≥0

a2e,w ·E
(
A′
e,r,i·Xe,t−wAe,c,j·A

′
e,r,k·Xe,t−wAe,c,n·

)
·E
(
A′
e,r,k·Xe,t−wAe,c,h·A

′
e,r,l·Xe,t−wAe,c,m·

)
+

T∑
t=1

∑
w≥0

a2e,w ·E
(
A′
e,r,i·Xe,t−wAe,c,j·A

′
e,r,l·Xe,t−wAe,c,m·

)
·E
(
A′
e,r,k·Xe,t−wAe,c,h·A

′
e,r,k·Xe,t−wAe,c,n·

)
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+
T∑
t=1

∑
w≥0

a4e,w ·E
(
A′
e,r,i·Xe,t−wAe,c,j·A

′
e,r,k·Xe,t−wAe,c,h·

·A′
e,r,l·Xe,t−wAe,c,m·A

′
e,r,k·Xe,t−wAe,c,n·

)
−

T∑
t=1

∑
w≥0

a4e,w ·E
(
A′
e,r,i·Xe,t−wAe,c,j·A

′
e,r,k·Xe,t−wAe,c,h·

)
·E
(
A′
e,r,l·Xe,t−wAe,c,m·A

′
e,r,k·Xe,t−wAe,c,n·

)
= O

( T∑
t=1

A′
e,r,k·Ae,c,j·A

′
e,r,i·Ae,c,n·A

′
e,r,l·Ae,c,h·A

′
e,r,k·Ae,c,m·

+
T∑
t=1

A′
e,r,l·Ae,c,j·A

′
e,r,i·Ae,c,m·A

′
e,r,k·Ae,c,h·A

′
e,r,k·Ae,c,n·

+
T∑
t=1

∑
w≥0

a4e,w ∥Ae,r,k·∥2 ∥Ae,r,i·∥ ∥Ae,c,j·∥ ∥Ae,c,h·∥ ∥Ae,r,l·∥ ∥Ae,c,m·∥ ∥Ae,c,n·∥

−
T∑
t=1

∑
w≥0

a4e,w ·A′
e,r,k·Ae,c,j·A

′
e,r,i·Ae,c,h·A

′
e,r,k·Ae,c,m·A

′
e,r,l·Ae,c,n·

)
, (5.57)

where we used (E2) in the last equality that each entry in {Xe,t} is independent with uniformly
bounded fourth moment. Similarly, the remaining terms in last equality of (5.56) are

T∑
t=1

T∑
s=1

E

{
A′
e,r,i·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,j·A

′
e,r,l·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,m·

}
·E
(
Σϵ,khϵt,khΣϵ,knϵs,kn

)
=

T∑
t=1

A′
e,r,l·Ae,c,j·A

′
e,r,i·Ae,c,m· · Σϵ,khΣϵ,kn · 1{h=n}, (5.58)

T∑
t=1

T∑
s=1

E

{
A′
e,r,i·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,j·A

′
e,r,k·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,n·

}
·E
(
Σϵ,khϵt,khΣϵ,lmϵs,lm

)
=

T∑
t=1

A′
e,r,k·Ae,c,j·A

′
e,r,i·Ae,c,n· · Σϵ,khΣϵ,lm · 1{k=l}1{h=m}, (5.59)

T∑
t=1

T∑
s=1

E

{
A′
e,r,k·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·A

′
e,r,l·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,m·

}
·E
(
Σϵ,ijϵt,ijΣϵ,knϵs,kn

)
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=
T∑
t=1

A′
e,r,l·Ae,c,h·A

′
e,r,k·Ae,c,m· · Σϵ,ijΣϵ,kn · 1{i=k}1{j=n}, (5.60)

T∑
t=1

T∑
s=1

E

{
A′
e,r,k·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·A

′
e,r,k·

(∑
w≥0

ae,wXe,s−w

)
Ae,c,n·

}
·E
(
Σϵ,ijϵt,ijΣϵ,lmϵs,lm

)
=

T∑
t=1

A′
e,r,k·Ae,c,h·A

′
e,r,k·Ae,c,n· · Σϵ,ijΣϵ,lm · 1{i=l}1{j=m}, (5.61)

T∑
t=1

T∑
s=1

Cov
(
Σϵ,ijϵt,ijΣϵ,khϵt,kh,Σϵ,lmϵs,lmΣϵ,knϵs,kn

)
= O(T ) ·

(
1{i=l=k}1{j=h=m=n} + 1{i=l}1{j=m}1{h=n} + 1{i=l=k}1{j=n}1{h=m}

)
. (5.62)

Using (5.57), (5.58), (5.59), (5.60), (5.61) and (5.62), we arrive at an expression for (5.56).
Thus, (5.49) can be obtained as

E

(∥∥∥ T∑
t=1

1′
qE

′
t1pEt1q1

′
p

∥∥∥2
F

)
= p

p∑
k=1

E

{[ T∑
t=1

( p∑
i=1

q∑
j=1

Et,ij

) q∑
h=1

Et,kh

]2}
= p

p∑
k=1

{ T∑
t=1

p∑
i=1

q∑
j=1

q∑
h=1

T∑
s=1

p∑
l=1

q∑
m=1

q∑
n=1

Cov(Et,ijEt,kh, Es,lmEs,kn)

+
( T∑
t=1

p∑
i=1

q∑
j=1

q∑
h=1

E[Et,ijEt,kh]
)2}

= O(Tp3q2) + p

p∑
k=1

{ T∑
t=1

p∑
i=1

q∑
j=1

q∑
h=1

(
A′
e,r,i·Ae,r,k·A

′
e,c,j·Ae,c,h· + Σ2

ϵ,ij1{i=k}1{j=h}
)}2

= O(Tp3q2 + T 2p2q2).

(5.63)

By (5.47) and (5.48), we can obtain (5.50) and (5.51), respectively as follows,

∥∥∥ T∑
t=1

CtE
′
t1p1

′
p

∥∥∥2
F
≤
∥∥∥ T∑
t=1

CtE
′
t

∥∥∥2
F
· ∥1p1′

p∥2F = OP (Tp
3+δr,1q),

∥∥∥ T∑
t=1

EtE
′
t1p1

′
p

∥∥∥2
F
≤
∥∥∥ T∑
t=1

EtE
′
t

∥∥∥2
F
· ∥1p1′

p∥2F = OP (Tp
4q + T 2p3q2).
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Similar to the proof of (5.49), we can show (5.52) by

E

(∥∥∥ T∑
t=1

Et1q1
′
qE

′
t

∥∥∥2
F

)
=

p∑
i=1

p∑
k=1

E

{[ T∑
t=1

( q∑
j=1

Et,ij

)( q∑
h=1

Et,kh

)]2}
=

p∑
i=1

p∑
k=1

{ T∑
t=1

q∑
j=1

q∑
h=1

T∑
s=1

q∑
m=1

q∑
n=1

Cov(Et,ijEt,kh, Es,imEs,kn)

+
( T∑
t=1

q∑
j=1

q∑
h=1

E[Et,ijEt,kh]
)2}

= O(Tp2q2) +

p∑
i=1

p∑
k=1

{ T∑
t=1

q∑
j=1

q∑
h=1

(
A′
e,r,i·Ae,r,k·A

′
e,c,j·Ae,c,h· + Σ2

ϵ,ij1{i=k}1{j=h}
)}2

= O(Tp2q2 + T 2pq2).

From (5.10), we can obtain (5.53) such that

∥∥∥ T∑
t=1

(1′
qE

′
t1p)

21p1
′
p

∥∥∥2
F
=
{ T∑

t=1

(1′
qE

′
t1p)

2
}2

·
∥∥1p1′

p

∥∥2
F
= OP (T

2p4q2).

Lastly, from (5.48) we have

∥∥∥ T∑
t=1

1′
pEtE

′
t1p1p1

′
p

∥∥∥2
F
≤ ∥1p∥2 · ∥1p∥2 ·

∥∥∥ T∑
t=1

EtE
′
t

∥∥∥2
F
· ∥1p1′

p∥2F = OP (Tp
6q + T 2p5q2).

From (5.22), we have

∥∥∥ T∑
t=1

Rr,t

∥∥∥2
F
= OP

(∥∥∥ T∑
t=1

CtE
′
t

∥∥∥2
F
+
∥∥∥ T∑
t=1

EtE
′
t

∥∥∥2
F
+ (pq)−2

∥∥∥ T∑
t=1

1′
qE

′
t1pEt1q1

′
p

∥∥∥2
F

+ p−2
∥∥∥ T∑
t=1

CtE
′
t1p1

′
p

∥∥∥2
F
+ p−2

∥∥∥ T∑
t=1

EtE
′
t1p1

′
p

∥∥∥2
F
+ p−2

∥∥∥ T∑
t=1

Et1q1
′
qE

′
t

∥∥∥2
F

+ (pq)−2p−2
∥∥∥ T∑
t=1

(1′
qE

′
t1p)

21p1
′
p

∥∥∥2
F
+ p−4

∥∥∥ T∑
t=1

1′
pEtE

′
t1p1p1

′
p

∥∥∥2
F

)
= OP (Tp

2q + T 2pq2),

which completes the proof of Lemma 5.2. □

Lemma 5.3 Let Assumptions (M1), (F1), (L1), (E1), (E2) and (R1) hold. Then define ωr :=

pδr,kr qδc,1 and ωc := qδc,kcpδr,1 . We have

∥D̂−1
r ∥F = OP (ω

−1
r ), ∥D̂−1

c ∥F = OP (ω
−1
c ).
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Proof of Lemma 5.3. It suffices to show the bound of ∥D̂−1
r ∥F , since that of ∥D̂−1

c ∥F would
be similar. First, we bound the term ∥D̂−1

r ∥2F by finding the lower bound of λkr(D̂r). To do
this, consider the decomposition

1

T

T∑
t=1

L̂tL̂
′
t =

1

T

T∑
t=1

CtC
′
t +

1

T

T∑
t=1

Rr,t, (5.64)

so that for a unit vector γ ∈ Rp, we can define

Sr(γ) :=
1

ωr
γ ′
( 1
T

T∑
t=1

L̂tL̂
′
t

)
γ =: S∗

r (γ) + S̃r(γ), with

S∗
r (γ) :=

1

ωr
γ ′
( 1
T

T∑
t=1

CtC
′
t

)
γ, S̃r(γ) :=

1

ωr
γ ′
( 1
T

T∑
t=1

Rr,t

)
γ.

Since ∥γ∥ = 1, we have by Lemma 5.2,

|S̃r(γ)|2 ≤
1

ω2
rT

2

∥∥∥ T∑
t=1

Rr,t

∥∥∥2
F
= OP

(
T−1p2(1−δr,kr )q1−2δc,1 + p1−2δr,kr q2(1−δc,1)

)
= oP (1),

where the last equality used Assumption (R1). Next, with Assumption (F1), consider

λkr

( 1
T

T∑
t=1

CtC
′
t

)
= λkr

( 1
T

T∑
t=1

ArFtA
′
cAcF

′
tA

′
r

)
≥ λkr(A

′
rAr) · λkr

( 1
T

T∑
t=1

FtA
′
cAcF

′
t

)
≍P pδr,kr · λkr(tr(A′

cAc)Σr) ≍P pδr,kr qδc,1 = ωr.

With this, going back to the decomposition (5.64),

ω−1
r λkr(D̂r) = ω−1

r λkr

( 1
T

T∑
t=1

L̂tL̂
′
t

)
≥ ω−1

r λkr

( 1
T

T∑
t=1

CtC
′
t

)
− sup

∥γ∥=1

|S̃r(γ)| ≍P 1,

and hence finally
∥∥D̂−1

r

∥∥
F

= OP

(
λ−1
kr
(D̂r)

)
= OP (ω

−1
r ), which completes the proof of

Lemma 5.3. □

Lemma 5.4 (Limit of D̂r and D̂c). Let Assumptions (F1), (L1), (E1), (E2) and (R1) hold. With
D̂r, D̂c and ωr, ωc defined in Lemma 5.3, we have

ω−1
r D̂r

p−→ ω−1
r Dr := ω−1

r tr(A′
cAc) · diag{λj(A′

rAr) | j ∈ [kr]},
ω−1
c D̂c

p−→ ω−1
c Dc := ω−1

c tr(A′
rAr) · diag{λj(A′

cAc) | j ∈ [kc]}.

Proof of Lemma 5.4. It suffices to show the limit of D̂r, as the proof for D̂c will be similar.
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We first show
1

ωrT

T∑
t=1

CtC
′
t

p−→ tr(A′
cAc) · ω−1

r ArA
′
r, (5.65)

where λkr(tr(A′
cAc) · ω−1

r ArA
′
r) ≍ 1. By Assumption (F1), we have

E

( 1

ωrT

T∑
t=1

CtC
′
t

)
=

1

ωrT

T∑
t=1

E(ArFtA
′
cAcF

′
tA

′
r) = tr(A′

cAc) · ω−1
r ArA

′
r,

which used the independence structure among elements in Ft. Furthermore, for any i, j ∈ [p],

Var
{( 1

ωrT

T∑
t=1

CtC
′
t

)
ij

}
=

1

ω2
rT

2

T∑
t=1

T∑
s=1

Cov
{
A′
r,i·

(∑
w≥0

af,wXf,t−w

)
A′
cAc

(∑
w≥0

af,wX
′
f,t−w

)
Ar,j·,

A′
r,i·

(∑
w≥0

af,wXf,s−w

)
A′
cAc

(∑
w≥0

af,wX
′
f,s−w

)
Ar,j·

}
=

1

ω2
rT

2

T∑
t=1

∑
w≥0

∑
l≥0

a2f,wa
2
f,l · Var

(
A′
r,i·Xf,t−wA

′
cAcX

′
f,t−lAr,j·

)
=

1

ω2
rT

2

T∑
t=1

∑
w≥0

∑
l≥0

a2f,wa
2
f,l ·O(∥Ac∥4F ) = O(T−1p−2δr,kr ) = o(1),

where we used Assumption (F1) in the third last equality, and both (L1) and (F1) in the second
last, which concludes (5.65). Then it holds that

∥∥∥ 1

ωrT

T∑
t=1

L̂tL̂
′
t − tr(A′

cAc) · ω−1
r ArA

′
r

∥∥∥2
F

≤ 2 ·
∥∥∥ 1

ωrT

T∑
t=1

L̂tL̂
′
t −

1

ωrT

T∑
t=1

CtC
′
t

∥∥∥2
F
+ 2 ·

∥∥∥ 1

ωrT

T∑
t=1

CtC
′
t − tr(A′

cAc) · ω−1
r ArA

′
r

∥∥∥2
F

= 2 ·
∥∥∥ 1

ωrT

T∑
t=1

Rr,t

∥∥∥2
F
+ 2 ·

∥∥∥ 1

ωrT

T∑
t=1

CtC
′
t − tr(A′

cAc) · ω−1
r ArA

′
r

∥∥∥2
F

= OP

(
T−1p2(1−δr,kr )q1−2δc,1 + p1−2δr,kr q2(1−δc,1)

)
+ oP (1) = oP (1),

where the second last equality used Lemma 5.2 and (5.65), and the last used Assumption (R1).
Using the inequality that for the i-th eigenvalue of matrices Â and A, |λi(Â) − λi(A)| ≤
∥Â−A∥ ≤ ∥Â−A∥F , we have for any i ∈ [kr],

|(ω−1
r D̂r)ii − (ω−1

r Dr)ii| = oP (1).
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Thus, ω−1
r D̂r

p−→ ω−1
r Dr. This completes the proof of Lemma 5.4. □

Lemma 5.5 (Limit of Hr and Hc). Under Assumptions (F1), (L1), (E1), (E2), (R1) and (L2),

Hr
p−→ H∗

r := (tr(A′
cAc))

1/2 ·D−1/2
r (Γ∗

r)
′Z1/2
r ,

Hc
p−→ H∗

c := (tr(A′
rAr))

1/2 ·D−1/2
c (Γ∗

c)
′Z1/2
c ,

where Dr,Dc are defined in Lemma 5.4, and Γ∗
r,Γ

∗
c are the eigenvector matrices of tr(A′

cAc) ·
ω−1
r Z

1/2
r ΣA,rZ

1/2
r and tr(A′

rAr) · ω−1
c Z

1/2
c ΣA,cZ

1/2
c , respectively.

Proof of Lemma 5.5. The proof of the two limits are similar, and hence we only show the
probability limit of Hr is H∗

r . First, left-multiply ω−1
r Z

1/2
r Q′

r on (5.24), we have

(Z1/2
r Q′

rQ̂r)(ω
−1
r D̂r) = ω−1

r Z1/2
r Q′

r

(
T−1

T∑
t=1

L̂tL̂
′
t

)
Q̂r

=
( 1
T

T∑
t=1

ω−1
r Z1/2

r Q′
rQrFZ,tQ

′
cQcF

′
Z,tZ

−1/2
r +Rr,res

)
(Z1/2

r Q′
rQ̂r),

where Rr,res := T−1
∑T

t=1 ω
−1
r Z

1/2
r Q′

rRr,tQ̂r(Z
1/2
r Q′

rQ̂r)
−1. This implies each column of

(Z
1/2
r Q′

rQ̂r) is an eigenvector of the matrix
(
T−1

∑T
t=1 ω

−1
r Z

1/2
r Q′

rQrFZ,tQ
′
cQcF

′
Z,tZ

−1/2
r +

Rr,res
)
. Note that

ω−1
r

{(
Z1/2
r Q′

rQ̂r

)′(
Z1/2
r Q′

rQ̂r

)
− tr(A′

cAc)
−1 ·Dr

}
= ω−1

r Q̂′A′
rArQ̂−

1

tr(A′
cAc)

Q̂′
( 1

ωrT

T∑
t=1

CtC
′
t

)
Q̂

+
1

tr(A′
cAc)

Q̂′
( 1

ωrT

T∑
t=1

CtC
′
t

)
Q̂− tr(A′

cAc)
−1 ·Dr,

whose Frobenius norm is oP (1) by (5.65) and Lemma 5.4. We arrive at

(Z1/2
r Q′

rQ̂r)
′(Z1/2

r Q′
rQ̂r)

p−→ tr(A′
cAc)

−1 ·Dr.

Thus, the eigenvalues of (Q′
rQ̂r)

′(Q′
rQ̂r) are asymptotically bounded away from zero and in-

finity by Assumption (L1), and hence ∥(Z1/2
r Q′

rQ̂r)
−1∥F = OP (∥Z−1/2

r ∥F ). Therefore,

∥Rr,res∥2F = OP (1) ·
∥∥∥ 1

ωrT

T∑
t=1

Rr,t

∥∥∥2
F
· ∥Z1/2

r ∥2F · ∥(Z1/2
r Q′

rQ̂r)
−1∥2F

= OP

(
T−1p2(1−δr,kr )q1−2δc,1 + p1−2δr,kr q2(1−δc,1)

)
= oP (1),

(5.66)
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where we used Lemma 5.2 in the second last equality and Assumption (R1) in the last.
Denote the following as the normalisation of Z1/2

r Q′
rQ̂r,

Γr := (tr(A′
cAc))

1/2 · (Z1/2
r Q′

rQ̂r)D
−1/2
r .

Using the limit in (5.65), we have

1

T

T∑
t=1

ω−1
r Z1/2

r Q′
rQrFZ,tQ

′
cQcF

′
Z,tZ

−1/2
r =

1

ωrT

T∑
t=1

A′
rArFtA

′
cAcF

′
t(A

′
rAr)(A

′
rAr)

−1

p−→ tr(A′
cAc) · ω−1

r (A′
rAr)(A

′
rAr)(A

′
rAr)

−1 = tr(A′
cAc) · ω−1

r Z1/2
r ΣA,rZ

1/2
r .

By (5.66), Assumption (L2) and eigenvector perturbation theory, there exists a unique eigen-
vector matrix Γ∗

r of tr(A′
cAc) · ω−1

r Z
1/2
r ΣA,rZ

1/2
r such that ∥Γ∗

r − Γr∥ = oP (1). Thus,

Q̂′
rQr = (tr(A′

cAc))
−1/2D1/2

r Γ′
rZ

−1/2
r

p−→ (tr(A′
cAc))

−1/2D1/2
r (Γ∗

r)
′Z−1/2
r ,

and hence using (5.65) again, we obtain

Hr = D̂−1
r Q̂′

r

( 1
T

T∑
t=1

ArFtA
′
cAcF

′
tA

′
r

)
QrΣ

−1
A,r

p−→ D−1
r Q̂′

r

(
tr(A′

cAc) ·ArA
′
r

)
QrΣ

−1
A,r

= tr(A′
cAc) ·D−1

r Q̂′
rQrZ

1/2
r Z1/2

r Q′
rQrΣ

−1
A,r

p−→ (tr(A′
cAc))

1/2 ·D−1/2
r (Γ∗

r)
′Z1/2
r ,

which completes the proof of Lemma 5.5. □

Lemma 5.6 Under the assumptions in Theorem 5.3, for any j ∈ [p], l ∈ [q],

∥Q̂r,j· −HrQr,j·∥2 = OP

(
T−1pδr,1−2δr,kr q1−2δc,1 + p−3δr,kr q2−2δc,1

)
, (5.67)

∥Q̂c,l· −HcQc,l·∥2 = OP

(
T−1qδc,1−2δc,kcp1−2δr,1 + q−3δc,kcp2−2δr,1

)
. (5.68)

Proof of Lemma 5.6. For Q̂r,j·−HrQr,j·, first consider the case when Tq = o(pδr,kr+δr,1).
From (5.34) in the proof of Theorem 5.5, we have

∥Q̂r,j· −HrQr,j·∥2 = OP

(
(Tp2δr,kr−δr,1q2δc,1−1)−1

)
. (5.69)

Now suppose Tq = o(pδr,kr+δr,1) fails to hold. From the decomposition of Q̂r,j· −HrQr,j·

in (5.28), the leading term among the expressions will be I3. It has rate

∥I3∥2 = OP

(
T−1p−2δr,kr q1−2δc,1 + p−3δr,kr q2−2δc,1

)
= OP

(
p−3δr,kr q2−2δc,1

)
,
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where the last equality used the fact that Tq = o
(
pδr,kr+δr,1

)
does not hold. Thus we have

∥Q̂r,j· −HrQr,j·∥2 = OP

(
p−3δr,kr q2−2δc,1

)
. (5.70)

Combining (5.69) and (5.70), we arrive at the statement of (5.67). The proof for (5.68) is
similar and omitted here, which ends of the proof of Lemma 5.6. □

Lemma 5.7 Let Assumptions (F1), (E1), (E2) and (E3) hold. Then for any deterministic vec-
tors u ∈ Rkr and v ∈ Rkc with constant magnitudes,

max
j∈[p]

1

(qT )1/2

q∑
h=1

T∑
t=1

Et,jhu
′Ftv = OP (log(p)),

max
i∈[q]

1

(pT )1/2

p∑
h=1

T∑
t=1

Et,hiv
′F′

tu = OP (log(q)).

Proof of Lemma 5.7. We only show the first result as the proof for the second is similar.
From Assumption (F1), (E1) and (E2), we may rewrite Et,jh and u′Ftv as

Et,jh = A′
e,r,j·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h· + Σϵ,jh

(∑
g≥0

aϵ,gXϵ,t−g,jh

)
,

u′Ftv =
kr∑
m=1

kc∑
n=1

∑
l≥0

af,lXf,t−l,mnumvn,

so that for any j ∈ [p],

q∑
h=1

T∑
t=1

Et,jhu
′Ftv =

q∑
h=1

T∑
t=1

A′
e,r,j·

(∑
w≥0

ae,wXe,t−w

)
Ae,c,h·

kr∑
m=1

kc∑
n=1

∑
l≥0

af,lXf,t−l,mnumvn

+

q∑
h=1

T∑
t=1

Σϵ,jh

(∑
g≥0

aϵ,gXϵ,t−g,jh

) kr∑
m=1

kc∑
n=1

∑
l≥0

af,lXf,t−l,mnumvn.

(5.71)

Consider first the second term above, i.e.,

kr∑
m=1

kc∑
n=1

umvn
∑
l≥0

∑
g≥0

af,laϵ,g

T∑
t=1

( q∑
h=1

Σϵ,jhXϵ,t−g,jh

)
Xf,t−l,mn.

Fix l ≥ 0, g ≥ 0. By Assumption (E3), for each t ∈ [T ], we have
∑q

h=1Σϵ,jhXϵ,t−g,jh ∼
subG(C1q), with arbitrary constant C1 > 0 such that C1q =

∑q
h=1Σ

2
ϵ,jh, which is indepen-

dent over g. Notice that Xf,t−l,mn ∼ subG(1) by (E3), then (
∑q

h=1Σϵ,jhXϵ,t−g,jh)Xf,t−l,mn ∼
subE(

√
C1q) which is independent over t, and hence

∑T
t=1(

∑q
h=1 Σϵ,jhXϵ,t−g,jh)Xf,t−l,mn ∼
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subE(
√
C1qT ). Then sum those sub-exponential random variables over l ≥ 0, g ≥ 0, we have

by (E2),

∑
l≥0

∑
g≥0

af,laϵ,g

T∑
t=1

( q∑
h=1

Σϵ,jhXϵ,t−g,jh

)
Xf,t−l,mn ∼ subE

(√
C2qT

)
,

with some arbitrary constant C2 > 0. As kr, kc, ke,r and ke,c are all constants, we conclude that
the entire second term in (5.71), together with the first term therein, are also sub-exponential
with parameter of the rate

√
qT . Therefore, for each j ∈ [p], it holds that

(qT )−1/2

q∑
h=1

T∑
t=1

Et,jhu
′Ftv

is sub-exponential with parameter of constant rate. Using the union bound, with some arbitrary
constant C3 > 0, we have

P

(
max
j∈[p]

1

(qT )1/2

q∑
h=1

T∑
t=1

Et,jhu
′Ftv ≥ ε

)
≤ exp

{
log(p)− C3ε

}
, (5.72)

implying that maxj∈[p](qT )
−1/2

∑q
h=1

∑T
t=1Et,jhu

′Ftv = OP (log(p)). This concludes the
proof for the lemma. □

Lemma 5.8 Let all assumptions in Theorem 5.3 hold, and let Assumption (E3) also hold. Then
with Rr,t defined in (5.22) and Rc,t in (5.23), we have

max
j∈[p]

∥∥∥( T∑
t=1

Rr,t

)
·j

∥∥∥2 = OP

{
(Tpq + T 2q2) log2(p)

}
, (5.73)

max
j∈[q]

∥∥∥( T∑
t=1

Rc,t

)
·j

∥∥∥2 = OP

{
(Tpq + T 2p2) log2(q)

}
. (5.74)

Proof of Lemma 5.8. Consider (5.73). Essentially, we need to show similar results in
Lemma 5.2. To this end, we show the corresponding versions of (5.47) and (5.48), and the
remaining terms are based on the derived results and can be shown (omitted here) using the
same machinery of sub-exponential distribution and the union bound as in (5.72). To start with,
using the first result in Lemma 5.7, we have

max
j∈[p]

∥∥∥( T∑
t=1

CtE
′
t

)
·j

∥∥∥2
F
=

p∑
i=1

∥Ar,i·∥2 ·max
l∈[p]

( q∑
h=1

T∑
t=1

Et,lh
1

∥Ar,i·∥
A′
r,i·FtAc,h·

)2
= OP

(
Tpδr,1q log2(p)

)
.
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Similarly,

max
j∈[p]

∥∥∥( T∑
t=1

EtC
′
t

)
·j

∥∥∥2
F
= max

i∈[p]

{
∥Ar,i·∥2 ·

p∑
l=1

( q∑
h=1

T∑
t=1

Et,lh
1

∥Ar,i·∥
A′
r,i·FtAc,h·

)2}
≤ max

i∈[p]
∥Ar,i·∥2 ·max

i∈[p]

p∑
l=1

( q∑
h=1

T∑
t=1

Et,lh
1

∥Ar,i·∥
A′
r,i·FtAc,h·

)2
= OP

(
Tpq log2(p)

)
.

Next, consider

max
j∈[p]

∥∥∥ T∑
t=1

(
EtE

′
t

)
·j

∥∥∥2
F
= max

j∈[p]

p∑
i=1

( T∑
t=1

q∑
h=1

Et,ihEt,jh

)2
. (5.75)

Given j ∈ [p], first consider first i ̸= j. By Assumption (E1) and (E2), we can write

Et,jh =

ke,r∑
m=1

ke,c∑
n=1

Ae,r,jmAe,c,hn

(∑
w≥0

ae,wXe,t−w,mn

)
+ Σϵ,jh

(∑
g≥0

aϵ,gXϵ,t−g,jh

)
,

Et,ih =

ke,r∑
τ=1

ke,c∑
γ=1

Ae,r,iτAe,c,hγ

(∑
l≥0

ae,lXe,t−l,τγ

)
+ Σϵ,ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,ih

)
.

Then among all terms in the expansion of
∑T

t=1

∑q
h=1Et,ihEt,jh, consider

∑
g≥0

∑
ξ≥0

aϵ,gaϵ,ξ

T∑
t=1

q∑
h=1

Σϵ,jhΣϵ,ihXϵ,t−g,jhXϵ,t−ξ,ih.

Fix g ≥ 0 and ξ ≥ 0, then it is direct from Assumption (E3) that Σϵ,jhΣϵ,ihXϵ,t−g,jhXϵ,t−ξ,ih

is sub-exponential with parameter of constant order and independent over h ∈ [q] and t ∈ [T ].
This implies

∑T
t=1

∑q
h=1 Σϵ,jhΣϵ,ihXϵ,t−g,jhXϵ,t−ξ,ih is sub-exponential with parameter of order

(Tq)1/2, which also holds true for
∑

g≥0

∑
ξ≥0 aϵ,gaϵ,ξ

∑T
t=1

∑q
h=1 Σϵ,jhΣϵ,ihXϵ,t−g,jhXϵ,t−ξ,ih

by Assumption (E2). Thus,

max
j∈[p]

p∑
i ̸=j

{ T∑
t=1

q∑
h=1

Σϵ,jh

(∑
g≥0

aϵ,gXϵ,t−g,jh

)
Σϵ,ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,ih

)}2

= OP

(
Tpq log2(p)

)
.

(5.76)

Using the same argument above, with the independence between {Xe,t} and {Xϵ,t} from
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(E2), we have

max
j∈[p]

p∑
i=1

{ T∑
t=1

q∑
h=1

ke,r∑
m=1

ke,c∑
n=1

Ae,r,jmAe,c,hn

(∑
w≥0

ae,wXe,t−w,mn

)
Σϵ,ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,ih

)}2

= OP

(
Tpq log2(p)

)
,

max
j∈[p]

p∑
i=1

{ T∑
t=1

q∑
h=1

Σϵ,jh

(∑
g≥0

aϵ,gXϵ,t−g,jh

) ke,r∑
τ=1

ke,c∑
γ=1

Ae,r,iτAe,c,hγ

(∑
l≥0

ae,lXe,t−l,τγ

)}2

= OP

(
Tpq log2(p)

)
.

(5.77)

In the expansion of
∑T

t=1

∑q
h=1Et,ihEt,jh for any i ∈ [p], consider now

∑
w≥0

∑
l≥0

ae,wae,l

T∑
t=1

q∑
h=1

ke,r∑
m=1

ke,c∑
n=1

ke,r∑
τ=1

ke,c∑
γ=1

Ae,r,iτAe,c,hγAe,r,jmAe,c,hnXe,t−w,mnXe,t−l,τγ,

which is sub-exponential with mean of order T and parameter of order ∥Ae,r∥∞ · (T )1/2 by
Assumption (E1), (E2) and (E3). Hence by the sparsity of Ae,r according to (E1) again,

max
j∈[p]

p∑
i=1

{ T∑
t=1

q∑
h=1

ke,r∑
m=1

ke,c∑
n=1

Ae,r,jmAe,c,hn

(∑
w≥0

ae,wXe,t−w,mn

)
ke,r∑
τ=1

ke,c∑
γ=1

Ae,r,iτAe,c,hγ

(∑
l≥0

ae,lXe,t−l,τγ

)}2

= OP

(
T 2 log2(p)

)
.

(5.78)

To bound (5.75), it remains to consider

∑
g≥0

∑
ξ≥0

aϵ,gaϵ,ξ

T∑
t=1

q∑
h=1

Σ2
ϵ,jhX

2
ϵ,t−g,jh,

which is sub-exponential with parameter of order (Tq)1/2, similar to the case as in (5.76), except
that the mean is of order Tq. Therefore,

max
j∈[p]

1{i = j}
{ T∑

t=1

q∑
h=1

Σϵ,jh

(∑
g≥0

aϵ,gXϵ,t−g,jh

)
Σϵ,ih

(∑
ξ≥0

aϵ,ξXϵ,t−ξ,ih

)}2

= OP

(
T 2q2 log2(p)

)
.

(5.79)
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Finally for (5.75), combining (5.76), (5.77), (5.78) and (5.79), we have

max
j∈[p]

∥∥∥ T∑
t=1

(
EtE

′
t

)
·j

∥∥∥2
F
= OP

(
(Tpq + T 2q2) log2(p)

)
.

This ends the proof for (5.73). The result (5.74) follows similarly to (5.73) and this concludes
the proof of the lemma. □

Lemma 5.9 Let all assumptions in Theorem 5.3 hold, and let Assumption (E3) also hold. Then
we have

max
j∈[p]

∥∥Q̂r,j· −HrQr,j·
∥∥2

= OP

{(
T−1p1−2δr,kr q1−2δc,1 + p−2δr,kr q2(1−δc,1)

)
log2(p)

}
, (5.80)

max
j∈[q]

∥∥Q̂c,j· −HcQc,j·
∥∥2

= OP

{(
T−1q1−2δc,kcp1−2δr,1 + q−2δc,kcp2(1−δr,1)

)
log2(q)

}
, (5.81)

max
t∈[T ]
∥F̂Z,t − (H−1

r )′FZ,tH
−1
c ∥2F

= OP

{(
p1−δr,kr q1−δc,kc + T−1p1+2δr,1−2δr,kr q1−δc,1 + p1+δr,1−3δr,kr q2−δc,1

+ T−1q1+2δc,1−2δc,kcp1−δr,1 + q1+δc,1−3δc,kcp2−δr,1
)
log2(T )

}
. (5.82)

Thus, we have

max
i∈[p],j∈[q],t∈[T ]

(Ĉt,ij − Ct,ij)2

= OP

{(
p1−2δr,kr q1−2δc,kc + T−1p1+2δr,1−3δr,kr q1−δc,1−δc,kc + p1+δr,1−4δr,kr q2−δc,1−δc,kc

+ T−1q1+2δc,1−3δc,kcp1−δr,1−δr,kr + q1+δc,1−4δc,kcp2−δr,1−δr,kr
)
log2(T ) log2(p) log2(q)

}
.

Proof of Lemma 5.9. To see (5.80), from the proof of the consistency for the row loading
matrix in Theorem 5.2, we have

max
j∈[p]

∥∥Q̂r,j· −HrQr,j·
∥∥2 = max

j∈[p]

∥∥∥T−1D̂−1
r Q̂′

r

( T∑
t=1

Rr,t

)
·j

∥∥∥2
≤ T−2 · ∥D̂−1

r ∥2F · ∥Q̂r∥2F ·max
j∈[p]

∥∥∥( T∑
t=1

Rr,t

)
·j

∥∥∥2
F

= OP

(
T−1p1−2δr,kr q1−2δc,1 log2(p) + p−2δr,kr q2(1−δc,1) log2(p)

)
,

where the last equality used Lemma 5.3 and Lemma 5.8. In a similar way, (5.81) holds also by
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Lemma 5.3 and Lemma 5.8.
For (5.82), by inspecting (5.25), it suffices to characterize the change from the rate of

∥Ft∥2F to the rate of maxt∈[T ] ∥Ft∥2F , while all other rates follow the similar arguments in the
proof of Lemma 5.8 by using sub-exponential distributions. With Assumption (E3), ∥Ft∥2F is
sub-exponential with both mean and parameter of constant order, so that maxt∈[T ] ∥Ft∥2F =

OP (log
2(T )). By checking all the rates in the expansion (5.25) are inflated by log2(T ), (5.82)

is hence concluded. Finally, with all previous results and recall the expansion in (5.27), the
rate of maxi∈[p],j∈[q],t∈[T ](Ĉt,ij − Ct,ij)2 is inflated by log2(T ) log2(p) log2(q) compared to the
individual rate of (Ĉt,ij − Ct,ij)2. This ends the proof of the lemma. □



Chapter 6

Spatial Autoregressive Models with
Change Point Detection

6.1 Introduction

The study of spatial dependence in regional science gives rise to the techniques in spatial econo-
metrics that we commonly use nowadays. Restricting to cross-sectional data only, a very gen-
eral form of a model describing spatial dependence can be y = f(y) + ϵ (Anselin, 1988),
where y denotes a vector of d observed units, and ϵ denotes an error term. A prominent and
widely used candidate model is the spatial autoregressive model (see for example LeSage and
Pace (2009)), which assumes a known spatial weight matrix W with zero diagonal and f(y)
of the form f(y) = ρWy (or f(y) = ρWy +Xβ for a model with matrix of covariates X),
where ρ is called the spatial correlation coefficient.

Users of these models need to specify the d × d spatial weight matrix W, which can be
a contiguity matrix of 0 and 1, a matrix of inverse distances between two cities/regions, rela-
tive amount of import export, etc. An obvious shortcoming for practitioners is to specify an
“accurate” spatial weight matrix for use, often in the face of too many potential choices. This
leads to a series of attempts to estimate the spatial weight matrix itself from data. For instance,
see Pinkse et al. (2002) and Sun (2016) for models dealing with cross-sectional data only, both
allowing for nonlinear spatial weight matrix estimation. Beenstock and Felsenstein (2012),
Bhattacharjee and Jensen-Butler (2013), Lam and Souza (2020) and Higgins and Martellosio
(2023) use spatial panel data for spatial weight matrix estimation, with Lam and Souza (2020)
and Higgins and Martellosio (2023) allowing for multiple specified spatial weight matrices
through a linear combination of them with constant coefficients.

Recent advances in spatial econometrics allow researchers to specify more complex models
with an observed panel {yt}. Zhang and Shen (2015) considers partially linear covariate effects
and constant spatial interactions using a sieve method to estimate a nonlinear function, while

215
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Sun and Malikov (2018) considers varying coefficients in both the spatial correlation coeffi-
cient (with underlying variables differ over observed units) and the covariate effects, assuming
the nonlinear functions are smooth for kernel estimations. Liang et al. (2022) uses kernel esti-
mation on a model with constant spatial interactions but deterministic time-varying coefficient
functions for the covariates, while Chang et al. (2025) generalises the model to include an un-
known random time trend and deterministic time-varying spatial correlation coefficient, still
using kernel estimation. Hong et al. (2024) investigates a model similar to Sun and Malikov
(2018), but adds dynamic terms involving yt−1.

However, all the above allow for one specified spatial weight matrix only. As mentioned
before, practitioners often face with too many potential choices for a spatial weight matrix.
Combining the flexibility of allowing for multiple specified spatial weight matrices as input in
Lam and Souza (2020) and varying effects in spatial interactions over observed variables or
time directly, we propose a model similar to that in Lam and Souza (2020), but with varying
coefficients in the linear combination of the spatial weight matrices. The varying coefficients
can be varying over some observed variables (stochastic) or time directly (non-stochastic).

Our contribution in this chapter are three-folds. Firstly, using basis representations, we
allow for the varying coefficients to be either stochastic or directly time-varying, without the
need for any smoothness conditions. Hence the final estimated spatial weight matrix can be
either stochastic or deterministic, e.g., directly time dependent. Secondly, our adaptive LASSO
estimators are proved to have the oracle properties, so that ill-specified spatial weight matrices
which are irrelevant in the end will be dropped with probability going to 1 as the dimension
d and the sample size T go to infinity. At the same time, the effects of relevant spatial weight
matrices can be seen to be truly varying or not, again with probability going to 1 as d, T →∞.
This greatly facilitates the interpretability of the spillover effects over time. Last but not least,
our framework includes special cases such as spatial autoregressive models with structural
changes (Li, 2018) or threshold variables (Deng, 2018; Li and Lin, 2024). Section 6.5 explores
the applications to multiple change points detection in both spatial autoregressive models with
structural changes or threshold variables, suggesting an applicable algorithm for consistent
change points detection in both cases.

The rest of this chapter is organised as follows. Section 6.2 introduces the spatial autoregres-
sive model and presents a procedure using adaptive LASSO to estimate the spatial fixed effect,
spatial autoregressive parameters in a basis expansion, and the regression coefficients. Sec-
tion 6.3 includes the required assumptions and the theoretical guarantees on the parameter esti-
mators. Section 6.4 covers the algorithm for practical implementations including model selec-
tion and covariance matrix estimation for our estimators. Section 6.5 focuses on change points
detection for a spatial autoregressive model with threshold variables or structural changes. Fi-
nally, numerical results are presented in Section 6.6, with a case study of enterprise profits in
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China. Section 6.7 provides additional details and simulations, whereas all technical proofs
and additional lemmas are deferred to Section 6.8.

6.2 Model and Estimation

6.2.1 Spatial autoregressive model

We propose a framework of spatial autoregressive models with fixed effects such that for each
time t ∈ [T ],

yt = µ∗ +

p∑
j=1

(
ϕ∗
j,0 +

lj∑
k=1

ϕ∗
j,kzj,k,t

)
Wjyt +Xtβ

∗ + ϵt, (6.1)

where yt ∈ Rd is the observed vector at time t, and µ∗ is a constant vector of spatial fixed
effects. Each Wj ∈ Rd×d is a pre-specified spatial weight matrix provided by researchers to
feature the spillover effects of cross-sectional units from their neighbours. Each Wj has zero
entries on its main diagonal with no restrictions on the signs of off-diagonal entries, and can be
asymmetric. Each term (ϕ∗

j,0 +
∑lj

k=1 ϕ
∗
j,kzj,k,t) is essentially a spatial correlation coefficient

for the spatial weight matrix Wj (see also Lam and Souza (2020)), which can be time-varying
by being presented as either a basis expansion using some non-random pre-specified set of
basis {zj,k,t}, or an affine combination of random variables {zj,k,t}. In either case, we call
the {zj,k,t}’s the dynamic variables hereafter. For j ∈ [p], k ∈ [lj], the parameters ϕ∗

j,0, ϕ
∗
j,k

are unknown and need to be estimated. The covariate matrix Xt has size d × r, with β∗ the
corresponding unknown regression coefficients of length r. Finally, ϵt is the idiosyncratic noise
with zero mean.

Without loss of generality, we assume Xt to have zero mean. Otherwise, we read

µ∗ +Xtβ
∗ =

[
µ∗ +E(Xt)β

∗]+ [Xt −E(Xt)
]
β∗,

which leads to estimating [µ∗ + E(Xt)β
∗] as the spatial fixed effects instead. We can rewrite

(6.1) as a traditional spatial autoregressive model yt = µ∗ +W∗
tyt +Xtβ

∗ + ϵt by defining
the true spatial weight matrix at time t as

W∗
t :=

p∑
j=1

(
ϕ∗
j,0+

lj∑
k=1

ϕ∗
j,kzj,k,t

)
Wj, with −1 < ρ∗t :=

p∑
j=1

(
ϕ∗
j,0+

lj∑
k=1

ϕ∗
j,kzj,k,t

)
< 1. (6.2)

The restrictions on ρ∗t for all t ∈ [T ] ensure that the model is stationary. See Assumptions (M2)
and (M2’) for technical details. We define L := p+

∑p
j=1 lj and further reformulate (6.1) as

yt = µ∗ + (ΛtΦ
∗)yt +Xtβ

∗ + ϵt, where (6.3)
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Λt :=(Λ1,t,Λ2,t, . . . ,Λp,t)∈Rd×dL, with Λj,t :=(Wj, zj,1,tWj, . . . , zj,lj ,tWj)∈Rd×(d+dlj),

Φ∗ := (Φ∗′
1 ,Φ

∗′
2 , . . . ,Φ

∗′
p )

′ ∈ RdL×d, with Φ∗
j := (ϕ∗

j,0Id, ϕ
∗
j,1Id, . . . , ϕ

∗
j,lj

Id)
′.

Due to the endogeneity in yt and potentially Xt, we assume that a set of valid instrumental
variables Ut are available for t ∈ [T ]. More specifically, each Ut is independent of ϵt but is
correlated with yt and the endogenous Xt. Note that if Xt is exogenous, we may simply have
Ut = Xt. Following Kelejian and Prucha (1998), we can construct instruments Bt as a d× v
matrix with v ≥ r by interacting each given spatial weight matrix with Ut such that Bt is
composed of at least a subset of linearly independent columns in1

{
Ut,W1Ut,W

2
1Ut, . . . ,WpUt,W

2
pUt, . . .

}
.

To enhance interpretability of the true spatial weight matrix W∗
t , we assume the dynamic

feature of model (6.1) is driven only by a few {zj,k,t}. That is, the vector of coefficients ϕ∗ :=

(ϕ∗′
1 ,ϕ

∗′
2 , . . . ,ϕ

∗′
p )

′ (with ϕ∗
j := (ϕ∗

j,0, ϕ
∗
j,1, . . . , ϕ

∗
j,lj

)′) is sparse. Using the LASSO (Tibshirani,
1996), an L1 penalty λ∥ϕ∥1 can be included in a regression problem to shrink the estimators
toward zero and some of them to exactly zero, where λ > 0 is a tuning parameter. However,
this form of regularisation penalises uniformly on each entry, which may lead to over- or under-
penalisation. The former induces bias while the latter fails sign-consistency, i.e., zeros are
estimated exactly as zeros and nonzeros are estimated with the correct signs.

To ensure the zero-consistency in variable selection, a necessary “irrepresentable condition”
is often imposed (Zhao and Yu, 2006). Subsequently, Zou (2006) reweighs the regularization
to be λu′|ϕ| where | · | is applied entrywise and u contains the inverse of the initial estimators
of ϕ∗. Now the sign-consistency can be ensured even without the irrepresentable condition if
the estimators in u are

√
T -consistent. Such a framework adaptively penalizes the magnitude

of the estimators and is hence called “adaptive LASSO”. To this end, we start by profiling out
β. To make use of the instruments, define B̄ := T−1

∑T
t=1Bt. If ϕ (and hence Φ) is given, by

multiplying (Bt − B̄)′ and summing over all t ∈ [T ] on both sides of (6.3), we then have

T∑
t=1

(Bt − B̄)′(Id −ΛtΦ)yt =
T∑
t=1

(Bt − B̄)′Xtβ +
T∑
t=1

(Bt − B̄)′ϵt,

where the true values Φ∗ and β∗ are replaced by Φ and β, respectively. Note that the spatial
fixed effect µ∗ vanishes since

∑T
t=1(Bt − B̄)′µ∗ = 0. Therefore, the least squares estimator

1Ideally, we should have Bt of the form [
∑p

j=1(ϕj,0 +
∑lj

k=1 ϕj,kzj,k,t)Wj ]
mUt for m = 0, 1, 2, . . . . How-

ever, each ϕj,0 and ϕj,k is unknown and hence we exclude any cross-terms with more than one Wj .
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of β∗ given ϕ can be denoted as

β(ϕ) =
{ T∑

s=1

X′
s(Bs− B̄)

T∑
t=1

(Bt− B̄)′Xt

}−1
T∑
s=1

X′
s(Bs− B̄)

T∑
t=1

(Bt− B̄)′(Id−ΛtΦ)yt.

(6.4)
To facilitate formulating the adaptive LASSO problem by accommodating the instrumental

variables, we write γ := v−11v and denote the i-th row of Bt and B̄ by Bt,i· and B̄i·, respec-
tively. For i ∈ [d], t ∈ [T ], define the outcome and covariates filtered through instrumental
variables as

yB,i,t := (Bt,i· − B̄i·)
′γyt, XB,i :=

T∑
t=1

(Bt,i· − B̄i·)
′γXt.

The least squares problem is then

ϕ̃ = argmin
ϕ

1

2T

d∑
i=1

∥∥∥ T∑
t=1

(Id −ΛtΦ)yB,i,t −XB,iβ(ϕ)
∥∥∥2. (6.5)

Using this solution as an initial estimator, the adaptive LASSO problem becomes solving for

ϕ̂ = argmin
ϕ

1

2T

d∑
i=1

∥∥∥ T∑
t=1

(Id −ΛtΦ)yB,i,t −XB,iβ(ϕ)
∥∥∥2 + λu′|ϕ|, (6.6)

subj. to ∥ΛtΦ∥∞ < 1, with |z′tϕ| < 1 for any t ∈ [T ],

where zt := (z′1,t, z
′
2,t, . . . , z

′
p,t)

′, zj,t := (1, zj,1,t, . . . , zj,lj ,t)
′, u := (|ϕ̃1,0|−1, . . . , |ϕ̃p,lp |−1)′,

|ϕ| := (|ϕ1,0|, . . . , |ϕp,lp|)′ and λ is a tuning parameter. With ϕ̂ (and hence Φ̂), the adaptive
LASSO estimators for β∗ can be obtained by β̂ := β(ϕ̂) and the fixed effect estimator by

µ̂ :=
1

T

T∑
t=1

{
(Id −ΛtΦ̂)yt −Xtβ̂

}
. (6.7)

6.2.2 Full matrix notations

To facilitate both the theoretical results and practical implementation, the least squares and the
adaptive LASSO problems are presented in matrix notations in this subsection. Define first

B := T−1/2d−a/2 (Bγ− B̄γ) := T−1/2d−a/2 Id⊗
{
(IT ⊗γ ′)(B1− B̄, . . . ,BT − B̄)′

}
, (6.8)

where a is a constant gauging the correlation between Bt and Xt so that a larger a generally
means Bt is correlated with more covariates in Xt. See Assumption (R4) for technical details.
As in Lam and Souza (2020), in practice we can set a = 1 to compute B, without changing the
optimal values of any tuning parameters or estimators in the adaptive LASSO problem below.
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For ease of notation, denote zj,0,t = 1 for all j ∈ [p], t ∈ [T ]. We now rewrite (6.1) as

y = µ∗ ⊗ 1T +Vϕ∗ +Xβ∗vec
(
Id
)
+ ϵ, where (6.9)

y := vec
(
(y1, . . . ,yT )

′), ϵ := vec
(
(ϵ1, . . . , ϵT )

′),
V := (V1, . . . ,Vp), Vj :=

[
Γj,0vec

(
W′

j

)
,Γj,1vec

(
W′

j

)
, . . . ,Γj,ljvec

(
W′

j

)]
,

Γj,k := Id ⊗
(
zj,k,1y1, . . . , zj,k,TyT

)′
, Xβ∗ := Id ⊗

{(
IT ⊗ β∗′)(X1, . . . ,XT

)′}
.

In this form, the model now has design matrix V in a classical linear regression setting, except
that the endogenous variables yt are present in V. We thus obtain the augmented model by
left-multiplying both sides of (6.9) by B′:

B′y = B′Vϕ∗ +B′Xβ∗vec
(
Id
)
+B′ϵ, (6.10)

where the augmented spatial fixed effect vanishes sinceB′(µ∗⊗1T ) = T−1/2d−a/2µ′⊗
{
(B1−

B̄, . . . ,BT − B̄)(IT ⊗ γ)1T
}
= 0. For any matrix C, denote C⊗ := IT ⊗C throughout this

chapter. We can also read (6.1) as

yν = 1T ⊗ µ∗ +

p∑
j=1

lj∑
k=0

ϕ∗
j,kW

⊗
j y

ν
j,k +Xβ∗ + ϵν , where (6.11)

yν := (y′
1, . . . ,y

′
T )

′, yνj,k := (zj,k,1y
′
1, . . . , zj,k,Ty

′
T )

′,

ϵν := (ϵ′1, . . . , ϵ
′
T )

′, X := (X′
1, . . . ,X

′
T )

′.

Thus with Bν := (B′
1 − B̄′, . . . ,B′

T − B̄′)′, we may write (6.4) in matrix form as

β(ϕ) =
(
X′Bν Bν′X

)−1
X′ Bν Bν′

(
yν −

p∑
j=1

lj∑
k=0

ϕj,kW
⊗
j y

ν
j,k

)
. (6.12)

Together with (6.10), the least squares problem in (6.5) can be described as

ϕ̃ = argmin
ϕ

1

2T

∥∥∥B′y −B′Vϕ−B′Xβ(ϕ)vec
(
Id
)∥∥∥2. (6.13)

With the least squares estimator ϕ̃, the problem in (6.6) in matrix notation is

ϕ̂ = argmin
ϕ

1

2T

∥∥∥B′y −B′Vϕ−B′Xβ(ϕ)vec
(
Id
)∥∥∥2 + λu′|ϕ|, (6.14)

subj. to ∥ΛtΦ∥∞ < 1, with |z′tϕ| < 1 for any t ∈ [T ].
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Note that the squared error in both (6.13) and (6.14) are still implicit in ϕ due to the term
β(ϕ). To this end, define

YW :=
(
W⊗

1 y
ν
1,0, . . . ,W

⊗
1 y

ν
1,l1
, . . . ,W⊗

p y
ν
p,0, . . . ,W

⊗
p y

ν
p,lp

)
,

Ξ := T−1/2d−a/2
( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)(

X′Bν Bν′ X
)−1

X′ Bν Bν′.

With all lengthy simplification steps relegated to Section 6.8, (6.13) can be rewritten as

ϕ̃ = argmin
ϕ

1

2T

∥∥∥B′y −Ξyν −
(
B′V −ΞYW

)
ϕ
∥∥∥2

=
{(

B′V −ΞYW

)′(
B′V −ΞYW

)}−1(
B′V −ΞYW

)′(
B′y −Ξyν

)
.

(6.15)

Moreover, the adaptive LASSO problem in (6.14) can be written as

ϕ̂ = argmin
ϕ

1

2T

∥∥∥B′y −Ξyν −
(
B′V −ΞYW

)
ϕ
∥∥∥2 + λu′|ϕ|, (6.16)

subj. to ∥ΛtΦ∥∞ < 1, with |z′tϕ| < 1 for any t ∈ [T ].

6.3 Assumptions and Theoretical Results

We first present some notations involving the measure of serial dependence of all time series
variables, which is gauged by the functional dependence measure introduced by Wu (2005).
We state all the assumptions used in this chapter in Section 6.3.1. Denote {xt} =

{
vec
(
Xt

)}
and {bt} =

{
vec
(
Bt

)}
to be the vectorised processes for {Xt} and {Bt} with length dr and

dv, respectively. For t ∈ [T ], assume that

xt =
[
fi(Ft)

]
i∈[dr], bt =

[
gi(Gt)

]
i∈[dv], ϵt =

[
hi(Ht)

]
i∈[d], (6.17)

where fi(·)’s, gi(·)’s, hi(·)’s are measurable functions defined on the real line, and Ft =

(. . . , ex,t−1, ex,t), Gt = (. . . , eb,t−1, eb,t), Ht = (. . . , eϵ,t−1, eϵ,t) are defined by i.i.d. pro-
cesses {ex,t}, {eb,t} and {eϵ,t} respectively, with {eb,t} independent of {eϵ,t} but correlated
with {ex,t}. For q > 0, we define

θxt,q,i :=
∥∥xt,i − ẍt,i∥∥q = (E|xt,i − ẍt,i|q)1/q, i ∈ [dr],

θbt,q,i :=
∥∥bt,i − b̈t,i∥∥q = (E|bt,i − b̈t,i|q)1/q, i ∈ [dv],

θϵt,q,i :=
∥∥ϵt,i − ϵ̈t,i∥∥q = (E|ϵt,i − ϵ̈t,i|q)1/q, i ∈ [d],

(6.18)
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where ẍt,i = fi(F̈t), F̈t = (. . . , ex,-1, ëx,0, ex,1, . . . , ex,t), with ëx,0 independent of all other
ex,j’s. Hence ẍt,i is a coupled version of xt,i with ex,0 replaced by an i.i.d. copy ëx,0. We
define b̈t,i and ϵ̈′t,i similarly. Intuitively, a large θxt,q,i implies strong serial correlation in xt

and incorporates some tail conditions of fi(·)’s, i.e., how fi(·) frames ex,0 at time t and how
exaggerated the functional fi(·) is.

6.3.1 Assumptions

We present here the assumptions for our model. In summary, (I1) helps to identify the model;
assumptions prefixed “M” renders the model framework; those prefixed “R” are more technical.

(I1) (Identification). All the eigenvalues of Q′Q are uniformly bounded away from 0, where

Q =
[
E(B′V),E(B′X̃)

]
, X̃ = (x1,1·, . . . ,xT,1·, . . . ,x1,d·, . . . ,xT,d·)

′.

(M1) (Time series in Xt, Bt and ϵt). The processes {Xt}, {Bt} and {ϵt} are second-order
stationary and and satisfy (6.17), with {Xt} and {ϵt} having mean zero. The tail condi-
tion P(|Z| > z) ≤ D1 exp

(
−D2z

ℓ
)

is satisfied for the variables Bt,ij , Xt,ij , ϵt,i by the
same constants D1, D2 and ℓ. With (6.18), define the tail sum

Θx
m,q =

∞∑
t=m

max
i∈[dr]

θxt,q,i, Θb
m,q =

∞∑
t=m

max
i∈[dv]

θbt,q,i, Θϵ
m,q =

∞∑
t=m

max
i∈[d]

θϵt,q,i.

We assume that for some w > 2, Θx
m,2w, Θ

b
m,2w, Θ

ϵ
m,2w ≤ Cm−α with α, C > 0 being

constants that can depend on w.

(M2) (True spatial weight matrix W∗
t with non-random basis zj,k,t). W∗

t defined in (6.2) uses
a uniformly bounded non-stochastic basis {zj,k,t} for j ∈ [p], k ∈ [lj]. There exists a
constant η > 0 such that for all t ∈ [T ], ∥W∗

t ∥∞ < η < 1 uniformly as d → ∞. The
elements in W∗

t can be negative, and W∗
t can be asymmetric. Furthermore, ρ∗t defined

in (6.2) satisfies |ρ∗t | < 1.

(M2’) (True spatial weight matrix W∗
t with random zj,k,t). Same as Assumption (M2), except

that {zj,k,t} is a zero mean stochastic process with support [−1, 1], such that zj,k,t =

uj,k(Ut) similar to (6.17), with E(zj,k,tXt) = 0, E(zj,k,tϵt) = 0, and Θz
m,2w ≤ Cm−α as

in Assumption (M1). Furthermore:

1. there exists η > 0 such that
∑p

j=1

∑lj
k=0 ∥ϕ∗

j,kWj∥∞ < η < 1 uniformly as d→∞.

2.
∑p

j=1

∑lj
k=0 |ϕ∗

j,k| < 1.



6.3. Assumptions and Theoretical Results 223

(R1) Denote the d2L×L block diagonal matrix DW := diag
{
I1+l1 ⊗ vec

(
W′

1

)
, . . . , I1+lp ⊗

vec
(
W′

p

)}
. Then there exists a constant u > 0 such that the L-th largest singular value

of DW satisfies σ2
L(DW ) ≥ du > 0 uniformly as d→∞.

Moreover, there exists a constant c > 0 such that maxj
{
∥Wj∥1, ∥Wj∥∞

}
≤ c < ∞

uniformly as d→∞.

(R2) Write ϵt = Σ
1/2
ϵ ϵ∗t withΣϵ being the covariance matrix of ϵt. Assume

∥∥Σϵ

∥∥
max ≤ σ2

max <

∞ uniformly as d→∞. The same applies to the variance of the elements in Bt.

Assume also
∥∥Σ1/2

ϵ

∥∥
∞ ≤ Sϵ < ∞ uniformly as d → ∞, with {ϵ∗t,i}i∈[d] being a martin-

gale difference with respect to the filtration generated by σ(ϵt,1, . . . , ϵt,i). Furthermore,
{ϵ∗t}t∈[T ] satisfies the tail condition and the functional dependence in Assumption (M1).

(R3) All singular values of E(X′
tBt) are uniformly larger than du for some constant u > 0,

while the maximum singular value is of order d. Individual entries in the matrixE(btx′
t)

are uniformly bounded away from infinity, with xt and bt defined in (6.17).

(R4) With the same a ∈ [0, 1] introduced in (6.8), we define

G := d−a Id ⊗ {E(Ǧ)E(Ǧ)′}, Ǧ := (Ǧ1,0, . . . , Ǧ1,l1 , . . . , Ǧp,0, . . . , Ǧp,lp),

Ǧj,k :=
1

T

T∑
t=1

zj,k,t(Bt − B̄)γβ∗′X′
tΠ

∗′
t , Π∗

t := (Id −W∗
t )

−1.

We assume that G has full rank and there exists a constant u > 0 such that λmin(G) ≥
u > 0 and λmax(G) <∞ uniformly as d→∞.

(R5) For the same constant a as in Assumption (R4), we have for each d,

max
i∈[d]

d∑
j=1

∥∥E(Bt,i·X
′
t,j·)
∥∥

max, max
j∈[d]

d∑
i=1

∥∥E(Bt,i·X
′
t,j·)
∥∥

max = O(da).

At the same time, assume E(Xt ⊗Btγ) has all singular values of order d1+a.

(R6) With Π∗
t in Assumption (R4), define

G̈ := (G̈1,0, . . . , G̈1,l1 , . . . , G̈p,0, . . . , G̈p,lp),

G̈j,k :=
1

T

T∑
t=1

zj,k,t(Bt − B̄)′
(
Id ⊗ β∗′X′

tΠ
∗′
t

)
.

Assume that E(G̈)E(G̈)′ has full rank and that there exists a constant u > 0 such that
λv
(
E(G̈)E(G̈)′

)
≥ u > 0 and λmax

(
E(G̈)E(G̈)′

)
<∞ uniformly as d→∞.
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(R7) Define the predictive dependence measures

P b
0 (Bt,jk) := E(Bt,jk | G0)−E(Bt,jk | G-1), P ϵ

0(ϵt,j) := E(ϵt,j | H0)−E(ϵt,j | H-1),

with Gt andHt specified after (6.17). Assume∑
t≥0

max
j∈[d]

max
k∈[v]

∥∥P b
0 (Bt,jk)

∥∥
2
<∞,

∑
t≥0

max
j∈[d]

∥∥P ϵ
0(ϵt,j)

∥∥
2
<∞.

(R8) For b ∈ [0, 1], the eigenvalues of Var(ϵt) and Var(d−b/2Bt,·k) are uniformly bounded
away from zero and infinity, and respectively dominate the singular values of E(ϵtϵ′t+τ )
and d−bE

{
[Bt,·k − E(Bt,·k)][Bt+τ,·k − E(Bt,·k)]

′} for any τ ̸= 0. The sum of the i-th
largest singular values over all lags τ ∈ Z for each i ∈ [d] is assumed to be finite for
both autocovariance matrices of {ϵt} and {d−b/2Bt}.

(R9) Define cT = gT−1/2 log1/2(T ∨ d) for some constant g > 0. The tuning parameter for
the adaptive LASSO problem (6.6) is λ = CcT for some constant C > 0.

(R10) (Rate assumptions). We assume that as L, d, T →∞,

cTL
3/2d1−a, Ld−1, L2d3T 2−w, db+2a+1/wT−1 = o(1),

d−1/w log(T ∨ d), db−a−1/w log−1(T ∨ d) = O(1).

In the sequel, we discuss in detail the identification of the model, the structure of the true
spatial weight matrix W∗

t , and some technical assumptions made above. To show the coef-
ficients ϕ∗ and β∗ in (6.10) are identified under Assumption (I1), suppose that two sets of
parameters (ϕ̌, β̌) and (ϕ́, β́) both satisfy model (6.10). Then we have

B′ Vϕ̌+B′ Xβ̌vec
(
Id
)
= B′ Vϕ́+B′ Xβ́vec

(
Id
)
.

By noticing that B′ Xβvec
(
Id
)
= B′ X̃β, we may rearrange the above and arrive at

0 = B′V(ϕ̌− ϕ́) +B′ X̃(β̌ − β́) =
Ä
B′ V B′ X̃

ä(ϕ̌− ϕ́

β̌ − β́

)
.

Taking expectation and left-multiplying by (Q′Q)−1Q′ on both sides, we obtain ϕ̌ = ϕ́ and
β̌ = β́. Now with ϕ∗ and β∗ identified, we also have µ∗ uniquely identified.

The time series components in the model is depicted in Assumption (M1) such that weak
serial dependence is allowed. Such a definition of functional or physical dependence of time
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series is used by various previous work such as Shao (2010). We assume exponential tails so
that a Nagaev-type inequality for functional dependent data can be used (Liu et al., 2013).

Assumptions (M2) and (M2’) describe the structure of W∗
t under two different settings for

{zj,k,t}. The row sum condition for W∗
t ensures the model (6.1) to be uniformly stationary.

(M2) treats {zj,k,t} as a non-random series while (M2’) allows {zj,k,t} to be stochastic. Note
that in (M2’), the stationarity is guaranteed with ∥W∗

t ∥∞ < η < 1 and |ρ∗t | < 1with probability
1. The assumption of zero mean and support [−1, 1] simplifies our presentation. For a general
finite mean and bounded support, we may rewrite each ϕ∗

j,kzj,k,t as

ϕ∗
j,kzj,k,t = ϕ∗

j,kE(zj,k,t) + ϕ∗
j,k

[
zj,k,t −E(zj,k,t)

]
= ϕ∗

j,kE(zj,k,t) +
(
ϕ∗
j,kz

∗
j,k

){[
zj,k,t −E(zj,k,t)

]
/z∗j,k

}
.

Note that we set zj,0,t = 1 for j ∈ [p], t ∈ [T ]. This is justified by the fact that we may allow
some {zj,k,t} for j ∈ P ⊆ [p], k ∈ Lj ⊆ [lj] satisfying (M2) with all other {zj,k,t} satisfying
(M2’), since all theoretical results hold with either assumption.

Note that although Assumptions (M2) and (M2’) constrain the magnitude of the true spatial
weight matrix W∗

t which depends on the spatial weight matrix candidates Wj , the dynamic
variables zj,k,t, and the coefficients ϕ∗

j,k, our estimator would remain effective even if ϕ∗
j,k are

very small. In detail, ϕ∗
j,k being potentially very small lies in the scenario where the signals from

Wj and zj,k,t are potentially very strong, so our least squares and adaptive LASSO problems
would not be affected. Furthermore, the set of technical assumptions, e.g. Assumption (R1),
ensures the performance of our estimators, which we explain below.

(R1) describes how sparse each spatial weight matrix candidate is. It is worthwhile pointing
out that although each Wj is not necessarily linearly independent with each other by (R1), we
actually implicitly impose such linear independence condition from (I1) through the combina-
tion of {zj,k,t} and Wj in B′V. (R2) is included as a technical addition to (M2).

Assumptions (R3) to (R6) all draw on the relation between Bt and Xt. Their dependence
structure is non-trivial due to the extra complication from spatial weight matrix and the time-
varying components here. Naturally, Bt needs to be correlated with Xt to a certain extent,
captured by an unknown constant awhich facilitates the presentation of theoretical results. For
instance, as an immediate consequence of (R5), we may derive

∥∥E(Xt ⊗Btγ)
∥∥
1
= O(d1+a),

which is a key ingredient in obtaining the rates for
∥∥ϕ̃− ϕ∗

∥∥
1

in Theorem 6.1.
The predictive dependence measure defined in (R7) allows us to apply the central limit

theorem for data with functional dependence and the Assumption (R7) can be satisfied by, for
example, causal AR processes. Assumption (R8) further restricts the serial correlation in the
noise. It also introduces another constant b that characterises how elements in Bt are contem-
porarily and temporally correlated with each other. From the comparison of rates derived in
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the proofs, we conclude that b is actually bounded above by 1/w, which is intuitive since a large
w in (M1) generally implies light-tails and hence a small b. Lastly, (R9) sets the rate for λ and
(R10) characterises the relation between T , d and L. As an example, (R10) is satisfied when
w = 6, a = 1/2, L = O(d1/3) and T ≍ d2.

6.3.2 Main results

In this subsection, we formally present the main results for our model estimators.

Theorem 6.1 Let all assumptions in Section 6.3.1 hold ((M2) or (M2’)). Given any ϕ as an
estimator of ϕ∗, with cT is defined in Assumption (R9), β(ϕ) according to (6.12) satisfies

∥∥β(ϕ)− β∗∥∥
1
= OP

(∥∥ϕ− ϕ∗∥∥
1
+ cTd

− 1
2
+ 1

2w

)
.

In particular, the least squares estimator ϕ̃ in (6.15) and β̃ := β(ϕ̃) under L = O(1) satisfy

∥∥ϕ̃− ϕ∗∥∥
1
= OP

(
cTd

− 1
2
+ 1

2w

)
=
∥∥β̃ − β∗∥∥

1
.

Theorem 6.1 serves as a foundational step for the results hereafter. From the theorem, the
error of our least squares estimator β(ϕ) might be inflated by the plugged-in estimator for ϕ∗.
With a dense estimator ϕ̃, we arrive at the rate cTd−

1
2
+ 1

2w . The dependence of the rate on w
confirms that weaker temporal dependence in the data results in better estimation, as expected.
We now present the sign-consistency of our adaptive LASSO estimator.

Theorem 6.2 (Oracle property for ϕ̂). Let all assumptions in Section 6.3.1 hold (either (M2)
or (M2’)), except that (R4) and (R6) are satisfied with Ǧ and G̈ respectively replaced by

Ǧ = ǦH , G̈ = G̈H , with H :=
{
i : (ϕ∗)i ̸= 0

}
,

where for any matrix with L columns, (·)H denotes the matrix with its columns restricted onH .
Then as T, d→∞, with probability approaching 1, sign(ϕ̂H) = sign(ϕ∗

H) and ϕ̂Hc = 0.
If we further assume the smallest eigenvalue of RHSγS

′
γR

′
H is of constant order, with RH

and Sγ defined below, then ϕ̂H is asymptotically normal with rate T−1/2d−(1−b)/2 such that

T 1/2
(
RHSγRβΣβR

′
β S

′
γ R

′
H)

−1/2(ϕ̂H − ϕ∗
H

) D−→ N
(
0, I|H|

)
,
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where

Rβ =
[
E(X′

tBt)E(B
′
tXt)

]−1
E(X′

tBt),

Σβ =
∑
τ

E
{
[Bt −E(Bt)]

′ϵtϵ
′
t+τ [Bt+τ −E(Bt)]

}
,

RH =
[
(H20 −H10)

′
H(H20 −H10)H

]−1
(H20 −H10)

′
H ,

Sγ =
{
E
[
Xt,1·(Bt,1· −E(Bt,1·))

′]γ, . . . ,E[Xt,1·(Bt,d· −E(Bt,d·))
′]γ,
. . . ,

E
[
Xt,d·(Bt,1· −E(Bt,1·))

′]γ, . . . ,E[Xt,d·(Bt,d· −E(Bt,d·))
′]γ}′

,

H10 =
{[

Id ⊗ (γ ′ ⊗ Id)E
(
Ux,1,0(β

∗ ⊗ Id)Π
∗′
t

)]
vec
(
W′

1

)
+
[
Id ⊗ (γ ′ ⊗ Id)E

(
Uµ,1,0Π

∗′
t

)]
vec
(
W′

1

)
,

. . . ,[
Id ⊗ (γ ′ ⊗ Id)E

(
Ux,p,lp(β

∗ ⊗ Id)Π
∗′
t

)]
vec
(
W′

p

)
+
[
Id ⊗ (γ ′ ⊗ Id)E

(
Uµ,p,lpΠ

∗′
t

)]
vec
(
W′

p

)}
,

H20 = E(Xt ⊗Btγ)
[
E(X′

tBt)E(B
′
tXt)

]−1
E(X′

tBt)

·
{
V′

W′
1,v
E
[
(Id ⊗Ux,1,0)VΠ∗

t ,r

]
β∗ +V′

W′
1,v
E
[
(Id ⊗Uµ,1,0)vec

(
Π∗′
t

)]
,

. . . ,

V′
W′

p,v
E
[
(Id ⊗Ux,p,lp)VΠ∗

t ,r

]
β∗ +V′

W′
p,v
E
[
(Id ⊗Uµ,p,lp)vec

(
Π∗′
t

)]}
,

Ux,j,k =
1

T

T∑
t=1

zj,k,tvec
(
Bt − B̄

)
x′
t, Uµ,j,k =

1

T

T∑
t=1

zj,k,tvec
(
Bt − B̄

)
µ∗′,

with the notation VH,K =
(
IK⊗h′

1, . . . , IK⊗h′
n

)′ for a given n×dmatrix H = (h1, . . . ,hn)
′.

Regarding the new assumptions in Theorem 6.2, the term Ǧ (resp. G̈) in (R4) (resp. (R6)) is
simply replaced by its H-restricted version. Moreover, we show in the proof that RHSγS

′
γR

′
H

has its largest eigenvalue of constant order, and hence the requirement on its smallest eigenvalue
is not particularly strong. Nonetheless, two key results are obtained: ϕ̂ consistently estimate
the zeros in ϕ∗ as exact zeros, and are asymptotically normal on the nonzero entries in ϕ∗. The
convergence rate is T−1/2d−(1−b)/2, which is worse off if more variables in Bt are correlated.

Theorem 6.2 enables us to perform inference on ϕ̂H in practice, with the covariance ma-
trix replaced by the plug-in estimator (see Section 6.4 for more details). If {zj,k,t}’s are non-
stochastic, inference on ρ∗t by ρ̂t := (zt)

′
Hϕ̂H is also feasible, since

T 1/2
(
(zt)

′
HRHSγRβΣβR

′
βS

′
γR

′
H(zt)H

)−1/2
(ρ̂t − ρ∗t )

D−→ N (0, 1).
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Lastly, we present the consistency of the spatial weight matrix estimator and the spatial
fixed effect estimator. Note that Theorem 6.3 implies the spectral norm error of the spatial
weight matrix estimator Ŵt also satisfies

∥∥Ŵt −W∗
t

∥∥ = OP

(
T−1/2d−(1−b)/2).

Theorem 6.3 Let assumptions in Theorems 6.1 and 6.2 hold. Then, for Ŵt :=
∑p

j=1

(
ϕ̂j,0 +∑lj

k=1 ϕ̂j,kzj,k,t

)
Wj and the spatial fixed effect estimator µ̂ defined in (6.7), we have

∥∥Ŵt −W∗
t

∥∥
∞ = OP

(
T−1/2d−(1−b)/2) = ∥∥Ŵt −W∗

t

∥∥
1
,
∥∥µ̂− µ∗∥∥

max = OP (cT ).

6.4 Practical Implementation

In Section 6.2.2, we estimate (µ∗,ϕ∗,β∗) by first obtaining a penalised estimator for ϕ∗, fol-
lowed by the least squares estimator forβ∗ andµ∗. The step-by-step algorithm is now presented.

Algorithm for (µ∗,ϕ∗,β∗) Estimation

1. Compute the least squares estimator stated in (6.15) and denote it as ϕ̃.

2. Construct u using ϕ̃. Using the Least Angle Regressions (LARS) (Efron et al., 2004),
solve the adaptive LASSO problem stated in (6.16), and denote the solution by ϕ̂.

3. Using (6.12), obtain the least squares estimator for β∗ as β̂ = β(ϕ̂).

4. According to (6.3), construct Φ̂ using ϕ̂ and obtain the least squares estimator for µ∗ as
µ̂ = T−1

∑T
t=1

{
(Id −ΛtΦ̂)yt −Xtβ̂

}
.

The tuning parameter λ in step 2 can be determined via minimising the following BIC:

BIC(λ) = log
( 1
T

∥∥∥B′y −B′Vϕ̂−B′Xβ(ϕ̂)vec
(
Id
)∥∥∥2)+ |Ĥ| log(T )

T
log(log(L)), (6.19)

which is inspired by Wang et al. (2009), where ϕ̂ is the adaptive LASSO solution with parameter
λ and Ĥ is the set of indices on which ϕ̂ is nonzero. Note that althoughB contains the unknown
constant a, the optimal λ is independent of it. A procedure for assessing the goodness of fit
of a given set of dynamic variables {zj,k,t} can also be facilitated by (6.19). In detail, we can
compare (6.1) with the null model H0 : yt = µ∗ +

∑p
j=1 ϕ

∗
j,0Wjyt +Xtβ

∗ + ϵt using BIC.
ForH0, we compute the following BIC, inspired by Wang and Leng (2007):

BIC(H0) = log
( 1
T

∥∥∥B′y −B′Vϕ̂−B′Xβ(ϕ̂)vec
(
Id
)∥∥∥2)+ |Ĥ| log(T )

T
, (6.20)
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with the variables constructed underH0 and the above algorithm implemented accordingly.
Finally, to utilise the asymptotic normality of ϕ̂H for feasible inference, we require estima-

tors for RH , Rβ , Σβ and Sγ in Theorem 6.2. By replacing the expected values by their sample
estimates, using Ĥ = {i : (ϕ̂)i ̸= 0} to estimate the set H and leveraging all the consistency
results for β(ϕ̂), µ̂ and Ĥ , we obtain estimators R̂Ĥ , R̂β and Ŝγ . For Σβ , we use a consistent
estimator of ϵt denoted by ϵ̂t := yt − µ̂− Ŵtyt −Xtβ(ϕ̂). As Σβ involves an infinite sum,
we can sum up to a cut-off τ ∗ after which the sum changes little, and denote the constructed
estimator Σ̂β . Putting everything together, the covariance matrix of ϕ̂H can be estimated by
T−1R̂ĤŜγR̂βΣ̂βR̂

′
βŜ

′
γR̂

′
Ĥ

.

6.5 Change Point Detection and Estimation in Spatial Au-
toregressive Models

6.5.1 Threshold spatial autoregressive models

The early work by Tong (1978) proposes a regime switching mechanism via the threshold au-
toregressive model. Since then, it has been studied extensively for panel data in the past few
decades (Hansen, 1999). More recently, such threshold structure is used by researchers in spa-
tial econometrics; see, for example, threshold spatial autoregressive models for cross-sectional
data by Deng (2018) and Li and Lin (2024), and spatial panel data models with threshold ef-
fects also on regression coefficient by Meng and Yang (2023). One benefit of the framework
introduced in this chapter is that threshold variables can be directly adapted into (6.1). As a
simple example, we consider

yt =

µ∗ + ϕ∗
1W1yt +Xtβ

∗ + ϵt, qt ≤ γ∗,

µ∗ + ϕ∗
2W2yt +Xtβ

∗ + ϵt, qt > γ∗.
(6.21)

This is a spatial autoregressive model with regime switching on the spatial weight matrix, where
qt is some observed threshold variable with an unknown threshold value γ∗. By rewriting (6.21)
in the form of (6.1), with z1,1,t := 1{qt≤γ∗} and z2,1,t := 1{qt>γ∗}, we have

yt = µ∗ + z1,1,tϕ
∗
1W1yt + z2,1,tϕ

∗
2W2yt +Xtβ

∗ + ϵt. (6.22)

We consider the estimation of the threshold value γ∗. Suppose there is a domain of possible
threshold values Γ = [γmin, γmax], a standard approach in threshold models is to search the
minimum regression error over the intersectionΓ∩{q1, . . . , qT}; see, for example, Deng (2018).
Our framework provides an alternative approach. Denote the elements in the intersection by
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γ1 ≤ γ2 ≤ · · · ≤ γL, with L ≡ |Γ ∩ {q1, . . . , qT}|, and let γ∗ be identified as one of them.
Let z1,l,t := 1{qt≤γl} and z2,l,t := 1{qt>γl} for all l ∈ [L]. Then, we can consider a spatial
autoregressive model such that

yt = µ∗ +
L∑
l=1

z1,l,tϕ
∗
1,lW1yt +

L∑
l=1

z2,l,tϕ
∗
2,lW2yt +Xtβ

∗ + ϵt, (6.23)

where ϕ∗
1,l and ϕ∗

2,l would be nonzero2 only for γl = γ∗. The threshold value can be selected
consistently in one step by the oracle property of our adaptive LASSO estimator in Theorem 6.2.
We present this result in Corollary 6.1. Given the sparse solution (ϕ̂1,l, ϕ̂2,l)l∈[L] of (6.23), we
can re-estimate all model parameters. Note that such an approach remains applicable for L
growing with T . In practice, the order of L may not fulfil (R10), but we can circumvent this
issue by a sequential procedure. See Remark 6.1 in Section 6.5.2 for more details.

Our framework also allows us to consider a spatial autoregressive model with regimes
switching on the spatial correlation coefficients, similar to Li (2022):

yt =

µ∗ + ϕ∗
1W1yt +Xtβ

∗ + ϵt, qt ≤ γ∗,

µ∗ + ϕ∗
2W1yt +Xtβ

∗ + ϵt, qt > γ∗.
(6.24)

To estimate the parameters in (6.24), Li (2022) uses quasi maximum likelihood (QML) esti-
mators and traverses over a finite parameter space for the threshold value γ∗. In contrast, a
one-step estimation is again feasible by our framework. To this end, we read (6.24) in the form,

yt = µ∗ +
(
ϕ∗
1,0 +

L∑
l=1

z1,l,tϕ
∗
1,l

)
W1yt +Xtβ

∗ + ϵt, (6.25)

where z1,l,t for l ∈ [L] is as previously defined. With our adaptive LASSO estimators, only ϕ̂1,0

and one ϕ̂1,l such that γl = γ∗ are expected to be nonzero. The consistency of such estimator
for γ∗ is included in Corollary 6.1.

Corollary 6.1 (Threshold value estimation consistency). Given all the assumptions in Theo-
rem 6.2:
(a) For model (6.21), γ∗ can be consistently estimated by the set of estimators {γl : ϕ̂1,l ̸=
0, ϕ̂2,l ̸= 0}, where {ϕ̂1,l, ϕ̂2,l}l∈[L] is the adaptive LASSO solution for {ϕ∗

1,l, ϕ
∗
2,l}l∈[L] in (6.23).

(b) For model (6.24), γ∗ can be consistently estimated by the set of estimators {γl : ϕ̂1,l ̸= 0},
where {ϕ̂1,l}l∈[L] is the adaptive LASSO solution for {ϕ∗

1,l}l∈[L] in (6.25).

2In practice, we often have no prior information on which spatial weight matrix corresponds to the regime qt ≤
γ∗. This can be resolved in (6.23) by writing

(∑L
l=1 z1,l,tϕ

∗
1,l

)
and

(∑L
l=1 z2,l,tϕ

∗
2,l

)
as
(
ϕ∗
1,0+

∑L
l=1 z1,l,tϕ

∗
1,l

)
and

(
ϕ∗
2,0 +

∑L
l=1 z2,l,tϕ

∗
2,l

)
, respectively.
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In fact, our framework (6.1) can be applied to spatial autoregressive models with more
complicated threshold structures in the spatial weight matrix W∗

t , i.e., regimes from multiple
threshold variables with multiple threshold values. For illustrations, consider the following
spatial autoregressive model with (k + 1) regimes, where k can be unknown:

yt =



µ∗ + ϕ∗
1W1yt +Xtβ

∗ + ϵt, qt ≤ γ∗1 ,

µ∗ + ϕ∗
2W1yt +Xtβ

∗ + ϵt, γ∗1 < qt ≤ γ∗2 ,

. . .

µ∗ + ϕ∗
kW1yt +Xtβ

∗ + ϵt, qt > γ∗k.

(6.26)

Model (6.26) can be written in the form of (6.25), with the consistency of {ϕ∗
1,l}l∈[L] guaranteed

by Corollary 6.2. This also implies that the estimation on k is consistent.

Corollary 6.2 (Consistency on the number of threshold regimes and multiple threshold values
estimation). Let all the assumptions in Theorem 6.2 hold. For model (6.26), let {ϕ̂1,l}l∈[L]
denote the adaptive LASSO solution for {ϕ∗

1,l}l∈[L] in (6.25). Then, k̂ := |{γl : ϕ̂1,l ̸= 0}|
estimates k consistently. Moreover, for every i ∈ [k̂], the i-th smallest element in {γl : ϕ̂1,l ̸= 0}
estimates γ∗i consistently.

As we often have limited prior knowledge on the parameter space in practice, we recom-
mend using our framework in an exploratory way. This should help researchers discover more
reasonable threshold structures in the data.

6.5.2 Spatial autoregressive models with structural change points

Structural changes in the relationship of variables in econometric models have been studied
extensively in the literature; see, for example, Sengupta (2017) and Barigozzi and Trapani
(2020). As a second example demonstrating the applicability of our framework, we consider
the spatial autoregressive model with a structural change:

yt =

µ∗ + ϕ∗
1W1yt +Xtβ

∗ + ϵt, t ≤ t∗,

µ∗ + ϕ∗
2W2yt +Xtβ

∗ + ϵt, t > t∗,
(6.27)

where t∗ is some unknown change location. Similar to the threshold model example, this can
also be expressed in the form of (6.22), now with z1,1,t := 1{t≤t∗} and z2,1,t := 1{t>t∗}. It worths
to notice, despite the models taking the same form, the dynamic variables z1,1,t and z2,1,t are
random in the threshold model but non-random in the change point model here. Recall that our
main results hold for both types of {zj,k,t}; see Section 6.3.1 for a more detailed discussion.
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To estimate the change location t∗, Li (2018) calculates the quasi maximum likelihood for
each possible change location and sets the maximiser as the estimator. When the set of possible
change locations is large, this approach requires a significant number of model fittings. Using
our framework, it is again possible to estimate t∗ in one go. Let T denote the set of all candidate
change point locations such that T = {t1, . . . , t|T |}. Then, we rewrite model (6.27) as

yt = µ∗ +

|T |∑
l=1

z1,l,tϕ
∗
1,lW1yt +

|T |∑
l=1

z2,l,tϕ
∗
2,lW2yt +Xtβ

∗ + ϵt, (6.28)

where z1,l,t := 1{t≤tl} and z2,l,t := 1{t>tl}. We then follow the same argument used in the
threshold model below (6.23) and the consistency of our change location estimate is again
guaranteed.

Corollary 6.3 (Consistency on change location estimation). Let all the assumptions in Theo-
rem 6.2 hold, with L replaced by |T |. Consider (6.27) and assume that t∗ ∈ T . The change lo-
cation t∗ can be consistently estimated by the set of estimators

{
l ∈ [|T |] : ϕ̂1,l ̸= 0, ϕ̂2,l ̸= 0

}
,

where
{
ϕ̂1,l, ϕ̂2,l

}
l∈[|T |] is the adaptive LASSO solution for {ϕ∗

1,l, ϕ
∗
2,l}l∈[|T |] in (6.28).

Similar to (6.26), we can also consider a multiple change model:

yt =



µ∗ +
∑p

j=1 ϕ
∗
j,1Wjyt +Xtβ

∗ + ϵt, t ≤ t∗1,

µ∗ +
∑p

j=1 ϕ
∗
j,2Wjyt +Xtβ

∗ + ϵt, t∗1 < t ≤ t∗2,

. . .

µ∗ +
∑p

j=1 ϕ
∗
j,kWjyt +Xtβ

∗ + ϵt, t > t∗k.

(6.29)

This model allows for k change points in W∗
t consisting of p spatial weight candidates, with

the number of change points k unknown. The result below confirms the consistency of the
estimations in both change point numbers and locations.

Corollary 6.4 (Consistency on the estimations for the number of changes and the change lo-
cations). Given a set of all candidate change point locations T and assume that t∗i ∈ T for all
i ∈ [k]. Let all the assumptions in Theorem 6.2 hold, with L replaced by |T |. For model (6.29),
let {ϕ̂j,l}j∈[p],l∈[|T |] denote the adaptive LASSO solution for {ϕ∗

j,l}j∈[p],l∈[|T |] in

yt = µ∗ +

p∑
j=1

(
ϕ∗
j,0 +

|T |∑
l=1

zj,l,tϕ
∗
j,l

)
Wjyt +Xtβ

∗ + ϵt,

where zj,l,t := 1{t≤tl} with tl being the l-th element of T for j ∈ [p], l ∈
[
|T |
]
. Write T̂ :=

{l ̸= 0 : ϕ̂j,l ̸= 0 for some j ∈ [p]}. Then, k̂ := |T̂ | estimates k consistently and, for every
i ∈ [k̂], the i-th smallest element in T̂ estimates t∗i consistently.
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Remark 6.1 Throughout Section 6.5.2, the size of the set T is restricted by Assumption (R10).
Specifying appropriate T requires prior information, which might be infeasible in practice.
Without this, a set T with a large size may violate Assumption (R10). The order of L in Sec-
tion 6.5.1 raises a similar concern.

For practical implementation, we may resort to a divide-and-conquer scheme in the follow-
ing manner. Consider model (6.27) for instance. We first partition T into subsets T = ∪jTj
such that each Tj satisfies (R10) (with L replaced by |Tj|). On each subset, we run the estima-
tion algorithm and obtain all identified potential change locations within the subset. Then, we
aggregate all those locations into a set T̃ , which can be shown, using Corollary 6.3 on each
Tj , to satisfy (R10) (with L replaced by |T̃ |). Finally, we estimate (6.28) with T replaced by T̃
to determine the change point location. Simulations in Section 6.6.1 confirms the effectiveness
of this scheme.

6.6 Numerical Studies

6.6.1 Simulations

In this subsection, we conduct Monte Carlo simulations to demonstrate the performance of our
estimators. For the general setting, we consider

yt =
{
Id −

(
0.2 + 0.2z1,1,t + 0z1,2,t

)
W1 −

(
0 + 0z2,1,t + 0.3z2,2,t

)
W2

}−1(
µ∗ +Xtβ

∗ + ϵt
)
,

(6.30)
where µ∗ and β∗ are vectors of 1’s, W1 is generated to have two neighbours ahead and two
behind as in Kelejian and Prucha (1998), and W2 is a contiguity matrix with off-diagonal
entries being i.i.d. Bernoulli (0.2). The true parameter is ϕ∗ = (0.2, 0.2, 0, 0, 0, 0.3)′. The
disturbance ϵt is jointly Gaussian with its variance-covariance matrix having 1 on the diagonal
and each upper triangular entries 0.1 with probability 0.2 and 0 otherwise. For any row of W1

or W2 with row sum exceeding one, we divide each entry by the L1 norm of the row. We
use independent standard normal random variables for the dynamic variables {z1,1,t}, {z1,2,t},
{z2,1,t} and {z2,2,t}. The covariate matrix Xt has three columns, with each entry generated
as independent standard normal, except that the third column is endogenous by adding 0.5 ϵt.
Let Xexo,t be Xt with the disturbance part removed, then the instruments can be set as Bt =[
Xexo,t,W1Xexo,t,W2Xexo,t

]
. The tuning parameter for the adaptive LASSO is selected by

minimising the BIC in (6.19).
We experiment d = 25, 50, 75 and T = 50, 100, 150, with each setting repeated 1000

times. Results are presented in Table 6.1. In there, MSE is the mean squared error; specificity
is the proportion of true zeros estimated as zeros; sensitivity is the proportion of nonzeros
estimated as nonzeros. The MSE results corroborate the consistency of parameter estimation
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in Theorem 6.1 and 6.3, while the specificity and sensitivity results corroborate the sparsity
consistency in Theorem 6.2. Zeros in ϕ∗ can be selected with high accuracy, yet the sensitivity
results suggest a mild over-identification of zeros. Both increasing the spatial dimension d and
time span T improve the performance of our estimators in general, except that when T increases
from 100 to 150 and d = 25, all measures get a bit worse, which is similarly seen in Table 1 of
Lam and Souza (2020). This might suggest the issue of a data set with unbalanced dimensions
in practice.

T = 50 T = 100 T = 150

d = 25 d = 50 d = 75 d = 25 d = 50 d = 75 d = 25 d = 50 d = 75

ϕ̂ MSE .002 .001 .002 .000 .000 .000 .003 .001 .000
(.008) (.001) (.001) (.000) (.000) (.000) (.007) (.000) (.000)

β̂ MSE .087 .029 .080 .005 .008 .001 .088 .013 .005
(.434) (.011) (.025) (.004) (.002) (.001) (.278) (.005) (.002)

µ̂ MSE .039 .038 .044 .013 .010 .011 .036 .010 .008
(.124) (.010) (.010) (.006) (.002) (.002) (.083) (.003) (.002)

ϕ̂ Specificity .992 1.000 1.000 1.000 1.000 1.000 .994 1.000 1.000
(.064) (.000) (.000) (.000) (.000) (.000) (.048) (.000) (.000)

ϕ̂ Sensitivity .921 .983 .992 .910 .961 .991 .873 .983 .956
(.133) (.069) (.048) (.132) (.099) (.051) (.148) (.070) (.103)

Table 6.1: Simulation results for the general setting (6.30). Mean and standard deviation (in
brackets) of the corresponding error measures over 1000 repetitions are presented.

To better illustrate the asymptotic normality for ϕ̂ in Theorem 6.2, we use the same data gen-
erating mechanism as above with (T, d) = (200, 50), except that ϕ∗ = (0, -0.5, 0.5, 0, 0, 0)′,
that Xt is exogenous and that ϵt has a diagonal covariance matrix. For ease of presentation, we
fix Ĥ = {2, 3} which is the index set of true nonzero parameters. The remaining components
of the covariance matrix are estimated according to the last part of Section 6.4. Figure 6.1
displays the histogram of T 1/2(R̂ĤŜγR̂βΣ̂βR̂

′
βŜ

′
γR̂

′
Ĥ
)−1/2(ϕ̂Ĥ − ϕ∗

Ĥ
). The plots show good

normal approximation to the distribution of this quantity and confirm the result in Theorem 6.2.
Some discrepancies are present on the tails, potentially due to insufficient dimensions T and d.
We leave potential improvements to future studies.

Change point analysis

We now demonstrate the performance of our dynamic framework with structural changes as
described in Section 6.5.2, with simulation results for the threshold model in Section 6.5.1
included in Section 6.7. We first consider a spatial autoregressive model with a single change
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Figure 6.1: Histogram of T 1/2(R̂ĤŜγR̂βΣ̂βR̂
′
βŜ

′
γR̂

′
Ĥ
)−1/2(ϕ̂Ĥ −ϕ∗

Ĥ
) for (T, d) = (200, 50),

shown for the first coordinate (left panel) and the second coordinate (right panel). The red
curves are the empirical density, and the black dotted curves are the density for N (0, 1).

such that

yt =
(
Id − 0.3 · 1{t≤30}W1 − 0.3 · 1{t>30}W2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
, (6.31)

where {W1,W2,µ
∗,Xt,β

∗} are constructed in the same way as in (6.30). To showcase the
robustness of our estimators under heavy-tailed noise, we generate ϵt by i.i.d. N (0, 1) and t6,
respectively. The model (6.31) represents a change on the true spatial weight matrix at t = 30

from 0.3W1 to 0.3W2. We then fit a model

yt =
(
Id −

⌊T/∆⌋−1∑
l=1

z1,l,tϕ
∗
1,lW1 −

⌊T/∆⌋−1∑
l=1

z2,l,tϕ
∗
2,lW2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
, where

(6.32)

z1,l,t = 1{t≤tl}, z2,l,t = 1{t>tl}, tl = ∆ · l.

We consider a grid of candidate change locations, spaced at intervals of ∆ = 5. From (6.31),
every (ϕ∗

1,l, ϕ
∗
2,l) equals (0, 0) except the one l such that tl = 30. Table 6.2 displays the results

with each (T, d) setting specified, and Table 6.3 shows the results under a stronger change signal
such that the true spatial weight matrix changes from 0.5W1 to 0.5W2.

Results for both weak and strong change signals display similar patterns. Unsurprisingly,
the change detection slightly suffers from fat-tailed noise and weaker signals. The accuracy of
detection benefits from the increasing spatial dimension. A larger T seems to undermine the
ϕ̂ True-Unique measure, but this is essentially due to more dynamic variables (z1,l,t and z2,l,t)
used in the setting.
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ϵt i.i.d. N (0, 1) i.i.d. t6
(T, d) (50, 25) (50, 50) (100, 50) (100, 75) (50, 25) (50, 50) (100, 50) (100, 75)

ϕ̂ MSE .008 .004 .004 .003 .010 .004 .004 .003
(.007) (.003) (.002) (.002) (.009) (.003) (.003) (.002)

ϕ̂ True-Unique .611 .965 .668 .938 .559 .944 .647 .898
(.488) (.184) (.472) (.242) (.497) (.231) (.479) (.303)

Table 6.2: Simulation results for the model (6.32) with a weak change signal. ϕ̂ True-Unique
is defined to be 1 if the only nonzero pair (ϕ∗

1,l, ϕ
∗
2,l) corresponds to tl = 30. Mean and standard

deviation (in brackets) of the corresponding error measures over 500 repetitions are presented.

ϵt i.i.d. N (0, 1) i.i.d. t6
(T, d) (50, 25) (50, 50) (100, 50) (100, 75) (50, 25) (50, 50) (100, 50) (100, 75)

ϕ̂ MSE .006 .001 .003 .001 .007 .001 .004 .001
(.011) (.001) (.006) (.001) (.012) (.003) (.007) (.002)

ϕ̂ True-Unique .826 .994 .846 .990 .759 .984 .811 .972
(.379) (.077) (.361) (.100) (.428) (.126) (.392) (.166)

Table 6.3: Simulation results for the model (6.32) with a strong change signal. Refer to Ta-
ble 6.2 for the definition on ϕ̂ True-Unique. Mean and standard deviation (in brackets) of the
corresponding error measures over 500 repetitions are presented.

Experiments on the divide-and-conquer scheme in Remark 6.1

We now demonstrate the numerical performance of the divide-and-conquer scheme in Re-
mark 6.1. Under (T, d) = (100, 75), consider an extension of (6.31) with two change points:

yt =
(
Id − 0.81{t≤30}W1 + 0.91{t≤60}W1 + 0.91{t>60}W2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
. (6.33)

That is, the spatial weight matrix changes from -0.1W1 to -0.9W1 at t = 30, followed by
a change from -0.9W1 to -0.9W2 at t = 60. Suppose it is only known a priori that on
T = {2, 4, . . . , 98, 100}3, the spatial weight matrix might change from W1 to W2 and the
spatial correlation coefficients might change as well. We wish to estimate the number of
changes and the change locations. Following Remark 6.1, we construct the ordered sets T1 =

{2, 4, . . . , 20}, T2 = {20, 22, . . . , 40}, T3 = {40, 42, . . . , 60}, T4 = {60, 62, . . . , 80} and
T5 = {80, 82, . . . , 100}. Note that we add “overlaps” between adjacent sets to circumvent
falsely identifying change candidates at the margin. Now, the size of each set is 11, which is

3Change point identified at the last observed time point T = 100 represents no change in the structure.
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reasonable according to the numerical results in Tables 6.2 and 6.3. For each j ∈ [5], consider4

yt =
(
Id −

|Tj |∑
l=1

zj,1,l,tϕ
∗
j,1,lW1 −

|Tj |∑
l=1

zj,2,l,tϕ
∗
j,2,lW2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
, where

zj,1,l,t := 1{t≤(Tj)l}, zj,2,l,t := 1{t>(Tj)l}, with (Tj)l being the l-th element in Tj .

As in Remark 6.1, all time points corresponding to nonzero estimates of ϕ∗
j,1,l or ϕ∗

j,2,l for j ∈
[5], l ∈ [|Tj|] are identified and collected to form a refined candidate set T̃ , where marginal
time points {20, 40, 60, 80} are discarded if they are not identified in all Tj containing them.
Finally, consider

yt =
(
Id −

|T̃ |∑
l=1

z1,l,tϕ
∗
1,lW1 −

|T̃ |∑
l=1

z2,l,tϕ
∗
2,lW2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
, where

z1,l,t = 1{t≤(T̃ )l}, z2,l,t = 1{t>(T̃ )l}, with (T̃ )l being the l-th element in T̃ .

Then, change points are estimated as the timestamps corresponding to nonzero estimates for ϕ∗
1,l

or ϕ∗
2,l. The histogram for the estimated change locations over 500 repetitions is shown in the

left panel of Figure 6.2 and is encouraging. To further quantify the performance of our scheme,
we use the Adjusted Rand index (ARI) of the estimated time segmentation against the truth5

(Rand, 1971; Hubert and Arabie, 1985), a measure frequently used by change point researchers
(Wang and Samworth, 2017). The average ARI across all runs is 0.901, again suggesting that
our scheme is performing very well.

We also consider (6.33) under no change or, equivalently, one change at t = 100:

yt =
(
Id + 0.9 · 1{t≤T}W1

)−1(
µ∗ +Xtβ

∗ + ϵt
)
. (6.34)

We follow the same exact procedure to estimate (6.33), and the histogram for the estimated
change points over 500 runs is shown in the right panel of Figure 6.2. In 98% of the experiments,
exactly T = 100 is identified, meaning no change is detected, which corresponds to a 2% false
change discovery rate. Furthermore, the average ARI6 is 0.980.

4Note that the last dynamic variable in T5 for W2, z5,2,11,t, is 0 for all t, so we directly specify ϕ∗
5,2,11 as 0.

5The estimated time segmentation assigns the same labels to time points between the estimated change points,
with different labels assigned after each change point. For true time partitioning with changes at {30, 60}, the
intervals {1, 2, . . . , 30}, {31, 32, . . . , 60}, and {61, 62, . . . , 100} are labelled as 1, 2, and 3, respectively.

6The true time partition, when there are no changes, labels all time points as 1.
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Estimated change points with true changes at {30,60}
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Figure 6.2: Histograms of estimated change locations under true models (6.33) (left panel) and
(6.34) (right panel). Both experiments are repeated 500 times.

6.6.2 Real data analysis: enterprise monthly profits

In this case study, we use our proposed model to analyse the total profits of enterprises for a
selection of provincial regions in China. Our panel data covers T = 86 monthly periods from
March 2016 to August 2024 and 25 provinces and 4 direct-administered municipalities (i.e.,
d = 29); see Section 6.7 for more details. The set of covariates (all standardised) consists
of Consumer Price Index (CPI), Purchasing Price Index for industrial producers (PPI) and
output of electricity (elec). The data is available at the National Bureau of Statistics of China:
https://data.stats.gov.cn/english/.

We consider three spatial weight matrix candidates, with each row standardised by its L1

norm if the row sum exceeds one: inverse distance matrix using inverse of geographical dis-
tances between locations computed by the Geodesic WGS-84 System (W1), contiguity ma-
trix (W2), municipality matrix such that all direct-administered municipalities are neighbours
(W3).

We treat the covariates as exogenous for two reasons: CPI and PPI are largely independent
of the internal economic activities specific to enterprises within each province or municipality,
and electricity supply as a public utility is often price inelastic. Using the aforementioned
covariates and spatial weight matrices, we first specify a time-invariant spatial autoregressive
model as our null model:

profitt = µ∗ + (ϕ∗
1,0W1 + ϕ∗

2,0W2 + ϕ∗
3,0W3) profitt + (CPIt,PPIt, elect)β∗ + ϵt. (6.35)

We estimate the parameters in (6.35) using our adaptive LASSO estimators. The estimated
coefficients {ϕ̂1,0, ϕ̂2,0, ϕ̂3,0, β̂} are presented in Table 6.4, together with the BIC computed

https://data.stats.gov.cn/english/
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according to (6.20). The table also shows the standard errors of ϕ̂1,0 and ϕ̂3,0 based on Theo-
rem 6.2. The respective p-values for testing ϕ̂1,0 = 0 and ϕ̂3,0 = 0 are both less than 0.0001,
revealing some spillovers among the neighbours of provinces and municipalities. Interestingly,
ϕ̂3,0 suggests a negative spillover effect among the four direct-administered municipalities,
which could be explained by that the enterprises within municipalities are main competitors
in the market.

ϕ̂1,0 ϕ̂2,0 ϕ̂3,0 β̂CPI β̂PPI β̂elec BIC
Null model 15.184 .000 -.285 .021 .053 .394 2.790

(3.725) (.066)

Table 6.4: Estimated coefficients for model (6.35), with standard errors (in brackets) computed
according to the last part of Section 6.4. β̂CPI, β̂PPI and β̂elec denote the estimates of β∗ corre-
sponding to CPIt, PPIt and elect, respectively.

Hereafter, we refer to (6.35) as the null model. The rest of the analysis is performed in an
exploratory fashion such that we consider spatial autoregressive models of the form (6.1) with
some lj and dynamic variables {zj,k,t}. We consider the following models:

Model 1 : profitt = µ∗+
3∑
j=1

(
ϕ∗
j,0+

15∑
k=1

ϕ∗
j,k1{t ≤ 5 + 5k}

)
Wj profitt + (CPIt,PPIt, elect)β∗+ϵt;

Model 2 : profitt = µ∗+

3∑
j=1

(
ϕ∗
j,0 +

9∑
k=1

ϕ∗
j,k1{sd(profitt−5) ≤ γk}

)
Wj profitt

+ (CPIt,PPIt, elect)β∗ + ϵt,

where (γ1, . . . , γ9) = (.177, .193, .202, .207, .217, .219, .231, .250, .302);

Model 3 : profitt = µ∗+
3∑
j=1

(
ϕ∗
j,0+

5∑
k=1

ϕ∗
j,k1{t divides 2k}

)
Wj profitt + (CPIt,PPIt, elect)β∗+ϵt;

Model 4 : profitt = µ∗+
(
ϕ∗
1,0α3,1(W1) + ϕ∗

2,0α3,2(W1) + ϕ∗
3,0α3,3(W1)

)
profitt

+ (CPIt,PPIt, elect)β∗ + ϵt.

(6.36)

Model 1 represents a spatial autoregressive model with the spatial weight matrix potentially
changing at (10, 15, 20, . . . , 75, 80). Model 2 is a self-exciting threshold spatial autoregres-
sive model with the standard deviation of profitt−5 as the threshold variable. The sequence of
threshold value is in fact the empirical quantile, from 10% to 90%, of sd(profitt−5). Model 3
is similar to the null model but accounts for monthly spillovers for lags of two, four, six, eight
and ten months. Model 4 adapts our framework to time-invariant and nonlinear spatial weight
matrices, where α3,1(W1), α3,2(W1) and α3,3(W1) denote the matrices formed by series ex-
pansion using the order-3 normalised Laguerre functions (inspired by Sun (2016)) based on
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{(W1)
−1
ij }i,j∈[29].

Table 6.5 reports the estimated parameters and BIC for each model. The nonzero ϕ̂1,9 for
Model 1 corresponds to a change in the spillovers featured by W1 in March 2020, potentially
suggesting inactive economic activities due to COVID-19 starting at the beginning of 2020.

nonzero ϕ̂j,k β̂CPI β̂PPI β̂elec BIC
Model 1 ϕ̂1,9 = 18.030 .044 .038 .309 2.978

(13.601)

Model 2 ϕ̂1,3 = 9.721 ϕ̂1,9 = 18.997 ϕ̂3,7 = −.522 .030 .038 .368 2.744
(3.487) (.717) (.001)

Model 3 ϕ̂1,0 = 15.424 ϕ̂2,1 = .335 ϕ̂2,3 = −.331 ϕ̂3,5 = −.401 .023 .052 .398 2.747
(.000) (.000) (.000) (.000)

Model 4 ϕ̂1,0 = .048 ϕ̂2,0 = −.034 ϕ̂3,0 = .114 .043 .056 .512 2.848
(.001) (.003) (.001)

Table 6.5: Estimated coefficients for different models specified in (6.36), with standard errors
(in brackets) computed according to the last part of Section 6.4. Refer to Table 6.4 for the
definitions of β̂CPI, β̂PPI and β̂elec.

Model 2 has the best BIC among all models shown here, including the null model. From
Table 6.5, four threshold regions are identified as

Ŵt =



28.718W1 − 0.522W3, sd(profitt−5) ≤ 0.202;

18.997W1 − 0.522W3, 0.202 < sd(profitt−5) ≤ 0.231;

18.997W1, 0.231 < sd(profitt−5) ≤ 0.302;

0, sd(profitt−5) > 0.302.

For better illustration, the series of Ŵt among Beijing, Shanghai and Guangdong are plotted
in Figure 6.3. We see that the spillovers between Beijing and Shanghai is more significant than
their respective spillovers with Guangdong.

On Model 3, Table 6.5 suggests that the effect of W1 (representing domestic spillovers)
remains constant, that of W2 (representing more local spillovers) persists every two months
but roughly cancels out every half year, and the “municipality spillover” by W3 occurs every
December. The various spillover patterns featured by the expert spatial weight matrices are
intriguing and warrant further investigation.

Model 4 considers a time-invariant spillover effect. An example of the estimated spatial
weight matrix is displayed in Figure 6.4. It depicts how the spillovers diminish with the ge-
ographical distance. Lastly, the analysis on the total profits data serves to demonstrate our
proposed spatial autoregressive framework. More comprehensive investigations are required
to further understand the spatial relations among industrial enterprises in Chinese provinces
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Figure 6.3: Illustration of Ŵt of Model 2 in (6.36) among Beijing, Shanghai and Guangdong,
from August 2016 to August 2024.
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Figure 6.4: Illustration of (time-invariant) Ŵt of Model 4 in (6.36) between Beijing and other
provincial regions, against their geographical distances.
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6.7 Additional Details and Simulations

Additional explanations for Section 6.2.2

Note from (6.12) and the definition of B in (6.8), we have

B′
(
Id ⊗

{(
IT ⊗

{
(yν)′Bν(Bν)′X

[
X′Bν(Bν)′X

]−1
})

(X1, . . . ,XT )
′
})

vec
(
Id
)

= T−1/2d−a/2
(
Id ⊗

{
(B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ)

·
(
IT ⊗

{
(yν)′Bν(Bν)′X

[
X′Bν(Bν)′X

]−1
})

(X1, . . . ,XT )
′
})

vec
(
Id
)

= T−1/2d−a/2
(
Id ⊗

{ T∑
t=1

(Bt − B̄)γ(yν)′Bν(Bν)′X
[
X′Bν(Bν)′X

]−1
X′
t

})
vec
(
Id
)

= T−1/2d−a/2vec
( T∑
t=1

(Bt − B̄)γ(yν)′Bν(Bν)′X
[
X′Bν(Bν)′X

]−1
X′
t

)
= T−1/2d−a/2

( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)

vec
(
(yν)′Bν(Bν)′X

[
X′Bν(Bν)′X

]−1)
= T−1/2d−a/2

( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)[

X′Bν(Bν)′X
]−1

X′Bν(Bν)′yν .

Similarly, by the definition of YW ,

B′
(
Id ⊗

{(
IT ⊗

{( p∑
j=1

lj∑
k=0

ϕj,k(y
ν
j,k)

′(W⊗
j )

′
)

·Bν(Bν)′X
[
X′Bν(Bν)′X

]−1
})

(X1, . . . ,XT )
′
})

vec
(
Id
)

= T−1/2d−a/2
(
Id ⊗

{
(B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ)

·
(
IT ⊗

{( p∑
j=1

lj∑
k=0

ϕj,k(y
ν
j,k)

′(W⊗
j )

′
)

·Bν(Bν)′X
[
X′Bν(Bν)′X

]−1
})

(X1, . . . ,XT )
′
})

vec
(
Id
)

= T−1/2d−a/2
(
Id ⊗

{ T∑
t=1

(Bt − B̄)γ
( p∑
j=1

lj∑
k=0

ϕj,k(y
ν
j,k)

′(W⊗
j )

′
)

·Bν(Bν)′X
[
X′Bν(Bν)′X

]−1
X′
t

})
vec
(
Id
)

= T−1/2d−a/2vec
{ T∑

t=1

(Bt − B̄)γ(ϕ′Y′
W )Bν(Bν)′X

[
X′Bν(Bν)′X

]−1
X′
t

}
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= T−1/2d−a/2
( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)[

X′Bν(Bν)′X
]−1

X′Bν(Bν)′YWϕ.

With (6.12), the term inside the squared Euclidean norm of (6.13) can be further written:

B′y −B′Vϕ−B′Xβ(ϕ)vec
(
Id
)

= B′y −B′Vϕ−B′
(
Id ⊗

{(
IT ⊗

{
(yν)′Bν(Bν)′X

[
X′Bν(Bν)′X

]−1
})

·
(
X1, . . . ,XT

)′})vec
(
Id
)

+B′
(
Id ⊗

{(
IT ⊗

{( p∑
j=1

lj∑
k=0

ϕj,k(y
ν
j,k)

′(W⊗
j )

′
)

·Bν(Bν)′X
[
X′Bν(Bν)′X

]−1
})

(X1, . . . ,XT )
′
})

vec
(
Id
)

= B′y − T−1/2d−a/2
( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)[

X′Bν(Bν)′X
]−1

X′Bν(Bν)′yν

−
{
B′V − T−1/2d−a/2

( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)[

X′Bν(Bν)′X
]−1

X′Bν(Bν)′YW

}
ϕ

= B′y −Ξyν − (B′V −ΞYW )ϕ.

(6.37)

Experiments on the threshold spatial autoregressive models

In the following, we demonstrate numerical results for the threshold spatial autoregressive
model in Section 6.5.1. Consider

yt =
(
Id − 0.3 z1,tW1 − 0.8 z2,tW2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
, (6.38)

where W1, W2, µ∗, Xt, β∗ and ϵt are constructed in the same way as those in (6.30), z1,t =
1{qt≤γ∗} and z2,t = 1{qt>γ∗} for some threshold variables and values qt and γ∗. Hence, (6.38)
represents a threshold spatial autoregressive model with changes in both coefficients and spatial
weight matrices. To estimate the parameters and the threshold value simultaneously, we fit a
model of the form

yt =
(
Id −

19∑
l=1

z1,l,tϕ
∗
1,lW1 −

19∑
l=1

z2,l,tϕ
∗
2,lW2

)−1(
µ∗ +Xtβ

∗ + ϵt
)
, where (6.39)

z1,l,t = 1{qt≤γ̂l}, z2,l,t = 1{qt>γ̂l}, γ̂l = (5% · l)-th empirical quantile of {qt}t∈[T ].

As discussed in Section 6.5.1, we expect (ϕ∗
1,1, . . . , ϕ

∗
1,19) are all zero except for the one corre-

sponding to z1,l,t such that γ̂l is the nearest to γ∗. Denote the index of such γ̂l as l∗. Similarly,
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(ϕ∗
2,1, . . . , ϕ

∗
2,19) are all zero except for the one corresponding to z1,l∗,t. It should also hold true

that (ϕ∗
1,l∗ , ϕ

∗
2,l∗) ≈ (0.3, 0.8). We experiment two types of threshold variables:

1) (AR(5)) qt is AR(5) with i.i.d. N (0, 1) innovations, with γ∗ = 0.3;

2) (Self-exciting on mean) qt = 1′yt−1/d, i.e., the regime changes in a self-exciting manner
on the mean of the previous data point, with γ∗ = 1.5.

Results for d = 50, 75 and T = 100, 150 are presented in Table 6.6 with ϕ̂ and γ̂l estimated
from (6.39), where

ϕ̂ MSE := MSE of ϕ̂ with ϕ all zero except (ϕ∗
1,l∗ , ϕ

∗
2,l∗) set as (0.3, 0.8),

ϕ̂ True-Unique := 1{ϕ̂1,l∗ and ϕ̂2,l∗ are both nonzero in ϕ̂ uniquely},
γ̂l MSE := MSE of γ̂l with true threshold value γ∗.

ϕ̂ True-Unique is the key to demonstrating the validity of our algorithm as it relates to both
specificity and sensitivity. More importantly, it measures if the estimated threshold value is
unique. On computing γ̂l-MSE with multiple γ̂l values, i.e., the intersecting index set is not
a singleton, we choose the l corresponding to the largest ϕ̂1,l∗ . Table 6.6 confirms that our
procedure is capable of estimating the threshold value and other model parameters in one go.
Although the estimator of γ∗ is coarse up to the 5% empirical quantile of the threshold variable,
Table 6.6 shows that increasing the data dimensions improves the performance of γ̂l. In practice,
re-estimation using a finer grid based on such initial threshold estimator could be performed.

qt setting AR(5) Self-exciting on mean
(T, d) (100, 50) (100, 75) (150, 50) (150, 75) (100, 50) (100, 75) (150, 50) (150, 75)

ϕ̂ MSE .002 .003 .017 .020 .009 .007 .003 .001
(.002) (.003) (.013) (.011) (.011) (.010) (.006) (.003)

ϕ̂ True-Unique .562 .439 .706 .844 .537 .621 .797 .938
(.497) (.500) (.456) (.363) (.499) (.485) (.403) (.242)

γ̂l MSE .343 .066 .207 .025 .128 .031 .080 .005
(.870) (.309) (.707) (.193) (.881) (.126) (.802) (.023)

Table 6.6: Simulation results for the threshold model (6.39). Mean and standard deviation (in
brackets) of the corresponding error measures over 500 repetitions are presented.

Additional details for the enterprise profits data in Section 6.6.2

Due to missingness, we exclude January and February data. The 25 provinces included in the
data are Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, An-
hui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Sichuan,
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Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Xinjiang, and the 4 direct-administered munici-
palities are Beijing, Tianjin, Shanghai and Chongqing.

A snippet of the total profits for August 2024 is shown in Figure 6.5, where the map is
produced using the R package hchinamap. From the estimation of our null model, it is revealed
from µ̂ that Guangdong, Beijing, Jiangsu and Shanghai have significantly larger spatial fixed
effects than other provinces or municipalities.

Figure 6.5: Illustration of the total profits of industrial enterprises within considered Chinese
provinces and direct-administered municipalities, in 100 million yuans.
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6.8 Proof of Theorems and Auxiliary Results

To prove our main theorems, recall first Bt,ij and Xt,ij represent the (i, j) entry of Bt and Xt

respectively. DefineM =
⋂13
i=1Ai, where

A1 =

{
max
i,q∈[d]

max
j,l∈[r]

∣∣∣∣ 1T
T∑
t=1

[Bt,ijXt,ql −E(Bt,ijXt,ql)]

∣∣∣∣ < cT

}
,

A2 =

{
max
i,q∈[d]

max
j∈[r]

∣∣∣∣ 1T
T∑
t=1

Bt,ijϵt,q

∣∣∣∣ < cT

}
,

A3 =

{
max
j∈[r]

∣∣∣∣ 1T
T∑
t=1

d∑
q=1

Bt,qjϵt,q

∣∣∣∣ < cTd
1
2
+ 1

2w

}
,

A4 =

{
max
i∈[d]

max
j∈[r]

∣∣B̄·,ij −E[Bt,ij]
∣∣ < cT

}
,

A5 =

{
max
q∈[d]

∣∣ϵ̄·,q∣∣ < cT

}
,

A6 =

{
max
i∈[d]

max
j∈[r]

∣∣X̄·,ij
∣∣ < cT

}
,

A7 =

{
max
j∈[r]

∣∣∣∣ d∑
q=1

B̄·,qj ϵ̄·,q

∣∣∣∣ < 21/2cTd
1/2 log1/2(T ∨ d)Sϵ(µb,max + cT )

}
,

A8 =

{
max
m∈[p]

max
n∈[lm]∪{0}

max
i,q∈[d]

max
j∈[v]

max
l∈[r]

∣∣∣∣ 1T
T∑
t=1

[zm,n,tBt,ijXt,ql −E(zm,n,tBt,ijXt,ql)]

∣∣∣∣ < cT

}
,

A9 =

{
max
m∈[p]

max
n∈[lm]∪{0}

max
i∈[d]

max
j∈[r]

∣∣∣∣ 1T
T∑
t=1

zm,n,tXt,ij

∣∣∣∣ < cT

}
,

A10 =

{
max
m∈[p]

max
n∈[lm]∪{0}

max
i,q∈[d]

max
j∈[v]

∣∣∣∣ 1T
T∑
t=1

zm,n,tBt,ijϵt,q

∣∣∣∣ < cT

}
,

A11 =

{
max
m∈[p]

max
n∈[lm]∪{0}

max
q∈[d]

∣∣∣∣ 1T
T∑
t=1

zm,n,tϵt,q

∣∣∣∣ < cT

}
,

A12 =

{
max
m∈[p]

max
n∈[lm]∪{0}

max
i∈[d]

max
j∈[v]

∣∣∣∣ 1T
T∑
t=1

[zm,n,tBt,ij −E(zm,n,tBt,ij)]

∣∣∣∣ < cT

}
,

A13 =

{
max
m∈[p]

max
n∈[lm]∪{0}

∣∣∣∣ 1T
T∑
t=1

zm,n,t

∣∣∣∣ < cT ∨ zmax

}
,

(6.40)

where B̄·,ij := T−1
∑T

t=1Bt,ij , X̄·,ij := T−1
∑T

t=1Xt,ij , ϵ̄·,q := T−1
∑T

t=1 ϵt,q, µb,max :=

maxi,j
∣∣E[Bt,ij]

∣∣ being a constant implied by Assumption (M1), and zmax is the upper bound



6.8. Proof of Theorems and Auxiliary Results 247

for {zj,k,t} implied in (M2) with zmax = 1 for {zj,0,t} by default. Our main theoretical results
depict the properties of estimators on the setM which holds with probability approaching 1
as T, d → ∞ by (R10), as shown in Lemma 6.2 which is similar to Theorem S.1 of Lam and
Souza (2020).

To prove Lemma 6.2, we first quote a Nagaev-type inequality for functional dependent data
from Theorem 2(ii), 2(iii) and Section 4 of Liu et al. (2013), presented as the following lemma.

Lemma 6.1 For a zero mean time series process xt = f(Ft) defined in (6.17) with dependence
measure θxt,q,i defined in (6.18), assume Θx

m,2w ≤ Cm−α as in Assumption (M1). Then there
exists constants C1, C2 and C3 independent of n, T and the index i such that

P

Å∣∣∣ 1
T

T∑
t=1

xt,i

∣∣∣ > n

ã
≤ C1T

w(1/2−α̃)

(Tn)w
+ C2 exp(−C3T

β̃n2),

where α̃ = α ∧ (1/2− 1/w) and β̃ = (3 + 2α̃w)/(1 + w).
Furthermore, assume another zero mean time series process {et} (can be the same process

{xt}) with Θe
m,2w as in Assumption (M1). Then provided maxi ∥xt,i∥2w, maxj ∥et,j∥2w ≤ c0 <

∞ where c0 is a constant, the above Nagaev-type inequality holds for the product process
{xt,iet,j −E(xt,iet,j)}.

The above results also hold for any zero mean non-stationary process xt = ft(Ft) provided
that maxi ∥xt,i∥w < ∞ and Θx,∗

m,2w ≤ Cm−α, where Θx,∗
m,q is uniform tail sum defined in the

following with ẍt,i being the coupled version of xt,i as in (6.18):

Θx,∗
m,q :=

∞∑
t=m

max
i
θx,∗t,q,i :=

∞∑
t=m

max
i

sup
t

∥∥xt,i − ẍt,i∥∥q.
We present Lemma 6.2 below. Note that we assume α > 1/2− 1/w which can be relaxed

at the cost of more complicated rates and longer proofs presented here, and it simplifies the
form of Lemma 6.1 as w(1/2− α̃) = β̃ = 1.

Lemma 6.2 Let Assumptions (M1), (M2) (or (M2’)), and (R2) hold and α > 1/2 − 1/w in
Assumption (M1). Suppose for the application of the Nagaev-type inequality in Lemma 6.1 for
the processes inM =

⋂13
i=1Ai where Ai is defined in (6.40), the constants C1, C2 and C3 are

the same. Then with g ≥
√

3/C3 where g is the constant defined in cT = gT−1/2 log1/2(T ∨d),
we have

P(M) ≥ 1− 14C1r
2vL
(C3

3

)w/2 d2

Tw/2−1 logw/2(T ∨ d)
− 14C2r

2vLd2

T 3 ∨ d3 − 2r

T ∨ d.

Proof of Lemma 6.2. As shown in Theorem S.1 of Lam and Souza (2020), the tail condition
in Assumption (M1) implies ∥ · ∥2w is bounded for the processes {Bt,ijXt,ql −E(Bt,ijXt,ql)},
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{Bt,ijϵt,q}, {Xt,ij} and {ϵt,q}, and further with Assumption (R2) we have

P(Ac1) ≤ C1r
2
(C3

3

)w/2 d2

Tw/2−1 logw/2(T ∨ d)
+
C2r

2d2

T 3 ∨ d3 ,

P(Ac2) ≤ C1r
(C3

3

)w/2 d2

Tw/2−1 logw/2(T ∨ d)
+

C2rd
2

T 3 ∨ d3 ,

P(Ac3) ≤ C1

(C3

3

)w/2 r

Tw/2−1 logw/2(T ∨ d)
+

C2r

T 3 ∨ d3 ,

P(Ac4) ≤ C1r
(C3

3

)w/2 d

Tw/2−1 logw/2(T ∨ d)
+

C2rd

T 3 ∨ d3 ,

P(Ac5) ≤ C1

(C3

3

)w/2 d

Tw/2−1 logw/2(T ∨ d)
+

C2d

T 3 ∨ d3 ,

P(Ac6) ≤ C1r
(C3

3

)w/2 d

Tw/2−1 logw/2(T ∨ d)
+

C2rd

T 3 ∨ d3 ,

P(Ac7) ≤
2r

T ∨ d +P(Ac4) +P(Ac5).

Consider the remaining sets. First let Assumption (M2) hold and notice ∥ · ∥2w is bounded
for the processes {zm,n,tBt,ijXt,ql − E(zm,n,tBt,ijXt,ql)}, {zm,n,tBt,ijϵt,q}, {zm,n,tXt,ij} and
{zm,n,tϵt,q}, and their uniform tail sums satisfy the condition in Lemma 6.1. Thus, apply
Lemma 6.1 first on Ac8 and we have by the union bound,

P(Ac8) ≤
∑
m∈[p]

∑
n∈[lm]

∑
i,q∈[d]

∑
j∈[v]

∑
l∈[r]

P

(∣∣∣∣ 1T
T∑
t=1

[zm,n,tBt,ijXt,ql −E(zm,n,tBt,ijXt,ql)]

∣∣∣∣ ≥ cT

)

≤ d2rvL
( C1T

(TcT )w
+ C2 exp(−C3Tc

2
T )
)

≤ C1rvL
(C3

3

)w/2 d2

Tw/2−1 logw/2(T ∨ d)
+
C2rvLd

2

T 3 ∨ d3 .

Similarly using Lemma 6.1, we have

P(Ac9) ≤ C1rL
(C3

3

)w/2 d

Tw/2−1 logw/2(T ∨ d)
+

C2rLd

T 3 ∨ d3 ,

P(Ac10) ≤ C1vL
(C3

3

)w/2 d2

Tw/2−1 logw/2(T ∨ d)
+
C2vLd

2

T 3 ∨ d3 ,

P(Ac11) ≤ C1L
(C3

3

)w/2 d

Tw/2−1 logw/2(T ∨ d)
+

C2Ld

T 3 ∨ d3 ,

P(Ac12) ≤ C1vL
(C3

3

)w/2 d

Tw/2−1 logw/2(T ∨ d)
+
C2vLd

T 3 ∨ d3 ,

whileP(Ac13) = 0 by Assumption (M2). On the other hand, if we have Assumption (M2’), the
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above results remain valid, except that

P(Ac13) ≤ C1L
(C3

3

)w/2 1

Tw/2−1 logw/2(T ∨ d)
+

C2L

T 3 ∨ d3 ,

by applying Lemma 6.1 given the bounded support and tail sum assumption in (M2’). For any
{zj,0,t}, we may treat it as a non-stochastic basis as in (M2) and the result follows. Lastly, by
P(M) ≥ 1−∑13

i=1P(Aci) we complete the proof of Lemma 6.2. □
We present the following lemma with a short proof as well, and we will utilise the defined

notation VH,K (which is the same definition in Theorem 6.2) in the proof of main theorems.

Lemma 6.3 For any n× d matrix H = (h1, . . . ,hn)
′ and any d×K matrix M, define

VH,K =

Ü
IK ⊗ h1

...
IK ⊗ hn

ê
.

We then have HM =
{
In ⊗ vec

(
M
)′}

VH,K .

Proof of Lemma 6.3. Notice that

{
In ⊗ vec

(
M
)′}

VH,K =

Ü
vec
(
M
)′
(IK ⊗ h1)
...

vec
(
M
)′
(IK ⊗ hn)

ê
,

whose j-th row (as a column vector) is hence (IK⊗h′
j)vec

(
M
)
= vec

(
h′
jM
)
= vec

(
M′hj

)
=

M′hj which is the j-th row of HM indeed. □

Remark 6.2 With the notation of VH,K , we may write any d×K matrix M as

M = IdM =
{
Id ⊗ vec

(
M
)′}

VId,K ,

which will be useful if we are interested in the interaction only between A, M in ABM, with
A ∈ Rl×r and B ∈ Rr×d, since we have

ABM = (B′A′)′M = V′
B′,l

{
Id ⊗ vec

(
A′)}M = V′

B′,l

{
Id ⊗ vec

(
A′)vec

(
M
)′}

VId,K .

Moreover, notice that in Lemma 6.3, if K = 1, i.e. M is a vector, then VH,1 = vec
(
H′) and

Lemma 6.3 simply coincides with the fact that

BM = vec
(
M′B′) = vec

(
M′B′Ir

)
=
(
Ir ⊗M′)vec

(
B′) = (Ir ⊗ vec

(
M
)′)

VB,1.
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Thus, VH,K can be seen as the “K-block vectorisation” of H, as a generalised vectorisation.

Lemma 6.4 Let the assumptions in Theorem 6.2 hold. Let Rβ and Σβ be defined in Theo-
rem 6.2. For I2 =

[
E(X′

tBt)E(B
′
tXt)

]−1
T−2X′Bν(Bν)′ϵν , we have I2 asymptotically normal

with rate T−1/2d−(1−b)/2 such that

T 1/2(RβΣβR
′
β)

−1/2I2
D−→ N (0, Ir).

Proof of Lemma 6.4. Given any nonzero α ∈ Rr with ∥α∥1 ≤ c < ∞, we construct
below the asymptotic normality of α′I2 which is T 1/2d(1−b)/2-convergent. First, we have the
following decomposition, with the second term dominating the first by (6.44):

α′I2 =
[
E(X′

tBt)E(B
′
tXt)

]−1(
T−1X′Bν −E(X′

tBt)
)
T−1(Bν)′ϵν

+
[
E(X′

tBt)E(B
′
tXt)

]−1
E(X′

tBt)T
−1(Bν)′ϵν .

Then recall Rβ =
[
E(X′

tBt)E(B
′
tXt)

]−1
E(X′

tBt), we have

α′I2 =
1

T

T∑
t=1

α′Rβ(Bt −E(Bt))
′ϵt(1 + oP (1)).

To construct the asymptotic normality of α′I2, we want to show the as in (6.68) that∑
t≥0

∥∥∥P0(α
′Rβ(Bt −E(Bt))

′ϵt)
∥∥∥
2
<∞, (6.41)

so that Theorem 3 (ii) of Wu (2011) can be applied. With the definition s2 := α′RβΣβR
′
βα,

we have T 1/2s
−1/2
2 α′I2

D−→ N (0, 1) and hence

T 1/2(RβΣβR
′
β)

−1/2I2
D−→ N (0, Ir).

Similar to the proof of (6.68), we have (6.41) hold by Assumption (R7) and the following,∥∥∥P0(α
′Rβ(Bt −E(Bt))

′ϵt)
∥∥∥
2

=
∥∥∥α′Rβ

{
P0((Bt −E(Bt))

′)E0(ϵt)
}
+α′Rβ

{
E−1((Bt −E(Bt))

′)P0(ϵt)
}∥∥∥

2

≤
{
2α′RβE

{
P0((Bt −E(Bt))

′)E0(ϵt)E0(ϵ
′
t)P0(Bt −E(Bt))

}
R′
βα
}1/2

+
{
2α′RβE

{
E−1((Bt −E(Bt))

′)P0(ϵt)P0(ϵ
′
t)E−1(Bt −E(Bt))

}
R′
βα
}1/2

= O
(∥∥α∥∥

1

∥∥Rβ

∥∥
∞

)
·
(
d ·max

j∈[d]
E

1/2(E2
0(ϵt,j)) ·max

j∈[d]
max
k∈[v]

∥∥P0(Bt,jk)
∥∥
2
+ d · σmax max

j∈[d]

∥∥P0(ϵt,j)
∥∥
2

)
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= O
(
max
j∈[d]

∥∥P ϵ
0(ϵt,j)

∥∥
2
+max

j∈[d]
max
k∈[v]

∥∥P b
0 (Bt,jk)

∥∥
2

)
,

where the second last equality used Assumption (R2), and the last used
∥∥Rβ

∥∥
∞ = O(d−2 ·d) =

O(d−1) by (6.42) and Assumption (R3).
It remains to show α′I2 is of order T−1/2d−(1−b)/2. To this end, we only need to show s2

is of order d−(1−b). First, RβR
′
β =

[
E(X′

tBt)E(B
′
tXt)

]−1 which has all eigenvalues of order
d−2 from (6.42) and Assumption (R3). Consider any j-th diagonal element of Σβ , we have

(Σβ)jj =
∑
τ

E
{
(Bt −E(Bt))

′
·jϵtϵ

′
t+τ (Bt+τ −E(Bt))·j

}
=
∑
τ

tr
{
E((Bt+τ −E(Bt))·j(Bt+τ −E(Bt))

′
·j)E(ϵtϵ

′
t+τ )

}
,

which is finite and has order exactly d1+b by Assumption (R8). Notice the dimension of Σβ is
r × r, the order of eigenvalues of Σβ is hence exactly d1+b. The order of s2 is db−1 by

∥α∥21 λmin(RβR
′
β) λmin(Σβ) ≤ s2 ≤ ∥α∥21 λmax(RβR

′
β) λmax(Σβ).

This completes the proof of Lemma 6.4. □

Proof of Corollary 6.1, 6.2, 6.3 and 6.4. All are direct from Theorem 6.2. □

Proof of Theorem 6.1. From (6.11) and (6.12), we have

β(ϕ∗) =
(
X′Bν(Bν)′X

)−1

X′Bν(Bν)′
(
yν −

p∑
j=1

lj∑
k=0

ϕ∗
j,kW

⊗
j y

ν
j,k

)
=
(
X′Bν(Bν)′X

)−1

X′Bν(Bν)′
(
1T ⊗ µ∗ +Xβ∗ + ϵν

)
= β∗ +

(
X′Bν(Bν)′X

)−1

X′Bν(Bν)′ϵν .

We now define a diagonal matrix Dzj,k := diag(zj,k,1Id, . . . , zj,k,T Id) ∈ RdT×dT , with diagonal
blocks zj,k,1Id, . . . , zj,k,T Id, and Π∗⊗ :=

(
ITd −

∑p
j=1

∑lj
k=0 ϕ

∗
j,kW

⊗
j Dzj,k

)−1. We then have
yν = Π∗⊗(1T ⊗ µ∗ +Xβ∗ + ϵν

)
. Thus,

β(ϕ̃) =
(
X′Bν(Bν)′X

)−1

X′Bν(Bν)′
(
yν −

p∑
j=1

lj∑
k=0

ϕ̃j,kW
⊗
j y

ν
j,k

)

= β(ϕ∗) +
(
X′Bν(Bν)′X

)−1

X′Bν(Bν)′
( p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j y
ν
j,k

)
= β(ϕ∗) +

(
X′Bν(Bν)′X

)−1

X′Bν(Bν)′
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·
{ p∑

j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗(1T ⊗ µ∗ +Xβ∗ + ϵν

)}
.

We can hence decompose β(ϕ̃)− β∗ =
∑5

j=1 Ij where

I1 :=
[
E(X′

tBt)E(B
′
tXt)

]−1[
E(X′

tBt)E(B
′
tXt)− T−2X′Bν(Bν)′X

]
(β(ϕ̃)− β∗),

I2 :=
[
E(X′

tBt)E(B
′
tXt)

]−1
T−2X′Bν(Bν)′ϵν ,

I3 :=
[
E(X′

tBt)E(B
′
tXt)

]−1
T−2X′Bν(Bν)′

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗Xβ∗,

I4 :=
[
E(X′

tBt)E(B
′
tXt)

]−1
T−2X′Bν(Bν)′

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗ϵν ,

I5 :=
[
E(X′

tBt)E(B
′
tXt)

]−1
T−2X′Bν(Bν)′

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗(1T ⊗ µ∗).

Notice we can take any t ∈ [T ] forE(X′
tBt) andE(B′

tXt) due to Assumption (M1). To bound
I1 to I4, we first have

∥∥[E(X′
tBt)E(B

′
tXt)

]−1∥∥
1
≤ r1/2

λr
[
E(X′

tBt)E(B′
tXt)

] ≤ r1/2

d2u2
, (6.42)

where λr
[
E(X′

tBt)E(B
′
tXt)

]
= σ2

r(E(X
′
tBt)) ≥ d2u2 with u > 0 being a constant by As-

sumption (R3). Next, define

U = Id ⊗ T−1

T∑
t=1

vec
(
Bt − B̄

)
x′
t, U0 = Id ⊗E(btx′

t).

By Lemma 6.3, we then have

1

T
X′Bv =

1

T

T∑
t=1

X′
t(Bt − B̄) =

1

T

T∑
t=1

{(
Id ⊗ x′

t

)
VId,r

}′{(
Id ⊗ vec

(
Bt − B̄

)′)
VId,v

}
=

1

T

T∑
t=1

V′
Id,r

(
Id ⊗ xt

)(
Id ⊗ vec

(
Bt − B̄

)′)
VId,v = V′

Id,r
U′VId,v.
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Similarly, E(X′
tBt) = V′

Id,r
U′

0VId,v. Thus on the setM in Lemma 6.2, with (6.42) we have

∥∥I1∥∥1 ≤ r1/2

d2u2
·
∥∥V′

Id,r
U′

0VId,vV
′
Id,v

U0 −V′
Id,r

U′VId,vV
′
Id,v

U
∥∥
1
·
∥∥VId,r(β(ϕ̃)− β∗)

∥∥
1

= O
(1
d

)(∥∥V′
Id,r

(U0−U)′VId,vV
′
Id,v

U0

∥∥
1
+
∥∥V′

Id,r
U′VId,vV

′
Id,v

(U0−U)
∥∥
1

)∥∥β(ϕ̃)−β∗∥∥
1

= O
(1
d

){
d
∥∥U0 −U

∥∥
max

∥∥U0

∥∥
max + d

∥∥U0 −U
∥∥

max

(∥∥U0 −U
∥∥

max +
∥∥U0

∥∥
max

)}
·
∥∥β(ϕ̃)− β∗∥∥

1
= O

(
cT
∥∥β(ϕ̃)− β∗∥∥

1

)
,

(6.43)

where the last equality used Assumption (R3) which implies
∥∥U0

∥∥
max is bounded by some

constant, and Lemma 6.2 (using A1, A4, A6) that

∥∥U−U0

∥∥
max =

∥∥∥∥ 1T
T∑
t=1

[
vec
(
Bt − B̄

)
x′
t

]
−E(btx′

t)

∥∥∥∥
max

=

∥∥∥∥ 1T
T∑
t=1

btx
′
t −E(btx′

t)− vec
(
B̄
) 1
T

T∑
t=1

x′
t

∥∥∥∥
max
≤ cT +

∥∥∥∥vec
(
B̄
) 1
T

T∑
t=1

x′
t

∥∥∥∥
max

≤ cT +
(∥∥vec

(
B̄
)
−E[Bt]

∥∥
max +

∥∥E[Bt]
∥∥

max

)∥∥∥∥ 1T
T∑
t=1

x′
t

∥∥∥∥
max
≤ cT + cT (cT + µb,max).

(6.44)

Similarly for I2, we have on the setM that

∥∥I2∥∥1 ≤ r1/2

d2u2
·
∥∥V′

Id,r
U′VId,v

∥∥
1
·
∥∥T−1(Bν)′ϵν

∥∥
1

= O
(1
d

)∥∥T−1(Bν)′ϵν
∥∥
1
= O

(1
d

)∥∥∥∥ 1T
T∑
t=1

(B′
t − B̄′)ϵt

∥∥∥∥
1

= OP

(1
d

){
cTd

1
2
+ 1

2w + cTd
1/2 log1/2(T ∨ d)Sϵ(µb,max + cT )

}
= OP

(
cTd

− 1
2
+ 1

2w

)
,

(6.45)

where the first equality used A1, A4, A6 inM, the third used A3, A7 inM, and the last used
Assumption (R10).

For I3, first recall that

Π∗
t = (Id −W∗

t )
−1 =

(
Id −

p∑
j=1

lj∑
k=0

ϕ∗
j,kzj,k,tWj

)−1

, (6.46)

and hence from Assumption (M2) (resp. (M2’)) we have ∥Π∗
t∥∞ ≤ 1/(1 − η) = O(1) (resp.

∥Π∗
t∥∞ = OP (1)) using that (Id −W∗

t ) is strictly diagonally dominant. Then by (6.42), we
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have on the setM that

∥∥I3∥∥1 ≤ r1/2

d2u2
∥∥V′

Id,r
U′VId,v

∥∥
1

∥∥∥∥T−1(Bν)′
p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗X

∥∥∥∥
1

∥∥β∗∥∥
1

= O
(1
d

)∥∥∥∥ 1T
p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)(Bν)′W⊗

j Dzj,kΠ
∗⊗X

∥∥∥∥
1

= O
(1
d

)∥∥∥∥ 1T
p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)

T∑
t=1

zj,k,t(B
′
t − B̄′)WjΠ

∗
tXt

∥∥∥∥
1

= O
(1
d

){
max
q∈[r]

max
s∈[v]

∣∣∣ 1
T

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)

T∑
t=1

d∑
i=1

zj,k,tW
′
j,·i(Bt,·s − B̄·s)X

′
t,·qΠ

∗
t,i·

∣∣∣}
= O

(1
d

)(∥∥ϕ∗ − ϕ̃
∥∥
1

· max
q∈[r],s∈[v],j∈[p]

max
k∈[lj ]∪{0}

max
m,n∈[d]

∣∣∣ 1
T

T∑
t=1

zj,k,t(Bt,ms − B̄ms)Xt,nq

∣∣∣ d∑
i=1

∥Wj,·i∥1∥Π∗
t,i·∥1

)
= OP

(∥∥ϕ∗ − ϕ̃
∥∥
1

[
cT + 1 + cT (cT + µb,max)

])
= OP

(∥∥ϕ∗ − ϕ̃
∥∥
1

)
,

(6.47)

where the first equality used A1, A4, A6 inM, the second last used A4, A8, A9 inM and
Assumptions (R1) and (R3). Similarly, for I4 on the setM,

∥∥I4∥∥1 ≤ r1/2

d2u2
·
∥∥V′

Id,r
U′VId,v

∥∥
1
·
∥∥T−1(Bν)′

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗ϵν

∥∥
1

= O
(1
d

){
max
s∈[v]

∣∣∣ 1
T

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)

T∑
t=1

d∑
i=1

zj,k,tW
′
j,·i(Bt,·s − B̄·s)ϵ

′
tΠ

∗
t,i·

∣∣∣}
= O

(1
d

){∥∥ϕ∗ − ϕ̃
∥∥
1

·max
s∈[v]

max
j∈[p]

max
k∈[lj ]∪{0}

max
m,q∈[d]

∣∣∣ 1
T

T∑
t=1

zj,k,t(Bt,ms − B̄ms)ϵt,q

∣∣∣ d∑
i=1

∥Wj,·i∥1∥Π∗
t,i·∥1

}
= OP

(∥∥ϕ∗ − ϕ̃
∥∥
1

[
cT + cT (cT + µb,max)

])
= OP

(
cT
∥∥ϕ∗ − ϕ̃

∥∥
1

)
,

(6.48)

where the first equality used A1, A4, A6 inM, the second last used A4, A10, A11 inM and
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Assumptions (R1) and (R3). For I5 we also have on the setM,

∥∥I5∥∥1 ≤ r1/2

d2u2
∥∥V′

Id,r
U′VId,v

∥∥
1
·
∥∥ 1
T
(Bν)′

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)W⊗

j Dzj,kΠ
∗⊗(1T ⊗ µ∗)

∥∥
1

= O
(1
d

){
max
s∈[v]

∣∣∣ 1
T

p∑
j=1

lj∑
k=0

(ϕ∗
j,k − ϕ̃j,k)

T∑
t=1

d∑
i=1

zj,k,tW
′
j,·i(Bt,·s − B̄·s)µ

∗′Π∗
t,i·

∣∣∣}
= O

(1
d

){∥∥ϕ∗ − ϕ̃
∥∥
1

·max
s∈[v]

max
j∈[p]

max
k∈[lj ]∪{0}

max
m∈[d]

∣∣∣ 1
T

T∑
t=1

zj,k,t(Bt,ms − B̄ms)
∣∣∣ ∥µ∗∥max

d∑
i=1

∥Wj,·i∥1∥Π∗
t,i·∥1

}
= Op

(∥∥ϕ∗ − ϕ̃
∥∥
1

[
cT + (zmaxcT ∨ cT )

])
= Op

(
cT
∥∥ϕ∗ − ϕ̃

∥∥
1

)
,

where the first equality used A1, A4, A6 inM, the second last used A4, A12, A13 inM and
Assumptions (R1), (R3), and E(zj,k,tBt) = 0 from (M2’) if (M2) is not satisfied.

From (6.43), (6.45), (6.47) and (6.48), combining with Lemma 6.2, we have

∥∥β(ϕ̃)− β∗∥∥
1
≤

5∑
j=1

∥∥Ij∥∥1 = Op

(∥∥ϕ̃− ϕ∗∥∥
1
+ cTd

− 1
2
+ 1

2w

)
. (6.49)

For the remaining proof of Theorem 6.1, we work on the rate for
∥∥ϕ̃−ϕ∗

∥∥
1
. From (6.15),

ϕ̃ =
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′(B′y −Ξyν)

=
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′(B′Xβ∗vec

(
Id
)
+B′ϵ−Ξyν)

+
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′(ΞYW )ϕ∗ + ϕ∗

= ϕ∗ +
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′B′ϵ

− T−1/2d−a/2 ·
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′

· vec
{ T∑

t=1

(Bt − B̄)γ(ϵν)′Bν(Bν)′X(X′Bν(Bν)′X)−1X′
t

}
,

where the second equality used (6.10), and the third used the fact that B′Xβ(ϕ)vec
(
Id
)

=

Ξyν−ΞYWϕ from (6.37) and β(ϕ∗) = β∗+
(
X′Bν(Bν)′X

)−1
X′Bν(Bν)′ϵν . Thus, we may

decompose

ϕ̃− ϕ∗ = D1 −D2, where

D1 =
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′B′ϵ,

D2 = T−1/2d−a/2 ·
[
(B′V −ΞYW )′(B′V −ΞYW )

]−1
(B′V −ΞYW )′
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·
{ T∑

t=1

(
Id ⊗ (Bt − B̄)γ

)
Xt

}
(X′Bν(Bν)′X)−1X′Bν(Bν)′ϵν .

To bound the above, recall first the following definitions (from the statement of Theo-
rem 6.2) for j ∈ [p], k ∈ [lj] ∪ {0},

Ux,j,k :=
1

T

T∑
t=1

zj,k,tvec
(
Bt − B̄

)
x′
t, Uµ,j,k :=

1

T

T∑
t=1

zj,k,tvec
(
Bt − B̄

)
µ∗′,

Uϵ,j,k :=
1

T

T∑
t=1

zj,k,tvec
(
Bt − B̄

)
ϵ′t.

Consider ΞYW , from its definition we have,

ΞYW = T−1/2d−a/2
( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)[

X′Bν(Bν)′X
]−1

X′Bν(Bν)′

· (W⊗
1 y

ν
1,0, . . . ,W

⊗
1 y

ν
1,l1
, . . . ,W⊗

p y
ν
p,0, . . . ,W

⊗
p y

ν
p,lp)

= T−1/2d−a/2
( T∑
t=1

Xt ⊗ (Bt − B̄)γ
)[

X′Bν(Bν)′X
]−1

X′Bν

·
{ T∑

t=1

z1,0,t(Bt − B̄)′W1yt, · · · ,
T∑
t=1

zp,lp,t(Bt − B̄)′Wpyt

}
From (6.46), we have yt = Π∗

tµ
∗ + Π∗

tXtβ
∗ + Π∗

tϵt. It hence holds for any j ∈ [p], k ∈
[lj] ∪ {0} by Lemma 6.3 that

1

T

T∑
t=1

zj,k,t(Bt − B̄)′Wjyt

=
1

T

T∑
t=1

zj,k,tV
′
W′

j ,v

(
Id ⊗ vec

(
Bt − B̄

))(
Π∗
tµ

∗ +Π∗
tXtβ

∗ +Π∗
tϵt
)

= V′
W′

j ,v
(Id ⊗Ux,j,k)VΠ∗

t ,r
β∗+V′

W′
j ,v
(Id ⊗Uµ,j,k)vec

(
Π∗′
t

)
+V′

W′
j ,v
(Id ⊗Uϵ,j,k)vec

(
Π∗′
t

)
.

(6.50)

Consider also B′V, we have

B′V

= T−1/2d−a/2
(
Id ⊗

{
(B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ)

})
·
{[
Id ⊗(z1,0,1y1, . . . , z1,0,TyT )

′]vec
(
W′

1

)
, . . . ,

[
Id ⊗(z1,l1,1y1, . . . , z1,l1,TyT )

′]vec
(
W′

1

)
,

. . . ,
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[
Id ⊗(zp,0,1y1, . . . , zp,0,TyT )

′]vec
(
W′

p

)
, . . . ,

[
Id ⊗(zp,lp,1y1, . . . , zp,lp,TyT )

′]vec
(
W′

p

)}
= T−1/2d−a/2

{[
Id ⊗ (B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ)(z1,0,1y1, . . . , z1,0,TyT )

′]vec
(
W′

1

)
,

. . . ,
[
Id ⊗ (B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ)(zp,lp,1y1, . . . , zp,lp,TyT )

′]vec
(
W′

p

)}
= T−1/2d−a/2

{[
Id ⊗

T∑
t=1

z1,0,t(Bt − B̄)γy′
t

]
vec
(
W′

1

)
,

. . . ,
[
Id ⊗

T∑
t=1

zp,lp,t(Bt − B̄)γy′
t

]
vec
(
W′

p

)}
.

Similar to ΞYW , for j ∈ [p], k ∈ [lp] ∪ {0} we have

1

T

T∑
t=1

zj,k,t(Bt − B̄)γy′
t =

1

T

T∑
t=1

zj,k,t(Bt − B̄)γ(µ∗′Π∗′
t + β∗′X′

tΠ
∗′
t + ϵ′tΠ

∗′
t )

=
1

T

T∑
t=1

zj,k,t(γ
′ ⊗ Id) vec

(
Bt − B̄

)
µ∗′Π∗′

t

+
1

T

T∑
t=1

zj,k,t(γ
′ ⊗ Id) vec

(
Bt − B̄

)
x′
t(β

∗ ⊗ Id)Π
∗′
t

+
1

T

T∑
t=1

zj,k,t(γ
′ ⊗ Id) vec

(
Bt − B̄

)
ϵ′tΠ

∗′
t

= (γ ′ ⊗ Id)Uµ,j,kΠ
∗′
t + (γ ′ ⊗ Id)Ux,j,k(β

∗ ⊗ Id)Π
∗′
t + (γ ′ ⊗ Id)Uϵ,j,kΠ

∗′
t .

(6.51)

With (6.50) and (6.51), recall from the statement of Theorem 6.2 the definitions forH10 and
H20. As a heuristic for H10 and H20, they are essentially T−1/2da/2B′V and T−1/2da/2ΞYW at
the population level, respectively. For the rest of the proof for Theorem 6.1, we find the rate of
D2, followed by constructing the asymptotic normality of the dominating term in the expansion
of D1. For D2, we further decompose D2 = F1 + F2 − F3 where

F1 = [(H20 −H10)
′(H20 −H10)]

−1
{
(H20 −H10)

′(H20 −H10)

− T−1da(B′V −ΞYW )′(B′V −ΞYW )
}
D2,

F2 = [(H20 −H10)
′(H20 −H10)]

−1
[
(T−1/2da/2B′V −H10)− (T−1/2da/2ΞYW −H20)

]′
·
{ 1

T

T∑
t=1

(
Id ⊗ (Bt − B̄)γ

)
Xt

}
(X′Bν(Bν)′X)−1X′Bν(Bν)′ϵν ,

F3 = [(H20 −H10)
′(H20 −H10)]

−1(H20 −H10)
′

·
{ 1

T

T∑
t=1

(
Id ⊗ (Bt − B̄)γ

)
Xt

}
(X′Bν(Bν)′X)−1X′Bν(Bν)′ϵν .
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To bound the L1 norm of F1 to F3, first observe that by Assumptions (R1) and (R4) we have

σ2
L(H10) ≥ σ2

L

({[
Id ⊗ (γ ′ ⊗ Id)E

(
Ux,1,0(β

∗ ⊗ Id)Π
∗′
t

)]
vec
(
W′

1

)
,

. . . ,
[
Id ⊗ (γ ′ ⊗ Id)E

(
Ux,p,lp(β

∗ ⊗ Id)Π
∗′
t

)]
vec
(
W′

p

)})

≥ σ2
L(DW )σ2

d2

({[
Id⊗(γ ′⊗Id)E

(
Ux,1,0(β

∗⊗Id)Π∗′
t

)]
,

. . . ,
[
Id⊗(γ ′⊗Id)E

(
Ux,p,lp(β

∗⊗Id)Π∗′
t

)]})
≥ Cd · da = Cd1+a,

where C > 0 is a generic constant. Similarly, by Assumptions (R1), (R3), (R5) and (R6),

σL(H20) ≥ σr

(
E(Xt ⊗Btγ)

)
σr

([
E(X′

tBt)E(B
′
tXt)

]−1
)
σr

(
E(X′

tBt)
)

· σmin

({
V′

W′
1,r
E
[
(Id⊗Ux,1,0)VΠ∗

t ,r

]
β∗, . . . ,V′

W′
p,r
E
[
(Id⊗Ux,p,lp)VΠ∗

t ,r

]
β∗
})

≥ Cd1+a · d
λmax[E(X′

tBt)E(B′
tXt)]

· σv[E(G̈)] · σL(DW )

≥ Cd1+a · d · d1/2
λmax[E(X′

tBt)E(B′
tXt)]

≥ Cd1/2+a,

with some arbitrary constant C > 0. Notice H20 has the smallest singular value of order larger
then that for H10, so σ2

L(H20 −H10) ≥ Cd1+a for some C > 0. Thus,

∥∥∥[(H20 −H10)
′(H20 −H10)]

−1
∥∥∥
1
≤ L1/2

λmin[(H20 −H10)′(H20 −H10)]
≤ L1/2

Cd1+a
. (6.52)

Consider F1 first and we hence have onM,

∥F1∥1 ≤
L1/2 · L
Cd1+a

{∥∥(H20 − T−1/2da/2ΞYW ) + (T−1/2da/2B′V −H10)
∥∥

max

∥∥H20 −H10

∥∥
1

+
∥∥T−1/2da/2(B′V −ΞYW )

∥∥
max

·
∥∥(H20 − T−1/2da/2ΞYW ) + (T−1/2da/2B′V −H10)

∥∥∥
1

}
∥D2∥1

= O
{L3/2

d1+a
[
cT · d2 + 1 · (cTd2 + cTd

2)
]}
∥D2∥1 = O

(
cTL

3/2d1−a ∥D2∥1
)
,

(6.53)

where the last line used the following rates to be shown later,

∥∥H20 − T−1/2da/2ΞYW

∥∥
max = OP (cT ), (6.54)
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∥∥H10 − T−1/2da/2B′V
∥∥

max = OP (cT ). (6.55)

For neat presentation, we define the following terms whose norms will be bounded and
involved in (6.54) and later,

A1 :=
1

T

T∑
t=1

Xt ⊗ (Bt − B̄)γ, A0
1 := E(Xt ⊗Btγ),

A2 :=
( 1
T
X′Bν 1

T
(Bν)′X

)−1

, A0
2 :=

[
E(X′

tBt)E(B
′
tXt)

]−1
,

A3 :=
1

T
X′Bν , A0

3 := E(X′
tBt),

A4,j,k :=
1

T

T∑
t=1

zj,k,t(Bt − B̄)′Wj(Π
∗
tµ

∗ +Π∗
tXtβ

∗),

A0
4,j,k := E(A4,j,k), A5,j,k :=

1

T

T∑
t=1

zj,k,t(Bt − B̄)′WjΠ
∗
tϵt.

OnM, we immediately have from Lemma 6.2 (using A1,A4,A6),∥∥A1 −A0
1

∥∥
max = O

(
cT + cT (cT + µb,max)

)
= O(cT ), (6.56)

which also gives
∥∥A1

∥∥
max ≤

∥∥A0
1

∥∥
max +

∥∥A1 −A0
1

∥∥
max = O(1 + cT ) = O(1). Hence with

Assumptions (R5) and (R10), we also have onM that

∥∥A1

∥∥
1
≤
∥∥A0

1

∥∥
1
+
∥∥A1 −A0

1

∥∥
1
= O

(
d1+a + cTd

2
)
= O(d1+a). (6.57)

Similarly, with Lemma 6.2 (using A1) and Assumption (R3), we have onM,

∥∥A3−A0
3

∥∥
1
= O(cTd),

∥∥A0
3

∥∥
1
= O(d),

∥∥A3

∥∥
1
≤
∥∥A3−A0

3

∥∥
1
+
∥∥A0

3

∥∥
1
= O(d). (6.58)

Rewrite A0
2 = (A0

3A
0′
3 )

−1 and A2 = (A3A
′
3)

−1, by Assumption (R3),

∥∥A0
2

∥∥
1
≤ r1/2

λmin(A0
3A

0′
3 )

= O(d−2). (6.59)

Moreover, from (6.58) we have onM
∥∥(A0

2)
−1 −A−1

2

∥∥
1
≤
∥∥A0

3A
0′
3 −A3A

′
3

∥∥
1
≤
∥∥A0

3 −A3

∥∥
1

∥∥A0′
3

∥∥
1
+
∥∥A3

∥∥
1

∥∥A0′
3 −A′

3

∥∥
1

= O(cTd · d+ d · cTd) = O(cTd
2).
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Thus, rewrite A2−A0
2 = (A2−A0

2)[(A
0
2)

−1−A−1
2 ]A0

2+A0
2[(A

0
2)

−1−A−1
2 ]A0

2, then onM,

∥∥A2 −A0
2

∥∥
1
= o
(∥∥A2 −A0

2

∥∥
1

)
+O

(
cTd

2 · d−4
)
= O(cTd

−2).

Consider now A0
4,j,k for any j ∈ [p], k ∈ [lj] ∪ {0}. First, we have onM,

∥∥∥E( 1
T

T∑
t=1

zj,k,t(Bt − B̄)′WjΠ
∗
tµ

∗
)∥∥∥

1

≤
∥∥∥E( 1

T

T∑
t=1

zj,k,t(Bt − B̄)′
)∥∥∥

max

∥∥Wj

∥∥
1

∥∥Π∗
tµ

∗∥∥
1
= O

(
d ·
∥∥Π∗

t

∥∥
∞

∥∥µ∗∥∥
max

)
= O(d),

where the last equality used Assumption (R1). Thus onM,∥∥A0
4,j,k

∥∥
1

≤
∥∥V′

W′
j ,v

[
Id ⊗E(Ux,j,k)

]
VΠ∗

t ,r
β∗∥∥

1
+
∥∥∥E( 1

T

T∑
t=1

zj,k,t(Bt − B̄)′WjΠ
∗
tµ

∗
)∥∥∥

1

≤
∥∥V′

W′
j ,v

[
Id ⊗E(Ux,j,k)

]∥∥
max

∥∥VΠ∗
t ,r

∥∥
1

∥∥β∗∥∥
1
+O(d)

≤ max
i,n∈[d]

max
m∈[v]

max
q∈[r]

W′
j,·iE

{ 1

T

T∑
t=1

zj,k,t(Bt − B̄)·mXt,nq

}∥∥VΠ∗
t ,r

∥∥
1

∥∥β∗∥∥
1
+O(d) = O(d),

where the last equality used Assumption (R1). Furthermore, we have onM that∥∥A4,j,k −A0
4,j,k

∥∥
1

≤
∥∥∥ 1
T

T∑
t=1

zj,k,t(Bt − B̄)′ −E
{ 1

T

T∑
t=1

zj,k,t(Bt − B̄)′
}∥∥∥

max

∥∥Wj

∥∥
1

∥∥Π∗
tµ

∗∥∥
1

+
∥∥V′

W′
j ,v

{
Id ⊗ [Ux,j,k −E(Ux,j,k)]

}
VΠ∗

t ,r
β∗∥∥

1

= O
(
[cT + 1 · cT + 1 · cT + 1 · (cT ∨ 0)] d

)
+O

(∥∥VΠ∗
t ,r

∥∥
1

∥∥β∗∥∥
1

)
·
∥∥W′

j

∥∥
1

· max
n,m∈[d]

max
s∈[v]

max
q∈[r]

∣∣∣ 1
T

T∑
t=1

zj,k,t(Bt − B̄)msXt,nq −E
( 1
T

T∑
t=1

zj,k,t(Bt − B̄)msXt,nq

)∣∣∣
= O(cTd),

(6.60)

where the second last equality used Assumption (R1) and A4, A12, A13, while the last used
A4, A8, A9. In particular, we used the following as an immediate result of A13,

max
m∈[p]

max
n∈[lm]∪{0}

∣∣∣ 1
T

T∑
t=1

zm,n,t −E
( 1
T

T∑
t=1

zm,n,t

)∣∣∣ ≤ cT ∨ 0.
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Lastly for any j ∈ [p], k ∈ [lj] ∪ {0}, similar to (6.48), we have onM that∥∥A5,j,k

∥∥
1
=
∥∥V′

W′
j ,v

(
Id ⊗Uϵ,j,k

)
VΠ∗

t ,r

∥∥
1
≤
∥∥V′

W′
j ,v

(
Id ⊗Uϵ,j,k

)∥∥
max

∥∥VΠ∗
t ,r

∥∥
1

≤
∥∥W′

j

∥∥
1
max
m,n∈[d]

max
s∈[v]

∣∣∣ 1
T

T∑
t=1

zj,k,t(Bt − B̄)msϵt,n

∣∣∣ · ∥∥VΠ∗
t ,r

∥∥
1
= O(cTd).

(6.61)

Consider now (6.54), we have∥∥∥H20 − T−1/2da/2ΞYW

∥∥∥
max

= max
j,k

∥∥∥A1A2A3(A4,j,k +A5,j,k)−A0
1A

0
2A

0
3A

0
4,j,k

∥∥∥
max

≤ max
j,k

∥∥A1

∥∥
max

∥∥A2

∥∥
1

∥∥A3

∥∥
1

∥∥A5,j,k

∥∥
1

+max
j,k

{∥∥A1

∥∥
max

∥∥A2A3A4,j,k −A0
2A

0
3A

0
4,j,k

∥∥
1
+
∥∥A1 −A0

1

∥∥
max

∥∥A0
2A

0
3A

0
4,j,k

∥∥
1

}
,

with max
j,k

∥∥A2A3A4,j,k −A0
2A

0
3A

0
4,j,k

∥∥
1

≤ max
j,k

{∥∥A2

∥∥
1

∥∥A3 −A0
3

∥∥
1

∥∥A4,j,k

∥∥
1

+
∥∥A2

∥∥
1

∥∥A0
3

∥∥
1

∥∥A4,j,k −A0
4,j,k

∥∥
1
+
∥∥A2 −A0

2

∥∥
1

∥∥A0
3

∥∥
1

∥∥A0
4,j,k

∥∥
1

}
.

Together with all the rates from (6.56) to (6.61), we have (6.54) true onM.
For (6.55), consider for any j ∈ [p], k ∈ [lj] ∪ {0}, we have onM that∥∥∥[Id ⊗ (γ ′ ⊗ Id)Uϵ,j,kΠ

∗′
t

]
vec
(
W′

j

)∥∥∥
max

= max
i∈[d]

∥∥(γ ′ ⊗ Id)Uϵ,j,kΠ
∗′
t Wj,i·

∥∥
max

≤ max
i∈[d]

∥∥(γ ′ ⊗ Id)Uϵ,j,k

∥∥
max

∥∥Π∗
t

∥∥
∞

∥∥Wj,i·
∥∥
1

= O(1) · ∥γ∥1 · max
m,n∈[d]

max
s∈[v]

∣∣∣ 1
T

T∑
t=1

zj,k,t(Bt − B̄)msϵt,n

∣∣∣ = O(cT ),

(6.62)

where the second last equality used Assumption (R1) and the result below (6.46), and the last
is similar to (6.48). In a similar way onM,∥∥∥[Id ⊗ (γ ′ ⊗ Id)

{
Uµ,j,k −E(Uµ,j,k)

}
Π∗′
t

]
vec
(
W′

j

)∥∥∥
max

≤ max
i∈[d]

∥∥(γ ′ ⊗ Id)
{
Uµ,j,k −E(Uµ,j,k)

}∥∥
max

∥∥Π∗
t

∥∥
∞

∥∥Wj,i·
∥∥
1

= O
(
∥γ∥1∥µ∗∥max

)
·
∥∥∥ 1
T

T∑
t=1

zj,k,t(Bt − B̄)′ −E
{ 1

T

T∑
t=1

zj,k,t(Bt − B̄)′
}∥∥∥

max
= O(cT ),

(6.63)
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with the last line similar to (6.60) which is also involved in the last line of the following,∥∥∥[Id ⊗ (γ ′ ⊗ Id)
{
Ux,j,k −E(Ux,j,k)

}
(β∗ ⊗ Id)Π

∗′
t

]
vec
(
W′

j

)∥∥∥
max

≤ max
i∈[d]

∥∥(γ ′ ⊗ Id)
{
Ux,j,k −E(Ux,j,k)

}∥∥
max

∥∥β∗ ⊗ Id
∥∥
1

∥∥Π∗
t

∥∥
∞

∥∥Wj,i·
∥∥
1

= O
(
∥γ∥1

)
· max
m,n∈[d]

max
s∈[v]

max
q∈[r]

∣∣∣∣ 1T
T∑
t=1

zj,k,t(Bt − B̄)msXt,nq

−E
( 1
T

T∑
t=1

zj,k,t(Bt − B̄)msXt,nq

)∣∣∣∣ = O(cT ).

(6.64)

Combining (6.62), (6.63) and (6.64), we have (6.55) true by the following,∥∥∥H10 − T−1/2da/2B′V
∥∥∥

max

≤ max
j,k

∥∥∥[Id ⊗ (γ ′ ⊗ Id)Uϵ,j,kΠ
∗′
t

]
vec
(
W′

j

)∥∥∥
max

+max
j,k

∥∥∥[Id ⊗ (γ ′ ⊗ Id)
{
Uµ,j,k −E(Uµ,j,k)

}
Π∗′
t

]
vec
(
W′

j

)∥∥∥
max

+max
j,k

∥∥∥[Id ⊗ (γ ′ ⊗ Id)
{
Ux,j,k −E(Ux,j,k)

}
(β∗ ⊗ Id)Π

∗′
t

]
vec
(
W′

j

)∥∥∥
max
.

Next for F2 and F3, we consider first onM,

∥∥∥{ 1

T

T∑
t=1

(
Id ⊗ (Bt − B̄)γ

)
Xt

}
(X′Bν(Bν)′X)−1X′Bν(Bν)′ϵν

∥∥∥
1

=

∥∥∥∥A1A2A3
1

T

T∑
t=1

(Bt − B̄)′ϵt

∥∥∥∥
1

≤
∥∥A1

∥∥
1

∥∥A2

∥∥
1

∥∥A3

∥∥
1
· vmax

j∈[r]

∣∣∣∣ 1T
T∑
t=1

d∑
q=1

Bt,qjϵt,q

∣∣∣∣
= O

(
d1+a · d−2 · d · cTd

1
2
+ 1

2w

)
= O

(
cTd

1
2
+ 1

2w
+a
)
,

(6.65)

where the first equality used the fact that Xt = Xt ⊗ 1, the second last used (6.57), (6.58),
(6.59) and A3 in Lemma 6.2. Then for F2, we have onM that

∥F2∥1 ≤
L1/2 · L
Cd1+a

(∥∥∥(H20 − T−1/2da/2ΞYW )
∥∥∥

max
+
∥∥∥(T−1/2da/2B′V −H10)

∥∥∥
max

)
·
∥∥∥{ 1

T

T∑
t=1

(
Id ⊗ (Bt − B̄)γ

)
Xt

}
(X′Bν(Bν)′X)−1X′Bν(Bν)′ϵν

∥∥∥
1

= O
(
L3/2 · d−1−a · cT · cTd

1
2
+ 1

2w
+a
)
= O

(
c2TL

3/2d−
1
2
+ 1

2w

)
,

(6.66)

where the last line used (6.52), (6.54), (6.55) and (6.65). Similarly, onM we have ∥F3∥1 =
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O
(
cTL

3/2d−
1
2
+ 1

2w

)
, and hence together with L = O(1), (6.53) and (6.66), it holds onM that

∥∥D2

∥∥
1
≤
∥∥F1

∥∥
1
+
∥∥F2

∥∥
1
+
∥∥F3

∥∥
1
= O

(
cTd

− 1
2
+ 1

2w

)
. (6.67)

Similar to the way we decompose D2, we can rewrite D1 = F4 + F5 − F6 where

F4 = [(H20 −H10)
′(H20 −H10)]

−1
{
(H20 −H10)

′(H20 −H10)

− T−1da(B′V −ΞYW )′(B′V −ΞYW )
}
D1,

F5 = [(H20 −H10)
′(H20 −H10)]

−1
{
(T−1/2da/2B′V −H10)− (T−1/2da/2ΞYW −H20)

}′

· T−1/2da/2B′ϵ,

F6 = [(H20 −H10)
′(H20 −H10)]

−1(H20 −H10)
′ · T−1/2da/2B′ϵ.

From (6.53), it is direct that F4 = O
(
cTL

3/2d1−a ∥D1∥1
)

onM. Moreover, (6.54) and (6.55)
imply that F5 has a smaller rate than that of F6. Given L = O(1), we next construct the
asymptotic normality of α′F6 for any given nonzero α ∈ RL with ∥α∥1 ≤ c <∞.

Denote by R1 := [(H20 −H10)
′(H20 −H10)]

−1(H20 −H10)
′, we have

α′F6 =
1

T
α′R1

(
Id ⊗

{
(B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ)

})
vec
(
(ϵ1, . . . , ϵT )

′)
=

1

T
α′R1

(
Id ⊗

{
(B1 − B̄)γ, . . . , (BT − B̄)γ

}) T∑
t=1

{
ϵt ⊗

(
1{j=t}

)
j∈[T ]

}
=

1

T

T∑
t=1

α′R1

(
ϵt ⊗ (Bt − B̄)γ

)
=

1

T

T∑
t=1

α′R1

(
ϵt ⊗ [Bt −E(Bt)]γ(1 + oP (1))

)
,

where the vector
(
1{j=t}

)
j∈[T ] ∈ RT has value 1{j=t} at each j-th entry, and the last equality

used A4 in Lemma 6.2. Hence to apply Theorem 3 (ii) of Wu (2011), we need to show∑
t≥0

∥∥∥P0

{
α′R1

(
ϵt ⊗ [Bt −E(Bt)]γ

)}∥∥∥
2
<∞, (6.68)

where P0(·) := E0(·)−E−1(·) and Ei(·) := E(· | σ(Gi,Hi)). Notice that∥∥∥P0

{
α′R1

(
ϵt ⊗ [Bt −E(Bt)]γ

)}∥∥∥
2

=
∥∥∥α′R1

{
P0(ϵt)⊗E0([Bt −E(Bt)]γ)

}
+α′R1

{
E−1(ϵt)⊗ P0([Bt −E(Bt)]γ)

}∥∥∥
2

≤
(
2α′R1

{
E
(
P0(ϵt)P0(ϵt)

′)⊗E(E0([Bt −E(Bt)]γ)E0(γ
′[Bt −E(Bt)]

′)
)}

R′
1α
) 1

2

+
(
2α′R1

{
E
(
E−1(ϵt)E−1(ϵt)

′)⊗E(P0([Bt −E(Bt)]γ)P0(γ
′[Bt −E(Bt)]

′)
)}

R′
1α
) 1

2
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= O
(∥∥α∥∥

1

∥∥R1

∥∥
∞

)
·
(
max
j∈[d]

∥∥P0(ϵt,j)
∥∥
2
·max
j∈[d]

Var1/2(B′
t,j·γ) + σmax max

j∈[d]

∥∥P0(B
′
t,j·γ)

∥∥
2

)
= O

(
max
j∈[d]

∥∥P ϵ
0(ϵt,j)

∥∥
2
+max

j∈[d]
max
k∈[v]

∥∥P b
0 (Bt,jk)

∥∥
2

)
,

where the second last equality used Var(·) = Var(Ei(·)) + E(Vari(·)) ≥ Var(Ei(·)), and the
last used Assumption (R2) and

∥∥R1

∥∥
∞ = O(1) which is implied from (6.52),

∥∥H10

∥∥
1
= O(d)

and
∥∥H20

∥∥
1
= O(d1+a). With Assumption (R7), (6.68) is true. Therefore, with definition

s1 := α′R1ΣR′
1α, Σ :=

∑
τ

E(ϵtϵ
′
t+τ )⊗E

[
(Bt −E(Bt))γγ

′(Bt+τ −E(Bt))
′],

we have by Theorem 3 (ii) of Wu (2011) that

T 1/2s
−1/2
1 α′F6

D−→ N (0, 1).

Then equivalently we have

T 1/2(R1ΣR′
1)

−1/2F6
D−→ N (0, IL), (6.69)

so that F6 is at least T 1/2d(1+a−b)/2-convergent which used λmax(R1R
′
1) = O(d−1−a) from

(6.52), and all eigenvalues of d−bΣ uniformly bounded from 0 and infinity by Assumption
(R8). Hence,

∥∥D1

∥∥
1
= O

(
∥F6∥1

)
= O

(
T−1/2d−(1+a−b)/2) onM, and by (6.67) we have

∥∥ϕ̃−ϕ∗∥∥
1
= OP

(∥∥D1

∥∥
1
+
∥∥D2

∥∥
1

)
= OP

(
T−1/2d−(1+a−b)/2+cTd

− 1
2
+ 1

2w

)
= OP

(
cTd

− 1
2
+ 1

2w

)
,

where the last equality used Assumption (R10). With the above plugged into (6.49), the proof
of Theorem 6.1 is complete. □

Proof of Theorem 6.2. By the KKT condition, ϕ̂ is a solution to the adaptive LASSO
problem in (6.16) if and only if there exists a subgradient

h = ∂(u′|ϕ̂|) =
{
h ∈ RL :

{
hi = ui sign(ϕ̂i), ϕ̂i ̸= 0;
|hi| ≤ ui, otherwise.

}
,

such that differentiating the expression in (6.16) with respect to ϕ, we have

T−1(ΞYW −B′V)′(ΞYW −B′V)ϕ+ T−1(ΞYW −B′V)′(B′y −Ξyν) = −λh.

Substituting (6.10) in the above, we arrive at

−λh = T−1(ΞYW −B′V)′(ΞYW −B′V)ϕ
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+ T−1(ΞYW −B′V)′(B′Vϕ∗ +B′Xβ∗vec
(
Id
)
+B′ϵ−Ξyν)

= T−1(ΞYW −B′V)′B′V(ϕ∗ − ϕ)

+ T−1(ΞYW −B′V)′B′ϵ+ T−1(ΞYW −B′V)′B′Xβ∗vec
(
Id
)

+ T−1(ΞYW −B′V)′(ΞYWϕ∗ −Ξyν +ΞYW (ϕ− ϕ∗))

= T−1(ΞYW −B′V)′(ΞYW −B′V)(ϕ− ϕ∗) + T−1(ΞYW −B′V)′B′ϵ

+ T−1(ΞYW −B′V)′B′Xβ∗−β(ϕ∗)vec
(
Id
)
,

where the last equality used the fact that B′Xβ(ϕ∗)vec
(
Id
)
= Ξyν − ΞYWϕ∗ from (6.37).

Then we may conclude that there exists a sign-consistent solution ϕ̂ if and only if
−λhH = T−1(ΞYW,H −B′VH)

′(ΞYW,H −B′VH)(ϕ̂− ϕ∗)

+T−1(ΞYW,H −B′VH)
′B′Xβ∗−β(ϕ∗)vec

(
Id
)
+T−1(ΞYW,H −B′VH)

′B′ϵ,

λuHc ≥
∣∣T−1(ΞYW,Hc −B′VHc)′B′Xβ∗−β(ϕ∗)vec

(
Id
)
+T−1(ΞYW,Hc −B′VHc)′B′ϵ

∣∣,
(6.70)

where AH and aH denote the corresponding submatrix A with columns restricted on the set
H and subvector a with entries restricted on the set H , respectively. Similarly (·)Hc is de-
fined. Consider the first equation in (6.70), similar to how D2 is decomposed in the proof of
Theorem 6.1, we write ϕ̂− ϕ∗ =

∑4
j=1 Iϕ,j where

Iϕ,1 = [(H20 −H10)
′
H(H20 −H10)H ]

−1
{
(H20 −H10)

′
H(H20 −H10)H

− T−1da(B′VH −ΞYW,H)
′(B′VH −ΞYW,H)

}
(ϕ̂− ϕ∗),

Iϕ,2 = −[(H20 −H10)
′
H(H20 −H10)H ]

−1daλhH ,

Iϕ,3 = [(H20 −H10)
′
H(H20 −H10)H ]

−1T−1da(ΞYW,H −B′VH)
′B′Xβ(ϕ∗)−β∗vec

(
Id
)
,

Iϕ,4 = [(H20 −H10)
′
H(H20 −H10)H ]

−1T−1da(B′VH −ΞYW,H)
′B′ϵ.

Similar to F1 in the proof of Theorem 6.1, we may derive that

∥∥Iϕ,1∥∥max = OP

(
cTd

1−a∥∥ϕ̂− ϕ∗∥∥
max

)
= oP

(∥∥ϕ̂− ϕ∗∥∥
max

)
,

where the first equality used the fact that Assumption (R1) implies for a positive constant u
that σ2

|H|{(DW )H} ≥ du > 0 uniformly as d → ∞, and the conditions in the statement of
Theorem 6.2, and the second used (R10). Similarly, with Assumption (R9) we have

∥∥Iϕ,2∥∥max = OP

(
d−1−a · da · λ

)
= OP

(
cTd

−1
)
.

For Iϕ,4, we may decompose it as the following with the second term dominating the first



266 Chapter 6. Spatial Autoregressive Models with Change Point Detection

term similarly to F5 and F6 in the proof of Theorem 6.1,

Iϕ,4 =
(
[(H20 −H10)

′
H(H20 −H10)H ]

−1
[
(T−1/2da/2B′VH −H10,H)

− (T−1/2da/2ΞYW,H −H20,H)
]′
· T−1/2da/2B′ϵ

)
−
(
[(H20 −H10)

′
H(H20 −H10)H ]

−1(H20 −H10)
′
H · T−1/2da/2B′ϵ

)
.

The second term in the above has rate T−1/2d−(1+a−b)/2 by exactly the same way to construct
asymptotic normality ofF6 in (6.69), except for the restriction to the setH here (proof omitted).
Thus, ∥∥Iϕ,4∥∥max = OP

(
T−1/2d−(1+a−b)/2).

We next construct the asymptotic normality for Iϕ,3 and show that its convergence rate is of
order T−1/2d−(1−b)/2 which is dominating over those of Iϕ,1, Iϕ,2 and Iϕ,4 by Assumption (R10).
Recall RH = [(H20 −H10)

′
H(H20 −H10)H ]

−1(H20 −H10)
′
H , and let nonzero α ∈ R|H| such

that ∥α∥1 ≤ c <∞. Then we have

α′Iϕ,3 = α′RHT
−1(Bγ − B̄γ)

′Xβ(ϕ∗)−β∗vec
(
Id
)
(1 + oP (1))

= α′RHT
−1
(
Id ⊗

{
(B1 − B̄, . . . ,BT − B̄)(IT ⊗ γ(β(ϕ∗)− β∗)′)(X1, . . . ,XT )

′})
· vec

(
Id
)
(1 + oP (1))

= α′RH
1

T

T∑
t=1

vec
(
(Bt −E(Bt))γ (β(ϕ∗)− β∗)′X′

t

)
(1 + oP (1))

= α′RH vec
{ 1

T

T∑
t=1

[
γ ′(Bt,i· −E(Bt,i·))X

′
t,j·(β(ϕ

∗)− β∗)
]
i,j∈[d]

}
(1 + oP (1))

= α′RHSγ(β(ϕ
∗)− β∗)(1 + oP (1)),

where the third last equality used A4 in Lemma 6.2 and the last used A1. From (6.44) and
Lemma 6.4, we have

T
1
2 (RβΣβR

′
β)

− 1
2

(
β(ϕ∗)− β∗) = T

1
2 (RβΣβR

′
β)

− 1
2

{(
X′Bν(Bν)′X

)−1
X′Bν(Bν)′ϵν

}
= T

1
2 (RβΣβR

′
β)

− 1
2

{[
E(X′

tBt)E(B
′
tXt)

]−1
T−2X′Bν(Bν)′ϵν(1 + o(1))

}
D−→ N (0, Ir).

Define s3 := α′RHSγRβΣβR
′
βS

′
γR

′
Hα, then T 1/2s

−1/2
3 α′Iϕ,3

D−→ N (0, 1) and equivalently

T 1/2(RHSγRβΣβR
′
βS

′
γR

′
H)

−1/2Iϕ,3
D−→ N (0, I|H|).

As shown in the proof of Lemma 6.4, the eigenvalues ofRβΣβR
′
β are of order db−1. Similar
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to R1 in the proof of Theorem 6.1, λmax(RHR
′
H) = O(d−1−a). We also have λmax(S

′
γSγ) =

O(d1+a) by Assumption (R5). Combining them, we have

∥α∥21 λmin(RHSγS
′
γR

′
H)λmin(RβΣβR

′
β) ≤ s3

≤ ∥α∥21 λmax(RHR
′
H)λmax(S

′
γSγ)λmax(RβΣβR

′
β),

with the right hand side (of s3) of order db−1. The left hand side (of s3) is of the same order by
the assumption in the statement of Theorem 6.2 that RHSγS

′
γR

′
H has the smallest eigenvalue

of constant order. Thus, s3 is of order exactly db−1 and hence α′Iϕ,3 has order T−1/2d−(1−b)/2.
It implies Iϕ,3 is the leading term in ϕ̂− ϕ∗ whose asymptotic normality therefore holds.

As Iϕ,1 to Iϕ,4 are all oP (1), we conclude sign(ϕ̂H) = sign(ϕ∗
H). It remains to show the

second part in (6.70) for the zero consistency of ϕ̂Hc .
To this end, notice similar to Iϕ,3 but with restriction on the set Hc, we have

∥∥T−1(ΞYW,Hc −B′VHc)′B′Xβ∗−β(ϕ∗)vec
(
Id
)∥∥

max

= OP

(
T−1/2d−(1−b)/2 · d−a · d1+2a

)
= OP

(
T−1/2d

1
2
+ b

2
+a
)
,

which used
∥∥(H20 −H10)

′(H20 −H10)
∥∥

max ≤ σ2
1(H20 −H10) = O(d1+2a) similarly to the

steps above (6.52). In the same manner, we also have from Iϕ,4 that

∥∥T−1(ΞYW,Hc −B′VHc)′B′ϵ
∥∥

max = OP

(
T−1/2d

1
2
+ b

2
+a

2

)
.

The left hand side of the second inequality in (6.70) has minimum value of

λ∥∥ϕ̃Hc

∥∥
max

≥ λ∥∥ϕ̃Hc − ϕ∗
Hc

∥∥
max

≥ λ∥∥ϕ̃− ϕ∗
∥∥

max

,

so it suffices to show (
T−1/2d

1
2
+ b

2
+a
)
·
∥∥ϕ̃− ϕ∗∥∥

max = oP (cT ),

which is true by Assumption (R10) and Theorem 6.1 in which each entry of F6 can be shown
to be asymptotically normal. This completes the proof of Theorem 6.2. □

Proof of Theorem 6.3. We have

∥∥Ŵt −W∗
t

∥∥
∞ =

∥∥∥∥ p∑
j=1

{
(ϕ̂j,0 − ϕ∗

j,0) +

lj∑
k=1

(ϕ̂j,k − ϕ∗
j,k)zj,k,t

}
Wj

∥∥∥∥
∞

= OP

(∥∥ϕ̂− ϕ∗∥∥
1
·max

j
∥Wj∥∞

)
= OP

(
T−1/2d−(1−b)/2), (6.71)

where the last equality used Theorem 6.2, Assumptions (M2) (or (M2’)) and (R1). Observe
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that we have similarly
∥∥Ŵt −W∗

t

∥∥
1
= OP

(
T−1/2d−(1−b)/2) by Assumption (R1), and hence

∥∥Ŵt −W∗
t

∥∥ ≤ (∥∥Ŵt −W∗
t

∥∥
1

∥∥Ŵt −W∗
t

∥∥
∞

)1/2
= OP

(
T−1/2d−(1−b)/2).

With Π∗
t defined in (6.46), we can decompose

µ̂− µ∗ =
1

T

T∑
t=1

{
(Id −ΛtΦ̂)yt −Xtβ̂

}
− 1

T

T∑
t=1

{
(Id −ΛtΦ

∗)yt −Xtβ
∗ − ϵt

}
=

1

T

T∑
t=1

{(
W∗

t − Ŵt

)(
Π∗
tµ

∗ +Π∗
tXtβ

∗ +Π∗
tϵt
)}

+ X̄(β∗ − β̂) + ϵ̄,

so that combining (6.71), Lemma 6.2 and Theorem 6.1, we have

∥∥µ̂− µ∗∥∥
max = OP

{
max
t

∥∥Ŵt −W∗
t

∥∥
∞

·
(∥∥µ∗∥∥

max + cT
∥∥β∗∥∥

max + cT
)
+ cT

∥∥β∗ − β̂
∥∥
1
+ cT

}
= OP (cT ).

This completes the proof of Theorem 6.3. □
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