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Abstract

In any actual forecast, the future evolution of the system is uncertain and the

forecasting model is mathematically imperfect. Both, ontic uncertainties in

the future (due to true stochasticity) and epistemic uncertainty of the model

(reflecting structural imperfections) complicate the construction and evalu-

ation of probabilistic forecast. In almost all nonlinear forecast models, the

evolution of uncertainty in time is not tractable analytically and Monte Carlo

approaches (”ensemble forecasting”) are widely used. This thesis advances

our understanding of the construction of forecast densities from ensembles,

the evolution of the resulting probability forecasts and methods of establish-

ing skill (benchmarks). A novel method of partially correcting the model

error is introduced and shown to outperform a competitive approach.

The properties of Kernel dressing, a method of transforming ensembles into

probability density functions, are investigated and the convergence of the

approach is illustrated. A connection between forecasting and Information

theory is examined by demonstrating that Kernel dressing via minimization

of Ignorance implicitly leads to minimization of Kulback-Leibler divergence.

The Ignorance score is critically examined in the context of other Information

theory measures.

The method of Dynamic Climatology is introduced as a new approach to
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establishing skill (benchmarking). Dynamic Climatology is a new, relatively

simple, nearest neighbor based model shown to be of value in benchmarking

of global circulation models of the ENSEMBLES project. ENSEMBLES is a

project funded by the European Union bringing together all major European

weather forecasting institutions in order to develop and test state-of-the-art

seasonal weather forecasting models. Via benchmarking the seasonal fore-

casts of the ENSEMBLES models we demonstrate that Dynamic Climatology

can help us better understand the value and forecasting performance of large

scale circulation models.

Lastly, a new approach to correcting (improving) imperfect model is pre-

sented, an idea inspired by [63]. The main idea is based on a two-stage

procedure where a second stage ‘corrective’ model iteratively corrects sys-

tematic parts of forecasting errors produced by a first stage ‘core’ model.

The corrector is of an iterative nature so that at a given time t the core

model forecast is corrected and then used as an input into the next iteration

of the core model to generate a time t + 1 forecast. Using two nonlinear

systems we demonstrate that the iterative corrector is superior to alternative

approaches based on direct (non-iterative) forecasts. While the choice of the

corrector model class is flexible, we use radial basis functions. Radial basis

functions are frequently used in statistical learning and/or surface approxi-

mations and involve a number of computational aspects which we discuss in

some detail.
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List of variables

Here we list variables used throughout this thesis. We order the variables by

chapters, since occasionally across different chapters a given symbol may cor-

respond to different variables. Within a chapter each symbol represents one

variable only. Chapter 2 is an exception to this rule as it provides background

information across various fields; consequently, we could not avoid occasion-

ally using a single symbol multiple times. The variables of Chapter 2 are

therefore not listed, and are clarified in the text only.
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Chapter 1

Introduction

In many fields where predictions of future states of systems [5] are required,

probabilistic forecasting has become a frequently used method of choice.

Probabilistic methods in forecasting have been pioneered by the US Weather

Bureau, which in 1965 appended probabilities of precipitation as a standard

part of public weather forecasts [95]. Since then, weather forecasting insti-

tutions around the world have shifted their focus from single point forecasts

toward probabilities when producing forecasts at short term weather scales

or seasonal or climate scales [100–102]. Economics is another influential field

which has embraced probabilistic forecasting. The Bank of England (BoE)

has been issuing ‘fan charts’, i.e. probabilistic forecasts of inflation, since

1997 [13] as part of the quarterly Inflation Report. Since then, many cen-

tral banks, including ECB, Federal Reserve, Sveriges Riksbank [10], Czech

National Bank [45], etc., have followed the BoE lead and included prob-

abilistic forecasts of inflation and other macro-economic variables as part

of their regular reporting. Probabilistic forecasting has also been used in

finance to predict stock prices [160], in health to predict epidemics of dis-

eases [23, 94] and, indeed, in insurance to price potential losses of extreme
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Weather events [1, 96].

Probabilistic forecasting deploys Monte Carlo experiments [3, 56, 70], to pro-

duce a collection (ensemble) [78, 93, 98, 103, 143] of multiple point forecasts

by using slightly different initial conditions [69, 93, 143]. Building on the

ensemble of forecasts, probabilistic methods can be used to assign probabil-

ities to future outcomes, yielding forecasting distributions. The forecasting

distributions express uncertainty about future evolution of a system. Proba-

bilistic forecasting is in stark contrast with point forecasts, where a forecast

is given in terms of an expectation and hence much less information, if any,

regarding uncertainty is provided.

Any forecasting process, probabilistic or not, typically involves several stages,

including:

• data retrieval and transformation,

• current state estimation,

• forecast formation,

• post-processing,

• forecast evaluation

• benchmarking.

Probabilistic approaches introduce additional challenge due to the fact that

they work with forecasting distributions as opposed to expectations. In this

work we focus on three particular steps of the forecasting process, all of which

will be studied within the probabilistic context. The steps of our interest are:

1. error correction
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2. evaluation

3. benchmarking

The three above steps enter the forecasting process after the forecast forma-

tion. Our focus is therefore on improvement and understanding of

the value of a forecast and not on forecast formation. In this thesis

the value of a forecast is the common thread linking the three areas

of our interest.

Error correction

Since all models are wrong [12] every forecast is prone to systematic errors.

Error correction is a part of the post-processing stage and is designed to add

additional value to a forecast by detecting and correcting systematic errors.

If systematic errors are present it may be possible to detect and, to some

extent, correct them [61, 99]. While simple error correction approaches focus

on bias correction, more complex correctors may take the form of a two-stage

procedure deploying an additional modeling layer on top of the forecasting

model. In this thesis we deploy a two-stage procedure where the second stage

corrector is designed to ‘learn’ the systematic errors of the first stage model

and correct the errors in an iterative manner. The corrector is based on

radial basis functions (RBF) [39, 40] and is shown to significantly improve

forecasts for models with medium-to-large systematic errors while not de-

grading performance of models with very low systematic error. Deployment

of RBF as the corrector introduces some computational issues, relating the

‘power’ of the available computational device to the quality of the corrector.

A critical discussion of the computational issues is also presented.

Evaluation

The evaluation stage assigns value to a forecast by scoring the performance of

a forecasting model. The performance measure (score) as well as the object,
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i.e. what is being scored, are of crucial importance if one aims to achieve a

meaningful understanding of the value of a forecast. For point forecasts the

frequently used score is the Root Mean Square Error (RMSE) and the object

to score is the value of the point forecast. A similar approach is often adopted

in probabilistic setting when some distance metric, e.g. RMSE, is applied

to each of the ensemble forecasts (or their mean or other statistics). While

such an approach could yield some intuition as to ‘how far’ the ensemble

forecasts are from the target, it is questionable whether we would gain a real

insight regarding the value of the forecast. The issue is that both RMSE and

the individual ensemble forecasts only hold information about expectations,

and disregard the very useful information contained within the dis-

tribution of the ensemble forecasts. To make use of all the available

information captured by an ensemble, the ensemble forecast must be trans-

formed into a forecasting distribution, [15, 58, 112, 113, 115, 116] and the

forecasting distribution itself then becomes an object of the scoring. There

are two immediate challenges related to the process. First, what method

should be used in order to transform the ensemble forecast into a distribu-

tion and is the method statistically sound? Second, what score should be

applied to the forecasting distributions?

Ensemble transformation and scoring represent two integral parts of an eval-

uation method, the properties of which must be well understood. Using a

biased evaluation method could lead to the selection of an inferior forecasting

model. In this thesis we study Kernel Dressing (KD), a probabilistic evalu-

ation method which uses, but is not restricted to, a logarithmic scoring rule

called Ignorance [49, 115]. We show that its properties make KD particularly

useful for probabilistic setting and, under some conditions, prevent selection

of an inferior model. Also, since in practical applications Ignorance seems

often overlooked despite its desirable properties, we show how this scoring

rule relates to the well-known Information Theory measures of Shannon’s
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Entropy [124] and Kullback-Leibler divergence [74]. By exposing the links

among the three measures we hope to further highlight the usefulness of

Ignorance as a probabilistic scoring rule.

Benchmarking

The real value of a forecasting model can only be understood on a relative

basis, i.e. when compared to an alternative model (benchmark) [4, 48, 53,

156]. Benchmarking can thus be considered as an interpretation of the score

of a forecast. In probabilistic setting, the output of a benchmarking model is

transformed into distributions so that they are comparable to the forecasting

distributions of the forecasting model. The benchmarking distributions often

take very simple form, e.g. unconditional distribution of past observations

(climatology). While simple benchmarks are often robust, they may lack

performance. More complex benchmarks may be required to improve on the

performance and thus become a ‘stronger’ benchmark. One way of creating

a stronger benchmark is to construct conditional distributions. Conditioning

on some event (e.g. month of a year in seasonal forecasting) may yield

improvements in performance at an affordable cost of a moderate reduction

in robustness.

Another appealing method of benchmark construction is to use simple statis-

tical models. Statistical models are capable of incorporating simple forecast-

ing rules that may greatly improve performance, while preserving the desired

level of robustness. Statistical models can therefore be more useful bench-

marks than climatological distributions, and provide us with a much deeper

understanding of the value of a forecasting model. In this thesis we present

Dynamic Climatology (DC), a simple statistical model that poses a stronger

benchmark than climatological distributions. We demonstrate some of its

properties in simplified settings and then use it to benchmark the state-of-

the-art seasonal-to-annual weather forecasting models of the ENSEMBLES
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project [28, 29, 36, 57, 152].

Thesis structure

This thesis is structured as follows: In Chapter 2 we provide background

information that is drawn upon throughout the thesis. We discuss funda-

mental concepts such as ensemble forecasting [78, 98, 143], forecasting sce-

narios [65, 66] and sources of uncertainty [31, 131, 132]. We also define the

concept of a forecasting framework, discuss methods of forecasting density

construction [15, 58, 110] and (un)conditional climatological forecasts.

In Chapter 3 we investigate the properties of Kernel Dressing (KD) [15, 58],

a method of transforming ensemble forecasts into forecasting densities, and

study the properties of Ignorance [14, 49, 115], a measure of forecasting skill.

We show that, although similar in concept, KD substantially differs from

Kernel Density Estimation as understood by [11, 20, 129]; a fact that has

not been fully recognized. We show analytically that minimizing Ignorance

implicitly leads to minimization of Kullback-Leibler divergence [75]. We nu-

merically demonstrate that under the perfect model scenario (PMS) [133],

KD recovers the system density, suggesting that KD is an unbiased estima-

tor. We also perform a novel numerical analysis of the KD properties outside

PMS and demonstrate that caution must be exercised when deploying Affine

KD (an extended version of KD), a new fact that has been previously over-

looked [14]. Using the Kelly betting framework [72] we clarify important

links between Ignorance and alternative Information theoretical measures,

namely Shannon’s entropy [124–126] and Kullback-Leibler divergence.

In Chapter 4 we introduce Dynamic Climatology (DC), a new approach to

defining a zero skill reference (benchmark) [157]. DC is a new, and rela-

tively simple, statistical model shown to be a valuable benchmarking tool,

which we deploy to benchmark the forecasting skills of the state-of-the-art

global circulation models of the ENSEMBLES project. The rationale for

39



CHAPTER 1. INTRODUCTION

constructing DC is that traditional zero skill references such as climatolog-

ical forecast (climatology) may not yield lead an adequate quantification of

model skill [53, 68, 89]. By defining a stronger reference, e.g. DC, we may

obtain a more thorough understanding of the value of a forecasting model.

We construct DC to outperform climatology and demonstrate that

DC indeed does outperform climatology. We also construct DC to

accommodate for degradation of forecasting skill at long leadtimes

and to be capable of producing ‘new’ values, not contained within

the training set. We deploy DC to forecast Sea Surface Temperatures over

two regions important for seasonal weather forecasting: the Nino3.4 and the

Main Development Region. We contrast the DC forecast with those of EN-

SEMBLES models [36, 57, 152] and demonstrate that DC is a comparable,

and occasionally a ‘better’, performer.

In Chapter 5 we provide background information on radial basis functions

(RBF), as they are extensively used in Chapter 6. We discuss the basic

setting of RBF interpolation and approximation, and give arguments for

formulating forecasting problems in terms of RBF approximation.

In Chapter 6 we present predictor-corrector (PC), a new approach to im-

proving the forecasts of an imperfect model, based on iterative corrections

of the systematic part of a model error [61, 67, 137]. For several nonlinear

systems, we show the PC significantly improves imperfect model forecasts

and is superior to an alternative approach of ΨΦ [62, 63].

To demonstrate the skill of the two approaches, PC and ΨΦ, we consider

two well-known dynamic systems, Lorenz84 [83] and Lorenz63 [81]. Using

Lorenz84, we show that, for a low-complexity imperfect model, PC improves

the forecasts by > 1.5 Bits and outperforms ΨΦ by up to 1 Bit at long

leadtimes. We also test the behavior of both PC and ΨΦ as we gradually

improve the forecasting skill of the imperfect model. We show that PC
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maintains its superiority at medium range, even in settings with a (much)

more skillful imperfect model. The computational aspects of the PC and ΨΦ

approaches are also discussed in detail, both in general and specific terms.

We also use the Lorenz84 and Lorenz63 systems to study the impact of Root

Mean Square Error (RMS) [97], when used as a meassure of forecasting per-

formance [134]. Intuitively, given a measure of forecasting performance (say

RMS), it is reasonable to require that the measure rates a perfect model

(i.e. a model equivalent with the system) higher than an imperfect model

(an approximation of the system). Measures that do not meet such a re-

quirement may be misleading and may lead a forecaster to believe that an

approximation of a system may be more useful then the system itself. Whilst

a number of measures do meet the requirement, i.e. are proper measures, it

has been shown that RMS is not a proper measure. Despite its potentially

harmful properties RMS continues to be frequently used in the evaluation of

forecasting models. Our aim is to expose the danger of using RMS. To do so,

we numerically demonstrate how RMS-based evaluation may be misleading,

and how it can lead to the selection of an inferior model.
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Chapter 2

Background

This thesis capitalizes on a number of concepts of statistics, information

theory and dynamical systems. In this chapter, we provide background in-

formation that will be drawn upon throughout the thesis.

We begin with a general description of a forecasting problem in Section 2.1.

We discuss a system, a forecasting model, and give our definition of a forecast-

ing framework. We follow with a discussion of forecasting scenarios [65, 66]

and briefly describe sources of uncertainty [31, 131, 132] obscuring the future

evolution of a dynamical system.

In Section 2.2 we provide a brief description of ensemble forecasting [78, 98,

143] and discuss several methods of forecasting density construction [15, 58,

110]. Both ensemble forecasting and forecasting densities are key concepts

in probabilistic forecasting and will be used throughout this work. We also

define unconditional and conditional climatological forecasts and discuss their

application. These climatological forecasts are used extensively in Chapters 4

and 6

Chapter 3 is concerned with the properties of Kernel dressing, a method
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of forecasting density construction and evaluation. We discuss the general

aspects of forecast evaluation in Section 2.4, where we also define Kernel

dressing [15].

At the center of forecast evaluation are measures of forecasting performance.

Measures originating from Information theory [22, 72, 74, 124, 125] have

proved to be of particular importance [46, 115]. The Information theoretical

measures and their importance for evaluation of forecasting performance are

discussed in Section 2.3.

Lastly, we briefly discuss issues related to seasonal weather forecasting and

describe the forecasting models of the ENSEMBLES project [36, 57], as they

will be a subject of study in Chapter 4.

2.1 Forecasting

The future evolution of any physical system is clouded with uncertainty,

which limits our ability to precisely determine future states of the system.

In our efforts to better understand the behavior of a system, we construct

inherently imperfect mathematical models describing the underlying rule gov-

erning the system. These imperfect models are often used to issue statements

about future system states - a process called forecasting [5].

In forecasting, systems are often classified as either deterministic or stochas-

tic. Deterministic systems are governed by a fixed behavioral rule and do

not involve any randomness. Stochastic systems, on the contrary, do involve

random behavior, although their behavioral rule may also involve a fixed

(non-random) part.

Throughout this work, we are concerned with forecasting of dynamical sys-
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tems, a subclass of deterministic systems. A good definition of a dynamical

system can be found on Wikipedia [155]: a dynamical system is ‘a mathemat-

ical concept where a fixed rule describes the time dependence of a point in a

geometrical space’. An example of dynamical systems are physical laws, typ-

ically described in terms of differential equations, e.g. a simple pendulum[8]

derived from Newton’s second law

Aθ̈ = −g sin θ (2.1)

where A is the length of the pendulum, θ is the angular displacement of the

rod and g is gravitational force.

In our work (e.g. Chapter 4), we apply probabilistic methods in the context

of weather forecasting. While the pendulum system of Eq. 2.1 is an example

of a simple dynamical system, weather is an example of a very complex

dynamical system. Weather is defined as a state of the atmosphere, and

is often described using a set of fixed behavioral rules, i.e. physical laws

such as the one in Eq. 2.1, which form a dynamical system. Weather is also

considered a chaotic system [81]. A chaotic system is a type of dynamical

system sensitive to initial conditions. Given two initial states that are very

close (as quantified by some measure), the future states obtained by evolving

the two initial states may end up very far from each other. In other words,

small differences in initial states (conditions) may yield entirely different

forecasts. Obtaining a useful forecast of complex, chaotic system such as

weather is a challenging task. Yet due to its direct impact on many fields,

including agriculture, transport, insurance, etc., weather forecasting is of

crucial importance.

In this work, our aim is to apply forecasting approaches based on probabilis-

tic methods. Forecasting is used throughout a wide spectrum of scientific
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fields as well as industries and is applied to a large variety of dynamical and

stochastic systems differing in complexity as well as their nature (natural

vs. mathematical). It is not possible to apply our approaches to all possible

classes of systems; there are simply too many of them. What we can do is

apply our methods to a few selected systems for which we believe our ap-

proaches are useful. Our applications therefore involve simple mathematical

dynamical systems (e.g. Lorenz63 [81], pendulum) but also a highly complex

chaotic system (weather).

Although we deliver a number of results that may help to better understand

the studied systems (or their models), our main goal is to present probabilis-

tic methods and how they may be applied in forecasting. Our emphasis is

not on system analysis, but rather on a thorough description of (new or ex-

isting) probabilistic methods and their properties, as well as a comprehensive

illustration of their application.

2.1.1 System model pair

Forecasting a system requires a vehicle, a forecasting model. By a forecasting

model, we will understand a mathematical description of a system. Models

are constructed to describe systems, and so the models themselves can also be

classified as deterministic and stochastic. To describe a dynamical system, a

physicist would typically use a deterministic model, i.e. differential equation

(or a set of equations) similar to Eq: 2.1. On the other hand, a statistician

would probably choose a stochastic model to describe the system. In this

work, we will be using both approaches.

A given system may be described by different models; where a physicist uses

differential equations, a statistician may use regression. But even if we stick

with the physicist’s toolbox, there might be different sets of differential equa-
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tions describing the same system. The obvious reason for having more than

a single mathematical description of a system is that it may be impossible to

describe the system exactly. In fact, no model of a physical dynamical system

is able to exactly describe the system at hand, simply because forecasters do

not possess a perfect knowledge of all laws occurring in nature.

2.1.2 Forecasting framework

The process of forecasting involves several stages, the collection of which we

call a forecasting framework. Although the number of stages may vary with

an application, in general, the forecasting framework involves:

(1) collection of observations,

(2) data quality control,

(3) current system state estimation,

(4) forecast generation,

(5) forecast post-processing,

(6) construction of forecasting density,

(7) forecast evaluation.

Items 1-3 are often referred to as data assimilation. In fields such as weather

forecasting, the data assimilation requires more human, computational, and

financial resources than the rest of the forecasting framework. For exam-

ple, the European Center for Medium and Short Range Forecast (ECMWF)

processes a total of 75 million observations from satellites and conventional
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observation devices every 12 hours. To collect and quality control such an

amount of data is a major task.

Collected and quality-controlled data then may serve as an input for current

state estimation procedures. In nonlinear dynamical systems small errors in

a current state estimation may ruin a point forecast as chaotic (or highly

nonlinear) systems, such as weather, display high sensitivity to initial con-

ditions [79, 81]. Due to the significant impact on the quality of a forecast,

state estimation methods, such as 4DVaR [139, 142], Particle Filter [50, 108],

Gradient Descent [59, 64] etc., are a very active area of research.

Forecast generation is a central part of the forecasting framework. The fore-

casting model is initialized by initial conditions determined within the state

estimation stage. The initial conditions are than integrated by the model to

produce a raw ensemble of point forecasts for a required future time, which

we call a leadtime.

The raw ensemble often contains biases. Model output post-processing is a

type of quality check applied to the ensemble and designed to remove biases.

Outliers may also be handled within this stage.

If a probabilistic forecast is to be issued, the post-processed ensemble needs

to be turned into a forecasting PDF, which assigns probabilities to possible

future states of the forecasted system. The forecasting PDFs are also used

in the forecast evaluation to ex-ante assess the rate of success of a forecast.

By providing this very short, and possibly incomplete, description of a fore-

casting framework, we are trying to show that forecasting is a complex pro-

cess involving a number of procedures and methods. It must be stressed that

each and every stage is prone to errors and imperfections, which negatively

impact on the quality of a forecast. In an attempt to improve a forecast, a

forecaster should pay attention to all of the stages of the forecasting frame-

47



CHAPTER 2. BACKGROUND

work.

2.1.3 Perfect and imperfect model scenario

When investigating properties of a forecasting model, both the Perfect model

scenario (PMS) [65, 133] and the Imperfect model scenario (IMS) [66, 133]

are useful concepts. In Chapter 3, we rely on PMS to demonstrate properties

of a forecast evaluation method. To explain what we understand by PMS, we

first describe IMS and than define PMS as somewhat the opposite of IMS.

The descriptions loosely follow [133].

Imperfect model scenario : IMS is a scenario in which the forecasting

model provides an imperfect description of a system. It assumes that a

forecaster does not know the system rule exactly. Often it is also assumed

that the system’s current state is not known exactly.

Every ‘real world’ forecasting exercise is an example of IMS; there are no

perfect models in the real world. A physicist does not know exactly the

governing equations of a particle motion, a weather forecaster has at best

a crude description of a weather system and no social scientist has a model

that would perfectly predict an election outcome. Under IMS the forecasting

model always produces an imperfect forecast.

Perfect model scenario : PMS is the opposite of IMS to some extent.

Consider a forecaster with a complete knowledge of the laws governing a sys-

tem. This perfect knowledge allows him/her to construct an ideal description

of a system, a perfect model.

We mentioned above that in IMS a forecast is always imperfect. Does it

mean that in PMS, with a perfect model at hand, a perfect forecast can be

achieved? The answer is no. To produce a perfect forecast of a non-linear
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dynamical system, a forecaster needs to know exactly the current state of

a system. Any uncertainty about the current state due to an observational

error, or any other source of uncertainty, accumulates over time [98, 132, 133]

leading to an imperfect forecast. Under PMS, a forecast is always imperfect

unless the exact current state is known.

With real world forecasting exercises falling under IMS, is there any example

of PMS? The answer is that PMS can only be constructed. This can be

achieved by letting the model act as both the model and the system. Con-

sider a forecasting model taking the form of a standard normal distribution,

N(0, 1), and a system producing a sample from the same distribution at each

time t, i.e. xt
iid∼ N(0, 1). The forecasting model will produce an imperfect

but highly valuable forecast of xt, since the distributions of the model forecast

and system states will be equivalent. This may look like cheating, but PMS

is in fact an ideal testbed for understanding the properties of a forecasting

model, as we show in Chapter 3.

Perfect ensemble: Often, it is useful to use the concept of a perfect en-

semble in combination with PMS. With a perfect ensemble, we assume a

distribution of a current system state, which is a much weaker assumption

than assuming an exact knowledge of a current state. The distributional

assumption allows for sampling current state ‘candidates’, so that an en-

semble of ‘perfect initial conditions’ may be constructed. Under PMS and

perfect ensemble, a forecast remains imperfect, but the forecast distribution

is equivalent to the distribution of the future system states.

The combination of PMS and perfect ensemble involves rather strong as-

sumptions. So when is such a combination useful? The two concepts are

ideal tools when trying to understand the properties of the whole forecasting

framework (see Section 2.1.2). For example, if PMS with a perfect ensemble

yields a biased forecast, a forecaster knows that the bias is due to the eval-
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uation method; both the forecasting model and the current state estimation

method may be ruled out as a sources of the bias. Without the perfect en-

semble, the forecaster could not be certain whether it is the evaluation stage

or the current state estimation stage causing the bias.

2.1.4 Sources of uncertainty in physical systems

Forecasts of any dynamical systems are inherently inaccurate. There are

two major sources of uncertainty directly influencing the accuracy of a fore-

cast [98, 99]: uncertainty about the current state of a system, i.e. the initial

condition uncertainty, and uncertainty due to the inaccuracies in a forecast-

ing model specification, the model error [61, 137].

Initial condition uncertainty : Under IMS conditions, uncertainty stems

from the forecaster’s inability to accurately observe a current state of a sys-

tem, an observation error. The observation error is particularly influential

when sets of differential equations are used as a model. It is well known [81],

that for nonlinear (and in particular chaotic) systems/models, an arbitrarily

small initial error in the initial state will accumulate (grow) over the forecast-

ing leadtime. The error growth will eventually cause the forecasting model

to reach its predictability limit [133], a leadtime beyond which the forecast is

no longer ‘useful’. Although stochastic models may be less susceptible, they

also may suffer from the imprecise determination of the initial condition.

Model error : The uncertainty related to the model formulation arises due

to an imperfect understanding (or description) of the predicted system. The

imperfect model formulation leads to a model error, which will eventually

cause the model to reach its predictability limit.

The model error is often caused by a number of factors. One way of disen-
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tangling the model error is as follows:

(1) Structural error : The equations describing the systems are ‘incorrect’,

i.e. there may be a variable missing or a function is incorrectly specified.

(2) Error due to a choice of approximation and discretization method : A

forecasting model is often deployed on a computational device, which

is by nature of a finite precision. i.e. a digital (discrete) device. Model

equations describing a given system frequently take a continuous form.

To deploy a model on a computer, the continuous equations need to be

discretized. This transformation involves numerical methods that of-

ten require approximations and truncations [145], and thus introduce

‘imperfections’ into the model’s original (analytical) equations. The

choice of a transformation method influences the severity of imperfec-

tions. A poor choice of transformation may lead to a significant model

error, even in computers with very high precision.

(3) Error due to model resolution: Computational devices always work at

a limited capacity. Their main constraints, limited memory and speed

of processing, translate into restricted precision, limitations of volume

of tasks, and constrained execution time. Due to the constraints, the

values of system variables are calculated on a discrete mesh to which

model equations are adjusted (see above paragraph). The density of

the mesh is another source of imperfections. Using a very dense mesh

means that less approximation is needed to obtain state values between

mesh points, giving less room for an imperfection due to approxima-

tion. Note that model error due to resolution differs from that due to

discretization. This is because a high density mesh cannot compensate

for errors introduced by a poorly chosen discretization method. Hence

models with low mesh density and high quality approximation methods
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may exhibit lower errors than those with high mesh density but poor

approximation/discretization method.

To minimize the observation error, a forecaster may attempt to improve the

measuring device. This, however, may prove difficult due to budget con-

straints or the fact that the device is already state-of-the-art. A more real-

istic approach is to use a number of observational devices and to determine

the initial state as some function of their outputs. Alternatively, a fore-

caster may attempt to sample the distribution of initial states as discussed

in Section 2.2.1.

To address model error, a forecaster may attempt to obtain a better under-

standing of the system. Another option is to see whether the model error

contains a systematic part and if so to correct it. When using deterministic

models, the systematic part of the model error is frequently present. In such

cases, error detection and correction algorithms can be very successful in re-

ducing the systematic part of the model error. We suggest a framework that

deals with the systematic part of a model error in Chapter 6.

2.2 Probabilistic forecasting

2.2.1 Ensemble forecasting and forecasting densities

In Section 2.1.4, we have discussed how an inaccuracy in determination of a

current state accumulates over the integrations of a forecasting model, and

degrades the quality of a forecast. We have also mentioned that a forecaster

may address the initial condition uncertainty using Monte Carlo methods.

Ensemble forecasting [78] is one such approach. Ensemble forecasting is fre-

quently deployed in weather forecasting, and aims to provide a representative
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sample of possible future states of a system.

To produce an ensemble forecast (or simply an ensemble), a forecaster sam-

ples possible current states, generating M initial conditions xt = {xt,k}M
k=1,

which form an initial condition ensemble at the initial time t. The initial

conditions xt,k are then iteratively input into a forecasting model to produce

an ensemble of M point forecasts, x̂t+1 = {x̂t+1,k}M
k=1, i.e., an ensemble fore-

cast at leadtime t+1. Fig: 2.1 shows a simple schematic of ensemble forecast

generation, for the case of M = 4 initial conditions. In an ideal case, the

forecast values would be a representative sample of the possible system states

at time t = 1.

t=0 t=1
−5

0

5

observation verification

initial condition 1

initial condition 4

forecast 1

forecast 4

schematic of ensemble forecast

x

leadtime

Figure 2.1: Ensemble forecast: Using an observation (large red circle) at time

t = 0, an ensemble of initial conditions (small red circles at t = 0) is constructed

and iterated forward using the model (blue lines) to obtain an ensemble forecast

(small red circles at t = 1). At time t = 1 the forecast can be verified with an

outcome (red cross), i.e. system state observed at time t + 1.

Forecast-verification archive: A forecasting model is often used to pro-

duce ensemble forecasts extending to several lead times. At some later
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time, when the forecasted system states are actually observed, an archive

of forecast-verification pairs may be formed. The archive is constructed sim-

ply by pairing an ensemble with the observed system state at each leadtime.

The archive of forecast-verification pairs can than serve as a training set when

constructing forecasting densities and/or evaluating forecasting performance

of a model.

Forecasting distribution : A natural way of describing an uncertainty is

via distributions. A sample of possible future states, an ensemble forecast,

may be turned into a forecasting distribution, p̂. The forecasting distribution

is able to concisely summarize the uncertainty caused by observational and

modeling errors. When producing forecasts for L > 1 leadtimes, a forecasting

distribution is constructed for each leadtime l, giving a sequence of distribu-

tions {p̂t+l}L
l=1. There are a number of methods to construct the forecasting

distributions, and we briefly discuss some of them in the next section 2.2.2.

An important question is: why would a forecaster wish to turn ensemble

forecasts into forecasting densities? There are three main reasons for doing

so. First, a forecasting density can be used to assign probabilities to the

possible future states of the system. Second, a forecasting density enables

evaluation of a forecast in probabilistic terms. This is an important part of

the forecasting framework discussed in more detail in Section 2.4. Third, the

density construction is often designed to include post-processing procedures

such as bias correction, designed to improve raw forecasts ex post.

2.2.2 Constructing forecasting densities

There are number of methods to turn ensemble forecasts into forecasting

densities. Here we briefly discuss a selected few, namely Logistic regression,

Gaussian dressing, and Bayesian model averaging. By choosing these three
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particular methods, we aim to provide insight regarding ensemble-based den-

sity construction. Since our selection represents rather different approaches,

we hope to demonstrate the diversity of existing approaches. We note that for

this work, the most relevant is the Gaussian dressing, which provides a link

to our preferred method of Kernel dressing (section 2.4.3). Although Logistic

regression and Bayesian averaging are not directly linked to Kernel dressing,

we hope that understanding the alternatives will help the reader to better

appreciate the concept of density construction from ensemble forecasts. A

detailed account of methods discussed, as well as alternative methods, can

be found in [157].

Logistic regression : In weather forecasting, logistic regression has been a

frequent tool of forecasting density estimation [157] [54]. Logistic regression

is a useful method when a forecaster takes an interest in the quantiles, q, of

possible outcomes. In ensemble forecasting the logistic regression often takes

the form of

P (y ≤ q) =
1 + exp(β0 + β1x̄ + β2σ̂)

exp(β0 + β1x̄ + β2σ̂)
(2.2)

where x̄ is a mean of an ensemble forecast, σ̂ is the ensemble variance and y

is the observed system state, i.e., the verification. The parameters β0, β1, β2

are determined by maximizing likelihood of the verification y being in the

quantile q over all forecast-verification pairs contained within an archive.

Gaussian dressing : Gaussian dressing (GD) is a sort of ensemble dress-

ing a density construction method proposed by [116]. GD applies gaussian

distribution to each forecast-verification pair and takes the form of

p(y;x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (2.3)
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There are different ways of determining the parameters µ and σ. In the

simplest form of GD µ and σ are set to some function of the ensemble mean

and ensemble variance respectively, i.e., µ = f(x̄) and σ = g(σ̂). As noted

by [14], this has the undesirable consequence that the forecasting distribution

is solely based on the ensemble forecast, i.e. information provided by the

actually observed state y is neglected. Other authors, e.g. [48, 58] suggested

to determine µ and σ according to a forecasting performance. This leads to

maximization of some function of p(y) over the forecast-verification pair. We

will discuss the performance-based approach in Section 2.4.3.

Bayesian model averaging : Bayesian model averaging (BMA) [110] ad-

dresses an uncertainty stemming from selecting a suboptimal model. Instead

of relying on a single model BMA considers K candidate models and calcu-

lates a posterior probability of an outcome by conditioning on the K models.

Consider a model k producing a l step ahead point forecast xk,t+l, where xk

represents the k-th ensemble member. The forecast xk,t+l is associated with

a PDF, qk(y|xk,t+l). The PDF qk is a PDF of the outcome y conditional on

xk being the best forecast in the ensemble forecast. Dropping the t + l term

for simplicity, the BMA model can be written as

p(y|x1, . . . , xK) =

K
∑

k=1

wkqk(y|xk) (2.4)

where wk is the probability that the forecast xk produced by model k is the

best forecast in the ensemble. The wk thus may be viewed as weights assigned

to each of the ensemble members and are estimated via maximization of the

log-likelihood of p(y|xk) over a testing data. The functional form of p can

take the form of a parametric distribution. When a Gaussian distribution is

assumed, the BMA can be described as a weighted sum of K Gaussian ker-

nels, each centered at the ensemble member xk, with a variance determined
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from the historical errors of the forecast xk.

2.2.3 Unconditional climatology and climatological fore-

cast

The climatological distribution, or simply climatology, is an unconditional

distribution, pc(x), of observed values of a system variable x over the time

period [t − ∆, t + ∆]. Climatology may be constructed using parametric

or non-parametric density estimation methods. In our work, we estimate

climatology using the Kernel dressing method described in Section 2.4.3.

Climatology is not only useful as a statistical description of the forecasted

data, it may also be used as a simple probabilistic forecasting model. When

used as a forecasting model, the forecasting density for a given leadtime l

simply coincides with the climatology, pt+l(x) = pc(x). This approach yields

a probabilistic forecast that does not change over leadtime.

Assuming that the systems dynamics is (to some degree) captured by data

used to construct climatology, the climatological forecast may be considered

a robust forecast. In other words there will be a few surprises to the clima-

tology if the dataset reasonably captures the system’s past dynamics and the

dynamics do not change abruptly.

As the climatological forecast does not change with leadtime, it might not

seem a very useful forecasting model. However, its usefulness can be better

appreciated when compared with forecasts produced by alternative models.

Since climatology is simple to construct, quick to use, and produces robust

forecasts, it may serve as a useful reference forecast defining a zero skill.

An alternative model should always outperform a zero skill forecast. What

would be the purpose of a model whose forecast is ‘worse’ than a zero skill

57



CHAPTER 2. BACKGROUND

reference forecast?

Climatology may be constructed in a number of ways, e.g. via parametric

density estimation [58], kernel density estimation [11, 129] or kernel dressing

(see Section 2.4.3). The climatological distribution can be used to produce a

very basic climatological forecast, simply by sampling a single (or multiple)

value(s) from the distribution.

2.2.4 Conditional climatology

Climatological distribution may take more complex forms. We can construct

so called conditional climatologies by conditioning on some feature of the

data. For instance, when a seasonality is present, a forecaster may choose

to condition on a particular season. In weather forecasting, it is common

practice to construct a monthly climatology by conditioning on a month of a

year. In economics, climatologies conditional on a business or political cycle

are often used.

In Chapter 4 we will be using a monthly climatology to benchmark alternative

forecasts. Monthly climatology is a special case of a climatology where we

condition on phase information. In general, climatology conditioned on a

phase can be defined as

pθ(x) = p(x|xt : t ∈ [t − θ1, t + θ2]) (2.5)

where xt is a time series of x and t is a point on a circle with circumference

equal to length of a period and θ1, θ2 are phase angles defining an arc over

the circle. In case of the monthly climatology and considering monthly ob-

servations of some variable, the period would be 12 months long, the time
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t would be set to the number indexing a given month and θ1 = θ2 = 0. In

practice, one may construct monthly climatologies that span over more than

1 month by setting θ1 = θ2 > 0. Asymmetric monthly climatologies can also

be constructed by setting θ1 6= θ2.

We note that it only makes sense to construct monthly climatology when a

monthly seasonality is actually present in the data. Constructing monthly

climatology of temperatures over sub-Saharan Africa may not make much

sense, since the seasonality at these latitudes may not be related to months

but rather to seasons.

In the following sections we use data from the application in Section 4.3.2 to

demonstrate how monthly climatology can be a more useful climatology than

the unconditional. In Fig: 2.2 we show a measure of forecasting performance

against the varying size of the phase angle. Since the data used to gener-

ate the plot are monthly data, the phase angle has a simple interpretation.

Window size of 0 corresponds to a ‘pure’ monthly climatology, i.e. only the

same months are considered in the conditioning. Window size of 6 means

that all months of a year may be considered, which leads to unconditional

climatology. The measure of performance will be explained in Section 2.4.2;

for now we can say that lower value mean a better performance. Clearly, the

window size of 0, which corresponds to the ‘pure’ case of monthly climatol-

ogy, gives much better results then the window size of 6 which corresponds

to unconditional climatology.

2.2.5 Blending climatological and model forecasts

At the ‘short’ leadtimes, a forecasting model is expected to outperform the

climatological (or any other zero skill) forecast. Should it fail to do so, the

model should not be selected (see Section 2.2.3). At the long leadtimes,
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Figure 2.2: Climatological ignorance in Nino34: Forecasting performance of

climatology of monthly SST temperatures over Nino3.4 region evaluated in terms

of Ignorance. Ignorance is calculated for a varying size of a phase angle (window).

For window size of 6 the conditional climatology becomes unconditional, as all

observations will fall within the window. The optimal window in this case is 0

(the lowest level of Ignorance), i.e. the climatology should condition only on a

given month of a year.

however, the error growth will cause a model forecast to deteriorate. Thus a

forecasting model that performs well at short leadtimes may be outperformed

by climatology at long leadtimes. The concept of blending aims to prevent

the model from underperforming the climatological forecast.

The idea is simple. For a given leadtime, a model forecasting density pm(x)

is ‘blended’ with the climatology pc(x) producing a ‘final’ forecasting density

p(x)
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p(x) = α × pm(x) + (1 − α) × pc(x) (2.6)

where α ∈ [0, 1] is a blending parameter. As a result, at leadtimes where

the model significantly outperforms climatology, the parameter α → 1. At

the long leadtimes, where the model forecast is eroded by the growth of the

forecasting error, α → 0 and the climatology ‘takes’ over. The final forecast-

ing density p thus always outperforms or is comparable to the climatological

forecast.

In this work, unless stated otherwise, all model forecasting densities are

blended with climatology. Where suitable, the blending is done using a

conditional climatology, e.g. monthly climatology.

2.3 Information theory in forecasting

Achieving a high quality forecast is a central point of any forecasting exercise.

The question is how to measure the quality of a forecast, or, in other words,

the performance of a forecasting model? When assessing performance of a

model, predictability of the system should be considered. Quantification of

predictability dates back to [82], where it is defined in relation to climate

as ‘the time span through which a given climate is supposed to last’. The

intuitive link between a model performance and predictability is that for

systems with low predictability the forecast starts to deviate from its target

very soon, i.e. at short leadtimes. Intuitively, if a state of a system changes

too frequently and the changes do not follow detectable patterns, it becomes

very difficult for any model to produce a forecast that stays with the target

over a long time span. Ideally, a forecaster would assess forecast quality
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simply by comparing the time over which a forecast stays close to a target

with the predictability of the system. The problem is that, apart from some

special cases [162], the predictability of a system is rarely known.

Most (if not all) measures of model performance are based on the notion

of closeness, i.e. they aim to evaluate how ‘close’ a forecast is from its tar-

get. Probably the best known measure is the predictive mean squared error,

where the ‘closeness’ is defined as the Euclidean distance of a forecast from

its target. Typically, the mean squared error is applied to point forecasts.

However, with the development of ensemble forecasts we can form so-called

forecasting densities, distributions constructed from an ensemble forecast,

and confront the distribution with the target. The reason for working with

distributions is that a distribution contains more information than a sin-

gle point and so measures based on distributions may provide more robust

evaluation of forecasting performance [112, 133].

The question is, what performance measures are useful? For example, ear-

lier studies in weather forecasting [87, 128] often deployed measures of pre-

dictability based on the signal-to-noise ratio. The noise-to-signal ratio can

be measured at different locations and different situations. However, as [77]

point out, to obtain an overall measure of forecasting performance the changes

in the signal should be weighted by the frequencies of their occurrence and

then aggregated. The problem is that aggregating signal-to-noise ratios over

different times (or locations) has no clear interpretation. This drawback of

the signal-to-noise ratios led to a search for alternative measures.

An important class that overcomes the issues of signal-to-noise ratios have

been developed within Information theory [124, 125]. The class of Informa-

tion theory-based measures is more general than signal-to-noise ratios [77]

since it can compare forecasts across different locations or times. Further-

more, these measures take into account forecasting distributions and thus
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can deliver a more robust performance assessment. Since this class of mea-

sures has proved very influential across a variety of forecasting fields, and

has been successfully applied to assess forecasts of both low-dimensional as

well as complex dynamical systems, we will be using the information-based

measures throughout this work. The focus in this subsection is to provide

some brief background information on these measures.

2.3.1 Information-based measures of performance

The work of [77] suggests using measures developed within Information the-

ory as measures of predictability in simple climate models. Their approach

uses the entropy

H(X) = −
n

∑

i=1

p(xi) log p(xi), (2.7)

which measures uncertainty related to states xi occurring with probabilities

pi. Since by definition, the entropy is a measure weighted by the frequency of

occurrence of states, it can be used as an aggregated measure of predictabil-

ity. Moreover, [77] make the point that upon making a measurement an

uncertainty, hence entropy can be used as a measure of information gain.

They further consider the mutual information

I(X; Y ) =
∑

x,y

p(x, y) log

(

p(x|y)

p(x)

)

(2.8)

and use it to measure how fast information about a given initial change of

signal (or anomaly) is degraded.
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2.3.2 Forecast performance and optimal compression

An alternative approach based on Information theory is suggested by [115],

who construct a score that minimizes the amount of information needed to

describe the distribution which governs occurrence of a system state. In In-

formation theory this is the problem of optimal data compression discovered

and solved by [124–126]. In data compression, one aims to encode given

information using fewer binary digits (bits) than needed to exactly express

the given information. This can be achieved by exploiting redundancy in

the information. For example, consider a string of characters ‘AAAAABBB-

BCCC’ needs to be transmitted to a recipient. Transmitting the original

string would require 96 bits, i.e. 8 bits per each of the 12 characters. Instead

of transmitting the original string the source transmits an encoded version

as 5A4B3C, that is the message would read: there are 5 letters A, 4 letters

B, and 3 letters C. The total amount of bits being transferred is only 54

(assuming 32-bit architecture and numbers being represented as characters)

To describe the basic idea behind the score in the forecasting context [115]

provide the following example. Consider 2 forecasters A and B, both having

access to a forecasting distribution p used to forecast an outcome x. Assume

that forecaster A has been told what the outcome is, and needs to share/com-

municate the result to forecaster B. The question is, what is the minimum

bits of information A needs to communicate the outcome to B? Based on the

optimal compression, A needs the minimum of

Bi = − log2(p(xi)) (2.9)

bits to describe to B that the i-th outcome of K possible outcomes has

occurred.
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What is the rationale for deploying the optimal compression vehicle? Con-

sider that A attempts to communicate the outcome to B using two alterna-

tive forecasting distributions p and q. We can think of p and q as being two

alternative encodings of the same outcome, just like in the above example

with letters. If using p means that, on average, the forecaster A needs less

bits to communicate the outcome to the recipient B, then A will choose p

as her preferred encoding. In other words, if it takes less effort (bits) to

transmit p rather than q, then p is a more useful description of the outcome.

Consequently, by assigning a number of bits to each of the two alternative

encodings the Ignorance selects the forecasting distribution that is, in the

Information theoretic sense, ‘closer’ to the true distribution governing the

outcomes.

Since Ignorance is based on the idea of optimal data compression, which

is central to Information theory, it is a close relative of other Information-

based measures, namely Shannon’s entropy and also cross-entropy (Kullback-

Leibler divergence). We describe Ignorance in greater detail in Section 2.4.2

and we also show mathematically how it relates to other information mea-

sures in Section 3.3.

2.4 Probabilistic forecast evaluation

A forecast evaluation is an important part of the forecasting framework (see

Section 2.1.2). In this section we provide a description of the forecast eval-

uation process and discuss why it is important. We also provide a detailed

description of an evaluation method of Kernel dressing (KD), which is our

method of choice to be used in all applications below.
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2.4.1 Background on forecast evaluation

Forecast evaluation aims to assess, the general quality of a forecast by com-

paring the forecasted system states to actual observed states. The forecast

quality is quantified in terms of a scoring rule (score).

The forecast evaluation provides a forecaster with:

(a) The ability to better understand and improve a forecast. The forecast

evaluation exposes sub-spaces of the model state space where the fore-

casting error is large. A forecaster then has the opportunity to analyze

the sub-spaces and use the analysis to improve the forecasting model;

(b) Justification of the cost of resources invested into a forecasting frame-

work. The assessment of a forecast performance in terms of score pro-

vides a measure that can be directly linked to the utility a forecast

user. The utility can then be compared with the costs.

(c) The ability to perform model selection. The forecast score of competing

models can be compared in order to select the best model.

The process of probabilistic forecast evaluation involves:

(1) construction of the forecasting densities,

(2) use of the densities to assign probabilities to the verifications,

(3) score calculations.

When evaluating a forecast, we are interested in a performance at a given

leadtime. If we want to evaluate forecasting performance at the first lead-

time, we collect forecasting densities of the first leadtime only and use those
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to evaluate the verifications. For the second leadtime, we use densities con-

structed for the second leadtime only etc.

2.4.2 Ignorance and other scoring rules

A scoring rule or a score, S, is a measure of a quality of forecasting perfor-

mance of a model. In probabilistic forecasting, a score measures how much

of a probability the forecasting density p(·) has assigned to the verification

y. The forecasting performance can then be expressed as an average value of

scores [14] collected over a number of forecast-verification pairs

E[S] =
1

N

N
∑

i=1

S(pi(yi)) (2.10)

where N is a number of forecast-verification pairs, pi(·) is the i-th forecasting

density constructed using the i-th ensemble forecast xi and yi is the i-th

verification.

There are a number of scoring rules currently used in forecast evaluation

procedures, we list a few selected scores:

(1) Ignorance:

S(p(y)) = −log(p(y)) (2.11)

(2) Naive Linear Score:

S(p(y)) = −p(y) (2.12)

(3) Proper linear score:

S(p(y)) =

∫

p2(y)dy − 2p(y) (2.13)
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(4) Mean square error :

S(p(y)) =

∫

(p̂(y) − p(y))2dy (2.14)

where p̂ is an estimate or a forecast of density p. In Section 2.4.1 we have

stated that forecast evaluation provides a forecaster with the means of model

selection. An important property of a score directly related to model selection

is propriety. Given two PDFs p and q, a score is proper if the following

inequality holds

∫

S(p(y))q(y)dy ≥
∫

S(q(y))q(y)dy. (2.15)

Note that a score is strictly proper if the inequality ≥ is replaced by strict

inequality >. In terms of the probabilistic forecasting, Eq: 2.15 can be inter-

preted as saying that a proper score should recognize when the forecasting

density p differs from the ‘true’ density q that produced the verification y.

Clearly, the best forecasting density for y is the one that actually generated

y. Any other forecasting density should score less than the ‘true’ one. Proper

scores therefore ensure that in the (rare) cases when one has to select be-

tween an imperfect forecast and a perfect forecast, the perfect forecast will

be identified as the better one. This is indeed a useful property since in

forecasting one tries to achieve the best possible forecast. When a forecaster

has a perfect density (or model) available it makes sense to prefer it over

any alternative forecasting density since, on average, the perfect forecasting

model will produce better forecasts. In other words, there is no point in using

an imperfect forecasting model when a perfect model is available.

Although the propriety property seems an obvious requirement, not all scores

are proper. For instance, it can be shown [14] that the root mean squared
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error (RMS) is not a proper score. Using root mean squared error thus may

lead the forecaster to select an imperfect model over a perfect one. The naive

linear score is also not proper, while its augmented version, the proper linear

score, is. So what are the potential consequences of using scores that are not

proper? As before, when a forecaster in fact has a perfect model available,

he/she would be foolish to use some alternative imperfect model instead.

The perfect model will certainly deliver a better performance. A proper

score helps the forecaster to detect which one of the alternative models is

perfect.

It could be argued that in practice, a forecaster never has a perfect model

to hand. In such cases, the impact of using an improper score may only be

evaluated via some utility function which a forecaster aims to maximize. In

Section 6.4, we aim to demonstrate this by showing how RMS may lead to

selection of an inferior model.

It is important to realize that deployment of a proper score does not ensure

that the best model is selected. For example, consider a case in which the

forecasting model is perfect but the method used to construct the forecasting

densities is flawed. Despite the model producing perfect ensemble forecasts

the densities constructed from them will diverge from the true density, simply

because the density construction is erroneous. If a proper score is applied

to the (biased) forecasting densities it may fail to detect that the model is

perfect. In other words, judged by the biased densities, the proper score may

‘think’ that it deals with an imperfect model.

In this work, the score of our choice is Ignorance [49, 115]. Forecasting per-

formance in our applications is quantified by the expected Ignorance defined

as
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IGN = − 1

N

N
∑

i=1

log2(pi(yi)) (2.16)

For simplicity, we will call the expected Ignorance simply Ignorance from

now on. Ignorance is a proper score. It is also a local score. Locality is

another property of a score that means only the probability assigned to the

verification y enters the scoring rule. An example of a non-local score is the

proper linear score, which involves an integral over the whole domain of the

verification y.

Note that Ignorance is a score of our choice not only because it is proper.

Another good reason of using Ignorance is that it has direct links to other

information measures, i.e. Kullback-Leibler divergence and Shanon entropy.

We will study links between these measures in Section 3.3.

When comparing a forecasting performance of alternative models, the Rela-

tive Ignorance is a useful metric. Relative Ignorance is defined as

RIGN = IGNA − IGNB (2.17)

where A and B designate two alternative models being compared. In Relative

Ignorance, model B, a benchmark, defines a zero skill reference forecast.

Model A outperforms model B if the relative Ignorance is negative, i.e. below

the zero line defined by the reference forecast of B. The lower the Relative

Ignorance, the better the model A is relative to model B.

In subsequent analyses, a climatological forecast is often used as the zero skill

reference. A forecasting model outperforms the climatological reference if its

Ignorance is lower than that of the climatology, i.e. if Relative Ignorance of

a model is negative.
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2.4.3 Kernel dressing

Kernel dressing (KD) is a non-parametric method of turning ensemble fore-

casts into forecasting densities. For a given leadtime, the method utilizes

multiple ensemble forecasts to construct forecasting densities. Kernel dress-

ing is similar to kernel density estimation (KDE) [56, 80, 114, 120, 129], a

procedure used to estimate a single density p̂ given a sample from the un-

known ‘true’ distribution p. Since KDE is a well-known method, and due to

the similarities between KD and KDE, we first briefly describe a version of

KDE, which will help to describe the KD estimator.

Given a sample x = x1, . . . , xm from the density p a density estimate, p̂, is

constructed using a linear combination of m kernel functions K(·). Each

kernel is entered at one of the m sampled data points xj, j = 1, . . . , m and

is assumed to have properties of a PDF. There are different forms of kernel

functions [37, 105, 129], a frequently used one being the Gaussian kernel

K(t) =
1√
2π

e−
1
2
t2 , (2.18)

The kernel density estimate is given by

p̂σ(x) =
1

mσ

m
∑

j=1

K

(

x − xj

σ

)

. (2.19)

where σ is the bandwidth or a smoothing parameter. The core issue in the

kernel density estimation is how to set the bandwidth. The optimal band-

width should be chosen so that the divergence of the estimate p̂ from the

true p is minimized, i.e. d(p̂, p) = ‖p̂ − p‖, where d(p̂, p) is some measure of

the divergence. An obvious obstacle when minimizing d(p̂, p) is that p is not
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known, i.e. the divergence cannot be measured. To deal with the problem,

a number of automated selection methods have been suggested, including

crossvalidation or plug-in selectors [11, 20, 52].

Similarly to the KDE, the kernel dressing deploys a linear combination of

kernels centered at a data point xj , which in this case is an ensemble member

of an ensemble forecast x = x1, . . . , xm produced by the forecasting model.

In its general form [15], the KD forecasting density can be expressed as

p̂θ(y|x, θ = {σ, a, o}) =
1

mσ

m
∑

j=1

K

(

y − axj − o

σ

)

(2.20)

where y represents the verification, θ is a vector containing the parameters

{σ, a, o}, σ is the bandwidth and the scaling parameter a is designed to

rescale the ensemble forecast, while the offset parameter o shifts the location

of the ensemble. In our applications, the kernel K is chosen to be a Gaussian

kernel. We note that p̂ is an estimate of the distribution of the system state

at a given leadtime.

Similarly to KDE, the issue in KD is how to set the parameters {σ, a, o}.
Since the main goal of forecasting is to produce a useful forecast, ‘usefulness’

being measured by a score, it is sensible to maximize the forecasting score

arg max
θ

S(p̂θ) :=
1

N

N
∑

i=1

S(p̂θ(y)) (2.21)

with N being a number of ‘relevant’ forecasts and S(·) a score of a choice, in

our case Ignorance as given by Eq: 2.16.

The parameters σ, a, o are set simultaneously using all ‘relevant’ forecast-

verification pairs. The KD procedure is applied at each leadtime, which
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means that the relevant forecasts-verification pairs are all those produced

(observed) at the given leadtime. As a consequence, there is a different

parameter vector θl at each leadtime.
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Figure 2.3: Forecast distributions (Gaussian-like curves) somewhat resem-

ble the true p (red Gaussian-like curve). The punter uses the (blue) ensemble

members to construct her estimate (blue Gaussian-like curve) of the true p. The

bookie constructs his estimate (magenta) using climatological approach with all

realized verifications (red crosses joined with red line) being included in his en-

sembles.

KD in the forecasting mode: In the forecasting mode, a model produces a

forecasting ensemble x, but the verifications are not (just yet) available. To

construct a forecasting density for a given leadtime l, we simply use the

parameters θl as obtained in training. To obtain the forecasting density, the

parameter values are plugged into
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p̂t+l(y|x, θl) =
1

mσl

ml
∑

j=1

K

(

al × xt+l,j − ol

σl

)

(2.22)

where p̂t+l is a forecasting density constructed using an ensemble xt+l =

{xt+l,j}m
j=1. xt+l is an ensemble generated by a model initialized at time t to

produce a forecast for leadtime l.

Apart from the quality of the ensemble, there are two other factors influ-

encing the quality of the KD forecasting density. The first is the number of

‘relevant forecast’, i.e. the size of the forecast-verification archive at a given

leadtime. The second is the size of the forecasting ensemble. In real-world

applications, both are often restricted in size, which is a fact that needs to be

appreciated when constructing the forecasting densities. The consequences

of these restrictions, as well as some properties of the KD estimator, will be

discussed in Chapter 3.

2.4.4 Crossvalidation and subsampling

Although the score provides information about the forecasting performance

of a model, it may be useful to evaluate robustness of the information. This is

often very useful when the forecast-verification archive is limited which may

lead to high sensitivity to outliers. In such cases, it is advisable to crossval-

idate the score. In fact, in this work we always perform crossvalidation and

report quantiles of the crossvalidated scores.

For cases when the training set is small, i.e. Chapter 4, we use a leave-

one-out type of crossvalidation [107] as k-fold crossvalidation would not be

feasible. For larger training sets, such as for those used in Chapter 6, the

2-fold crossvalidation is performed.
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2.5 Seasonal forecasting

Section 2.2.3 has provided some preliminary rationale behind the benchmark-

ing of forecasting models. Since in later chapters we will use a benchmarking

model to evaluate performance of seasonal weather forecasting models, our

aim here is to provide some background on seasonal weather forecasting.

Weather forecasters aim to produce forecasts that are useful at both short

and long leadtimes. Long-term weather forecasts are of great importance to

industries including agriculture, health, energy, insurance, and many others.

Take agriculture for example. Knowing 6 months ahead whether there will

be a cold summer, a farmer may decide what type of plants to sow. Or

take insurance for example. Knowing 6 months ahead that there will be

a cold summer in the Atlantic may provide crucial information about the

number of hurricanes during the hurricane season. A reliable forecast could

therefore decrease the expected costs, e.g. damaged oil-facilities, and lead to

a reduction in insurance premiums. In response to such demands (and for

many other reasons) weather forecasting institutions around the world aim

to extend the usefulness of their forecasts to seasonal (up 6 months), annual,

and even decadal time scales.

2.5.1 Seasonal forecasting and models

Seasonal weather forecasting is concerned with producing forecasts at the

time scale of months, with 6 months horizon often being the leadtime of

choice. Given that achieving a good forecast several days ahead is a challenge,

can we expect a long term forecast to be useful? The argument for a useful

seasonal forecast is based on an important observation that the conditions of

the lower boundary of the atmosphere tend to have a long memory, i.e. are
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rather persistent and change only gradually. The lower boundary conditions

include for example sea surface temperature (SST), soil moisture, or snow

cover, and due to the persistence, they can be forecast at time scales of weeks

or even months.

The SST plays a prominent part in seasonal forecasting. This is because

the temperature changes in oceans surface layers have a profound impact

on global weather conditions. Since changes in oceans propagate at a much

slower pace than changes in the atmosphere, the SST changes are predictable

at longer time scales making the long term weather forecasts feasible.

Since seasonal forecasting is concerned with both the ocean as well as the

atmosphere, the modeling requires coupling of an ocean model with an at-

mospheric model. The resulting coupled model, also called the coupled

atmosphere-ocean general circulation model (AOGCM), is then used to pro-

duce global weather forecasts. To generate the forecasts, GCM must first be

initialized with some initial state of the atmosphere and ocean. The initial

state just represents a starting point from which the model starts integrating

equations for fluid motion forward in time. The final state of this integration

represents a forecasted future state of the atmosphere (or ocean). For a more

detailed description of circulation models see, for example, [158]

2.5.2 Long-term patterns and regions of importance

Throughout history, scientists have identified several climate patterns that

have a profound impact on the global weather. The patterns are measured

in terms of climate indices which include:

• El-Niño - Southern Oscillation (ENSO), a global pattern of irregular

warming of sea surface (increase of SST)
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• Maden - Julian Oscilation, an equatorial traveling pattern of anomalous

rain

• North Atlantic Oscillation - the difference of normalized sea level pres-

sure between the Azores and Iceland, with positive difference signaling

stronger than average westerly winds over the middle latitudes.

In terms of seasonal weather forecasting, the most important climate event

is the ENSO, the strength of which is measured by the Nino3.4 index. The

Nino3.4 index is the average sea surface temperature anomaly taken over a

region in the south pacific within the box defined by N:5.0, S:-5.0, E:-120.0,

W:-170.0. The sea surface temperature (SST) in this region is important for

the El Niño or La Niña climate events [144]. The El Nino event is classified

if the 5-month moving average of the Nino3.4 index exceeds +0.4◦C. The La

Niña event is classified if the Nino3.4 index is below -0.4◦C.

Another important climate condition (not listed above) is the level of SST

in the so-called Main Development Region. The MDR is an area covering

mid latitudes of the Atlantic with the coordinates N:10.0, N:20.0, W:20.0,

W:-80.0 and the sea surface temperature in this region plays a crucial role

for the hurricane formation in the Atlantic basin. Since hurricanes have a

great potential to inflict significant harm on US cities and energy facilities

located on and off the south-east US coast a good seasonal forecast of SST

in MDR is crucial.

Due to the significant impact on weather and its impact on large numbers

of people, as well as industries, we are interested in the ability of weather

models to provide useful weather forecasts in both the MDR and Nino3.4.

In Section 4.3 we evaluate and benchmark the ability of ENSEMBLES [152]

models to forecast the SST in the two regions.
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2.5.3 The ENSEMBLES models

The ENSEMBLES [36, 57, 152] is a 5-year program funded by the Euro-

pean Commission, which aims to develop an ensemble prediction system for

seasonal forecasting. The ensemble prediction system is based on 5 state-

of-the-art coupled atmosphere-ocean circulation models developed by major

European weather forecasting institutions. The models taking part in the

project include [31, 152]:

• IFS/HOPE, a model operated by the European Centre for Medium

Range Weather Forecast (ECMWF)

• ARPEGE/OPA, operated by Meteo-France

• GloSea, DePreSys IC, both operated by UK Met Office

• ECHAM5/OM1, operated by IfM-GEOMAR Kiel

• MF, operated by Euro-Mediterranean Centre for Climate Change

The ENSEMBLES models were used to generate hind-casts (forecasts of

past observations) at seasonal-to-annual horizons. The hind-casts consist

of nine-member ensembles. The initial states of the atmosphere (and the

verifications) are taken from the ERA-40 reanalysis [85], a dataset consisting

of global atmosphere and surface conditions over the period of 1957 - 2002

constructed by the ECMWF.

The ENSEMBLES models were used to generate forecasts over the period

of 1960 to 2001. There were 4 different forecast initializations: February,

May, August, and November. The February, May, and August initializa-

tions yielded 7-months-ahead forecasts, while the November initialization

forecasted 14 months ahead.
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The models used in ENSEMBLES are high-resolution Global Circulation

Models (GCM). All the involved models are expensive to build, complex

to deploy, and require large computational resources, often supercomputers.

The cost of construction and operation in terms of both the human and com-

putational resource, is considerably large. The size of the invested resources

is expected to be outweighed by the forecasting performance.

The forecasts produced by the ENSEMBLES models represent an example of

a periodically forced system. In fact, all the geophysical processes on Earth

are of this kind. In the periodically driven systems we are looking at phases

and periods, which translates to seasonalities in the statistical sense.

In this thesis, we will re-evaluate the ENSEMBLES models using Kernel

dressing and Ignorance (see Chapter 3) and benchmark their performance

using our proprietary benchmark suggested and described in Chapter 4.

2.5.4 Multi-model ensembles in seasonal forecasting

In seasonal forecasting, a multi-model ensemble (MME) is a combination

of ensembles of individual forecasting models, often used to improve the

forecasting skill of ensemble forecasts. MME accounts for uncertainties due

to misspecification (systematic model errors) of individual models [151] by

reducing overconfidence of the individual ensembles. In particular, since

the multi-model combines ensembles of several models, the resulting grand-

ensemble has larger spread than any of the individual ensembles. Ensembles

with larger spread are then more likely to capture a verification and hence

improve the skill of the ensemble forecast. Indeed, it has been shown that a

multi-model ensemble outperform the skill of individual models as measured

by Brier score, ROC statistics, and RMSE [30, 73].
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In [152], the skill of the ENSEMBLES models was evaluated using a multi-

model ensemble (MME). The MME was constructed by combining ensembles

of all five ENSEMBLES models, where the individual ensembles were equally

weighted (see [30, 73] for other weighting approaches). In the Nino3 region,

at all leadtimes, the MME achieved substantially smaller RMSE when com-

pared to the individual models. It was also shown, that the ENSEMBLES

MME significantly outperformed the MME of the previous generation mod-

els, DEMETER [104], as evaluated by Brier skill score, RMSE, and Anomaly

correlation.

While MME is a useful concept, the improved skill due to increased spread

of an ensemble comes at the cost of diluted performance when an individual

model actually captures the verification. Consider that one of the individual

models has a small spread but also a very small bias; this model almost always

captures a verification and does so with a high precision, i.e. many ensemble

members will be very close to the verification. When comparing the MME

with the small-spread/small-bias model, the MME might not outperform the

model. While both the MME and the individual model will almost always

capture the verification, the precision of the MME will suffer. Due to its

large spread, the MME will have many ensemble members far away from the

verification.

The MME is not the only way of improving performance of ensemble fore-

casts. In Section 2.1.2 we mentioned forecast post-processing, a part of the

forecasting framework concerned with bias removal. Bias removal may also

involve inflation of an ensemble spread. Indeed, in Section 2.4.3 we discussed

Kernel dressing (KD), which is designed to produce forecasting densities that

account for model error by implicitly increasing an ensemble spread. When

forecast skill is evaluated via KD, the MME may not yield a significant advan-

tage over individual models, simply because in KD the spreads of individual
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ensembles are already large enough. It is therefore important to note that

while MME may be helpful in some evaluation approaches, in others, i.e.

Kernel dressing, it may not yield additional value.

2.5.5 Benchmark models and their value

Since an absolute value of a score is not very informative, forecast evaluation

should be performed in relative terms. A forecaster is more often interested in

which model generates a ‘better’ forecast rather than what is an exact value

of a score. Relative performance evaluation gives a much better perspective

of a model’s forecasting performance. A benchmarking model is a useful tool

when evaluating the relative performance of a forecasting model as it defines

a zero skill which a forecasting model is expected to outperform.

A good benchmarking model should possess several properties. First of all

it should be robust so that it sets a clear and understandable performance

threshold that would distinguish a good model from a bad one. It also

should be easy to operate since investing a lot of time and effort just to

run a benchmark model is not efficient. Finally, it should be simple. If a

forecasting model is unable to beat a simple model, it is not useful and should

be abandoned.

In probabilistic forecasting, the obvious choice for a benchmark is climatol-

ogy. Indeed we use unconditional and conditional climatology benchmarks

throughout this work. Although climatologies are natural choices for a bench-

mark, we can use more complex benchmarks. Simple statistical models with

a better forecasting performance when compared to climatology can be con-

structed and contrasted with more complex forecasting models. In Chapter 4

we use a version of a nearest neighbor model to provide a benchmark to state-

of-the-art seasonal weather forecasting models of the ENSEMBLES project.
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We note that at the time of the experiment, due to technical issues within

our database infrastructure, forecasts of only 4 ENSEMBLES models were

available. Hence the benchmarking results presented below exclude the MF

model operated by the Euro-Mediterranean Centre for Climate Change. We

note, however, that the goal of the exercise is to show usefulness of our

benchmarking model, for which purpose, we believe, the four ENSEMBLES

models represent a sufficient sample.

2.6 Correcting a model error

In practice, forecasting models are always an imperfect representation of re-

ality. Consequently, forecasts produced by a model always suffer from errors

that stem from the model imperfections. The model error presence applies

to both stochastic as well as deterministic models. Stochastic forecasting

models are almost always built using noisy data, and hence are prone to

over-fitting [32, 56, 141]. Both dynamic and parametric stochastic models

are subject to model mis-specification. In addition the dynamic models are

exposed to an error due to assimilation procedure [137], a procedure used to

estimate the current state of a system.

The main impact of model error on the quality of a forecast is mostly due to

model integration, as an arbitrarily small initial error accumulates at each

integration step. While the sources of the error may differ in both statistical

and dynamical systems, the error propagation and accumulation has the same

consequence - degradation of forecast utility.

Reducing the impact of model error inevitably leads to an improved forecast.

Bias correction has therefore become an important part of forecast post-

processing in many fields. In Chapter 6 we suggest an iterative method of
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error correction and contrast it with an alternative method introduced in [60].

2.6.1 Systematic part of a model error

A necessary condition for any error correction procedure to be successful is

that an error in a forecast contains a systematic part. Should forecasting

error be purely random, any systematic approach to limiting the error would

inevitably fail. The good news is that in practice, forecasts indeed contain

systematic parts of an error; often the systematic part is due to the model

error. For example, in the case of model error due to misspecification, a

model will be ‘incorrect’ in a similar way each time a similar initial condition

re-occurs. The same applies to the overfitting. A stochastic model will be

incorrect in a similar way each time its prediction starts from a similar initial

state.

If it were possible to detect a pattern of forecast imperfections, it should also

be possible to either link the imperfections back to the model and correct

the model error, or to build a correcting layer that would, at least to some

extent, correct the imperfections and improve the forecasts. Linking the

imperfections back to a model may often prove difficult. For large models

consisting of hundreds or thousands of equations, it might be very difficult to

exactly pinpoint the source of the error. Constructing a correcting layer on

top of the forecasting model seems more pragmatic. In Chapter 6 we build

on the idea of a correcting layer, and construct a two-stage procedure, which

substantially reduces the forecasting error of a first-stage model.
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2.6.2 Iterative vs. direct predictors

The accumulation of a forecasting error over a long horizon closely relates

to the type of forecasting approach. A frequent forecasting approach is to

use an iterative model, where a predictor with a short forecasting horizon is

constructed and then iterated to build a forecast over a longer horizon. An

alternative approach is to build a ‘direct’ predictor, i.e. a forecasting model

with a forecasting horizon long enough to obtain a long term forecast with

only a single iteration.

In both approaches, the forecasting error grows with each iteration as the

forecasting model propagates both the system state and the model error.

It has been shown [38], that under some conditions, the iterative approach

achieves a lower forecasting error. However, in cases where the forecasting

model is imperfect and the data are noisy, the conditions are not met and

the theoretical result does not hold. In such cases, the direct approach seems

to be a better choice as it undergoes only a single iteration and hence the

amplification of a model error is smaller.

The problem with direct predictors is that they are often difficult to con-

struct. Iterative predictors are therefore of interest. Consequently, methods

involving forecast corrections can be very useful.

2.6.3 Correction models

Correction models may take a number of forms. A frequently used class of

error correction models is based on a two-stage approach, where in the first

stage a predictor is used to generate a forecast and then in the second stage, a

corrector is applied to correct the forecast. Typically, the first stage produces

a forecast over the whole forecasting horizon. The corrector is applied only
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after the complete forecast has been generated. This approach was used to

develop the ΨΦ corrector [60], which has been been successful in producing

longer-term forecasts when contrasted with a single-stage procedure.

Regarding the modeling approach, it is intuitive to design correction models

as stochastic. Dynamic correctors may be constructed, but since knowing

the dynamics of the model error implies that we know where the dynamics of

the first stage model is wrong, rather than constructing such a corrector we

could simply improve the model. Also, constructing a dynamic corrector for

stochastic models does not make sense. Knowing the dynamics of the error

implies that we have some knowledge about the dynamics of the system.

Consequently, a stochastic model of the system could and should be replaced

by a dynamic model with a stochastic corrector.

By definition, correction models can be successful only in the presence of sys-

tematic errors. The larger the systematic error, the more likely a correction

model is to succeed in reducing it. Consequently, in cases when the first-

stage model is a good predictor the correction model is not likely to further

improve the forecasting performance.

An advantage of a corrector is that if the first stage model does not suffer large

systematic errors, the corrector does not degrade the first stage forecast, i.e.

‘it does not make things worse’. Given its stochastic nature (see Section 2.6.3)

the correction model estimates the expected value of the forecasting error,

which is zero in the absence of systematic errors. The second stage therefore

does not alter the first stage forecasts if they are already ‘good’.

Our method presented in Chapter 6 is constructed as a two-stage procedure

but with an important feature that makes it distinct from other two-stage

procedures. The corrector we present works on an iterative basis. This means

that the corrector is applied after each iteration of the first stage model. In
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our method, the corrected single step forecast serves as an input into the

next iteration of the first stage model.

2.6.4 Applications and limitations of correction mod-

els

Although in general correction models may be applied to both low-dimensional

and high-dimensional models we note that our approach has some limitations

when applied to a high-dimensional setting. Recall that the iterative nature

of our approach requires a correction to be made after each integration of the

first stage model, so that the ‘corrected’ first stage forecast can be input into

the next model integration. In other words, if there are T integration steps

of the first stage model, there also must be T corrections, giving the total

amount of ‘operations’ as 2T . For non-iterative correctors that are applied

only after all integrations of the first stage model have been performed, the

total number of operations is simply T + 1, T for first stage integrations and

one for the single round of forecast correction.

The obvious drawback of the iterative approach is that more operations take

more time. Given finite computational resources this may lead to limita-

tions in the length of the predicted horizon. In reality, however, the severity

of the limitation depends on the complexity of the correction model. Since

correction models are often stochastic, their execution time is typically mod-

erate when compared with the integration step of a large scale deterministic

model. Thus ‘simple’ correction models with moderate execution time still

may be applicable to high-dimensional systems. Non-iterative correctors do

not impose any limitations on the first stage, since they are applied only

once.

In this work, we apply the iterative approach to low-dimensional systems
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only. This is mainly because we do not have any high-dimensional model

available. We note that operating a high-dimensional deterministic model is

a research task in its own right and is beyond the scope of this work.

Regarding applications in the low-dimensional setting, there are a number

of potential applications in fields such as economics, finance, transport, but

also physics. For example, our approach can be applied to low-dimensional

convection models, e.g. Lorenz systems [81, 83], rotating annulus [111, 161],

but also to models of inflation, stock prices, or transport peak predictions.
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Chapter 3

Properties of Kernel Dressing

In this chapter we aim to derive and illustrate some of the properties of Kernel

Dressing (KD) [15, 58], a method used to construct and evaluate forecasting

densities [48, 156] described in Section 2.4.3. We also study the properties

of Ignorance [49, 115] (see Section 2.4.2) when deployed within KD.

We first show that Kernel Dressing substantially differs from the Kernel

Density Estimation [11, 20, 129], an important observation that has often

been overlooked. We then provide a description of the KD properties and

describe the role of Ignorance within KD [14, 115, 116]. We highlight the

importance of treating KD as a standalone estimator and argue that the

(desirable) properties of Ignorance do not ensure a high-quality forecasting

density. We also show that under a perfect model scenario, (PMS) [133]

Ignorance minimization within the KD implicitly minimizes the Kullback-

Leibler divergence.

In Section 3.2 we demonstrate the behavior of KD numerically both under

the PMS and outside it. We study the convergence of the KD estimator and

demonstrate the impact of the ensemble size on the quality of a forecasting
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density. We also discuss the impact of the size of the forecasting archive and

look at the potential trade-off between size of the archive and ensemble sizes.

In Section 3.3 we show important links between Ignorance and other well-

established information measures, i.e. Shannon’s entropy [124–126] and

Kullback-Leibler divergence [74, 75]. In particular, we show that Ignorance

under Kelly betting [72] leads to optimal betting. By setting the Ignorance

within the broader context of Information theory, we aim to demonstrate its

relevance as a measure for probabilistic forecasting.

In this chapter, the following are new contributions:

• clarifying the distinctions of KD and KDE

• disentangling Ignorance and the KD framework

• showing that, under PMS, properties of KDE are applicable to KD

• novel analysis of numerical properties of KD under PMS and perfect

ensembles

• new analysis of numerical properties of KD under IMS

• novel analysis of numerical properties of KD under varying ensemble

size

• demonstrating that increased archive size leads to more robust esti-

mates, but does not reduce IGN/KL-divergence

• clarifying analogy of the Ignorance, KL-divergence, and Shannon’s en-

tropy under the Kelly betting framework
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3.1 Contrasting Kernel Dressing

In this section, we describe the basic framework to be used in studying the

properties of KD [15]. In particular, we describe the PMS scenario [65, 133]

which will enable us to demonstrate how the forecasting densities converge

to the system density. We also comment on differences between KD and

the pseudo-likelihood based KDE [52, 129]. Although the difference between

the two might seem superficial, we argue that the two approaches differ sub-

stantially. Finally, we derive an analytical result showing that the Ignorance

deployed within the KD approach implicitly leads to minimization of the

KL-divergence.

3.1.1 Perfect model testbed

In Section 2.1.2 we have classified an evaluation method as a particular stage

of a forecasting framework. We have also argued that all stages of the fore-

casting framework must perform well in order to obtain a good forecast.

A good performance of the evaluation method is of particular importance.

Should the evaluation be unreliable, it would be impossible to determine

if poor forecast quality is due to the model, observation errors, or flawed

evaluation.

The evaluation method of our choice is Kernel Dressing; how can we assess

the quality of KD? We can assess KD quality by studying bias in PMS

with a perfect initial condition ensemble. We argue that if KD is unbiased

under PMS, it can be considered an appropriate evaluation method. Our

rationale for this approach is as follows. When discussing PMS and IMS

in Section 2.1.3, we stated that all real-world data exercises fall under IMS.

We have also said that under IMS, the forecasting model always produces
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an imperfect forecast. Considering a forecasting framework with a flawed

evaluation method, one cannot rule out the evaluation method being a reason

behind the forecast imperfection; under IMS the forecasting distributions are

imperfect, whether KD is flawed or not. However, under the PMS, the system

and the model coincide as there is no model error involved, hence only in PMS

are flaws in the evaluation method detectable.

To test KD, we combine PMS with a perfect ensemble (PE) (see Section 2.1.3).

Under the PMS/PE environment, we expect the model’s ensemble members

to be distributed in the same way as the system states. Assuming the model’s

forecasting density is p(x) and the states (verifications) produced by the sys-

tems are distributed according to q(x), we expect the model distribution to

converge to the system, i.e.

lim
n→∞

pN(x) = q(x) (3.1)

where N denotes number of samples (ensemble members). We note, how-

ever, that the forecasting model merely produces ensemble members; the

forecasting distribution is yet to be obtained via KD. The KD therefore pro-

vides estimates, p̂N , of the model’s forecasting distribution pN . For KD to

be considered a good evaluation method, the estimate p̂N must converge to

pN , which in turn converges to the system distribution q as shown in Eq: 3.1.

So we can write that

lim
n→∞

p̂N(x) = pN(x) (3.2)

Should KD fail to meet Requirement 3.2, it would be considered a biased

evaluation method.
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In Sections 3.1.3 and 3.2, we present numerical results showing that KD is

indeed a good estimator under PMS/PE. The analyses are examined in two

different settings. In the first, the model and system are simply Gaussian

distributions. In the second, we choose the model and the system to be the

logistic map [91]

xt+1 = rxt(1 − xt). (3.3)

In the Gaussian setting, there is no specific rule for obtaining the initial con-

ditions. To produce the ensemble forecast, we sample M ensemble members

from the inverse of the assumed noise model [33]. To obtain verifications,

we sample once from the same Gaussian distribution. For the second case,

we select M initial conditions xt = {x1, . . . , xM} by uniformly sampling the

support of the logistic map x ∈ (0, 1). We then iterate the initial conditions

with the logistic map l times yielding a leadtime l ensemble forecast. To

generate the verification, we repeat the same process with only a single ini-

tial condition. In both cases the procedure is performed N times giving N

different ensemble forecasts or forecast initializations.

The quality of the KD densities is measured by the closeness of the forecasting

density to the system climatology. The metrics used are Ignorance and the

KL-divergence.

3.1.2 Distinguishing Kernel dressing and Kernel den-

sity Estimation

Looking at Equation 2.19 it may seem that KD and KDE are almost identical.

The two concepts differ substantially, however, both in their assumptions
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and in the way their parameters are determined. We repeat some of the

differences cited in [15] but also add new important items to the list.

(1) Probably the most important difference is that KDE assumes that the

samples used to construct the density estimate are drawn from the

target density. KD does not.

(2) Since the samples in KDE are drawn from the target density, KDE is

expected to provide an asymptotically unbiased estimate. In KD, we

never expect to obtain an asymptotically unbiased estimate as there is

no ‘target’ density.

(3) In KDE, we have number of samples from the target density, while in

KD we only have one - the verification.

(4) If pseudo-likelihood is deployed to estimate the KDE bandwidth, the

likelihood is maximized over the whole sample. In KD with Ignorance

being used as a measure, we only minimize the Ignorance at a single

point (the locality property of Ignorance).

(5) The Ignorance in KD is minimized over many distinct forecast-verification

pairs. In fact, we have an ensemble forecast and related verification at

each forecasted time t. The forecasts and the verifications may or may

not be independent. Except for special cases, the distributions at the

different times t are expected to be independent. In KDE there are

no independent distributions across different times t; in fact the time

dimension is not relevant at all, i.e. in KD samples are assumed to be

obtained at a single time t.

(6) The offset parameter in KD is meant to remove a potential bias of a

forecasting model, i.e. KD expects to encounter biases and implicitly

removes them.
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(7) The forecasting density coming out of the KD is often a mixture of the

model density, and the climatological distribution. This relates to point

(2) above in the sense that there is no target density. Also, since the

‘target’ density of KDE is replaced by a mixture of model and system

distributions, we cannot use the concept of unbiasedness.

(8) All the KD parameters are determined simultaneously so that the

choice of bandwidth σ cannot be separated from the offset o or the

blending parameter α.

To our knowledge, the items (2), (4), (5), and (7) are new.

3.1.3 Ignorance as a minimizer of Kullback-Leibler di-

vergence

Ignorance is often a measure of choice when KD is used. There have been

several efforts [14, 48, 115] to show some of the important properties of

Ignorance. In this section we aim for another contribution, as we argue that

under some assumptions Ignorance is an unbiased estimator for Kullback-

Leibler (KL) divergence [74]

DKL(p‖q) =
∑

k

p(k) log
p(k)

q(k)
. (3.4)

where p and q are two possibly different densities.

To show this, we use a simple trick. If we can show that under some assump-

tions KD becomes equivalent to a pseudo-likelihood based KDE, we can then

show that minimizing Ignorance leads to minimization of KL-divergence. We

adopt two assumptions:
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1. PMS, i.e. the forecasting model is identical to the system,

2. PE, i.e. the initial conditions have the same underlying distribution as

the verifications (see Section 2.1.2).

Recall that the in-sample forecasting density at a given time t and a given

verification point yt is

p̂t(yt) =
1

nσ

m
∑

j=1

K

(

xj − yt

σ

)

(3.5)

Substituting in Eq: 2.16 and dropping the σ notation we get

IGN = E[
1

N

N
∑

t=1

− log p̂t(yt)] (3.6)

= E[− log p̂(y)] (3.7)

= E

∫

−p(y) log p̂(y)dy (3.8)

= E

∫

[(−p(y) log p̂(y) + p(y) log p(y)) − p(y) log p(y)]dy (3.9)

= E [DKL(p‖p̂)] −
∫

p log pdy (3.10)

which shows that minimization of Ignorance implicitly minimizes KL dis-

tance, up to the constant
∫

p log p. Assuming the above along with un-

bounded support for p and K(·), while increasing the ensemble size and

number of forecast-verification pairs, asymptotically leads to

E [DKL(p‖p̂)] = −
∫

p log p̂ +

∫

p log p (3.11)
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where the first element on the right hand side represents cross-entropy and

the second represents entropy. If the two distributions coincide, p = p̂, the

Kullback-Leibler divergence reduces to zero.

Eq: 3.11 has important consequences. It says minimum Ignorance is obtained

as the KL-divergence of the forecasting density p̂ and the system distribution

p. This implicitly suggests that under the PMS/PE scenario, the forecast-

ing densities will approach the system density. Under PMS/PE, we have a

model which coincides with the system, hence the model generated states

that (in the limit) have an identical distribution to those produced by the

system. The only difference between the model and system density as mea-

sured by Ignorance will be due to the (small) sample size of the ensemble and

verifications. As we increase the ensemble size to infinity and compare en-

sembles with verifications over an infinite horizon, two things happen. First,

the small sample distribution of the ensemble will approach the underlying

distribution of the model and the small sample distribution of verifications

will approach the system distribution. Since we deal with a perfect model,

in the limit the two distributions must coincide, i.e. the Kullback-Leibler

divergence will reach its minimum (defined by the value of entropy
∫

p log p).

This result is indeed evidenced by the numerical analysis in Section 3.2.1.

3.2 Numerical analysis of Kernel Dressing prop-

erties

Recent works regarding Ignorance have focused on the properties of the mea-

sure [115] [48] [14] [15]. One important output of this research was that Ig-

norance was shown to be a proper score, i.e. it has the ability to distinguish

a perfect model forecast from an imperfect model forecast. However, using
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Ignorance in an evaluation procedure does not guarantee that the best model

will be selected. This is because the Ignorance deals with densities that are

constructed via some density construction method, KD in our case. In fact,

it is both the KD and the scoring rule that impact on the quality of the

forecasting density and consequently the model selection. In this section, we

study properties of KD using Ignorance as a measure.

The following analyses will rely on both the perfect and imperfect model

scenarios, with a perfect ensemble also having a role (see Section 2.1.3). We

aim to show that KD is an unbiased estimator. It is only possible to show

this under PMS. Since, in the real world, forecasting is always under IMS,

we will also be looking at KD properties outside PMS. In both scenarios, we

use simple Gaussian settings. To see KD behavior under a more complex

setting, we also include analyses using the logistic map.

3.2.1 Convergence in perfect model scenario

We utilize the test-bed described in Section 3.1.1 to show numerically that

under a PMS/PE scenario, the KD evaluation method yields forecasting

densities that converge toward the target density.

We begin by showing a numerical example supporting our claim in Sec-

tion 3.2.1. We use the Gaussian PMS described in Section: 3.1.1 with µ = 0

and σ = 1 and produce 2,048 forecasting densities by minimizing Ignorance

within KD. Since we operate under PMS, the offset o and scale a param-

eters become irrelevant. In Fig: 3.1 we show values of Ignorance and the

KL-divergence plotted against the bandwidth parameters σ for a model with

an ensemble size of M = 512. For this particular archive of 2,048 ensemble-

verification pairs, the value of σIGN that minimizes Ignorance is equal to the

value of σKL that minimizes the KL-divergence.
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Figure 3.1: Ignorance minimizes KL-divergence (PMS): Ignorance as a function

of the parameter σ (top) calculated for a particular sample for a model with 512 ensemble

members. The minimum value of Ignorance (green line) coincides with the minimum of

the KL-divergence (bottom) at the value of σ = 0.18.

The numerical result in Fig: 3.1 supports our previous claim, but only with a

single archive. To obtain a more robust result, we generate 128 such archives

using the PMS test-bed. For each archive we locate σIGN and σKL and plot

them in Fig: 3.3. Although across different archives the optimal bandwidths

may vary significantly, within a given archive the σIGN (green) and σKL (red)

are frequently close or very similar.

The values of the σIGN (green) and σKL are only expected to be equal asymp-

totically. In small archives with forecasts of limited ensemble size, they are

expected to be close but not necessarily equal. Increasing the ensemble size
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Figure 3.2: Resampled parameters for IGN/KL: For 128 samples, the kernel width

σ minimizing KL-divergence (red crosses) is centered closely around 0.35. The σ that min-

imizes Ignorance (green dots) oscillates around the same value, supporting the suggestion

that minimization of Ignorance implicitly leads to minimization of KL-divergence.
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Figure 3.3: Resampled parameters for IGN/KL: A different view of the result in

Fig 3.3. For each ensemble size, we plot all 128 samples of σ minimizing both the Ignorance

(blue) and KL-divergence (red). As the ensemble size increases the two sets of σ converge.
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should cause the distance between the bandwidths to decrease. In Fig: 3.3

we reproduce the exercise for 8 different ensemble sizes while keeping the

size of the archive constant at 2,048 forecasts. The ensemble size is doubled

every time, beginning with 16 and ending up with an ensemble size of 2,048

ensemble members. As in Fig: 3.1, we generate 128 archives for each ensem-

ble size and plot {σIGN , σKL} and their medians. We see that with small

ensemble sizes the medians of the two bandwidths are rather far apart. As

the ensemble size increases, they become closer, indicating the minimum of

the Ignorance function is found in the same part of the parameter space as

the minimum of the KL-divergence.

Figure 3.4: Gaussian PMS: The model (magenta dashed) as well as the system (black)

are N(0, 1) distributions. Both KD probabilities (blue dots) and their average (green dots)

over 128 samples converge to the system distribution as the ensemble size increases.
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Another effect to observe in Fig: 3.3 is that both the bandwidths decrease

when the ensemble size is increased. The intuition behind this is that a larger

ensemble leads to a forecast with ‘better probabilities’. In other words, a

larger ensemble is equivalent to a larger sample, and a larger sample always

provides a better description of the distribution it comes from. A consequence

of having more ensembles is that the kernel dressing procedure can form

sharper kernels, i.e. the optimal bandwidth of the kernels become smaller.

Contrarily, for small ensembles the optimal bandwidth must be larger to

compensate for areas that are not well covered by ensemble members. Having

plenty of ensemble members therefore means that the kernels may be sharper,

hence the narrower bandwidth.

Since we have numerically shown that under the Gaussian PMS/PE, the

Ignorance minimizes KL-divergence, we can move on to look at the actual

forecasting densities produced by KD. We show the 128 forecasting densities

(blue) in Fig: 3.4 along with their median (green) and the system (black) and

model (magenta) PDFs for 4 different ensemble sizes. For the small ensemble

size of 16 members, the forecast densities do not estimate the system density

well. For 2,048 ensemble members, we obtain a much better result; the

densities converge toward the system as we increase the ensemble size.

For completeness we show bias and variance of the 128 forecasts as a function

of ensemble size in Fig 3.5. The result just confirms the finding pictured in

Fig: 3.4 that both bias and variance decrease with the ensemble size. Note

that the bias is calculated as the expected value of the difference of the

‘average’ density (green) from the true system distribution (black).

What is the behavior of KL-divergence and Ignorance during convergence?

In Fig: 3.6 we plot values of both as a function of an increasing ensemble size.

We also plot Ignorance/KL-divergence calculated using the system density

(black line); this defines the maximum skill level. In the case of the KL-
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Figure 3.5: Bias and variance in PMS: Both bias (red) and variance (blue) quickly

decay as the ensemble size (the horizontal axis) increases. Note that bias is measured as

the expected value of the distance between the green and the black lines of Fig 3.4.

divergence, the maximum skill is reached at zero, since when the model

distribution is equal to the system, the KL-divergence is zero. Values of

both metrics decrease as the larger ensembles provide better forecasts. The

median KL-divergence (red) is very close to zero when the ensemble size is

2,048, signaling that the (median) forecasting density is very close to the

system. The (median) Ignorance (blue) also decreases, although at a slower

pace. As the number of ensemble members increases, the minimum Ignorance

of the model must become the same as that of the system. Under PMS (and

in the limit) the Ignorance reduces to the entropy of the distribution (see

Eq 3.9). This is why the Ignorance of the system (black horizontal line) is

located at a value of 2.047 Bits, the entropy of N(0, 1) distribution.

We have shown KD properties in simple settings using a Gaussian distri-

bution and now shift our attention to a more complex setting; we use the

logistic map under PMS/PE. The purpose of this example is to confirm and

demonstrate that even for complex multimodal densities, we can observe the
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Figure 3.6: Ignorance and KL distance in PMS: Under PMS, increasing the size

of an ensemble brings the forecasting density produced by kernel dressing closer to the

system density. The 128 sample average of KL-divergence (red line) converges to zero,

while the ignorance (blue line) approaches the ignorance obtained by using probabilities

assigned by the system itself, i.e. the system defines a zero skill reference (black line).

convergence between the model and the system. Fig: 3.7 shows 128 forecast-

ing densities for the same ensemble sizes as in Fig: 3.4. Even in this much

more complex example, KD with Ignorance minimization leads to improved

forecasts as the ensemble size increases. The Ignorance and KL-divergence

plotted in Fig: 3.8 show substantial reduction in both metrics, with KL-

divergence being reduced significantly but saturating at a non-zero level with

an ensemble size of 2,048. The complexity/multimodality of the logistic map

density is the most likely reason that the KL-divergence is prevented from

coming closer to the zero line; the convergence is much slower when compared

to the normal distribution example. This is because the abrupt changes in
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density (multiple modes) are more difficult to approximate than the smooth

uni-modal density of N(0, 1). Much larger ensembles would be required to

see the full convergence. With more ensemble members the multiple modes

would be better covered, kernels would require smaller bandwidth and hence

the description of the distribution would be more detailed.

The two examples presented here are strictly within the PMS/PE scenario.

Outside PMS/PE there will be no convergence as the system distribution is

completely different from the model distribution. It is only under the PM-

S/PE where the properties of the KD can be studied and appreciated; outside

the PMS/PE there is no target distribution, hence no absolute measure of

‘goodness’. This is, of course, a consequence of the basic fact of forecasting:

the system is not known and if it was, we would not need to forecast its

future states, they would just be calculated.

3.2.2 Archive size and archive-ensemble size tradeoff

In terms of data, the forecast quality depends on two factors: the size of the

forecast-verification archive and the size of the ensemble. Using the Gaussian

PMS/PE scenario (Section 3.2.1), we have demonstrated that increasing an

ensemble size has a positive impact on the forecast quality as measured by

both the Ignorance and the KL-divergence. Intuitively, we might speculate

that increasing the size of the archive would also lead to improved forecasts.

So what size should an archive be to obtain robust forecasting performance?

Fig: 3.9 shows several experiments where the ensemble size is fixed at M =

2, 048, while the size of an archive is doubled for each experiment. The Ig-

norance is then plotted as a function of the ensemble size and, as before,

we generate 128 samples for each archive size. The median Ignorance value

(green) shows that when M = 2, 048, increasing the archive size only leads
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Figure 3.7: Logistic map PMS: The mean (green) of 128 estimates (blue) gradually

converges to the underlying density of the Logistic map (black) as ensemble size is in-

creased. Pseudo-likelihood type of kernel density estimation was used to construct the

underlying density. The climatology and the forecasts were obtained by iterating the set

of initial conditions using the Logistic map 1,000 times.

to a small reduction in the Ignorance. The Ignorance decreased by about

0.1 Bits, which accounts for about a 10% improvement in forecasting perfor-

mance (a decrease of 1 Bit leads to doubling of a performance). The main

observation is that the variance of the Ignorance sample is being reduced as

we increase the archive size. This suggests that the size of the archive mainly

affects the efficiency of the forecast.

In Fig: 3.10, we repeat the experiment for different ensemble sizes; Fig: 3.9

is plotted in the last panel. There are two pieces of information captured
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Figure 3.8: Ignorance of Logistic map PMS: Similarly to Gaussian PMS, both the

Ignorance and the KL-divergence decrease significantly with the size of ensemble. Due

to the large second derivative of the underlying density, the KL-divergence is rather high

at small ensemble sizes when compared to the Gaussian case. The maximum skill level

is defined by the system density, similarly to Fig 3.6. The maximum skill in terms of

Ignorance is -0.8, and zero for the KL-divergence.

by the Figure. First, the suggestion that the archive size reduces variance

significantly, while the Ignorance only marginally, holds for all ensemble sizes.

Second, the notion that the ensemble size has a greater impact on the forecast

quality than the size of the archive is also confirmed. To see this, we can

compare the first and the last panels. The Ignorance is lower in the last

panel with the larger archive size of 2,048. In fact, the Ignorance seems to

be decreasing across all the panels; however, we have not statistically tested

the significance of the decreases. As noted above, the decrease in Ignorance

as a result of larger archive size is only small; statistical testing did not seem
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Figure 3.9: Increasing the archive: For the ensemble size of 16 members, the size

of forecast-verification pairs is gradually increased (doubled at each step). For a given

archive size Ignorance values are calculated using 128 samples. For small archive sizes,

e.g. 16, the Ignorance values are widely dispersed. Increasing the archive size produces

more stable estimates. The median value (green line) of the Ignorance also decrease, as

the archive size increases.

necessary as it would at best confirm a significant but ‘small’ reduction.

Given a constrained computational resource, it seems that an ensemble of

512 members and archive size of 1,024 forecast-verification pairs produce a

good forecast in this particular case.

The conclusion suggested by the numerical results is that increasing an en-

semble size is more beneficial in terms of the forecast quality than the size of

the archive. That is not to say that size of the archive is unimportant since

clearly a larger archive leads to a greater efficiency. In real-world applica-

tions, however, the archive size is limited, while the ensemble size may often

be increased at a given computational cost.
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Figure 3.10: Increasing the archive: Each block shows same information as Fig: 3.9

but for a different ensemble size. A given block represents a given ensemble size stated on

the x-axis. Within a block there are 9 different archive sizes and for each size 128 samples

are generated and evaluated by Ignorance.

3.2.3 Kernel Dressing outside perfect model scenario

Section 3.2.1 provided some insight regarding the properties and behavior

of KD under PMS/PE. To complete the picture, we briefly investigate its

behavior outside PMS.

Considering the previous setting, a good starting point for IMS could be set-

ting the model to be N(0, 1) while the system is N(0, 2). The idea is to study

a situation in which the model is underdispersive and produces ensembles

that are too tight. Fig: 3.11 shows that KD has no problem compensating

for the larger variance in the system. KD simply increases the bandwidth

σ. Even for small ensemble sizes, the forecasting densities coming out of

KD are very close to the system and far from the model distribution. Also,

the variability is much smaller when compared to the PMS/PE scenario in

Fig: 3.4. When the ensemble size is 512 members, the forecasts are tightly
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Figure 3.11: IMS - System larger variance then model: Similar to Fig: 3.4 but

outside PMS. The model produces ensembles with lower variance that the system distribu-

tion. KD easily accommodates by increasing the bandwidth and the forecasting densities

quickly uncover the system density.

located around the system distribution.

The Ignorance and KL-divergence profiles pictured in Fig: 3.12 show that

there is very little additional improvement due to increased ensemble size.

Beyond an ensemble size of 128 the Ignorance stops improving and the KL-

divergence of the forecasting and the system distributions is almost 0. This

result corresponds with the findings in Fig: 3.11. At this point, increasing

the ensemble size merely adds value to the model PDF - detail that is in-

consequential given the differences between the model PDF and the system

PDF.
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Figure 3.12: IMS - System larger variance than model: The Ignorance of the

model (top panel) is rather flat but decreasing. Note the scale of the figure, the model

Ignorance (blue) is very close to the system (black). The KL-divergence (bottom panel)

decreases as KD utilizes more ensemble members. Also KL-divergence is very close to its

potential for all ensemble sizes as KD very efficiently adjusts the bandwidth even for small

ensemble sizes.

Next we look at an opposite example, i.e. the model is ∼ N(0, 2), having a

larger variance then the system, ∼ N(0, 1). Fig: 3.13 shows the results. KD

is not capable of shrinking the ensemble so it cannot recover the system

distribution. The forecasting densities (blue) remain located around the

model (green), far away from the system distribution (black). Increasing

an ensemble size cannot help since the ensemble members are too dispersed.

Setting the bandwidth to small values would only yield multimodal densities

with a high a Ignorance level. This effect is somewhat visible in all 4 panels

plotted as a number of densities are multimodal.
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Figure 3.13: IMS - System smaller variance then model: Same as in Fig: 3.11 but

this time the model produces ensembles with larger variance then the system distribution.

KD fails to recover the system distribution as it cannot find bandwidth that would produce

forecasting distributions close to the system.

3.2.4 Affine kernel dressing outside perfect model sce-

nario

In Fig: 3.13 KD was not able to adjust the variance of the forecasting density.

When a forecast has a larger variance than the system, KD can only recover

climatology of the model. We note that the setting used in that example

only optimized the offset o and bandwidth σ parameters.

In affine kernel dressing (AKD) [15], an extended version of KD, a scaling

parameter addressing the problem was introduced. In AKD, the idea is to
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Figure 3.14: AKD - System smaller variance then model: The overdispersiveness

of the model (magenta) seems to be corrected by the AKD. The forecasting densities (blue)

closely surround the system density (black). The size of the forecast archive is 2,048, the

ensemble size is 512.

work with transformed ensemble and bandwidth

zi = axi + r2x + r1 (3.12)

σ2 = h2
S(s1 + s2v(z)) (3.13)

where x is the ensemble mean, xi is an ensemble member, a is the scaling

parameter, {r1, r2, s1, s2} are parameters determined during dressing and v(z)

is the ensemble variance. The h2
S is the so-called Silverman’s factor, which

plays a role in selection of an optimal bandwidth (see [129]). The forecasting

density is then obtained as

p̂θ(y|x, θ) =
1

mσ

m
∑

j=1

K

(

y − zi

σ

)

(3.14)

112



CHAPTER 3. PROPERTIES OF KERNEL DRESSING

Intuitively, including the scaling parameter in the dressing procedure should

help KD to correct the overdispersive ensemble by rescaling it. In Fig: 3.14 we

show the densities produced by the AKD. In this case, the AKD successfully

dealt with the problem; the forecasting densities (blue) are close to the system

(black) and far from the model (magenta dashed).

However, scrutinizing the optimized parameters reveals that all the scaling

parameters are set to zero, giving the trivial result

zi = 0 × xi + 0 × x + 0 (3.15)

zi = 0. (3.16)

Although unfavorable to AKD, this in fact a sensible result. Rescaling the

ensemble to zero yields

p̂θ(y|x, θ) =
1

mσ

m
∑

j=1

K
( y

σ

)

(3.17)

which centers all the kernels at zero. In this particular case of system being

N(0, 1), the ‘average’ distance of the verification from zero is one standard

deviation, hence the optimum bandwidth is σ = 1 as correctly determined by

the AKD. In other words, scaling the ensemble may lead to a trivial solution

at which the ensemble has no contribution and the forecasting density is

determined solely based on the verification. With AKD, the danger is that

it may exclude any contribution of a forecasting model even if it indeed has

a tangible forecasting skill.
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3.3 Linking information measures

In this section, our aim is to describe the connections between Ignorance [49,

115] and other well established information measures, in particular the KL-

divergence [74, 75] and Shannon’s entropy [124–126]. We approach the prob-

lem using the framework of Kelly betting [72]. We exploit the connections

between the different measures by showing that under different scenarios of

a gambling game, the expected wealth of a player can be expressed in terms

of Shannon’s entropy, KL-divergence, or Relative Ignorance. By linking the

Ignorance to the widely used information measures, we hope to provide ad-

ditional information regarding its desirable properties.

3.3.1 Roulette, a punter, and the house

Consider a game of roulette where a punter repeatedly bets on K discrete

outcomes {sk}K
k=1, over subsequent games (times) t = 1, . . . , T . The oc-

currence of the outcomes is governed by a discrete PDF, qt = qt(s). For

simplicity, assume q ≡ qt, i.e. the outcome distribution does not change over

the distinct games.

The punter bets on each of K possible outcome, sk, and always spreads all

her wealth across the K outcomes. The amount wagered corresponds to

ft,k ≡ ft(sk) where ft ≡ ft(s) is her estimate of the ‘true’ q governing the

outcomes. The punter’s return (payoff) is given by the odds ot,k set by the

house. The house sets the odds according to ot,k = 1
ct,k

, where ct ≡ ct(s) is

the house’s estimate of q. The punter is motivated to maximize her wealth

over the T games and we assume infinitely many games, T → ∞.

In the following we show that, depending on the quality of her forecast ft,
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the punter’s expected profit/loss can be expressed in terms of the three

information measures, Shannon’s entropy [124–126], Kullback-Leibler dis-

tance [74, 75], and Ignorance [49, 115].

3.3.2 Forecasting the roulette outcome
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bookie
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Figure 3.15: Forecast distributions: The punter uses the ensemble members

(blue dots) to construct her estimate (blue curves) of the true density (red curves)

governing the outcomes (red crosses). The house constructs its estimate (magenta

curves).

We begin by providing a general framework of how the punter and the house

use their respective models to forecast the roulette outcome [72]. Since we

are concerned with probabilistic forecasting throughout this work, we apply

it to the gambling framework that we use.

Fig: 3.15 depicts 3 subsequent games (or gaming times). The true density
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governs the outcomes (red crosses) of the roulette game. In this case, the

outcomes are continuous but binned into 4 distinct bins separated by the

dashed horizontal lines. The discrete probability of an outcome falling into

a bin k is given as

q(sk) = P (sk,lower ≤ S ≤ sk,upper)

=

∫ xk,upper

xk,lower

q(s)ds (3.18)

where xk,upper is the upper bound and xk,lower is the lower bound of the k-

th interval. Both the punter and the house use their forecasting models

to construct the forecasting densities for a given game. They may either

construct the discrete densities directly, or discretize continuous densities as

they do in this particular example. To produce her forecasting density, f

(blue curve), the punter issues an ensemble forecast of N ensemble members

(blue dots) and constructs the density (possibly using KD). The house follows

the same steps when constructing it’s forecasting density, c (magenta line).

The question is, who is expected to win over the repetitive games and how

much does the winner obtain? Intuitively, we would expect the punter to

win if her forecast f of the true q is ‘better’ than the house’s forecast c. The

ultimate answer therefore depends on a gambling scenario; in the following

we distinguish 3 basic scenarios.

(1) Both the punter and the house know the true probabilities.

(2) Only the house knows the true probabilities.

(3) Neither the punter nor the house know the true probabilities.
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We also note that an important element of a scenario is whether the punter

(or the house) change the forecasting density as they proceed through the

games. In scenarios (1) and (2), the forecasting densities do not change. In

scenario (3), we allow the punter to produce a different forecasting density

for each game (time). Note that in Fig: 3.15 the punter modifies her density

between the games while the house uses an imperfect but constant forecasting

density. The true density governing the outcomes does not change (as in the

real game of roulette) but this assumption does not change the results in any

way.

In Sections 3.3.4, 3.3.5, and 3.3.6, we explore the three scenarios, and show

how under different scenarios different information measures arise. The mea-

sures then provide an insight into if, and at what rate, the punter’s total

wealth grows.

3.3.3 Growth of punter’s wealth

Here we define the punters wealth, show how it grows in time, and show the

expected wealth in the limit as number of games T → ∞.

A good measure of the punter’s success is the utility derived from her wealth

at the end of the evening, i.e. after T games. In Utility theory [150], wealth

is often quantified via a log of (per game) geometric average of the growth

rate of wealth

G(T ) =
1

T
log

VT

V0

(3.19)

where VT is punter’s wealth after the T -th game and V0 is her initial wealth.

We follow the well-known approach of Kelly [72] by assuming that the punter

bets her total capital and places bets on all of the k outcomes. The punter’s
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wealth evolves according to

V1 = f(s1,k) × o(s1,k) × V0

V2 = f(s2,k) × o(s2,k) × V1

...

Vt = f(s2,k) × o(s2,k) × Vt−1

...

VT = f(sT,k) × o(sT,k) × VT−1

=

T
∏

t=1

[f(st,k) × o(st,k)] × V0 (3.20)

where st,k is k-th outcome of t-th game, f is the punter’s forecasting density

and ot,k are odds issued by the house on the k-th outcome of the t-th game.

Assuming that both the punter and the house keep their estimates of the

true density q constant over the games, we may write

VT ≡
M
∏

k=1

[f(sk) × o(sk)]
Wk × V0 (3.21)

where Wk is a number of occurrences of an outcome sk over the T games.

Note, that the product over t in Eq. 3.20 has been replaced by a product over

k in Eq: 3.21. This is because neither the punter’s nor the house’s forecast

change over the T distinct games and so for distinct games the same amount

f(sk) is wagered and the same odds ok are issued for an outcome sk.

The expected value of the utility growth E [G(T )] is then given as
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lim
T→∞

G(T ) =
∑

k

Wk

T
log(f(sk) × o(sk))

=
∑

k

q(sk) log (f(sk) × o(sk)) (3.22)

Since the occurrence of sk is governed by the true probabilities q, the fre-

quency Wk

T
converges to q(sk) as T → ∞.

3.3.4 Scenario: Punter, the house both know true prob-

abilities

Suppose the house knows the true probabilities, q(sk), and assigns odds ac-

cording to o(sk) = 1
q(sk)

. Suppose that the punter also knows q(sk) and

places bets on the occurrence of a k-th outcome sk according to q(sk)×Vt−1.

Substituting q for f in Eq. (3.22) yields expected log-utility growth

lim
T→∞

G(T ) =
∑

k

(q(sk) log q(sk) − q(sk) log q(sk)) (3.23)

=
∑

k

q(sk) log q(sk) −
∑

k

q(sk) log q(sk) (3.24)

= H(s) − H(s) (3.25)

= 0 (3.26)

where H(s) is Shannon’s entropy, i.e. both the punter and the house reach

the expected value of the information contained in q. The punter’s bets thus

cancel out with the odds, she cannot win or lose. We note that the emergence

of Shannon’s entropy is due to the assumption that both the punter and the

house know the true probabilities of the roulette outcomes.
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3.3.5 Scenario: Only the house knows the true proba-

bilities

Now suppose that the punter does not know the true probability and instead

estimates q(s) by f(s). Furthermore, the punter does not change her forecast

over the T games. Consequently, she bets f(sk)×Vt−1 fraction of her wealth

on the kth outcome of the tth game. The house’s strategy is the same as in

the previous case. It knows q and sets odds to ok = 1
q(sk)

. Using Eq. 3.21,

the punter’s wealth after T games is

VT =

M
∏

k

[f(sk) × o(sk)]
Wk × V0 (3.27)

and the expected growth of utility is

lim
T→∞

G(T ) =
∑

k

(q(sk) log f(sk) − q(sk) log q(sk)) (3.28)

=
∑

k

q(sk) log

(

f(sk)

q(sk)

)

(3.29)

where the term q(sk) log f(sk) is the cross entropy, and the term −q(sk) log q(sk)

is the entropy and Eq. (3.29) is the Kullback-Leibler divergence. To under-

stand the meaning of Eq 3.29 in this setting, we can use Gibbs’ inequal-

ity [22, 86], a statement about the entropy of discrete distributions, which

states

−
∑

k

q(sk) log f(sk) ≥ −
∑

k

q(sk) log q(sk) (3.30)

120



CHAPTER 3. PROPERTIES OF KERNEL DRESSING

where equality only holds when f(sk) = q(sk). So if f(sk) 6= q(sk), the

sum in Eq. (3.28) is negative and the gambler will be ruined. The loss rate

depends on the distance between f(s) and q(s), the cross entropy term of

the Kullback-Leibler divergence.

In this scenario, the house has a clear advantage. It knows the exact proba-

bilities of the outcome, while the punter is forced to construct an imperfect

estimate of the true probabilities. The best but least likely scenario for the

punter is that by chance she happens to construct a perfect estimate of the

true density and draws with the house. With an imperfect model she loses

all her wealth as T → ∞. The emergence of KL-divergence in this scenario

is due to the assumption that unlike the house, the punter does not know

the true probabilities.

3.3.6 Scenario: None knows the true probabilities

Suppose neither the house nor the punter knows the true q and so they both

estimate. Further suppose that their estimates of q change over the T games

and are given as ct and ft respectively for the game t. In this scenario the

product over t in Eq: 3.20 cannot be exchanged for the product over k, as

the amounts wagered and the odds differ from one forecast to another. The

punter’s wealth after T games is

VT =

T
∏

t=1

(ft(sk,t) × ot,k) × V0

and the rate of growth is
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lim
T→∞

G(T ) =
1

T

T
∑

t=1

(log ft(sk,t) − log ct(sk,t)) (3.31)

The limiting frequency of bets/odds does not converge to q, and so the terms

in Eq. (3.31) cannot simplify to either Shannon’s entropy or Kullback-Leibler

divergence. Note, however, that the two terms in Eq. (3.31) are respective

Ignorances of the punter and the house (see Eq. 2.16). The punter would

maximize her wealth by setting ft(s) = q(s), but she does not know q, and

so her win/ruin status depends on whether her Ignorance is smaller or larger

relative to that of the house, i.e.

RIGN = −
T

∑

t=1

log ft(s) +
T

∑

t=1

log ct(s) (3.32)

If the punter’s Ignorance is lower, then relative ignorance RIGN < 0 and the

punter wins. The rate of profit/loss depends on the magnitude of RIGN. In

this scenario, Ignorance emerges due to the assumption that both the house

and the punter estimate the true probabilities. This shows the importance

of Ignorance as a measure of forecasting performance and its close links to

KL-divergence and Shannon’s entropy.

3.4 Conclusions

We have studied the properties of Kernel dressing, a framework for turning

ensemble forecasts into forecasting densities. Since Kernel dressing (KD)

is often confused with Kernel density estimation (KDE), we have discussed

the important distinctions between the two approaches. While some of the
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differences have been previously described in the literature, we add several

new items to the list. The new additions include the fact that while KDE

aims to recover true underlying density, the concept of true underlying den-

sity is absent in KD. Consequently, the objective functions in both methods

are substantially different. Also, while the calculation of the minimization

criterion in KDE utilizes more than one data point, the KD minimization

criterion, Ignorance, is calculated at a single data point - verification. Yet

another distinction is that unlike in KDE, where a single sample from a single

true density is assumed, in KD we deal with a number of samples from in-

dependent distributions. All the distinctions listed here (and above) expose

the nature of KD and show that despite using kernels, KD is a truly unique

approach to density construction.

Assuming a perfect model (PMS) and a perfect ensemble (PE), we have

shown that minimizing Ignorance within KD implicitly leads to minimization

of KL-divergence. We have stressed that this is only valid under the PMS/PE

assumption, and the deployment of Ignorance and KD. In other words, it is

the combination of KD and Ignorance that leads to implicit minimization of

KL-divergence. The implicit minimization of KL-divergence is an important

property of KD as it establishes the asymptotic unbiasedness under PMS/PE

assumption. To our knowledge, the unbiasedness of KD has neither been

formally established nor informally discussed.

Building on the unbiasedness, we have numerically studied the behavior of

KD under both the Perfect and Imperfect model scenarios (IMS). Given

that KD is unbiased under PMS, it is expected to recover the true underly-

ing density. Using a simple case of a standard normal distribution we have

demonstrated that this is indeed the case. In addition, we used the numer-

ical experiments to gain some intuition about convergence properties, and

have shown how bias and variance depend on ensemble size (Fig. 3.5). In
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particular, we have shown that for the simple case of normal distribution the

density is well recovered at ensemble size of 2,048 members (Fig. 3.4).

To see how KD performs in a more complex setting we repeated the numer-

ical experiments for Logistic map, a system with complicated density (high

multimodality). The density was well recovered with ensemble size of 2,048,

which is in line with our results from the normal distribution exercise. The

convergence in the Logistic map was slower, as can be seen by comparing

Fig. 3.6 and Fig. 3.8. The slower convergence is expected due to the multi-

modality. It is more challenging to describe a function with abrupt changes

than one with low variation.

To analyze KD behavior under the Imperfect model scenario, we have con-

structed two experiments. In both experiments both the model and the

system take the form of a normal distribution with zero mean. However,

in the first experiment, the model variance is smaller than the variance of

the system. In the second, the model variance is larger than the variance

of the system. We found that in the first experiment, KD successfully re-

covers the system density (Fig. 3.11), while in the second experiment KD

fails (Fig. 3.13). The rationale is as follows: When the ensemble is under-

dispersive (first experiment), KD simply inflates the kernels to cover obser-

vation outside the ensemble range, i.e. wider kernels compensate for under-

dispersion. When ensemble is over-dispersive, shrinking the kernels does not

help; smaller bandwidth only leads to multimodality. Shrinking kernel width

therefore does not compensate for over-dispersion of the ensemble and KD

is bound to fail.

To overcome the problem of over-dispersive ensembles, we have studied Affine

KD, an alternative version of KD designed to address the problem of over-

dispersion. Affine KD utilizes an additional offset parameter, which allows it

to re-position ensemble members and thus change the ensemble dispersion.
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Using the formulation of Eq. 3.12, we have found, that in some cases, affine

KD leads to a trivial solution and rescales all members of the forecasting

ensemble to zero. Although this eventually leads to recovery of the system

density, the contribution of a potentially skillful model is discarded.

Despite its desirable properties, Ignorance is not a frequently used measure

in forecast evaluation. We attempt to further demonstrate its usefulness

by exposing links to important Information theoretical measures. We have

used the framework of Kelly betting to show that depending on some simple

assumptions, the Kelly betting framework yields three measures, Shanon’s

entropy, KL-divergence, and Ignorance, as optimal criterion of wealth dis-

tribution. To show this, we have assumed three scenarios; First, both the

punter and the house know the true probabilities of a betting outcome. Sec-

ond, only house knows the true probabilities. Third, neither the house nor the

punter know the true probabilities. We found that the wealth maximization

of Eq. 3.21 yields Shannon’s entropy under the first scenario, KL-divergence

under the second and Ignorance under the third. Since all scenarios are based

on the same framework and differ only in a simple assumption we argue that

there are strong links between the three measures. By exposing these links

we have demonstrated that Ignorance is optimal under Kelly betting and

hence is a suitable measure for evaluation of probabilistic forecasts.

125



Chapter 4

Dynamic climatology and its

benchmarking utility

In weather forecasting, a forecasting model is often evaluated relative to a

zero skill reference (benchmark) [157]. The (un)conditional climatologies

described in Sections 2.2.3 are commonly used definitions of zero skill. As

reported in [53, 68, 89] climatological reference may lead to over-reporting

of a forecasting skill of the evaluated model. We propose to define zero skill

via more robust yet simple models, simple statistical models [56] being a

convenient choice.

In this chapter, we construct the Dynamic Climatology (DC), an easy-to-use

statistical model designed to provide a zero skill reference to a forecasting

model. We require the DC to:

a) outperform (or perform comparably to) climatology,

b) be easily deployable and moderate in terms of computational cost,

c) be capable of producing ‘new’ values, i.e. values not seen within a
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training dataset,

d) to partially compensate for the degradation of the forecasting perfor-

mance at long leadtimes, which naturally arises in simulations due to

accumulation of a forecasting error.

The particular version of DC deployed here is based on a nearest neighbor

(NN) search [9, 24, 34], but we stress the the idea of using a simple statistical

model as a more robust reference is general. Although our version of DC

may be further improved, we do find the DC properties satisfactory enough

to render DC a useful benchmark. We seek to continually improve our DC

models in our future work.

In our analyses, we deploy DC to forecast sea surface temperature (SST) over

the Nino3.4 and the MDR regions (see Section 2.5.2) and use the forecasts

to benchmark the state-of-the-art seasonal-to-annual global coupled climate

models of the ENSEMBLES project [57]. The seasonal forecasts of the EN-

SEMBLES models were evaluated in [152], who find significant improvement

of the ENSEMBLES models over the previous generation of models (DEME-

TER). The evaluation metrics used in [152] included RMSE and the Brier

Skill Score and the performance was contrasted, namely via a multi-model en-

semble (MM). Our evaluation approach differs in that we use Kernel dressing

(Chapter 3) to turn the ENSEMBLES forecasts into forecasting distributions

and evaluate the performance using Ignorance.

Our main goal is to demonstrate the ability of Dynamic climatology to bench-

mark performance and assess value of a given forecasting model. While our

benchmarking model can be applied in a variety of fields, we choose the

application of seasonal forecasting due to its great importance to many in-

dustries. As described in Section 2.5, seasonal forecasting is concerned with

weather forecasts at time scales of several months. A good seasonal forecast
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may therefore be very useful in forming long-term decisions in fields such as

agriculture, health, transport, insurance, economics, and many others.

The most important tool of seasonal forecasting is the use of coupled ocean-

atmosphere global circulation models. The idea behind coupling is very pow-

erful, and is based on the fact that ocean processes propagate at a much

slower pace than atmospheric processes, and have a large and persistent

impact on global weather. Due to the coupling of ocean and atmospheric

processes, coupled models enable forecasters to predict global weather condi-

tions over long horizons. The state-of-the-art ENSEMBLES models therefore

represent an interesting object for a benchmarking exercise.

The best known example of the ocean processes important for seasonal fore-

casting is El Niño/La Niña, a quasi-periodic pattern of warming/cooling of

the surface (sea surface temperatures) of the tropical eastern Pacific Ocean.

This global scale event has been shown to greatly influence weather across

the globe on the time scale of months (e.g. [146, 147]). In a similar fash-

ion, the sea surface temperatures in the Main Development Region (see Sec-

tion 2.5.2) have a large impact on the formation of hurricanes in the Atlantic

basin. Forecasting the number of hurricanes formed in the Atlantic is cru-

cial for energy industries along the southeastern US coast, which often suffer

heavy losses during the hurricane season. Due to the impact of sea surface

temperatures, the eastern Pacific as well as the Atlantic basin, are regions of

particular interest. They will be the focus of our benchmarking exercise.

In this exercise, we show that the forecasting skill of DC is comparable to,

and in some cases higher than, the skill of the ENSEMBLES models. Given

the attention that has been recently payed to multi-model ensembles [30, 73,

104, 151, 152] we also compare DC with a MM constructed by combining

equally weighted individual ensembles of the four ENSEMBLES models into

a grand-ensemble. We show that the MM does not significantly outperform
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either the individual models or the DC. We will argue that this result is due to

our evaluation approach, Kernel dressing, which implicitly improves/debiases

the individual models, so that they are directly comparable with the MM. We

also briefly study the return to skill [4] that the ENSEMBLES models exhibit

at an annual forecast in the eastern Pacific (see Section 2.5.3). We investigate

whether the return to skill is due to improvement of the model performance

at the long leadtime or simply due to the variations in climatology [53]. To

see this, we separately evaluate an unconditional climatology and investigate

how difficult it is to forecast different time periods (in relative terms).

This chapter is structured as follows. In Section 4.1 we provide a detailed

description of the DC model and illustrate the basic properties of DC by fore-

casting both a simple and a noisy sine curve in Section 4.2.1. We then follow

this by demonstrating the DC properties in a more complex setting, using

a simple chaotic system of the damped forced pendulum, in Section 4.2.2.

The benchmarking of the ENSEMBLES models with the DC is performed in

Section 4.3.

In this chapter, the following are new contributions:

• The DC is demonstrated to be a useful benchmarking model.

• Forecasting performance of ENSEMBLES models is evaluated using a

KD framework.

• The DC is shown to perform comparably with ,and at points to out-

perform, the ENSEMBLES models.

• The difficulty of forecasting different months in the Nino34 area is in-

vestigated.
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4.1 Dynamic climatology

We are interested in developing a simple-to-use forecasting model that would

provide a robust benchmark to alternative models. We introduce the Dy-

namic Climatology, a simple statistical model that uses analogs [148, 149] of

a current state to generate ensemble forecasts [78, 98]. This section provides

a technical description of the DC model.

4.1.1 Analogs, and how to find them

The DC is based on the method of analogs [82, 131, 148], which produces

forecasts by locating situations observed in the past that are analogous to

a current situation. This approach requires a definition of a quantitative

measure of similarity [9, 34], a particular form of which we discuss below.

Analogous situations, analogs, are utilized to produce an ensemble forecast.

There are two important stages in the DC. The first stage is concerned with

the definition of a current situation, while the second stage focuses on how

to construct ensembles.

The presented version of DC locates analogs using a k-nearest neighbor

(KNN) algorithm [24]. The KNN classifies past system states xt<0 based

on their distance from the current state xt=0, which we call a query point.

The distance of system states from a query point is measured by some metric

(specified below), within a d-dimensional space called a feature space.

The definition of the feature space plays a crucial role in producing good

analogs. In our version of DC, a ‘situation’ is defined in terms of a feature vec-

tor containing not only the current but also several preceding states, so that

at a given time t a feature vector can be written as xt = {xt, xt−1, . . . , xt−d},
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where {xt−j}d−1
j=0 are d most recently observed states of a system. We note

that constructing a feature vector in this manner resembles delay embed-

ding [138]. However, in our case we are not required to know the embedding

dimension.

While the usual choice of the distance metric in KNN is the Euclidean dis-

tance, we use a correlation type of measure. Our aim is to capture the

dynamics of the time series; correlation-like measures are convenient as they

relate the dynamical behavior of two variables. To measure the distances in

the DC we use an angle between two nonzero vectors as given by the dot

product

θ = arccos

(

xt · xt−τ

‖xt‖‖xt−τ‖

)

(4.1)

where xt captures situation at time t and xt−τ is a candidate for an analog,

i.e. the situation observed at an earlier time t − τ .

The reason why we work with sequences of d subsequent states of a system

is easier to understand in the following example. Consider a time series of

monthly mean temperatures measured at London Heathrow between January

1960 and May 2011. The task is to use data up to May 2011 and forecast

the temperature in June 2011. Now further consider using only the single

measurement of May 2011 and Euclidean distance as a KNN metric. If

September 1999 is colder than usual (or May 2011 warmer), it may well be

that the temperature measured in September 1999 is the closest to May 2011.

Despite being the closest analog, is September really useful in predicting

June? Most likely not. Ideally an analog of May 2011 would be determined

as another May (say May 1960); intuitively May should be more useful then

September in predicting June. So using only a single observation (and the

Euclidean distance) may not be an ideal way of searching for an analog.
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We may improve our chances of finding a suitable analog by forming a feature

vector using a sequence of, say d = 3, past observations,

xMAY11 = {xMAY11, xAPR11, xMAR11} (4.2)

It is unlikely that a sequence formed for September 1999 would be similar,

but we expect that sequences constructed for the May months will. Working

with sequences thus may prevent selection of a false analog due to chance.

Another problem may arise due to the Euclidean distance when used as a

KNN metric. Consider two sequences, say

xMAY09 = {xMAY09, xAPR09, xMAR09}
xNOV99 = {xNOV99, xOCT99, xSEP99}

both being candidates for an analog of the May 2011 sequence (Eq: 4.2).

Further assume that temperatures measured for all three sequences are:

xMAY11 = {11, 10, 9}
xMAY09 = {9, 8, 7}
xNOV99 = {9, 10, 11}

Using the Euclidean distance we get

DE(xMAY11,xMAY09) = 3.4641

DE(xMAY11,xNOV99) = 2.8284
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where DE is the Euclidean distance. Based on the Euclidean distance, KNN

would select November 1999 as an analog of May 2011, not a very intuitive

choice when one is interested in forecasting June temperature. Although the

temperatures of the May 2009 sequence are more distant, they do have the

correct direction, i.e. they are increasing (unlike the November sequence).

The correlation coefficient between the two May sequences is 1, while correla-

tion between May and November sequences is -1. Deploying a correlation-like

measure in this case yields the intuitive choice by selecting May 2009 as the

analog. Although this example is rather artificial, we hope it is sufficient

to illustrate that correlation-like measures are better suited to capture the

system dynamics then the Euclidean distance. We stress that DC is mainly

concerned with dynamical properties of the time series, hence the metric in

Eq: 4.1 is better suited for our purposes then Euclidean distance.

4.1.2 Producing a single ensemble member

The DC forecasts are constructed by utilizing first differences of analogs and

their images, image being defined as a state immediately following an analog.

To produce a single point forecast, the DC proceeds in the following stages

(1) The feature vector for a query point xt is defined as

xt = {xt−1, . . . , xt−d+1} (4.3)

(2) The KNN locates the nearest analogous feature vectors,

xa
t−τ = {xt−τ , . . . , xt−τ−d+1} (4.4)

from the archive.
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(3) The leading element of this analogous feature vector is an analog, xa
t−τ .

The leading element is simply the most recent state within the feature

vector.

(4) The image of the analog is determined as xi
t−τ+1.

(5) Dropping the subscripts for simplicity, the first difference of the image

and an analog, ∆xa = xi − xa, is calculated.

(6) The first difference ∆xa is added to the current state xt, yielding a

leadtime 1 point forecast of x̂t+1 = xt + ∆xa.

This procedure is generalized to K ensemble members in Section 4.1.4

To provide more insight into the process, consider the above example of

Heathrow monthly temperatures. With May 2011 being the query point we

are interested in forecasting the mean temperature of June 2011. Assume,

that the KNN algorithm correctly determines the feature vector of May of

1968, xMAY68 = {xMAY68, xAPR68, xMAR68}, as closest to the feature vector of

the query point, xMAY11 = {xMAY11, xAPR11, xMAR11}. The DC then selects

May 1968 as an analog, xa
MAY 68, and June 1968 as its image, xi

JUN68. The

difference ∆xa = xi
JUN68 − xa

MAY 68 is then added to the query point giving

the June 2011 forecast as x̂JUN11 = xMAY 11 + ∆xa.

What is the rationale behind using the first differences? Why not directly

use the images as a forecast, i.e. x̂t+1 = xi? If we were to use the images

directly, we would implicitly restrict space of forecast outcomes. DC would

yield only values that have been observed in the past. By using the first

differences, DC is not restricted to the space defined by the training set. It

is capable of generating new previously unobserved values; it can venture

outside the training set.
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4.1.3 Growing ensembles

DC can be set to produce ensembles of size M . This is done by letting DC use

K > 1 analogs. Instead of selecting only the closest feature vector, the KNN

locates K closest feature vectors yielding K analogs {xa,k}K
k=1 and K images

{xi,k}K
k=1. The first differences ∆xa,k are then added to the current state xt to

produce an ensemble of M = K ensemble members x̂t+1 = {x̂1
t+1, . . . , x̂

M
t+1}

for leadtime 1.

Consider a leadtime 2 forecast and assume we set K = 2. For leadtime 1, we

have an ensemble consisting of M = 2 ensemble members x1
t+1 and x2

t+1. To

produce a single leadtime 2 forecast, we need to construct a query point based

on the leadtime 1 ensemble. But which of the 2 members of the leadtime 1

forecast should we use? The answer is both. The DC iterates through all the

leadtime 1 ensemble members and generates K of 1-step ahead forecasts for

each. Thus the leadtime 2 ensemble consists of M = 4 members, 2 based on

x1
t+1 and another 2 based on x2

t+1. Thus setting K > 1 not only leads to an

ensemble, but it also leads to ensembles that grow in size with each leadtime.

From now on, we denote the ensemble size at a given leadtime as Ml.

Is there any benefit from having ensembles growing with leadtime? To show

the benefits, we first note that to forecast short leadtimes is usually less

difficult than forecasting long leadtimes. It is the long leadtimes where we

need plenty of forecasting power.

The first benefit is the following. A growing ensemble may improve perfor-

mance at the long leadtimes since at every leadtime it increases the probabil-

ity of hitting the target by deploying more ensemble members. The second

benefit is that at short leadtimes, where even a small ensemble can work well,

we do not waste CPU time by producing large ensembles when they are not

needed. Instead, we get through the short leadtimes quickly and efficiently
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and save the computational resources for longer leadtimes where, hopefully,

the increasing ensemble size will improve forecasting performance.

4.1.4 Pruning the ensembles

We must be cautious when working with the growing ensembles. Setting

K = 2 and letting the ensemble size grow freely would mean that forecasting

20 leadtimes ahead would yield an ensemble of M = 220 = 1048576 ensemble

members. The unlimited growth of ensemble size quickly proves computa-

tionally prohibitive even for simple models. To avoid the problem, the DC

uses a pruning mechanism. Three pruning examples are given here, each of

which is applied when an ensemble size exceeds a threshold, Mmax.

The default pruning method randomly samples the Ml > Mmax ensemble

members to bring the size of the ensemble down to Mmax. Another method

sorts analogs according to their closeness and keeps only the Mmax closest

ones. The last method selects every n-th member of the sorted ensemble

producing a uniform sample based on analog closeness.

The presented version of DC has also built in the optionality of setting how

many analogs should be used at the first leadtime and how the ensemble size

should grow beyond leadtime 1. For example, for the leadtime 1 forecast

we may require an ensemble of 16 members. Setting K0 = 16 produces 16

analogs and hence 16 point forecasts at leadtime 1. Had we set K = K0 for

the leadtime 2, the DC would identify 16 analogs of each of the 16 leadtime

1 ensemble members, i.e. the ensemble size would be M = 16 × 16 = 256.

For leadtime 3, we obtain M = 256 × 16 = 4, 096, for leadtime 4 we get

M = 65, 104 etc. and the problem quickly grows intractable. To prevent the

intractability, DC resets the number of analogs beyond leadtime 1. Thus DC

produces a reasonably sized ensemble at leadtime 1 while keeping the growth
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of the subsequent ensembles in check. For example, setting K0 = 16 and

K = 2 gives the size of the leadtime 1 ensemble M = 16, size of leadtime 2

ensemble M = 32, leadtime 4 M = 64, etc.

4.1.5 The DC parameters, further comments

The preceding sections have introduced a number of properties of the DC

model, all of which are parameterized. The following table lists the relevant

parameters:

DC Parameter Parameter description

w Phase window, allows to condition on a phase

of a system

d maximum delay, i.e. size of the feature vector

K0 Number of initial analogs, i.e. number of

analogs to be selected to generate leadtime

1 forecast

K Number of analogs for leadtimes higher then

1

M (max) Pruning threshold; Ensembles of size greater

then M (max) are subject to pruning

L Maximum leadtime

Ideally, all the parameters except for the maximum leadtime should be set

via an optimization procedure. When an archive is of moderate size this

is not computationally intensive. For large archives, some parameter values

might need to be set subjectively as the computations become intensive. For

small archives we face the risk of overfitting.
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Here we provide some insight regarding the parameter values when working

with the seasonal weather forecasting data of Section 4.3. The phase window

w in that case relates to the monthly temperatures, and it should be safe to

set it to w = 0. A rule of thumb value for the maximum delay is 3, repre-

senting a quarter of a year. Quarterly comparisons seem to be a reasonable

base when working with seasons. The number of initial analogs is set to 16.

The ensemble growth rate is set to K = 2 which keeps the ensemble size

manageable up to the leadtime of 12 months, where the ensemble has 4,080

members. For small seasonal weather datasets, the pruning threshold often

does not need to be applied. For larger datasets it should be set according to

the computational resources available. For desktop computers with less than

4 cores and less then 16GB of memory a good maximum size to maintain is

64 ≤ Mmax ≤ 1024.

The setting described in the previous paragraph is one that we use in our

applications below. We note that in practice the setting should be optimized

for a given application. The methods of optimizing the parameter setting

are beyond the scope of this work.

4.2 Numerical illustration

Here we provide more insight regarding the DC. Using a very basic example,

we show the typical behavior of the DC forecasts. We also aim to illustrate

a tree-like structure of the growing DC ensembles. Since an intuitive under-

standing is our main concern, the systems used in this section are simple; we

use a sine function without a noise, as well as a noisy sine function.

The sine function system is mainly to demonstrate how the DC constructs

its forecasts. Before applying DC to real-world data, we use a basic chaotic
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system of a forced damped pendulum, which demonstrates DC performance

in a more complex setting.

4.2.1 Demonstration using a sine function

For our first numerical demonstration of the DC, we choose to forecast a

sine function (no noise applied). Although a trivial task from the forecasting

point of view, this simple example will demonstrate that DC indeed has the

properties required in Section 4.1.

The sine function,

x = sin(t) (4.5)

is sampled at the frequency of π
24+1

over 128 of 2π periods. This gives 16

values to be forecasted within each interval of length 2π. The dataset is

split into two parts, forming training and testing sets, each consisting of 64

periods.

The DC is initialized 64 times, yielding one (multiple-leadtime) forecast for

each period in the testing set. The first forecasted leadtime is π
17

+ 2πk, the

last is 2π + 2πk. The DC parameters are set as follows:
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Figure 4.1: Forecasting sine function: DC correctly identified analogs within

the training set (red), as demonstrated by the perfect forecast (green/blue) at

different initializations. All ensemble members, at all leadtimes and initializations

of the testing set (light red), lie on top of each other and on top of the forecasted

target.

w = π

d = 8

K0 = 4

K = 2

M (max) = 64

L = 16

This setting yields 16 ensemble forecasts for each initialization, with the

ensemble size growing at the rate M l
l , l being the leadtime. The size of the

initial ensemble is 4 and an ensemble is pruned via random sampling when it

exceeds a size of 64 members (reached at the leadtime l = 6). Although sine

function represents a periodic system, the phase window is set to be wide
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enough to encompass all observations within a period. In other words, the

phase is not considered. The size of a feature vector is set to d = 8 so that

we have xt = {xt, xt−1, . . . , xt−7}.

Fig: 4.1 shows the DC forecasts, which are colored in alternating fashion

(blue/green) to distinguish different initializations. The main result here

is that all the ensemble members across all leadtimes and initializations lie

exactly on top of the verification (light red). This means that the KNN

search has correctly identified (ideal) analogs to each query point xt. Due to

the perfect periodicity, locating an ideal analog means that the image will

be a perfect forecast of the forecasted state. Consequently, the image-analog

differences yield a perfect forecast when added to a query point xt.
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Figure 4.2: Noisy sine forecasts: Adding noise to the sine function makes it

more difficult for DC to identify analogs. Compared to Fig: 4.1, the ensemble

forecasts (blue/green) are no longer perfect. This is expected, as the training set

(red) no longer contains perfect analogs.

Forecasting the simple sine shows that DC indeed is able to identify correct

analogs and produce good forecasts in a simple setting.
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We now slightly increase the complexity of the exercise by including additive

noise. The Eq: 4.6 becomes

x = sin(t) + ǫ (4.6)

where ǫ ∼ N(0, 1) is a noise term and we apply DC to forecast the noisy

sine function. By adding the noise, the perfect periodicity of the system is

removed, making it more difficult to find analogs for DC.
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Figure 4.3: Detail of noisy sine forecast: A detail of a single initialization

of the DC forecast (blue) showing the ensembles growing with leadtime. Beyond

leadtime 6, the pruning method starts being applied, keeping the ensemble size at

64. The initial ensemble is of size 4, we observe 2 groups of 2 ensemble members

very close to each other at leadtime 1.

The DC is left with the same parameter setting as in the simple sine exam-

ple. The DC forecasts, shown in the Fig: 4.2, no longer lie on top of the

targets. Nevertheless, the DC displays a very good qualitative forecasting

performance.
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Zooming in on one of the initializations in Fig: 4.3 we get a better picture

of the growing ensembles. We can see that at leadtime 1 we have 2 distinct

groups of 2 ensemble members, which then double at each leadtime until

leadtime 6 where the pruning procedure starts restricting the ensemble size.

The ensembles are rather tightly scattered around the verification, with the

exception of leadtime 1. Note that the leadtime 1 ‘miss’ is specific to the

particular initialization plotted here.

We note that for both sine examples, the conditional climatology (condition-

ing on phase of the sine) is able to perform comparably to the DC model as

long as there is a moderately large archive, say 28 states. This is because

the system is too simple, or more precisely, the training set contains enough

information for the conditional climatology to uncover the recurrent behav-

ior. In more complex systems the DC indeed does outperform conditional

climatology at short leadtimes as expected. In the next section, where we

use DC to forecast a pendulum, DC outperforms climatology by about 1 Bit,

even at leadtime 15, which is beyond a typical period of the system.

4.2.2 Demonstration using forced damped pendulum

Before moving on to real-world applications, we test DC on the forced dumped

pendulum (FDP), a more complex system that in many ways resembles the

real-world applications. FDP is a simple nonlinear dynamical system ex-

hibiting chaotic behavior. It is a periodically forced system, i.e. it has a

phase upon which conditional climatologies may be based. The phase infor-

mation and nonlinear (potentially chaotic) behavior links FDP well to the

applications analyzed below (Section 4.3). Some details of FDP are provided

in Appendix A.3; for a detailed overview of FDP and other systems based

on the pendulum see [8].
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Figure 4.4: Pendulum in periodic (non-chaotic) regime: The left panel

shows a phase plot of the FDP at a stable non-chaotic regime. The system tra-

jectory displays periodic behavior. The Poincare section on the left shows only a

small number of discrete points, a clear sign of periodicity. The parameter values

are: ωF = 2/3, b = 2 and g = 1.

In this example, we use FDP in a chaotic regime (see App A.3 for parameter

values of the different regimes). In the chaotic regime, the recurrence and

periodicity are broken through the instability of the system. The chaotic be-

havior becomes apparent when we compare Fig: 4.5 and Fig: 4.4. In Fig: 4.4,

the pendulum exhibits a periodic regime; its phase plot (left panel) displays

simple periodic behavior. The Poincare section is also very simple. In Fig: 4.5

the pendulum is in a chaotic regime. Its phase plot is very congested and a

Poincare map complex. The simple periodic behavior we observed in Fig 4.4

is no longer present.
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Figure 4.5: Pendulum in chaotic regime: The phase portrait (left) reveals a

very complex structure. The Poincare section (right) also show a complex pattern

suggesting a chaotic behavior. The parameter values are: ωF = 2/3, b = 2 and

g = 1.

In this demonstration, we only forecast one of the two system variables -

the angular velocity labeled x2 in Fig: 4.5. The DC parameters are as in

Section 4.2.1: w = 0, k = 4 ,Mmax = 64. The initial ensemble size is set to

K0 = 16, and the pruning starts at leadtime l = 4. There are 80 forecast

initializations in the testing set, each of which forecasts 30 leadtimes ahead.

The dataset and evaluation settings are described in Appendix B.

In Fig: 4.6 we present the raw DC forecasts of the angular velocity; as be-

fore, the forecasts are colored in alternate fashion (blue/green) to distinguish

different initializations. The horizontal axis shows dimensionless time. To

put the forecasting horizon into perspective, note that a simple (non-chaotic)
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Figure 4.6: DC forecasts of pendulum: For consecutive initializations of the

DC forecasts (alternating blue/green) of the angular velocity (light red) of FDP in

the chaotic regime. Three of the four displayed forecasts successfully capture even a

rather complex behavior (peaks/troughs) up to 2/3 of the maximum leadtime, L =

30. The initialization at t = 1.57 (green) performs poorly relative to climatology.

pendulum takes 20 time units to undergo 1 period. The forecasting leadtime

of 30 time units therefore corresponds to 1.5 periods of the simple pendulum.

The leadtime of 30 was, therefore, chosen to forecast time scales longer than

one period of a simple pendulum.

The skill is quantified in Fig 4.8. For the first, second, and third forecasts

plotted, the DC performs rather well up to about a half of the maximum

leadtime, i.e. about a half of a single pendulum period. For the first fore-

cast the DC very successfully passes the double peak and the trough. The

forecasts of the fourth initialization visibly perform poorly at all leadtimes.

The growing ensembles seem to work quite well, as many of the ensemble

members lie close to the forecast even at long leadtimes. This is better
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Figure 4.7: DC forecast detail: Detail of the first initialization displayed in

figure 4.6. The nonlinearities of the system cause the ensemble forecasts to spread

out. The growth of an ensemble is apparent beyond time of 1.525

demonstrated in Fig: 4.7 where we zoom on the first forecast. Beyond the

time of 46 units, the DC forecasts diverge. Despite that, the ensemble at

the long leadtimes (l > 20, t > 50) nicely spread around the verification.

Although, the long leadtime forecasts are not very close to the verifications,

the forecasting PDF still may assign non-negligible probability to the verifi-

cation.

The actual forecasting performance is captured in Fig: 4.8, where we plot

the Ignorance of the Kernel dressed forecasts relative to unconditional cli-

matology. The unconditional climatology defines a zero skill reference (black

line). For a model to outperform the zero skill reference its Ignorance relative

to the reference must be below the zero skill line. In this figure, the igno-

rance of DC relative to unconditional climatology stays below the zero skill

up to leadtime 18. DC significantly (> 3 Bits) outperforms the climatology

at the short leadtimes gaining an advantage of up to 4 Bits before leadtime
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Figure 4.8: DC Ignorance in pendulum: Ignorance of the DC forecast relative

to climatology. The zero line (black) defines zero skill reference, i.e. skill of the

unconditional climatology in this case. For a model to outperform climatology,

the relative Ignorance must be below the zero line. The DC forecast displays a

good forecasting performance up to leadtimes 15-18. Beyond that, the climatology

takes over.

5. DC maintains a good performance (> 1 Bit) up to leadtime 15, which

corresponds to about 3/4 of a simple pendulum period. Given the chaotic

nature of the system, beating the climatology at time scales comparable with

3/4 of a simple pendulum cycle is, in our opinion, rather satisfactory. These

quantitative results support our theoretical expectations, in particular the

requirement of DC to outperform climatology.

We note that in a chaotic regime there is no obvious period that could be

used in order to create conditional climatology, hence the climatology is

unconditional.

A different look at the DC forecasts is provided in Fig: 4.9, where we plot

the forecasting densities of DC ensembles. The figure displays 5 subsequent

initializations. The short leadtimes exhibit sharp forecasting distributions.
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Figure 4.9: DC density in pendulum: Forecasting densities of the DC ensemble

forecast. Selection of five different initializations of the DC forecast are shown. At

the initial leadtimes the densities are sharp, with increasing leadtime they spread

out as DC loses forecasting performance.

At long leadtimes, the distributions spread out as DC loses forecasting skill.

Another way of studying the forecasting performance is to plot probability

plumes of the forecasting distributions, see Fig: 4.10. In this figure, each

patch of a distinct color shows a contour of a given value of forecasting density
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Figure 4.10: DC Probability plumes (pendulum): The orange to yellow

patches represent probability plumes of the DC forecast. Each patch of color is

a contour of a given percentile of a forecasting distribution. The contours are

created by connecting a given percentiles values over all leadtimes. Note that the

percentiles of climatology (light blue) are not changing; this is because we deploy

unconditional climatology, which does not change over time. Also note that at long

leadtimes the plumes of DC coincide with climatological plumes. This is because

DC forecasts lose skill and climatology takes over, i.e. the blending parameter

α = 1.

percentiles as they are joined over all forecasted leadtimes. It is similar to

looking at the densities of Fig: 4.9 from the top and coloring percentiles of

the PDFs, with the distinction that here we use CDFs. The percentiles of

unconditional climatology (light blue) are also plotted. The climatological

plumes are just straight lines since the unconditional climatology is constant

across different leadtimes.

An observation to make is that at a given point, DC plumes converge to
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the climatological percentiles. That is a moment where the DC loses its

forecasting advantage (the blending parameter α becomes zero). Extending

the forecast to a larger leadtime L is a waste of computational resource as

the DC component of the forecasting PDF is effectively ignored.

4.3 Application: DC Benchmarking of EN-

SEMBLES

Any simulation model is expected to outperform climatology, but to obtain a

more complete picture of a model’s forecasting skill we should use more com-

plex benchmarks. In this section, we aim to obtain a good understating of

the forecasting skill of the ENSEMBLES [36, 57] models (see section 2.5.3).

To do that, we evaluate the forecasting performance of ENSEMBLES rel-

ative to climatology, but also relative to a more complex benchmark, the

Dynamic Climatology (DC). As described above, the ENSEMBLES mod-

els include 5 global coupled atmosphere-ocean climate models (described in

Section 2.5.3). Due to technical issues on our part, the model operated by

the Euro-Mediterranean Centre for Climate Change is excluded from the

analysis.

Both the ocean and atmospheric parts of the models were initialized with

estimates of their states. Each model was initialized with 9 different initial

conditions, producing an ensemble forecast consisting of 9 ensemble members.

For more details on the initialization methods see [152].

All 5 models produce retrospective forecasts over the period of 1960 to 2001,

with 4 forecast initializations each year. Although all the models produce

global forecasts the focus of our benchmarking is on two regions - Nino3.4 and

the Main Development Region (MDR). As described above, these regions are
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important for the measurement of sea surface temperatures for the El-Niño

event and for hurricane formation in the Atlantic basin.

The evaluation part of the exercise utilizes verifications taken from the ERA-

40 reanalysis [85], a dataset consisting of global atmosphere and surface con-

ditions over the period of 1957 - 2002 constructed by the ECMWF. For more

details on the dataset used see Appendix B.3.

4.3.1 Experimental design issues and DC calibration

The details of the datasets used, along with the description of evaluation

settings, are provided in Appendix B. Here we state only basic facts:

(1) We work with a forecast of the spatially-averaged monthly Sea Surface

Temperature (SST).

(2) The (retrospective) forecasts are produced by four of the ENSEMBLES

models with the first being run in February 1960 and the last in Novem-

ber 2001, yielding 41 years of forecast. Consequently, the forecasts yield

41 values for each leadtime (month) of a given initialization.

(3) There are 4 different forecast initializations, 3 of which produce fore-

casts of 7 months ahead and 1 which forecasts 14 months ahead

(4) We used DC to produce forecasts of the same variable, period, initial-

izations and leadtimes, i.e. the DC and ENSEMBLES forecasts are

fully comparable.

The formation of probability forecasts from an ensemble adds additional

risks for information contamination. The better balance when data are pre-

cious remains an active area of research. Inasmuch as the effective forecast-

verification archive consists of only 41 forecasts per an initialization, we avoid
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crossvalidation via separate training and testing sets; the data are too pre-

cious. Instead we adopt a leave-one-out crossvalidation.
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Figure 4.11: Varying DC parameters (Nino34): Parameters of the DC are

varied and the resulting DC forecasts are evaluated relative to climatology. The

best performer is setting with the delay d = 5 and phase window of w = 0. The

zero skill (black line) is defined by conditional (monthly) climatology.

To produce the DC forecast, we adopt a leave-one-out approach. When

forecasting a given month, the archive that DC searches for analogs consists

of all months apart from the one being forecasted. Although one must take

care not to overfit, it is unavoidable that, to some extent, both the DC and

the ENSEMBLES models are trained/tuned in-sample. To the advantage of

DC, the leave-one-out approach reduces the in-sample effect, to some extent.

The only true measure of skill is an out-of-sample evaluation; in seasonal

forecasting this will require waiting many years.
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Another problem caused by scarcity of the data regards the restriction placed

on K0 and the ensemble growth K. Given only 41 datapoints, there may be

no ‘good’ analogs to be found, much less K0 of them. While this weakens DC

as a forecasting method, it strengthens it as a benchmark that a simulation

model should be able to beat.

We also need to be aware of issues related to evaluation. As discussed in

Section 2.4.4, for small datasets a leave-one-out crossvalidation is preferred

over subsampling. A further consideration is the robustness of the chosen

skill score due to small size of the archive, and also potential bias due to

small ensemble size demonstrated in Chapter 3.

The DC parameters are set via optimization of DC forecasting performance.

In Fig: 4.11 we show evaluations of DC forecasts for the Nino3.4 temperatures

for different parameter settings. The meaning of the figure is the same as

described in Fig 4.8. The zero skill reference is, in this case, defined by

conditional (monthly) climatology, which will be the zero skill reference in

the subsequent analyses of this chapter unless stated otherwise. The overall

best performer is the setting with the delay set to d = 5 and phase window

of w = 2. We have also performed sensitivity analysis regarding the rest of

the parameters. Based on the results, the settings for Nino34 are: K0 = 2,

K = 2, d = 5, w = 2, m = 64; and for MDR:K0 = 2, K = 2, d = 4, w = 0,

m = 64. We note that the size of the window w is sensitive to the frequency

of the data. If we were to use weekly data the window size would be likely

to differ from its counterpart based on the monthly data. We remind the

reader that the parameters are discussed in Section 4.1.5.
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4.3.2 ENSEMBLES, DC performance in Nino 3.4

In this section, we evaluate the forecasting performance both of the EN-

SEMBLES models and of the DC relative to climatology. In addition, we

evaluate a multi-model ensemble (MM) constructed by combining equally

weighted ensembles of the 4 ENSEMBLES models. Due to time constraints,

we restrict the MM application only to the important November initializa-

tion. However, the arguments made below are general. Finally, we also

present an evaluation of the ENSEMBLES models relative to the DC.
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Figure 4.12: DC Ignorance in Nino34: Three initializations of ENSEMBLES

and DC forecasts evaluated relative to climatology. The August initialization

shows a poor performance by the LFPW and IFMK, while the DC outperforms

both. The ECMWF is the best performer in all three initializations. The overall

performance of the DC is comparable (or better at points) with the ENSEMBLES.
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Figure 4.13: DC Ignorance of the ‘long run’ in Nino34: Same as in Fig 4.12

but for November initialization. The ECMWF is the best overall performer al-

though at leadtime 1 the DC outperforms all the ENSEMBLES models. The DC,

IFMK and LFPW models maintain forecasting skill up to leadtime, 5 EGRR up to

leadtime 7, and ECMWF considerably longer (up to leadtime 10). There seems to

be an improvement in performance toward the final leadtime for all ENSEMBLES

models.

In Fig: 4.12 we show the Ignorance ENSEMBLES and DC relative to clima-

tology for the initializations of February, May, and August. We also provide

crossvalidated error bars to assess the significance of differences between par-

ticular models. The most striking result is the August initialization, where

the IFMK has almost no advantage over climatology and LFPW performs

poorly. The ECMWF and EGRR models perform rather well across the

initializations and leadtimes, with the ECMWF being the best performer.

Starting with the February initializations, the DC model performs well at the
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first two leadtimes (> 1 bit) and, similarly to IFMK and LFPW, saturates

beyond a leadtime of 3 months. Note that the error bars of IFMK and

LFPW reach the climatological level already at leadtime 2. In February, the

overall performance of DC is comparable with all the ENSEMBLES models

at the short leadtimes and with the IFMK, LFPW at long leadtimes. In the

May initialization, DC is comparable to the ENSEMBLES models only at

leadtime 1. For the August initialization, DC significantly outperforms IFMK

and LFPW, by more then 1 Bit, up to a leadtime of 3 months. The IFMK

and LFPW models are already not significantly different from climatology at

leadtime 1; however, LFPW regains skill at leadtime 6, where its error bar

descends below the climatological level.

In general, IFMK and LFPW maintain forecasting skill up to 3 months with

the exception of August, although at some leadtimes the significance may

be questioned, as their error bars reach climatology. The ECMWF model

performs well for considerably longer, up to 7 months. In the February ini-

tialization, both the ECMWF and EGRR maintain a very good performance

over the entire forecast period and DC is a comparable performer to the

ENSEMBLES models. The statistical significance of their performance is

generally confirmed by the crossvalidated error bars.

The Ignorance in Fig: 4.13 shows a similar picture for the November ini-

tializations. IFMK and LFPW are outperformed by ECMWF and EGRR

although the out-performance is not statistically significant at leadtimes 2

and 4 in case of the IFMK model. Both IFMK and LFPW lose skill relative

to climatology around leadtime 5, but their crossvalidated error bars reach

climatology at leadtime 4. The DC performs comparatively well and, at

short leadtimes, outperforms IFMK although significantly only at lead time

1. At leadtime 1 DC also outperforms ECMWF and EGRR although not

significantly. The ECMWF model is again the best performer, never signif-
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Figure 4.14: Ignorance relative to DC in Nino34: Same as Figure 4.12 but

here ENSEMBLES is evaluated relative to DC. Above the zero line a model’s

performance is worse then that of DC. The DC is significantly outperformed only

by ECMWF and EGRR in the February initializations and at long leadtimes of the

August initializations. For the August initialization the DC outperforms IFMK

and LFPW. Overall, the DC performs comparably to ENSEMBLES.

icantly crossing the zero line defined by the zero skill of climatology. The

ECMWF model maintains good performance up to leadtime 9. Interestingly,

at long leadtimes there seems to be a return to skill as 3 of the ENSEMBLES

models drop further below the zero line. However, the cross-validated error

bars show that the return to skill is not statistically significant.

The Ignorance profile of the multi-model shows that the MM is comparable

to the two weakest models - IFMK and LFPW. The DC benchmark outper-

forms the MM, although not significantly, up to leadtime 5. This result may
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seem in stark contrast to [152], who find that the MM generally outperforms

the individual models. However, the important difference between our work

and [152] is that our evaluation approach involves Kernel dressing (KD). As

suggested by [152], MM improves performance by reducing overconfidence of

individual ensembles. By combining individual ensembles, the spread of the

resulting grand-ensemble is inflated and overconfidence reduced. In our ap-

proach, KD implicitly debiases/inflates the ensembles at an individual model

level (see Section 3.2 and Section 2.5.4). While in [152] raw (overconfident)

ensembles are compared with the (spread-inflated) MM, we compare ensem-

bles that are already debiased/inflated with the MM. In our case, both the

individual ensembles and the MM perform similarly, because both have been

debiased. In our approach KD does a similar job to that which MM does

in the approach of [152]. Consequently, in the KD/Ignorance evaluation ap-

proach, the MM is not required in order to improve performance of individual

models.

We can obtain a better insight into DC performance by directly evaluating

the ENSEMBLES models relative to the DC, as shown in Fig: 4.15.

The figure clearly shows that DC forecasts outperform all the models at

leadtime 1, where only for the ECMWF model the statistical significance

does not hold. Also DC performs better than, or comparatively well to,

IFMK, LFPW and MM, although the error bars do not ensure statistical

significance. The ECMWF and EGRR models significantly outperform DC

at leadtimes 4 to 7 for which the out-performance is significant. At a leadtime

of 5 months, for example, ECMWF is almost 1.5 Bits better then DC, placing

almost three times (21.5) more probability on the verification.

The probability plumes of the ECMWF are given in Fig: 4.17 and the DC in

Fig: B.2. The meaning of the figures is the same as in Fig: 4.10 (described in

Section 4.2.2). The zero skill reference is defined by the monthly climatology
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Figure 4.15: The ‘long run’ ignorance relative to DC in Nino34: Same as

in Fig 4.14 but for the November initialization. Similar conclusion emerges; the

DC is significantly outperformed by only ECMWF and EGRR models at leadtimes

3-7. For all other leadtimes and models, DC is a comparable performer.

(light blue plumes), which changes with leadtime. The plumes of the fore-

casting model are plotted for the November initialization (so the ends and

beginnings of the plumes overlap). We only plot a selected part of the whole

timeseries, one that contains interesting El-Nino events. The first fact to

observe is that the plumes of the ECMWF models are sharper and never ap-

proach the plumes of monthly climatology (light blue). On the contrary, the

plumes of the DC start converging toward the climatological plumes when

the DC starts losing performance. This is in line with our previous finding

shown in Fig: 4.13. Further, note how the DC managed to capture the offset

of the large El Nino event during 1973. The ECMWF model also performed

very well during 1973, where it sharply identified the variable progression
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Figure 4.16: Ignorance of the monthly climatology: Nino34: The Ignorance

of forecasts of monthly climatology shows that some months are more difficult to

(climatologicaly) forecast. January and March are the most difficult months; April

is rather easy, as the Ignorance of -0.7 is much lower than the January/March Ig-

norance. A possible explanation of the forecast improvement for November initial-

ization is that the monthly climatology does not provide a strong benchmark, so

in relative terms the ENSEMBLES model forecasts improve as the climatological

forecast weakens.

of the 1976/1977 El-Nino event. We provide plumes of both the ECMWF

and DC models for all forecasted periods of the November initialization in

Appendix B.4.

As a final point of this subsection, we discuss the return to skill occurring

at leadtimes 12 to 14 of the November initializations, which corresponds to

December and January. It is rather odd for a model to regain a forecasting

skill after hitting a zero skill mark. A possible explanation of the return
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Figure 4.17: Probability plumes of ECMWF model in Nino3.4: Percentiles

as given by the CDF of the ECMWF forecasts (red/yellow) show the performance

of selected November forecast initializations in probabilistic terms. The plumes are

plotted against a background of the plumes of monthly climatology (light blue).

Note how the climatological plumes vary with leadtimes. This is due to monthly

climatology changes with leadtime. The time period selected shows 2 large El-

Nino events in 1972/1973 and 1976/1977. The ECMWF forecast performs well

in capturing the onsets but also the offsets of the events (red with white rim).

Note how the plumes overlap; this is due to the overlapping of initialization of one

forecast with the end of the preceding forecast.

to skill is that in December and January the monthly climatology does not

pose a strong benchmark. In Fig: 4.16, we show Ignorance of the monthly

climatology for months starting in November and going out 14 months up to

December of the following year. We plot the months in this way to make the

figure comparable to Fig: 4.13. In April, climatology performs well relative

to other months; for example, it gains almost 1 Bit of advantage relative to
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Figure 4.18: Probability plumes of DC in Nino3.4: Same as in Fig: 4.17

but for the DC forecasts (red/yellow). The DC does a good job in forecasting the

onset of both the 1972 and 1975 events. The forecasting performance is reduced

after leadtime 5, beyond which the plumes relax to the plumes of the monthly

climatology.

March. The worst performance is delivered in January and March. Although

not being the worst months, in terms of climatological performance November

and December reach only 0.3 Bits of expected Ignorance. It may be possible

that the return to skill of the models is rather a loss of skill of the climatology

in these particular months.

4.3.3 ENSEMBLES, DC performance in MDR

Here we follow a similar path to that in Section 4.3.2 and evaluate the EN-

SEMBLES, a multi-model ensemble, and DC relative to monthly climatology
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and also the ENSEMBLES relative to the DC model in the MDR.
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Figure 4.19: DC Ignorance in MDR: ENSEMBLES and DC model forecasts

evaluated relative to monthly climatology in the MDR region. The ENSEMBLES

model performs rather well up to leadtimes 4-5 at all initializations. The DC

forecast performs comparably to ENSEMBLES as was the case in the Nino3.4

region.

We begin with the forecasting performance relative to climatology for the

February, May, and August initializations in Fig: 4.19. The ECMWF model

slightly outperforms all the other models, although never significantly. As

compared to the Nino3.4 region, here the models display similar skill but

the error bars do not signal statistical significancy. Across the May/August

initializations, the models seem to lose forecasting skill before 5 months. The

DC model performs comparably to all the ENSEMBLES models across the 3

initializations. For the February initialization, ECMWF and IFMK maintain
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a very good performance over most of the forecasted period, with their error

bars crossing the zero skill of climatology at leadtime 6.
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Figure 4.20: Ignorance of the ‘long run in MDR: The November initialization

evaluated relative to monthly climatology. All the ENSEMBLES models perform

poorly as they loose skill at leadtimes 2-3. The DC is the best performer as at

leadtime 3 it still has an advantage of 0.5 Bits over climatology.

The November initializations are shown in Fig: 4.20. All the models, includ-

ing the MME, perform rather poorly and lose skill at leadtime 3. Also, the

models do not significantly differ from each other as their respective error

bars overlap at almost all leadtimes. The ECMWF, EGRR and the DC mod-

els are overall the best performers, but significantly beat climatology only at

the first leadtime. DC is the most skillful model at leadtime 3, although

the large error bar suggests that the out-performance is not statistically sig-

nificant. Beyond leadtime 1 the advantage over monthly climatology for all

models is about 0.5 Bits at best, which renders all of the models poor per-
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formers. The performances of IFMK, LFPW, and the MM lose skill beyond

leadtime 1.
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Figure 4.21: Ignorance relative to DC in MDR: ENSEMBLES models eval-

uated relative to DC. None of the models outperforms DC for in any of the three

(Feb, May, Aug) initializations.

In Fig: 4.21, the ENSEMBLES models are evaluated relative to DC. Similarly

to the Nino3.4 region, the DC model is perfectly comparable with the EN-

SEMBLES models, although it does not have any specific advantage at any

of the initializations. The ECMWF significantly outperforms DC at lead-

time 1 of the February initialization. DC significantly outperforms LFPW

at leadtime 1 of the May initialization.

For the November initialization shown in Fig: 4.22, the ENSEMBLES models

evaluated relative to DC do not significantly outperform the DC with the
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Figure 4.22: The ‘long run Ignorance relative to DC in MDR: Same as in

Fig: 4.21 but for November initialization. Since all models perform poorly at this

initialization, none are expected to outperform DC significantly. This is indeed

the case; moreover, the DC is the best performer at leadtime 3.

exception of the ECMWF at the first leadtime. Recall that, as demonstrated

by Fig: 4.20, all the models are poor at this initialization.
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4.4 Conclusions

In this section we have introduced DC, a statistical model based on analogs,

which can be used in forecast evaluation as an alternative, stronger bench-

mark of (un)conditional climatologies. Built-in features which make DC a

viable benchmark tool include:

• straightforward application to any periodically-driven dynamical sys-

tem,

• compensation for reduction in forecasting performance at long lead-

times,

• ability to produce values not previously seen in the training set,

• robust performance at a very low computational cost.

To demonstrate the properties of the DC, we have performed several numer-

ical tests using simple systems. Using both a simple and a noisy sine curve

we have demonstrated the ability to identify ideal analogs when these are

available (see Fig. 4.1). Using the chaotic pendulum, we have demonstrated

how DC grows the forecasting ensemble (see Fig. 4.7). We have also shown

that DC displays a good forecasting performance of the chaotic pendulum,

as it maintains forecasting skill at leadtimes comparable with up to 3/4 of a

period of simple pendulum system (see Fig. 4.8).

To test DC in a real world application, we have considered the SST monthly

averages in both the Nino34 and MDR regions, and used DC to bench-

mark seasonal forecasting performance of four ENSEMBLES models and

their multi-model ensemble (MM). The ENSEMBLES models, MM, and the

DC were evaluated using Kernel dressing. While the ECMWF model emerged
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as the best performer across different initializations, the DC posed a strong

benchmark, and in many cases performed better than, or as well as, some of

the ENSEMBLES models.

For February and August initializations in the Nino34 region (Fig. 4.12), we

find that all ENSEMBLES models outperform the zero-skill benchmark of

monthly climatology up to 3 months, with EGRR and ECMWF maintaining

skill up to leadtimes 6 and 7 respectively. In addition, for the May initial-

ization the ECMWF, EGRR, and LFPW outperform monthly climatology

at all leadtimes. For the August initialization, the IFMK model does not

outperform climatology at any leadtime, the LFPW experiences loss of skill

at leadtimes 2 and 3 and regains skill at leadtimes 5 and 6. The ECMWF

and EGRR, along with DC, outperform monthly climatology at all lead-

times. When using the DC as the zero-skill benchmark, only ECMWF and

EGRR significantly outperform DC in February and August initializations,

although not at all leadtimes. IFMK and LFPW strongly underperform DC

in the August initialization. For the May initialization all the ENSEMBLES

model outperform DC.

We have also benchmarked the very important November initialization of

the ENSEMBLES (Fig. 4.13), which forecasts 14 leadtimes ahead. In this

exercise we also included a multi-model ensemble, constructed by combining

equally weighted ensembles of the four models into a grand-ensemble. All

ENSEMBLES models, including the MM, outperform monthly climatology

up to leadtimes 4 to 5. When DC is set to be the benchmark, only the

ECMWF and EGRR significantly beat the DC, but only at leadtimes 3 to

6. At leadtime one EGRR is outperformed by DC while ECMWF performs

comparably.

For the November initialization, the performance of the MM was relatively

weak; comparable to the two weakest models IFMK and LFPW. Although
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this finding may seem to contradict previous literature on multi-model en-

sembles, we argue that in Kernel dressing the individual models are implicitly

debiased, and therefore the individual models are directly comparable with

MM.

Benchmarking ENSEMBLES models in the MDR region leads to similar

conclusions. For the February, May and August initializations, Fig. 4.19, all

ENSEMBLES models significantly outperform the monthly climatology up

to leadtime 3, with ECMWF maintaining the skill slightly longer. When

using DC as the zero-skill benchmark (see Fig. 4.21), none of the models

(with the exception of ECMWF) significantly outperform DC at the first

leadtime of the February initialization. For the November initialization (see

Fig. 4.20), none of the ENSEMBLES models maintain skill beyond leadtime

2. Consequently, none of the models significantly outperform DC when used

as a benchmark (see Fig. 4.21). Similarly to the Nino34, the MM did not

significantly outperform any of the individual models.

Finally, for the November initialization in the Nino34 region, we have ob-

served a return to skill at leadtimes 13 and 14. Although the return to skill

is not statistically significant, see error bars of Fig. 4.13, we have investigated

the hypothesis that the return to skill is due to variations in climatology. We

have found that for the relevant months, i.e. November and December, the

Ignorance of monthly climatology is rather weak, around -0.3 in Fig. 4.16.

Consequently, the monthly climatology does not pose a strong benchmark

to ENSEMBLES models. We take this fact to be an interesting observation

rather than an explanation of the return to skill of the ENSEMBLES models,

and intend to investigate it further in our future work.
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Chapter 5

Forecasting with Radial Basis

Functions

In this chapter we provide background information on the use of Radial Basis

Functions (RBF) [127] in dynamical system forecasting. As background, this

chapter may be skipped on the first reading.

We begin with a description of RBF interpolation [40, 118]. We then discuss

RBF approximation and emphasize the differences between the approxima-

tion and interpolation [39]. We also discuss the computational costs of the

two approaches and describe the RBF training process and the generation of

RBF-based ensemble forecasts [130].

A crucial task in RBF approximation is center selection. We discuss several

selection methods [41, 43] and choose the power function method as the most

suitable for our later analyses.

This chapter is organized as follows. In Section 5.1.1, we provide an overview

of the RBF interpolation and approximation. In Section 5.2 we discuss meth-
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ods of center selection.

In this chapter we merely prepare ground for chapter 6, where RBF modeling

is extensively used. The concepts and ideas discussed below are known, and

well described in the cited literature, and there are no new contributions

here.

5.1 Model fit and ensemble forecast

In this section we briefly discuss Radial Basis Functions (RBF) modeling [39,

40, 43]. We first describe the RBF interpolation, since RBF modeling was

originally designed to interpolate functional surfaces [127]. We also define,

and provide several examples of, radial functions [43, 44, 55] and state that

the Wendland function [153, 154] will be the function of choice in the later

analyses.

We explain why, in large datasets, the interpolation problem needs to be

reformulated as an approximation problem. We provide a technical descrip-

tion of in-sample fitting of the RBF and out-of-sample ensemble forecast

generation.

This chapter provides merely the basic fundaments of RBF modeling. For a

detailed account of RBF methods, applications and related concepts see [39,

40, 118], which we loosely follow.

5.1.1 Interpolating with Radial Basis Functions

In many fields a common problem is to interpolate a function f(·) which

generates observed values yi = f(xi) at a number of observation points xi,

where xi ∈ Rd and x = {xi}N
i=1 is a vector of observation points. The
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interpolant of f is often constructed as a linear combination of a set of M

basis functions {Bj}M
j=1 as

f̃(x) =
M

∑

j=1

λjBj(x) (5.1)

where λj are coefficients of the basis functions. The coefficients are easily

obtained by solving the linear system

Aλ = y (5.2)

where λ = {λj}M
j=1 is the vector of coefficients, and the matrix A holds values

of the M basis functions at a given observation point xi, i.e. Ai,j = Bj(xi).

The matrix A must be invertible for the linear system of Eq: 5.2 to be well

posed. To ensure the invertibility of A the Mairhuber-Curtis theorem [88]

suggests that for d-dimensional spaces with d ≥ 2, the basis functions Bj

must be data-dependent. A natural choice for data dependent basis is the

Euclidean distance function φj(x) = ‖x− xi‖. Using the Euclidean distance

as basis function the system of Eq: 5.2 can be written as

f̃(x) =
M

∑

j=1

λj‖x − xi‖. (5.3)

where x are called datasites and xi are called centers [39]. The coefficients

λ are obtained by solving the linear system
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When the entries of the matrix A are given as euclidean distances of the

datapoints and the centers, A is called the distance matrix. Note that in

Eq: 5.4 the centers were chosen to coincide with the datapoints. Although in

some applications it may be sensible to choose a set of centers c = {cj}M
j=1

such that c 6⊆ x, in interpolation problems the centers usually coincide with

the datapoints, c = x, which yields M = N , i.e. the matrix A is a square

(N × N) matrix.

Using the distance matrix as a basis function may be convenient but has

a significant drawback. First, [39] shows that the distance matrix inter-

polant f̃ has a rather limited accuracy, especially near the boundary of the

datapoints. Second, the smoothness of the interpolated functions is limited.

Third, the distance matrix A is often ill-conditioned, i.e. has a low condition

number [19]. As the size N of the system grows the ill-conditioning often

becomes severe.

The limitations of the distance matrix may be substantially reduced by using

a radial basis function (RBF). We adopt the definition used in [39] to define

a radial function:

Definition: A function Φ : Rd → R is radial provided there exists a uni-

variate function φ : [0,∞) such that

Φ(x) = φ(r), where r = ‖x‖ (5.5)
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where ‖ · ‖ is some norm of Rd.

Radial function is therefore a function that takes the same value at any point

that is located a given distance from a fixed center. The Euclidean distance

function used in Eq. 5.3 is a special case of radial basis function. The distance

function used in the distance matrix is a simple example of a radial function,

since for all points x located at a given distance from a given center xi the

function ‖x − xi‖ takes the same value.

Some commonly used examples of RBF include:

• Gaussian

φ(r) = exp(−σr)2 (5.6)

• power function

φα(r) = ‖r‖α (5.7)

• truncated power function

φα(r) = (1 − r)α
+ (5.8)

• generalized inverse multiquadric

φ(r) = (1 + ‖r‖2)−
β
2 (5.9)

• Wendland’s functions

φ(r) = (1 − r)4
+(4r + 1) (5.10)

φ(r) = (1 − r)6
+(35r2 + 18r + 3) (5.11)

φ(r) = (1 − r)8
+(32r3 + 25r2 + 8r + 1) (5.12)

· · · (5.13)
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Using the radial functions to expand the basis of the RBF interpolant, Eq: 5.1

can be expressed as

f̃(x) =
M

∑

j=1

λjφ(‖x − xi‖). (5.14)

The coefficient vector λ = {λj}M
j=1 is determined by solving
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(5.15)

In the subsequent analyses, our choice of the radial basis function φ(·) is the

Wendland function given in Eq: 5.10, probably the most popular radial func-

tion presently in use. The choice of Wendland function was based on results

of a number of in-sample experiments using dynamical systems deployed in

this thesis (Lorenz63 and Lorenz84), but also using Franke’s test function [42]

which is often deployed to test interpolation models. Throughout the exper-

iments, the Wendland function proved to be the most stable and achieved a

very good approximation performance of all tested functions, which included

Wendland, Gaussian, and power function. Due to its stability and good per-

formance the Wendland function has also been recommended by a number of

authors, [39, 40], which puts our findings in line with the current literature.

We note that stability of solutions is of crucial importance. For example, the

cubic function (one of the power functions tested) was often found unstable

and often produced explosive forecasts.
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5.1.2 Interpolation, approximation, and computational

cost

In the previous section ( 5.1.1), we considered an interpolation problem,

for which M = N , i.e. A is a square (N × N) matrix. With A being

square, the size of the linear system of Eq: 5.17 quickly grows, and may

become computationally infeasible. For moderate datasets this is not an

issue. However, considering a large dataset containing, say 106 observations,

the size of matrix A becomes 106 × 106. The inversion of such a matrix

becomes prohibitive on standard computational devices.

For a limited computational resource, there is always a threshold at which the

matrix inversion becomes infeasible. In Fig: 5.1 we show the cost of solving a

linear system for different sizes of the square matrix A in terms of the CPU

time on a personal computer using an Intel duo-core 2.4 GHz processor and

8 MB of memory with the linear algebra package [2]. We observe that the

CPU time grows at a rate given by a power law. Already by the size of

105 it takes 35 seconds to calculate the solution. Although solving a single

system of that size is not a major issue, when forecasting we often consider

problems where the system must be solved repeatedly, possibly hundreds or

even thousands of times.

To deal with a system when A is too large to invert, and/or to reduce the

CPU time required by the solution, we may reformulate the interpolation

problem as an approximation. Under RBF approximation, we let M ≪ N ,

i.e. we select many fewer centers than there are datapoints, c ⊆ x. The

matrix A then becomes
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Figure 5.1: Growth of computational intensity. The computational cost of

least square solution in terms of CPU (blue line) is plotted along with a theoretical

computational cost, given by FLOPs, for different sizes of a M ×M square matrix.

The growth of the computational cost follows a power law, at M = 104 it takes

35 seconds to calculate the solution on a platform with Intel duo-core 2.4 GHz

processor and 8 MB of memory. Increasing M may quickly render the solution

intractable.

A =















φ‖x1 − c1‖ φ‖x1 − c2‖ . . . φ‖x1 − cM‖
φ‖x2 − c1‖ φ‖x2 − c2‖ . . . φ‖x2 − cM‖

...
...

. . .
...

φ‖xN − c1‖ φ‖xN − c2‖ . . . φ‖xN − cM‖















(5.16)

Setting M ≪ N yields a ‘long’ N × M matrix and the solution becomes

tractable. The linear system is now overdetermined and the coefficients λ

may be obtained via least squares.
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Although, in large datasets, approximation makes the RBF problem solvable,

it comes at a cost. Fewer centers mean that the surface of the approximated

function f will be less well described. Hence there is a tradeoff between

computational tractability of the problem and the quality of approximation.

The tradeoff poses an important question: How many centers to use? Here we

only note that the optimal number of centers is always problem-dependent.

In our work, we experiment and find the optimal number of centers as a

subjective balance between the speed of, and the quality of, the solutions.

The interpolation/approximation and related computational cost are always

present when working with RBF. The discussion in this section is therefore

applicable to any real-world application when the underlying model takes

the form of RBF. The decision as to how many centers to use is implicitly a

decision about whether to use interpolation or approximation, and lies right

at the heart of any RBF application. Further discussion of the computational

issues, as well as center selection, is provided in sections where RBFs are

applied and also in Appendix D.

5.1.3 Training for forecasting

Although RBF is a general method, the original application is surface inter-

polation. Due to its generality, the approach has been extended to timeseries

forecasting [109, 130]. In the analyses below, we use RBFs to forecast dy-

namical systems. The datasets involved are large, hence we apply the RBF

approximation.

One way of formulating the RBF approximation as a forecasting problem

is as follows. First, consider a d-dimensional dynamical system generating

a time series x = {xt}N
t=1 of system states xt = {x1

t , . . . , x
d
t }. Assume that

we observe, and are interested in forecasting, only a single dimension, say
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x1, giving a time series of observations x1 = {x1
t}N

t=1. We can embed the

time series x1 in s dimensions [117], and use the embedded values to forecast

future values xt+l. In the training, the overdetermined linear system takes

the form of















x1
t

x1
t−1
...

x1
t−N+s+1















y

=















φ‖x1
t−1 − c1‖ . . . φ‖x1

t−1 − cM‖
φ‖x1

t−2 − c1‖ . . . φ‖x1
t−2 − cM‖

...
. . .

...

φ‖x1
t−N+s − c1‖ . . . φ‖x1

t−N+s − cM‖















A















λ1

λ2

...

λN















λ

(5.17)

where x1
t is a value of variable x1 observed at time t, x1

t−1 is an embedded

vector available at time t − 1 and {c1, . . . , cM} ⊂ are s-dimensional centers

selected from the embedded vectors.

5.1.4 Generating an ensemble forecast

Using the example of the previous section, in the forecasting mode we use

the current and past observations of x1 to create an embedded vector xt and

measure the M distances of xt from the M centers c. Using the given radial

function φ and the parameter vector λ, which was determined during the

training, the leadtime 1 forecast of x1
t+1 is generated as

[

x̂1
t+1

]

=
[

φ‖x1
t − c1‖ . . . φ‖x1

t − cM‖
]















λ1

λ2

...

λM















.
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The ensemble forecast is obtained by repetitively applying the forecasting

step to each initial condition.

5.2 Center selection

Working with fewer centers than datapoints requires some form of center

selection method. There are a number of useful approaches that can be

used. For all approaches, we decide how many centers will be selected prior

to application of the selection method, noting that the number of centers K

is much smaller then the number of datapoints K << N . To determine the

best center selection method, we use K = 128; considering the typical sizes

of the datasets used throughout the thesis (order of 106, see Appendix C.1)

and our computational constraints, this is borderline feasible. In this work,

we have tested the following center selection methods:

• simple attractor covering

• k-means

• knot insertion (greedy RMS minimization)

• adaptive knot insertion (adaptive greedy RMS minimization)

• power function (adaptive greedy minimization)

5.2.1 Simple attractor covering

Simple attractor covering aims to distribute centers along the system attrac-

tor in order to capture local behavior of the system. An ideal distribution

of the centers should be able to well describe the system’s behavior at any
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subspace of the space spanned by the system attractor. Simple attractor

covering is based on a requirement that subsequent centers are separated by

some minimum distance. This requirement, however, does not guarantee that

all ‘dynamically important’ subspaces will be covered by a sufficient number

of centers. If the minimum distance between centers is too large, some sub-

spaces will not be well covered and the local dynamics of the system will

not be well captured. On the other hand, setting the minimum distance too

small may yield too many centers, which may become computationally pro-

hibitive in subsequent modeling/forecasting. Despite some drawbacks, this

approach can be useful in a number of cases, especially when local behavior

is not confined to small subspaces or a significant computational power is

available. Due to its simplicity, this approach is straightforward to use and

may be applied to obtain a quick insight concerning system dynamics.

In this method we select K centers ck, {k = 1, . . . , K}, from the T points

xt, {t = 1, . . . , T}, on a trajectory. We begin by setting a minimum length

l between the centers such that ‖ck − ck−1‖ ≥ l. We then initialize the

algorithm by taking the first point on the trajectory xt=0 to be the first

center ck=1. To obtain the second center ck=2 we keep accumulating the

distances of the subsequent datapoints ‖xt+1 − xt‖+ ‖xt+2 − xt−1‖ until the

cumulative distance exceeds the minimum required distance l. The last data

point of the accumulation is then selected as the second center ck=2. The

procedure is iteratively applied until we run out of datapoints. The simple

attractor covering is described by Algorithm 1.

5.2.2 K-means

We use the well-known method of cluster analysis, k-means [121], as another

method of center selection. K-means is a two-step algorithm that minimizes
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Algorithm 1 Attractor covering center selection

1. l = 0 // set initial length

2. for i = 1 to N − 1 do

3. for j = 0 to K − 1 do

4. l = l + ‖xi − xi−1‖ // accumulate distance of subsequent points

5.

6. if l > lmin then

7. for k = 0 to K − 1 do

8. dk = ‖xi − ck‖ // find distance to the closest center

9. d = min(dk)

10. end for

11.

12. if d < ǫ then

13. cj = xi // set the datapoint to be a center; reset length

14. l = 0

15. end if

16.

17. end if

18. end for

19. end for
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the sum of distances of points from a centroid summed over K clusters. To

initialize the algorithm, an initial set of centers ck, k = 1, . . . , K is selected

(no matter how). The algorithm than proceeds to the first step (assignment

step) in which each data point on a trajectory is assigned to one of the K

clusters. The assignment is based on the distance between the data point and

the centers, so that a data point is in the same cluster as its closest center.

In the second step (update step) means of all K clusters are calculated using

only points within the K-th cluster. The K means become new centers. In

the next iteration, the datapoints are re-assigned based on distances from

the new centers. The iterations proceed until the sum of the within-cluster

distances accumulated across all clusters is minimized. The details of the

procedure are given in Algorithm 2.

The drawback of K-means, when used to analyze dynamical systems, is that

the centers do not necessarily coincide with data points, i.e. the centers may

not lie on the system trajectory, and so can be located outside the system’s

attractor where the dynamics is not representative of the system. However,

K-means is a well-established method shown to perform well across a diversity

of settings, and certainly can be used as a good initial approach.

5.2.3 Knot insertion

The Knot insertion method is based on the reduction of a distance between

forecast and verification. The algorithm starts by setting a random data-

point to be a center, the in-sample RBF forecast is produced using only this

single datapoint as center. Next, the in-sample distances of one-step-ahead

forecasts and verifications are calculated, and the datapoint at which the

distance is largest is taken to be a new center. Subsequently a new RBF

forecast is calculated, now using 2 centers. The procedure then follows in
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Algorithm 2 K-means center selection

1. // Requirement:

2. arg min
S

∑K
i=1

∑

xi∈Si
‖xk − µi‖

3.

4. // Assignement Step:

5. for i = 1 to N − 1 do

6. dmin = Inf // initialize distance

7. for k = 0 to K − 1 do

8.

9. dk = ‖xi − ck‖ // calculate distance of point i from center k

10. if dj < dmin then

11. dmin = dk

12. indx = k

13. end if

14.

15. end for

16. d = min(d)

17. xk = {xk, xi}
18. end for

19.

20. // Update Step:

21. for k = 0 to K − 1 do

22. mk = mean(xk) // calculate means of clusters

23. ck = xk
i closest to mk

24. end for

a repetitive manner until either a target number of centers is achieved or

some tolerance, measured by RMS, is reached. The algorithm is described

in Algorithm 3.
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Algorithm 3 Knot insertion

1. c1 = xU(1,N)

2. for i = 1 to N − 1 do

3. f̃t+1 = Φ (xt, c)

4. indx = find(max(̃ft+1 − vt))

5. ci = xindx

6. end for

5.2.4 Adaptive knot insertion

Adaptive knot insertion is an extension of the knot insertion method. The

additional feature is that after K centers have been collected using knot

insertion a leave-one-out crossvalidation is performed. Only those centers for

which RMS error increases significantly when left out are kept, while others

are excluded. After the crossvalidation C < K centers are left and the

knot insertion is invoked again to replace the K − C excluded centers. The

significancy is determined as some threshold, typically given by a percentage

of RMS error before the crossvalidation. The algorithm stops after a required

number of iterations is reached or the RMS error saturates. Although this

method produces much better results in terms of in-sample RMS error, it is

computationally intensive as it alternates between exclusion and addition of

the centers. The algorithm is described in Algorithm. 4.

5.2.5 The power function

In the RBF interpolation, the power function has been used as a tool for

local error estimation. It has been shown, e.g. [119, 159], that the RBF

interpolation error is bounded
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Algorithm 4 Adaptive knot insertion

1. run knot insertion

2. while iteration < #iterations do

3. calculate total RMS (rmstotal)

4. for k = 1 to K − 1 do

5. f̃t+1 = Φ (xt, c−i)

6. rmsk = RMS (̃ft+1 − vt)

7. if (rmsk − rmstotal) < ǫ then

8. indx = {indx, k}
9. end if

10. end for

11. c = c−indx // exclude centers with small contribution to RMS

12. run knot insertion to replace K − C excluded centers

13. end while

|f(x) − sf,X(x)| ≤ κPΘ,X (x) (5.18)

where sf,X(x) is an interpolant of f(x), κ a positive constant and PΘ,X (x) is

the power function. The power function is defined by the quadratic form

PΘ,X (x)2 = Θ(x,x) − 2
N

∑

j=1

ujΘ(x,xj) +
N

∑

i=1

N
∑

j=1

uiujΘ(xi,xj) (5.19)

where Θ is positive definite kernel and uj(xk) = δj,k are cardinal functions.

Setting u = (−1, u1(x), . . . , uN(x)) yields a matrix representation

PΘ,X (x)2 = uAΘ,Y uT (5.20)
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with AΘ,Y being the interpolation matrix with entries Ai,j = θ(xi − xk).

It has been noted by [26] that good centers for RBF interpolation can be

located by minimizing the power function. Since the power function is inde-

pendent of the functional values f(x), only datapoints (not function values)

are needed to locate the centers.

To minimize the power function, we deploy the adaptive greedy algorithm

as described in Alg. 4. The only change is that the minimization of RMS is

replaced by the minimization of the power function.

5.2.6 Which method to use?

While the center selection algorithms play an important role in obtaining a

good forecast, their construction and evaluation of performance is beyond

the scope of this thesis. Instead of studying suitability of center selection

methods, we rely on the literature devoted to the topic. In particular, we

follow [25, 26, 118] who have shown that centers selected by algorithms based

on minimization of the power function are optimal. The optimality is a

strong argument for us to select the Power function method described in

Section 5.2.5 as our method of choice.

The line of arguments supporting the optimality of the method can be sum-

marized as follows. It has been shown [119, 159] that estimates of the local

error of an interpolant take the form of the power function defined in Eq. 5.19.

Further, it has been shown that if X ⊆ Y are alternative sets of centers, then

the associated power functions satisfy

PΘ,X (x)2 ≥ PΘ,Y(x)2 x ∈ Ω (5.21)
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where Ω is the state-space and {PΘ,X (·)2, PΘ,Y(·)2} are power functions of

the sets X and Y respectively. Given the properties of the power function,

in particular the maximality property [159], the inequality of Eq. 5.21 holds

everywhere in the space Ω. As such, the power function is able to determine

which of two alternative sets of centers is superior. In other words, mini-

mizing the power function is guaranteed to yield an optimal set of centers.

Since this appealing property has not been shown for the other methods dis-

cussed above, minimization of power function is not only suitable, but also

the preferred center selection method.

5.3 Conclusions

In this chapter, we have provided background on Radial Basis Functions

(RBF), a statistical modeling technique that we heavily rely upon in Chap-

ter 6 on model error correction. We remind the reader that the aim of this

chapter is to merely provide background information. While implementation

of the above methods in this thesis is new, the concepts and ideas described

in this chapter are known and documented in the literature cited above.

However, to our knowledge, the issue of computational costs (see Fig. 5.1

and Appendix D) and the trade-off between number of centers and computa-

tional tractability for large datasets is a practical observation that is rarely

discussed, and perhaps has the quality of a new contribution.

However, our main focus was to describe the RBF interpolation problem, to

discuss how RBF interpolation differs from RBF approximation, to show how

RBF approximation can be used in forecasting and to describe the tradeoff

between the quality of a model and the tractability of the problem. We have
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shown that RBF interpolation faces important computational constraints in

large datasets. In Fig. 5.1, we have calculated CPU time as a function of

number of centers and shown that a matrix inversion problem with 105 centers

results in 35 seconds of CPU time (on an Intel duo-core 2.4 GHz processor

with 8MB of memory). While 35 seconds may seem a reasonable cost, we

note that in general forecasting exercises, the inversion will be executed many

times. For example, if the inversion is to be executed 1,000 times, as is indeed

the case in our applications, the CPU time required totals about 10 hours.

This may be prohibitive in many cases.

We discussed the RBF approximation, an approach designed to overcome

the tractability issue in large datasets. We have also discussed the fact that

going from RBF interpolation to RBF approximation involves loss of model

quality, which is then reflected in poorer description of the surface being

approximated. Consequently, shifting away from RBF interpolation involves

an important trade-off between quality of modeling and tractability of the

exercise. We present more detailed practical observations and findings in

Appendix D.

Finally, we have described several methods of center selection, a crucial

part of RBF approximation. We have described simple attractor cover-

ing, a method designed to distribute centers by selecting centers as obser-

vations that are separated by some minimum distance. We have discussed

the method of K-means and noted that the method may yield centers that

do not coincide with observed data points. While this is not an issue in

stochastic systems, it may be of concern when modeling dynamical systems,

as the centers may lie outside the system’s attractor, i.e. in subspaces which

the system does not visit. We have also described simple and adaptive knot

insertion, two methods which aim to reduce the approximation error by in-

serting centers to subspaces where the error is large. And lastly, we have
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described a version of knot insertion, which inserts centers based on mini-

mizing Power function (see Eq. 5.19). Based on the recent findings in the

literature, we have concluded that our method of choice for the applications

presented below will be the Power function method.
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Chapter 6

Forecast correction: Predictor

Corrector and ΨΦ

Forecast correction is an important part of a forecasting framework. By

definition, any forecasting model is wrong, i.e. all models suffer from built-

in imperfections, an inevitable consequence of imperfect understanding of

the forecasted system. In forecasting mode, the model imperfections often

result in errors that are of a systematic nature. Given their nature, the

systematic forecasting errors can be detected and, potentially, corrected. It

is therefore natural to equip a forecasting system with a set of procedures

(post-processing methods) designed to detect and correct systematic errors

in its forecasts. Forecast correction, along with forecast evaluation and model

benchmarking (see Chapters 4 and 3), forms an important set of methods

designed to improve, assess, and interpret the value of a forecasting model.

While benchmarking and evaluation has been discussed above, in this chapter

we focus on forecast correction.

We construct the predictor-corrector model (PC), a two-stage novel approach
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designed to iteratively correct a systematic part of the model error [61, 67,

137] resulting from imperfections of a core (first stage) model. We show that

PC greatly improves the forecasts of a given core model and significantly

exceeds the forecasting performance of ΨΦ [62, 63], an alternative two-stage

approach based on direct corrections of the model error.

To both demonstrate and contrast the forecasting skill of PC and ΨΦ, we

consider two dynamic systems, Lorenz84 [83] and Lorenz63 [81] (see Ap-

pendix A) with observational noise. Using the Lorenz84 system, we show

that for a core model with low complexity, PC outperforms ΨΦ by up to 1

Bit even at long leadtimes, and maintains its superiority, although to a lesser

extent (0.5 bits), at medium leadtimes even under an improved, i.e. more

complex, core model.

The core model complexity is expected to influence the forecasting quality of

both approaches [134]. Intuitively, the better the core model, the lower the

model error, hence less space for a corrective action. To study the impact of

complexity, we test both PC and ΨΦ under varying complexity of the core

model. We show that PC, unlike ΨΦ, delivers a robust performance.

We also study the behavior of the two methods while ‘starving’ them of data,

i.e. using shorter dataset sizes. Again, PC delivers a robust performance

while the performance of ΨΦ is degraded.

In addition, we use numerical forecasts of PC, ΨΦ and a given core model to

demonstrate that evaluation based on the root mean square error (RMS) [97]

can be misleading, even dangerous, as the RMS criterion may select an infe-

rior model as the best performer.

Finally, we pay special attention to the computational intensity of both meth-

ods. Since our versions of PC and ΨΦ extensively utilize the radial basis

functions described in Chapter 5, the computational issues are related to a
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solution of an overdetermined linear system. We discuss the issues in Ap-

pendix D.

This chapter is structured as follows. We first provide some insight into our

version of a core model in Section 6.1. A detailed description of the core

model, along with a description of the datasets, is given in Appendix C.

The ΨΦ method is described in Section 6.2 and the description of the PC

method follows in Section 6.3. The numerical results of the two approaches

are analysed and contrasted in Section 6.4.

In this chapter, the following are new contributions:

• We construct PC, a two-stage iterative approach.

• PC delivers significant improvement of core model forecasts via model

error correction.

• PC performs robustly under varying complexity of a core model.

• Superior performance of PC when contrasted with ΨΦ.

• We demonstrate that RMS-based evaluation may be misleading.

6.1 Constructing the core model Φ

Both methods, the ΨΦ and PC, are designed to correct an output of a

common, core forecasting model. Neither of the methods is concerned with

how the core model is constructed; it is assumed to be a given. In weather

forecasting, the core model is typically a large Global Circulation models [92],

such as the ENSEMBLES models [57] described in Section 2.5.3. Since in

our analyses a core model is not exogenously given, we must construct it.
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In this section we provide an intuition about the core model construction; a

detailed description is given in Appendix C.4.

6.1.1 Systematic model error

Consider a time series of observed system states x1, . . . , xt, . . . , xN and an

imperfect forecasting model Φ initialized at time t with an observation xt

producing a leadtime 1 forecast

zt+1 = Φ(xt) (6.1)

= xt+1 + εt+1(xt, ǫ) (6.2)

where εt+1 is a forecasting error, which is a function of the current observa-

tion, xt, and some stochastic part, ǫ ∼ F (·) distributed according to some

distribution F (·). In the simplest case, the forecasting error ε may be as-

sumed additive with the stochastic part being i.i.d., ǫ
i.i.d.∼ F (·), so that we

can decompose the forecasting error as

εt+1 = ǫM
t+1(xt) + ǫ. (6.3)

where ǫM
t+1 represents a systematic part of the forecasting error, i.e. the model

error at point xt at time t.

We aim to construct a model Ψ attempting to capture the model error ǫM
t+1,

i.e. we require a correcting model Ψ to produce an estimate of the model

error at time t + 1 given a current observation xt
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ǫ̂M
t+1 = Ψ(xt) (6.4)

= ǫM
t+1(xt) + η (6.5)

where η is an error of the model Ψ. Assuming that Ψ perfectly captures the

model error so that η = 0, we can reduce the forecasting error by subtracting

the model error estimate from the Φ model forecast. The final forecast can

then be written as

x̂t+1 = Φ(xt) − Ψ(xt) (6.6)

= zt+1 − ǫ̂M
t+1 (6.7)

= xt+1 + εt+1(xt, ǫ) − ǫ̂M
t+1 (6.8)

= xt+1 + ǫ. (6.9)

Comparing the Φ model forecast zt+1 of Eq: 6.2 with the ΨΦ forecast x̂t+1

of Eq: 6.9, we see that the ΨΦ forecast has the smaller error. The point of

constructing the Ψ model is to improve the forecast of xt+1 by reducing the

model error of the Φ model.

6.1.2 Generating core model ensemble forecasts

To produce a core model Φ ensemble consisting of K ensemble members, we

require an ensemble of initial conditions xt = {xt,1, . . . , xt,K}. One way to

generate the initial condition ensemble is to perturb an observed state xt by

sampling from an inverse of the assumed observational noise model. In the

case of additive noise the observed state is given as
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xt = x̃t + e (6.10)

where x̃t is the ‘true’ system state and e
iid∼ F (·) is the observational noise

term given by some noise model F (·). In the subsequent analyses, we as-

sume the noise model to be Gaussian, e ∼ N(0, σ) and generate the initial

conditions as

xt,k = xt + e. (6.11)

The leadtime L ensemble forecast xt+L for a given initialization time t may

be obtained using an iterative approach, i.e. by iterating the initial condition

ensemble xt with the core model L times

x̂t+1 = Φ(xt) (6.12)

x̂t+2 = Φ(x̂t+1) (6.13)
...

x̂t+l = Φ(x̂t+l−1) (6.14)
...

x̂t+L = Φ(x̂t+L−1) (6.15)

where x̂t+l is an ensemble forecast for a leadtime l, and L is the final or

maximum leadtime of the forecast.

An alternative way of producing the leadtime L forecast is to use a direct

approach, i.e. mapping initial conditions xt directly to x̂t+L as
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x̂t+L = ΦL(xt). (6.16)

The parameters of the functions Φ and ΦL are different, hence the leadtime

L forecasts of the direct and iterative approach also differ. In our analyses,

we apply the iterative approach.

6.1.3 Using the core model

In the subsequent analyses, the core model Φ is used to:

a) Provide an uncorrected out-of-sample ensemble forecast of a system.

An ensemble is generated by perturbing some initial state and inte-

grating the initial conditions ensemble using Φ, see Section 6.1.2.

b) Provide forecasting errors used when fitting the ΨΦ corrector. For this

purpose, Φ is initialized at an actually observed, unperturbed state.

The Φ forecasts are compared with out-of-sample verifications and the

forecasting errors are collected separately for each leadtime.

c) Provide forecasting errors to be used by PC. In this case the proce-

dure under b) is repeated, but only leadtime 1 forecasting errors are

collected.

Under items b) and c), we generate a non-overlapping forecast. Considering

a size N of the evaluation dataset (see Appendix C.1), we can generate up

to ⌊N/L⌋ of non-overlapping forecasts, the ⌊·⌋ is the floor function. For

example, for N = 101 and L = 10 we can generate 10 non-overlapping

forecasts launched at every 10-th point. This fact will have an impact on

the number of data available to ΨΦ or PC, and we will comment on it when

describing the two methods.
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6.2 The ΨΦ method

ΨΦ [63] is a two-stage approach designed to improve forecasts of an iterative

predictor by exploiting information inherent in the systematic part of a model

error. In the first stage, a core model Φ is deployed to produce a base

forecast. In the second stage a correcting model, Ψ, corrects the systematic

parts of the model error. As a result, the corrected ΨΦ forecast is expected to

outperform the uncorrected Φ forecast whenever there is an imperfect model

and a detectable systematic error.

In Section 6.1, we have described how to construct the Φ model and use

it to generate forecasts. Here we focus on correcting the Φ forecasts. In

our analyses we use two versions of the model - one based on least squares,

ΨΦLSQ, and one based on radial basis functions, ΨΦRBF. In this section we

provide some insight into construction of the corrector Ψ; the details are

provided in Appendix: C.5.1. We stress that the two-stage model ΨΦ used

in this work is a version of a modeling approach published in [63], to which

the reader is referred for a more detailed description.

While our construction of ΨΦ is unique, the new material in this chapter is

the PC method defined in Section 6.3.

6.2.1 The core model forecast and forecasting errors

The out-of-sample forecast is obtained by initializing Φ with initial conditions

obtained from the learning set. To collect the forecasting errors, only a point

forecast - not an ensemble forecast - is generated. The forecasting errors are

obtained by comparing the Φ forecasts to the verifications contained within

the learning set.
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Figure 6.1: ΨΦ collecting the forecasting errors: Within a learning set (gray

solid curve), a core model is initialized with a single initial condition (red) and

produces forecasts (green dots) up to leadtime l = t. The forecast is contrasted

with verification (red) and the forecasting error (red arrow) is collected. The light

red dots represent verifications of the testing set (gray dash curve). The symbols

ht, ht−1 and ht−2 represent information available at times t, t − 1 and t − 2.

In Fig: 6.1, we show a schematic of the process. Assume we aim to generate

forecasts for a maximum leadtime of L = 3. The trained Φ model is initial-

ized at time t−3 with a single initial condition. The Φ model then generates

a forecast for each of the 3 leadtimes (green dots), which are compared to the

verifications (red dots) within the learning set (gray solid line). The 3 fore-

casting errors (red arrows) may then be collected and used in the correcting

stage.
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6.2.2 Fitting the corrector, quality of the error surface

Collecting forecasting errors yields, for each leadtime, as many forecasting

errors as there are forecasts. Assuming we forecast 5 leadtimes and have 10

forecasts available, we end up with 10 forecasting errors at leadtime 1, 10

forecasting errors at leadtime 2 and so on up to leadtime 5.

In our version of the ΨΦ approach, the parameters of Ψ are determined

for each leadtime separately, which means that for each leadtime we have a

different Ψl. Consequently, each Ψl depends only on the forecasting errors

of the given leadtime l. For non-overlapping forecasts, the degrees of free-

dom available to fit the parameters of Ψl is therefore constrained by the the

maximum leadtime L. If L = 1 we can generate as many non-overlapping

forecasts as there are datapoints (minus 1). If L = 10 we have 10 times less

forecasts, hence 10 times less forecasting errors available for each Ψl.

Although this might seem to be a bad news, there is one factor that in the case

of ΨΦRBF somewhat compensates for the lower amount of errors available.

In Section 5.1.2 we have discussed that for large datasets we must deploy a

RBF approximation, which may yield a poor description of the surface to be

fitted. While the amount of available data is constrained due to this we may

actually be able to afford to use more centers. With more centers, we can

obtain a better description of the surface to be fitted, which, in our case, is

the surface given by the Φ model forecasting errors. In the analyses below

we can afford to use all the datapoints as centers, which means that we can

deploy RBF interpolation instead of RBF approximation.
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Figure 6.2: ΨΦ forecast: Initialized with an observation at time t (red point),

the core model Φ produces leadtime 3 forecast (green). The Ψ corrector produces

corrections (blue) which are added to the forecasts to obtain final forecast (blue)

of the yet unobserved states (light red points).

6.2.3 ΨΦ in forecasting mode

In the forecasting mode, we first use Φ to simulate an l-step-ahead ensemble

of size K. The initial conditions are obtained by K times perturbing an

observation of a testing dataset at time t. At a given leadtime l, we apply

the Ψl model, and estimate the systematic error of Φ for all the ensemble

members. With the model error estimate in hand, we add it to the Φ forecast

to obtain a ΨΦ forecast at leadtime l.

In Fig. 6.2, we show a schematic of the forecasting mode. The green line

represents a single ensemble member produced by Φ initialized at time t,

forecasting 3-steps ahead. The red arrows represent the estimate of the

magnitude and direction of the systematic error and the blue points show
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the Φ forecasts corrected by the Ψ model.

The general ΨΦ procedure is as follows. The Ψ model uses the residuals from

the first-stage fit of the core model Φ (red arrows in Fig. 6.2) to learn the

structure of the systematic errors. The fitted Ψ is then used to generate the

out-of-sample corrections, red arrows in Fig. 6.2, to obtain corrected forecasts

of the core model Φ (blue dots). The corrected forecasts do not exactly hit

the target (red dots in Fig. 6.2) but corrected forecasts are closer to the

target than the first stage forecasts of the Φ model. Note that Ψ is applied

after all the Φ forecasts in the training set have been generated. This is a

crucial distinction from the PC method described in the next section.

6.3 The Predictor Corrector method

We suggest a novel predictor-corrector (PC) model, which, similarly to ΨΦ,

generates forecasts in two stages; first, the core model P produces non-

corrected forecasts and than a corrector C is applied to improve them.

PC is an iterative method that alternates between the prediction and the

correction step. In the P step, some core model P produces a leadtime 1

forecast. In the C step a corrector is applied. The C corrected forecast then

serves as an input into the next P step.

PC substantially differs from ΨΦ in that the ΨΦ corrector does not work

iteratively. A typical sequence for PC is:

forecast - correct - forecast - correct

A typical sequence for ΨΦ is:

forecast - forecast - correct - correct
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Note that in PC, the core model P will be structurally the same as the core

model Φ within ΨΦ, i.e. in our version of PC the core model takes the same

form of RBF approximation. Having P = Φ gives us the option of comparing

both approaches. From now on when the notation P is used it is understood

to be the P = Φ.

6.3.1 Constructing the C-corrector
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Figure 6.3: Error collection in PC: A core model P produces leadtime 1

forecasts (green), which are then contrasted with the verifications (red dots) to

obtain forecasting errors (red arrows) used as input to the C corrector. As in ΨΦ

errors are collected within a learning set (gray solid curve).

The corrector C is designed to correct leadtime 1 forecasting errors of the

core model P . As before, the core model is trained in-sample using a training

set. Similar to the Ψ we use the RBF approximation as the corrector C. To

construct C for a forecast initialized at time t forecasting L leadtimes ahead
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we require a vector of leadtime 1 forecasting errors ε = {εt+1, εt+2, . . . , εN}.
The forecasting errors are given as

εt+1 = xt+1 − P (xt) (6.17)

εt+2 = xt+2 − P (xt+1) (6.18)
...

εN = xN − P (xN−1) (6.19)

Consider the hypothetical example where the learning set has size N = 101

observations and the maximum leadtime is set to L = 10. Since the core

model P only produces leadtime 1 forecasts it can be launched N − 1 = 100

times, giving 100 leadtime 1 non-overlapping forecasts and 100 forecasting

errors. For datasets with large N we face the issue of tractability of A; in

such cases the RBF approximation must be deployed.

Fig: 6.3 shows a schema of the forecasting error collection. In the learning set

(gray solid curve), the core model is initialized 3 times to produce 3 leadtime

1 forecasts (green dots). Forecasts are then compared to the verifications

(red dots) and the leadtime 1 forecasting errors (red arrows) are collected.

The parameters of the corrector C are determined using Radial Basis Func-

tions described in Chapter 5. In particular, the parameters are obtained

by solving the system in Eq: C.3 (Appendix C.5), where y represents the

residuals, i.e. model errors, resulting from fitting the first stage core model

P . Recall, that the first stage model errors are obtained by subtracting the

in-sample leadtime 1 forecasts (or re-forecasts) from a target. The entries of

A are given as values of some radial basis function φ at a given distance. The

distance is an Euclidean distance of a predictor xt from an RBF center. The

predictors xt are obtained by embedding the time series of the in-sample ob-
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servations of the system states (see Appendix C.3). The centers are selected

from the predictors using the Power function method of Section 5.2.5. Solv-

ing the system then yields the parameters of the corrector C; see Chapter 5

for more details on RBF fitting.

6.3.2 Selecting center for the C-corrector

As mentioned in the previous section, for large datasets C will be taking

the form of RBF approximation. In such cases an important issue is how to

select the centers, and how many centers should we use?

The question of how many centers to use may be resolved rather simply.

We aim to use as many centers as possible, while keeping the size of the

matrix A tractable. Given our computational resource, we set the number

of centers to M = min(N − 1, 4, 096), so that if N − 1 < 4, 096 we use all

available residuals. The default maximum number of 4,096 centers is set

experimentally, as in our applications 4,096 centers provide reasonably good

forecasting results while keeping the linear system computationally tractable.

Since M = 4, 096 ≪ N , we must deploy a center selection method. The

center selection methods of Section 5.2 work well for the core model, but for

the corrector a faster method is required. We suggest a method based on

inverse transform sampling [27, 136]

Xs = F−1
X (Y ) (6.20)

where FX is cumulative distribution function of random variable X, F−1
X its

inverse, Y ∼ U(0, 1) and Xs is the sub-sample obtained via inverse sampling.

We aim to sub-sample a set of forecasting errors xt−i to obtain a subsampled
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Figure 6.4: Error histograms: The histogram of about 400,000 collected fore-

casting errors (top) is very similar to the histogram based on the 4,096 subsampled

errors (bottom). The inverse sampling preserves the shape of the histogram.

set of M errors xt−sk
. To do this we first use a kernel density estimator [129]

to obtain an empirical c.d.f. FX of the model errors. Then we generate a

random sample Y of size M = 212 from the uniform distribution U(0, 1) and

use it in the inverse c.d.f to obtain the M (subsampled) errors xt−sk
.

In the top panel of Fig: 6.4, we show the distribution of the full set of forecast-
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Figure 6.5: Subsampled v. all errors: In another evidence of the inverse

sampling preserving the distribution of the forecasting errors, the qq-plot is con-

centrated around the 45 degree line, the tails are also close to the line.

ing errors (about 4×105 values) obtained by launching 1-step ahead forecasts

of the core model at about 4 × 105 different datapoints of the Lorenz 84 in-

sample dataset. The histogram of the subsampled set of forecasting errors

(M = 212 = 4, 096 values) is displayed in the lower panel. In Fig 6.5 we also

show the qq-plot of the full and subsampled sets. The qq-plot suggests that

the distribution of forecasting errors in the subsampled set is well preserved

even in the tails.

6.3.3 Forecasting mode

Given a core model P , a corrector model C and an embedded time series of

historical observations ht = {x1, x2, . . . , xt}, a leadtime 1 forecast, x̂t+1, of

the PC model is obtained as
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Figure 6.6: PC forecast: Core model P is initialized at time t (red point) of

the testing set (gray dash curve) and produces leadtime 1 forecast of t + 1 (green

line), which is then corrected (red arrow) to produce PC forecast (blue dot). The

core model is then initialized with the PC forecast at t + 1 to produce leadtime 1

forecast of time t + 2, which is then again corrected. The procedure is repeated as

many times as required to obtain a leadtime L forecast. In this schematic L = 3.

zt+1 = P (1)(xt) prediction step (6.21)

x̂t+1 = C(1)(xt) + P (1)(xt) (6.22)

= C(1)(xt) + zt+1 correction step (6.23)

where the superscript emphasizes that a model is iterated only once. Below

we drop the superscript and assume that P = P (1) and C = C(1). The next

iteration yields a leadtime 2 forecast
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x̂t+2 = C(x̂t+1) + P (x̂t+1)

= C[C(xt) + P (xt)] + P [C(xt) + P (xt)]

Since P and C are nonlinear functions, the [] brackets cannot be expanded.

The iterative nature of the PC forecasts is demonstrated in Fig: (6.6). Ini-

tialized at the most recent observation (red dot) of the training set (gray

dash line), the core model uses the embedded state to generate a leadtime

1 forecast x̂t+1 (green dot). The corrector C is then applied to x̂t to obtain

a forecast correction (red arrow). Adding the correction to the P forecast

yields the final PC forecast x̂t+1 (blue dot). The leadtime 1 forecast x̂t+1 is

then used as an input for the second iteration of the PC model. The process

is repeated L times, yielding the leadtime L forecast.

The iterative nature of PC means that PC aims to correct the trajectory of

the system, while ΨΦ, due to its direct approach, attempts to reduce a long-

term bias Assuming both methods work well, we expect PC to outperform

ΨΦ as it concentrates on the trajectory correction rather then bias reduction.

For some systems, we expect that evaluation in terms of the root mean square

error (RMS) will not fully appreciate the additional performance of PC. For

example, the Lorenz63 [81] system is known to produce bimodal behaviour, as

the system’s attractor occupies two distinct subspaces (resembling butterfly

wings), and the system tends to switch between them. As a result, the x-

variable of the system displays bimodality, see Fig. 6.8. Since the ΨΦ tends

to predict long term behavior, it is expected to forecast the mean of the

variable x, see [63]. But the mean forecast is completely wrong; the system

never settles in the mean, it is either on one wing or the other, not between

them. The PC on the other hand is expected to capture the bimodality of

the x variable. If PC happens to predict bimodality but is not correct as
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to which wing the Lorenz system has settled on, the RMS will punish it for

being too far from the target (located on the other wing). The ΨΦ approach

will be rewarded by RMS for forecasting the mean, the mean is always half-

way, and so despite its forecasts being useless, ΨΦ may be rated higher than

PC by RMS. This will be discussed in more detail below.

6.4 Forecasting Lorenz84/63

In the following forecasting exercises, we deploy the perfect model scenario

(PMS) as a benchmark model. In total we deploy 5 different forecasting

models for both systems:

(1) Perfect model (PMS),

(2) the non-corrected core model Φ = P ,

(3) predictor-corrector model PC,

(4) the ΨΦ model based on least squares (ΨΦLSQ) and

(5) the ΨΦ model based on radial basis functions (ΨΦRBF ).

In Fig: 6.7 we present forecasts of the Lorenz84 system over a selected time

period. In the selected time period the non-corrected core model (green) loses

forecasting skill after about 15 hours. The PC method (blue) improves the

forecast significantly; several ensemble members stay close to the verification

(red line) for the whole time period of 100 hours. The ΨΦRBF (magenta)

also improves the core model forecast, although not as dramatically as the

PC model. The correction of the ΨΦLSQ model (orange) has very limited

impact; the forecasts quickly converge to the mean.

211



CHAPTER 6. FORECAST CORRECTION: PREDICTOR
CORRECTOR AND ΨΦ

0 10 20 30 40 50 60 70 80 90 100

0

1

2

leadtime in days

 

 

PsiPhi LSQ verification

0

1

2

 

 

PsiPhi RBF verification

0

1

2

 

 

PC verification

0

1

2

Lorenz 84: sample rate 64, noise 0.005

 

 

Non−corrected verification

0

1

2

Lorenz 84: sample rate 64, noise 0.005

 

 

PMS verification

Figure 6.7: Lorenz84 forecasts: From top to bottom, PMS, non-corrected core

model Φ, PC, ΨΦRBF and ΨΦLSQ forecasts of a selected 100-hour-long segment

of the Lorenz84 system. PC outperforms the other 4 (imperfect) models. The

ΨΦLSQ quickly resorts to forecasting the mean of x, the non-corrected Φ model

loses skill after 20 hours. The ΨΦRBF marginally improves in this particular

forecast.
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Figure 6.8: lorenz63 Forecasts: Same models as in Fig: 6.7, used here to

generate forecasts of x variable of the lorenz63 system 10 seconds ahead. The

non-corrected model loses skill after 1.5 seconds. PC performs very well, while

ΨΦLSQ converges to mean rapidly.
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For this particular forecast, it seems that PC outperforms PMS. This would

be a false impression though. Although some ensemble members of PMS

diverge from the verification, many lie so close to the verification, literally

on top of it, that they are difficult to distinguish. This is not the case for

PC, where the ensemble members are close to the verification but do not lie

on top of it. Overall, PMS has many more ensemble members that are much

more accurate, i.e. they lie on top of the verification, than the PC. Another

point to make is that Fig. 6.7 shows a single forecast and one should not think

that all PC forecasts are as good as this one. There will be forecasts in which

PC does not so well so well, but PMS retains its strong performance. The

only relevant summary of the skill must be calculated across all forecasts and

is captured in terms of Ignorance below. As expected, the summary shows

that the PMS outperforms PC, and not the other way around.

Next, we look at forecasts of the lorenz63 system for a selected time period

presented in Fig: 6.8. The ΨΦLSQ forecast quickly converges to the mean;

beyond the leadtime of 1.5 seconds it is not useful. The ΨΦRBF also loses

its forecasting skill at around 1.5 seconds. Although the mean convergence

is not so strong the forecast of this particular time period is not very useful.

In fact both the ΨΦLSQ and ΨΦRBF seem to actually degrade the forecast

of the core model, possibly due to over-fitting or the error surface being too

complex for the models to capture. PC, on the other hand, performs very

well and a number of ensemble members stay close to the verification for the

whole time period.

6.4.1 Evaluating the correctors

Here we evaluate the Lorenz84 and Lorenz63 forecasts using the Ignorance

relative to the unconditional climatology (see Section 2.2.3). In this exercise
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Figure 6.9: Ignorance evaluation of Lorenz84. Based on Ignorance the best

performer of the 4 imperfect models is the PC (blue) followed by ΨΦRBF (ma-

genta). Both the non-corrected Φ model and ΨΦLSQ quickly lose forecasting skill

beyond leadtime of 2-3 days. The Ignorance of PMS (black) is shown for compar-

ison.

we set the number of centers of the core model to M = 64. We are aware

that the limited number of centers constrains the quality of the core model

forecasts. Our aim, however, is to obtain insight regarding the performance

of the different correctors.

In Fig: 6.9 we show the results for the Lorenz84 system for forecasts of up

to leadtime L = 100. As expected, in terms of Relative Ignorance the non-

corrected core model (green) performs rather poorly and loses skill before

the leadtime of 5 days. The Ignorance of ΨΦLSQ (orange) is comparable to

the core model and suggests that the linear based corrector does not improve

the core model forecasts. The ΨΦRBF model (magenta) outperforms the core
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model significantly and maintains a forecasting skill up to 30 days. At the

very short leadtimes, ΨΦRBF outperforms PC; the statistical significance is

confirmed by the crossvalidated error bars, which do not overlap. The PC

initially loses up to 0.5 Bits of performance to ΨΦRBF at the very short

leadtimes, but then the performance stabilizes and PC starts outperforming

ΨΦRBF around the leadtime of 10 days. Overall, PC produces very good

corrections, maintaining an advantage of 0.5 Bits of Ignorance, even at the

leadtime of 60 days. The PC forecasts remain useful about twice as long as

ΨΦRBF (blue) and 10 times longer then the non-corrected Φ model. We also

note that at leadtime 30 days, the PC has about 0.8 Bits of advantage over

ΨΦ, making its forecasts almost twice as good as those of ΨΦ.

The PMS (black) is plotted for benchmarking reference and, as expected,

heavily outperforms all models at all leadtimes. Note that the PMS loses 4

out of 5 Bits over the 100 leadtimes. This means that 100 leadtimes can be

safely considered as a long prediction horizon since even the (far) superior

perfect model loses a large proportion of skill over 100 leadtimes.

A similar result emerges in Fig: 6.10, where we show results for the Lorenz63

system, zooming in on the first 8 seconds of the forecasts. The PC model de-

livers a very significant improvement, and in terms of Ignorance outperforms

ΨΦRBF by about 1 Bit at leadtime 2 seconds. As above, the non-corrected

core model does not perform very well. The ΨΦLSQ model is at points out-

performed by the non-corrected core model, which suggests that ΨΦLSQ may

over-fit and consequently degrade the core model forecasts. The ΨΦRBF

model does improve the core model to some extent, especially at leadtimes

up to 1 second.

Based on this particular example, the PC method is superior to the other

models (apart from PMS of course). However, to provide a more complete

assessment, a more capable core model should be deployed. We will look at
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Figure 6.10: Ignorance of Lorenz63. Similarly to Fig 6.9, the PC model (blue)

delivers a significant improvement. ΨΦRBF (magenta) improves the core model

forecast (green) only marginally, while ΨΦLSQ (orange) degrades the core model

forecasts, possibly due to over-fitting.
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Figure 6.11: Lorenz84 PC v. ΨΦ. Ignorance of the PC relative to ΨΦ (blue)

shows that beyond the leadtime of 15 days the PC is outperforming the ΨΦ.

Despite initial underperformance (up to 10 days), the PC gains a great advantage

of up to 1 Bit between leadtimes 45 to 100 days over ΨΦ. Note that below the

zero line, PC outperforms ΨΦ.

settings using core models of higher complexity in Section 6.4.3.

One final look at the relative performance of the PC and ΨΦ is provided

in Fig: 6.11. We plot the median of the bootstrapped Ignorance of the PC

relative to ΨΦ, IPC−IΨΦ, for the Lorenz84 model, where we use a core model

with 16 centers. At the very short leadtimes, up to 10 days, ΨΦ marginally

outperforms PC, by about 0.2 Bits, but both models significantly improve

the core model. We are not certain why ΨΦ outperforms PC at the very

short leadtimes; we note, however, that at those leadtimes PC undergoes

a period of instability, which might be pointing to some numerical issues

arising from the iterative nature of the algorithm, and we aim to investigate

this in our future work. As the leadtime increases beyond 15 days the PC

starts outperforming ΨΦ (drops below zero line), and beyond the leadtime
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of 45 days it has 1 Bit advantage over ΨΦ. The PC maintains the advantage

all the way up to a leadtime of 100 days, making it twice as good a predictor

as ΨΦ beyond leadtime 45 days. In fact, PC still has an advantage of 0.5

Bits even at the long leadtime of 200 days, which is not plotted here. We are

aware that this remarkable superiority of the PC is related to the weakness

of the core model, but as we have seen in the above Fig: 6.9, the PC is a

much better performer even in settings with a more complex core model.

6.4.2 Limitations of RMS evaluation

In Section 2.4.2 we have stated that Root Mean Square Error (RMS) is not

a proper score. The propriety of RMS is discussed in [14], which points out

that the mean squared error (MS)

∫

(X − z)2p(z)dz

depends on the the distribution p(x) only through its first and second mo-

ments and does not reflect any other aspects of p(x). The same applies to

RMS; since RMS is just a nonlinear function (square root) of MS, it also de-

pends on p(x) only through its first and second moments. One of the direct

implications is that the RMS, by its very nature, cannot capture multimodal-

ity. Since multimodality is often present both in dynamical, e.g. Lorenz63,

and stochastic systems, RMS may not be a good choice of performance mea-

sure.

Despite the fact that impropriety of the MS (and hence RMS) has been es-

tablished, a number of studies continue to use RMS to evaluate probabilistic
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Figure 6.12: RMS Lorenz84. The RMS of the ensemble mean is plotted against

leadtime for the 5 model forecasts of Lorenz84. Based on the RMS the forecasting

performance of the PC appears comparable to the PMS, a result that is completely

incorrect as the PMS is by definition far superior model to the PC.

forecasts, thus discarding much of the information content present in a fore-

casting ensemble. We believe that using an improper measure such as RMS

in a probabilistic setting is misleading and aim to demonstrate some unde-

sirable effects of doing so. Although the material in this section is not new in

terms of theoretical results, we believe that the practical demonstrations are

both novel and important. To demonstrate the implications of using RMS in

a probabilistic setting, we evaluate the results of the previous Section 6.4.1

in terms of RMS and compare them with Ignorance-based evaluation.

In Fig: 6.12 we plot the RMS for the Lorenz84 system. The most striking

observation is that under the RMS, the PC appears to perform almost as well

as the PMS. Up to the leadtime of 40 days the PC maintains almost the same
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Figure 6.13: RMS Lorenz63. At the long leadtimes beyond 5.5 seconds the

RMS evaluation rates ΨΦLSQ as the best model, between leadtimes 6 and 8 even

comparable to the PMS, an incorrect conclusion since PMS must, by construction,

outperform ΨΦLSQ.

221



CHAPTER 6. FORECAST CORRECTION: PREDICTOR
CORRECTOR AND ΨΦ

(apparent) skill, and beyond this leadtime it is outperformed only marginally.

This result is not only counter-intuitive, but shows how dangerous the RMS

evaluation can be. The PMS is by definition far superior to any imperfect

model, and hence is expected to outperform any competing model by a large

margin.

It is useful to draw a comparison with Fig. 6.4, which shows that for the single

(subjectively selected) forecast, PC seems to be as close to the verification

as the PMS up to leadtime 40 days and perhaps even closer beyond that.

Although, as noted above, Fig. 6.4 only shows a single forecast, it is important

to note that PC across the forecasts indeed stays close to the verification

up to leadtime 40 days. However, many of the PMS ensemble members

stay much closer to the verification for much longer. While Ignorance-based

evaluation greatly rewards the PMS ensemble members, the RMS evaluation

fails to do so. Consequently, RMS fails to detect the basic fact that PMS is,

by construction, a far better model than PC. Furthermore, under the RMS

ΨΦLSQ performs comparably to the PMS beyond leadtime 95 days. These

results are, again, counter-intuitive and in stark contrast with the previous

findings where the PMS outperforms all the other models by a large margin

and at leadtime 100 days maintains an advantage of 1 Bit, which is expected

by construction.

The issues are less striking, but still persist, for the Lorenz63 system. The

RMS plotted in Fig: 6.13 correctly suggests that the PMS is the best model,

although it is deprived of its lead slightly early at a leadtime of 6 seconds.

The important observation here is that ΨΦLSQ significantly outperforms the

non-corrected core model, despite the fact that ΨΦLSQ only forecasts the

mean, while the core model is able of reproducing the bimodality, see Fig: 6.8.

While the forecast of ΨΦLSQ is completely useless, the RMS rates it higher

than the core model because under RMS the mean forecast is closer to the
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verifications. For bimodal variables, the RMS tends to score higher in the

mean forecasts higher than imperfect bimodal forecast. In such situations

the RMS may choose a useless model over a useful one.

6.4.3 Impact of number of centers

In Section 6.4.1 we have shown that the PC achieved the best forecasting

performance of the 4 imperfect models. We have noted that, for a fair eval-

uation, the forecasting ability of the core model should not be restricted so

heavily. We therefore set up an experiment in which we increase the number

of centers of the core model, making it more complex (and more compet-

itive), thus allowing us to study the additional value of a corrector as the

forecasting performance of the core model improves. In this experiment we

use the core model with 32, 64, and 128 centers. We only present results

for the PC and ΨΦRBF since ΨΦLSQ was outperformed by both PC and

ΨΦRBF in all analyses. The analysis was performed for both Lorenz84 and

Lorenz63 systems. However, since both analyses produced similar results, we

only present the Lorenz84 case.

In Fig: 6.14 we plot Ignorance for the non-corrected core model and the

PC for the first 50 forecast days of the Lorenz84 system. As we increase

the number of centers of the core model the non-corrected forecasts improve

significantly. The forecasting performance of the PC remains somewhat un-

changed. This finding suggests that improving the core model, which indeed

is part of the PC model, may have very little effect on the final forecast

of PC. In Fig: 6.15 we repeat the experiment for ΨΦRBF . We again see

improvement of the non-corrected forecasts and this time we also see some,

although not large, improvement in ΨΦRBF forecasts.

The results show that correctors of both the PC and ΨΦRBF models are
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Figure 6.14: Impact of number of centers on PC (Lorenz84): The core

model complexity is increased by gradually increasing the number of centers from

32 to 64 and 128 (green shades). The performance of the core model improves

with the complexity; the model with 128 centers has up to 0.8 Bit of advantage

over the 32 center version at leadtime 5. The performance of the PC is insensitive

to the improvements of the core model. PC appears to operate at its potential.
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Figure 6.15: Impact of number of centers on ΨΦRBF (Lorenz84): Similar

to Fig: 6.14 but here ΨΦRBF is studied. Increasing the complexity of the core

model leads to a marginal improvement of ΨΦRBF forecasts. For the core model

with 128 centers ΨΦRBF slightly outperforms the less complex versions between

leadtimes 15-30 days.

225



CHAPTER 6. FORECAST CORRECTION: PREDICTOR
CORRECTOR AND ΨΦ

robust, in the sense of being insensitive to improvements of the core model.

6.4.4 Dataset size and number of centers tradeoff

In Section 5.1.2 we noted that, for large datasets, the matrix A of the lin-

ear system of Eq: 5.1 becomes intractable and RBF approximation must be

adopted. In Section 6.2.2 we suggested that the number of centers may have

a significant influence on the forecasting performance of a model. We argued

that more centers provide a better description of the approximated surface.

It follows, that in short datasets, we can afford to deploy more centers than

in large ones. There is a tradeoff, between the amount of information avail-

able and quality of the surface description. Small datasets may contain less

information but allow for more centers to be used, while keeping A tractable.

To study the tradeoff we artificially decrease the training and learning dataset

at the benefit of increasing number of centers. In particular we only use one

tenth of the two datasets, which allows us to use M = {128, 256, 512, 1024}
centers for the core model. We are interested to see whether the loss of infor-

mation will be offset by a better description of the approximated function.

In Fig: 6.16 we plot Ignorance relative to climatology for the non-corrected

core model and the PC model forecasts of the Lorenz84 system. The core

model is trained on the reduced training dataset containing only one fifth

of the original observations. Similarly, the C corrector is trained on the

reduced learning dataset. We observe that neither the data reduction nor

the increasing number of the centers influences the PC model. The non-

corrected model improves significantly; its forecasting performance becomes

comparable with the PC model when the number of centers is increased to

M = 1, 024 centers, i.e. when the complexity of the core model is significantly

increased. This means that it is indeed relatively easy to correct a model

226



CHAPTER 6. FORECAST CORRECTION: PREDICTOR
CORRECTOR AND ΨΦ

5 10 15 20 25 30 35 40 45 50
−6

−5

−4

−3

−2

−1

0

1

Leadtime (days)

R
el

at
iv

e 
Ig

no
ra

nc
e

Lorenz 84: Impact of centers, 16 ensemble members, short dataset

 

 

Non−corrected 0128
Non−corrected 0256
Non−corrected 0512
Non−corrected 1024
PC 0128
PC 0256
PC 0512
PC 1024

Figure 6.16: Impact of dataset size on PC (Lorenz84): The short dataset

(see Appendix C.1) is used to perform core model and PC forecasts. The com-

plexity of the model is varied by using M = {128, 256, 512, 1024} centers; more

centers can be afforded due to the lower dataset size. The core model performs

much better then in Fig: 6.14. The version with 1,024 centers is comparable to the

performance of the PC. The PC is robust and delivers significant improvements

for the low complexity models.
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with large systematic errors (not necessarily a simple model), and less easy to

correct a model with low systematic errors (not necessarily a complex model).

This trivial conclusion, however, is not the main finding here. The main

finding is that a two-stage predictor-corrector is indeed capable of improving

forecasts if the core model is poor, while it does not degrade forecasts when

the core model is very good. In other words, the two-stage predictor-corrector

performs at the upper bound of the forecasting potential. Even a very good

single core model is not able to outperform the two-stage procedure.

In real-world applications, single-stage procedures are often deployed and

core models frequently suffer from over/under fitting and the resulting fore-

casting biases. Applying the two-stage approach suggested above may sig-

nificantly reduce forecasting biases.

6.5 Why does PC outperform ΨΦ?

There are a number of reasons why PC outperforms ΨΦ in terms of providing

better probability forecasts. First of all, ΨΦ aims at minimizing RMS error,

which does not necessarily lead to better probability forecasts. Secondly, PC

focuses on interpolating one surface, the leadtime 1 error surface, while ΨΦ

looks at each error surface at each leadtime (there is one ΨΦLSQ\RBF for each

leadtime). For long leadtimes, ΨΦ is then attempting to approximate a very

complicated surface, a complication PC avoids. In addition, PC has more

centers available to it than ΨΦ.

So why does PC use more centers? We recall that the ΨΦ approach is applied

at each leadtime. Only errors recorded at a given leadtime are available for

the corrector. The number of errors at each leadtime corresponds to the

number of forecasts available at a given learning set. If there are, say, 1, 500
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forecasts, only 1,500 errors are available. The PC, on the other hand, uses a

leadtime 1 forecast only, i.e. a forecast can be launched at every point of the

learning dataset. If there are N datapoints in the learning set, then there

are N − 1 forecasting errors available.
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Figure 6.17: Impact dataset size. Comparison of computational intensity of

PC and ΨΦ. Considering ΨΦ with 1,500 errors available at each leadtime. To

train ΨΦ for 163 leadtimes takes about the same time as solving PC system for all

leadtimes with 8,192 centers. 8,192 centers yields much better surface description

than 1,500 centers of the ΨΦ. Moreover PC with 8,192 is fully trained by the time

ΨΦ is in the middle of the training process.

There is another point to make. Assume that we know that for a given

dataset the error surface is well described by 4,096 centers. Why not in-

crease the number of forecasts so that ΨΦ also has 4,096 forecasting errors

available? Increasing the number of forecasts from, say, 1,500 to 4,096 would

lead to almost tripling the size of the evaluation dataset, with the obvious

consequence of higher computational costs. In both Fig: D.1 and Fig: 6.17
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we see that solving a linear system of 4, 096×4, 096 takes about 2.3 seconds.

Solving ΨΦ with 4,096 centers at each leadtime L times longer, L being the

maximum leadtime. Some of our analyses use L = 800; the time required

to form ΨΦ would be 800 times longer than the time required to form PC.

In this setting, we are looking at 30 minutes for ΨΦ solution, compared to 2

seconds for the PC solution.

The final point is that the ΨΦ corrector uses less centers then the PC, so

that the computational cost of calculating the LS solution at a given leadtime

is rather small. How much do we gain from the lower (per leadtime) CPU

cost? Compared to the PC, we gain very little. In Fig: 6.17 we plot the CPU

time against the leadtime for the ΨΦ (blue line). It takes about 2.3 seconds

to fit the ΨΦ for the first 20 leadtimes. Now we can ask, how long does it

take to fit the entire PC corrector with 4,096 centers? In fact it also takes

2.3 seconds for this example. Going even further, to obtain ΨΦ correctors

needed to forecast the first 163 leadtimes takes about 18.6 seconds. What

can the PC do in 18.6 seconds? It can either fit the entire PC corrector with

4,096 centers about 8 times in a row or it can fit a much larger matrix A,

using up to 8,192 centers. Despite the high number of centers deployed by

the PC approach, overall the PC is still faster to form when considering the

above analyses.

6.6 Conclusions

In this chapter, we have introduced PC, a novel two-stage approach to correct

a systematic part of the forecasting error. When applied to low-dimensional

chaotic systems, Lorenz84 and Lorenz63, PC has been shown to significantly

reduce systematic errors of a core model, in particular when applied to core

models of low-to-high complexity (number of centers < 1, 024). For the
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Lorenz84 system, at short leadtimes with a medium complexity model (64

centers), PC outperforms the single stage core model by up to 2 Bits, making

the PC forecast 4 times more valuable (see Fig. 6.9). For the Lorenz63

system, at short leadtimes with a medium complexity model (64 centers),

we see improvement of about 1.5 Bits, improving the original forecast more

than twice.

When applied to core models of high complexity (≥ 1, 024 centers), PC does

not significantly improve the forecasting performance of the single stage core

model. This is an intuitive finding; increased model complexity reduces scope

for systematic errors which renders the PC corrector less effective. In other

words, if there are no errors, PC has nothing to correct. An important

finding, however, is that PC does not degrade the forecasting performance,

i.e. applying PC to a good model does not hurt the forecast.

PC has also been contrasted with an alternative state-of-the-art approach,

ΨΦ. In general, PC significantly outperforms ΨΦ in both studied systems,

Lorenz84 and Lorenz63. This finding is robust under the variation of the

core model complexity. For the Lorenz84 system PC outperforms ΨΦ by up

to 1 Bit, even at long leadtimes in a low complexity setting (16 centers),

and up to 0.8 Bits at medium leadtimes in a medium complexity setting (64

centers). Interestingly, when applied to the Lorenz84 system, at the very

short leadtimes (up to 5 days) PC is marginally outperformed by ΨΦ (0.2

Bits) in both low and medium complexity settings. While we have no direct

explanation of this observation, our intuition points toward computational

issues; at short leadtimes PC undergoes numerical instabilities potentially

related to the use of radial basis functions.

To study the tradeoff between the quality of information (captured by the

number of observations) and the quality of the model (captured by the num-

ber of centers), we ‘starved’ PC of data by cutting the size of the data
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available for training. By using less data we could afford to increase the

quality of the core model while keeping the computational cost fixed. For

the Lorenz84 system, PC has maintained its efficiency and improved the core

model forecasts by up to 2 Bits for a model with 128 centers, and by up to

1 Bit for a model with 256 centers (see Fig. 6.16). An important finding is

that even with short datasets, PC is able to substantially improve core model

forecasts. Similar results were obtained for Lorenz63.

As an additional exercise, using the forecasts of PC, ΨΦ and PMS, we have

numerically illustrated how misleading, and potentially dangerous, evalua-

tion based on the RMS can be. In the Lorenz84 system we have shown that

under RMS evaluation, an imperfect model can be rated as high as a perfect

model; a result that is incorrect by definition of PMS. Also, in the Lorenz63

system we have shown that the RMS prefers a model which produces a mean

forecast over a model which is, to some extent, able to capture the system

dynamics.

We note that PC has been tested on low-dimensional systems only and that in

high-dimensional systems our findings might differ from those reported here.

At the same time, the design of our approach is general and the method

is indeed applicable to medium-to-high dimensional systems. We note that

the iterative nature of PC introduces an additional challenge in applying

PC to high dimensional models such as weather models. However, PC is

primarily designed for low-to-medium dimensional systems where the appli-

cation is straightforward and PC is able to greatly reduce systematic errors

and improve forecasting performance. In our opinion, PC can be success-

fully applied in a number of fields including economics, finance, biology, and

low-dimensional applications in physics.
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Appendix A

Dynamical systems

A.1 The Lorenz84 system

The Lorenz84 system [16, 47, 83, 84] is a three-dimensional system given by

ẋ = −ax − y2 − z2 + aF

ẏ = xy − bxz − y + G

ż = bxy + xz − z

where the dot is differentiation with respect to the time, F represents the

symmetric cross-latitude heating contrast and G represents the asymmetric

heating contrast between oceans and continents. Unless stated otherwise the

standard parameter setting [135] is: a = .25, b = 4, F = 8 and G = 1; and

the initial conditions are x0 = 0, y0 = 0, z0 = 1.3.

In this work we numerically solve the system using the Runge-Kutta fourth

order method, e.g. [6], with the step size set to h = 10−3. To ensure that
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we sample the systems attractor and that the dynamics of the timeseries is

not affected by transient behavior, we discard the first 104 values of each

integration output.

A.2 The Lorenz63 system

The Lorenz63 system [18, 81, 140] is a three-dimensional system given by

ẋ = −σx + σy

ẏ = −xz + rx − y

ż = xy − bz

The standard parameter setting [135] is: sig = 10, r = 28.1 and b = 8/3 and

the initial conditions {x0 = 0, y0 = −0.01, z0 = 9}.

In this work the system equations are solved numerically as described above

in Appendix A.1.

A.3 The damped forced pendulum

A damped driven pendulum is a basic example of a chaotic system. The

system consists of a pendulum, a point mass at the end of a mass-less rod.

The pendulum is subject to a frictional damping proportional to the angular

velocity of the pendulum, which slows the pendulum down (to a standstill

in absence of a driving force). The pendulum is driven by an external force

which provides a periodic torque. The dimensionless equation of motion [8]

can be written as
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θ̈ +
1

b
θ̇ + sinθ = g cos(ωF t) (A.1)

where θ is angle of the pendulum, ωF is the angular driving frequency, g is

the strength of the forcing and b is the inverse of the frictional damping. The

term sin θ represents gravitational restoring torque. Note that ωF does not

need to be equal to the natural frequency of the system.

Parameter value Dynamics

b < 1.085 periodic

1.085 < b < 1.110 chaotic

1.110 < b < 1.140 periodic

1.140 < b < 1.220 chaotic

b = 1.220 periodic

1.220 < b < 1.280 chaotic

1.280 < b < 1.475 periodic

1.475 < b < 1.485 chaotic

1.485 < b < 1.493 periodic

1.493 < b < 1.495 chaotic

1.495 < b < 1.497 periodic

1.497 < b chaotic

Table A.1: Pendulum dynamics. Changing the strength of external forc-

ing, b modifies the system dynamics from periodic to chaotic. The parameter

values for different regimes are reproduced from [7].

The equation of motion can be solved numerically by deploying an integration

procedure such as the Runge-Kutta fourth order method [6]. For the purposes

of this work the pendulum was integrated using the Matlab’s numerical solver

ODE45.
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The system exhibits a variety of dynamics, including periodic orbits as well

as chaotic motion. The standard parameter setting [8] is given by ωF = 2/3

and b = 2. The forcing parameter g then modifies the system dynamics as

summarized in [7] (see Table: A.1).
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Dynamic Climatology: data

and evaluation

B.1 Evaluation

The forecasting densities are produced via Kernel Dressing (see Section 2.4.3),

minimizing Ignorance over the bandwidth σ, the offset o and the blending

parameter α, i.e. the PMS and climatological densities were blended (see

Section 2.2.5) and Ignorance is subsampled in the case of the pendulum

system of Section 4.2.2, or crossvalidated for the ENSEMBLES results of

Sections 4.3.2 and 4.3.3. For subsampling and crossvalidation of Ignorance

see Section 2.4.4. The forecasting performance is measured by the Relative

Ignorance, Eq: 2.17. The reference forecast is either climatology or the DC

as designated in the text or the captions of the relevant figures.
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B.2 Pendulum dataset

The dataset used when demonstrating DC behavior on the pendulum (Sec-

tion 4.2.2) was generated by integrating the equations of the damped forced

pendulum in chaotic regime (see Section: A.3) with parameter settings: ωF =

2/3, b = 2 and g = 1. The integration scheme used was the Matlab’s

ODE45 [122] with default setting and tolerance of 10−8. The output of the

integration scheme was sampled at the sampling frequency fs = 10 to obtain

a time series of 212 system states. The observations are created by the addi-

tion of Gaussian noise N(0, σP ), where σP = 0.005 ∗ range. A perfect model

is used to forecast the data.

B.3 Nino34 and MDR datasets

While there were datasets of 5 ENSEMBLES models available at the time

of writing of this thesis, due to technical issues on our infrastructure, only

4 models were available to us. We use forecasts produced by the 4 models

over the period of 1960 - 2001. Some ENSEMBLES models have covered

longer periods (beyond 2001), however we use the longest common period of

all the 4 models available to us. All of the ENSEMBLES models forecasts

are initialized from 9 initial conditions, i.e. consist of 9 ensemble members

at each forecast leadtime. The forecasts are initialized in February, May,

August and November of a given year, yielding 41 forecasts over the consid-

ered period. The February, May and August launches forecast 7 leadtimes

ahead. The November launch forecasts 14 months ahead and is designed

to test annual forecasting capabilities of the models. The DC forecasts are

initialized at the same dates as the ENSEMBLES forecasts. The leadtimes

are also synchronized so that the DC and ENSEMBLES models are fully
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comparable.

The ENSEMBLES models are simulation models, which forecast number of

fields such as temperature, pressure etc. We only study a single variable,

the sea surface temperature (SST), in the two regions of Nino3.4 and MDR

(see Section 2.5.2 for details). In particular, we calculate monthly spatial

averages of the SST over the two regions. The ECMWF ERA 40 reanalysis

is used as verification in the evaluation procedure.

B.4 Probability plumes: ECMWF and Dy-

namic Climatology

In this appendix we show an extended version of Fig: 4.17. In particular we

show probability plumes (red to yellow patches) of all SST, November ini-

tialization forecasts over the Nino3.4 region produced by both the ECMWF

model and the Dynamic Climatology (DC). Each patch of a distinct color

represents a single contour of a forecasting distribution over all leadtimes.

The contour levels are given by the following percentiles: 1-99 (red), 5-95,

15-85, 25-75 and 45-55 (yellow).

Since the maximum leadtime is 14 months, the adjacent forecasts partially

overlap. There are several notable SST events stretching over the periods of

1971-1973, 1975-1978, 1981-1983 and 1996-1998.

Fig: B.2 shows plumes of the ECMWF model. Note that, with the excep-

tion of the 1962 initialization, the probability forecasts never fully approach

climatology (light blue patches). This means that the ECMWF model main-

tains some forecasting skill at all leadtimes, i.e. the blending parameter α

is never zero, although it might be close to zero. Also note that both the
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onset and the offset of the 1996 event are captured very well, assigning high

probabilities to the verification (red line).

In Fig B.2 we show the same results for the DC forecasts. Firstly note, DC

plumes approach climatological plumes around leadtime 6, which is consistent

with the Ignorance evaluation of Section 4.3.2. At leadtime 6 the blending

parameter α becomes effectively zero, i.e. DC no longer outperforms clima-

tology in terms of Ignorance; the climatological forecast takes over. Further

note, DC produces values not contained within the training set as the plumes

of several forecasts (e.g. 1982, 1994, 1997 initializations) reach outside the

climatological plumes. Finally, DC forecasts of the 1996-1998 event captures

both the onset and offset quite well, although to a lesser extent than the

state-of-the-art ECMWF model.
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Figure B.1: Probability plumes of ECMWF in Nino3.4: Same as in Fig: 4.17

but here we show all forecasted time periods. Note the difficult-to-forecast events

of 1975-1978, 1981-1983, 1996-1998
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Appendix C

The ΨΦ/PC: data, core model,

and evaluation

C.1 The datasets

The results presented were obtained using two dataset sizes for each system,

Lorenz84 [83] and Lorenz63 [81]. We call the datasets simply long and short

depending on how many forecasts are available. The size of the long dataset

is N = 1.5 × 106, the size of the short dataset is N = 2.5 × 105. In both

systems we forecast the x variable (see Appendix A). Details of the datasets

are summarized in Table C.1 and discussed in the following text.

To obtain the system states we integrate the systems using the fourth-order

Runge-Kutta integration scheme [17, 76, 123]. The integration step is set

to h = 10−3. For each analysis we generate three datasets: the training

set, the learning set and the testing set, all of equal size. The training and

learning sets are used to construct the base model described in Section 6.1.

The learning set is used to collect the out-of-sample forecast residuals and
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Lorenz84 Lorenz63

size long dataset (train.+eval.+test.) 1.5 × 106 1.5 × 106

number of forecasts (long dataset) 665 665

size short dataset (train.+eval.+test.) 2.5 × 105 2.5 × 105

number of forecasts (short dataset) 100 100

max leadtime (L) 100 days 25 seconds

embedding delay (τ) 14 10

sample rate (fs) 64 32

range of testing set (R) 2.9606 39.105

noise level as proportion of range (NL) 0.5% 0.5%

std of changes (σ) 0.0689 2.6960

noise in terms of σ 20% 7%

Table C.1: Datasets description. Long and short datasets are used to

study the performance of ΨΦ and PC when forecasting the two systems,

Lorenz84 and Lorenz63.

training the second stage models of Sections 6.2 and 6.3. The testing set is

then used to evaluate the forecasting performance of the models.

Time series of the observations were created by sampling the system states

at a given sampling rate fs and adding additive noise. The noise level is

set to 0.5% of the range in all presented cases. The noise corresponds to

about 20% of standard deviation of the changes of x for Lorenz84 and to

about 7% for Lorenz63. The sampling rates used in the presented analyses

are fs = 32 for the Lorenz63 and fs = 64 for Lorenz84. We note that we

have tested a number of different datasets that included sampling rates of

fs = {16, 32, 64, 128} and varying noise levels. The results obtained were

consistent with those presented above.
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Regarding the size of the datasets we used ‘long’ and ‘short’ datasets, with

long consisting of hundreds of forecasts, and short only consisting of 100 fore-

casts. The number of forecasts available for each leadtime vary depending on

the maximum leadtime. Consider a testing dataset of 1,000 observations and

an exercise where we forecast 10 leadtimes ahead. The testing dataset thus

contains 100 non-overlapping forecast initializations. Each of the 10 lead-

times will have 100 datapoints available. Keeping the size of the testing set

fixed, but increasing the maximum leadtime from 10 to, say, 100 means that

the training set will only consist of 10 different initializations. Consequently,

there would only be 10 datapoints available to evaluate a forecast at each

leadtime.

C.2 Forecasting settings

Regarding the forecasts, we set the maximum leadtime and the ensemble size.

The maximum leadtime implicitly determines the number of non-overlapping

forecasts in a manner described in the previous section, C.1. The ensemble

size can be set to E = {8, 16, 32, 64, 128, 256}. Based on a number of testing

runs, we set the typical ensemble size to M = 64. This ensemble size provided

a good forecasting performance while keeping the computational cost (CPU

time) manageable.

Regarding the core model parameters, in order to test sensitivity to variations

in model quality we study settings with M = {128, 256, 512, 1024} centers.
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C.3 Data transformation

In all estimation and forecasting exercises we use embedding of the observed

time series [138]. Embedding is a frequently-used method of attractor re-

construction. Assuming a d-dimensional dynamical system where only some

of the state variables are observed, the attractor reconstruction uses the ob-

served timeseries to reconstruct the full state space [46, 71, 117]. To embed

a time series, two parameters, time delay τ and embedding dimension de are

required.
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Mutual Information: Lorenz 84, sampling rate: 8 hours

Delay in days

M
I

Figure C.1: Mutual information: Mutual information of Lorenz84 system for

delays of up to 35 days of system time. The first local minimum is detected at

the delay of about 4 days, indicating an optimal delay for the embedding of the

timeseries.

The time delay τ is chosen according to the mutual information
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I(Xt; Xt−τ ) =
∑

xt∈X

∑

xt−τ∈X

p(xt, xt−τ ) log

(

p(xt, xt−τ )

p1(xt) p2(xt−τ )

)

Fig. C.1 shows an example of a mutual information calculated for the time

series of the Lorenz 84 system sampled at 8 hours. In this particular case τ is

about 4.3 days. We note that the lag parameter is a function of the sampling

rate fs. The Fig. C.2 shows how τ changes with fs.
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Figure C.2: Mutual information v. sample rate: This figure demonstrates

how the embedding optimal delay depends on the sampling rate of the system.

The relationship is linear as sampling at higher rates requires longer delays.

There are a number of ways to determine the embedding dimension [35, 131],

with the most influential being the correlation dimension suggested by [51].

We choose a more direct approach and estimate the embedding dimension d

by minimizing Ignorance of the out-of-sample leadtime 1 forecast of the core
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forecasting model (See section 6.1). This approach yields an optimal estimate

for the given forecasting problem. For the Lorenz84 system the dimension is

determined as d = 7 while for the Lorenz63 it is d = 3.

As noted above, when determining the parameter vectors of models of Sec-

tions 6.1, 6.2 and 6.3 we work with the embedded time series. A datapoint

of an embedded time series is given as

xd
t = {xt, xt−τ , xt−2τ , . . . , xt−dτ} (C.1)

where xd
t ∈ R is a point in a d-dimensional real space. In the following,

we drop the superscript d so when we consider d-dimensional datapoint we

understand a datapoint of the embedded timeseries. Also, we intentionally

avoid the vector notation here; thinking in terms of d-dimensional points

greatly simplifies the complexity of the notation.

C.4 RBF approximation as the core model

For the later analyses, we require a model for which we can easily manipulate

the forecasting performance. The RBF approach provides such a function-

ality since its performance is largely influenced by the number of centers

deployed. More centers provide a better description of the function being

estimated, hence increasing the number of centers should result in improved

performance. For this reason, the RBF model will be the core model of our

choice, and its forecasting performance will be regulated by changing the

number of centers.

In the above analyses we deploy large datasets containing up to N = 220 ∼
O(106) observations. For such a large number of observations handling a
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square matrix A becomes intractable given our computational platform (see

Section 5.1.2). To work around the problem we define the core model to be

an RBF approximation. The centers will be selected from the datapoints so

that c ⊂ x and M ≪ N . The method used to select the centers will be the

power function method of Section 5.2.5.

We also note that the core model has the same setting across related analyses

to ensure comparability of the evaluated forecasts.

C.5 Model specification

In the following we call the core model Φ. As noted above, we choose M <<

N , in particular, the number of centers considered is K ∈ {4, 8, 16, 32, 64, 128}.
The core model takes a general form of

Φ =

M
∑

k=1

λkφ(‖x− ck‖) (C.2)

with ‖x− ck‖2 being the N ×M matrix of euclidean distances of the points

x from the M centers c. The particular formulation for core models used in

the analyses below is















φ‖xt − c1‖ φ‖x1 − c2‖ . . . φ‖xt − cM‖
φ‖xt+1 − c1‖ φ‖xt+1 − c2‖ . . . φ‖xt+1 − cM‖
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where xt, is an embedded d-dimensional datapoint at time t and ck is a d-

dimensional center. The datapoints contained in the matrix A represent

embedded delayed observations. The vector y consists of ‘current’ non-

embedded observations of the variable of interest.

C.5.1 Constructing Ψ

We construct 2 types of Ψ correctors, least squares (LSQ) correctors and RBF

correctors. Both correctors work with delayed vectors in order to determine

the model parameters. For the purposes of fitting and forecasting, the time

series are embedded as described in Section C.3.

The LSQ corrector, ΨLSQ, is simply a linear model

y = Aβ (C.4)

where y = {εt+1, εt+2, . . . , εT} holds the forecasting residuals of the state

variable x, and A = {xt, xt+1, . . . , xT−1} holds the delayed, embedded d-

dimensional datapoints. The parameter vector β contains d regression pa-

rameters determined via least squares.

The RBF corrector is a radial basis function model of the form of Eq: C.3,

with xt being delayed d-dimensional datapoints, ck, k = {1, . . . , M}, being

d-dimensional centers selected from the datapoints and yt+1 is the forecasting

error of the base model Φ. There are M parameters λk to be determined as

described in Section 5.1.

The construction of each corrector ΨRBF (or ΨLSQ) proceeds in the following

stages. For each leadtime:
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(1) Generate out-of-sample leadtime L core model (Φ) forecasts.

(2) Collect the out-of-sample forecasting residuals.

(3) Determine the parameters of the ΨRBF/LSQ model.

C.6 Out-of-sample evaluation

The performance of the Φ model ensemble forecasts will be evaluated over

a testing set, i.e. out-of-sample using Ignorance. To achieve comparability

among different forecasting approaches all the models involved will be evalu-

ated under the same setting, i.e. over the same dataset, leadtimes, ensemble

size and initial conditions.
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Computational considerations

of RBF and ΨΦ/PC

As discussed in Section 5.1.2, for large datasets and given a constrained

computational resource, the matrix A of Eq: 5.17 becomes intractable; the

RBF approximation must be deployed, i.e. less centers than datapoints M ≪
N must be selected. In this section we attempt to answer the question of

how many centers we can afford given a limited computational resource. Two

questions arise in this regard:

(1) What is a ‘large’ dataset, and

(2) How many centers are affordable?

We study the problem by looking at the least squares solution (LS) of the

(potentially) overdetermined linear problem 5.17. The most intensive part of

the solution is calculating the inverse or pseudo-inverse [106] of the matrix A.

For the overdetermined case, i.e. the RBF approximation, the solution of the
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linear system is found via least squares (LS). The calculations are performed

in Matlab which uses the linear algebra package (LAPACK) [2] on a PC with

2 Intel(R) Core(TM)2 CPU at 2.4 GHz with 8GB of memory.

To express computational intensity of a given problem we use two mea-

sures: the CPU time (CPU) and the floating point operations per second

(FLOPS) [21, 90]. In terms of FLOPS, calculating the LS problem [21] with

a matrix of size m × n takes

FLOPS = 4mn2 + 8n3 (D.1)

D.1 The cost RBF interpolation

When estimating the RBF parameters of the core model the entire training

set is used. The datasets used in the above analyses are rather large, with

some containing up to N = 106 data points. If we were to use all the

datapoints as centers, the solution would involve an inversion of a 106 × 106

square matrix. How costly would such an inversion be?

In Fig: D.1 we plot CPU time (left vertical axis) and number of FLOPS

(right vertical axis) against datasets of varying size. In this example the

largest dataset contains 10,000 datapoints. The theoretical FLOPs of Eq. D.1

(green line) are consistent with the actual CPU time (blue line) of the LS

solution for a given size of a dataset. Both measures display an accelerated

growth. For sizes up to 7, 000× 7, 000 an additional increase in the size does

not dramatically change the CPU time. However, increasing the size from,

say, 9, 000× 9, 000 to 10, 000× 10, 000 the CPU time starts increasing rather

significantly.
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Figure D.1: Computational intensity of least squares. This figure has been

used in Section 5.1.2. For a square matrix of size M × M we plot the CPU time

(blue) and number of FLOPs (green) required to calculate a least square solution

for different values of M . While it takes about 5 seconds to calculate LS solution

for matrix with M = 5 × 103, it takes about 35 seconds when the size is doubled.

The computational cost follows a power law.

In the left panel of Fig: D.2 we show a log-log version of the Fig: D.1. The

graph suggests an exponential growth of the computational intensity of the

LS solution. We use the linear relationship of the log values and extrapolate

CPU time for larger datasets, shown in the right panel. To solve a single RBF

interpolation problem for dataset sizes on the order of those used throughout

our work would take up to 10 days.
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Figure D.2: Extrapolation of computational cost. Similar to Fig D.1 but

for extrapolated values. Solving an exactly determined system for datasets used

in our work would take about 10 days. The values were extrapolated using the

linear relationship between the log-log values plotted in the left panel.

D.2 How many centers are affordable?

Considering the finding of the previous section, the question is: how many

centers can we afford? To answer the question we consider a dataset size of

N = 400, 000 and vary the number of centers, changing the size of the matrix

A. Fig: D.3 shows that to solve a linear system with 128 centers (matrix size

400, 000× 128) takes about 24.5 seconds. Extrapolating for a larger number

of centers, Fig: D.4, we find that the solution takes about 10 minutes when

1,024 centers are used, and about 1.3 hours when 4,096 centers are used.
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Figure D.3: Impact of number of centers: Similar to Fig: D.1 but for an

overdetermined system where N = 4 × 105 and varying number of centers M .

Solving overdetermined system for the dataset size of N = 4×105 and 128 centers

takes up to 25 seconds, a moderate computational cost.
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Figure D.4: Cost for large number of centers. We use similar extrapolation

as in Fig D.2. To solve a system for a dataset of size N = 4× 105 and M = 8, 192

centers takes up to 4 hours of CPU time on our platform. Beyond 1,024 centers the

problem becomes intractable when many iterative solutions of the linear system

are required.
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[15] J. Bröcker and L. A. Smith. From ensemble forecasts to predictive

distribution functions. Tellus, 4:663–678, 2008.

[16] H. Broer, R. Vitolo, and C. Simo. Bifurcations and strange attractors

in the lorenz-84 climate model with seasonal forcing. Nonlinearity,

15:1205–1267, 2002.

[17] J. C. Butcher. The numerical analysis of ordinary differential equa-

tions, Runge-Kutta and general linear methods. Wiley, 1987.

[18] M. Chekroun, E. Simonnet, and M. Ghil. Stochastic climate dynamics:

Random attractors and time-dependent invariant measures. Physica

D, preprint, 2010b.

260



BIBLIOGRAPHY

[19] E. W. Cheney and D. R. Kincaid. Numerical mathematics and com-

puting. Cengage Learning, 2007.

[20] S. T. Chiu. An automatic bandwidth selector for kernel density esti-

mation. Biometrika, 79:771–782, 1992.

[21] H. Colub, G. Matrix Computations. The Johns Hopkins University

Press, 1996.

[22] T. M. Cover and J. A. Thomas. Elements of Information Theory 2nd

Edition. Wiley, second edition, 2006.

[23] X. T. Cui, D. J. Parker, and A. P. Morse. The drying out of soil

moisture following rainfall in a numerical weather prediction model,

and implications for malaria prediction in west africa. Weather and

Forecasting, 24:1549–1557, 2009.

[24] B. V. Dasarathy. Nearest neighbor pattern classification techniques.

IEEE Computer Society Press, 1990.

[25] S. De Marchi. On optimal center locations for radial basis interpolation:

computational aspects. Rend. Sem. Mat. Torino, 61(3), 2003.

[26] S. De Marchi, R. Schaback, and H. Wendland. Near-optimal data-

independent point locations for radial basis function interpolation. Adv.

Comput. Math., 23(3), 2003.

[27] L. Devroye. Non-Uniform Random Variate Generation. New York:

Springer-Verlag, 1986.

[28] F. J. Doblas-Reyes and et al. Decadal hindcasts with an initialised cou-

pled atmosphere-ocean model: First results from the ecmwf ensembles

contribution. EMS 2008, Amsterdam, 2008.

261



BIBLIOGRAPHY

[29] F. J. Doblas-Reyes and et al. Addressing model uncertainty in seasonal

and annual dynamical ensemble forecasts. Q. J. R. Meteorol. Soc.,

135:1538–1559, 2009.

[30] F. J. Doblas-Reyes, R. Hagedorn, and T. N. Palmer. The rationale

behind the success of multi-model ensembles in seasonal forecasting.

part II: Calibration and combination. Tellus, Ser. A.

[31] F. J. Doblas-Reyes, A. Weisheimer, M. Déqué, N. Keenlyside,
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