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Abstract

The supermarket model with memory consists of n single-server, infinite-capacity, first-
in-first-out queues with service rate 1. The service times are independent. At all times,
exactly one queue is distinguished as the memory queue. Customer arrivals form a Poisson
process of rate �n, where 0 < � < 1. Upon arrival, each customer chooses an ordered list of
d queues uniformly at random with replacement, adds the memory queue to the end of the
list, and then joins the first shortest queue in the list. With the updated queue lengths,
the first shortest queue in the list is then saved as the new memory queue. Our main
contributions are to show that the system is rapidly mixing, and that with probability
tending to 1 as n ! 1, the maximum queue length in equilibrium is concentrated on two
consecutive values which are ln lnn

ln↵ +O (1), where ↵ := d+ 1

2

+

q

d2 + 1

4

.
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Chapter 1

Introduction

1.1 The model

Throughout this thesis, let d � 1 be a fixed integer and let 0 < � < 1 be a fixed constant.
The standard supermarket model consists of n single-server, infinite-capacity, first-in-

first-out queues with service rate 1. The service times are independent. Customer arrivals
form a Poisson process of rate �n. Upon arrival, each customer chooses an ordered list of
d queues uniformly at random with replacement, and then joins the first shortest queue in
the list.

The supermarket model with memory distinguishes, at all times, exactly one queue as
the memory queue. Upon arrival, each customer chooses an ordered list of d queues as
above, then adds the memory queue to the end of the list, before joining the first shortest
queue in the list. With the updated queue lengths, the first shortest queue in the list is
then saved into memory. This model has been studied before in [21, 25, 13].

1.2 Statement of results

In this thesis, we have two main results, both of which are analogues of results proved by
Luczak and McDiarmid [10] for the standard supermarket model. Let us introduce some
notation so we may state these results.

Let Qn := Zn
+

⇥ {1, . . . , n}, where Z
+

:= {0, 1, 2, . . . }. We will call the elements of Qn

lengths vectors. Although lengths vectors depend on n, we will only stress this dependence
by adding a superscript n when we need to. For a lengths vector x 2 Qn, we will write

x = ((x (1) , . . . , x (n)) , ⇠) ,

and take x (i) to be the length of queue i in x, and ⇠ to be the index of the memory
queue in x. It follows that kxk

1

:=

Pn
i=1

x (i) is the number of customers in x, and that
kxk1 := max (x (1) , . . . , x (n)) is the maximum queue length in x.

The supermarket model with memory will be described by a continuous-time Markov
jump process X = (Xt)t�0

with state space Qn as follows. For t � 0, we will write

Xt = ((Xt (1) , . . . , Xt (n)) ,⌅t) ,
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take Xt (i) to be the length of queue i at time t, and take ⌅t to be the index of the memory
queue at time t. We will call X a lengths process, and take it to be right-continuous.

The total variation distance between distributions µ and ⌫ on a common measurable
space (⌃,G) is

d
TV

(µ, ⌫) := sup

A2G
|µ (A)� ⌫ (A)| .

For a random variable W , let L (W ) denote the law of W . For t � 0 and x 2 Qn, let
Lx (Xt) denote the law of Xt conditional on X

0

= x. In Section 2.2, we will show that X

is ergodic, and thus has a unique stationary distribution ⇧ on Qn, and that

lim

t!1
d
TV

(Lx (Xt) ,⇧) = 0

for all x 2 Qn. Our first main result is that, under reasonable initial conditions, the
convergence to equilibrium is very fast.

Theorem 1.1. Let c > �
1�� . Then there exists ⌘ = ⌘ (c) > 0 such that the following holds.

Let n � 1, and let Xn have any initial distribution. Then

d
TV

(L (Xn
t ) ,⇧

n
)  ne�⌘t

+ 2e�⌘
p
n
+ P (kXn

0

k
1

> cn) + P (kXn
0

k1 > ⌘t)

for all t � 0.

This result is directly analogous to Theorem 1.1 in [10] by Luczak and McDiarmid.
Now define sequences (ai)

1
i=0

and (bi)
1
i=0

by setting a
0

= b
0

= 1 and

ai := �adi�1

bi�1

, bi :=
adi bi�1

1� d (ai�1

� ai) a
d�1

i

, (1.1)

for all i � 1. For n � 1, let

i⇤n := min

⇢

i � 1 : ai 
ln

2 np
n

�

. (1.2)

We will show that
i⇤n =

ln lnn

ln↵
+O (1) , as n ! 1,

where
↵ := d+ 1

2

+

q

d2 + 1

4

. (1.3)

Note that 2d < ↵ < 2d+ 1. Our second main result is that with probability tending to 1

as n ! 1, the equilibrium maximum queue length is concentrated on the two consecutive
values i⇤n � 1 and i⇤n. Note that

min

�

1

2

d, 1
�

+

1

2

d� 1 = min

�

d� 1, 1
2

d
�

� 0 (1.4)

for all d � 1.

Theorem 1.2. There exists c > 0 such that the following holds. Let n � 1, and let Xn

have the equilibrium distribution for the lengths process. Then

P (kXnk1 6= i⇤n � 1 or i⇤n) 
c ln4d+4 n

nmin(d/2,1)+d/2�1+d/(2↵)
.
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This result is analogous to the first part of Theorem 1.3 in [10] by Luczak and McDi-
armid; the analogue to the other part is our Theorem 7.6.

1.3 Literature review

In this section, we will give a brief review of the existing literature concerning the standard
supermarket model and the supermarket model with memory.

First note that the standard supermarket model with d = 1 is equivalent to a system
of n independent M/M/1 queues with arrival rate � and service rate 1, and this is a well-
understood system. Of relevance to us is Theorem 1.2 in [10] by Luczak and McDiarmid,
which says that the equilibrium maximum queue length is about

lnn

ln (1/�)
, (1.5)

and is not concentrated on a bounded range of values. More precisely, if m = m (n), then
with probability tending to 1 as n ! 1, the equilibrium maximum queue length is at least
(resp., at most) m (n) if and only if m (n)� lnn

ln(1/�) tends to �1 (resp., +1) as n ! 1.
The earliest work we know of on the standard supermarket model with d � 2 is by

Mitzenmacher [23, 17] and Vvedenskaya, Dobrushin and Karpelevich [27], independently.
For i � 1 and t � 0, let ui (t) denote the proportion of queues of length at least i at time t.
Mitzenmacher heuristically argues that the ui (t) evolve in an almost deterministic fashion,
and that in the limiting system as n ! 1, they should satisfy the differential equations

dui (t)

dt
= �

h

ui�1

(t)d � ui (t)
d
i

� [ui (t)� ui+1

(t)] , (1.6)

for all i � 1. We explain his reasoning below. Mitzenmacher does show that

µ = (µi)
1
i=1

, µi = �1+d+···+di�1
, (1.7)

is a unique, attracting fixed point for (1.6). Mitzenmacher then heuristically argues that
the µi should also be the expected proportion of queues of length at least i for the finite
system (i.e., the standard supermarket model). This is based on the principle that the
ui (t) in the limiting and in the finite systems have similar transition rates if they are near
each other. Thus, if the two systems have the same initial state, then the trajectories of
the ui (t) should not diverge by much over a short period of time, whence their difference
over any period of time can be bounded by induction. Mitzenmacher then heuristically
argues that the equilibrium queuing time of a customer is at most

1
X

i=1

�1+d+···+di�1
+ o (1) ,

and that the equilibrium maximum queue length is

ln lnn

ln d
+O (1) , (1.8)

with high probability. This technique of analysing a system through an idealised system
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defined by differential equations is commonly known as the technique of fluid limits. The
heuristic result (1.8) is later proved by Luczak and McDiarmid [10]. Hence, in conjunction
with (1.5), one sees that taking d = 2 instead of d = 1 yields an exponential improvement
in the maximum queue length, whilst taking larger values of d � 2 only yields constant
factor improvements in the maximum queue length. This phenomenon is commonly known
as the power of two choices.

Mitzenmacher’s reasoning behind (1.6) is as follows. In the finite system, the expected
change in ui (t) over a period of length �t should be

�ui (t) =
1

n · �n�t
h

ui�1

(t)d � ui (t)
d
i

� 1

n · n�t [ui (t)� ui+1

(t)] .

This is because there is an arrival with probability �n�t, and this customer joins a queue
of length i with probability ui�1

(t)d � ui (t)
d, since he/she must select only queues of

length at least i�1 but not only queues of length at least i; such an arrival increases ui (t)
by 1

n . On the other hand, there is a departure with probability n�t, and this comes from
a queue of length i with probability ui (t) � ui+1

(t); such a departure decreases ui (t) by
1

n . Dividing by �t and letting �t ! 0 then yields (1.6).
In [27], Vvedenskaya, Dobrushin and Karpelevich also arrive at the differential equa-

tions (1.6). Let Z = (Zt)t�0

be a lengths process (as appropriately defined for the standard
supermarket model) and let w (0) = (wi (0))

1
i=1

be a sequence such that ui (Z0

) ! wi (0)

in probability as n ! 1, for all i � 1. Let w (t) = (wi (t))
1
i=1

denote the unique solution
to (1.6) with initial state w (0). Vvedenskaya et al. then show that

ui (Zt) ! wi (t)

in probability as n ! 1 uniformly on bounded time intervals. They also show that µ is a
unique, attracting fixed point for (1.6).

In [7], Graham shows that the standard supermarket model is chaotic if it starts close
to a suitable deterministic state, or is in equilibrium. That is, the queues in any finite
subset of queues are asymptotically independent of each other, uniformly on bounded time
intervals.

In [12], Luczak and Norris show three approximation theorems for the standard super-
market model: a law of large numbers, a jump process approximation, and a central limit
theorem.

In [10], Luczak and McDiarmid show that the standard supermarket model is rapidly
mixing, and that with probability tending to 1 as n ! 1, the equilibrium maximum queue
length is concentrated on two consecutive values which are

ln lnn

ln d
+O (1) .

Thus, unlike the case d = 1, there is concentration on a bounded range of values. More
precisely, let

ˆin := min

⇢

i � 1 : �1+d+···+di�1  ln

2 np
n

�

.

Then the maximum queue length is concentrated on
n

ˆin,ˆin + 1

o

if d = 2, and
n

ˆin � 1,ˆin
o
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if d � 3. Since ˆin =

ln lnn
ln d + O (1), this yields a rigorous proof of (1.8). We remark that

these results, and the arguments used (which we will outline below), are similar to ours
because we have based our work on [10].

To show rapid mixing of the lengths process, Luczak and McDiarmid show that two
lengths processes with certain pairs of initial states can be coupled to coalesce rapidly. By
using path coupling arguments (e.g., see [2]), a coupling only needs to be constructed for
pairs of initial states which constitute the edge set of a certain graph structure on the state
space. This is a considerably easier task than having to consider all possible pairs of initial
states. The aforementioned coalescence is shown to occur rapidly by analysing a suitable
random walk.

To show the result on the maximum queue length, Luczak and McDiarmid first es-
tablish some concentration of measure results for lengths processes. That is, if Z has the
equilibrium distribution for the lengths process, then Lipschitz functions of Z are tightly
concentrated around their means. This is done by using the bounded differences approach
on two lengths processes: one initially empty and the other in equilibrium. Luczak and
McDiarmid then apply these results to the functions which give the number of queues of
length at least i, for all i � 1, which are Lipschitz.

Next, Luczak and McDiarmid derive (1.6). Using this and the concentration of meas-
ure results, they deduce that the equilibrium means E [ui (Z)] closely follow a family of
recurrence relations, in that there exists a constant c

1

> 0 such that

sup

i�1

�

�

�

E [ui (Z)]� �E [ui�1

(Z)]

d
�

�

�

 c
1

ln

2 np
n

.

This suggests that E [ui (Z)] should be close to µ̂i, where the sequence (µ̂i)
1
i=0

satisfies

µ̂i � �µ̂d
i�1

= 0

for all i � 1. This is easily solved to give µ̂i = �1+d+···+di�1 , so E [ui (Z)] should be close
to �1+d+···+di�1 . Indeed, it is shown that there exists a constant c

2

> 0 such that

sup

i�1

�

�

�

E [ui (Z)]� �1+d+···+di�1
�

�

�

 c
2

ln

2 np
n

.

Using this and the concentration of measure results, it follows that ui (·) is close to
�1+d+···+di�1 . More precisely, it is shown that if Z = (Zt)t�0

is in equilibrium and z, r > 0,
then

P
✓

sup

i�1

�

�

�

ui (Zt)� �1+d+···+di�1
�

�

�

� z ln2 np
n

for some 0  t  nr

◆

= e�⌦

(

ln

2 n
). (1.9)

Here, we say that f (n) = e�⌦(g(n)) if there exists a positive constant ⌘ > 0 such that
f (n)  e�⌘g(n) for all sufficiently large n.

Finally, Luczak and McDiarmid show two-point concentration of the equilibrium max-
imum queue length as follows. From (1.9) it easily follows that P

⇣

kZk1  ˆin � 2

⌘

=

e�⌦

(

ln

2 n
). By analysing an equilibrium lengths process and using (1.9) to control the
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proportion of very long queues, Luczak and McDiarmid then show that

P
⇣

kZk1 � ˆin + z
⌘

= O

  

ln

2d+2 n

nd/2�1

!z!

,

for all z � 1. Hence, for d � 3, we have P
⇣

kZk1 � ˆin + 1

⌘

! 0 as n ! 1, and the proof
for this case is complete. More complex arguments are needed for the case d = 2.

In [11], Luczak and McDiarmid quantify the rate of convergence of the equilibrium
distribution of a typical queue length to its limiting distribution as n ! 1. They also
quantify the result that the standard supermarket model is chaotic by showing that the
total variation distance between the joint law of a fixed set of queue lengths and the
corresponding product law is essentially of order at most 1

n .
There is much literature on variations of the standard supermarket model. In the survey

[22], Mitzenmacher, Richa and Sitaraman reference the following variations: one where
there are also low-priority arrivals which only join uniformly random queues, one where the
queues have non-exponential service times (e.g., see [18, 28]), one where there are thresholds
so that arriving customers who select a queue longer than the threshold will reselect (e.g.,
see [18, 28]), one where there is load-stealing so that any empty queue will find a non-empty
queue to steal a customer from (e.g., see [23]), one where serviced customers recirculate
into the system (e.g., see [4, 19]), and one where arriving customers join queues based on
stale queue length information which is only updated periodically (e.g., see [3, 16, 20]).
Mitzenmacher et al. also reference Jackson networks (e.g., see [14, 26]), where there are
m nodes of n queues each, and arriving customers select a uniformly random node and
then a shortest queue from within. In [1], Brightwell and Luczak study a variation where
d = d (n) ! 1 and � = � (n) " 1 are no longer fixed. Brightwell and Luczak identify, for
suitable triples (n, d,�), a subset N of the state space where the process remains for a long
time in equilibrium, and show that the process is rapidly mixing when started from N .

The supermarket model with memory is defined in [25] by Prabhakar and Shah, and
in [21] by Mitzenmacher, Prabhakar and Shah. For i � 1 and t � 0, let pi (t) denote
the probability that the memory queue has length at least i at time t. Mitzenmacher et
al. heuristically argue that the length of the memory queue evolves so much faster than
the ui (t) do, that the pi (·) almost appear to be in equilibrium, and thus should satisfy

dui (t)

dt
= �

h

ui�1

(t)d pi�1

(t)� ui (t)
d pi (t)

i

� [ui (t)� ui+1

(t)] , (1.10)

pi (t) = ui (t)
d pi�1

(t) + d (ui�1

(t)� ui (t))ui (t)
d�1 pi (t) , (1.11)

for all i � 1. Mitzenmacher et al. do show that if u = (ui)
1
i=1

is a fixed point for (1.10),
then there exists 0 < c < 1 such that

ui ⇠ c↵
i

,

where ↵ is as defined in (1.3).
In [13], Luczak and Norris show how to approximate certain Markov chains with a fast,

rapidly oscillating component alongside a slower, essentially deterministic component, by
the solutions of differential equations. This includes the supermarket model with memory,
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and the application of their method yields a rigorous derivation of (1.10) and (1.11). They
also prove a natural monotonicity property of the supermarket model with memory.

As mentioned, our main contributions (and arguments) are analogous to those of [10]:
we show that the supermarket model with memory is rapidly mixing, and that with prob-
ability tending to 1 as n ! 1, the equilibrium maximum queue length is concentrated on
two consecutive values which are

ln lnn

ln↵
+O (1) .

1.4 Basic notation and results

In this section, we will outline the basic notation and results which we will assume the
reader is familiar with. This material is adapted from [9, 24].

First we will discuss discrete-time Markov chains. Let ⌃ denote a countable set. A
discrete-time stochastic process with state space ⌃ is a sequence of random variables W =

(Wi)
1
i=0

, all defined on a common probability space (⌦,F ,P) and taking values in ⌃.
A stochastic matrix on ⌃ is a real matrix P = (pvw)v,w2⌃ such that

1. pvw � 0 for all v, w 2 ⌃, and

2.
P

w2⌃ pvw = 1 for all v 2 ⌃.

If
P (Wi+1

= wi+1

| W
0

= w
0

, . . . ,Wi = wi) = pw
i

w
i+1

for all i � 0 and w
0

, . . . , wi+1

2 ⌃, then W is a discrete-time Markov chain with transition
matrix P . Thus, if W is at a state v 2 ⌃, then it goes to the state w 2 ⌃ with probability
pvw, regardless of its history. A stationary distribution for W is a distribution ⇧ = (⇡w)w2⌃
on ⌃ such that ⇧ = ⇧P , that is, such that ⇡w =

P

v2⌃ ⇡vpvw for all w 2 ⌃.
Let W be a discrete-time Markov chain with state space ⌃. For w 2 ⌃, let Pw (·) and

Ew [·] denote the probability and expectation conditional on W
0

= w, respectively. If, for
all v, w 2 ⌃, there exists i = i (v, w) � 1 such that Pv (Wi = w) > 0, then W is irreducible.
If gcd {i � 1 : Pw (Wi = w) > 0} = 1 for all w 2 ⌃, then W is aperiodic. For A ✓ ⌃, the
hitting time of A is

HA := min {i � 1 : Wi 2 A} .

For w 2 ⌃, we will write Hw instead of H{w}. If Ew [Hw] < 1 for all w 2 ⌃, then W is
positive recurrent. If W is irreducible, aperiodic and positive recurrent, then it is ergodic.
It is well-known (e.g., see [9], Proposition 21.11) that if W is irreducible, then it is positive
recurrent if and only if Ew [Hw] < 1 for some w 2 ⌃. Moreover (e.g., see [9], Theorem
21.14), if W is ergodic, then there exists a unique stationary distribution ⇧W on ⌃, and

lim

i!1
d
TV

(L (Wi, w) ,⇧W ) = 0

for all w 2 ⌃; here L (Wi, w) is the law of Wi conditional on W
0

= w.
Next we will discuss continuous-time Markov jump processes. A continuous-time stochastic

process with state space ⌃ is a family of random variables W = (Wt)t�0

, all defined on a
common probability space (⌦,F ,P) and taking values in ⌃. The processes we will study
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are right-continuous jump processes, that is, processes such that for all ! 2 ⌦ and t � 0,
there exists " = " (!, t) > 0 such that

Wt (!) = Wu (!)

for all t  u  t + ". It is well-known (e.g., see [24], Section 6.6) that the probabilities
concerning a right-continuous jump process may be determined from its finite-dimensional
distributions, that is, the probabilities

P
 

i
\

k=0

{Wt
k

= wk}
!

,

where i � 0, 0  t
0

 · · ·  ti and w
0

, . . . , wi 2 ⌃. The jump times of W are the times
J
0

:= 0 and
Ji := inf

�

t > Ji�1

: Wt 6= WJ
i�1

 

,

for all i � 1, where inf ; = 1, and the holding times of W are the durations

Di :=

8

<

:

Ji � Ji�1

, if Ji�1

< 1,

1, if Ji�1

= 1,

for all i � 1. Furthermore, the jump processes we will study are non-explosive, that is,
processes such that

P
✓

sup

i�0

Ji = 1
◆

= 1.

The jump process of W is the discrete-time stochastic process WJ = (WJ
i

)

1
i=0

.
A Q-matrix on ⌃ is a real matrix Q = (qvw)v,w2⌃ such that

1. �1 < qvv  0 for all v 2 ⌃,

2. qvw � 0 for all distinct v, w 2 ⌃, and

3.
P

w2⌃ qvw = 0 for all v 2 ⌃.

For v 2 ⌃, let qv := �qvv, and suppose that

1. whenever W is at a state v 2 ⌃ such that qv > 0, it waits for an exponential time of
rate qv > 0 and then goes to the state w 2 ⌃ with probability 0  q

vw

q
v

 1, and

2. if W is at a state v 2 ⌃ such that qv = 0, then it stays there forever.

Then W is a continuous-time Markov jump process with generator matrix Q. It follows
that the jump process WJ of W is a discrete-time Markov chain with transition matrix
P = (pvw)v,w2⌃, where for distinct v, w 2 ⌃,

pvw :=

8

<

:

q
vw

q
v

, if qv > 0,

0, if qv = 0,
pvv :=

8

<

:

0, if qv > 0,

1, if qv = 0.

(It is straightforward to check that P is indeed a transition matrix.) In this case, we will
call WJ the jump chain of W. Moreover, it follows that for all i � 1 and w

0

, . . . , wi�1

2 ⌃,

10



conditional on WJ0 = w
0

, . . . ,WJ
i�1 = wi�1

, the holding times D
1

, . . . , Di are independent
exponential random variables with rates qw0 , . . . , qw

i�1 , respectively.
Let W be a continuous-time Markov jump process with state space ⌃. For w 2

⌃, let Pw (·) and Ew [·] denote the probability and expectation conditional on W
0

= w,
respectively. If the jump chain WJ is irreducible, then W is irreducible. For A ✓ ⌃, the
hitting time of A is

HA := min {t � J
1

: Wt 2 A} .

For w 2 ⌃, we will write Hw instead of H{w}. If Ew [Hw] < 1 for all w 2 ⌃, then W

is positive recurrent. If W is irreducible and positive recurrent, then it is ergodic. It is
well-known (e.g., see [9], Proposition 21.11) that if W is irreducible, then it is positive
recurrent if and only if Ew [Hw] < 1 for some w 2 ⌃. Moreover (e.g., see [24], Theorem
3.8.1), if W is ergodic, then there exists a unique stationary distribution ⇧W on ⌃, and

lim

t!1
d
TV

(L (Wt, w) ,⇧W ) = 0

for all w 2 ⌃; here L (Wt, w) is the law of Wt conditional on W
0

= w.
Next we will discuss couplings. A coupling of distributions µ and ⌫ on a common

measurable space (⌃,G) is a pair of random variables (V,W ), both defined on a common
probability space (⌦,F ,P), both taking values in ⌃, and such that L (V ) = µ and L (W ) =

⌫. It is well-known (e.g., see [9], Proposition 4.7) that

d
TV

(µ, ⌫) = inf {P (V 6= W ) : (V,W ) is a coupling of µ and ⌫} . (1.12)

Now let P and P 0 be transition matrices on ⌃ and ⌃

0, respectively. A coupling of
discrete-time Markov chains with initial state (v, w) 2 ⌃ ⇥ ⌃

0 and transition matrices P

and P 0 is a discrete-time stochastic process (V,W) = ((Vi,Wi))
1
i=0

with state space ⌃⇥⌃

0

such that V = (Vi)
1
i=0

is a discrete-time Markov chain with initial state v and transition
matrix P , and W = (Wi)

1
i=0

is a discrete-time Markov chain with initial state w and
transition matrix P 0. The couplings we will use are Markovian couplings, that is, couplings
which are themselves Markov chains. We will also need to couple Markov chains where the
initial states are random: in this case, we first sample the initial states of the chains, and
then proceed as above. Furthermore, the couplings we will use, when coupling two copies
of the same Markov chain, will keep the two processes together once they meet. That is,
if (V,W) satisfies Vk = Wk for some k � 0, then Vi = Wi for all i � k. In this case, we
will say that V and W have coalesced.

Analogous definitions are to be made with ‘discrete-time Markov chain’ replaced by
‘continuous-time Markov jump process’, and ‘transition matrix’ replaced by ‘generator
matrix’.

Finally, we will state three elementary results which we will be using several times in
this thesis. The first concerns concentration of measure for sums of i.i.d. random variables.

Lemma 1.3 ([8], Theorem 5.11). Let W be an R-valued random variable such that E [W ] <

1 and E
⇥

etW
⇤

< 1 in some neighbourhood around t = 0, and let c > E [W ]. Then there
exists ⌘ > 0 such that the following holds. Let n � 1, and let W

1

, . . . ,Wn be i.i.d. random

11



variables each distributed like W . Then

P
 

n
X

i=1

Wi > cn

!

 e�⌘n.

The second concerns concentration of measure for Poisson random variables. For µ > 0,
let Po (µ) denote the Poisson distribution with mean µ.

Lemma 1.4 ([15], Theorem 2.3). Let W ⇠ Po (µ). Then

P (|W � µ| � "µ)  2e�
1
3 "

2µ

for all 0  "  1, and
P (W � w)  2

�w

for all w � 2eµ.

The third is an easy algebraic result.

Lemma 1.5. Let 0  x  y.

1. If d � 2, then d (y � x)xd�1  1

2

yd.

2. We have d (y � x)xd�1  yd � xd, with strict inequality if 0 < x < y and d � 2.

1.5 Outline of thesis

The rest of this thesis is organised as follows. In Chapter 2, we will show that lengths
processes are ergodic, and then establish some results about the equilibrium distribution
for the lengths process. We will also prove an important random walk lemma which will be
used to show rapid mixing of the lengths process. In Chapter 3, we will begin our proof of
rapid mixing of the lengths process. We stop in Chapter 4 to establish some concentration
of measure results, and then in Chapter 5 to analyse the equilibrium proportion of queues
of length at least i, for all i � 1, and the equilibrium memory queue length. We will then
complete the proof of rapid mixing of the lengths process in Chapter 6. In Chapter 7,
we will analyse the equilibrium maximum queue length. In Chapter 8, we end with some
concluding remarks and further ideas.
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Chapter 2

Preliminary results

2.1 Notation for lengths processes

In this section, we will introduce some additional notation for lengths processes. In this
thesis, at any time we will be referring to at most two lengths processes in detail. We have
already introduced the notation

X = (Xt)t�0

, Xt = ((Xt (1) , . . . , Xt (n)) ,⌅t) ,

to denote a lengths process. A second lengths process, when we need it, will be denoted

Y = (Yt)t�0

, Yt = ((Yt (1) , . . . , Yt (n)) ,⇥t) .

Similarly, we have already specified x = ((x (1) , . . . , x (n)) , ⇠) to denote a lengths vector.
A second lengths vector, when we need it, will be denoted y = ((y (1) , . . . , y (n)) , ✓).

We will use the following construction of a lengths process. Let a Poisson process
T

a

= (T a

i )
1
i=1

of rate �n give the arrival times, and let C

a

= (Ca

i )
1
i=1

be a corresponding
sequence of ordered lists of d queues chosen uniformly at random with replacement, which
we will call choices. For each arrival time T a

i , we will take Ca

i = (Ca

i (1) , . . . , C
a

i (d)) as
the ordered list of d queues chosen by the arriving customer. The candidates list is the
ordered list

�

Ca

i (1) , . . . , C
a

i (d) ,⌅T a
i

�
�

,

where ⌅T a
i

� is the memory queue immediately before T a

i . We then add a customer to the
first shortest queue in the candidates list, and with the updated queue lengths, save the first
shortest queue in the candidates list into memory. Let a Poisson process T

d

=

�

T d

i

�1
i=1

of
rate n give the potential departure times, and let Sd

=

�

Sd

i

�1
i=1

be a corresponding sequence
of queues selected uniformly at random, which we will call selections. For each potential
departure time T d

i , we will take Sd

i as the queue completing its service of any current
customer. Thus, we remove a customer from Sd

i if it is currently non-empty. It follows
that a potential departure time is not necessarily a jump time, since nothing happens if
the selection is already empty.

The four processes T

a, C

a, T

d and S

d are defined on a common probability space
(⌦,F ,P) and are independent. Since the selections for each potential departure time are
uniformly random, T

d splits into n Poisson processes of rate 1, and the n queues have
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independent exponential service times with rate 1. Thus, this construction of a lengths
process is equivalent to that given in Section 1.1.

Let T
0

:= 0, then enumerate all the arrival and potential departure times as T
1

, T
2

, . . . .
We will call T = (Ti)

1
i=0

the event times. Let (Ft)t�0

denote the natural filtration of F
with respect to X, and for a stopping time T > 0, let

FT� := � {{A \ {t < T} : t � 0, A 2 Ft} [ F
0

}

denote the �-field generated by all events before T . By definition, we have F
0� = F

0

.
Suppose we have a procedure that, when given two lengths vectors, returns a pairing

of the n queues in one lengths vector to the n queues in the other. Then we may construct
a coupling of two lengths processes, X and Y, using only this pairing procedure as follows.
Let X and Y share the same arrival and potential departure times. For an event time T ,
pair the queues in XT� and YT� using the given pairing procedure.

1. If T is an arrival time, let C = (C (1) , . . . , C (d)) be an ordered list of d queues
chosen uniformly at random with replacement, then define C 0

= (C 0
(1) , . . . , C 0

(d))

by setting C 0
(i) to be the queue paired with C (i), for all 1  i  d. We will take C

and C 0 as the choices for the arriving customer in X and in Y, respectively.

2. If T is a potential departure time, let S be a queue in XT� selected uniformly at
random, then set S0 to be the queue in YT� paired with S. We will take S and S0 as
the selections in X and in Y, respectively.

It is easy to see that for an arrival time, C 0 is an ordered list of d queues chosen uniformly
at random with replacement, and that for a potential departure time, S0 is a queue in YT�

selected uniformly at random. Thus, Y does have the distribution of a lengths process.
Note that X and Y necessarily jump together at each arrival time, but not necessarily

together at each potential departure time, since a potential departure time is not necessarily
a jump time.

For an arrival time, we will refer to the arriving customer in X as the X-customer,
his/her choices as the X-choices, and the candidates list in X as the X-candidates list. For
a potential departure time, we will refer to the selection in X as the X-selection. Analogous
definitions are to be made for Y.

2.2 Ergodicity and results about the equilibrium distribution

In this section, we will couple the supermarket model with memory with the standard
supermarket model to show a certain stochastic domination result. We will then use
this to establish that the former model is ergodic, and then extend some results about the
equilibrium distribution for the standard supermarket model to the equilibrium distribution
for the supermarket model with memory.

Let us introduce some additional notation for the standard supermarket model first.
We will also call elements of Zn

+

lengths vectors. For a lengths vector z 2 Zn
+

, we will write

z = (z (1) , . . . , z (n)) ,

14



and take z (i) to be the length of queue i in z. It follows that kzk
1

:=

Pn
i=1

z (i) is the
number of customers in z, and that kzk1 := max (z (1) , . . . , z (n)) is the maximum queue
length in z.

The standard supermarket model will be described by a continuous-time Markov jump
process Z = (Zt)t�0

with state space Zn
+

as follows. For t � 0, we will write

Zt = (Zt (1) , . . . , Zt (n)) ,

and take Zt (i) to be the length of queue i at time t. We will call Z a standard lengths
process, and take it to be right-continuous. It is well-known (e.g., see [6], Lemma 2.4) that
Z is ergodic.

We may think of the memory queue as offering each arriving customer an additional
opportunity to join a shorter queue, relative to the standard supermarket model. This
implies that we should expect the former model to have more balanced queues, and thus
shorter queues. In particular, we should also expect it to have fewer customers and a
shorter maximum queue length. The same conclusions should also hold if each arriving
customer in the standard supermarket model only makes d0 choices, where 1  d0  d is a
fixed constant. All in all, we are looking to show that kXtk

1

and kXtk1 are stochastically
dominated by kZtk

1

and kZtk1, respectively. This would allow us to extend the following
results about the equilibrium distribution for the standard supermarket model, by Luczak
and McDiarmid [10].

Lemma 2.1 ([10], Lemmas 2.4—2.6). Let c > �
1�� . Then there exist ⌘

1

= ⌘
1

(c) > 0 and
⌘
2

> 0 such that the following holds. Let n � 1.

1. Let Z have the equilibrium distribution for the standard lengths process. Then

E [kZk
1

]  �n

1� �
, P (kZk

1

> cn)  e�⌘1n,

and
P (kZk1 > r)  ne�⌘2r

for all r � 0.

2. Let Z have initial state z 2 Zn
+

, where kzk
1

 cn. Then

P (kZtk
1

> 2cn for some 0  t < e⌘1n)  2e�⌘1n.

We will be coupling the supermarket model with memory with d choices and the stand-
ard supermarket model with d0 choices, where 1  d0  d is a fixed constant. However, we
will only make use of the case where d0 = d.

Let us rank the elements in a set of queues by length (in ascending order), and then if
necessary, by queue index (also in ascending order). That is, given a set of k queues, we
let the shortest queue with the least index have rank 1, and then repeat this for the ranks
2, . . . , k.

Definition 2.2. The rank coupling is the following coupling of a lengths process X and a
standard lengths process Z. Let X and Z share the same arrival and potential departure
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times. For an event time T , pair the queues in XT� and ZT� by rank (from 1 to n).

1. If T is an arrival time, let the X-choices C = (C (1) , . . . , C (d)) be an ordered list
of d queues chosen uniformly at random with replacement, then define the Z-choices
C 0

= (C 0
(1) , . . . , C 0

(d0)) by setting C 0
(i) to be the queue paired with C (i), for all

1  i  d0.

2. If T is a potential departure time, let the X-selection be a queue in XT� selected
uniformly at random, then set the Z-selection to be the queue in ZT� paired with
the X-selection.

Remark. It is easy to see that for an arrival time, the Z-choices is an ordered list of d0

queues chosen uniformly at random with replacement, and that for a potential departure
time, the Z-selection is a queue in ZT� selected uniformly at random. Thus, Z does have
the distribution of a standard lengths process. This coupling was introduced by Graham
in [7] to couple two standard lengths processes together.

Observe that, for a state w of either process (that is, for w 2 Qn [ Zn
+

) and i � 0,

li (w) :=
n
X

k=1

1w(k)�i, fi (w) :=
1
X

k=i+1

lk (w) , (2.1)

are the number of queues in w of length at least i, and the number of customers in w with
at least i customers in front, respectively.

Lemma 2.3. Let X and Z have initial states x 2 Qn, z 2 Zn
+

, respectively, where fi (x) 
fi (z) for all i � 0, and let X and Z be coupled by the rank coupling. Then

fi (Xt)  fi (Zt)

for all t � 0 and i � 0. We have kXtk
1

 kZtk
1

and kXtk1  kZtk1 for all t � 0.

Remark. This proof is essentially the same as the proof of Theorem 4.1 in [7]. The only
difference is that here, we also have a memory queue to deal with at each arrival time.

Proof. Clearly it suffices to show that fi (XT )  fi (ZT ) for the first event time T > 0 and
all i � 0, so assume that

fj (XT ) > fj (ZT ) (2.2)

for some j � 0. For a state w of either process and 1  i  n, let ri (w) denote the rank
(from 1 to n) of queue i in w. There are now two cases to consider.

Case 1 T is an arrival time.

Let K and K 0 denote the length of the queue joined by the X- and Z-customer, respectively.
Then (2.2) gives

fj (x) + 1K�j = fj (XT ) > fj (ZT ) = fj (z) + 1K0�j .

The hypothesis fj (x)  fj (z) gives

fj (x) = fj (z) , K 0 < j  K.
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These results, and the hypothesis fj�1

(x)  fj�1

(z) (noting that j > 0), give

lK (x)  lj (x) = fj�1

(x)� fj (x)  fj�1

(z)� fj (z) = lj (z)  lK0
+1

(z) . (2.3)

Now let H denote the highest ranked queue in the X-candidates list C = (C (1) , . . . , C (d+ 1)),
and let H 0 denote the highest ranked queue in the Z-choices C 0

= (C 0
(1) , . . . , C 0

(d0)). Re-
calling that the first d0 coordinates of C and C 0 have the same rank, we have

rH (x) = min

1id+1

rC(i) (x)  min

1id0
rC0

(i) (z) = rH0
(z) .

As highest ranked queues, H and H 0 are necessarily shortest queues in C and C 0, respect-
ively, and thus have lengths K and K 0, respectively. The queues in x of length at least K

have the ranks n+1�lK (x) , . . . , n�1, n, so rH (x) must be one of these integers. Similarly,
the the queues in z of length at least K 0

+1 have the ranks n+1� lK0
+1

(z) , . . . , n� 1, n,
so rH0

(z) must be strictly less than all these integers. Hence

lK0
+1

(z) < n+ 1� rH0
(z)  n+ 1� rH (x)  lK (x) .

This contradicts (2.3).

Case 2 T is a potential departure time.

Let K and K 0 denote the length of the X- and Z-selections, respectively. Then (2.2) gives

fj (x)� 1K>j = fj (XT ) > fj (ZT ) = fj (z)� 1K0>j .

The hypothesis fj (x)  fj (z) gives

fj (x) = fj (z) , K  j < K 0.

These results, and the hypothesis fj+1

(x)  fj+1

(z), give

lK0
(z)  lj+1

(z) = fj (z)� fj+1

(z)  fj (x)� fj+1

(x) = lj+1

(x)  lK+1

(x) . (2.4)

Now let S and S0 denote the X- and Z-selections, respectively. Recall that S and S0

have lengths K and K 0, respectively. The queues in x of length at least K + 1 have the
ranks n+ 1� lK+1

(x) , . . . , n� 1, n, so rS (x) must be strictly less than all these integers.
Similarly, the queues in z of length at least K 0 have the ranks n+1� lK0

(z) , . . . , n� 1, n,
so rS0

(z) must be one of these integers. Hence

lK+1

(x) < n+ 1� rS (x) = n+ 1� rS0
(z)  lK0

(z) .

This contradicts (2.4).
The last two inequalities in the statement of the lemma follow from the fact that

kwk
1

= f
0

(w) , kwk1 = min {i � 0 : fi (w) = 0} ,

for all states w of either process.
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Lemma 2.3 implies that kXtk
1

and kXtk1 are stochastically dominated by kZtk
1

and
kZtk1, respectively, as claimed. Now we will show that lengths processes are ergodic.

Lemma 2.4. X is ergodic.

Proof. Let J = (Ji)
1
i=0

denote the jump times of X, and for 1  i  n, let 0i :=

((0, . . . , 0) , i) denote the empty state with memory queue i. We must show that X is
irreducible and positive recurrent.

Part 1 Irreducibility.

Recall that X is irreducible if and only if its jump chain XJ = (XJ
i

)

1
i=0

is. Instead of the
jump chain, we will first consider XT = (XT

i

)

1
i=0

, the lengths process at the event times
T = (Ti)

1
i=0

.
For 1  j  n, we will say that an event time is a j-arrival if it is an arrival time with

choices (j, . . . , j), and a j-departure if it is a potential departure time with selection j. For
1  j, k  n, we will also say that four consecutive event times are a (j, k)-switcher if they
consist of a j-arrival, a k-arrival, a j-departure, and then a k-departure.

A (j, k)-switcher is a sequence of event times which, if x (j) � x (k), will change the
memory queue from j to k without changing the queue lengths. Thus, we are claiming
that if

XT
i

= ((x (1) , . . . , x (n)) , j) , x (j) � x (k) ,

and if the event times Ti+1

, . . . , Ti+4

form a (j, k)-switcher, then XT
i+4 will have memory

queue k and the exact same queue lengths. To see this claim, note that a j-arrival gives
the candidates list as (j, . . . j, j), and thus queue j receives the customer and remains the
memory queue. In particular, it is now strictly longer than queue k. A k-arrival then gives
the candidates list as (k, . . . , k, j), and thus queue k receives the customer and becomes the
memory queue. Finally, a j- and k-departure will undo the changes in the queue lengths.
This proves the claim.

Now let x, y 2 Qn. We will construct a sequence of event times which will take X from
x to y. We begin by taking X down to the empty state with memory queue ⇠. Thus, if we
have x (j) j-departures, for j = 1, . . . n in order, then

XT
x(1)

= ((0, x (2) , . . . , x (n)) , ⇠) ,

...

XT
u

= ((0, . . . , 0) , ⇠) = 0⇠,

where u = kxk
1

. Next, we will take X to the empty state with memory queue ✓. Thus, if
we next have a (⇠, ✓)-switcher, then

XT
u+4 = ((0, . . . , 0) , ✓) = 0✓.

Finally, we will restore the queue lengths one queue at a time. We will first build up queue
✓ + 1, then queue ✓ + 2, repeating this until we finish with queue ✓. This will ensure that
the switchers never go to a strictly longer queue. Thus, if we next have a (j, j + 1)-switcher
and then (j + 1)-arrivals, exactly y (j + 1) of them, for j = ✓, . . . , n, 1 . . . , ✓ � 1 in order,

18



then

XT
u+8+y(✓+1)

= ((0, . . . , 0, y (✓ + 1) , 0, . . . , 0) , ✓ + 1) ,

XT
u+12+y(✓+1)+y(✓+2)

= ((0, . . . , 0, y (✓ + 1) , y (✓ + 2) , 0, . . . , 0) , ✓ + 2) ,

...

XT
m

= ((y (1) , . . . , y (n)) , ✓) = y,

where m := kxk
1

+ kyk
1

+ 4 (n+ 1).
Since each event time described here is a jump time, we have Ti = Ji for all 1  i  m,

and thus

Px (XJ
m

= y) � Px (XT
m

= y) �
✓

�

�+ 1

1

nd

◆kyk1+2(n+1)

✓

1

�+ 1

1

n

◆kxk1+2(n+1)

> 0.

This shows that the jump chain XJ is irreducible, and thus X is irreducible.

Part 2 Positive recurrence.

Let A := {0
1

, . . . ,0n} denote the empty states in Qn, and let 0 := (0, . . . , 0) denote the
empty state in Zn

+

. Let X have an initial state in A, and let Z be a standard lengths
process with initial state 0. Let X and Z be coupled by the rank coupling. Recall that
J = (Ji)

1
i=0

denotes the jump times of X; let J

0
= (J 0

i)
1
i=0

denote the jump times of Z.
Then

HA := inf {t � J
1

: Xt 2 A} , H0 := inf

�

t � J 0
1

: Zt = 0

 

,

are the hitting time of A by X, and the hitting time of 0 by Z, respectively. Since the
initial states satisfy fi (x) = 0 = fi (z) for all i � 0, Lemma 2.3 implies that

kXtk
1

 kZtk
1

for all t � 0. But J
1

= J 0
1

, since X and Z are both initially at empty states and thus make
their first jump at a common arrival time. It follows that

HA  H0 .

Using the well-known fact (e.g., see [6], Lemma 2.4) that Z is ergodic, we have

max

w2A
Ew [HA]  E0 [H0 ] < 1. (2.5)

For the rest of this proof, we will be looking at the times when X lies in A. Enumerate
{Ji : i � 0 and XJ

i

2 A} into a sequence (Ui)
1
i=0

. Now fix a 2 A, then let

Na := inf {i � 1 : XU
i

= a} .

Then Na is equal to the hitting time of a by the irreducible discrete-time Markov chain
XU = (XU

i

)

1
i=0

, which has the finite state space A. It is well-known (e.g., see [9], Section
1.7) that an irreducible discrete-time Markov chain with a finite state space is positive
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recurrent, so
Ea [Na] < 1. (2.6)

Moreover, the random variables Ha, Na and Ui are all defined on the same probability
space, and satisfy

Ha = UN
a

=

N
a

X

i=1

(Ui � Ui�1

) =

1
X

i=1

(Ui � Ui�1

)1N
a

�i.

For i � 1, let Gi denote the �-field generated by all events in [0, Ui]. By the Tower Rule,
we have

Ea [Ha] =

1
X

i=1

Ea [(Ui � Ui�1

)1N
a

�i] =

1
X

i=1

Ea [E [(Ui � Ui�1

)1N
a

�i | Gi�1

]] .

But 1N
a

�i is Gi�1

-measurable, since Na � i if and only if XU1 , . . . , XU
i�1 6= a. Hence, by

(2.5) and (2.6), we have

Ea [Ha] =

1
X

i=1

Ea [E [Ui � Ui�1

| Gi�1

]1N
a

�i]

 max

w2A
Ew [U

1

� U
0

]Ea

" 1
X

i=1

1N
a

�i

#

= max

w2A
Ew [HA]Ea [Na] < 1.

Thus, X is positive recurrent.

Having established that lengths processes are ergodic, we may now extend the afore-
mentioned results for the equilibrium distribution for the standard supermarket model to
the equilibrium distribution for the supermarket model with memory.

Lemma 2.5. Let c > �
1�� . Then there exist ⌘

1

= ⌘
1

(c) > 0 and ⌘
2

> 0 such that the
following holds. Let n � 1.

1. Let X have the equilibrium distribution for the lengths process. Then

E [kXk
1

]  �n

1� �
, P (kXk

1

> cn)  e�⌘1n,

and
P (kXk1 > r)  ne�⌘2r

for all r � 0.

2. Let X have initial state x 2 Qn, where kxk
1

 cn. Then

P (kXtk
1

> 2cn for some 0  t < e⌘1n)  2e�⌘1n.

Proof. This follows from Lemma 2.1 and Lemma 2.3.
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2.3 A random walk lemma

In this section, we will prove an important random walk lemma which we will use to show
rapid mixing of the lengths process. First we will need the following result by McDiarmid
[15] which concerns the concentration of sums of independent, bounded random variables.

Theorem 2.6 ([15], Theorem 2.5). Let W
1

, . . . ,Wn be independent random variables where
Wi is [bi, ci]-valued for some bi < ci, for all 1  i  n. Then

P
 

�

�

�

�

�

n
X

i=1

Wi � E
"

n
X

i=1

Wi

#

�

�

�

�

�

� w

!

 2 exp

 

� 2w2

Pn
i=1

(ci � bi)
2

!

for all w � 0.

We will now prove a generalisation of Lemma 2.2 in [10] by Luczak and McDiarmid.
This concerns a discrete-time random walk R = (Ri)

1
i=0

on R, with bounded increments,
as follows. Let a  b, and suppose that:

1. R has negative drift with magnitude bounded away from 0, when it is above b, and

2. R will reach a (or a point below it) within a small number of steps with probability
bounded away from 0, when it is at most b.

Then R should soon decrease to a, by the following reasoning. If R is above b, then it
will first drift down towards b, by the first condition. At this point, R may make a finite
sequence of steps and reach a. Since such a sequence occurs with probability bounded away
from 0, after sufficiently many attempts, R will succeed at least once with high probability.

The events Ai in the lemma will be called the background events. Their relevance will
be apparent when we apply the lemma to show rapid mixing of the lengths process.

Lemma 2.7. Let (Gi)
1
i=0

be a filtration, and let (Ai)
1
i=0

be a sequence of events such that
Ai 2 Gi for all i � 0. Let R = (Ri)

1
i=0

be a random walk on R such that Yi := Ri � Ri�1

is Gi-measurable and [�y, y]-valued, for some y > 0 and all i � 1. Moreover, let a < b,
0 < p < 1 and q � 1 be constants, and suppose that

E [Yi+1

| Gi]  �p, on Ai \ {Ri > b} , (2.7)

P
 

q
[

k=0

{Ri+k  a} | Gi

!

� p, on Ai \ {Ri  b} , (2.8)

for all i � 0. Then there exists ⌘ = ⌘ (a, b, p, q, y) > 0 such that

P
 

m
\

i=1

(Ai \ {Ri > a})
!

 2e�⌘m
+ P (R

0

> ⌘m)

for all m � 1.

Remark. This proof is based on the proof of Lemma 2.2 in [10], the result we are general-
ising. The main difference is that here we need a stronger result, namely Theorem 2.6, to
show that the durations between the hitting times are not too long. For the original lemma,
Luczak and McDiarmid use concentration of measure for binomial random variables.
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Proof. Since the left-hand side is bounded by 1 and ⌘ > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large m.

Let us ignore the background events Ai in the meantime; we shall see later that it is
easy to incorporate them into the argument.

First define hitting times

I
0

:= I 0
0

:= inf {i � 0 : Ri  b} ,

and
Ij := inf {i > Ij�1

: Ri  b} , I 0j := inf

�

i > I 0j�1

+ q : Ri  b
 

,

for all j � 1. That is, let Ij be the first time after Ij�1

when R is at most b, and let I 0j be
the first time more than q time steps after I 0j�1

when R is at most b. Note that

I 0u  Iqu (2.9)

for all u � 1.
Now (2.8) and (2.9) give

P
 

m
\

i=1

{Ri > a}
!

 P
 

m
\

i=1

{Ri > a} \
�

I 0u  m
 

!

+ P
�

I 0u > m
�

 (1� p)u + P (Iqu > m) , (2.10)

for all u � 1. To see the first term in (2.10), note that if R
1

, . . . , Rm > a and if I 0u  m,
then

a < RI0
j

 b, RI0
j

+k > a,

for all 0  j < u and 1  k  q. That is, R fails to reach a within q steps from when it is
at most b, at least u times. The probability of each of failure is bounded using (2.8).

Next we will show that the durations Ij+1

� Ij are not too long so that the term
P (Iqu > m) is small. To do this, let j � 0 and h � 2, and suppose that {Ij+1

� Ij > h}
holds. Now

{Ij+1

� Ij > h} =

h
\

k=1

�

RI
j

+k > b
 

,

and the idea is that on the latter event, the increments YI
j

+2

, . . . , YI
j

+h (and YI
j

+h+1

,
though we will not need it) will each have negative expectation, by (2.7). Hence, for
sufficiently large h, the (j + 1)

st hitting time Ij+1

will occur within h time steps of the jth

hitting time Ij with high probability. Now for the details. If RI
j

+1

, . . . , RI
j

+h > b, then
since RI

j

 b and since each increment is at most y, we have

h
X

k=2

YI
j

+k = RI
j

+h �RI
j

� YI
j

+1

> b� b� y = �y � �1

2

p (h� 1) , (2.11)

if h is sufficiently large. Next we will relate this sum to a sum of independent random
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variables with a straightforward conditional expectation on GI
j

. For j � 0 and k � 2, let

Zj,k :=

8

<

:

YI
j

+k, if RI
j

+1

, . . . , RI
j

+k > b,

�p, otherwise.

Then the Tower Rule gives

E
⇥

Zj,k | GI
j

⇤

= E
⇥

E
⇥

Zj,k | GI
j

+k�1

⇤

| GI
j

⇤

 �p,

for all j � 0 and k � 2. Hence, for all h � 2,
Ph

k=2

Zj,k is stochastically domin-
ated by

Ph
k=2

Wj,k, a sum of independent [�y, y]-valued random variables where each
E
⇥

Wj,k | GI
j

⇤

 �p. Note that the Wj,k need not be identically distributed. Let ⌘
1

=

⌘
1

(p, y) := 1

8

⇣

p
y

⌘

2

, then Theorem 2.6 (with bi = �y, ci = y and w =

1

2

p (h� 1)) gives

P
 

h
X

k=2

Wj,k � E
"

h
X

k=2

Wj,k | GI
j

#

+

1

2

p (h� 1) | GI
j

!

 2 exp

 

�
2

�

1

2

p (h� 1)

�

2

Ph
k=2

(y + y)2

!

= 2e�⌘1(h�1), (2.12)

for all h � 2. Returning to the event
Th

k=1

�

RI
j

+k > b
 

, on which we have Zj,2 =

YI
j

+2

, . . . , Zj,h = YI
j

+h, we see that (2.11) gives

h
X

k=2

Zj,k =

h
X

k=2

YI
j

+k > �1

2

p (h� 1) � E
"

h
X

k=2

Wj,k | GI
j

#

+

1

2

p (h� 1) ,

if h is sufficiently large. As
Ph

k=2

Zj,k is stochastically dominated by
Ph

k=2

Wj,k, (2.12)
gives

P
�

Ij+1

� Ij > h | GI
j

�

 P
 

h
\

k=1

�

RI
j

+k > b
 

| GI
j

!

 P
 

h
X

k=2

Wj,k � E
"

h
X

k=2

Wj,k | GI
j

#

+

1

2

p (h� 1) | GI
j

!

 2e�⌘1(h�1),

if h is sufficiently large. Since the left-hand side is bounded by 1, for sufficiently small
⌘
2

= ⌘
2

(b, p, y) > 0, we have

P
�

Ij+1

� Ij > h | GI
j

�

 2e�⌘2h

for all h � 0. Hence the durations Ij+1

� Ij are stochastically dominated by i.i.d. random
variables Hj each distributed like an N-valued random variable H such that P (H > h) =

2e�⌘2h for all h � 0. Let

� :=

3

1� e�⌘2
, u :=

⇠

m

4�q

⇡

,
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then we have

P (Iqu � I
0

> �qu) = P

0

@

qu
X

j=1

(Ij � Ij�1

) > �qu

1

A  P

0

@

qu
X

j=1

Hj > �qu

1

A .

Now H, the common distribution of the Hj , satisfies

E [H] =

1
X

h=1

hP (H = h) =
1
X

h=0

2e�⌘2h
=

2

1� e�⌘2
< �,

E
h

e
1
2⌘2H

i

=

1
X

h=1

e
1
2⌘2hP (H = h) 

1
X

h=1

e
1
2⌘2h · 2e�⌘2(h�1) < 1,

so Lemma 1.3 (with c = �) implies that there exists ⌘
3

= ⌘
3

(b, p, q, y) > 0 such that

P (Iqu � I
0

> �qu)  e�⌘3qu (2.13)

for all m � 1.
Next we will show that I

0

is also not too long. The argument is similar to that used
for the durations Ij+1

� Ij , so we will be a little briefer here. Let v :=

⌃

1

4

m
⌥

, and suppose
that {I

0

> v}\
�

R
0

 1

16

pm
 

holds. Now if R
0

 1

16

pm and R
1

, . . . , Rv > b, then we have

v
X

k=2

Yk = Rv �R
0

� Y
1

> b� 1

16

pm� y � �1

2

p (v � 1) , (2.14)

if m is sufficiently large. For k � 2, let

Zk :=

8

<

:

Yk, if R
1

, . . . , Rk > b,

�p, otherwise.

Then the Tower Rule gives E [Zk]  �p for all k � 2. Hence,
Pv

k=2

Zk is stochastically
dominated by

Ph
k=2

Wk, a sum of independent [�y, y]-valued random variables where each
E [Wk]  �p. Then Theorem 2.6 gives

P
 

v
X

k=2

Wk > E
"

v
X

k=2

Wk

#

+

1

2

p (v � 1)

!

 2 exp

 

�
2

�

1

2

p (v � 1)

�

2

Pv
k=2

(y + y)2

!

= 2e�⌘1(v�1). (2.15)

Returning to the event {I
0

> v}\
�

R
0

 1

16

pm
 

, on which we have Z
2

= Y
2

, . . . , Zv = Yv,
we see that (2.14) gives

v
X

k=2

Zk =

v
X

k=2

Yk > �1

2

p (v � 1) � E
"

v
X

k=2

Wk

#

+

1

2

p (v � 1) ,
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if m is sufficiently large. As
Pv

k=2

Zk is stochastically dominated by
Pv

k=2

Wk, (2.15) gives

P
�

{I
0

> v} \
�

R
0

 1

16

pm
 �

 P
 

�

R
0

 1

16

pm
 

\
v
\

k=1

{Rk > b}
!

 P
 

v
X

k=2

Wk > E
"

v
X

k=2

Wk

#

+

1

2

p (v � 1)

!

 2e�⌘1(v�1),

if m is sufficiently large. Since the left-hand side is bounded by 1, for sufficiently small
⌘
4

= ⌘
4

(b, p, y) > 0, we have

P
�

{I
0

> v} \
�

R
0

 1

16

pm
 �

 2e�⌘4m (2.16)

for all m � 0.
Now if Iqu > m, then

(Iqu � I
0

) + I
0

= Iqu > m � �q

⇠

m

4�q

⇡

+

⌃

1

4

m
⌥

= �qu+ v,

if m is sufficiently large. Hence, by (2.10), we have

P
 

m
\

i=1

{Ri > a}
!

 (1� p)u + P (Iqu � I
0

> �qu)

+ P
�

{I
0

> v} \
�

R
0

 1

16

pm
 �

+ P
�

R
0

> 1

16

pm
�

,

if m is sufficiently large. By (2.13) and (2.16), there exists ⌘
5

= ⌘
5

(a, b, p, q, y) > 0 such
that

P
 

m
\

i=1

{Ri > a}
!

 (1� p)u + e�⌘3qu
+ 2e�⌘4m

+ P
�

R
0

> 1

16

pm
�

 4e�⌘5m
+ P (R

0

> ⌘
5

m)

 e�
1
2⌘5m

+ P
�

R
0

> 1

2

⌘
5

m
�

, (2.17)

if m is sufficiently large. Hence the result follows if ⌘  1

2

⌘
5

.
Now let us bring in the events Ai. For i � 1, let

Y 0
i := Yi1A

i�1 �max (b� a, p, y)1A
i�1

, R0
i := R

0

+

i
X

j=1

Y 0
i .

Then

E
⇥

Y 0
i+1

| Gi

⇤

 �p, on {Ri > b} ,

P
 

q
[

k=0

�

R0
i+k  a

 

| Gi

!

� p, on {Ri  b} ,

for all i � 0. These are obvious if Ai holds, and easily follow from (2.7) and (2.8) if Ai
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holds. Hence, (2.17) applies to (R0
i)
1
i=0

, giving

P
 

m
\

i=1

(Ai�1

\ {Ri > a})
!

 P
 

m
\

i=1

�

R0
i > a

 

!

 e�
1
2⌘5m

+ P
�

R
0

> 1

2

⌘
5

m
�

,

if m is sufficiently large. To see the first inequality, note that if A
0

, . . . , Am�1

all hold,
then we have Y 0

i = Yi for all 1  i  m. It follows that R0
i = Ri for all 1  i  m.

The following lemma is the main result of this section. It is an application of Lemma
2.7 and concerns a discrete-time random walk S = (Si)

1
i=0

on Z
+

, with increments in
{�1, 0, 1}, as follows. At all times, S is to be described as either being good or bad ; let the
event Bi denote the event that S is good at time i. Let  � 1, and suppose that:

1. S will either become good or increase, with probability bounded away from 0, when
it is bad,

2. S will remain good and decrease, with probability bounded away from 0, when it is
good,

3. S is more likely to remain good and decrease than to increase, when it is good and
above , and

4. S will become good without changing value, with probability close to 1, when it is
bad and above .

Then there should be the rapid occurrence of a time when S is simultaneously good and
takes the value 0, by the following reasoning. Let R be the random walk equal to S if S
is good, and S plus a penalty 0 < � < 1 if S is bad. That is, let

Ri := Si + �1B
i

,

for i � 0. Thus, R is 0 if and only if S is good and takes the value 0, and in particular, R
should soon decrease to 0 by Lemma 2.7 and the following reasoning.

1. Condition (2.7) requires that R has negative drift with magnitude bounded away
from 0, when it is above b :=  + �. Now if R is above  + �, then S is above .
There are now two cases to consider.

(a) If S is good, then the third condition implies that S will have negative drift,
whence R will also have negative drift.

(b) If S is bad, then the fourth condition implies that S will become good without
changing value, with probability close to 1. This will represent a decrease in R,
as the penalty will no longer apply. Moreover, the aforementioned probability
will be so close to 1 that this will represent a negative drift in R.

2. Condition (2.8) requires that R will reach a := 0 within a small number of steps with
probability bounded away from 0, when it is at most  + �. Now if R is at most
+ �, then S is at most . There are two parts to the argument here.
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(a) If S is good and at most  + 1, then the second condition implies that S will
remain good and decrease to 0 within at most  + 1 steps, with probability
bounded away from 0. That is, R will decrease to 0 within at most +1 steps,
with probability bounded away from 0.

(b) If S is bad and at most , then the first condition implies that S will either have
become good or have remained bad and increased to +1 within at most +1

steps, with probability bounded away from 0. If we are in the latter case, then
using the fourth condition, we see that S will be good and at most +1 within
at most + 2 steps, with probability bounded away from 0. At this point, the
first part of the argument applies.

The two parts together imply that R will decrease to 0 within at most q := 2 + 3

steps, with probability bounded away from 0.

The events Ai in the lemma will also be called the background events. Again, their relevance
will be apparent when we apply the lemma to show rapid mixing of the lengths process.

Lemma 2.8. Let (Gi)
1
i=0

be a filtration, and let (Ai)
1
i=0

and (Bi)
1
i=0

be sequences of events
such that Ai, Bi 2 Gi for all i � 0. Let S = (Si)

1
i=0

be a random walk on Z
+

such
that Zi := Si � Si�1

is Gi-measurable and {�1, 0, 1}-valued, for all i � 1. Moreover, let
0 < � < 1

2

and  � 1 be constants, and suppose that

P (Bi+1

[ {Zi+1

= 1} | Gi) � �, on Ai \Bi, (2.18)

P (Bi+1

\ {Zi+1

= �1} | Gi) � �, on Ai \Bi \ {Si > 0} , (2.19)

P (Bi+1

\ {Zi+1

= �1} | Gi) � P (Zi+1

= 1 | Gi) + �, on Ai \Bi \ {Si > } , (2.20)

P (Bi+1

\ {Zi+1

= 0} | Gi) � 1� 1

2

�, on Ai \Bi \ {Si > } , (2.21)

for all i � 0. Then there exists ⌘ = ⌘ (�,) > 0 such that

P
 

m
\

i=1

�

Ai�1

\
�

Bi [ {Si > 0}
��

!

 2e�⌘m
+ P (S

0

> ⌘m)

for all m � 1.

Proof. Since the left-hand side is bounded by 1 and ⌘ > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large m.

We have already outlined the idea behind this proof. We will take the penalty � to be
3

4

�. We will show that the hypotheses of Lemma 2.7 hold with the same filtration (Gi)
1
i=0

,
the same sequence of events (Ai)

1
i=0

, the constants

a = 0, b = + �, p = �2+3, q = 2+ 3, y = 1 + �,

and the random walk R = (Ri)
1
i=0

where

Ri := Si + �1B
i

.
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It is easy to see that p  1

16

�. As required by Lemma 2.7,

Yi := Ri �Ri�1

= Zi + �
⇣

1B
i

� 1B
i�1

⌘

is Gi-measurable and [�y, y]-valued, for all i � 1. There are now two conditions to verify:
(2.7) and (2.8).

1. For condition (2.7), suppose that Ai\{Ri > b} holds, so that Si > . There are now
two cases to consider. If Bi holds, then the next increment in R is

Yi+1

= Zi+1

+ �1B
i+1

2 {�1,�1 + �, 0,�, 1, 1 + �} ,

whence we may write

E [Yi+1

| Gi]  �P (Yi+1

= �1 | Gi) + �P (Yi+1

= � | Gi) + (1 + �)P (Yi+1

� 1 | Gi)

 �P (Yi+1

= �1 | Gi) + � + P (Yi+1

� 1 | Gi) , on Ai \Bi \ {Ri > b} .

By (2.20), we have

E [Yi+1

| Gi]  �P (Bi+1

\ {Zi+1

= �1} | Gi) + � + P (Zi+1

= 1 | Gi)

 �� + 3

4

�  �p, on Ai \Bi \ {Ri > b} .

On the other hand, if Bi holds, then the next increment in R is

Yi+1

= Zi+1

� �1B
i+1 2 {�1� �,�1,��, 0, 1� �, 1} ,

whence we may write

E [Yi+1

| Gi]  ��P (Yi+1

= �� | Gi) + P (Yi+1

6= �� | Gi)

= 1� (1 + �)P (Yi+1

= �� | Gi) , on Ai \Bi \ {Ri > b} .

By (2.21) and the fact that � < 1

2

, we have

E [Yi+1

| Gi]  1� (1 + �)P (Bi+1

\ {Zi+1

= 0} | Gi)

 1�
�

1 +

3

4

�
� �

1� 1

2

�
�

= �
�

1

4

� 3

8

�
�

�  � 1

16

�  �p, on Ai \Bi \ {Ri > b} .

Thus (2.7) holds.

2. For condition (2.8), suppose that Ai \ {Ri  b} holds, so that Si   + �. Since S

only takes values in Z
+

, it follows that Si  . As mentioned when we outlined the
idea behind the proof, the first part of the argument deals with the case where S is
good and at most + 1. For s � 0, let

Ei,s := Bi \ {Si = s}
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denote the event that S is good and takes the value at time i. By (2.19), we have

�  E
⇥

1B
i+11Zi+1=�1

| Gi

⇤

 E
⇥

1E
i+1,s�1 | Gi

⇤

, on Ai \ Ei,s, (2.22)

for all i � 0 and s � 1. Multiplying through by �, bounding � using (2.22) with i

replaced by i+ 1 and s replaced by s� 1, and then using the Tower Rule, we have

�2  E
⇥

1E
i+1,s�1� | Gi

⇤

 E
⇥

1E
i+1,s�1E

⇥

1E
i+2,s�2 | Gi+1

⇤

| Gi

⇤

= E
⇥

1E
i+1,s�11Ei+2,s�2 | Gi

⇤

, on Ai \ Ei,s.

Similarly, by (2.22) and induction, it is straightforward to see that

�s  E
⇥

1E
i+1,s�1 . . .1Ei+s,0 | Gi

⇤

 E
⇥

1R
i+s

=0

| Gi

⇤

, on Ai \ Ei,s,

for all s � 1. In particular, we have

�+1  E
⇥

1R
i+s

=0

| Gi

⇤

 E
h

1

S
+1
k=0 R

i+k

=0

| Gi

i

, on Ai \ Ei,s, (2.23)

for all 0  s  + 1.

The second part of the argument deals with the case where S is bad and at most .
For s � 0, let

Fi,s := Bi \ {Si = s}

denote the event that S is bad and takes the value s at time i. By (2.18), we have

�  E
⇥

1B
i+1[{Zi+1=1} | Gi

⇤

= E
h

1B
i+1 + 1B

i+1
1Z

i+1=1

| Gi

i

 E
⇥

1B
i+1 + 1F

i+1,s+1 | Gi

⇤

, on Ai \ Fi,s, (2.24)

for all i, s � 0, and by (2.21), we have

�  1� 1

2

�  E
⇥

1B
i+11Zi+1=0

| Gi

⇤

 E
⇥

1E
i+1,s | Gi

⇤

, on Ai \ Fi,s, (2.25)

for all i � 0 and s > . Multiplying (2.24) through by �, bounding � using (2.24)
with i replaced by i+ 1 and s replaced by s+ 1, and then using the Tower Rule, we
have

�2  E
⇥

1B
i+1 | Gi

⇤

+ E
⇥

1F
i+1,s+1� | Gi

⇤

.

 E
⇥

1B
i+1 | Gi

⇤

+ E
⇥

1F
i+1,s+1E

⇥

1B
i+2 + 1F

i+2,s+2 | Gi+1

⇤

| Gi

⇤

 E
⇥

1B
i+1 | Gi

⇤

+ E
⇥

1F
i+1,s+11Bi+2 | Gi

⇤

+ E
⇥

1F
i+1,s+11Fi+2,s+2 | Gi

⇤

, on Ai \ Fi,s.

Similarly, by (2.24) and induction, it is straightforward to see that if r = r (s) :=
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+ 1� s, then

�r 
r
X

j=1

E
⇥

1F
i+1,s+1 . . .1Fi+j�1,s+j�11Bi+j

| Gi

⇤

+ E
⇥

1F
i+1,s+1 . . .1Fi+r,+1 | Gi

⇤

, on Ai \ Fi,s,

for all 0  s  . Multiplying through by �, bounding � using (2.25) with i replaced
by i+ r and s replaced by + 1, and then using the Tower Rule, we have

�r+1 
r
X

j=1

E
⇥

1B
i+j

| Gi

⇤

+ E
⇥

1F
i+r,+1� | Gi

⇤


r
X

j=1

E
⇥

1B
i+j

| Gi

⇤

+ E
⇥

1F
i+r,+1E

⇥

1E
i+r+1,+1 | Gi+r

⇤

| Gi

⇤

=

r
X

j=1

E
⇥

1S
i+j

s+r1B
i+j

| Gi

⇤

+ E
⇥

1F
i+r,+11Ei+r+1,+1 | Gi

⇤


r+1

X

j=1

+1

X

l=0

E
⇥

1E
i+j,l

| Gi

⇤

, on Ai \ Fi,s,

for all 0  s  . Multiplying through by �+1, bounding �+1 using (2.23) with i

replaced by i+ j and s replaced by l, and then using the Tower Rule, we have

�r++2 
r+1

X

j=1

+1

X

l=0

E
⇥

1E
i+j,l

�+1 | Gi

⇤

.


r+1

X

j=1

+1

X

l=0

E
⇥

1E
i+j,l

E
⇥

1R
i+j+l

=0

| Gi+j

⇤

| Gi

⇤


r+1

X

j=1

+1

X

l=0

E
⇥

1R
i+j+l

=0

| Gi

⇤

, on Ai \ Fi,s,

for all 0  s  . Since j  r + 1  + 2 and 0  l  + 1, we have

�2+3  E
h

1

S2+3
k=1 R

i+k

=0

| Gi

i

, on Ai \ Fi,s, (2.26)

for all 0  s  . By (2.23) and (2.26), we have

E
h

1R
i

b1
S2+3

k=0 R
i+k

=0

| Gi

i

� min

�

�+1, �2+3

�

= p,

on Ai \ {Ri  b} = Ai \
"


[

s=0

Ei,s [

[

s=0

Fi,s

#

.

Thus (2.8) holds.
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By Lemma 2.7, there exists ⌘
1

= ⌘
1

(�,) > 0 such that

P
 

m
\

i=1

�

Ai�1

\
�

Bi [ {Si > 0}
��

!

 P
 

m
\

i=1

(Ai�1

\ {Ri > 0})
!

 2e�⌘1m
+ P (R

0

> ⌘
1

m)

 2e�
1
2⌘1m

+ P
�

S
0

> 1

2

⌘
1

m
�

,

if m is sufficiently large. Hence the result follows by taking ⌘ = ⌘ (�,) := 1

2

⌘
1

.
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Chapter 3

Rapid mixing — part one

In this chapter, we will begin our proof of rapid mixing of the lengths process. This will
require defining profile-adjacency for a pair of lengths vectors, and then the profile coupling
of two lengths processes with profile-adjacent initial states. We will close this chapter with
an intermediate result which will be used in the proof of rapid mixing of the lengths process.
This chapter is based on Chapter 2 of [10] by Luczak and McDiarmid.

3.1 Profile-adjacency and distance

In this section, we will define profile-adjacency and then the profile-distance between a pair
of lengths vectors. We begin with the concept of profile-equivalence.

Definition 3.1. We will say that x, y 2 Qn are profile-equivalent, and write x ⌘ y, if x
and y have

1. the same number of queues of length i, for all i � 0, and

2. memory queues of the same length.

Informally, we will say that two lengths vectors are profile-adjacent if we take a pair of
profile-equivalent lengths vectors, and then either add/remove a single customer to/from
one of them.

Definition 3.2. We will say that x, y 2 Qn are profile-adjacent, and write x ⇠ y, if there
exists l � 0, called the level, such that

1. x and y have the same number of queues of length i for all i 6= l, l+1, and one lengths
vector (the lower lengths vector) has one more queue of length l and one fewer queue
of length l + 1 than the other (the higher lengths vector), and

2. either x and y have memory queues of the same length, or the lower (resp., higher)
lengths vector has memory queue of length l (resp., l + 1).

If x is the lower lengths vector, so that y is the upper lengths vector, then we will write
x � y.

Remark. As mentioned in Section 1.3, to show rapid mixing of the standard lengths process,
Luczak and McDiarmid [10] show that two standard lengths processes with certain pairs of
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initial states can be coupled to coalesce rapidly. A coupling only needs to be constructed
for pairs of initial states which constitute the edge set of a certain graph structure on the
state space Zn

+

. The graph structure used is the following natural one: say z, z0 2 Zn
+

are
adjacent if they differ in exactly one queue by one customer.

A natural way to adapt the notion of adjacency between z, z0 2 Zn
+

to a notion of
adjacency between x, y 2 Qn, is to also require that the memory queues in x and in y

coincide. Using this graph structure, and then following the arguments in [10], we are able
to show that two lengths processes can be coupled to rapidly have the same number of
queues of each length and to have memory queues of the same length, that is, to rapidly
become profile-equivalent. Although this does not show that the two lengths processes
coalesce rapidly, it does however allow us to prove several results about the equilibrium
number of queues of length i, for all i � 0, and the equilibrium memory queue length (in
Chapter 4 and Chapter 5). These results will play a role in our proof of rapid mixing of
the lengths process.

Hence, it suffices for our notion of adjacency to only concern queue lengths. That is,
the first condition does not require that the differing customer to come from the same
queue, and the second condition does not require that the memory queues coincide.

A final remark is that it is possible to carry out similar analysis using an abstract
process which only contains queue length information: the lengths of the n queues and the
length of the memory queue. This approach was taken by Luczak and Norris in [13].

For x, y 2 Qn, define a profile-path of length m between x and y to be a sequence

x = z
0

⇠ z
1

⇠ . . . ⇠ zm = y.

The following lemma says that profile-adjacency induces a connected structure on the state
space Qn.

Lemma 3.3. Let x, y 2 Qn. Then there exists a profile-path x = z
0

⇠ z
1

⇠ . . . ⇠ zm = y

of length at most kxk
1

+ kyk
1

such that

kzik
1

 max (kxk
1

, kyk
1

) , kzik1  max (kxk1 , kyk1) ,

for all 0  i  m.

Proof. For 1  i  n, let 0i := ((0, . . . , 0) , i) denote the empty state with memory queue
i. By successively removing customers from x, we obtain a profile-path

x = z
0

⇠ z
1

⇠ . . . ⇠ zk = 0⇠

of length k := kxk
1

from x to 0⇠. The required inequalities clearly hold for all 0  i  k.
Similarly, we obtain a path of length kyk

1

from y to 0✓. Now note that the empty states
are all profile-equivalent.

For x, y 2 Qn, let the profile-distance dp (x, y) denote the length of the shortest profile-
path between x and y. Then Lemma 3.3 gives

dp (x, y)  kxk
1

+ kyk
1

(3.1)
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for all x, y 2 Qn. Note that dp (x, y) = 0 if and only if x ⌘ y, and that dp (x, y) = 1 if and
only x ⇠ y.

3.2 The profile coupling

In this section, we will define the profile coupling of two lengths processes with profile-
adjacent initial states. We will then show that under this coupling, at each event time, the
two processes either remain profile-adjacent or become profile-equivalent. We will only be
concerned with the processes until they become profile-equivalent.

Recall that we rank the queues in a set of queues by length (in ascending order), and
then if necessary, by queue index (also in ascending order).

Definition 3.4. The profile coupling is the following coupling of lengths processes X and
Y with profile-adjacent initial states. Let X and Y share the same arrival and potential
departure times. For an event time T , pair the queues in XT� and YT� as follows: pair
the memory queues together, rank the remaining queues (from 1 to n � 1) and then pair
these queues by rank.

1. If T is an arrival time, let the X-choices C = (C (1) , . . . , C (d)) be an ordered list of
d queues chosen uniformly at random with replacement, then define the Y-choices
C 0

= (C 0
(1) , . . . , C 0

(d)) by setting C 0
(i) to be the queue paired with C (i), for all

1  i  d.

2. If T is a potential departure time, let the X-selection be a queue in XT� selected
uniformly at random, then set the Y-selection to be the queue in YT� paired with
the X-selection.

Remark. It is easy to see that for an arrival time, the Y-choices is an ordered list of d

queues chosen uniformly at random with replacement, and that for a potential departure
time, the Y-selection is a queue in YT� selected uniformly at random. Thus, Y does have
the distribution of a lengths process. This coupling is based on the coupling introduced by
Luczak and McDiarmid [10] used to couple two standard lengths processes together.

Let us look at the first event time T > 0 and the initial states of X and Y in more
detail. Suppose that XT� = x � y = YT� at level l. We claim that the pairing procedure
described in Definition 3.4 will pair queues of equal length together, with the exception of
one pair consisting of a queue of length l in x and a queue of length l + 1 in y; we will
call these the x- and y-imbalances, respectively. To see the claim, there are two cases to
consider.

1. If x and y have memory queues of the same length, then pairing the memory queues
leaves x and y with the same number of queues of length i for all i 6= l, l + 1, and x

with one more queue of length l and one fewer queue of length l + 1 than y. These
queues are to be ranked from 1 to n� 1, and as we pair the queues of rank 1, 2, . . .

together, we will be pairing queues of equal length 0, 1, . . . , l � 1 together, if there
are any. Eventually, the x- and y-imbalances are created and the remaining pairs are
queues of equal length.
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2. If x and y have memory queues of length l and l + 1, respectively, then pairing the
memory queues immediately creates the pair of imbalances. Clearly, the remaining
n� 1 pairs are queues of equal length.

Now we will show that under this coupling, at each event time, the two processes either
remain profile-adjacent or become profile-equivalent. Moreover, we will determine the
precise conditions for each outcome, and give these conditions in terms of one process only.

Lemma 3.5. Let X and Y have initial states x, y 2 Qn, respectively, where x � y at level
l, and let X and Y be coupled by the profile coupling. Let T > 0 denote the first event
time, and let u denote the x-imbalance.

1. If T is an arrival time, let A denote the event that the X-candidates list contains
a unique shortest queue and let J denote the index of the queue joined by the X-
customer. Then XT � YT at level L := l + 1A1J=u.

2. If T is a potential departure time, let S denote the X-selection. If S = u and l = 0,
then XT ⌘ YT . Otherwise, we have XT � YT at level L := l � 1S=u.

Proof. Throughout this proof, recall that the x-imbalance is paired with the y-imbalance,
which has one more customer, and that every other queue in x is paired to a queue in y of
equal length. There are now two cases to consider.

Case 1 T is an arrival time.

Let K and K +� denote the lengths of the two shortest queues in the X-candidates list,
respectively, where K,� � 0; the argument is trivial if the X-candidates lists only consists
of one unique queue. There are now three cases to consider.

1. If A holds, then � � 1. It follows that the X-customer joins a queue of length K,
and that the memory queue in XT has length K + 1.

(a) If J = u, then the Y-candidates list contains queues of length K + 1 and
K +� � K + 1. It follows that the Y-customer joins a queue of length K + 1,
and that the memory queue in YT has length K + 1 or K + 2.

(b) If J 6= u, then the Y-candidates list contains a queue of length K and a queue
of length at least K +� � K +1. It follows that the Y-customer joins a queue
of length K, and that the memory queue in YT has length K + 1.

2. If A holds, then � = 0. It follows that the X-customer joins a queue of length K,
and that the memory queue in XT has length K. At least one of these two shortest
queues in the X-candidates list is not the x-imbalance u, so the Y-candidates list
contains a queue of length K and a queue of length at least K. It follows that the
Y-customer joins a queue of length K, and that the memory queue in YT has length
K or K + 1.

In all cases, we have XT � YT . Moreover, the level increases in the first case, and stays
constant in the other two cases.

Case 2 T is a potential departure time.
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Recall that the X-selection is the x-imbalance if and only if the Y-selection is the y-
imbalance. Thus, XT � YT with the level decreasing if and only if this occurs. The only
exception is if l = 0, in which case X and Y become profile-equivalent.

We now extend the profile coupling of lengths processes with profile-adjacent initial
states to lengths processes with arbitrary initial states.

Definition 3.6. Let X and Y have arbitrary initial states x, y 2 Qn, respectively. Let
x = z

0

⇠ z
1

⇠ . . . ⇠ zm = y be a shortest profile-path of length m = dp (x, y) between x

and y. For all 0  i  m, let Zi be a lengths process with initial state zi, and let Zj�1 and
Z

j be coupled by the profile coupling, for all 1  j  m. This determines a coupling of X
and Y, which we will also call a profile coupling.

We then have the following result.

Lemma 3.7. Let X and Y have arbitrary initial states and be coupled by a profile coupling.
Then dp (Xt, Yt) is non-increasing over time.

Proof. Let m and the Z

i be as in Definition 3.6. Then

dp (Xt, Yt) 
m
X

i=1

dp
�

Zi�1

t , Zi
t

�

.

Each summand takes the value 1 before the first event time, and by Lemma 3.5, a value
in {0, 1} at the first event time. Hence dp (Xt, Yt) is non-increasing across the first event
time, and by induction, is non-increasing over all time.

3.3 Rapid profile-equivalence

In this section, we will show that in a profile coupling, under reasonable initial conditions,
the two lengths processes in fact rapidly become profile-equivalent.

We will begin by outlining our strategy for this section. Our strategy is to examine
the level between the two lengths processes in a profile coupling, so we make the following
definition.

Definition 3.8. Let X and Y have initial states x, y 2 Qn, respectively, where x � y, and
let X and Y be coupled by the profile coupling. Let

T
co

:= inf {t � 0 : Xt ⌘ Yt} .

For 0  t < T
co

, say Xt � Yt at level Lt. The level walk is the random walk W = (Wt)t�0

on Z
+

defined by setting

Wt :=

8

<

:

Lt + 1, if 0  t < T
co

,

0, if t � T
co

.

We will show that T
co

is small by showing that with high probability W soon decreases
to 0. To do this, we will analyse W at some times (Ji)

1
i=0

to be defined later (these are
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not the jump times as defined in Section 1.4), that is, we will analyse the random walk
WJ = (WJ

i

)

1
i=0

.
We will apply Lemma 2.8 to S = WJ as follows. The background events Ai will denote

the event that X does not have too many customers for long periods of time; these events
will hold with high probability by Lemma 2.5 (2). It follows that any long queue should be
very unlikely to receive additional customers, and thus, its length should drift downwards
towards b. At that point, we can wait for a sequence of b consecutive departures from the
X-imbalance (whose index may change after each departure) so that S decreases to 0.

However, whenever a queue is saved as the memory queue, it experiences an upward
pressure on its length, since the next arriving customer will consider joining it. Thus, if the
X-imbalance is the memory queue, then W may not even drift downwards. Thus we will
keep track of when the X-imbalance is the memory queue: we will say that S is good at
step i if the X-imbalance at time Ji is not the memory queue, and that S is bad otherwise.

Now let us say a little about Lemma 2.8. For the first condition, (2.18), we must show
that S will either become good or increase, with probability bounded away from 0, when
it is bad. This requirement leads us to the following definition.

Definition 3.9. Let X and Y have profile-adjacent initial states and be coupled by the
profile coupling. Let T > 0 be an arrival time where XT� � YT� at level l. We will say
that a queue is taboo if it is a queue of length l, but is not the XT�-imbalance. We will say
that a queue is non-taboo if it is not taboo. We will say that T is helpful if the X-customer
selects exactly zero or at least two taboo queues, and unhelpful otherwise.

Now we will show that if S is bad, then given a helpful arrival time, it will either
become good or increase.

Lemma 3.10. Let X and Y have profile-adjacent initial states and be coupled by the
profile coupling. Let T > 0 be an arrival time where XT� � YT� at level l and where the
XT�-imbalance is the memory queue. Then

{T is helpful} ✓ {XT -imbalance is not the memory queue} [ {XT � YT at level l + 1} .

Moreover, we have equality if d = 1.

Proof. First note that since T is an arrival time, we do indeed have XT � YT , by Lemma
3.5 (1). Let K denote the length of the queue joined by the X-customer. Since the memory
queue is the XT�-imbalance, and its length is the level l, we have K  l. There are three
cases to consider.

1. K  l � 1. In this case, no queue of length K is the XT�-imbalance, so the X- and
Y-candidates lists both contain an equal number of shortest queues. It follows that
the memory queues in XT and YT have the same length, and thus are not the XT -
and YT -imbalances, respectively.

2. K = l with the X-customer selecting at least two taboo queues. In this case, the X-
and Y-candidates lists both contain at least two shortest queues. Again, it follows
that the memory queues in XT and YT have the same length, and thus are not the
XT - and YT -imbalances, respectively.
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3. K = l with the X-customer selecting no taboo queues. In this case, the X-candidates
list contains a unique shortest queue. By Lemma 3.5 (1), we have XT � YT at level
l + 1.

It remains to show that if d = 1, then we have equality. Thus, we suppose that T is
unhelpful, so that the X-customer selects a taboo queue. In this case, the X-candidates
list contains two queues of length l, whilst the Y-candidates list contains queues of length
l and l+ 1. It follows that the memory queues in XT and YT have different lengths (l and
l+1, respectively), and thus are the XT - and YT -imbalances, respectively. By Lemma 3.5
(1), we also have XT � YT at level l.

The following lemma says that if d � 2, n is sufficiently large and S is bad, then the
next event time has probability bounded away from 0 of being a helpful arrival.

Lemma 3.11. Let d � 2. Then there exists n⇤ � 1 such that the following holds. Let
n � n⇤, let X and Y have profile-adjacent initial states, and let X and Y be coupled
by the profile coupling. Let T > 0 be an event time where XT� � YT� and where the
XT�-imbalance is the memory queue. Then

P (T is a helpful arrival | FT�) �
�

�+ 1

1

4

.

Proof. If T is an unhelpful arrival, then the X-customer selects exactly one taboo queue.
Hence there exists a choice 1  R  d such that choice R is a taboo queue, choices
1, . . . , R � 1 are non-taboo queues, and choices R + 1, . . . , d are either non-taboo queues
or the same as choice R. Let M � 1 denote the number of non-taboo queues, then

P (T is an unhelpful arrival | FT�) =
�

�+ 1

d
X

r=1

✓

M

n

◆r�1 n�M

n

✓

M + 1

n

◆d�r

=

�

�+ 1

n�M

nd

h

(M + 1)

d �Md
i

,

since
Pd

r=1

xr�1yd�r
=

yd�xd

y�x for all distinct x, y 2 R. Expanding the binomial term and
using Lemma 1.5 (1) (with x = M and y = n) gives

P (T is an unhelpful arrival | FT�) 
�

�+ 1

n�M

nd

⇣

dMd�1

+ 2

dMd�2

⌘

 �

�+ 1



d (n�M)Md�1

nd
+

2

d

n

�

 �

�+ 1



1

2

+

2

d

n

�

 �

�+ 1

3

4

,

if n⇤ is sufficiently large. Hence the result follows.

Now we will show that in a profile coupling, under reasonable initial conditions, the
two lengths processes rapidly become profile-equivalent.

Lemma 3.12. Let c > �
1�� . Then there exists 0 < � = � (c) < 1 such that the following

holds. Let n � 1, let X and Y have initial states x, y 2 Qn, respectively, where x � y and
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kxk
1

 cn, and let X and Y be coupled by the profile coupling. Then

E [dp (Xt, Yt)] = E [1X
t

66⌘Y
t

]  e��t
+ 2e��n

for all t � 1

� kxk1.

Proof. Since the left-hand side is bounded by 1 and � > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large n.

Let W = (Wt)t�0

denote the level walk, and note that

T
co

= inf {t > 0 : Wt = 0} .

For 0  t < T
co

, say X is good at time t if the Xt-imbalance is not the memory queue, and
bad otherwise. If Ut denotes the Xt-imbalance, then let

Dt :=

8

<

:

{Ut 6= ⌅t} , if 0  t < T
co

,

⌦, if t � T
co

.
(3.2)

Thus, for 0  t < T
co

, Dt denotes the event that X is good at time t. Define the change
times J

0

:= 0 and

Ji := inf

�

t > Ji�1

: 1D
t

6= 1D
t� or Wt 6= Wt�

 

,

for all i � 1. That is, let Ji be the first time after Ji�1

when either X starts/stops being
good or when W changes value. The filtration (Gi)

1
i=0

we will be using for Lemma 2.8 will
be based on these change times: for i � 0, set Gi := FJ

i+1� to be the �-field generated by
all events before Ji+1

.
Now, for t � 0, let

Ct := {kXrk
1

 2cn for all 0  r < t} , m :=

⌃

1

4

t
⌥

.

Then

P (Xt 6⌘ Yt)  P ({Xt 6⌘ Yt} \ {Jm  t} \ Ct)

+ P ({Xt 6⌘ Yt} \ {Jm > t}) + P
�

Ct

�

, (3.3)

for all t � 0. The first term will be where we apply Lemma 2.8, but let us bound the last
two terms first.

We claim that on {Xt 6⌘ Yt}, change times occur at rate at least 1 over [0, t]. To see
this claim, consider a time 0  r < t. As we have not yet become profile-equivalent, W is
non-zero, and a sufficient condition for W to decrease is if we have a potential departure
where the X-selection is the X-imbalance. Such events occur at rate n · 1

n = 1. Hence
the number of change times Nt := max {i � 0 : Ji  t} in [0, t] stochastically dominates a
Po (t) random variable on the event {Xt 6⌘ Yt}. By Lemma 1.4 (with " = 1

2

), we have

P ({Xt 6⌘ Yt} \ {Jm > t})  P (Nt < m)  P
�

Po (t)  1

2

t
�

 2e�
1
12 t, (3.4)
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for all t � 2. To see the second inequality, note that m =

⌃

1

4

t
⌥

 1

2

t.
By Lemma 2.5, there exists ⌘

1

= ⌘
1

(c) > 0 such that

P
�

Ct

�

 2e�⌘1n, (3.5)

for all 0  t  e⌘1n.
Hence, by (3.3)-(3.5), we have

P (Xt 6⌘ Yt)  P ({Xt 6⌘ Yt} \ {Jm  t} \ Ct) + 2e�
1
12 t

+ 2e�⌘1n, (3.6)

for all 2  t  e⌘1n. Having bounded the last two terms in (3.3) to obtain (3.6), we now
turn our attention to the first term, which is where we will apply Lemma 2.8. We have
already defined the filtration (Gi)

1
i=0

for this lemma by setting each Gi := FJ
i+1�. The

background events are
Ai := CJ

i+1 ,

for i � 0. For i � 0, let

Bi := {1D
r

= 1 for all Ji  r < Ji+1

}

denote the event that X is good at all times Ji  r < Ji+1

. Note that Ai and Bi are both
Gi-measurable, since they depend only on the history of the process until but excluding
Ji+1

. The random walk is S = WJ, that is,

Si := WJ
i

,

where i � 0. Note that each increment Zi := Si � Si�1

= WJ
i

�WJ
i�1 is Gi-measurable

and {�1, 0, 1}-valued. Let the initial value be S
0

= s � 1. We will say that S = WJ is
good at step i if X is good at time Ji, and that S is bad otherwise. Thus, S is good at i if
and only if DJ

i

holds, and because 1D is constant between change times, it follows that S
is good at step i if and only if Bi holds.

Having defined the sequences of events and the random walk, we may now write (3.6)
as

P (Xt 6⌘ Yt)  P ({Xt 6⌘ Yt} \ {Jm  t} \ Ct) + 2e�
1
12 t

+ 2e�⌘1n

 P
 

m
\

i=1

(Ai�1

\ {Si > 0})
!

+ 2e�
1
12 t

+ 2e�⌘1n

 P
 

m
\

i=1

�

Ai�1

\
�

Bi [ {Si > 0}
��

!

+ 2e�
1
12 t

+ 2e�⌘1n, (3.7)

for all 2  t  e⌘1n.
Next we define some constants. Let

� := min

✓

�

�+ 1

1

4

,
�

�d+ 1

,
1� �

�d+ 1

◆

.

Define 0 < ",! < 1 as follows. If d = 1, then let " := 1, else let " be sufficiently small so
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that
d"d�1  1

�d+ 1

.

Let ! be sufficiently small so that

1� !d

1 + !d
� 1� 1

2

�.

Finally, let

 =  (c) :=

⇠

2c

min (",!)

⇡

+ 1.

Now we will show that the hypotheses of Lemma 2.8 hold with the filtration (Gi)
1
i=0

, the
sequences of events (Ai)

1
i=0

and (Bi)
1
i=0

, the random walk S = (Si)
1
i=0

, and the constants
� and , all as defined above. There are now four conditions to verify: (2.18)-(2.21).

1. For condition (2.18), we are looking at

P (Bi+1

[ {Zi+1

= 1} | Gi) , on Ai \Bi.

Now
Ai \Bi ✓ Fi,1 :=

�

UJ
i+1� = ⌅J

i+1�
 

✓
�

WJ
i+1� > 0

 

,

where the last inclusion holds by the definition in (3.2). We will work on the event
Fi,1, which says that immediately before Ji+1

, the level walk is non-zero and the
X-imbalance is the memory queue. Since Bi+1

[ {Zi+1

= 1} denotes the event that
the (i+ 1)

st change time is one where S becomes good or increases, we may write

P (Bi+1

[ {Zi+1

= 1} | Gi) �
p
1

q
1

, on Ai \Bi, (3.8)

where p
1

is a lower bound on the rate of events where X becomes good or W increases,
and q

1

is an upper bound on the rate of events where X becomes good or W changes
value (i.e., change times). There are now two cases to consider.

(a) Case 1: d � 2. We may take the lower bound p
1

:=

1

4

�n, if n is sufficiently
large. To see this, note that a sufficient condition for X to become good or for
W to increase is if we have a helpful arrival, by Lemma 3.10. Since d � 2,
helpful arrivals occur at rate at least (�+ 1)n · �

�+1

1

4

=

1

4

�n, if n is sufficiently
large; this holds by Lemma 3.11.

We may take the upper bound q
1

= (�+ 1)n, the rate of all events.

Then (3.8) gives

P (Bi+1

[ {Zi+1

= 1} | Gi) �
1

4

�n

(�+ 1)n
� �, on Ai \Bi,

and (2.18) holds, if n is sufficiently large.

(b) Case 2: d = 1. Recall that, in this case, an arrival is helpful if and only if
the X-customer selects a non-taboo queue; let Mi � 1 denote the number of
non-taboo queues immediately before Ji+1

.
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We may take the lower bound p
1

:= �Mi. To see this, note that a sufficient
condition for X to become good is if we have a helpful arrival, by Lemma 3.10.
Such events occur at rate �n · M

i

n = �Mi.

We may take the upper bound q
1

:= �Mi+1. To see this, note that a necessary
for X to become good or for W to increase is if we have a helpful arrival, by
the equality in Lemma 3.10. Such events occur at rate �n · M

i

n = �Mi. A
necessary condition for W to decrease is if we have a potential departure where
the X-selection is the X-imbalance. Such events occur at rate n · 1

n = 1.

Then (3.8) gives

P (Bi+1

[ {Zi+1

= 1} | Gi) �
�Mi

�Mi + 1

� � · 1
� · 1 + 1

� �, on Ai \Bi,

and (2.18) holds.

2. For condition (2.19), we are looking at

P (Bi+1

\ {Zi+1

= �1} | Gi) , on Ai \Bi \ {Si > 0} .

Now
Ai \Bi \ {Si > 0} ✓ Fi,2 :=

�

WJ
i+1� > 0

 

\
�

UJ
i+1� 6= ⌅J

i+1�
 

.

We will work on the event Fi,2, which says that immediately before Ji+1

, the level
walk is non-zero and the X-imbalance is not the memory queue. Since Bi+1

\
{Zi+1

= �1} denotes the event that the (i+ 1)

st change time is one where S re-
mains good and decreases, we may write

P (Bi+1

\ {Zi+1

= �1} | Gi) �
p
2

q
2

, on Ai \Bi \ {Si > 0} , (3.9)

where p
2

is a lower bound on the rate of events where X remains good and W

decreases, and q
2

is an upper bound on the rate of events where X becomes bad or
W changes value (i.e., change times).

We may take the lower bound p
2

:= 1. To see this, note that a sufficient condition for
X to remain good and for W to decrease is if we have a potential departure where
the X-selection is the X-imbalance. Such events occur at rate n · 1

n = 1.

We may take the upper bound q
2

:= �d + 1. To see this, note that a necessary
condition for X to become bad or for W to increase is if we have an arrival where
the X-customer selects the X-imbalance at least once (since it is not the memory
queue). Such events occur at rate at most �n · d

n = �d. A necessary condition
for W to decrease is if we have a potential departure where the X-selection is the
X-imbalance. Such events occur at rate n · 1

n = 1.

Then (3.9) gives

P (Bi+1

\ {Zi+1

= �1} | Gi) �
1

�d+ 1

� �, on Ai \Bi \ {Si > 0} , (3.10)

and (2.19) holds.
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3. For condition (2.20), we are looking at

P (Zi+1

= 1 | Gi) , on Ai \Bi \ {Si > } .

Now

Ai \Bi \ {Si > } ✓ Fi,3 :=
�

WJ
i+1� > 

 

\
�

UJ
i+1� 6= ⌅J

i+1�
 

\ CJ
i+1 .

We will work on the event Fi,3, which says that immediately before Ji+1

, the level
walk is greater than , the X-imbalance is not the memory queue, and the number
of customers is at most 2cn. Hence the X-imbalance has length at least  (see
Definition 3.8), whence the proportion of queues at least as long as the X-imbalance
is at most

u
�

XJ
i+1�

�


�

�XJ
i+1�

�

�

1

n
 2c


 min (",!)  ".

Since {Zi+1

= 1} denotes the event that the (i+ 1)

st change time is one where S

increases, we may write

P (Zi+1

= 1 | Gi) 
p
3

q
3

, on Ai \Bi \ {Si > } , (3.11)

where p
3

is an upper bound on the rate of events where W increases, and q
3

is a
lower bound on the rate of events where X becomes bad or W changes value (i.e.,
change times). Note that if W increases at Ji+1

, then immediately before Ji+1

, the
X-imbalance cannot be longer than the memory queue. That is, we have

XJ
i+1�

�

UJ
i+1�

�

 XJ
i+1�

�

⌅J
i+1�

�

. (3.12)

There are now two cases to consider.

(a) Case 1: d � 2. We may take the upper bound p
3

:= �d"d�1. To see this, note
that a necessary condition for W to increase is if we have an arrival where the
X-customer selects only queues as long as the X-imbalance, and he/she selects
the X-imbalance at least once (since the X-imbalance is not the memory queue).
Such events occur at rate at most �n · d

n"
d�1

= �d"d�1.

We may take the lower bound q
3

:= 1. To see this, note that a sufficient
condition for W to decrease is if we have a potential departure where the X-
selection is the X-imbalance. Such events occur at rate n · 1

n = 1.

Then (3.11) gives

P (Zi+1

= 1 | Gi) 
�d"d�1

1

 �

�d+ 1

, on Ai \Bi \ {Si > } .
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The last inequality holds since d � 2. By (3.10), we have

P (Bi+1

\ {Zi+1

= �1} | Gi) �
1

�d+ 1

=

�

�d+ 1

+

1� �

�d+ 1

� P (Zi+1

= 1 | Fi) + �, on Ai \Bi \ {Si > } ,

and (2.20) holds.

(b) Case 2: d = 1. We may take the upper bound p
3

:= �d. To see this, note that
a necessary condition for W to increase is if we have an arrival time where the
X-customer selects the X-imbalance (since the X-imbalance is not the memory
queue). Such events occurs at rate �n · 1

n = �.
We may take the lower bound q

3

:= �d + 1. To see this, note that a sufficient
condition for W to increase is if we have an arrival where the X-customer selects
the X-imbalance (since the X-imbalance is neither the memory queue nor longer
than it, by (3.12)). Such events occur at rate �n · 1n = �d. A sufficient condition
for W to decrease is if we have a potential departure where the X-selection is
the X-imbalance. Such events occur at rate n · 1

n = 1.
Then (3.11) gives

P (Zi+1

= 1 | Gi) 
�

�d+ 1

, on Ai \Bi \ {Si > } ,

and (2.20) holds by the same calculation as in case 1.

4. For condition (2.21), we are looking at

P (Bi+1

\ {Zi+1

= 0} | Gi) , on Ai \Bi \ {Si > } .

Now

Ai \Bi \ {Si > } ✓ Fi,4 :=
�

WJ
i+1� > 

 

\
�

UJ
i+1� = ⌅J

i+1�
 

\ CJ
i+1 .

We will work on the event Fi,4, which says that immediately before Ji+1

, the level
walk is greater than , the X-imbalance is the memory queue, and the number
of customers is at most 2cn. Hence the X-imbalance has length at least  (see
Definition 3.8), and the proportion of queues of length at least � 1 is at most

u�1

�

XJ
i+1�

�


�

�XJ
i+1�

�

�

1

n (� 1)

 2c

� 1

 min (",!)  !.

Since Bi+1

\{Zi+1

= 0} denotes the event that the (i+ 1)

st change time is one where
S becomes good and does not change value, we may write

P (Bi+1

\ {Zi+1

= 0} | Gi) �
p
4

q
4

, on Ai \Bi \ {Si > } , (3.13)

where p
4

is a lower bound on the rate of events where X becomes good and W does
not change value, and q

4

is an upper bound on the rate of events where X becomes
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good or W changes value (i.e., change times).

We may take the lower bound p
4

:= �n
�

1� !d
�

. To see this, note that a sufficient
condition for X to become good and for W to not change value is if we have an arrival
where the X-customer selects a queue shorter than � 1 (since the X-imbalance has
length at least , the X- and Y-candidates lists will both contain an equal number
of shortest queues, and these are shorter than  � 1). Such events occur at rate at
least �n

�

1� !d
�

.

We may take the upper bound q
4

:= �n + 1. To see this, note that a necessary
condition for X to become good or for W to increase is if we have an arrival. Arrivals
occur at rate �n. A necessary condition for W to decrease is if we have a potential
departure where the X-selection is the X-imbalance. Such events occur at rate
n · 1

n = 1.

Then (3.13) gives

P (Bi+1

\ {Zi+1

= 0} | Fi) �
�n

�

1� !d
�

�n+ 1

� 1� !d

1 + !d
� 1� 1

2

�, on Ai \Bi \ {Si > } ,

if n is sufficiently large, and (2.21) holds.

Since we have shown that the hypotheses of Lemma 2.8 hold if n is sufficiently large, there
exists a constant ⌘

2

= ⌘
2

(c) > 0 such that (3.7) becomes

P (Xt 6⌘ Yt)  P
 

m
\

i=1

�

Ai�1

\
�

Bi [ {Si > 0}
��

!

+ 2e�
1
12 t

+ 2e�⌘1n

 2e�⌘2m
+ 1s>⌘2m + 2e�

1
12 t

+ 2e�⌘1n,

for all 2  t  e⌘1n, and if n is sufficiently large. We will also assume, without loss of
generality, that 0 < ⌘

2

< 1.
Let ⌘

3

= ⌘
3

(c) := 1

2

min

�

⌘
1

, ⌘
2

, 1

12

�

, then

P (Xt 6⌘ Yt)  4e�2⌘3t
+ 2e�2⌘3n  e�⌘3t

+ e�⌘3n,

for all 4

⌘3
s  t  e⌘3n, and if n is sufficiently large. To see the first inequality, note that

t � 4

⌘3
s � 2 (since s � 1) and that ⌘

2

m � ⌘
3

t
4

� s. To see the second inequality, note
that 4  e⌘3t (since t � 4

⌘3
s � ln 4

⌘3
). We can remove the upper bound on t as follows. If

t > e⌘3n, then
P (Xt 6⌘ Yt)  P (Xn 6⌘ Yn)  2e�⌘3n,

if n is sufficiently large so that e⌘3n > n. Let � = � (c) := 1

4

⌘
3

, then

P (Xt 6⌘ Yt)  e��t
+ 2e��n

for all t � 1

� kxk1, and if n is sufficiently large. To see this, note that 1

� kxk1 � 4

⌘3
s.

We then have the following result.
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Lemma 3.13. Let c > �
1�� , then let 0 < � = � (c) < 1 denote the constant given by

Lemma 3.12. Let n � 1, let X and Y have initial states x, y 2 Qn, respectively, where
max (kxk

1

, kyk
1

)  cn and max (kxk1 , kyk1)  �t, and let X and Y be coupled by a
profile coupling. Then

E [dp (Xt, Yt)]  2cn
⇣

e��t
+ 2e��n

⌘

for all t � 0.

Proof. Let m and Z

i be as in Definition 3.6. By Lemma 3.3, we have

m = dp (x, y)  kxk
1

+ kyk
1

 2cn,

and
kzik

1

 max (kxk
1

, kyk
1

)  cn, kzik1  max (kxk1 , kyk1)  �t,

for all 0  i  m. Hence

E [dp (Xt, Yt)] 
m
X

i=1

E
⇥

dp
�

Zi�1

t , Zi
t

�⇤


m
X

i=1

⇣

e��t
+ 2e��n

⌘

 2cn
⇣

e��t
+ 2e��n

⌘

,

and we are done.

The following is the main result of this section.

Theorem 3.14. Let c > �
1�� . Then there exists ⌘ = ⌘ (c) > 0 such that the following

holds. Let n � 1, let X have an arbitrary initial distribution, let Y be in equilibrium, and
let X and Y be coupled by a profile coupling. Then

P (Xt 6⌘ Yt)  ne�⌘t
+ 2e�⌘n

+ P (kX
0

k
1

> cn) + P (kX
0

k1 > ⌘t)

for all t � 0.

Remark. This proof is essentially the same as the proof of Theorem 1.1 in [10], the analogous
result for the standard supermarket model.

Proof. First we will define some constants. Let 0 < � = � (c) < 1 denote the constant
given by Lemma 3.13 (with the same c). Let ⌘

1

= ⌘
1

(c) > 0 and ⌘
2

> 0 denote the
constants given by Lemma 2.5 (with the same c). Let

⌘
3

= ⌘
3

(c) := 1

2

min (⌘
1

, ⌘
2

�,�) ,

t⇤ = t⇤ (c) :=
ln (2c+ 1)

⌘
3

.

Let n⇤ � 1 be sufficiently large so that

4cn+ 1  2e⌘3n, (3.14)

for all n � n⇤. Finally, let

⌘ = ⌘ (c) := min

✓

⌘
3

,
ln 2

n⇤

◆

,
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so that e⌘n
⇤  2.

Note that if t  t⇤ and n � n⇤, then ne�⌘t � ne�⌘3t � ne�⌘3t⇤ � 1. Similarly, if
n  n⇤, then 2e�⌘n � 2e�⌘n⇤ � 1. Hence, we will assume that t � t⇤ and n � n⇤, since
there is nothing to prove otherwise.

Let A, Bt, C and Dt denote the events that kX
0

k
1

 cn, kX
0

k1  �t, kY
0

k
1

 cn and
kY

0

k1  �t, respectively. Then

P (Xt 6⌘ Yt)  E [1X
t

6⌘Y
t

1A1B
t

1C1D
t

] + P
�

A [Bt [ C [Dt

�

 E [dp (Xt, Yt)1A1B
t

1C1D
t

] + P
�

A
�

+ P
�

Bt

�

+ P
�

C
�

+ P
�

Dt

�

. (3.15)

The constant 0 < � = � (c) < 1 given by Lemma 3.13 satisfies

E [dp (Xt, Yt)1A1B
t

1C1D
t

]  2cn
⇣

e��t
+ 2e��n

⌘

, (3.16)

and the constants ⌘
1

= ⌘
1

(c) > 0 and ⌘
2

> 0 given by Lemma 2.5 satisfy

P
�

C
�

 e�⌘1n, P
�

Dt

�

 ne�⌘2�t. (3.17)

Hence, by (3.15)-(3.17), we have

P (Xt 6⌘ Yt)  2cn
⇣

e��t
+ 2e��n

⌘

+ P
�

A
�

+ P (kX
0

k1 > �t) + e�⌘1n
+ ne�⌘2�t

 (2c+ 1)ne�2⌘3t
+ (4cn+ 1) e�2⌘3n

+ P (kX
0

k
1

> cn) + P (kX
0

k1 > 2⌘
3

t) .

Now 2c+ 1  e⌘3t (since t � t⇤) and 4cn+ 1  2e⌘3n (by (3.14)), so

P (Xt 6⌘ Yt)  ne�⌘3t
+ 2e�⌘3n

+ P (kX
0

k
1

> cn) + P (kX
0

k1 > ⌘
3

t) .

Hence the result follows if ⌘  ⌘
3

.

Before we close this chapter, we present a related result concerning the expected profile-
distance.

Lemma 3.15. Let c > �
1�� . Then there exists ⌘ = ⌘ (c) > 0 such that the following holds.

Let n � 1, let X have any initial distribution where E [kX
0

k
1

] < 1, let Y be in equilibrium,
let X

0

and Y
0

be independent, and let X and Y be coupled by a profile coupling. Then

E [dp (Xt, Yt)]  2cne�⌘t
+ 6cne�⌘n

+ 2E
h

kX
0

k
1

1kX0k1>cn

i

+ 2cnP (max (kX
0

k1 , kY
0

k1) > ⌘t)

for all t � 0.

Proof. Let 0 < � = � (c) < 1 denote the constant given by Lemma 3.13 (with the same c).
Let A, Bt, C and Dt denote the events that kX

0

k
1

 cn, kX
0

k1  �t, kY
0

k
1

 cn and
kY

0

k1  �t, respectively. Then

E [dp (Xt, Yt)1A1B
t

1C1D
t

]  2cn
⇣

e��t
+ 2e��n

⌘

. (3.18)
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By Lemma 3.7 and (3.1), we have

E
⇥

dp (Xt, Yt)1A[B
t

[C[D
t

⇤

 E
⇥

dp (X0

, Y
0

)1A[B
t

[C[D
t

⇤

 E
⇥

(kX
0

k
1

+ kY
0

k
1

)

�

1A + 1A1C + 1A1C1B
t

[D
t

�⇤

.

By Lemma 2.5 (1), we have E [kY
0

k
1

]  �n
1��  cn, so

E
⇥

dp (Xt, Yt)1A[B
t

[C[D
t

⇤

 E
⇥

kX
0

k
1

1A

⇤

+ E
⇥

kY
0

k
1

1A

⇤

+ 2cnP
�

C
�

+ 2cnP
�

Bt [Dt

�

. (3.19)

Let ⌘
1

= ⌘
1

(c) > 0 denote the constant given by Lemma 2.5 (with the same c). Then
Lemma 2.5 (1) and the independence of X

0

and Y
0

give the inequalities

P
�

C
�

 e�⌘1n, E
⇥

kY
0

k
1

1A

⇤

 cnP
�

A
�

 E
⇥

kX
0

k
1

1A

⇤

. (3.20)

By (3.18)-(3.20), we have

E [dp (Xt, Yt)]  E [dp (Xt, Yt)1A1B
t

1C1D
t

] + E
⇥

dp (Xt, Yt)1A[B
t

[C[D
t

⇤

 2cn
⇣

e��t
+ 2e��n

⌘

+ 2E
⇥

kX
0

k
1

1A

⇤

+ 2cne�⌘1n
+ 2cnP

�

Bt [Dt

�

,

and the result follows if ⌘ := min (�, ⌘
1

).
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Chapter 4

Concentration of measure

In this chapter, we will show some concentration of measure results for lengths processes.
This chapter is based on Chapter 4 of [10] by Luczak and McDiarmid.

4.1 General concentration results

We will say that f : Qn ! R is Lipschitz if

|f (x)� f (y)|  dp (x, y) (4.1)

for all x, y 2 Qn. Note that it suffices to check that (4.1) holds for all profile-equivalent
and profile-adjacent pairs. To see this, suppose we are given x, y 2 Qn. Let x = z

0

⇠ z
1

⇠
. . . ⇠ zm = y be a shortest profile-path between x and y. If m = 0, so that x and y are
profile-equivalent, then (4.1) is already assumed to hold. Else if m � 1, then

|f (x)� f (y)| 
m
X

i=1

|f (zi�1

)� f (zi)| 
m
X

i=1

dp (zi�1

, zi) = m = dp (x, y) .

First we will need the following result by McDiarmid [15] which concerns the concen-
tration of functions of random variables which satisfy the bounded differences inequality.

Theorem 4.1 ([15], Theorem 3.1). Let W = (W
1

, . . . ,Wn) be a vector of independent
random variables where Wi : ⌦i ! R for all 1  i  n. Let f :

Qn
i=1

⌦i ! R, and suppose
that for all 1  i  n, there exists ci > 0 such that

�

�f (w)� f
�

w

0��
�  ci

for all w,w0 2
Qn

i=1

⌦i differing only in the ith coordinate. Then

P (|f (W)� E [f (W)]| � w)  2 exp

✓

� 2w2

Pn
i=1

c2i

◆

for all w � 0.

Now we will show a general concentration of measure result for Lipschitz functions of
lengths processes.
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Lemma 4.2. There exists ⌘ > 0 such that the following holds. Let n � 1, let X have any
initial distribution, and let f : Qn ! R be Lipschitz. Then

P (|f (Xt)� E [f (Xt)]| � y)  nt exp

✓

� ⌘y2

nt+ y

◆

for all t, y > 0.

Remark. This proof is essentially the same as the proof of Lemma 4.3 in [10], the analogous
result for the standard supermarket model. The main difference is that here we deal with
arrival and potential departure times together as event times, instead of dealing with them
separately.

Proof. Since we may consider the translation f (Xt) � f (X
0

) instead of f (Xt), we will
assume that f (X

0

) = 0. For t � 0, let Nt := max {i � 0 : Ti  t} denote the number of
event times in [0, t]. Then

|f (Xt)| = |f (Xt)� 0|  dp (Xt, X0

)  Nt. (4.2)

Now we will define some constants. Let

�0 := �+ 1, � := 4e�0,

then let
⇢ := max

⇣p
96e2�0,

p
7�
⌘

, ⌘ := min

✓

1

⇢2
,

1

48e2�0
,
ln 2

2

◆

.

Note that if y  ⇢
p
nt lnnt, then nt exp

⇣

� ⌘y2

nt+y

⌘

� nt exp
⇣

� y2

⇢2nt

⌘

� 1. Hence, we

will assume that y � ⇢
p
nt lnnt, since there is nothing to prove otherwise. There are now

two cases to consider.

Case 1 ⇢
p
nt lnnt  y  �nt.

First note that the bounds on y and the fact that ⇢ �
p
7� imply that

nt � ⇢
p
nt lnnt

�
�

p
7nt lnnt,

from which we deduce that nt � 21. For such values of nt, we have

4e�0nt

2

b2e�0ntc  1

nt
,

29

nt
 1

4

p
nt lnnt  1

4

y. (4.3)

In the latter inequality, we have used the fact that ⇢ � 1.
Let I = I (n, t, y) denote the set of integers k such that |k � �0nt|  y

4e =

y
�nt�

0nt.
Since Nt ⇠ Po (�0nt), Lemma 1.4 (with " = y

�nt  1) gives

P (Nt /2 I) = P
✓

�

�Nt � �0nt
�

� >
y

�nt
�0nt

◆

 2e�
1
3 "

2�0nt
= 2 exp

✓

� y2

48e2�0nt

◆

. (4.4)
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Applying the lower bound on y and the fact that ⇢ �
p
96e2�0 gives

P (Nt /2 I)  2 exp

✓

�⇢
2

lnnt

48e2�0

◆

 2

(nt)2
. (4.5)

Now, for any Z
+

-valued random variable W and any real k � 1, we have

E [W1W>k]  E
⇥

W1W>bkc
⇤

=

1
X

i=bkc+1

iP (W = i)  2k
1
X

i=bkc+1

P (W � i) .

Applying this inequality with W := Nt ⇠ Po (�0nt) and k := 2e�0nt, along with Lemma
1.4 (noting that i � bkc+ 1 � 2e�0nt) and (4.3), we have

E [Nt1N
t

>2e�0nt]  2k
1
X

i=bkc+1

1

2

i
= 2k · 1

2

bkc  1

nt
.

Hence, (4.2) and (4.5) give

E [|f (Xt)1N
t

/2I |]  E [Nt1N
t

/2I ]

= E
h

Nt

⇣

1N
t

<�0nt� y

4e
+ 1�0nt+ y

4e<N
t

2e�0nt

⌘i

+ E [Nt1N
t

>2e�0nt]

 2e�0ntP (Nt /2 I) + 1

nt

 2e�0nt
2

(nt)2
+

1

nt
 25

nt
. (4.6)

For t > 0 and k � 0, let

µt,k := E [f (Xt) | Nt = k] ,

so that (4.2) gives

min

k2I
µt,k  min

k2I
E [Nt | Nt = k] = min I  �0nt. (4.7)

Now write
µt := E [f (Xt)] =

X

k2I
µt,kP (Nt = k) + E [f (Xt)1N

t

/2I ] .

We may bound µt above using (4.6), so that

µt  max

k2I
µt,kP (Nt 2 I) + E [|f (Xt)|1N

t

/2I ]

 max

k2I
µt,k +

25

nt
, (4.8)
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and below using (4.5)-(4.7), so that

µt � min

k2I
µt,kP (Nt 2 I)� E [|f (Xt)|1N

t

/2I ]

� min

k2I
µt,k �min

k2I
µt,kP (Nt /2 I)� E [|f (Xt)|1N

t

/2I ]

� min

k2I
µt,k � �0nt

2

(nt)2
� 25

nt
� min

k2I
µt,k �

29

nt
. (4.9)

We will also require the following result, which holds by Lemma 3.7: for all k � 0, we have

|µt,k � µt,k+1

|  1.

Then since I is an interval of length at most y
4e  1

4

y, the bounds (4.8) and (4.9), along
with (4.3), give

|µt � µt,k|  1

4

y +
29

nt
 1

2

y, (4.10)

for all k 2 I.
For t > 0 and k � 0, let Pt,k denote the probability conditional on Nt = k. Then (4.10)

and (4.4) give

P (|f (Xt)� µt| � y) 
X

k2I
Pt,k (|f (Xt)� µt| � y)P (Nt = k) + P (Nt /2 I)


X

k2I
Pt,k

�

|f (Xt)� µt,k| � 1

2

y
�

P (Nt = k)

+ 2 exp

✓

� y2

48e2�0nt

◆

. (4.11)

Thus it remains to show that Pt,k

�

|f (Xt)� µt,k| � 1

2

y
�

is small, for k 2 I.
We will use Theorem 4.1 to do this. Recall the definition of C

a

= (Ca

i )
1
i=1

and
S

d

=

�

Sd

i

�1
i=1

in Section 2.1. Conditional on Nt = k, Xt depends only on the random
variables Ca

1

, . . . , Ca

k , S
d

1

, . . . , Sd

k , and none others (in fact, only on exactly k of the ran-
dom variables, since there are only k event times). Hence, f (Xt) also only depends on
Ca

1

, . . . , Ca

k , S
d

1

, . . . , Sd

k . As required by Theorem 4.1, these 2k random variables are inde-
pendent of each other. Next we must verify the bounded differences inequality. Let x and
y be realisations of lengths processes, with the same initial state and differing only in their
choices at one arrival time ti. Then they are identical until time ti, which is when the x-
and y-customers join possibly different queues. By Lemma 3.7 (and by taking a profile
coupling), we have

|f (xt)� f (yt)|  dp (xt, yt)  dp (xt
i

, yt
i

)  2.

We may argue similarly if x and y differ only in their selection at one potential departure
time. Hence, by Theorem 4.1 (with each ci = 2), we have

Pt,k

�

|f (Xt)� µt,k| � 1

2

y
�

 2 exp

 

�
2

�

1

2

y
�

2

P

2k
i=1

2

2

!

= 2 exp

✓

� y2

16k

◆
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for all k � 0. Substituting this into (4.11) then gives

P (|f (Xt)� µt| � y)  2

X

k2I
exp

✓

� y2

16k

◆

P (Nt = k) + 2 exp

✓

� y2

48e2�0nt

◆

 2 exp

 

� y2

16

�

�0nt+ y
4e

�

!

+ 2 exp

✓

� y2

48e2�0 (nt+ y)

◆

 nt exp

✓

� y2

48e2�0 (nt+ y)

◆

.

The result follows since ⌘  1

48e2�0 .

Case 2 y � �nt.

First note that

|f (Xt)� µt|  |f (Xt)|+ |µt|  Nt + E [Nt] = Nt + �0nt  Nt +
1

2

y.

Let ⌘
1

:=

1

2

ln 2. Since 1

2

y � 2e�0nt, Lemma 1.4 gives

P (|f (Xt)� µt| � y)  P
�

Nt � 1

2

y
�

 2

� 1
2y

= e�⌘1y  exp

✓

� ⌘
1

y2

nt+ y

◆

.

The result follows since ⌘  ⌘
1

.

We will now show concentration of measure for Lipschitz functions of lengths process
in equilibrium.

Lemma 4.3. There exists ⌘ > 0 such that the following holds. Let n � 1, let X have the
equilibrium distribution for the lengths process, and let f : Qn ! R be Lipschitz. Then

P (|f (X)� E [f (X)]| � y)  n2

exp

✓

� ⌘yp
n

◆

for all y > 0.

Remark. This proof is essentially the same as the proof of Lemma 4.1 in [10], the analogous
result for the standard supermarket model.

Proof. Let X be in equilibrium, and let 0

1

:= ((0, . . . , 0) , 1) denote the empty state with
memory queue 1. Since we may consider the translation f (Xt)� f (0

1

) instead of f (Xt),
we will assume that f (0

1

) = 0.
Now we will define some constants. Let ⌘

1

= ⌘
1

(c) > 0 and ⌘
2

> 0 denote the
constants given by Lemma 2.5 with c :=

2�
1�� . Let ⌘

3

= ⌘
3

(c) > 0 and ⌘
4

= ⌘
4

(c) > 0

denote the constants given by Theorem 3.14 and Lemma 3.15 with c := 2�
1�� , respectively.

Let ⌘
5

= ⌘
5

(c) := min (⌘
2

, ⌘
2

⌘
4

) > 0. Let ⌘
6

> 0 denote the constant given by Lemma 4.2.
Let

� := max

✓

8�

1� �
,
1

2

◆

, ⌘
7

= ⌘
7

(c) := 1

2

min

✓

⌘
3

,
⌘
3

�
, ⌘

5

,
⌘
5

�
,
⌘
6

6

◆

.

Let n⇤ � 1 be sufficiently large so that if n � 1 satisfies n
lnn � n⇤, then

10c

n
 3

2⌘
7

p
n lnn, � + 3  n3. (4.12)
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Let
⇢ = ⇢ (c) := max

✓

3

⌘
7

,�n⇤
◆

, ⌘ = ⌘ (c) := min

✓

1

⇢
, ⌘

1

, ⌘
7

◆

.

Note that if y  ⇢
p
n lnn, then n2

exp

⇣

� ⌘yp
n

⌘

� n exp

⇣

� y
⇢
p
n

⌘

� 1. Hence, we will
assume that y � ⇢

p
n lnn, since there is nothing to prove otherwise. There are now two

cases to consider.

Case 1 ⇢
p
n lnn  y  �n3/2.

Let t := yp
n
. Then the bounds on y imply that

max

✓

3

⌘
7

,�n⇤
◆

lnn = ⇢ lnn  t =
yp
n
 �n. (4.13)

This implies that n
lnn � n⇤, whence (4.12) holds, and that

n3  e⌘7t. (4.14)

Let Y be started from 0

1

, and let X and Y be coupled by a profile coupling. First
note that

|f (Xt)� f (Yt)|  dp (Xt, Yt) ,

whence the constant ⌘
4

> 0 (given by Lemma 3.15) satisfies

|E [f (Xt)� f (Yt)]|  E [dp (Xt, Yt)]  2cn
�

e�⌘4t
+ 3e�⌘4n

+ P (kX
0

k1 > ⌘
4

t)
�

.

Hence, the constant ⌘
2

> 0 (given by Lemma 2.5) satisfies

|E [f (Xt)� f (Yt)]|  2cn
�

e�⌘4t
+ 3e�⌘4n

+ ne�⌘2⌘4t
�

 2cn2

�

2e�⌘5t
+ 3e�⌘5n

�

.

Then, by (4.13), (4.14) and then (4.12), we have

|E [f (Xt)� f (Yt)]|  2cn2

⇣

2e�⌘5t
+ 3e�⌘5t/�

⌘

 10cn2e�⌘7t

 10c

n
 3

2⌘
7

p
n lnn  1

2

⇢
p
n lnn  1

2

y.

By the triangle inequality, we have

|f (Xt)� E [f (Xt)]|  |f (Xt)� f (Yt)|+ |f (Yt)� E [f (Yt)]|+ |E [f (Yt)]� E [f (Xt)]|

 dp (Xt, Yt) + |f (Yt)� E [f (Yt)]|+ 1

2

y.

It follows that the constants ⌘
3

, ⌘
6

> 0 (given by Theorem 3.14 and Lemma 4.2, respect-
ively) satisfy

P (|f (Xt)� E [f (Xt)]| � y)  P (dp (Xt, Yt) > 0) + P
�

|f (Yt)� E [f (Yt)]| � 1

2

y
�

 ne�⌘3t
+ 2e�⌘3n

+ nt exp

 

�
⌘
6

�

1

2

y
�

2

nt+ 1

2

y

!

.

54



By (4.13) and the fact that y = t
p
n, we have

P (|f (Xt)� E [f (Xt)]| � y)  ne�⌘3t
+ 2e�⌘3t/�

+ �n2

exp

✓

� ⌘
6

nt

2 (2n+

p
n)

◆

 n2

⇣

e�⌘3t
+ 2e�⌘3t/�

+ �e�
1
6⌘6t

⌘

 (� + 3)n2e�2⌘7t  n2e�⌘7t.

The last inequality holds by (4.12) and (4.14). The result follows since ⌘  ⌘
5

.

Case 2 y > �n3/2.

First note that, by Lemma 3.3, we have

|f (X)| = |f (X)� 0|  dp (X,0
1

)  kXk
1

,

whence Lemma 2.5 gives

|E [f (X)]|  E [kXk
1

]  �n

1� �
<

4�n

1� �
 1

2

�n3/2 < 1

2

y, (4.15)

and thus
|f (X)� E [f (X)]| < kXk

1

+

1

2

y.

Since y > �n3/2 � 1

2

, we have y > 1

2

dye, and thus

P (|f (X)� E [f (X)]| � y)  P
�

kXk
1

> 1

2

y
�

 P
�

kXk
1

> 1

4

dye
�

.

Using (4.15), we see that 1

4

dye > 2�n
1�� , so the constant ⌘

1

= ⌘
1

(c) > 0 (given by Lemma
2.5) satisfies

P (|f (X)� E [f (X)]| � y)  e�⌘1dye  n2

exp

✓

�⌘1yp
n

◆

.

The result follows since ⌘  ⌘
1

.

4.2 Concentration of the tail functions

In this section, we will apply our concentration of measure results to the functions li (·),
which give the number of queues of length at least i; these were defined in (2.1). However,
we will express our results in terms of the tail functions

ui (x) :=
1

n li (x) ,

which give the proportion of queues in x 2 Qn of length at least i � 1.
Note that the li (·) are Lipschitz, for all i � 1, since (4.1) holds for all x0, y0 2 Qn

such that x0 ⌘ y0 or x0 ⇠ y0. The first lemma bounds the equilibrium deviation of the tail
functions from their means, over long periods of time.

Lemma 4.4. Let z > 0. Then there exists ⌘ = ⌘ (z) > 0 such that the following holds. Let
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n � 1, and let X have the equilibrium distribution for the lengths process. Then

P
⇣

|ui (X)� E [ui (X)]| � z for some 0  t  e⌘
p
n
⌘

 2e�⌘
p
n

for all i � 1.

Proof. Since the left-hand side is bounded by 1 and ⌘ > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large n.

Let X be in equilibrium. For i � 1, t � 0 and h > 0, let

Ei,t,h := {|ui (Xt)� E [ui (Xt)]| � h} .

Then Ei,t,z/2 holds with high probability at each individual time, since Lemma 4.3 (with
li (·) and y :=

1

2

zn) gives ⌘
1

> 0 such that

P
�

Ei,t,z/2

�

= P
�

|li (Xt)� E [li (Xt)]| � 1

2

zn
�

 n2e�
1
2⌘1z

p
n  e�

1
4⌘1z

p
n, (4.16)

for all i � 1, t � 0 and z > 0, if n is sufficiently large.
Now we will extend this to the interval

h

0, e⌘
p
n
i

, where

⌘ = ⌘ (z) := 1

3

min

�

1

4

⌘
1

, 1

12

�

z.

Consider covering this with sub-intervals of length � = � (z) := z
4(�+1)

; clearly m = m (z) :=
l

e⌘
p

n

�

m

such sub-intervals will cover
h

0, e⌘
p
n
i

. For k � 0, let tk := k�, then

P

0

@

[

0te⌘
p
n

Ei,t,z

1

A 
m
X

k=0

P
�

Ei,t
k

,z/2

�

+mP
�

Po

�

1

4

zn
�

� 1

2

zn
�

.

To see the last term in this inequality, suppose that Ei,t
k

,z/2 holds for all end-points tk.
Then there exists a sub-interval Il := (tl�1

, tl) containing t. Since Ei,t
l�1,z/2 and Ei,t,z

hold, we deduce that over Il the proportion of queues of length at least i changes by at
least 1

2

z, and thus over Il, we have at least 1

2

zn events. However, the number of events
over Il, an interval of length �, is Poisson with mean (�+ 1) �n =

1

4

zn. By (4.16) and
Lemma 1.4 (with " = 1), we have

P

0

@

[

0te⌘
p
n

Ei,t,z

1

A  (m+ 1) e�
1
4⌘1z

p
n
+m

⇣

2e�
1
12 zn

⌘

.

Straightforward manipulation gives

P

0

@

[

0te⌘
p
n

Ei,t,z

1

A  2

 

e⌘
p
n

�
+ 2

!

e�3⌘
p
n  2 · 3e⌘

p
n

min (�, 1)
e�3⌘

p
n  2e�⌘

p
n,

if n is sufficiently large.

The second lemma uniformly bounds the deviation of the equilibrium tail functions
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from their means.

Lemma 4.5. Let z > 0. Then there exists ⌘ = ⌘ (z) > 0 such that the following holds. Let
n � 1, and let X have the equilibrium distribution for the lengths process. Then

P
✓

sup

i�1

|ui (X)� E [ui (X)]| � z ln2 np
n

◆

 2e�⌘ ln2 n.

Proof. Since the left-hand side is bounded by 1 and ⌘ > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large n.

Let c := 2�
1�� . First consider the case where the supremum of |ui (X)� µi| is attained

at some i � cn. By Lemma 2.5, there exists ⌘
1

= ⌘
1

(c) > 0 such that

P
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i�cn
|ui (X)� E [ui (X)]| � z ln2 np
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 P (kXk
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� cn) = e�⌘1n.

Next consider the case where the supremum is attained at some i  cn. By Lemma 4.3
(with li (·) and y := z

p
n ln

2 n), there exists ⌘
2

> 0 such that

P
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icn
|ui (X)� E [ui (X)]| � z ln2 np
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if n is sufficiently large. Hence the result follows by taking ⌘ = ⌘ (z) := min

�

⌘
1

, 1
2

⌘
2

z
�

.

The third lemma uniformly bounds the deviation of powers of the equilibrium tail
functions from the same powers of their means.

Lemma 4.6. Let r � 2 be an integer. Then there exists c = c (r) > 0 such that the
following holds. Let n � 1, and let X have the equilibrium distribution for the lengths
process. Then

sup

i�1

|E [ui (X)

r
]� E [ui (X)]

r|  c ln2 n

n
.

Proof. Since the left-hand side is bounded by 1 and c > 0 may be arbitrarily large, it
suffices to show the result for all sufficiently large n.

For brevity, let Ui := ui (X) and µi := E [Ui]. Let ⌘ > 0 denote the constant given by
Lemma 4.3, then let c

1

= c
1

(r) := r+2

⌘ . By Lemma 4.3 with y :=

c1 lnnp
n

, we have

P (|Ui � µi| � y) = P
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for all 1  s  r, if n is sufficiently large. This gives
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The result follows by taking c = c (r) := (r � 1) 2

r+1cr
1

.
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Chapter 5

Tail functions and memory queue

length

In this chapter, we will analyse the equilibrium behaviour of the tail functions ui (·) and
the indicators 1v(·)�i, where

v (x) := x (⇠)

is the length of the memory queue in x. This chapter is based on Chapter 5 of [10] by
Luczak and McDiarmid.

5.1 Balance equations

In this section, we will determine the balance equations for the tail functions and the
indicators 1v(·)�i.

Lemma 5.1. Let n � 1, let X be in equilibrium, and let G denote the generator operator
of X. For t � 0 and i � 0, let

Ut,i := ui (Xt) , Vt := v (Xt) , Pt,i =

d
X

s=1

U s�1

t,i (Ut,i�1

� Ut,i)
�

Ut,i +
1

n

�d�s
.

Then

GUt,i = �
⇣

Ud
t,i�1

1V
t

�i�1

� Ud
t,i1Vt

�i

⌘

� (Ut,i � Ut,i+1

) , (5.1)

G1V
t

�i = �n
h

�

Ut,i +
1

n

�d
1V

t

�i�1

�
⇣

1 +

�

Ut,i +
1

n

�d � Ud
t,i � Pt,i

⌘

1V
t

�i

i

� [1V
t

�i � 1V
t

�i+1

] , (5.2)

for all t � 0 and i � 1.

Proof. To show (5.1), we will show that

GUt,i = �n
h

1

n

⇣

Ud
t,i�1

� Ud
t,i

⌘

1V
t

�i +
1

nU
d
t,i�1

1V
t

=i�1

i

+ n
⇥

� 1

n (Ut,i � Ut,i+1

)

⇤

. (5.3)

Here, the terms in the two square brackets in (5.3) correspond to changes in Ut,i at arrival
and potential departure times, respectively. The factors �n and n correspond to the fact
that arrivals and potential departures occur at rate �n and n, respectively.
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At an arrival time, Ut,i can only change by +

1

n . This occurs if and only if the customer
joins a queue of length i � 1, which is if and only if the shortest queue in the candidates
list has length i � 1. If Vt > i � 1 immediately before the arrival, then Ut,i changes by
+

1

n if and only if the customer selects a shortest queue of length i� 1; this gives the term
1

n

⇣

Ud
t,i�1

� Ud
t,i

⌘

1V
t

�i. Else if Vt = i� 1 immediately before the arrival, then Ut,i changes
by +

1

n if and only if the customer selects only queues of length at least i� 1; this gives the
term 1

nU
d
t,i�1

1V
t

=i�1

.
At a potential departure time, Ut,i can only change by � 1

n . This occurs if and only if
the selection has length i; this gives the term � 1

n (Ut,i � Ut,i+1

). Thus, (5.3) holds.
Now we point out that the term

Pt,i =

d
X

s=1

U s�1

t,i (Ut,i�1

� Ut,i)
�

Ut,i +
1

n

�d�s

corresponds to the probability of an arriving customer selecting a unique shortest queue
of length i � 1. For if such a queue exists, then there exists 1  s  d such that choice s

is a queue of length i � 1, choices 1, . . . , s � 1 are queues of length at least i, and choices
s+ 1, . . . , d are queues of length at least i or the same as choice s.

To show (5.2), we will show that

G1V
t

�i = �n
h

�

Ut,i +
1

n

�d
1V

t

=i�1

�
⇣

1� Ud
t,i � Pt,i

⌘

1V
t

�i

i

+ n
⇥

� 1

n1Vt

=i

⇤

. (5.4)

Again, the terms in the two square brackets in (5.4) correspond to changes in 1V
t

�i at
arrival and potential departure times, respectively, and the factors �n and n correspond
to the fact that arrivals and potential departures occur at rate �n and n, respectively.

At an arrival time, 1V
t

�i can change by +1 or �1. Now 1V
t

�i changes by +1 if and
only if Vt = i � 1 immediately before the arrival, and if the customer selects only queues
of length at least i or the memory queue; this gives the term

�

Ut,i +
1

n

�d
1V

t

=i�1

. On the
other hand, 1V

t

�i changes by �1 if and only if Vt � i immediately before the arrival, and
if the customer selects some queue shorter than i, but he/she does not end up selecting a
unique shortest queue of length i� 1 (for the memory queue would then have length i at
time t); this gives the term �

⇣

1� Ud
t,i � Pt,i

⌘

1V
t

�i.
At a potential departure time, 1V

t

�i can only change by �1. This occurs if and only
if Vt = i immediately before the potential departure, and if the selection is the memory
queue; this gives the term � 1

n1Vt

=i. Thus, (5.4) holds.

5.2 Approximate recurrence relations

In this section, we will show that the equilibrium means of the tail and indicator functions
closely follow two families of recurrence relations. As mentioned in Section 1.3, these
relations also appear in [21, 13].

For the rest of this chapter, we will let X have the equilibrium distribution for the
lengths process, for some n � 1. In this case, for i � 0, let

Ui := ui (X) , V := v (X) ,
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and
µi := E [Ui] , ⌫i := E [1V�i] .

Thus the µi and ⌫i all depend on n.
We begin our analysis by taking expectations of the balance equations.

Lemma 5.2. There exists c
1

> 0 such that the following holds. Let n � 1, and let X have
the equilibrium distribution for the lengths process. Then

µi = �E
h

Ud
i�1

1V�i�1

i

 �i (5.5)

for all i � 1, and

sup

i�1

�

�

�

E
h
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� E
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1� d (Ui�1

� Ui)U
d�1

i

⌘

1V�i

i

�

�

�

 c
1

n
. (5.6)

Proof. Let X be in equilibrium, then let G denote the generator operator of X. It is known
(e.g., see [5], Chapters 1 and 4) that if f : Qn ! R is bounded, then

E [Gf (Xt)] =
dE [f (Xt)]

dt
.

This is 0 since X is in equilibrium. We will apply this to the bounded functions Ui and
1V�i. Thus, taking expectations in (5.1) and (5.2), and then rearranging, gives

µi � µi+1

= �
⇣

E
h

Ud
i�1

1V�i�1
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� E
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h⇣
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i � Pi

⌘

1V�i

i

, (5.8)

for all i � 1, where

Pi =

d
X

s=1

U s�1

i (Ui�1

� Ui)
�

Ui +
1

n

�d�s
.

Now we will show (5.5). By Lemma 2.5, we have
P1

k=1

µk =

1

nE [kXk
1

] < 1, and thus
limk!1 µk = 0. Hence, for each i � 1, we may sum (5.7) over {i, i+ 1, . . . } to obtain

µi = �E
h

Ud
i�1

1V�i�1

i

 �E [Ui�1

] = �µi�1

.

The inequality in (5.5) easily follows by induction.
Next we will show (5.6). First let

Qi :=
�

Ui +
1

n

�d � Ud
i =

d
X

k=1

✓

d

k

◆

Ud�k
i

nk
, Ri := Qi � Pi + d (Ui�1

� Ui)U
d�1

i ,

so we may decompose the terms in (5.6) as follows:

Ud
i 1V�i�1

=

�
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�d
1V�i�1

�Qi1V�i�1

,
⇣

1� d (Ui�1

� Ui)U
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i

⌘

1V�i = (1 +Qi � Pi)1V�i �Ri1V�i.

Taking a difference of these two decompositions, and then using (5.8) and the fact that
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�n
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Thus it suffices to show that Ri is also of order O
�

1

n

�

. Let us write

Pi = n (Ui�1

� Ui)Qi,

since
Pd
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yd�xd
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Hence the result follows by taking c
1

:=

1

� + 2

d+1.

Equations (5.5) and (5.6) contain terms of the form E
h

Ui1U
d�1

i2
1V�j

i

. Such terms
should be strongly concentrated around

E
h

µi1µ
d�1

i2
1V�j

i

= µi1µ
d�1

i2
E [1V�j ] = µi1µ

d�1

i2
⌫j ,

since the Ui are strongly concentrated around their means µi. This is expressed in the
following lemma.

Lemma 5.3. There exists c
2

> 0 such that the following holds. Let n � 1, and let X have
the equilibrium distribution for the lengths process. Then

sup

i1,...,i
d

,j�0

|E [Ui1 . . . Ui
d

1V�j ]� µi1 . . . µi
d

⌫j | 
c
2

ln
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.

Proof. Since the left-hand side is bounded by 1 and c
2

> 0 may be arbitrarily large, it
suffices to show the result for all sufficiently large n.

Let
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sup

i�1

|Ui � µi| 
ln
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n

�

.

By Lemma 4.5 with z = 1, there exists ⌘ > 0 such that

E
⇥

1A

⇤

= P
�

A
�

 2e�⌘ ln2 n  ln

2 np
n

,

if n is sufficiently large.
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Noting that the µi
k

 1 and ⌫j  1, we have the easy upper bound
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if n is sufficiently large.
For a lower bound, we will make use of the inequalities

Ui � max

✓

µi �
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Thus, by the same reasoning above,
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Combining our upper and lower bounds gives
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if n is sufficiently large. The result follows by taking c
2

:= d+ 3.

Lemma 5.2 and the concentration of measure results of Lemma 5.3 then imply the
following uniform bounds.
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Lemma 5.4. There exists c
3

> 0 such that the following holds. Let n � 1, and let X have
the equilibrium distribution for the lengths process. Then
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Hence the result follows by taking c
3

:= c
1

+ c
2

(2d+ 1).

These uniform bounds suggest that the µi and ⌫i satisfy

µi ⇡ �µd
i�1

⌫i�1

, (5.9)

µd
i ⌫i�1

⇡
⇣

1� d (µi�1

� µi)µ
d�1

i

⌘

⌫i, (5.10)

for all i � 1. We will analyse the two families of recurrence relations suggested by (5.9)
and (5.10) in the next section.

5.3 Solutions to the recurrence relations

In this section, we will analyse the two families of recurrence relations suggested in the
previous section. The calculations are in-depth for the sake of completeness, but are routine
and easy.

Equations (5.9) and (5.10) suggest that the means µi and ⌫i should be close to ai and
bi, as defined in (1.1). We remind the reader that a

0

= b
0

= 1, and that

ai := �adi�1

bi�1

, bi :=
adi bi�1

1� d (ai�1

� ai) a
d�1

i

,
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for all i � 1. For brevity, we will let

pi := d (ai�1

� ai) a
d�1

i .

It is clear that (µi)
1
i=0

and (⌫i)
1
i=0

are decreasing sequences in (0, 1]. This suggests that
(ai)

1
i=0

and (bi)
1
i=0

should also be decreasing sequences in (0, 1]. However, since b
0

= b
1

= 1

if d = 1, the claim for the latter sequence should only be for the indices i � 1.

Lemma 5.5. We have
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< ai  1, bi+2

< bi+1

 1,

for all i � 0.

Proof. First we claim that if 0 < ai  1, then
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=

adi+1

bi
1� pi+1

 bi, (5.11)

with strict inequality if 0 < ai < 1. To see this inequality, use Lemma 1.5 (2) (with
x = ai+1

and y = ai) to obtain pi+1

 adi � adi+1

 1� adi+1

, with the last inequality being
strict if 0 < ai < 1. Also note that if bi  1, then

ai+1

= �adi bi < ai. (5.12)

Now let us use induction to show that the result holds. For the base step of i = 0, the
first inequality easily holds since a

0

= 1 and a
1

= �. For the second inequality, there are
two cases to consider. If d = 1, then we simply calculate that

b
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2

= �2, b
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Else if d � 2, then (5.11) (with i = 0) first gives b
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= 1. Then, by (5.12) (with i = 1),
we have a
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< a
1

. Finally, by (5.11) again (with i = 1), we have b
2

< b
1

.
For the inductive step, suppose that

ai < ai�1

 1, bi+1

< bi  1,

for some i � 1. By (5.12) and the hypotheses ai, bi  1, we have ai+1

< ai  1. Then, by
(5.12) and the hypothesis bi+1

 1, we have bi+2

< bi+1

 1.

In particular, (ai)1i=0

is a decreasing sequence in (0, 1] with a
1

< 1.

Lemma 5.6. Let (ri)1i=0

be a decreasing sequence in (0, 1] with r
1

< 1. Then there exists
 > 1 such that

1
Y

i=1

1

1� d (ri�1

� ri) r
d�1

i

 .

Proof. By Lemma 1.5 (2), we have

qi := d (ri�1

� ri) r
d�1

i  rdi�1

� rdi 

8

<

:

rd
0

� rd
1

 1� rd
1

, if i = 1,

rdi�1

< rd
1

, if i � 2.
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Let ⇢ := max

�

rd
1

, 1� rd
1

�

, and note that 0 < ⇢ < 1. Then

1
Y

i=1

1

1� qi
=

1
Y

i=1

✓

1 +

qi
1� qi

◆


1
Y

i=1

✓

1 +

qi
1� ⇢

◆

< 1,

with the infinite product converging since
P1

i=1

qi 
P1

i=1

�

rdi�1

� rdi
�

= rd
0

< 1.

Now we will show that the ai and bi are asymptotically doubly exponential. We begin
with some heuristic calculations: we have

ai = �adi�1

i�1

Y

j=1

adj
1� pj

⇡ �adi�1

i�1

Y

j=1

adj ,

for all large i, since pj ⇡ 0 for large j. If we suppose that ai ⇡ !f
i for some 0 < ! < 1,

then

!f
i ⇡ �!df

i�1

i�1

Y

j=1

!df
j

= !ln�/ ln!!df
i�1

i�1

Y

j=1

!df
j .

Treating this as an equality, we have

fi =
ln�

ln!
+ d

0

@

i�2

X

j=1

fj + 2fi�1

1

A ,

which satisfies the recurrence relation

fi+2

� (2d+ 1) fi+1

+ dfi =
ln�

ln!
+ d

0

@

i�1

X

j=1

fj + fi + 2fi+1

1

A� (2d+ 1) fi+1

+ dfi

=

ln�

ln!
+ d

0

@

i�1

X

j=1

fj + 2fi

1

A� fi+1

= 0.

This has solutions
fi = c

1

↵i
+ c

2

↵̄i,

where c
1

, c
2

> 0, where ↵ is as defined in (1.3) and ↵̄ := d +

1

2

�
q

d2 + 1

4

. Since ↵ > ↵̄,
this suggests that the asymptotic behaviour of the solution is fi ⇡ c

1

↵i, as i ! 1. We
will need the following result by Luczak and Norris [13].

Lemma 5.7 ([13], Proposition 2.5). There exists c > 1 such that

a↵i
c

 ai+1

 ca↵i

for all i � 0.

Now we will show that (ai)
1
i=0

and (bi)
1
i=0

are asymptotically doubly exponential.

Lemma 5.8. There exists 0 < � < ⌧ < 1 such that

�↵
i  ai  ⌧↵

i

(5.13)
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for all i � 1, and
�d↵

i+1/(↵�1)  bi  ⌧d↵
i+1/(↵�1) (5.14)

for all i � 2.

Proof. Let c > 1 denote the constant given by Lemma 5.7. Then, by induction, we have

a↵
j

i�j

c1+↵+↵2
+···+↵j�1  ai  c1+↵+↵2

+···+↵j�1
a↵

j

i�j

for all i � 1 and 0  j  i. Since ↵ > 2d � 2, we have

1 + ↵+ ↵2

+ · · ·+ ↵j�1

=

↵j � 1

↵� 1

< ↵j

for all j � 1, and thus
⇣ai�j

c

⌘↵j

 ai  (cai�j)
↵j

(5.15)

for all i � 1 and 1  j  i.
By Lemma 5.5, we have 0 < ai, bj < 1 for all i � 1 and j � 2. Hence, there exist

0 < ⇢i,�j < 1 such that
⇢↵

i

i = ai, �d↵
j+1/(↵�1)

j = bj ,

for all i � 1 and j � 2. The same lemma also implies that there exists m � 1 such that

! := cam < 1

2

, pm  1

2

.

Let

� := min

�

1

c , ⇢1, ⇢2, . . . , ⇢m,�
2

, . . . ,�m
�

,

⌧ := max

⇣

(2!)1/↵
m

, ⇢
1

, ⇢
2

, . . . , ⇢m,�
2

, . . . ,�m
⌘

.

Note that 0 < � < ⌧ < 1, where we have used the fact that 2! < 1. Also note that

!↵i�m

< (2!)↵
i�m

 ⌧↵
i

. (5.16)

We will directly show that (5.13) holds for all i � 1. For the lower bound, use (5.15)
(with j = i � 1) and the fact that �  1

c to obtain

ai �
�

1

c

�↵i

� �↵
i

.

For the upper bound, if 1  i  m, then we simply have ai = ⇢↵
i

i  ⌧↵
i . Else if i > m,

then use (5.15) (with j = i�m � 1) and (5.16) to obtain

ai  (cam)

↵i�m

= !↵i�m

< ⌧↵
i

. (5.17)

Thus (5.13) holds for all i � 1.
Now let us use induction to show that (5.14) holds for all i � 2. For the base steps of
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2  i  m, we have �  �i  ⌧ and thus

�d↵
i+1/(↵�1)  bi = �d↵

i+1/(↵�1)

i  ⌧d↵
i+1/(↵�1).

For the inductive step, suppose that

�d↵
i/(↵�1)  bi�1

 ⌧d↵
i/(↵�1)

for some i > m. Then

adi bi�1

 bi =
adi bi�1

1� pi
 adi bi�1

1� pm+1

 2adi bi�1

.

Using the lower bound, (5.13) and the inductive hypothesis, we have

bi � �d↵
i

�d↵
i/(↵�1)

= �d↵
i+1/(↵�1).

Using the upper bound, (5.16), (5.17) and the inductive hypothesis, we have

bi  2!d↵i�m

⌧d↵
i/(↵�1)  (2!)d↵

i�m

⌧d↵
i/(↵�1)  ⌧d↵

i

⌧d↵
i/(↵�1)

= ⌧d↵
i+1/(↵�1).

This completes the inductive step.

5.4 Long-term behaviour

In this section, we will show that the µi and ⌫i are uniformly close to ai and bi, respectively,
for long periods of time.

Lemma 5.9. There exists c > 0 such that the following holds. Let n � 1, and let X have
the equilibrium distribution for the lengths process. Then

sup

i�1

|µi � ai| 
c ln2 np

n
, sup

i�1

|⌫i � bi| 
c ln2 np

n
.

Remark. This proof closely follows the argument in Chapter 5 of [10], where the analogous
result for the standard supermarket model is to be found. The main difference is that here
we are seeking a pair of bounds instead of just one, so each part of the original argument
is adapted into a pair of arguments here.

Proof. In this proof, we will do two pairs of inductions to bound |µi � ai| and |⌫i � bi|. The
first will establish bounds which depend on i, and then the second will establish bounds
which are independent of i.

Let 0 < ⌧ < 1 denote the constant given by Lemma 5.8, then let ! := max (�, ⌧). By
Lemma 5.2 and Lemma 5.8, we have

µi  �i  !i, bj  ⌧d↵
j+1/(↵�1)  !j , (5.18)

for all i � 1 and j � 2.
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Recall that for i � 1, we defined pi := d (ai�1

� ai) a
d�1

i ; also let qi := d (µi�1

� µi)µ
d�1

i .
By Lemma 5.2 and Lemma 5.5, (µi)

1
i=0

and (ai)
1
i=0

are both decreasing sequences in (0, 1],
with µ

1

= a
1

< 1. Hence, by Lemma 5.6, there exists  > 1 such that

1

1� pi
 ,

1

1� qi
 ,

for all i � 1. Let c
3

> 0 denote the constant given by Lemma 5.4, then let h := c
3

 and
m := 2d2.

We will also need the inequalities
�

�

�

µk
i � aki

�

�

�

 d |µi � ai| , (5.19)

|rs� tu|  s |r � t|+ t |s� u| , (5.20)

for all 1  k  d, i � 1 and r, s, t, u 2 R with s, t � 0.
Before we set up the induction, we will need two preliminary results. Our first prelim-

inary result is quick to derive. For i � 1, we may write

|µi � ai| =
�

�

�

µi � �adi�1

bi�1

�

�

�


�

�

�

µi � �µd
i�1

⌫i�1

�

�

�

+ �
�

�

�

µd
i�1

⌫i�1

� adi�1

bi�1

�

�

�

.

Using Lemma 5.4 and (5.20) (with r = adi�1

, s = bi�1

, t = µd
i�1

and u = ⌫i�1

), we have

|µi � ai| 
c
3

ln

2 np
n

+ bi�1

�

�

�

µd
i�1

� adi�1

�

�

�

+ µd
i�1

|⌫i�1

� bi�1

| .

Using (5.19) on the second term and the fact that µi�1

 1, we have

|µi � ai| 
h ln2 np

n
+ dbi�1

|µi�1

� ai�1

|+ µi�1

|⌫i�1

� bi�1

|

 h ln2 np
n

+m (bi�1

|µi�1

� ai�1

|+ µi�1

|⌫i�1

� bi�1

|) , (5.21)

for all i � 1.
Our second preliminary result takes longer to derive. For i � 1, we may write

|⌫i � bi| =
�

�

�

�

⌫i �
adi bi�1

1� pi

�

�

�

�


�

�

�

�

(1� qi) ⌫i � µd
i ⌫i�1

1� qi

�

�

�

�

+

�

�

�

�

µd
i ⌫i�1

� adi bi�1

1� qi

�

�

�

�

+

�

�

�

�

adi bi�1

1� qi
� adi bi�1

1� pi

�

�

�

�

 
�

�

�

µd
i ⌫i�1

� (1� qi) ⌫i
�

�

�

+ 
�

�

�

µd
i ⌫i�1

� adi bi�1

�

�

�

+ 2adi bi�1

|qi � pi| .

Let us bound the first term using Lemma 5.4, and note that

|qi � pi| = d
�

�

�

(µi�1

� µi)µ
d�1

i � (ai�1

� ai) a
d�1

i

�

�

�

 d
⇣

�

�

�

µd�1

i µi�1

� ad�1

i ai�1

�

�

�

+

�

�

�

µd
i � adi

�

�

�

⌘

.
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Hence

|⌫i � bi|  
c
3

ln

2 np
n

+ 
�

�

�

µd
i ⌫i�1

� adi bi�1

�

�

�

+ 2dadi bi�1

⇣

�

�

�

µd�1

i µi�1

� ad�1

i ai�1

�

�

�

+

�

�

�

µd
i � adi

�

�

�

⌘

.

Using (5.20) on the second term (with r = adi , s = bi�1

, t = µd
i and u = ⌫i�1

) and on the
first term in the brackets (with r = µd�1

i , s = µi�1

, t = ad�1

i and u = ai�1

), we have

|⌫i � bi| 
h ln2 np

n
+ 

⇣

bi�1

�

�

�

µd
i � adi

�

�

�

+ µd
i |⌫i�1

� bi�1

|
⌘

+ 2dadi bi�1

⇣

µi�1

�

�

�

µd�1

i � ad�1

i

�

�

�

+ ad�1

i |µi�1

� ai�1

|+
�

�

�

µd
i � adi

�

�

�

⌘

.

Using (5.19) on the three terms of the form
�

�µk
i � aki

�

�, we have

|⌫i � bi| 
h ln2 np

n
+ 

⇣

dbi�1

|µi � ai|+ µd
i |⌫i�1

� bi�1

|
⌘

+ 2dadi bi�1

⇣

dµi�1

|µi � ai|+ ad�1

i |µi�1

� ai�1

|+ d |µi � ai|
⌘

.

Finally, we use the fact that µi  µi�1

 1 and that ai  1, so

|⌫i � bi| 
h ln2 np

n
+m (bi�1

|µi�1

� ai�1

|+ µi�1

|⌫i�1

� bi�1

|+ 3bi�1

|µi � ai|) , (5.22)

for all i � 1.
The first pair of inductions will show that

|µi � ai|  h
2i�3

X

r=0

(5m)

r ln
2 np
n

, (5.23)

|⌫i � bi|  h
2i�2

X

r=0

(5m)

r ln
2 np
n

, (5.24)

for all i � 1.
The base steps will be 1  i  2. First, Lemma 5.2 gives µ

1

= �, and thus |µ
1

� a
1

| = 0.
By (5.22) (with i = 1), we have

|⌫
1

� b
1

|  h ln2 np
n

+m (|µ
0

� a
0

|+ |⌫
0

� b
0

|+ 3 |µ
1

� a
1

|) = h ln2 np
n

.

By (5.21) (with i = 2), we have

|µ
2

� a
2

|  h ln2 np
n

+m (|µ
1

� a
1

|+ |⌫
1

� b
1

|)  h (1 +m)

ln

2 np
n

.

Finally, by (5.22) (with i = 2), we have

|⌫
2

� b
2

|  h ln2 np
n

+m (|µ
1

� a
1

|+ |⌫
1

� b
1

|+ 3 |µ
2

� a
2

|)  h
�

1 + 4m+ 3m2

�

ln

2 np
n

.

Thus, (5.23) and (5.24) hold for 1  i  2.
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For the inductive step, suppose that

|µi�1

� ai�1

|  h
2i�5

X

r=0

(5m)

r ln
2 np
n

, |⌫i�1

� bi�1

|  h
2i�4

X

r=0

(5m)

r ln
2 np
n

,

for some i � 3. Since i� 1 � 2, we may use (5.18) to bound µi�1

 !i�1 and bi�1

 !i�1.
Hence, the preliminary results (5.21) and (5.22) give

|µi � ai| 
h ln2 np

n
+m!i�1

(|µi�1

� ai�1

|+ |⌫i�1

� bi�1

|) , (5.25)

|⌫i � bi| 
h ln2 np

n
+m!i�1

(|µi�1

� ai�1

|+ |⌫i�1

� bi�1

|+ 3 |µi � ai|) , (5.26)

for all i � 3.
Substituting the inductive hypotheses into (5.25) gives

|µi � ai| 
h ln2 np

n
+m

 

h
2i�5

X

r=0

(5m)

r ln
2 np
n

+ h
2i�4

X

r=0

(5m)

r ln
2 np
n

!

= h

 

1 + 2m
2i�5

X

r=0

(5m)

r
+m (5m)

2i�4

!

ln

2 np
n

 h

 

1 + 5m
2i�5

X

r=0

(5m)

r
+ 5m (5m)

2i�4

!

ln

2 np
n

= h
2i�3

X

r=0

(5m)

r ln
2 np
n

.

Substituting the inductive hypotheses and this result into (5.26) then gives

|⌫i � bi| 
h ln2 np

n
+m

 

h
2i�5

X

r=0

(5m)

r ln
2 np
n

+ h
2i�4

X

r=0

(5m)

r ln
2 np
n

+ 3h
2i�3

X

r=0

(5m)

r ln
2 np
n

!

= h

 

1 + 5m
2i�5

X

r=0

(5m)

r
+ 4m (5m)

2i�4

+ 3m (5m)

2i�3

!

ln

2 np
n

 h

 

1 + 5m
2i�5

X

r=0

(5m)

r
+ 5m (5m)

2i�4

+ 5m (5m)

2i�3

!

ln

2 np
n

= h
2i�2

X

r=0

(5m)

r ln
2 np
n

.

Thus, (5.23) and (5.24) hold for all i � 1.
Now let j � 1 be sufficiently large so that 5m!j�1  4

5

, then let

c := h
2j�2

X

r=0

(5m)

r .

The second pair of inductions will show that

|µi � ai| , |⌫i � bi| 
c ln2 np

n
, (5.27)

for all i � 1.
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The base steps will be 0  i  j, and these trivially hold, since (5.23) and (5.24) give

|µi � ai|  h
2i�3

X

r=0

(5m)

r ln
2 np
n

 c ln2 np
n

, |⌫i � bi|  h
2i�2

X

r=0

(5m)

r ln
2 np
n

 c ln2 np
n

,

for all i  j.
For the inductive step, suppose that

|µi�1

� ai�1

| , |⌫i�1

� bi�1

|  c ln2 np
n

,

for some i > j. Then

h+ 5cm!i�1  1

5

c+ 5cm!j�1  1

5

c+ 4

5

c = c,

since c � 5h.
Substituting the inductive hypotheses into (5.25) gives

|µi � ai| 
h ln2 np

n
+m!i�1

✓

c ln2 np
n

+

c ln2 np
n

◆

=

�

h+ 2cm!i�1

�

ln

2 np
n

 c ln2 np
n

.

Substituting the inductive hypotheses and this result into (5.26) then gives

|⌫i � bi| 
h ln2 np

n
+m!i�1

✓

c ln2 np
n

+

c ln2 np
n

+ 3

c ln2 np
n

◆

=

�

h+ 5cm!i�1

�

ln

2 np
n

 c ln2 np
n

.

Thus, (5.27) holds for all i � 1.

Finally, we will uniformly bound the equilibrium deviation of the tail functions from
the ai, over long periods of time.

Lemma 5.10. Let c > 0 denote the constant given by Lemma 5.9. For all z > c and
r > 0, there exists ⌘ = ⌘ (z, r) > 0 such that the following holds. Let n � 1, and let X be
in equilibrium. Then

P
✓

sup

i�1

|ui (Xt)� ai| �
z ln2 np

n
for some 0  t  nr

◆

 2e�⌘ ln2 n.

Proof. Since the left-hand side is bounded by 1 and ⌘ > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large n.

For t � 0 and h > 0, let

Et,h :=

⇢

sup

i�1

|ui (Xt)� µi| �
h ln2 np

n

�

.

Let y = y (z) := z � c > 0. Then Et,y/2 holds with high probability at each individual

72



time, since Lemma 4.5 (with z :=

1

2

y) gives ⌘
1

= ⌘
1

(z) > 0 such that

P
�

Et,y/2

�

 2e�⌘1 ln
2 n (5.28)

for all t � 0.
Now we will extend this to the interval [0, nr

]. Consider covering this with sub-intervals
of length

� = � (z) :=
y ln2 n

4 (�+ 1)

p
n
.

Clearly m = m (z, r) :=
⌃

nr

�

⌥

such sub-intervals will cover [0, nr
]. For k � 0, let tk := k�,

then

P

0

@

[

0tnr

Et,y

1

A 
m
X

k=0

P
�

Et
k

,y/2

�

+mP
�

Po

�

1

4

y
p
n ln

2 n
�

� 1

2

y
p
n ln

2 n
�

.

To see the last term in this inequality, suppose that Et
k

,y/2 holds for all end-points tk. Then
there exists a sub-interval Il := (tl�1

, tl) containing t. Since Et
k�1,y/2 and Et,y hold, we

deduce that over Il the proportion of queues of length at least i changes by at least y ln2 n
2

p
n

,
for some i � 1, and thus over Il, we have at least 1

2

y
p
n ln

2 n events. However, the number
of events over Il, an interval of length �, is Poisson with mean (�+ 1) �n =

1

4

y
p
n ln

2 n.
By (5.28) and Lemma 1.4 (with " = 1), we have

P

0

@

[

0tnr

Et,y

1

A  (m+ 1)

⇣

2e�⌘1 ln
2 n
⌘

+m
⇣

2e�
1
12y

p
n ln

2 n
⌘

.

Let ⌘ = ⌘ (z) := 1

2

min

�

⌘
1

, 1

12

y
�

, then straightforward manipulation gives

P

0

@

[

0tnr

Et,y

1

A  3

✓

nr

�
+ 2

◆

e�2⌘ ln2 n  3 · 3nr

min (�, 1)
e�2⌘ ln2 n  2e�⌘ ln2 n,

if n is sufficiently large. Note that how large n must be for the last inequality to hold will
also depend on r.
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Chapter 6

Rapid mixing — part two

In this chapter, we will complete our proof of rapid mixing of the lengths process. This
will require defining swap-adjacency for a pair of profile-equivalent lengths vectors, and
then the swap coupling of two lengths processes with swap-adjacent initial states. Like
Chapter 3, this chapter is based on Chapter 2 of [10] by Luczak and McDiarmid.

6.1 Swap-adjacency and distance

In this section, we will define swap-adjacency and then the swap-distance between a pair
of profile-equivalent lengths vectors. We begin with the concepts of being lengths-swapped
and memory-aligned.

Definition 6.1. We will say that profile-equivalent x, y 2 Qn are lengths-swapped at k

and l (the swapped queues), where k 6= l, if

1. queue i in x and queue i in y have the same length for all i 6= k, l, and

2. queue k (resp., l) in x and queue l (resp., k) in y have the same length.

If x and y are lengths-swapped at k and l, then we will say they are memory-aligned if the
memory queues in x and in y are

1. the same non-swapped queue (that is, queue i 6= k, l in both lengths vectors), or

2. different swapped queues (that is, queue k in one lengths vector and queue l in the
other).

We will say that a pair of queues are indistinguishable if the two queues have the same
length and neither is the memory queue, and distinguishable otherwise. Informally, we
will say that two lengths vectors are swap-adjacent if we take a pair of identical lengths
vectors, and then swap a pair of distinguishable queues.

Definition 6.2. We will say that profile-equivalent x, y 2 Qn are swap-adjacent at k and
l, and write x a y, if

1. x and y are lengths-swapped at k and l,

2. x and y are memory-aligned, and
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3. k and l are distinguishable.

For x, y 2 Qn such that x ⌘ y, define a swap-path of length m between x and y to be
a sequence

x = z
0

a z
1

a . . . a zm = y.

Note that, in any such path, we have zi ⌘ x ⌘ y for all 0  i  m. The following lemma
says that swap-adjacency induces a connected structure on each class of profile-equivalent
states, that is, each equivalence class in the quotient space Qn/⌘.

Lemma 6.3. Let x, y 2 Qn satisfy x ⌘ y. Then there exists a swap-path x = z
0

a z
1

a
. . . a zm = y of length at most min (2 kxk

1

+ 1, n� 1).

Proof. Since x and y each have at most kxk
1

+1 = kyk
1

+1 non-empty, non-memory queues,
they differ by a permutation on at most min (2 (kxk

1

+ 1) , n) indices. Since any permuta-
tion on k indices is a product of at most k � 1 transpositions, by successively transposing
pairs of queues in x, we obtain a swap-path of length at most min (2 (kxk

1

+ 1) , n) � 1

from x to y.

For x, y 2 Qn such that x ⌘ y, let the swap-distance ds (x, y) denote the length of the
shortest swap-path between x and y. Else, set ds (x, y) = 1. Then Lemma 6.3 gives

ds (x, y)  min (2 kxk
1

+ 1, n� 1) (6.1)

for all x, y 2 Qn such that x ⌘ y. Note that ds (x, y) = 0 if and only if x = y, and that
ds (x, y) = 1 if and only if x a y.

6.2 The swap coupling

In this section, we will define the swap coupling of two lengths processes with swap-adjacent
initial states. We will then show that under this coupling, at each event time, the two
processes either remain swap-adjacent or coalesce.

Definition 6.4. The swap coupling is the following coupling of lengths processes X and
Y with swap-adjacent initial states. Let X and Y share the same arrival and potential
departure times. For an event time T such that XT� a YT� at k and l, pair the queues in
XT� and YT� as follows: pair the opposite swapped queues together (that is, pair queue
k in XT� to queue l in YT�, and vice versa), and then pair the remaining non-swapped
queues by index.

1. If T is an arrival time, let the X-choices C = (C (1) , . . . , C (d)) be an ordered list of
d queues chosen uniformly at random with replacement, then define the Y-choices
C 0

= (C 0
(1) , . . . , C 0

(d)) by setting C 0
(i) to be the queue paired with C (i), for all

1  i  d.

2. If T is a potential departure time, let the X-selection be a queue in XT� selected
uniformly at random, then set the Y-selection to be the queue in YT� paired with
the X-selection.
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Remark. It is easy to see that for an arrival time, the Y-choices is an ordered list of d

queues chosen uniformly at random with replacement, and that for a potential departure
time, the Y-selection is a queue in YT� selected uniformly at random. Thus, Y does have
the distribution of a lengths process.

Now we will show that under this coupling, at each event time, the two processes either
remain swap-adjacent or coalesce.

Lemma 6.5. Let X and Y have initial states x, y 2 Qn, respectively, where x a y at k

and l, and let X and Y be coupled by the swap coupling. Let T > 0 denote the first event
time. Then either XT a YT at k and l, or XT = YT .

Proof. First note that it suffices to show that XT and YT are lengths-swapped at k and l

and are memory-aligned. To see this, note that in this case, it follows that XT a YT (resp.,
XT = YT ) if and only if k and l are distinguishable (resp., indistinguishable). There are
now two cases to consider.

Case 1 T is an arrival time.

Since x a y, for all 1  i  d+1, the ith queues in the X- and in the Y-candidates lists are
either the same non-swapped queue or different swapped queues. Thus, the first shortest
queues in the X- and Y-candidates lists (i.e., the X- and Y-choices with the corresponding
memory queues appended) occur in the same position. This implies that the X- and Y-
customers either join the same non-swapped queue or different swapped queues. In either
case, XT and YT are lengths swapped at k and l.

With the queue lengths updated, the first shortest queues in the X- and Y-candidates
lists still occurs in the same position. This implies that the memory queues in XT and in
YT are either the same non-swapped queue or different swapped queues. In either case,
XT are YT are memory-aligned.

Case 2 T is a potential departure time.

Note that the X- and Y-selections are either the same non-swapped queue or different
swapped queues.

We remark that coalescence can occur in many different ways. For example, if the
swapped queues have the same length m

1

and one is the memory queue, then an arrival
where the customer joins a non-swapped queue and a non-swapped queue becomes the
memory queue will give coalescence. Alternatively, if the swapped queues have lengths
m

2

and m
2

+ 1, respectively, and neither is the memory queue, then a departure from the
longer swapped queue will also give coalescence. As we shall see in the next section, we
will only be interested in the special cases where m

1

= 0 and m
2

= 0. That is, we will
only be interested in the case when both swapped queues are empty and neither swapped
queue is the memory queue.

We now extend the swap coupling of lengths processes with swap-adjacent initial states
to lengths processes with arbitrary profile-equivalent initial states.

Definition 6.6. Let X and Y have initial states x, y 2 Qn, respectively, where x ⌘ y.
Let x = z

0

a z
1

a . . . a zm = y be a shortest swap-path of length m = ds (x, y) between
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x and y. For all 0  i  m, let Z

i be a lengths process with initial state zi, and let Z

j�1

and Z

j be coupled by the swap coupling, for all 1  j  m (using the fact that zi ⌘ x ⌘ y

for all 0  i  m). This determines a coupling of X and Y, which we will also call a swap
coupling.

We then have the following result.

Lemma 6.7. Let X and Y have initial states x, y 2 Qn, respectively, where x ⌘ y, and
let X and Y be coupled by a swap coupling. Then ds (Xt, Yt) is non-increasing over time.

Proof. Let m and the Z

i be as in Definition 6.6. Then

ds (Xt, Yt) 
m
X

i=1

ds
�

Zi�1

t , Zi
t

�

.

Each summand takes the value 1 before the first event time, and by Lemma 6.5, a value
in {0, 1} at the first event time. Hence ds (Xt, Yt) is non-increasing across the first event,
and by induction, is non-increasing over all time.

6.3 Rapid coalescence

In this section, we will show that in a swap coupling, under reasonable initial conditions,
the two lengths processes in fact rapidly coalesce.

As in Section 3.3, we will begin by outlining our strategy for this section. Our strategy
is to examine the maximum length of a swapped queue in the two lengths processes in a
swap coupling, so we make the following definition.

Definition 6.8. Let X and Y have initial states x, y 2 Qn, respectively, where x a y at
k and l. The swap walk is the random walk W = (Wt)t�0

on Z
+

defined by setting

Wt := max (Xt (k) , Xt (l)) .

The coalescence time is

T
co

:= inf {t � 0 : Xt = Yt} ,

and let
T ⇤

:= inf {t � 0 : Xt (k) = Xt (l) = 0 and ⌅t 6= k, l} .

Since X and Y have coalesced by time t if Xt (k) = Xt (l) = 0 and ⌅t 6= k, l, we have

T
co

 T ⇤.

We will show that T
co

is small by showing that T ⇤ is small, and to do this, we will show
that with high probability there is soon a time when W is 0 and when neither swapped
queue in X is the memory queue. We will analyse W at some times (Ji)

1
i=0

to be defined
later (again, these are not the jump times as defined in Section 1.4), that is, we will analyse
the random walk WJ = (WJ

i

)

1
i=0

.
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We will apply Lemma 2.8 to S = WJ roughly the same way we applied it to the level
walk in Section 3.3, but with two main differences. The first difference is that here we will
keep track of when either swapped queue is the memory queue: we will say that S is good
at step i if neither swapped queue in X is the memory queue at time Ji, and that S is bad
otherwise. The other difference concerns the background events Ai, but we will discuss
this later.

Now let us say a little about Lemma 2.8. For the first condition, (2.18), we must show
that S will either become good or increase, with probability bounded away from 0, when
it is bad. For the fourth condition, (2.21), we must show that S will become good without
changing value, with probability close to 1, when it is bad and above . These requirements
lead us to the following definition.

Definition 6.9. Let X and Y have swap-adjacent initial states and be coupled by the
swap coupling. Let T > 0 be an arrival time where XT� a YT�. If v (XT�) � 1, then
we will say that T is aligning if the X-customer selects only non-swapped empty queues.
Else if v (XT�) = 0, then we will say that T is aligning if the X-customer selects only
non-swapped queues of length 1.

Now we will show that if S is good or bad, then given an aligning arrival time, it will
stay/become good. Moreover, it will not change value if it was non-zero immediately before
the aligning arrival.

Lemma 6.10. Let X and Y have swap-adjacent initial states and be coupled by the swap
coupling. Let T > 0 be an aligning arrival time where XT� a YT� at k and l. Then
⌅T 6= k, l. Moreover, the maximum length of a swapped queue Wt does not increase at time
T , if WT� � 1.

Proof. There are two cases to consider.

1. v (XT�) � 1. In this case, the X-candidates list contains d non-swapped, empty
queues and the memory queue. If d = 1, then the first queue in the X-candidates
list receives the customer and is saved as the memory queue. Else if d � 2, then the
first queue in the X-candidates list receives the customer, and the second is saved as
the memory.

2. v (XT�) = 0. In this case, the X-candidates list contains d non-swapped queues of
length 1 and the empty memory queue. Thus, the empty memory queue receives the
customer, and then the first queue in the X-candidates list is saved as the memory
queue.

In both cases, one of the d selections becomes the memory queue in XT . Since each
selection is a non-swapped queue, it follows that ⌅T 6= k, l. Moreover, since each selection
has length at most 1 at time T , it follows that the maximum length of a swapped queue
Wt cannot increase at time T , if WT� � 1.

Now we come to the second main difference: here, the background events Ai will include
the event that the proportion of queues in X of length at least k is close to

µk := E [uk (X)]
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for long periods of time, where X has the equilibrium distribution for the lengths process;
these events will hold with high probability by the concentration of measure results in
Section 4.2. We will only need this concentration for k = 1, 2 and for sufficiently large n,
so on the background events, the proportion of empty queues and queues of length 1 in X

will be bounded away from 0 for long periods of time.
Recall that the µk are close to the ak (by Lemma 5.9), and that the ak satisfy 0 < a

2

<

a
1

< 1 (by Lemma 5.5).

Definition 6.11. For t � 0, let

Et :=

2

\

i=1

�

|ui (Xu)� µi|  1

8

min (1� a
1

, a
1

� a
2

) for all 0  u < t
 

.

If Et holds, then we will say X has concentrated proportions over [0, t).

The following lemma says that if T > 0 is an event time, ET holds and n is sufficiently
large, then T has probability bounded away from 0 of being an aligning arrival.

Lemma 6.12. There exists n⇤ � 1 such that the following holds. Let n � n⇤, let X have
an arbitrary initial distribution, and let T > 0 be an event time. Then

P (T is an aligning arrival | FT�) �
�

�+ 1

⇥

1

2

min (1� a
1

, a
1

� a
2

)

⇤d on ET .

Proof. Let  :=

1

8

min (1� a
1

, a
1

� a
2

), and let c > 0 denote the constant given by Lemma
5.9. Then on the event ET , we have

|ui (Xt)� ai|  |ui (Xt)� µi|+ |µi � ai|   +

c ln2 np
n

 2 ,

for i = 1, 2 and all 0  t < T , and if n⇤ is sufficiently large. Hence the proportion of
non-swapped empty queues immediately before T is at least

1� u
1

(XT�)� 2

n � 1� (a
1

+ 2 )� 2

n � 3

4

(1� a
1

)� 2

n � 1

2

(1� a
1

) ,

and the proportion of non-swapped queues of length 1 immediately before T is at least

u
1

(XT�)� u
2

(XT�)� 2

n � (a
1

� 2 )� (a
2

+ 2 )� 2

n � 3

4

(a
1

� a
2

)� 2

n � 1

2

(a
1

� a
2

) ,

if n⇤ is sufficiently large. The result follows, for if v (XT�) � 1, then T is aligning if the
customer selects only non-swapped empty queues, and if v (XT�) = 0, then T is aligning
if the customer selects only non-swapped queues of length 1.

Now we will show that in a swap coupling, under reasonable initial conditions, the two
lengths processes rapidly coalesce.

Lemma 6.13. Let c > �
1�� . Then there exists 0 < � = � (c) < 1 such that the following

holds. Let n � 1, let X and Y have initial states x, y 2 Qn where x a y and kxk
1

 cn,
and let X and Y be coupled by the swap coupling. Then

E [ds (Xt, Yt)] = E [1X
t

6=Y
t

]  e��t
+ 2e��n

+ P
�

Et

�
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for all t � 1

� (kxk1 + 1).

Proof. Since the left-hand side is bounded by 1 and � > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large n.

Let W = (Wt)t�0

denote the swap walk. Thus, if k and l denote the swapped queues,
then

Wt = max (Xt (k) , Xt (l)) ,

For t � 0, say X is good at time t if neither swapped queue in Xt is the memory queue,
and bad otherwise. For t � 0, let

Dt := {⌅t 6= k, l}

denote the event that X is good at time t. Define the change times J
0

:= 0 and

Ji := inf

�

t > Ji�1

: 1D
t

6= 1D
t� or Wt 6= Wt�

 

,

for all i � 1. That is, let Ji be the first time after Ji�1

when either X starts/stops being
good or when W changes values. The filtration (Gi)

1
i=0

we will be using for Lemma 2.8
will be based on these change times: for i � 0, set Gi := FJ

i+1� to be the �-field generated
by all events before Ji+1

.
Now, for t � 0, let

Ct := {kXrk
1

 2cn for all 0  r < t} , m :=

⌃

1

4

t
⌥

.

Then

P (Xt 6= Yt)  P ({Xt 6= Yt} \ {Jm  t} \ Ct \ Et)

+ P ({Xt 6= Yt} \ {Jm > t} \ Et) + P
�

Ct

�

+ P
�

Et

�

, (6.2)

for all t � 0. The first term will be where we apply Lemma 2.8, but let us bound the two
middle terms first.

We claim that on {Xt 6= Yt} \ Et, change times occur at rate at least 1 over [0, t], if n
is sufficiently large. To see this claim, consider a time 0  r < t. There are now two cases
to consider.

1. If Dr holds, then neither swapped queue is the memory (that is, ⌅r 6= k, l). As
we have not yet coalesced, there is a unique longer swapped queue, and a sufficient
condition for W to decrease is if we have a potential departure where the X-selection
is the unique longer swapped queue. Such events occur at rate n · 1

n = 1.

2. If Dr holds (so X is bad immediately before r), then some swapped queue is the
memory (that is, ⌅r = k or l). A sufficient condition for X to become good is if we
have an aligning arrival, by Lemma 6.10. On Et, aligning arrivals occur at rate at
least (�+ 1)n · ��

�+1

� 1 over [0, t], if n is sufficiently large; this holds by Lemma 6.12.

Hence the number of change times Nt := max {i � 0 : Ji  t} in [0, t] stochastically dom-
inates a Po (t) random variable on the event {Xt 6= Yt} \ Et, if n is sufficiently large. By
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Lemma 1.4 (with " = 1

2

), we have

P ({Xt 66= Yt} \ {Jm > t} \ Et)  P (Nt < m)  P
�

Po (t)  1

2

t
�

 2e�
1
12 t, (6.3)

for all t � 2, and if n is sufficiently large. To see the second inequality, note that m =

⌃

1

4

t
⌥

 1

2

t.
By Lemma 2.5, there exists ⌘

1

= ⌘
1

(c) > 0 such that

P
�

Ct

�

 2e�⌘1n, (6.4)

for all 0  t  e⌘1n.
Hence, by (6.2)-(6.4), we have

P (Xt 66= Yt)  P ({Xt 6= Yt} \ {Jm  t} \ Ct \ Et) + 2e�
1
12 t

+ 2e�⌘1n
+ P

�

Et

�

, (6.5)

for all 2  t  e⌘1n, if n is sufficiently large. Having bounded the two middle terms in
(6.2) to obtain (6.5), we now turn our attention to the first term, which is where we will
apply Lemma 2.8. We already defined the filtration (Gi)

1
i=0

for this lemma by setting each
Gi to be FJ

i+1�. The background events are

Ai := {Xr 6= Yr for all Ji  r < Ji+1

} \ CJ
i+1 \ EJ

i+1 ,

for i � 0. For i � 0, let

Bi := {1D
r

= 1 for all Ji  r < Ji+1

}

denote the event that X is good at all times Ji  r < Ji+1

. Note that Ai and Bi are both
Gi-measurable, since they depend only on the history of the process until but excluding
Ji+1

. The random walk is S = WJ, that is,

Si := WJ
i

,

where i � 0. Note that each increment Zi := Si � Si�1

= WJ
i

�WJ
i�1 is Gi-measurable

and {�1, 0, 1}-valued. Let the initial value be S
0

= s � 0. We will say that S = WJ is
good at step i if X is good at time Ji, and that S is bad otherwise. Thus, S is good at i if
and only if DJ

i

holds, and because 1D is constant between change times, it follows that S
is good at step i if and only if Bi holds.

Having defined sequences of events and the random walk, we may now write (6.5) as

P (Xt 66= Yt)  P ({Xt 6= Yt} \ {Jm  t} \ Ct \ Et) + 2e�
1
12 t

+ 2e�⌘1n
+ P

�

Et

�

 P
 

m
\

i=1

�

Ai�1

\
�

Bi [ {Si > 0}
��

!

+ 2e�
1
12 t

+ 2e�⌘1n
+ P

�

Et

�

, (6.6)

for all 2  t  e⌘1n, and if n is sufficiently large.
Next we define some constants. Let

� := min

✓

��

�+ 1

,
1� �

2�d+ 1

◆

,
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where � is as defined above. Define 0 < ",! < 1 as follows. If d = 1, then let " := 1, else
let " be sufficiently small so that

d"d�1  1

2�d+ 1

.

Let ! be sufficiently small so that
2!d

�
 1

2

�.

Finally, let

 =  (c) :=

⇠

2c

min (",!)

⇡

.

Now we will show that the hypotheses of Lemma 2.8 hold with the filtration (Gi)
1
i=0

, the
sequences of events (Ai)

1
i=0

and (Bi)
1
i=0

, the random walk S = (Si)
1
i=0

, and the constants
� and , all as defined above. There are now four conditions to verify: (2.18)-(2.21).

1. For condition (2.18), we are looking at

P (Bi+1

[ {Zi+1

= 1} | Gi) , on Ai \Bi.

Now
Ai \Bi ✓ Ui,1 :=

�

⌅J
i+1� = k or l

 

\ EJ
i+1 .

We will work on the event Ui,1, which says that immediately before Ji+1

, some
swapped queue is the memory queue, and X has concentrated proportions over
[0, Ji+1

). Since Bi+1

[ {Zi+1

= 1} denotes the event that the (i+ 1)

st change time
is one where S becomes good or increases, we may write

P (Bi+1

[ {Zi+1

= 1} | Gi) �
p
1

q
1

, on Ai \Bi, (6.7)

where p
1

is a lower bound on the rate of events where X becomes good or W increases,
and q

1

is an upper bound on the rate of events where X becomes good or W changes
value (i.e., change times).

We may take the lower bound p
1

:= ��n, if n is sufficiently large. To see this, note
that a sufficient condition for X to become good is if we have an aligning arrival, by
Lemma 6.10. On Ui,1, aligning arrivals occur at rate at least (�+ 1)n · ��

�+1

= ��n

over [0, Ji+1

], if n is sufficiently large; this holds by Lemma 6.12.

We may take the upper bound q
1

= (�+ 1)n, the rate of all events.

Then (6.7) gives

P (Bi+1

[ {Zi+1

= 1} | Gi) �
��n

(�+ 1)n
� �, on Ai \Bi,

and (2.18) holds, if n is sufficiently large.

2. For condition (2.19), we are looking at

P (Bi+1

\ {Zi+1

= �1} | Gi) , Ai \Bi \ {Si > 0} .
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Now

Ai \Bi \ {Si > 0} ✓ Ui,2 :=
�

XJ
i+1� 6= YJ

i+1�
 

\
�

⌅J
i+1� 6= k, l

 

.

We will work on the event Ui,2, which says that immediately before Ji+1

, X and Y

are not coalesced and neither swapped queue is the memory queue. Hence there is
a unique longer swapped queue which we will assume, without loss of generality, is
queue k. Since Bi+1

\ {Zi+1

= �1} denotes the event that the (i+ 1)

st change time
is one where S remains good and decreases, we may write

P (Bi+1

\ {Zi+1

= �1} | Gi) �
p
2

q
2

, on Ai \Bi \ {Si > 0} , (6.8)

where p
2

is a lower bound on the rate of events where X remains good and W

decreases, and q
2

is an upper bound on the rate of events where X becomes bad or
W changes value (i.e., change times).

We may take the lower bound p
2

:= 1. To see this, note that a sufficient condition for
X to remain good and for W to decrease is if we have a potential departure where
the X-selection is queue k. Such events occur at rate n · 1

n = 1.

We may take the upper bound q
2

:= 2�d + 1. To see this, note that a necessary
condition for X to become bad or for W to increase is if we have an arrival where the
X-customer selects some swapped queue at least once (since neither is the memory
queue). Such events occur at rate at most �n · 2d

n = 2�d. A necessary condition for
W to decrease is if we have a potential departure where the X-selection is queue k.
Such events occur at rate n · 1

n = 1.

Then (6.8) gives

P (Bi+1

\ {Zi+1

= �1} | Fi) �
1

2�d+ 1

� �, on Ai \Bi \ {Si > 0} , (6.9)

and (2.19) holds.

3. For condition (2.20), we are looking at

P (Zi+1

= 1 | Gi) , on Ai \Bi \ {Si > } .

Now

Ai \Bi \ {Si > } ✓ Ui,3 :=
�

XJ
i+1� 6= YJ

i+1�
 

\
�

⌅J
i+1� 6= k, l

 

\
�

WJ
i+1� > 

 

\ CJ
i+1 .

We will work on the event Ui,3, which says that immediately before Ji+1

, X and Y

are not coalesced, neither swapped queue is the memory queue, the maximum length
of a swapped queue is greater than , and the number of customers is at most 2cn.
Hence there is a unique longer swapped queue which we will assume, without loss of
generality, is queue k (so XJ

i+1� (k) > ), whence the proportion of queues at least
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as long as queue k is less than

u
�

XJ
i+1�

�


�

�XJ
i+1�

�

�

1

n
 2c


 min (",!)  ".

Since {Zi+1

= 1} denotes the event that the (i+ 1)

st change time is one where S

increases, we may write

P (Zi+1

= 1 | Gi) 
p
3

q
3

, on Ai \Bi \ {Si > } , (6.10)

where p
3

is an upper bound on the rate of events where W increases, and q
3

is a lower
bound on the rate of events where X becomes bad or W changes value (i.e., change
times). Note that if W increases at Ji+1

, then immediately before Ji+1

, queue k

cannot be longer than the memory queue. That is, we have

XJ
i+1� (k)  XJ

i+1�
�

⌅J
i+1�

�

= v
�

XJ
i+1�

�

. (6.11)

There are now two cases to consider.

(a) Case 1: d � 2. We may take the upper bound p
3

:= �d"d�1. To see this, note
that a necessary condition for W to increase is if we have an arrival where the
X-customer selects only queues as long as queue k, and he/she selects queue k

at least once (since queue k is not the memory queue). Such events occur at
rate at most �n · d

n"
d�1

= �d"d�1.

We may take the lower bound q
3

:= 1. To see this, note that a sufficient
condition for W to decrease is if we have a potential departure where the X-
selection is queue k. Such events occur at rate n · 1

n = 1.

Then (6.10) gives

P (Zi+1

= 1 | Gi) 
�d"d�1

1

 �

2�d+ 1

, on Ai \Bi \ {Si > } .

The last inequality holds since d � 2. By (6.9), we have

P (Bi+1

\ {Zi+1

= �1} | Gi) �
1

2�d+ 1

=

�

2�d+ 1

+

1� �

2�d+ 1

� P (Zi+1

= 1 | Fi) + �, on Ai \Bi \ {Si > } ,

and (2.20) holds.

(b) Case 2: d = 1. We may take the upper bound p
3

:= �. To see this, note that
a necessary condition for W to increase is if we have an arrival time where the
X-customer selects queue k (since queue k is not the memory queue). Such
events occurs at rate �n · 1

n = �.

We may take the lower bound q
3

:= 2�d+ 1. To see this, note that a sufficient
condition for W to increase is if we have an arrival where the X-customer
selects queue k (since queue k is neither the memory queue nor longer than it,
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by (6.11)). Such events occur at rate �n· 1n = �d. A sufficient condition for X to
become bad is if we have an arrival where the X-customer selects queue l (since
queue l is shorter than queue k, and queue k is not longer that the memory
queue, by (6.11)). Such events occur at rate �n · 1

n = �d. A sufficient condition
for W to decrease is if we have a potential departure where the X-selection is
queue k. Such events occur at rate n · 1

n = 1.

Then (6.10) gives

P (Zi+1

= 1 | Gi) 
�

2�d+ 1

, on Ai \Bi \ {Si > } ,

and (2.20) holds by the same calculation as in case 1.

4. For condition (2.21), we will first look at

P (Zi+1

6= 0 | Gi) , on Ai \Bi \ {Si > } .

Now

Ai \Bi \ {Si > } ✓ Ui,4 :=
�

⌅J
i+1� = k or l

 

\
�

WJ
i+1� > 

 

\ CJ
i+1 \ EJ

i+1 .

We will work on the event Ui,4, which says that immediately before Ji+1

, some
swapped queue is the memory queue, the maximum length of a swapped queue is
greater than , the number of customers is at most 2cn, and X has concentrated
proportions over [0, Ji+1

). We will assume, without loss of generality, that queue k

is not shorter than queue l (so XJ
i+1� (k) > ), whence the proportion of queues at

least as long as queue k is less than

u
�

XJ
i+1�

�


�

�XJ
i+1�

�

�

1

n
 2c


 min (",!)  !.

Since {Zi+1

6= 0} denotes the event that the (i+ 1)

st change time is one where S

changes value, we may write

P (Zi+1

6= 0 | Gi) 
p
4

q
4

, on Ai \Bi \ {Si > } , (6.12)

where p
4

is an upper bound on the rate of events where W change values, and q
4

is a lower bound on the rate of events where X becomes good or W changes value
(i.e., change times).

We may take the upper bound p
4

:= �n!d
+ 2. To see this, note that a necessary

condition for W to increase is if we have an arrival time where the X-customer selects
only queues as long as queue k. Such events occur at rate at most �n!d. A necessary
condition for W to decrease is if we have a potential departure where the X-selection
is one of the two swapped queues. Such events occur at rate n · 2

n = 2.

We may take the lower bound q
4

:= ��n, if n is sufficiently large. To see this, note
that a sufficient condition for X to become good is if we have an aligning arrival time,
by Lemma 6.10. On Ui,4, aligning arrivals occur at rate at least (�+ 1)n · ��

�+1

= ��n
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over [0, Ji+1

], if n is sufficiently large; this holds by Lemma 6.12.

Then (6.12) gives

P (Zi+1

6= 0 | Gi) 
�n!d

+ 2

��n
 2!d

�
 1

2

�, on Ai \Bi \ {Si > } ,

if n is sufficiently large.

At a change time, S must either become good and/or change value, so

P (Bi+1

\ {Zi+1

= 0} | Gi) = P (Zi+1

= 0 | Gi)

� 1� 1

2

�, on Ai \Bi \ {Si > } ,

if n is sufficiently large, and (2.21) holds.

Since we have shown that the hypotheses of Lemma 2.8 hold if n is sufficiently large, there
exists a constant ⌘

2

= ⌘
2

(c) > 0 such that (6.6) becomes

P (Xt 6= Yt)  P
 

m
\

i=1

�

Ai�1

\
�

Bi [ {Si > 0}
��

!

+ 2e�
1
12 t

+ 2e�⌘1n
+ P

�

Et

�

 2e�⌘2m
+ 1s>⌘2m + 2e�

1
12 t

+ 2e�⌘1n
+ P

�

Et

�

,

for all 2  t  e⌘1n, and if n is sufficiently large. We will also assume, without loss of
generality, that 0 < ⌘

2

< 1.
Let ⌘

3

= ⌘
3

(c) := 1

2

min

�

⌘
1

, ⌘
2

, 1

12

�

, then

P (Xt 6= Yt)  4e�2⌘3t
+ 2e�2⌘3n

+ P
�

Et

�

 e�⌘3t
+ e�⌘3n

+ P
�

Et

�

,

for all 4

⌘3
max (s, 1)  t  e⌘3n, and if n is sufficiently large. To see the first inequality,

note that t � 4

⌘3
max (s, 1) � 2 and that ⌘

2

m � ⌘
3

t
4

� max (s, 1) � s. To see the second
inequality, note that 4  e⌘3t (since t � 4

⌘3
� ln 4

⌘3
). We can remove the upper bound on t

as follows. If t > e⌘3n, then

P (Xt 6= Yt)  P (Xn 6= Yn) + P
�

Et

�

 2e�⌘3n
+ P

�

Et

�

if n is sufficiently large so that e⌘3n > n. Let � = � (c) := 1

4

⌘
3

, then

P (Xt 6= Yt)  e��t
+ 2e��n

+ P
�

Et

�

for all t � 1

� (kxk1 + 1), and if n is sufficiently large. To see this, note that 1

� (kxk1 + 1) �
4

⌘3
max (s, 1).

We then have the following result.

Lemma 6.14. Let c > �
1�� , then let 0 < � = � (c) < 1 denote the constant given by

Lemma 6.13. Let n � 1, let X and Y have initial states x, y 2 Qn, respectively, where
x ⌘ y, kxk

1

 cn and kxk
1

 �t � 1, and let X and Y be coupled by a swap coupling.
Then

E [ds (Xt, Yt)]  n
⇣

e��t
+ 2e��n

+ P
�

Et

�

⌘
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for all t � 0.

Proof. Let m and Z

j be as in Definition 6.6. By Lemma 6.3, we have

m = ds (x, y)  n.

We also have
kzik

1

= kxk
1

 cn, kzik1 = kxk1  �t� 1,

for all 0  i  m. Hence

E [ds (Xt, Yt)] 
m
X

i=1

E
⇥

ds
�

Zi�1

t , Zi
t

�⇤


m
X

i=1

⇣

e��t
+ 2e��n

+ P
�

Et

�

⌘

 n
⇣

e��t
+ 2e��n

+ P
�

Et

�

⌘

,

and we are done.

The following is the main result of this section, and will subsequently give Theorem
1.1.

Theorem 6.15. Let c > �
1�� . Then there exists ⌘ = ⌘ (c) > 0 such that the following

holds. Let n � 1, let X have an arbitrary initial distribution, and let Y be in equilibrium.
Then there exists a coupling of X and Y such that

P (Xt 6= Yt)  ne�⌘t
+ 2e�⌘

p
n
+ P (kX

0

k
1

> cn) + P (kX
0

k1 > ⌘t)

for all t � 0.

Proof. First we will define some constants. Let 0 < � = � (c) < 1 denote the constant
given by Lemma 6.14 (with the same c). Let

� := 1

8

min (1� a
1

, a
1

� a
2

) > 0.

Let ⌘
1

> 0 denote the constant given by Lemma 4.4 with z = �, so that

P
⇣

|ui (Yr)� E [ui (Yr)]| � � for some 0  r  e⌘1
p
n
⌘

 2e�⌘1
p
n (6.13)

for all i � 1. Let ⌘
2

= ⌘
2

(c) > 0 and ⌘
3

> 0 denote the constants given by Lemma 2.5
(with the same c), and let ⌘

4

= ⌘
4

(c) > 0 denote the constant given by Theorem 3.14
(with the same c). Let

⌘
5

= ⌘
5

(c) := 1

2

min

�

1

2

�, ⌘
1

�, ⌘
1

, ⌘
2

, 1
4

⌘
3

�, 1
2

⌘
4

�

,

t⇤ = t⇤ (c) := max

✓

5

�
,
ln 3

⌘
5

◆

.

Let n⇤ � 1 be sufficiently large so that

1

�
< e⌘1

p
n, 7n+ 3  2e⌘5

p
n, (6.14)
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for all n � n⇤. Finally, let

⌘ = ⌘ (c) := min

✓

⌘
5

,
ln 2p
n⇤

◆

,

so that e⌘
p
n⇤  2.

Note that if t  t⇤ and n � n⇤, then ne�⌘t � ne�⌘5t � ne�⌘5t⇤ � 1. Similarly, if
n  n⇤, then 2e�⌘

p
n � 2e�⌘

p
n⇤ � 1. Hence, we will assume that t � t⇤ and n � n⇤, since

there is nothing to prove otherwise.
The coupling (X,Y) will be defined as follows: run a profile coupling until the pro-

cesses are profile-equivalent, and then run a swap coupling until the processes coalesce. In
particular, we will be checking for profile-equivalence at time 1

2

t. If we have this, then we
will check for coalescence at time

1

2

t+ h (t, n)  t,

where h (t, n) := min

⇣

1

2

t, e⌘1
p
n
⌘

.
Let Ft and Gt denote the events that

�

�Xt/2

�

�

1

 cn and
�

�Xt/2

�

�

1  �h (t, n) � 1,
respectively. Note that �h (t, n)� 1 > 0 by (6.14) and the fact that t � t⇤ > 2

� . Then, by
Lemma 6.7, we have

P (Xt 6= Yt)  E
h

1X
t

6=Y
t

1X
t/2⌘Y

t/2
1F

t

1G
t

i

+ P
��

Xt/2 6⌘ Yt/2
 

[ Ft [Gt

�

 E
h

ds (Xt, Yt)1X
t/2⌘Y

t/2
1F

t

1G
t

i

+ P
��

Xt/2 6⌘ Yt/2
 

[ Ft [Gt

�

 E
h

ds
�

Xt/2+h(t,n), Yt/2+h(t,n)

�

1X
t/2⌘Y

t/2
1F

t

1G
t

i

+ P
��

Xt/2 ⌘ Yt/2
 

\
�

Ft [Gt

��

+ P
�

Xt/2 6⌘ Yt/2
�

. (6.15)

On the event that Xt/2 ⌘ Yt/2, we have Xr ⌘ Yr for all r � 1

2

t, so ds (Xt, Yt) < 1.
Moreover, by time 1

2

t, we are running a swap coupling of the lengths processes Z = (Zr)r�0

and W = (Wr)r�0

defined by Zr := Xt/2+r and Wr := Yt/2+r, whose initial states satisfy

Z
0

⌘ W
0

, kZ
0

k
1

 cn, kZ
0

k1  �h (t, n)� 1, on
�

Xt/2 ⌘ Yt/2
 

\ Ft \Gt.

Hence, Lemma 6.14 implies that

E
h

ds
�

Xt/2+h(t,n), Yt/2+h(t,n)

�

1X
t/2⌘Y

t/2
1F

t

1G
t

i

 E
h

ds
�

Zh(t,n),Wh(t,n)

�

1Z0⌘W01kZ0k1cn1kZ0k1�h(t,n)�1

i

 n
⇣

e��h(t,n)
+ 2e��n

+ P
⇣

E0
h(t,n)

⌘⌘

, (6.16)

where

E0
h(t,n) :=

2

\

i=1

{|ui (Zr)� µi|  � for all 0  r < h (t, n)}

is an analogue of the event Et, as defined in Definition 6.11. Note that Z and W are
profile-equivalent for all time, so that ui (Zr) = ui (Wr) for all r � 0 and i � 1. Also note
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that W is in equilibrium. Hence, (6.13) gives

P
⇣

E0
h(t,n)

⌘

 P
 

2

[

i=1

n

|ui (Wr)� µi| > � for some 0  r < e⌘1
p
n
o

!

 4e�⌘1
p
n. (6.17)

Regardless of whether 1

2

t or e⌘1
p
n is smaller, we have

e��h(t,n)  e�
1
2�t

+ e� exp

(

⌘1
p
n
)  e�2⌘5t

+ e�2⌘5
p
n,

whence (6.16) and (6.17) give

E
h

ds
�

Xt/2+h(t,n), Yt/2+h(t,n)

�

1X
t/2⌘Y

t/2
1F

t

1G
t

i

 n
⇣

e��h(t,n)
+ 2e��n

+ 4e�⌘1
p
n
⌘

 ne�2⌘5t
+ 7ne�2⌘5

p
n. (6.18)

Note that t � t⇤ > 4

� , so the constants ⌘
2

= ⌘
2

(c) > 0 and ⌘
3

> 0 given by Lemma 2.5
satisfy

P
��

Xt/2 ⌘ Yt/2
 

\
�

Ft [Gt

��

 P
⇣

�

Xt/2 ⌘ Yt/2
 

\
n

�

�Xt/2

�

�

1

> cn
o⌘

+ P
⇣

�

Xt/2 ⌘ Yt/2
 

\
n

�

�Xt/2

�

�

1 > 1

2

�t� 1

o⌘

 P
⇣

�

�Yt/2
�

�

1

> cn
⌘

+ P
⇣

�

�Yt/2
�

�

1 > 1

4

�t
⌘

 e�⌘2n
+ ne�

1
4⌘3�t, (6.19)

and the constant ⌘
4

= ⌘
4

(c) > 0 given by Theorem 3.14 satisfies

P
�

Xt/2 6⌘ Yt/2
�

 ne�
1
2⌘4t

+ 2e�⌘4n
+ P (kX

0

k
1

> cn) + P
�

kX
0

k1 > 1

2

⌘
4

t
�

. (6.20)

Hence, by (6.15) and (6.18)-(6.20), we have

P (Xt 6= Yt)  ne�2⌘5t
+ 7ne�2⌘5

p
n
+ e�⌘2n

+ ne�
1
4⌘3�t

+ ne�
1
2⌘4t

+ 2e�⌘4n
+ P (kX

0

k
1

> cn) + P
�

kX
0

k1 > 1

2

⌘
4

t
�

 3ne�2⌘5t
+ (7n+ 3) e�2⌘5

p
n
+ P (kX

0

k
1

> cn) + P (kX
0

k1 > 2⌘
5

t) .

Now 3  e⌘5t (since t � t⇤) and 7n+ 3  2e⌘5
p
n (by (6.14)), so

P (Xt 6= Yt)  ne�⌘5t
+ 2e�⌘5

p
n
+ P (kX

0

k
1

> cn) + P (kX
0

k1 > ⌘
5

t) .

Hence the result follows if ⌘  ⌘
5

.

Theorem 1.1 then follows from (1.12) and Theorem 6.15.
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Chapter 7

Maximum queue length

In this chapter, we will analyse the equilibrium behaviour of the maximum queue length
function k·k1, and then prove Theorem 1.2. This chapter is based on Chapter 7 of [10] by
Luczak and McDiarmid.

Recall that in Section 1.2, we defined sequences (ai)
1
i=0

and (bi)
1
i=0

by setting a
0

=

b
0

= 1 and

ai := �adi�1

bi�1

, bi :=
adi bi�1

1� d (ai�1

� ai) a
d�1

i

,

for all i � 1. We also let

i⇤n := min

⇢

i � 1 : ai 
ln

2 np
n

�

, ↵ := d+ 1

2

+

q

d2 + 1

4

.

Also recall that ui (x) gives the proportion of queues in x 2 Qn of length at least i � 0,
and that v (x) gives the length of the memory queue in x.

7.1 Equilibrium behaviour

In this section, we will prove Theorem 1.2. This result is analogous to Theorem 1.3 in
[10] by Luczak and McDiarmid, which showed two-point concentration of the equilibrium
maximum queue length. Here, we will show this by observing that in equilibrium, it is
both unlikely for any single queue to be very long, and unlikely for the memory queue to
be very long.

Lemma 7.1. There exists c
1

> 0 such that the following holds. Let n � 1, and let X have
the equilibrium distribution for the lengths process. For i � 1, let ⌫i := E

⇥

1v(X)�i

⇤

. Then

⌫i⇤
n

+z�1


 

c
1

ln

2d n

nmin(d/2,1)

!z
ln

2 n

nd/(2↵)
,

for all z � 1.

Proof. Since the left-hand side is bounded by 1 and c
1

> 0 may be arbitrarily large, it
suffices to show the result for all sufficiently large n.
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Let X be in equilibrium, and let k
1

denote the constant given by Lemma 5.10. Let

E :=

⇢

sup

i�1

|ui (Xt)� ai| <
2k

1

ln

2 np
n

for all 0  t  n

�

,

so that Lemma 5.10 (with z = 2k
1

and r = 1) gives ⌘ > 0 such that

P
�

E
�

 2e�⌘ ln2 n. (7.1)

Now let us consider X at the first event time T > 0. For i � 1, let Ai denote the event
that T is an arrival where the customer selects only queues of length at least i. Let M

denote the event that T is an arrival where the customer selects the memory queue, and
let D denote the event that T is a potential departure. Then

{v (XT ) � i} ✓ [{v (XT�) � i} \Ai�1

]

[ [{v (XT�) = i� 1} \ (Ai [M)] [ [{v (XT�) � i} \D] . (7.2)

To see the first two terms in (7.2), note that if T is an arrival, then a necessary condition
for v (XT ) � i is that v (XT�) � i�1. In particular, if v (XT�) � i, then as the candidates
list necessarily contains only queues of length at least i�1, we deduce that Ai�1

occurs. On
the other hand, if v (XT�) = i� 1, then as the candidates list necessarily has the memory
queue as its unique shortest queue, we deduce that Ai [M occurs. To see the third term,
note that if T is a potential departure, then a necessary condition for v (XT ) � i is that
v (XT�) � i. Thus (7.2) holds.

Let C denote the event that T is an arrival where the customer selects only queues
from the longest 1

2

1/d of the queues. Then

Ai�1

\ E \ {T  n} ✓ C (7.3)

for all i � i⇤n, if n is sufficiently large. To see this inequality, note that the proportion of
queues of length at least i� 1 immediately before T satisfies

ui�1

(XT�)  ui⇤
n

�1

(XT�)  ai⇤
n

�1

+

2k
1

ln

2 np
n

 1

2

1/d
, on E \ {T  n} ,

for all i � i⇤n, if n is sufficiently large (using the fact that (ai)
1
i=1

is decreasing, by Lemma
5.5). Similarly, let C 0 denote the event that T is an arrival where the customer selects from
only the longest k2 ln

2 np
n

of the queues, where k
2

:= 2k
1

+ 1. Then

Ai \ E \ {T  n} ✓ C 0, (7.4)

for all i � i⇤n, since

ui (XT�)  ui⇤
n

(XT�)  ai⇤
n

+

2k
1

ln

2 np
n

 k
2

ln

2 np
n

, on E \ {T  n} .

Now let us apply the inequalities (7.1)-(7.4). Taking probabilities in (7.2), and noting
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that T is the first event time, we have

⌫i = P (v (XT ) � i)

 P ({v (XT�) � i} \Ai�1

\ E \ {T  n})

+ P ({v (XT�) = i� 1} \Ai \ E \ {T  n})

+ P ({v (XT�) = i� 1} \M) + P ({v (XT�) � i} \D) + P
�

E
�

+ P (T > n) .

By (7.1), (7.3), (7.4) and the fact that T is an exponential random variable with rate
(�+ 1)n, we have

⌫i  P ({v (XT�) � i} \ C) + P
�

{v (XT�) � i� 1} \ C 0�

+ P ({v (XT�) � i� 1} \M) + P ({v (XT�) � i} \D) + 2e�⌘ ln2 n
+ e�(�+1)n2

,

for all i � i⇤n, if n is sufficiently large. The events C, C 0, M and D are all independent
from events of the form {v (XT�) � k}, where k � 0. To see this inequality, for C say, we
may use the Tower Rule to argue that

P ({v (XT�) � k} \ C) = E
⇥

E
⇥

1v(X
T�)�k1C | FT�

⇤⇤

= E
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= ⌫kP (C) .

Let k
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:= 2

�

kd
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+ d
�

and � := min (⌘,�+ 1), then
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for all i � i⇤n, if n is sufficiently large. Hence
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for all i � i⇤n, if n is sufficiently large. By induction, we have
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for all z � 1, if n is sufficiently large.
Now let us bound ⌫i⇤

n

�1

. Let k
4

> 1 denote the constant given by Lemma 5.7, so that
a↵i�1

 k
4

ai for all i � 1. Then
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if n is sufficiently large. Let k
5

> 0 denote the constant given by Lemma 5.9, then let
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k
6

:= 2kd/↵
4

+ k
5

. This gives
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if n is sufficiently large.
Hence, by (7.5) and (7.6), we have
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if n is sufficiently large. The lemma easily follows.

We will say that a customer is new if he/she arrived after time 0, and initial otherwise.
The following lemma says that, with high probability, every customer in the system after
a long period of time is new.

Lemma 7.2. There exists ⌘ > 0 such that the following holds. Let n � 1, and let X be in
equilibrium. For t � 0, let Nt denote the event that every customer at time t is new. Then

P
�

Nt

�

 3ne�⌘t

for all t � 0.

Remark. This proof is essentially the same as the proof of Lemma 7.2 in [10], the analogous
result for the standard supermarket model. The only difference is that here we use the
results for the equilibrium distribution for the supermarket model with memory instead of
Markov’s inequality.

Proof. Since the left-hand side is bounded by 1 and ⌘ > 0 may be arbitrarily small, it
suffices to show the result for all sufficiently large t.

Let t � 2, so that k :=

⌅

1

2

t
⇧

� 1

4

t. By Lemma 2.5, there exists ⌘
1

> 0 such that

P
�

Nt

�

 P
�

Nt \ {kX
0

k1  k}
�

+ P (kX
0

k1 > k)

 nP
�

Po (t)  1

2

t
�

+ ne�⌘1k.

To see this inequality, note that if some queue still has an initial customer at time t, then
this queue has at most k departures over [0, t]. There are n choices of such a queue, and
the number of potential departures from any given queue in an interval of length t is Po (t).
Let ⌘ := min

�

1

12

, 1
4

⌘
1

�

, then Lemma 1.4 gives

P
�

Nt

�

 2ne�
1
12 t

+ ne�
1
4⌘1t  3ne�⌘t.

Now we will bound the probability that the equilibrium maximum queue length is at
most i⇤n � 2, and at least i⇤n + z for all z � 1. This will immediately imply two-point
concentration on the values i⇤n � 1 and i⇤n.

93



Lemma 7.3. There exist ⌘ > 0 and c
2

> 0 such that the following holds. Let n � 1, and
let X have the equilibrium distribution for the lengths process. Then

P (kXk1  i⇤n � 2)  2e�⌘ ln2 n,

P (kXk1 � i⇤n + z) 
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,

for all z � 1.

Proof. Let X be in equilibrium, and let k
1

denote the constant given by Lemma 5.10. Let
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|ui (Xt)� ai| <
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,

so that Lemma 5.10 (with z = 2k
1

and r = 2) gives ⌘ > 0 such that

P
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E
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 2e�⌘ ln2 n. (7.7)

For the first inequality, let us consider X at any time 0  t  n2. Then
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For the second inequality, let us consider X at time ln

2 n. First note that since the
left-hand side is bounded by 1 and c

2

> 0 may be arbitrarily large, it suffices to show the
result for all sufficiently large n.

Let N denote the event that every customer at time ln

2 n is new. By Lemma 7.2, there
exists � > 0 such that

P
�

N
�

 3ne�� ln

2 n. (7.8)

Let m :=

⌃

2 (�+ 1)n ln

2 n
⌥

. For i, z � 1, let Ai,z denote the event that Ti is an arrival
where the customer joins a queue of length i⇤n + z � 1 (hence making it a queue of length
i⇤n + z). Then

�

kX
ln

2 nk1 � i⇤n + z
 

\N \
�

Tm+1

> ln

2 n
 

✓
m
[

i=1

Ai,z. (7.9)

To see this inequality, note that if at time ln

2 n, there is a queue of length at least i⇤n + z

consisting entirely of new customers, and if there have been at most m events by time
ln

2 n, then at least one of T
1

, . . . , Tm is an arrival where the customer joins a queue of
length i⇤n + z. Thus (7.9) holds.

For i � 1, let Bi denote the event that Ti is an arrival where the customer selects only
queues of length at least i⇤n. Then

Ai,z ✓ {v (XT
i

�) � i⇤n + z � 1} \Bi, (7.10)
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for all i, z � 1. To see this inequality, note that a necessary condition for Ai,z is that the
candidates list only contains queues of length at least i⇤n + z � 1.

For i � 1, let Ci denote the event that Ti is an arrival where the customer selects only
queues from the longest k2 ln

2 np
n

of the queues, where k
2

:= 2k
1

+ 1. Then

Bi \ E \
�

Ti  n2

 

✓ Ci (7.11)

for all i � 1. To see this inequality, note that the proportion of queues of length at least
i⇤n immediately before Ti satisfies
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�)  ai⇤
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+
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ln
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n
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ln
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n

, on E \
�
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.

Now let us apply the inequalities (7.7)-(7.11). Taking probabilities in (7.9), we have
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for all z � 1. By (7.7)-(7.9) and the fact that the number of events in [0, t] is Po ((�+ 1)nt),
we have
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for all z � 1. By (7.10) and Lemma 1.4 (once with (", µ) =
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for all z � 1, if n is sufficiently large. Let � := min
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for all z � 1, if n is sufficiently large. The event Ci is independent from {v (XT
i

�) � i⇤n + z � 1},
since we may use the Tower Rule to argue that
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By Lemma 7.1, there exists c
1

> 0 such that
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for all z � 1, if n is sufficiently large. The second inequality in the statement of the lemma
easily follows.

Theorem 1.2 then follows from Lemma 7.3.

Proof of Theorem 1.2. Since the left-hand side is bounded by 1 and c > 0 may be arbit-
rarily large, it suffices to show the result for all sufficiently large n.

Let ⌘ > 0 and c
2

> 0 denote the constants given by Lemma 7.3. Taking z = 1 gives

P (kXk1 6= i⇤n � 1 or i⇤n)  P (kXk1  i⇤n � 2) + P (kXk1 � i⇤n + 1)
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nd/2+d/(2↵)�1

,

if n is sufficiently large. The theorem easily follows.

7.2 Long-term behaviour

In this section, we will show that the equilibrium maximum queue length is concentrated
around ln lnn

ln↵ for long periods of time. We will show that i⇤n =

ln lnn
ln↵ + O (1), as claimed

in Section 1.2. The calculation is given in full detail for the sake of completeness, but is
routine and easy.

Lemma 7.4. There exist c
3

> 0 and n⇤ � 1 such that the following holds. Let n � n⇤,
then
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3

.

Proof. Throughout this proof, we will write i = i⇤n for brevity. By Lemma 5.8, there exist
0 < � < ⌧ < 1 such that
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. (7.12)

We will assume, without loss of generality, that 0 < � < 1 is sufficiently small so that
ln ln��4 > 0, and that 0 < ⌧ < 1 is sufficiently large so that ln ln ⌧�2/↵ < 0. Thus

c
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�
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> 0.

Now, taking logarithms in (7.12) gives
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and thus
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4
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if n⇤ is sufficiently large. Rearranging gives
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and thus
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if n⇤ is sufficiently large. The result follows.

Now we will need the following result which extends bounds on the maximum queue
length from instants to polynomial periods of time.

Lemma 7.5. Let n � 1, and let X be in equilibrium. Then
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for all k, l � 0 and r > 0.

Remark. This proof is similar to the proof of Lemma 7.1 in [10], the analogous result for the
standard supermarket model. The only difference is that here we use potential departures
instead of arrivals.

Proof. For t, h � 0, let

Mt,h := {kXtk1  h} , Lt,h := {kXtk1 � h} .

Consider covering the interval [0, nr
] with sub-intervals of length � =

1

n ; clearly m :=

⌃
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⌥

such sub-intervals will cover [0, nr
]. For i � 0, let ti := i�, then
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To see the last term in this inequality, suppose that Mt
i

,k+l holds for all end-points ti.
Then there exists a sub-interval Ir := [tr�1

, tr) containing t. Since Mt
r�1,k+l and Mt,k

hold, we deduce that over Ir the maximum queue length decreases by more than l, and
thus over Ir, we have more than l potential departures from a specified queue (with n

choices for such a queue). However, the number of potential departures from a specified
queue over Ir, an interval of length �, is Poisson with mean n · 1

n · � = �. Now
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so
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Similarly, we may write
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By arguing as above, the result follows.

Now we will show that the maximum queue length is concentrated around ln lnn
ln↵ for

long periods of time.

Theorem 7.6. Let r > 0. Then there exists c = c (r) > 0 such that the following holds.
Let n � 1, and let X be in equilibrium. Then
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Proof. Since the left-hand side is bounded by 1 and c > 0 may be arbitrarily large, it
suffices to show the result for all sufficiently large n.

Let c
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> 0 denote the constant given by Lemma 7.4, so that
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if n is sufficiently large. Let � := 1
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If Er holds, then there exists 0  t  nr such that
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Hence, by (7.13) (with k = i⇤n � z � 2 and l = z) and (7.14) (with k = i⇤n + z and l = z),
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we have
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Let ⌘ > 0 and c
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> 0 denote the constants given by Lemma 7.3. Since z � 2, we may use
(1.4) to write
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if n is sufficiently large. Hence
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if n is sufficiently large.
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Chapter 8

Further ideas

We have investigated the supermarket model with memory. We have shown that the
system is rapidly mixing. That is, with reasonable initial conditions, the convergence to
equilibrium is very fast. We have also shown that with probability tending to 1 as n ! 1,
the maximum queue length in equilibrium is concentrated on two consecutive values which
are ln lnn

ln↵ +O (1), where ↵ := d+ 1

2

+

q

d2 + 1

4

.
A desired result, which has an analogue for the standard supermarket model in [10] by

Luczak and McDiarmid, is that the upper bounds on the mixing times in Theorem 1.1 are
of the right order. That is, we wish to show that there exists c > 0 such that if t  c lnn,
then

d
TV

(L (Xt) ,⇧) = 1� e�⌦

(

ln

2 n
).

The analogous result is shown by using the fact that the proportion of non-empty queues
in a system is close to its mean. For a standard lengths process in equilibrium, this mean
is �, whilst for a standard lengths process started from the empty state 0 2 Zn

+

, this mean
is at most � � c at a time t  c lnn. Hence, the two distributions are far apart at such
a time. Our analysis would take us through (5.7) and (5.8), but we have been unable to
complete this.

A further line of investigation could be the generalised supermarket model with memory
where the memory saves a set of m � 1 queues, rather than just m = 1. It is unclear which
parts of our arguments will easily extend to such a model, though we suspect that the
random walk lemmas of Section 2.3 will need generalising.
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