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Abstract

This thesis studies the application of geometric concepts and methods in the anal-

ysis of strategic-form games, in particular bimatrix games. Our focus is on three

geometric concepts: the index, geometric algorithms for the computation of Nash

equilibria, and polytopes.

The contribution of this thesis consists of three parts. First, we present an algorithm

for the computation of the index in degenerate bimatrix games. For this, we define

a new concept, the “lex-index” of an extreme equilibrium, which is an extension of

the standard index. The index of an equilibrium component is easily computable

as the sum of the lex-indices of all extreme equilibria of that component.

Second, we give several new results on the linear tracing procedure, and its bima-

trix game implementation, the van den Elzen-Talman (ET) algorithm. We compare

the ET algorithm to two other algorithms: On the one hand, we show that the

Lemke-Howson algorithm, the classic method for equilibrium computation in bi-

matrix games, and the ET algorithm differ substantially. On the other hand, we

prove that the ET algorithm, or more generally, the linear tracing procedure, is a

special case of the global Newton method, a geometric algorithm for the compu-

tation of equilibria in strategic-form games. As the main result of this part of the

thesis, we show that there is a generic class of bimatrix games in which an equilib-

rium of positive index is not traceable by the ET algorithm. This result answers an

open question regarding sustainability.

The last part of this thesis studies the index in symmetric games. We use a con-

struction of polytopes to prove a new result on the symmetric index: A symmetric

equilibrium has symmetric index+1 if and only if it is “potentially unique”, in the

sense that there is an extended symmetric game, with additional strategies for the

players, where the given symmetric equilibrium is unique.
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1
Introduction

1.1 Geometry and game theory

Geometric ideas are ubiquitous in game theory. Many game theoretic problems

lead naturally to geometric or topological questions. An important example is the

notion of Nash equilibrium, which is the central solution concept in the theory of

strategic-form games. The set of Nash equilibria of a given game carries a natural

geometric structure: It is the set of solutions of a system of polynomial equations

and inequalities, i.e. a semi-algebraic set. In the case of bimatrix games (i.e. two-

player games in strategic form), this set has an even simpler structure: It is given

by a set of linear constraints, coupled with a complementarity condition, hence is

the solution set of a linear complementarity problem. As such, it is a finite union

of polyhedra. This nice geometric structure has been exploited in various aspects

of the study of Nash equilibria.

This thesis explores three geometric concepts that have been widely studied in the

context of strategic-form (and especially bimatrix) games: Polytopes, geometric

algorithms for the computation of Nash equilibria, and the index of an equilibrium.

Before we describe the contribution of this thesis, we would like to give a short

overview of these three concepts in the context of game theory, and explain how

they are linked.

One of the most fundamental geometric concepts used in bimatrix game theory

is that of polyhedra and polytopes. Polytopes have been used both to visualize
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Chapter 1. Introduction

game theoretic ideas and to solve game theoretic problems. A very useful tool in

the study of bimatrix games is the “best-reply polytope”, which is valuable in the

study of Nash equilibria in various respects:Von Stengel(1999) used these poly-

topes to refute the conjecture byQuint and Shubik(1997) on the maximal number

of Nash equilibria that ad× d bimatrix game can have.Von Schemde(2005)

studied stability properties of equilibria using a construction based on best-reply

polytopes.Savani and von Stengel(2006) applied best-reply polytopes to answer

a long-standing open question in algorithmic game theory, namely if the classic

algorithm for the computation of Nash equilibria, the Lemke-Howson algorithm,

has exponential running time.

The computation of one or all Nash equilibria of a bimatrix game is closely linked

to polytopal concepts. For this reason, polytopes constitute a central tool in al-

gorithmic game theory. For example, the extreme equilibria of a bimatrix game

correspond to certain vertices of the best-reply polytope. Hence computing all

Nash equilibria of a bimatrix game essentially corresponds to vertex enumeration

(Vorob’ev, 1958; Avis et al., 2010). Likewise, polytopes are used in the study of

complementary pivoting algorithms for the computation of a single equilibrium

of a bimatrix game. As mentioned earlier, the set of Nash equilibria in bimatrix

games has a particularly nice geometric structure as the solution set of a linear

complementarity problem. A general algorithm for the solution of such a linear

complementarity problem is Lemke’s algorithm (Lemke, 1965), which is a com-

plementary pivoting method that walks along edges of a suitable polyhedron. Two

of the best-known algorithms for the computation of equilibria in bimatrix games,

those byLemke and Howson(1964) andvan den Elzen and Talman(1991), are

both special cases of Lemke’s algorithm (Savani, 2006; von Stengel et al., 2002),

and as such have a straightforward geometric interpretation in terms of polyhedra.

However, the use of geometric tools for equilibrium computation has not been re-

stricted to bimatrix games. Geometric algorithms have also been developed for

the computation of Nash equilibria in general strategic-form games. An example

is the global Newton method byGovindan and Wilson(2003a), which is based

on the particularly nice geometry of the graph of the equilibrium correspondence.

The equilibrium correspondence on the space of strategic-form games of a given

dimension maps each game to its set of equilibria. The graph of this correspon-
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dence is a topological manifold, whose one-point-compactification is homeomor-

phic to a sphere (Kohlberg and Mertens, 1986). This simple geometric structure

is exploited in the global Newton method for the construction of a geometric al-

gorithm that computes a Nash equilibrium of a given strategic-form game. This

algorithm is an example of the wider class of homotopy (or path-following) algo-

rithms, which trace a path in a generically one-dimensional manifold in order to

find an equilibrium (Herings and Peeters, 2010). Another example of such a ho-

motopy algorithm is the linear tracing procedure introduced byHarsanyi(1975),

which generalizes the van den Elzen-Talman algorithm from bimatrix to general

strategic-form games. The tracing procedure plays a crucial role in the equilibrium

selection theory developed byHarsanyi and Selten(1988), and in an equilibrium

refinement concept suggested byMyerson(1997).

Algorithmic problems in game theory are closely related to another important ge-

ometric concept, the index. The index of an equilibrium is a topological notion

which assigns to each connected component of Nash equilibria an integer, such

that the indices of all equilibrium components of a game add up to one. The index

was developed byShapley(1974) in the context of the Lemke-Howson algorithm,

and all algorithms mentioned above have in common that generically, they will

only find equilibria of positive index (Garcia and Zangwill, 1981).

But the relevance of the index has grown way beyond algorithmic issues. The index

of an equilibrium component carries crucial information about many of its proper-

ties. For this reason, the index plays a considerable role in equilibrium refinement

and selection theory. In nondegenerate bimatrix games, equilibrium components

consist of isolated points, whose index can be either+1 or−1. In such games, it

has been shown that several important properties of an equilibrium depend on its

index. As already mentioned, homotopy algorithms for the computation of equi-

libria, like the Lemke-Howson or van den Elzen-Talman algorithms, will generi-

cally find only equilibria of index+1 (Garcia and Zangwill, 1981). Von Schemde

(2005) proved that an equilibrium has positive index if and only if it can be made

the unique equilibrium of an extended game, where strategies with suitable payoffs

are added. Furthermore, the index carries crucial information about the dynamic

stability of an equilibrium with regards to Nash fields (i.e. vector fields that have

exactly the equilibria of the given game as rest points). Positively indexed equi-
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libria can be made dynamically stable by a suitable choice of Nash field, whereas

equilibria with negative index are always unstable (Hofbauer, 2003).

In degenerate games, the index is no longer restricted to the values+1 or −1 but

can take any integer as value (Govindan et al., 2003). In this case, the index of an

equilibrium component carries information about the “essentiality” or “stability”

of the component, in terms of payoff perturbations (as opposed to the “dynamic

stability” considered earlier). Various concepts of stability have been suggested

in the search for a satisfying theory of equilibrium refinement and selection, fol-

lowing the main idea that an equilibrium component is stable if it does not vanish

under slight perturbations of the payoffs (seeKohlberg and Mertens(1986) and

the subsequent literature). The concept that has been shown to best capture the

interdependence between index and stability is that of hyperstability. An equilib-

rium component is called hyperstable if it is stable in every equivalent game, where

two games are called equivalent if they can be reduced to the same game by delet-

ing “superfluous” strategies that are convex combinations of other strategies. An

equilibrium component is called uniformly hyperstable if the hyperstability con-

dition holds uniformly over all equivalent games.Govindan and Wilson(2005)

proved that an equilibrium component is uniformly hyperstable if and only if it has

nonzero index.

We can conclude that the index, a purely geometric notion, is relevant to the study

of equilibrium properties both in degenerate and nondegenerate bimatrix games.

But geometric ideas are even more ubiquitous in game theory than our exposition

suggests. To give an example,Mertens(1989, 1991) uses homology theory, a tool

from algebraic topology, to study strategic stability. However, we restrict the scope

of this thesis to the three geometric concepts outlined above: Polytopes, geometric

algorithms for equilibrium computation, and the index. The main focus of this

thesis is on bimatrix games, with a notable exception in our study of game theoretic

algorithms in Chapter3.

1.2 Thesis outline

The contribution of this thesis consists of three parts: As a first result, we present an

algorithm to compute the index in degenerate bimatrix games. In the second part,
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we give several new results on the linear tracing procedure ofHarsanyi(1975), and

its bimatrix game implementation, the van den Elzen-Talman algorithm. The last

part studies the index in symmetric games; we use a construction of polytopes to

prove a new result on the symmetric index.

In Chapter 2, we first give an exposition of the index of an equilibrium component

in bimatrix games. Then, as the main result of this chapter, we present an algorithm

for the computation of the index in degenerate games.

In nondegenerate games, the index is easily computable, essentially as the sign of

a suitable determinant. However, in degenerate games, where equilibrium com-

ponents can occur, there is no such straightforward method. Existing algorithms

rely on perturbations of the payoffs of the game, or on interior approximations of

a Nash field. In order to arrive at a simpler algorithm, we extend the definition

of the index of isolated equilibria in nondegenerate games to extreme equilibria

in degenerate games. We call this new index notion thelex-indexof an extreme

equilibrium.

The crucial ingredient for our algorithm is the following, intuitively appealing re-

sult: The index of an equilibrium component is the sum of the lex-indices over

all extreme equilibria of that component. The lex-index of an extreme equilib-

rium is easily computable, using just the game matrices(A,B), without resorting to

topological concepts such as perturbations or interior approximations. Hence our

method offers an improvement on existing algorithms.

This chapter is joint work with Bernhard von Stengel, intended for publication.

In Chapter 3, we analyze several geometric algorithms for the computation of

Nash equilibria. Our focus is on the van den Elzen-Talman algorithm, a com-

plementary pivoting method for equilibrium computation in bimatrix games. The

algorithm starts at an arbitrary strategy profile, called prior. Both players adjust

their strategies until an equilibrium is reached. This algorithm has the advantage of

being more flexible than the classic algorithm for equilibrium computation in bi-

matrix games, the Lemke-Howson method: While the Lemke-Howson algorithm

relies on a finite set of starting points, the van den Elzen-Talman algorithm can start

anywhere in the strategy space. Another useful property of the latter algorithm is

that it implements Harsanyi’s and Selten’s linear tracing procedure, which plays an
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important role in equilibrium selection and refinement theory.

We answer several questions regarding these algorithms. First, we show that the

Lemke-Howson and van den Elzen-Talman algorithms differ substantially: The

van den Elzen-Talman algorithm, when started from a pure strategy and its best

response as a prior, in general finds a different equilibrium than the correspond-

ing Lemke-Howson method. Secondly, we prove that the van den Elzen-Talman

algorithm, or more generally, the linear tracing procedure, is a special case of the

global Newton method, a geometric algorithm for the computation of equilibria in

general strategic-form games introduced byGovindan and Wilson(2003a). As the

third and main result of this chapter, we show that the van den Elzen-Talman algo-

rithm is not flexible enough to find every equilibrium of positive index. Our result

is based on the concept of “traceability”: An equilibrium is called traceable if it

is found by the van den Elzen-Talman algorithm from an open set of priors (Hof-

bauer, 2003). We prove that there is a generic class of bimatrix games in which an

equilibrium of positive index is not traceable. This result answers an open ques-

tion that arises from a closely related notion of sustainability:Myerson(1997)

suggested to call an equilibrium sustainable if it is found by the tracing procedure

from an open set of priors. Our result shows that in this sense, not all equilibria of

positive index are sustainable.

A version of Chapter3 has been published in Economic Theory (Balthasar, 2010).

In Chapter 4, we analyze the index in the context of symmetric bimatrix games. A

bimatrix game is called symmetric if the players have the same number of strate-

gies, and the two players are interchangeable. More precisely, this means that the

payoff matrix of one player is the transpose of the payoff matrix of the other player.

Symmetric games play an important role in evolutionary game theory, where a

mixed strategy can represent the frequencies of individual pure strategies that occur

in a population. A symmetric game may have both symmetric and non-symmetric

equilibria. In certain situations – for example if the players have no way of de-

termining which of the two possible player positions they are in – it makes sense

to only consider the symmetric equilibria. In a symmetric game, the “symmetric

index” of a symmetric equilibrium is defined analogously to the index in a general

bimatrix game. For any symmetric equilibrium, its symmetric index may differ

from the “usual” (i.e. bimatrix game) index, as can be seen in simple examples like
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the game of chicken.

We prove that in a nondegenerate symmetric game, a symmetric equilibrium has

symmetric index+1 if and only if it is “potentially unique” in the sense that there is

an extended symmetric game, with additional strategies for the players, where the

given symmetric equilibrium is unique. The corresponding statement for bimatrix

games has been proved byvon Schemde(2005). However, the symmetric case

does not follow from the seemingly more general result on bimatrix games for the

following reasons: First, as explained above, the bimatrix index and the symmetric

index of a fixed symmetric equilibrium may differ. Secondly, the game needs to

be extended in a symmetric way, but the extension in the corresponding result on

bimatrix game is always asymmetric.

Our proof relies on a construction of polytopes, which should be of independent

geometric interest. Nondegenerate symmetricd×d games correspond to simpli-

cial d-polytopes whose vertices are labelled with labels from the set{1, . . . ,d}.
The symmetric equilibria correspond to completely labelled facets of that polytope,

i.e. facets whose vertices have all labels in{1, . . . ,d} (apart from one completely

labelled facet, which gives rise to an “artificial” equilibrium). Every completely

labelled facet carries a natural orientation. To prove our result on the symmetric

index, it suffices to prove the following statement in the corresponding polytopal

setting: Whenever we have a pair of completely labelled facets of opposite orien-

tation, we can add labelled points to the polytope such that the only completely

labelled facets of the extended polytope are the two given ones. The proof of

this polytopal result is based on ideas developed invon Schemde and von Stengel

(2008), who use a very similar approach for a constructive proof of the correspond-

ing result on the “usual” index of bimatrix games.

We derive the game theoretic result from its geometric counterpart by applying the

above polytopal result to the polytope that corresponds to a given symmetric game.

For a fixed symmetric equilibrium of positive index, we add points to this polytope

such that the only two completely labelled facets of the extended polytope are

the one which corresponds to the given equilibrium, and the “artificial” one. The

added points are then used to define a suitable extension of the symmetric game.

A central part in the step from added points to added strategies is played by a class

of bimatrix games that we callunit vector games. These games generalize the

13



Chapter 1. Introduction

imitation games ofMcLennan and Tourky(2007), who prove that every symmetric

game corresponds to a certain imitation game.

Starting from the added points in the extended polytope we create a symmetric ex-

tension of the given symmetric game in two steps: First, we use the added points to

extend the corresponding imitation game to a unit vector game, by adding strate-

gies for the column player. Secondly, we symmetrize this extended game by adding

suitable payoff rows. This second part, the symmetrization, is the crucial step from

the geometric to the game theoretic result. In the final symmetric extension, the

given symmetric equilibrium is unique.

Chapter4 is joint work with Bernhard von Stengel, intended for publication.

In the remainder ofthis chapter, we summarize relevant prerequisites and nota-

tional conventions which we use throughout this thesis.

1.3 Preliminaries

In this section we summarize some terminology and key results about games and

polytopes. The contents of this section can be found in the standard literature on

the subject. For strategic-form games, we refer the reader toRitzberger(2002), for

bimatrix games tovon Stengel(2002, 2007). Details on the theory of polytopes

can be found inGrünbaum(2003) or Ziegler(1995).

By vector we mean column vector (although for reasons of space, in examples we

often write vectors as row vectors). Inequalities between vectors hold component-

wise. As usual,ei denotes theith unit vector, and0 and1 the all-zero- and all-

one-vector, respectively, with dimension understood from context. For a matrix

C, we denote byC> its transpose. We writeI for the identity matrix, andE for

the matrix that has all entries equal to one. The dimension of these matrices may

vary according to context. We writeC = [c1 · · ·cn] if C is a matrix with columns

c1, . . . ,cn. For a setX, we denote by|X| its cardinality.

A (finite) strategic-form gameis given by the following data: a finite set of players,

and for each player, on the one hand a finite set of pure strategies that are available

to him, and on the other hand his payoff function. Astrategy profileis a tuple of

strategies, one for each player. A player’s payoff function assigns to each strategy
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profile a real number, which is the payoff that this player receives from the strat-

egy profile. Players are allowed to usemixed strategies, i.e. randomize over their

pure strategies. The payoff function is extended to mixed strategies by taking the

expected payoff. Denote by∆r ther−1-dimensional standard simplex:

∆r = {x∈ Rr | x>1 = 1, x≥ 0}

The set of mixed strategies of a player who hasr strategies can be identified with

∆r , which we also refer to asthis player’s strategy space. We use the termstrat-

egy space(without reference to a specific player) for the set of all mixed strategy

profiles, which is the cartesian product of the strategy spaces of all players. In a

fixed “dimension” (i.e. when fixing the number of players, and for each player his

number of strategies) a game is determined by the payoffs to the players from the

pure strategy profiles, i.e. by a finite set of real numbers. Thespace of gamesin

a fixed dimension is defined as the set of all games in that dimension. It can be

identified with a suitably-dimensional real spaceRd.

The central solution concept for a strategic-form game is that ofNash equilibrium.

A strategy profile is called a Nash equilibrium if no player has an incentive to

deviate unilaterally, i.e. if no player can increase his payoff by changing his strategy

while all other players adhere to the equilibrium profile.Nash(1951) proved that

every strategic-form game has an equilibrium. Theequilibrium correspondenceis

the set-valued function from the space of games to the strategy space that assigns

to each game its set of equilibria.

A bimatrix gameis a two-player strategic-form game, in which the payoffs are

given by twom×n matrices(A,B). The first player chooses a row as pure strategy,

the second a column. The payoffs are then given by the respective matrix entry

of A for the first player, andB for the second. We denote the set of strategies of

the first player by{1, . . . ,m}, and that of the second player by{m+ 1, . . . ,m+

n} (instead of{1, . . . ,n}). This has the advantage that we can easily distinguish

between strategies of the two players. When a strategy profile(x,y) is chosen, the

payoff to player one isx>Ay, while that to player two isx>By. A strategyx of

player one is abest replyto a strategyy of player two if it gives maximal expected

payoff to player one, i.e. if we have that for all other strategiesx of the first player

x>Ay≥ x>Ay
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Player two’s strategyy is a best reply tox if the analogous condition holds for

the payoffs of player two. Thesupportof a mixed strategyz is the set of all pure

strategies played with positive probability; we denote it bysupp(z). Thebest reply

condition(Nash, 1951) states that a mixed strategyx is a best reply toy if and only

if every pure strategy in the support ofx is a best reply toy. A strategy profile(x,y)

is a Nash equilibrium if and only ifx andy are best replies to each other.

A very useful geometric tool in the study of bimatrix games are the best reply

polyhedron and best reply polytope. Apolyhedronis a subset ofRd that is a finite

intersection of closed half-spaces; apolytopeis a bounded polyhedron. Equiva-

lently, a polytope is the convex hull of a finite set of points inRd. An inequality

c>x≤ α is valid for a polyhedronP if it holds for all pointsx in P. A setF ⊂ P is

a faceof P if there is a valid inequalityc>x≤ α such thatF = P∩{x | c>x = α}.
The dimensionof a faceF of P is the dimension of its affine hull;F has dimen-

sion d if and only if F containsd + 1, but no more, affinely independent points.

The 0- and 1-dimensional faces are calledverticesandedges, respectively. For

a polyhedron of dimensiond, the faces of dimensiond− 1 are calledfacets. A

d-polytope is ad-dimensional polytope. Theedge graphof a polytope consists of

the vertices of the polytope, connected by its edges. To every polytopeP we can

assign a partially ordered set, itsface lattice. It consists of the faces ofP, partially

ordered by inclusion. Two polytopes are calledcombinatorially equivalentif there

is a bijection between their faces in each dimension that preserves face incidences,

or in other words, if their face lattices are isomorphic. Two polytopes are called

affinely (linearly) isomorphicif there is an affine (linear) map that induces a bijec-

tion between the polytopes. Two polytopes which are affinely isomorphic are, in

particular, combinatorially equivalent (while the converse is generally wrong).

Given a bimatrix game(A,B), thebest reply polyhedrafor player one and two are

defined as

H1 = {(x,v) ∈ Rm×R | B>x≤ v1, x≥ 0, 1>x = 1}
H2 = {(y,u) ∈ Rn×R | Ay≤ u1, y≥ 0, 1>y = 1}

These polyhedra are the upper envelopes of the best reply function, which assigns

to each strategy of a player the other player’s payoff from his best reply (the best

reply might not be unique, but the best reply payoff is). It is useful tolabel the

16



Chapter 1. Introduction

inequalities that defineH1, as follows: Fori in {1, . . . ,m}, the inequalityxi ≥ 0

has labeli, while for j in {m+1, . . . ,m+n}, the inequalitye>j B>x≤ v has labelj.

This induces a labelling on the relative boundary ofH1, where a point carries the

labels of all inequalities that are binding in that point. The points on the relative

boundary ofH2 are labelled in an analogous way.

We can use the projectionp from H1 onto player one’s strategy space∆m to transfer

this labelling to the strategy space. A pointx∈ ∆m gets all labels that occur at some

point in p−1(x). We get a subdivision of∆m into several labelled regions, where a

pointx has as labels the pure strategies in{1, . . . ,m} that are unplayed atx, and the

pure strategies in{m+1, . . . ,m+n} that are the other player’s best replies tox. We

call the set of strategies of player one that have a certain labelj ∈{m+1, . . . ,m+n}
of player two thebest reply regionwith label j. Player two’s strategy space∆n is

subdivided and labelled in an analogous way.

It is obvious from the best reply condition that a strategy pair is a Nash equilibrium

if and only if every strategy by either player which is not a best reply to the other

player’s strategy remains unplayed. Hence a strategy pair(x,y) is a Nash equilib-

rium if and only if it iscompletely labelledas a point in∆m×∆n, i.e. if every label

in {1, . . . ,m,m+1, . . . ,m+n} occurs as a label ofx or y. In this way the labelling

of the strategy spaces of the two players can be used to visualize Nash equilibria

of low dimensional bimatrix games.

The polyhedraH1 andH2 are unbounded, which makes them difficult to handle.

However, they can be converted into polytopes, thebest reply polytopes, which

essentially are combinatorially equivalent toH1 andH2 (or more precisely, pro-

jectively equivalent; for a definition of projective equivalence see Chapter4.8).

Consider the polyhedra

P1 = {x∈ Rm | x≥ 0, B>x≤ 1}
P2 = {y∈ Rn | y≥ 0, Ay≤ 1}

If these polyhedra are bounded, they are polytopes, calledbest reply polytopes. To

achieve boundedness, it suffices to assume that the entries in the payoff matricesA

andB are positive. This can be done without loss of generality since a constant can

be added to the payoffs of any strategic-form game without changing the structure

of the game.H1 is in bijection withP1\0, via the map(x,v) 7→ x/v. This map
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is nonlinear but preserves binding inequalities, and therefore the face incidences.

Hence from the labelling ofH1, we obtain a labelling of the binding inequalities

of P1 and then, as above, a labelling of the points on the relative boundary ofP1.

Similarly, we label the relative boundary ofP2. Every completely labelled point of

P1×P2 corresponds to a Nash equilibrium, except for the vertex0, which carries all

labels because all strategies are unplayed, but does not correspond to any strategy

profile. We call this vertex theartificial equilibrium.

A game is callednondegenerateif no point in ∆m has more thanm labels, and no

point in∆n has more thann labels (seevon Stengel(2002) for equivalent definitions

of nondegeneracy). Equivalently, no strategyzof either player can have more than

|supp(z)| pure best replies. For a nondegenerate game, the polytopesP1 andP2 are

simple, i.e. every vertex ofP1 is contained in exactlym facets, and similarly for

P2. This implies that in a nondegenerate game, every vertex ofP1 has exactlym

labels. Two adjacent vertices ofP1 sharem−1 labels, namely the labels of the edge

connecting them. A similar observation holds forP2.

The best-known algorithm for the computation of a Nash equilibrium in a non-

degenerate bimatrix game is theLemke-Howson algorithm(Lemke and Howson,

1964). It is a complementary pivoting method that walks along the edges of the

best reply polytopes. Denote byG the edge graph of the product polytopeP1×P2.

The vertices ofG are given by pairs of vertices ofP1 andP2, while the edges ofG

are given by pairs of a vertex ofP1 and an edge ofP2, or an edge ofP1 and a vertex

of P2. The labellings ofP1 andP2 induce a labelling of the vertices ofG. Choose a

labelk∈ {1, . . . ,m+n}. A vertex ofG is calledk-almost completely labelledif it

has every label apart from possiblyk.

If we delete all vertices from the graph that are notk-almost completely labelled

(and all corresponding edges) the new graphGk contains all completely labelled

vertices, which correspond to Nash equilibria, and all vertices that have as miss-

ing labelk. Since the game is nondegenerate, adjacent vertices inG always have

m+ n−1 labels in common. Hence the completely labelled vertices ofGk have

degree 1 (which means that they have only one adjacent vertex in the graph), while

the vertices with missing labelk have degree 2 (they have two adjacent vertices).

This implies thatGk consists of paths and cycles, where the endpoints of paths are

completely labelled vertices. Starting at the vertex corresponding to the artificial
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equilibrium, one can walk along the corresponding path inGk, and at the end find

a new completely labelled vertex, which must yield an equilibrium of the game.

For visualization, it is convenient to interpret the Lemke-Howson algorithm in

terms of “picking up” and “dropping” labels in the two players’ strategy spaces.

Instead of walking along edges of the polytopeP1×P2, one can view the algorithm

as tracing edges of the polyhedronH1×H2, with “infinity” as starting point. One

can then project the Lemke-Howson path fromH1×H2 onto the strategy space.

The terminology of vertices and edges can be taken straightforwardly to the strat-

egy space: A vertex in the strategy space∆m of player one is a point withm given

labels, and an edge is a nonempty set of points withm−1 given labels. Vertices

and edges in the other player’s strategy space∆n are defined analogously. By def-

inition, the (projected) Lemke-Howson algorithm moves alternatingly in the two

players’ strategy spaces, jumping from vertex to vertex along an adjoining edge.

To be more precise, assume that the missing labelk belongs to player one. The

projected Lemke-Howson path with missing labelk starts at the vertex(ek,ej),

where j is the best reply tok (which by nondegeneracy is unique). The vertexej

has all labels in{m+1, . . . ,m+n}, apart fromj, and one extra labeli in {1, . . . ,m},
which is player one’s best reply toj. If i = k, then(ek,ej) is an equilibrium. If

i 6= k, the labeli must have been present at player one’s vertexek (because the

only missing label along the paths isk), hence can be dropped by player one in the

next step. Player one then walks along the edge given by all labels present atek,

apart from labeli, until he reaches a new vertex, where he picks up a new label,

which player two can then drop. This way, the players take turns in picking up

and dropping labels, until an equilibrium is reached. As an example, consider the

Lemke-Howson path with missing label 3 for the following game:

A =




4 4 4

0 0 6

5 0 0


 , B =




6 12 0

0 4 0

8 0 13


 (1.1)

In this example, the Lemke-Howson algorithm finds the equilibrium(5/11,0,6/11),

(4/5,0,1/5). We have illustrated the path that the algorithm traces in the strategy

space in Figure1.1. We will come back to this example in Chapter3.
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Figure 1.1: The Lemke-Howson path with missing label 3 for example (1.1).

The left simplex is player one’s, the right one player two’s. Player one’s strate-

gies are labelled 1-3, player two’s have labels 4-6. The labels in the simplex mark

the players’ best reply regions. The labels outside mark the edges of the simplex

where the corresponding strategy is unplayed. The square dot is the equilibrium

that is found by the Lemke-Howson algorithm. The black arrows give the path

of the algorithm, and are numbered in the order in which they occur.

We have now collected all the prerequisites that we require for the following chap-

ters. Whatever else we need will be explained as we go along.
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2
The index of an equilibrium

component

2.1 Introduction

In this chapter, we give an exposition to the index, and present an algorithm for the

computation of the index of an equilibrium component in degenerate games. The

index is a topological notion which assigns to each connected component of Nash

equilibria an integer which can be interpreted as an “orientation” of the equilibrium

component. As explained in Chapter1, the index is useful in a variety of contexts,

particularly in the theory of equilibrium selection and refinement.

In nondegenerate games, where all equilibria are isolated, the index of an equilib-

rium can be easily computed, essentially as the sign of a suitable determinant (see

Definition 4.3). However, for equilibrium components in degenerate games, there

is no such explicit formula. A general method to calculate the index of an equi-

librium component works as follows: Choose a nondegenerate perturbation of the

game, compute the equilibria of the perturbed game, and add up the indices of those

equilibria that are close to the given component (Demichelis and Germano, 2000;

Ritzberger, 2002). However, this approach leads to several complications: First,

it is necessary to actually perturb the game. Second, we need to decide on when

an equilibrium of the perturbed game is close enough to the original component

to warrant being included in the calculation of its index. Due to these drawbacks,
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Chapter 2. The index of an equilibrium component

research has focused on games with a simple structure, like outside option games

(see, for example,Hauk and Hurkens, 2002, von Schemde, 2005), where the index

of a given component is easily computable using the fact that in any bimatrix game,

the indices of all equilibrium components have to add up to+1.

However, for most equilibrium components, such a line of argument is not suf-

ficient, hence a more general method is needed. The algorithm that we suggest

is, in a sense, a simplification of the perturbation method described above. How-

ever, since our algorithm does not require any explicit perturbations, it avoids the

disadvantages of this method.

Our algorithm works as follows: For a given equilibrium component in a degen-

erate game we consider its extreme equilibria, and assign to each of these a new

integer, which we call itslex-index. The crucial ingredient for our algorithm is the

following, intuitively appealing result:

Theorem 2.1. The index of an equilibrium component is the sum of the lex-indices

over all extreme equilibria of this component.

Since the lex-index of an extreme equilibrium is easily computable, this result gives

immediately rise to a “perturbation-free” algorithm for the computation of the in-

dex of a component of Nash equilibria. For its proof, we use the standard pro-

cedure for index computation, as described above: We perturb the game and add

up the indices of equilibria near a given component. For our purpose, we choose

a lexicographic perturbation. Under this perturbation, every extreme equilibrium

decomposes into a finite number of isolated equilibria of the perturbed game, or

vanishes. The lex-index of an extreme equilibrium is defined as the sum of the

indices of all equilibria of the perturbed game that originate from this particular

extreme equilibrium. Using this definition of the lex-index, Theorem2.1 follows

immediately.

The advantage of our method is that the lex-index can be calculated using a very

simple approach. Both the equilibria of the lexicographically perturbed game and

their indices can be easily computed. Also, for every equilibrium of the perturbed

game it is immediately clear which extreme equilibrium of the original game it

comes from. More precisely, the equilibria of the original game solve a linear com-

plementarity problem (LCP), i.e. an optimization problem with linear constraints

22



Chapter 2. The index of an equilibrium component

and a complementarity condition (for precise definitions, see Section2.3). Every

extreme equilibrium of the original game has one or multiple representations by

“bases” of this LCP. Every basis that is both “lexico-feasible” and “complemen-

tary” corresponds to a unique equilibrium of the perturbed game (the first property,

lexico-feasibility, is needed in order to maintain feasibility of the basis, the second,

complementarity, to keep the equilibrium property in the perturbed game). The in-

dex of this equilibrium can be computed from the payoff matrices using a suitable

lexico-rule. This in turn implies that the lex-index of an extreme equilibrium of the

original game can be easily calculated, by adding up the indices of those equilib-

ria of the perturbed game that come from the bases which represent this particular

extreme equilibrium. It also means that we can avoid explicitly computing the

equilibria of the perturbed game, and their indices. In this sense, the concept of

lex-index, and with it our description of the index of a component in Theorem2.1,

does not rely on perturbations of the game.

The structure of the chapter is as follows: In Section2.2, we give a short exposition

to various definitions and properties of the index, and summarize the theoretical

foundations of our algorithm. In Section2.3, we describe how to perturb a game

lexicographically, and analyze the equilibrium structure of the perturbed game. We

use these perturbations to develop the concept of lex-index, and prove Theorem2.1

in Section2.4. We also reformulate this theorem as an explicit algorithm, see

Algorithm 2.12.

2.2 The index

Let (A,B) be anm×n bimatrix game. Since adding a positive constant to the ma-

trices does not change the structure of the game, we can assume without loss of

generality thatA,B > 0 for the remainder of this chapter. Recall that the support

supp(z) of a strategyzof either player is the set of pure strategies played with pos-

itive probability, and|supp(z)| the number of strategies in the support ofz. The

game is called nondegenerate if every strategyx of the first player has at most

|supp(x)| pure best replies, and similarly for the second player. For an equilibrium

(x,y), denote byAxy andBxy the matrices obtained fromA andB by deleting all

rows that are not contained in the support ofx, and all columns that are not con-
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tained in the support ofy. In a nondegenerate game, it is straightforward that in an

equilibrium, both players use strategies of equal support size, hence these matrices

must be square. Moreover, they must be nonsingular, since any linear dependency

between rows or columns of the matricesAxy or Bxy can be used to reduce the

support of one of the strategies without changing the set of its pure best replies,

contradicting nondegeneracy (von Stengel, 2002). The indexof an equilibrium in

a nondegenerate game can be defined as follows (Shapley, 1974):

Definition 2.2. Let(x,y) be a Nash equilibrium of a nondegenerate bimatrix game

(A,B), whereA,B > 0. Theindexof (x,y) is defined as

(−1)|supp(x)|+1sign det(Axy) det(Bxy). (2.1)

This definition can be extended to games with potentially non-positive entries: Just

add a sufficiently large constant to the game and then define the index using equa-

tion (2.1). This is well-defined, due to part (b) of the next Proposition.

Actually, in Shapley’s definition of the index, the sign of the index is reversed.

However, the above sign convention has been shown to be more convenient. Shap-

ley’s main result, which motivated his definition of the index, holds regardless of

the chosen sign convention: Equilibria at opposite ends of a Lemke-Howson path

have opposite index.

The following proposition (von Schemde and von Stengel, 2008, Proposition 2)

collects some well-known properties of the index.

Proposition 2.3. In a nondegenerate game, the index of a Nash equilibrium

(a) is +1 or −1;

(b) does not change when adding a positive constant to all payoffs;

(c) only depends on the payoffs in the support of the equilibrium;

(d) does not depend on the order of the players’ pure strategies;

(e) is +1 for any pure-strategy equilibrium;

(f) the sum of the indices over all equilibria is+1.

Most of these properties are obvious from the definition, others require some more

work, seevon Schemde and von Stengel(2008).
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In degenerate games, the definition of the index is more involved since Definition

4.3 can no longer be applied. There are several ways to extend the definition of

the index to degenerate games and components of equilibria, most of which rely

on the notions of global and local degree of a continuous map. The degree is a

quite advanced topological tool, which is based on the concept of orientations of

manifolds. We give a short exposition to the local and global degree of a continuous

map using standard results and methods from algebraic topology (see, for example,

Dold, 1980, Sections IV.5 and VIII.4, orHatcher, 2001). An introduction to the

intuition behind the concept of degree can be found inDemichelis and Germano

(2000).

To be mathematically precise, we will have to use homology groups (with inte-

ger coefficients). We try, however, to give some geometric interpretation along

the way that should be accessible to a reader without any knowledge in algebraic

topology. The rough idea behind the degree is the following: Consider a topolog-

ical d-manifold X (i.e. a topological space that is locally homeomorphic toRd).

Intuitively, the manifold is orientable if we can choose “local” orientations around

every pointx in X that are compatible globally, i.e. “glue together nicely”. Hence

a (global) orientation is a collection of local orientations that “fit together”. Now

the global degreeof a continuous mapf between compact connected orientable

d-manifoldsX andY measures what happens to the global orientation when we

apply f . Thelocal degreeof f around a pointx measures what happens to the local

orientation aroundx. For our purposes, it is not necessary to understand the precise

definition of the index as a local degree. The reader preferring to avoid the topolog-

ical bit can skip the following paragraphs and accept Proposition2.4as a definition

of the index of an equilibrium component. From Proposition2.4onwards we will

not need the notion of local or global degree for the remainder of this thesis.

We formalize the intuitive definition of the degree in terms of homology groups.

We assume the reader to be familiar with the concept of homology; otherwise, the

following can be taken as intuitive (albeit imprecise) “definitions”: For a topo-

logical spaceX and i ∈ N, the ith homology groupHiX essentially measures the

i-dimensional shape ofX. For a subsetW of X, the ith relative homology group

Hi(X,W) encodes the relationship between the homology groupsHiW andHiX,

in a sense made precise by the “long exact homology sequence”. The intuitive
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idea behind the relative homology is to ignore everything that is contained in the

subspaceW. Every continuous mapf : X→Y between topological spaces induces

group homomorphismsHi f : HiX→HiY. If W⊂X andZ⊂Y such thatf (W)⊂ Z,

the mapf also induces homomorphismsHi f : Hi(X,W)→ Hi(Y,Z). A central ob-

servation is that for ad-manifoldX and a pointx in X, the relative homology group

Hd(X,X\{x}) is isomorphic to the groupZ of integers. The intuition behind this is

as follows: Relative homology is “local” (in a sense made precise by “excision”, a

very useful tool in homology theory). Since ad-manifoldX looks locally likeRd,

the groupHd(X,X\{x}) is isomorphic toHd(Rd,Rd\{0}), which is a free group

generated by ad-cycle (i.e. ad-simplex or ”topological ball”) around0.

Hence a generator ofHd(X,X\{x}) can be interpreted as the choice of a cycle

around the pointx. Intuitively, such a cycle, understood as ad-simplex aroundx,

orientsX locally aroundx, by giving the space “direction”. Hence it makes sense

to define alocal orientation of X at a pointx to be a choice of generator of

Hd(X,X\{x}). Equivalently, a local orientation aroundx is the choice of an iso-

morphismHd(X,X\{x}) ∼→ Z. A global orientationis a function that assigns to

each pointx a local orientationox, in a locally consistent way. A manifold isori-

entableif it has at least one global orientation.

Orientability of a compact, connectedd-manifoldX implies that the top homology

groupHdX is isomorphic toZ. A global orientation ofX then corresponds to the

choice of such an isomorphism, or equivalently a choice of a generator ofHdX.

This generator is usually called thefundamental cycleof X. A continuous map

f : X → Y between compact, connected, orientedd-manifolds induces a group

homomorphismHd f on the top cohomology groups, which must correspond to

multiplication by an integer. This integer is called the(global) degreeof f . It

counts the “multiplicity” with whichHd f maps the fundamental cycle onX to

the fundamental cycle onY, hence quantifies how the global orientation changes

under f .

Similarly to a global degree, a continuous mapf : X →Y between oriented mani-

folds induces a local degree in the following way: Assume we have a pointy in the

range of f whose preimagef−1(y) consists of only one pointx. Then f induces

a homomorphismHd f : Hd(X,X\{x}) → Hd(Y,Y\{y}). As seen above, both of

these homology groups are isomorphic toZ, where the isomorphism depends on
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the chosen orientation. SoHd f corresponds to multiplication by an integer, which

is called thelocal degreeof f overy. This degree measures the number of cycles

aroundy obtained from a cycle aroundx underHd f . If we interpret the cycle as

a local orientation aroundx, the local degree quantifies how this local orientation

changes underf . This interpretation coincides with an equivalent definition of

the local degree for differentiable maps of differential manifolds: In the situation

above, assume that additionally,f is differentiable, andx a regular value off . Then

the local degree off overy is the sign of the determinant of the Jacobian atx. In

this sense, the local degree indicates if the map is locally orientation-preserving

or -reversing.

The local degree can be extended to the case wheref−1(y) is compact, following a

similar concept. A global orientation onX induces a local orientation along every

compact subset ofX. On thedth relative homology groups, this orientation along

the compact set is mapped to an integer multiple of the local orientation aroundy.

This integer is the local degree off over y. An important property that we need

later is “locality” of the local degree: The local degree off overy does not change

if we restrict f to some neighborhood off−1(y), since relative homology groups

are “local”.

Another useful property of the local degree is additivity. AssumeX is a finite union

of open setsXi such that the setsf−1(y)∩Xi are pairwise disjoint. Then the local

degree off overy is the sum of the local degrees off |Xi overy. This means that

the local degree off over y is composed of the local degrees of “localized” (i.e.

restricted) versions off .

A crucial notion in the context of degree is that of a proper map. A continuous map

is proper if the inverse image of every compact set is again compact. IfX andY

are oriented manifolds, andY is connected, then for a proper mapf : X → Y the

local degree overy is the same for everyy in Y. (Moreover, if the manifolds are

both compact and connected, this degree equals the global degree off as defined

earlier.)

The degree of a continuous map becomes useful in game theory because the in-

dex of an equilibrium component can be defined in terms of degree. There are

several ways of doing this. For example, the equilibria of a bimatrix game can

be represented as rest points, i.e. zeros, of certain vector fields, calledNash fields.
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The index of an equilibrium component can then be defined in dynamic terms as

the “Poincaŕe index” of the corresponding component of zeroes of such a Nash

field (seeRitzberger, 1994, or Demichelis and Germano, 2000). The index of a

component of rest points of a Nash fieldf is the global degree of the mapf/|| f ||,
restricted to a small “sphere” around the component of rest points. It can also be

seen as the local degree off , restricted to a small neighborhood of the component,

over0. For regular equilibria, it is the sign of the determinant of the corresponding

Jacobian. In this interpretation, the index of a rest point carries information about

its dynamic stability. Equivalently, if we have aNash mapf , i.e. a continuous

map on the strategy space whose fixed points are the equilibria of the game, then

the index of the equilibrium component is the local degree ofid− f , restricted to

a neighborhood of the component, over zero (byid we denote the identity map).

This definition does not depend on the choice of Nash map, and for nondegenerate

games yields indeed Shapley’s definition (Govindan and Wilson, 1997b).

If understood as a fixed point index, the index of an equilibrium component carries

information about the “stability” or “essentiality” of a component. A component

of fixed points of a continuous map is called essential if the component does not

vanish under continuous perturbations of the underlying map. This is equivalent

to its index being nonzero (O’Neill , 1953). Hence an equilibrium component of

nonzero index will be stable in the sense that whatever Nash map we choose, every

perturbation of that map will have a fixed point close to that equilibrium.

In game theoretic terms, this “essentiality” of an equilibrium component with

nonzero index translates into a version of hyperstability, a concept that goes back

to Kohlberg and Mertens(1986). Recall that a pure strategy of one player is called

redundantif that player has anequivalent strategy, i.e. a convex combination of

his other pure strategies that gives the same expected payoff against any strategy of

the other player. From a game(A,B) we get thereductionof the game by deleting

all redundant strategies. Two games are calledequivalentif they yield the same

reduced game.Govindan and Wilson(2005) call an equilibrium component of a

game(A,B) hyperstableif for every equivalent game(A∗,B∗) and every neigh-

borhoodU of the component, there is aδ > 0 such that everyδ -perturbation of

(A∗,B∗) has an equilibrium that is equivalent to some strategy inU . They call an

equilibriumuniformly hyperstableif the hyperstability condition is met uniformly,
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i.e. if δ can be chosen independently of the equivalent game.Govindan and Wil-

son(2005) proved that an equilibrium component has nonzero index if and only

if it is uniformly hyperstable, answering a long-standing open question as to what

the suitable game-theoretic counterpart of topological essentiality should be. For

a detailed discussion of the link between essentiality and the theory of equilibrium

selection seeGovindan and Wilson(1997b).

For computational purposes, we will need yet another definition of the index as the

local degree of the projection from the graph of the equilibrium correspondence

to the space of games. More precisely, considerRm×n×Rm×n as the space of

m×n bimatrix games. LetE be the graph of the equilibrium correspondence over

this space of games, i.e. the correspondence which maps each game to its set of

equilibria. Consider the projection mapp : E → Rm×n×Rm×n; by Kohlberg and

Mertens(1986), it is homotopic to a homeomorphism. This means that we can

orientE such thatp has global degree1.

Consider an equilibrium componentC of a bimatrix game(A,B), and letU be a

neighborhood ofC in E that “separates”C from all other equilibria of(A,B). By

this we mean thatU does not contain any other equilibria of(A,B) apart fromC.

Then the index ofC coincides with the local degree of the projection mapp, re-

stricted toU , over the game(A,B) (seeGovindan and Wilson, 1997a, for bimatrix

games, andDemichelis and Germano, 2000, for general strategic-form games).

Note that by “locality” of the local degree, this definition does not depend on the

choice ofU . From the additivity of the local degree it follows easily that for non-

degenerate as well as for degenerate games, the sum of the indices over all equi-

librium components equals +1. However, the index of an equilibrium component

in degenerate games is no longer restricted to{+1,−1}; any integer can occur as

index (Govindan et al., 2003).

It is a well known fact that in order to compute the index of an equilibrium com-

ponent, we can perturb the game slightly, and add up the indices of the equilibria

nearby, see, for example,Demichelis and Germano(2000) or Ritzberger(2002).

However, since this “perturbation-method” is the foundation of our algorithm, we

would like to give and prove a more precise statement, which we suspect to be

well-known but for which we have not found a reference:

Proposition 2.4. Suppose we are given an equilibrium componentC of anm×n
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bimatrix game(A,B). For any neighborhoodU ofC in the graph of the equilibrium

correspondenceE whose closure does not contain any other equilibria of(A,B),

there is a neighborhoodV of (A,B) in the space ofm×n-games such that the fol-

lowing holds: For every game(A′,B′)∈V, the sum of the indices of the equilibrium

components of(A′,B′) that are contained inU equals the index ofC.

Proof. The proposition is essentially due to the fact that the projection is locally

proper, which implies that the local degree is “locally independent” of the game

chosen. Coupled with additivity of the local degree, the proposition follows. In

more detail, the proof works as follows: Consider the restriction of the projection

p|U : U → Rm×n×Rm×n. The index ofC is the local degree ofp|U . The local

degree of a proper map is constant (if the range is connected) (Dold, 1980, IV.5.12

or VIII.4.5). Hence we just need to find a connected open neighborhoodV of the

game(A,B) such thatp|U is “proper overV”, i.e. such thatp|U∩p−1(V) is proper.

Let Uδ (C) be the compactδ -neighborhood ofC in the equilibrium graph, and

chooseδ > 0 small enough such thatUδ (C) is contained inU . ChooseV such that

for someδ > 0, (p|U)−1(V) is contained inUδ (C) (whereV is the closure ofV).

Such a choice ofV is possible since the equilibrium correspondence is upper hemi-

continuous, or more precisely, since its graph is closed (and becauseU does not

contain any equilibria apart fromC). For this choice ofV, let U ′ = U ∩ p−1(V).

By construction ofV, p|U ′ : U ′ → V is proper. This, together with localness of

the degree, implies that the local degree ofp|U is “constant overV”, by which

we mean that it is the same over every(A′,B′) in V. By additivity (Dold, 1980,

Theorem IV.5.8 or Proposition VIII.4.7), the latter degree is just the sum of the

indices of the equilibria of(A′,B′) that are contained inU .

The version of the index in Proposition2.4 is most useful for computations, since

it allows for a computation of the index of an equilibrium component based on

perturbations of the game. However, as explained in the introduction, direct ap-

plication of this perturbation-approach leads to several complications. In order to

arrive at a simpler, “perturbation-free” method, we use lexicographic perturbations

as the base of our algorithm, which we develop in the next two sections.
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2.3 A lexicographically perturbed game

Lexicographic perturbations are used to solve degenerate linear programs and lin-

ear complementarity problems by making them nondegenerate (Dantzig, 1963).

In game theory, these perturbations have been used to resolve degeneracies in the

Lemke-Howson algorithm (Lemke and Howson, 1964), and the van den Elzen-

Talman algorithm (von Stengel et al., 2002). We use a slight variation of the con-

cept of lexicographic perturbations to turn a degenerate game into a nondegenerate

one. In the following section, we use this concept of lexicographic perturbation of

a degenerate game to compute the indices of its equilibrium components.

Recall that the set of equilibria of a bimatrix game can be understood as the solu-

tions to a linear complementarity problem (which is a special case of a quadratic

programming problem with linear constraints and a complementarity condition).

Given a bimatrix game(A,B), the equilibria(x,y) of the game are in one-to-one

correspondence with the solutions to the following set of equations and inequalities

(von Stengel, 1996):

1>y = 1

−u1+Ay+ r = 0 (2.2)

y, r ≥ 0

and

1>x = 1

−v1+B>x+s= 0 (2.3)

x,s≥ 0

such that

x>r = 0 = y>s (2.4)

The variablesu andv give the payoffs to the respective players, andr ands are

slack variables that measure how far from being optimal a strategy is.

The systems (2.2) and (2.3) are linear functions of some constrained and uncon-

strained variables, i.e. they are of the form

D(z,z′) = b, z′ ≥ 0
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for some matrixD, a set ofunconstrainedvariablesz and a set ofconstrained

variablesz′. In our case, the only unconstrained variables areu andv, respectively;

all other variables are constrained to be nonnegative.D is a k× k′ matrix, where

k′ > k, and has maximal possible rankk: In the first case,D is of the form
(

0 1> 0

−1 A I

)
(2.5)

and in the second (
0 1> 0

−1 B> I

)
(2.6)

whereI denotes the identity matrix of suitable size. We will need the following

standard terminology of linear programming and its extensions (see, for example,

Dantzig, 1963): A solution to the systemD(z,z′) = b is calledfeasibleif it satisfies

the nonnegativity constraintsz′ ≥ 0. A feasible solution is calledextremeif it can-

not be written as a proper convex combination of two other feasible solutions. A

solution toD(z,z′) = b is calledbasicif the columns ofD that correspond to the un-

constrained and the nonvanishing constrained variables, are linearly independent.

A basisor basic set of variablesconsists of any set ofk variables, containing all

unconstrained variables, such that the square matrix given by the columns ofD

corresponding to these variables is non-singular, i.e. those columns form a basis of

Rk. To every such basis we can assign a basic solution of the equationD(z,z′) = b

by setting the non-basic variables to zero and solving for the basic variables (the

solution is then unique). By abuse of terminology we call a basis feasible if the cor-

responding basic solution is feasible. The systemD(z,z′) = b,z′ ≥ 0 is callednon-

degenerateif in every basic feasible solution, all constrained basic variables have

positive value. Byvon Stengel(1996), degeneracy of a bimatrix game (given by

positive matrices) is equivalent to degeneracy of the corresponding systems (2.2)

and (2.3).

A central role in our algorithm is played byextreme equilibria. A Nash equilibrium

is called extreme if it cannot be written as a proper convex combination of other

Nash equilibria of the game, i.e. if it gives rise to extreme solutions of (2.2) and

(2.3). Extreme equilibria have the following property:

Proposition 2.5. An equilibrium(x,y) of a bimatrix game(A,B) is extreme if and

only if the corresponding solutions of the systems(2.2) and (2.3) are basic.
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Proof. This follows directly from the following standard result: A point(z,z′) in

Z = {(z,z′) | D(z,z′) = b,z′ ≥ 0} is an extreme point ofZ if and only if (z,z′) is a

basic feasible solution. For systems where all variables are constrained, a proof of

this result is given inDantzig(1963, Theorem 7.1.3); the same proof also works

for systems with unconstrained variables.

We now have all the terminology that we need to describe lexicographic pertur-

bations of bimatrix games. For anm×n bimatrix game(A,B) andε > 0, define

a perturbed game(A(ε),B(ε)) whereA(ε) = A−E(m,n), B(ε) = B−E(n,m)>,

whereE(m,n) is them×n matrix given by

E(m,n) =




ε . . . ε
. . .

εm . . . εm




︸ ︷︷ ︸
n columns

Perturbing the game in this way essentially corresponds to lexicographic perturba-

tions of the corresponding systems (2.2) and (2.3): If we replaceA by A(ε) in (2.2),

we get the following system of equations and inequalities:

1>y = 1

−u1+Ay+ r = (ε , . . . ,εm)> (2.7)

y, r ≥ 0

and similarly for system (2.3)

1>x = 1

−v1+B>x+s= (ε, . . . ,εn)> (2.8)

x,s≥ 0

A solution to those two perturbed systems yields an equilibrium of(A(ε),B(ε)) if

and only it satisfies the complementarity condition (2.4), i.e. if x⊥ r andy⊥ s.

Since the solutions of (2.7) are the same as of the system (2.2) with A replaced by

A(ε), these systems also have the same sets of extreme feasible solutions. As seen

in the proof of Proposition2.5, the extreme feasible solutions correspond to feasi-

ble bases of the respective systems. Hence the feasible bases of the two systems
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coincide. This may sound obvious, but is equivalent to the following seemingly

non-trivial statement: A subset ofm+1 columns of
(

0 1> 0

−1 A I

)
(2.9)

is linearly independent and feasible (i.e. the corresponding basic solution is feasi-

ble) if and only if the corresponding subset of
(

0 1> 0

−1 A(ε) I

)
(2.10)

is linearly independent and feasible. Similarly, the basic feasible solutions of the

system (2.8) will be the same as those to the system (2.3), with B replaced byB(ε).

We will use this property implicitly several times.

Note that the perturbations in (2.7) and (2.8) are not standard lexicographic pertur-

bations of (2.2) and (2.3), in that the first row in both systems remains unperturbed.

However, these perturbations still lead to nondegenerate systems. The intuition be-

hind this is that the first line of both systems is never degenerate since the degen-

eracies of a game are contained in the matricesA andB, respectively.

Proposition 2.6. For small enoughε > 0, the game(A(ε),B(ε)) is nondegenerate.

It is well-known that a lexicographically perturbed system of equations is non-

degenerate. We slightly adapt the standard proof of this fact to suit out non-

standard perturbations. Recall that a nonzero vector is calledlexicopositiveif its

first nonzero entry is positive, andlexiconegativeotherwise.

Proof. According tovon Stengel(1996), we need to prove that in any basic fea-

sible solution to the system (2.7) all basic variables are positive (the correspond-

ing statement for system (2.8) will follow by analogy). Now (2.7) is of the form

D(u,y,s) = (1,0, . . . ,0)>+(0,ε, . . . ,εm)> for the matrixD given in (2.5). For any

basis of the column space ofD, denote byS the submatrix ofD given by the basic

columns. Then the corresponding basic solution is given byS−1(1,0, . . . ,0)> +

S−1(0,ε , . . . ,εm)>. If we denote the columns ofS−1 by [s1, . . . ,sm+1], we get that

the basic solution is given bys1 +εs2 + · · ·+εmsm+1. The matrixS−1 can have no

zero row since it has full rank. If a row ofS−1 is lexicopositive, the corresponding

basic variable is positive forε small enough. If the row is lexiconegative, the basic
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variable is negative (hence the corresponding solution will be unfeasible). Hence

in every basic feasible solution to (2.7), the basic variables will be positive.

In order to use the “perturbation method” from Proposition2.4 to calculate the

index of an equilibrium component of a degenerate game(A,B), we need to under-

stand the equilibrium structure of(A(ε),B(ε)). It turns out that for this, we need

to gain some deeper understanding of bases of the systems (2.2), (2.3), and their

relationship to extreme equilibria of(A,B). In the light of the proof to Proposi-

tion 2.6we would like to remind the reader of the following terminology: A basis

of the systems (2.2) or (2.3) is calledlexicofeasibleif for the corresponding basic

matrixS, its inverse matrixS−1 has only lexicopositive rows, i.e. rows in which the

first non-zero entry is positive. Moreover, we call a pair of bases of (2.2) and (2.3)

complementaryif the following condition holds: For any1≤ j ≤ n we have that

at least one of the variablesy j andsj is nonbasic, and similarly for any1≤ i ≤m,

that at least one of the variablesxi andr i is nonbasic. In particular, this implies that

the corresponding basic solutions satisfy the complementarity condition (2.4).

In a nondegenerate game, every equilibrium corresponds to a unique pair of bases

of the systems (2.2) and (2.3). By nondegeneracy of the system, this pair of bases

will have to be complementary and lexicofeasible (where by abuse of terminology

we mean a pair of bases to be lexicofeasible if both bases are). For an extreme

equilibrium (x,y) in a degenerate game, however, there may be several bases for

the system (2.2) that yieldy as solution, and similarly there may be several bases of

(2.3) that yieldx as solution. Hence we may get several pairs of bases of (2.2), (2.3)

that correspond to the extreme equilibrium(x,y). In general, only a few of such

pairs of bases will be both complementary and lexicofeasible. The next Proposi-

tion tells us how to tell the equilibria of(A(ε),B(ε)) from the complementary and

lexicofeasible pairs of bases of the systems (2.2) and (2.3).

Proposition 2.7.

(i) For ε > 0 sufficiently small, the equilibria of(A(ε),B(ε)) are in one-to-one

correspondence with the complementary and lexicofeasible pairs of bases of

(2.2), (2.3).

(ii) Fix such a pair of bases. Asε tends to zero, the corresponding equilibrium

of (A(ε),B(ε)) converges to an extreme equilibrium of(A,B). This limit
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equilibrium is given by the corresponding basic solutions of the unperturbed

systems(2.2), (2.3).

Proof. By the proof of Proposition2.6, for smallε, lexicofeasibility of a basis of

(2.2) is equivalent to feasibility of the corresponding solutions to the system (2.7),

and similarly for a basis of the system (2.3). Complementarity of the pair of bases

ensures that condition (2.4) is met. Moreover the established correspondence is

one-to-one, since in a nondegenerate game, every pair of complementary bases

gives rise to a different equilibrium. This proves the first part of the Proposition.

As to the second part, for any pair of lexicofeasible complementary bases, the basic

feasible solutions of the perturbed systems (2.7), (2.8) converge to a solution of the

original systems (2.2), (2.3). The latter solution must then be feasible as well,

and also satisfies the complementarity condition (2.4). Hence it corresponds to an

equilibrium of(A,B), which must be extreme due to Proposition2.5.

From now on, when we consider the game(A(ε),B(ε)), let ε > 0 be sufficiently

small for Propositions2.6 and2.7(i) to hold. Proposition2.7 links every extreme

equilibrium of the unperturbed game(A,B) to a set of equilibria of(A(ε),B(ε)),

via certain bases of the system (2.2), (2.3) that yield that extreme equilibrium as a

solution. Note that an extreme equilibrium in a degenerate game(A,B) may give

rise to several complementary pairs of bases, none (or many) of which may be

lexicofeasible. Consider, for example, the degenerate game

A =

(
1 1

1 2

)
= B> (2.11)

which has two pure Nash equilibria:(1,0),(1,0) and(0,1),(0,1). The first of these

extreme equilibria gives rise to several bases: There are three basic sets of variables

for system (2.2) that containy1: {u,y1,y2}, {u,y1, r1} and{u,y1, r2}. Analogously,

(2.3) has three corresponding sets of basic variables. Except for the second, these

bases are not lexicofeasible. The bases of the two systems can be combined to nine

different pairs, among which only one is lexicofeasible, namely the pair given by

the basic variables{u,y1, r1} and{v,x1,s1}. However, this basis is not complemen-

tary. Hence by Proposition2.7, there will be no equilibrium of(A(ε),B(ε)) close

to (1,0),(1,0). This is in line with the fact that for any positiveε, the equilibrium

(1,0),(1,0) will vanish in (A(ε),B(ε)) since it is strongly dominated.
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2.4 Computing the index of an equilibrium component:

The lex-index

Consider an equilibrium componentC of a degenerate game(A,B). Proposi-

tion 2.7 tells us how to find all the equilibria of the lexicographically perturbed

game(A(ε),B(ε)) that are closeC. By Proposition2.4, we need to calculate the

indices of these equilibria, and add them up in order to get the index of the compo-

nent. The first part boils down to calculating determinants. It turns out that we will

not have to actually compute the determinants of submatrices ofA(ε) andB(ε), as

we would have to if we wanted to use Definition4.3 for the index computation.

Since we chose a lexicographic perturbation, we will see that it suffices to calcu-

late determinants related to the matricesA andB. Moreover, it turns out that for an

equilibrium of(A(ε),B(ε)), its index will depend only on the corresponding com-

plementary pair of lexicofeasible bases, as we will prove in our next Proposition.

First, however, we need to introduce the following notation:

Definition 2.8. For a squarek×k matrixM, denote by[M |i 1] the matrix obtained

from M by replacing theith column by the vector1. Defineς(M), called thesign

of M, to be+1 if the vector

[det(M),−det([M |1 1]), . . . ,−det([M |k 1])]

is lexicopositive,−1 if it is lexiconegative, and0 if it vanishes.

The following proposition expresses the index of an equilibrium of(A(ε),B(ε)) in

terms of signs of submatrices ofA andB.

Proposition 2.9. For any lexicofeasible and complementary pair(α,β ) of bases to

(2.2), (2.3), define|β | to be the number of variablesxi that are basic (which equals

|α|, the number of variablesy j that are basic, since the bases are complementary).

Let Aαβ andBαβ be the matrices obtained fromA andB, respectively, by deleting

all rows and columns corresponding to non-basic variablesxi andy j .

For ε sufficiently small,(α,β ) corresponds to an equilibrium of the perturbed

game(A(ε),B(ε)). The index of this equilibrium is

(−1)|β |+1ς(A>αβ )ς(Bαβ )
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Before we prove Proposition2.9, a useful observation:

Lemma 2.10. For a k× k-matrix M and anyk-vectorξ , the determinant ofM +

[ξ , . . . ,ξ ] is

det(M)+
k

∑
i=1

det([M |i ξ ])

where[M |i ξ ] denotes the matrix obtained fromM by replacing theith column

with ξ .

Proof. The determinant is multilinear and vanishes if two columns are linearly

dependent.

Proof of Proposition2.9. Since the game(A(ε),B(ε)) is nondegenerate, the sup-

port size of the equilibrium(x,y) is |β |. By Definition 4.3, the index of the equi-

librium is the sign of

(−1)|β |+1det(A(ε)αβ )det(B(ε)αβ )

To compute the first determinant, abbreviateAαβ by A, denote the support ofx

by {i1, . . . , ik}, wherek = |β |, and use Lemma2.10, with ξ = −(ε i1, . . . ,ε ik)>, to

calculate

det(A(ε)αβ ) = det


A−




ε i1 . . . ε i1

. . .

ε ik . . . ε ik





 = det(A)+

k

∑
l=1

det([A |l ξ ]) (2.12)

Laplace determinant expansion along thel th column yields

det([A |l ξ ]) =−
k

∑
h=1

(−1)l+hε ihdet(Ahl)

whereAhl denotes the matrix obtained fromA by deleting thehth row andl th

column. Hence we obtain that (2.12) equals

det(A)−
k

∑
h=1

ε ih
k

∑
l=1

(−1)l+hAhl = det(A>)+
k

∑
h=1

ε ih(−det([A> |h 1]))

For smallε this expression (and with it the determinant in (2.12)) is positive (neg-

ative) if and only if the vector

[det(A>),−det([A> |1 1]), . . . ,−det([A> |k 1])]
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is lexicopositive (lexiconegative). Hence we get

sign
(
det(A(ε)αβ )

)
= ς(A>)

which cannot be zero since the game is nondegenerate. The same calculation ap-

plied toB(ε) yields the second half of the index calculation.

Proposition2.9 makes it easy to calculate the index of any equilibrium compo-

nent, and is the final ingredient for our definition of an index concept for extreme

equilibria, the lex-index. According to Proposition2.7, every extreme equilibrium

contributes in a precise way to the equilibria of the perturbed game. This result,

together with Proposition2.9, allows for a suggestive definition of the lex-index of

such an extreme equilibrium. More precisely, for an extreme equilibrium(x,y) of

a game(A,B), defineB(x,y) to be the set of all lexicofeasible and complementary

pairs of bases of (2.2), (2.3) that yield(x,y) as the corresponding basic solution.

Now define thelex-indexof (x,y) to be

∑
(α,β )∈B(x,y)

(−1)|β |+1ς(A>αβ )ς(Bαβ ) (2.13)

where|β |, Aαβ andBαβ are defined as in Proposition2.9. Essentially, the lex-

index of an extreme equilibrium is the sum of the indices of all equilibria of the

game(A(ε),B(ε)) that come from that extreme equilibrium. For an equilibrium

in a nondegenerate game, the lex-index coincides with the usual definition of the

index. We reformulate the results from Propositions2.4, 2.7 and2.9 in terms of

the lex-index, and finally prove Theorem2.1from the introduction:

Corollary 2.11. The index of an equilibrium component is the sum of the lex-

indices over all extreme equilibria of this component.

The concept of the lex-index for extreme equilibria can be nicely demonstrated us-

ing the following basic example, given by the matricesA=

(
2 1

1 1

)
, B=

(
1 1

1 2

)
.

This game has just one equilibrium component, whose index is+1. Its extreme

equilibria are(1,0),(0,1), (1,0),(1,0) and (0,1),(0,1). The component con-

sists of two maximal Nash subsets, i.e. maximal convex set of equilibria (Jansen,

1981). The two maximal Nash sets that form the equilibrium component in this

game are given by the set{(1,0),(p,1− p) | p ∈ [0,1]}, the other by the set
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{(q,1−q),(0,1) | q∈ [0,1]}; they intersect in the extreme equilibrium(1,0),(0,1).

What are the indices of those extreme equilibria? It is quite obvious (by iteratively

eliminating dominated strategies) that in the lexicographically perturbed game, all

equilibria apart from(0,1),(0,1) vanish. In terms of our algorithm, this corre-

sponds to the observation that the game gives rise to just one lexicofeasible com-

plementary pair of bases (in which the basic variables areu,y2, r1 and v,x2,s1).

This means that the extreme equilibrium(0,1),(0,1) has lex-index+1, while the

other two extreme equilibria have lex-index zero.

Although in nondegenerate games the lex-index of an equilibrium coincides with

its index, it still makes sense to distinguish between the two concepts for the fol-

lowing reason: The lex-index depends on the specific perturbation that we chose,

which implies that, in general, it is not independent of the order of pure strategies

in the chosen representation of the game. As an example, consider the degenerate

3×2 game

A =




6 0

5 2

3 3


 , B =




0 1

2 0

4 4




This game has one isolated equilibrium,(2/3,1/3,0),(2/3,1/3), and one equilib-

rium component whose extreme equilibria are(0,0,1),(1/3,2/3) and(0,0,1),(0,1).

It is straightforward to see that the isolated equilibrium has index+1, which im-

plies that the component has index0. In the perturbed game(A(ε),B(ε)), the equi-

librium component decomposes into two equilibria, one of which is pure, hence

has index+1. Since the indices of the two equilibria must add up to zero, the other

equilibrium must have index−1. We conclude that one of the extreme equilibria

has lex-index+1, the other lex-index−1.

Exchanging the two columns of the game essentially does not change the equilib-

rium structure; we get again an isolated equilibrium and an equilibrium component.

This time, however, the two extreme equilibria of the component vanish if we per-

turb the game using our lexicographic perturbation. This implies that both of the

extreme equilibria of the component have lex-index0.

To conclude this chapter, we summarize our results in the following algorithm

for the computation of the index of the equilibrium componentC of a degenerate

bimatrix game(A,B):
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Algorithm 2.12. Input: An equilibrium componentC of a bimatrix game(A,B).

Output: The index ofC.

Method: Enumerate all extreme equilibria ofC, using, for example, one of the

methods byAvis et al. (2010). For every extreme equilibrium, compute its lex-

index as defined in (2.13), using the methodlex-index(x,y) in Figure2.1below.

Take the sum of the lex-indices over all extreme equilibria ofC; this sum equals

the index ofC.

bases(x,y):

B = /0;

B(x) = {bases of (2.3) corresponding tox};
B(y) = {bases of (2.2) corresponding toy};
for (α,β ) in B(x)×B(y):

if (α,β ) lexicofeasible and complementary, and(α,β ) /∈B:

B = B∪{(α,β )};
OutputB.

lex-index(x,y):

B(x,y) = bases(x,y);

Compute

i(x,y) = ∑
(α,β )∈B(x,y)

(−1)|β |+1ς(A>αβ )ς(Bαβ )

whereAαβ , Bαβ and|β | are defined as in Proposition2.9, andς
is the sign function defined in Definition2.8;

Outputi(x,y).

Figure 2.1: Thelex-index method used in Algorithm2.12, which in turn uses

thebases method.
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3
Equilibrium Tracing in

Strategic-Form Games

3.1 Introduction

In this chapter we investigate several algorithms for the computation of Nash equi-

libria in strategic-form games. The algorithms byLemke and Howson(1964) and

van den Elzen and Talman(1991) for bimatrix games are complementary pivot-

ing methods; both have been studied extensively. The difference between the two

methods is that while the Lemke-Howson method only allows for a restricted (fi-

nite) set of paths, the van den Elzen-Talman algorithm can start at any mixed strat-

egy pair, called prior, and hence allows to generate infinitely many paths. This

implies that the van den Elzen-Talman algorithm is more flexible than the Lemke-

Howson method. An even more versatile algorithm is the global Newton method

by Govindan and Wilson(2003a), which works for finite strategic-form games. All

three algorithms can be interpreted as homotopy methods, seeHerings and Peeters

(2010).

We investigate the relations between these three algorithms. We show that the

Lemke-Howson and van den Elzen-Talman algorithms differ substantially: The

van den Elzen-Talman algorithm, when started from a pure strategy and its best

response as a prior, in general finds a different equilibrium than the corresponding

Lemke-Howson method. This is not surprising since both algorithms can be un-
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derstood as special cases of the global Newton method, but in very different ways.

The Lemke-Howson algorithm has been shown to be a special case of the global

Newton method inGovindan and Wilson(2003b); we prove the corresponding re-

sult for the van den Elzen-Talman algorithm. We generalize this observation to

the statement that forN-player strategic-form games, the global Newton method

implements the linear tracing procedure introduced byHarsanyi(1975).

As a special case of the global Newton method, the van den Elzen-Talman algo-

rithm can generically find only equilibria of index+1. This leads us to the issue

of traceability of equilibria. FollowingHofbauer(2003), we call an equilibrium

in a bimatrix game traceable if it is found by the van den Elzen-Talman algorithm

from an open set of priors. As explained above, the van den Elzen-Talman algo-

rithm allows for much greater flexibility than the Lemke-Howson method. Hence

one might hope that, unlike the Lemke-Howson algorithm, it is powerful enough

to find all equilibria of index+1. This raises the question if, generically, all equi-

libria of index+1 are traceable. We answer this question negatively by analyzing

traceability in coordination games.

If a nondegenerate3×3 coordination game has a completely mixed equilibrium,

this equilibrium has index+1. In addition, the game has three pure strategy equi-

libria, also of index+1, and three equilibria of support size two, which have in-

dex−1. Hofbauer(2003) noted that in a symmetric3×3 coordination game, the

completely mixed equilibrium (if it exists) is not traceable. We show that, in gen-

eral, this is only correct as long as we restrict the starting points of the van den

Elzen-Talman paths to symmetric strategy profiles. More precisely, we will see

that the traceability of the completely mixed equilibrium in a3×3 coordination

game depends on the specific geometry of the best reply regions. We prove that for

certain generic coordination games the completely mixed equilibrium is traceable.

However, we also show that there is a generic set of coordination games whose

completely mixed equilibrium is not traceable. Hence there is an open set in the

space of3× 3 bimatrix games that all have an untraceable equilibrium of index

+1. This implies that the flexibility of the van den Elzen-Talman algorithm does

not ensure generic traceability of all equilibria of index+1.

This, in turn, has important consequences for the concept of sustainability.My-

erson(1997) suggested to call an equilibrium sustainable if it can be reached by
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Harsanyi’s and Selten’s tracing procedure from an open set of priors. Since the van

den Elzen-Talman algorithm implements the linear tracing procedure, this notion

of sustainability is for nondegenerate bimatrix games equivalent to the concept of

traceability. Hence the results of this chapter imply that generically not all equilib-

ria of index+1 will be sustainable.

The structure of this chapter is as follows: In Section3.2we give a short review of

the van den Elzen-Talman method and analyze its relations to the Lemke-Howson

algorithm. In Section3.3, we give a brief exposition of the global Newton method,

before showing that it encompasses the van den Elzen-Talman algorithm and, more

generally, the linear tracing procedure, as a special case. Section3.4 contains a

discussion of traceability of equilibria.

A version of this chapter has been published in Economic Theory (Balthasar,

2010).

3.2 Van den Elzen-Talman versus Lemke-Howson

Thevan den Elzen-Talman algorithmwas introduced byvan den Elzen and Talman

(1991). It is a homotopy method that finds an equilibrium by starting at an arbitrary

prior and adjusting the players’ replies.

Let (A,B) be anm×n bimatrix game. As usual, denote by∆m and∆n the strategy

simplices of players one and two, respectively, and the strategy space by∆ :=

∆m×∆n. For a subsetZ of a real vector space, and a real numberα, denote by

α ·Z the set{αz | z∈ Z}. Take an arbitraryprior or starting point(x,y) ∈ ∆. For

t ∈ [0,1], define a new game(A,B)t , in which the players choose a strategyx∈ t ·∆m

andy∈ t ·∆n, respectively, and get the payoff given by the matricesA andB against

the strategy profile

((1− t)x+x,(1− t)y+y)

The game(A,B)t thus is the game that we get from(A,B) when we restrict the

strategy choices of the players to

∆t := (1− t)(x,y)+ t ·∆

Thevan den Elzen-Talman algorithmtraces equilibria of the game(A,B)t , starting

at the prior(x,y) for t = 0, and reaching an equilibrium of(A,B) at t = 1. In
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general, degeneracies can occur along the path even in nondegenerate games. A

discussion on how to resolve these can be found invon Stengel et al.(2002).

The van den Elzen-Talman algorithm can also be described as a complementary

pivoting procedure: A point(x,y) ∈ t · ∆ yields an equilibrium in the restricted

strategy space∆t if and only if there are suitable vectorsr,s and real numbersu,v

such that the following equations and inequalities hold:

A· ((1− t)y+y)+ r = u1

B> · ((1− t)x+x)+s= v1

x>1 = t,y>1 = t (3.1)

x>r = 0,y>s= 0

x, r,y,s≥ 0

The vectorsx andy indicate how much weight is put on each strategy in addition to

that given by(1− t)x and(1− t)y. The slack variablesr ands show how far from

being optimal a strategy is against the other player’s strategy. The real numbersu

andv track the equilibrium payoff during the computation.

As a complementarity pivoting algorithm, the van den Elzen-Talman method can

be understood as a special case of Lemke’s algorithm (von Stengel et al., 2002).

The latter is a method for solving linear complementarity problems, by augmenting

the original problem by a new variable, whose coefficients are given by a so-called

covering vector (Lemke, 1965). For the case of van den Elzen-Talman, the new

variable is1− t. The covering vector is essentially given by the payoffsAy and

B>x against the prior.

The van den Elzen-Talman algorithm can also be understood geometrically as a

completely labelled path in the strategy space∆. As usual, assume that the players’

pure strategies are numbered1, . . . ,m for player one andm+1, . . . ,m+n for player

two. Recall that the best reply region for a pure strategyj of player two is defined

as

∆( j) = {x∈ ∆m | j is a best reply tox}

Now, for a pointp = (1− t) ·x+ t ·x∈ ∆m define itslabels at timet to be

{ j | p∈ ∆( j)}∪{i | xi = 0}
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and similarly for the other player. Then by (3.1), a point in the restricted strategy

space∆t is an equilibrium of the game(A,B)t if and only if it is completely labelled

at timet. The pivoting steps of the algorithm occur where one of the players picks

up a new label, which then the other player can drop. An analogous description in

terms of “picking up” and “dropping” labels can be used to describe the Lemke-

Howson algorithm, see Section1.3 or von Stengel(2002). For further details on

the van den Elzen-Talman algorithm we refer the reader toHerings and Peeters

(2010), von Stengel(2002), or the original papers byvan den Elzen and Talman

(1991, 1999).

For a nondegenerate bimatrix game, what happens in the van den Elzen-Talman

algorithm if we take the priorx to be any pure strategy vector andy its unique best

reply? This would correspond to a starting point of the Lemke-Howson algorithm,

and one might expect the two algorithms to find the same equilibrium.

However, this is not true. An example where the van den Elzen-Talman and Lemke-

Howson paths lead to different equilibria is given by the3×3 bimatrix game

A =




4 4 4

0 0 6

5 0 0


 , B =




6 12 0

0 4 0

8 0 13


 (3.2)

and starting pointx= (0,0,1),y= (0,0,1). We saw earlier that the Lemke-Howson

algorithm from this starting point finds the equilibrium(5/11,0,6/11), (4/5,0,1/5)

(see example (1.1) and Figure1.1). However, the van den Elzen-Talman algorithm

starting at this prior finds the pure strategy equilibrium(1,0,0),(0,1,0). This can

be seen from a graphical description of the corresponding van den Elzen-Talman

path, which we have given in Figure3.1. Another interesting feature of this path is

that the homotopy parameter shrinks at some point during the algorithm. A further

discussion of the relationship between the two algorithms will be provided at the

end of the next section.

3.3 Relationships to the global Newton method

Theglobal Newton methodfor equilibrium computation was introduced byGovin-

dan and Wilson(2003a); it is a homotopy method for the computation of Nash
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Figure 3.1: The van den Elzen-Talman path from the prior(0,0,1),(0,0,1) for

example (3.2). The left simplex is player one’s, the right one player two’s. Player

one’s strategies are labelled 1-3, player two’s have labels 4-6. The labels in the

simplex mark the players’ best reply regions. The labels outside mark the edges

of the simplex where the corresponding strategy is unplayed. The square dot

is the equilibrium that is found by the Lemke-Howson algorithm, (see Figure

1.1 for a graphic description of the corresponding Lemke-Howson path). The

black arrows give the path of the van den Elzen-Talman algorithm starting at

(0,0,1),(0,0,1), and are numbered in the order in which they occur. The dashed

lines trace the restricted strategy space∆t after step 5 (upper line) and step 7

(lower line).

equilibria in finite strategic-form games. For simplicity, we will first give a de-

scription of the algorithm for bimatrix games, and then explain how to generalize

it to N-player games.

First we need to introduce a procedure of creating new games from old ones that

goes back to the structure theorem byKohlberg and Mertens(1986): Starting from

an m×n bimatrix game(A,B) and directional (column) vectorsa∈ Rm, b ∈ Rn,

define a new game(A,B)⊕ (a,b) by adding the vectora to each column ofA, and

the vectorb> to each row of B. Hence the game(A,B)⊕ (a,b) is given by the

matrices

A+




a1 a1
... · · · ...

am am


 , B+




b1 . . . bn
...

b1 . . . bn


 (3.3)

Note that in general this procedure changes the equilibria of the game.

The idea of the global Newton method is as follows: Assume we would like to cal-

culate an equilibrium of a bimatrix game(A,B). For any pair of directional vectors
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(a,b) as above, consider the ray{(A,B)⊕λ · (a,b) | λ ≥ 0} in the space of games.

Take the graph of the equilibrium correspondence (which is the correspondence

that maps each game to the set of its equilibria) over that ray. The structure theo-

rem byKohlberg and Mertens(1986) implies that generically, i.e. for(a,b) outside

a lower-dimensional set, this graph will be a semi-algebraic one-dimensional man-

ifold with boundary, where boundary points are equilibria of the game(A,B). If

we can find an equilibrium for largeλ and trace it along that manifold, we arrive

at an equilibrium of the original game.

Although the idea is conceptually straightforward, its implementation is techni-

cally demanding. Govindan and Wilson take advantage of the differentiable struc-

ture which is implicit in the structure theorem. They convert the problem of tracing

equilibria over a ray to one of calculating zeros of piecewise differentiable func-

tions, and for this they use the “original” global Newton method due toSmale

(1976) (hence the name of the method). For further details we refer the reader to

the original paper byGovindan and Wilson(2003a).

For our purpose, all we need to know is that for a bimatrix game(A,B) and a pair of

directional vectors(a,b) in a suitable Euclidean space, the global Newton method

traces equilibria along the graph of the equilibrium correspondence over the ray

{(A,B)⊕λ · (a,b) | λ ≥ 0}

In other words, for the graphE of the equilibrium correspondence, the global New-

ton method traces equilibria along the set

{((A,B)⊕λ · (a,b),(x,y)) ∈ E | λ ≥ 0}

A crucial condition for the algorithm to work is that this set is nondegenerate, in the

sense that it is a one-dimensional manifold (with boundary) without branch points

(by this, we also mean that it may have no branch points “at infinity”). Generically,

however, this nondegeneracy condition is satisfied.

The global Newton method can easily be extended to games with more than two

players. Definition (3.3) means that for each player, a bonus is added to his payoff

from each of his pure strategies, regardless of the other player’s strategy. This

concept has an obvious extension toN-player strategic-form gamesΓ, where each

playeri has a “bonus vector”gi . As in (3.3), we get a new gameΓ⊕ (g1, . . . ,gN).
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The global Newton method then traces equilibria over rays of the form

{Γ⊕λ · (g1, . . . ,gN) | λ ≥ 0}

We now prove that the global Newton method comprises the van den Elzen-Talman

algorithm as a special case, and give a generalization of this result to the linear

tracing procedure in the case of a finite strategic-form game. Let(A,B) be anm×n

bimatrix game. Choose a starting point(x,y)∈∆m×∆n. The van den Elzen-Talman

algorithm traces the set

PET((A,B),(x,y)) =
{(t,(x,y)) ∈ [0,1]×∆m×∆n | (x,y) ∈ ∆t and(x,y) is

an equilibrium of the game(A,B)t

}

where∆t is the restricted strategy space and(A,B)t the corresponding game defined

in Section3.2.

For λ ∈ R, define the game

(A,B)x,y(λ ) = (A,B)⊕λ ·
(

Ay,B>x
)

where⊕ is defined as in (3.3). Let E be the graph of the equilibrium correspon-

dence over the space of bimatrix gamesRm×n×Rm×n, and let

PGNM((A,B),(x,y)) =
{
((A,B)x,y(λ ),(x,y)) ∈ E | λ ≥ 0

}

be the set of equilibria over the ray of games{(A,B)x,y(λ ) | λ ≥ 0}. This is

the set traced by the global Newton method, when choosing as directional vec-

tor
(
Ay,B>x

)
. The following Proposition states that it is homeomorphic to the

setPET ((A,B),(x,y)), after removing the starting point(0,(x,y)) from the latter.

This establishes the van den Elzen-Talman algorithm as a special case of the global

Newton method.

Proposition 3.1. Let (A,B) be anm×n bimatrix game. Choose a starting point

(x,y) ∈ ∆m×∆n. Letλ : (0,1]→ R≥0, t 7→ 1
t −1. Then the map

PET ((A,B),(x,y))\{(0,(x,y))} → PGNM((A,B),(x,y))
(

t,(1− t)x+ tx,(1− t)y+ ty
)
7→

(
(A,B)x,y(λ (t)),(x,y)

)

is a homeomorphism.
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Proof. In the game(A,B), the payoff vector for player one against the strategy

(1− t) ·y+ t ·y for y∈ ∆n is

(1− t)Ay+ tAy=
(
(1− t)(Ay, . . . ,Ay)+ tA

)
y

where we exploit the fact thaty>1 = 1. Similarly the payoff vector for player two

against a strategy(1− t) ·x+ t ·x for x∈ ∆m is

(1− t)B>x+ tB>x =
(
(1− t)(B>x, . . . ,B>x)+ tB>

)
x

=
(
(1− t)




x> ·B
...

x> ·B


+ tB

)>
x.

Hence a strategy profile((1− t) ·x+ t ·x,(1− t) ·y+ t ·y) in the restricted strategy

space is an equilibrium of(A,B)t if and only if (x,y) is an equilibrium of the game

t · (A,B)⊕ (1− t) ·(Ay,B>x
)
.

Since the equilibria of a game remain unchanged by multiplication of the payoffs

by a positive constant, we get that the setPET((A,B),(x,y)) is given by

{(0,(x,y))} ∪
{

(t,(1− t) · x+ t · x,(1− t) · y+ t · y) | t ∈ (0,1],(x,y) is an

equilibrium of the game(A,B)⊕ (1
t −1) · (Ay,B>x

)
}

,

which ensures that our map maps indeed toPGNM((A,B),(x,y)). Since it is ob-

viously continuous, we just need to find a continuous inverse. This can be easily

done by taking the inverse map toλ and taking the corresponding continuous map

PGNM((A,B),(x,y))→ PET((A,B),(x,y))\{(0,(x,y))}

The map from Proposition3.1can easily be extended to the point(0,(x,y)) by tak-

ing the one-point-compactification ofPGNM((A,B),(x,y)). As an immediate con-

sequence we get that a van den Elzen-Talman path is a one-dimensional manifold

(with boundary) without branch points if and only if the same holds for the corre-

sponding path of the global Newton method (where a branch point at the starting

point of the van den Elzen-Talman path would correspond to a branch point “at

infinity” of the path of the global Newton method). If both paths satisfy this non-

degeneracy condition, both algorithms will find the same equilibrium.
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An alternative proof for Proposition3.1 can be given using Lemke’s algorithm:

For bimatrix games, the global Newton method corresponds to Lemke’s algorithm

(with potentially non-positive covering vectors), seeGovindan and Wilson(2003a).

The bonus vector for the global Newton method essentially corresponds to the

covering vector used in Lemke’s algorithm. Using that the van den Elzen-Talman

method is a special case of Lemke’s algorithm, Proposition3.1follows.

Proposition3.1 can be generalized toN-player games as follows: It has been

proved invan den Elzen and Talman(1999) that the van den Elzen-Talman algo-

rithm implements the linear tracing procedure, which was introduced byHarsanyi

(1975). The linear tracing procedure is a method for selecting a Nash equilibrium

in anN-player game; it plays a key role in the equilibrium selection theory devel-

oped byHarsanyi and Selten(1988). For any prior (i.e. mixed strategy profile),

the linear tracing procedure traces equilibria over a set of games whose payoffs

are given as a convex combination of the original payoffs, and payoffs against the

prior. To make this more precise, choose anN-player strategic-form gameΓ and a

prior p, and denote byΓi(σ) the payoff of playeri against a mixed strategy com-

binationσ . For 0≤ t ≤ 1, define a gameΓt , which has the same sets of players

and strategies asΓ, but the payoff inΓt to playeri from a strategy combinationσ
is defined as

Γt
i (σ) = tΓi(σ)+(1− t)Γi(σi , p−i) (3.4)

where(σi , p−i) is the strategy combination that results fromp by replacing player

i’s strategypi by σi . The linear tracing procedure traces the graph of the equilib-

rium correspondence over the set of games{Γt | t ∈ [0,1]}, which in almost all

cases will be a one-dimensional manifold. Fort > 0 we can divide the payoffs

given in (3.4) by t without changing the equilibria of the game, and as in the proof

above we can conclude the following generalization of Proposition3.1, which is

one of the central results of this chapter:

Theorem 3.2.The global Newton method implements the linear tracing procedure.

It has been proved inGovindan and Wilson(2003b) that the global Newton method

also comprises the Lemke-Howson algorithm. Proposition3.1 raises the ques-

tion of how the latter algorithm as a special case of the global Newton method

differs from the van den Elzen-Talman algorithm. If we take theith unit vector
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ei for some pure strategyi of player one, the global Newton method for the ray

(A,B)⊕λ · (ei ,0) corresponds to the Lemke-Howson algorithm with missing label

i. An analogous statement holds for missing labels of player two; for further details

seeGovindan and Wilson(2003b). So the Lemke-Howson algorithm corresponds

to taking unit vectors as directional vectors for the global Newton method, whereas

the van den Elzen-Talman algorithm is based on directional vectors(Ay,B>x). Fur-

ther differences between the two algorithms will emerge in the analysis of coordi-

nation games in the next section: We will see that in this type of game, the Lemke-

Howson algorithm only finds the pure strategy equilibria, whereas for certain co-

ordination games, the van den Elzen-Talman method can also find the completely

mixed equilibrium.

3.4 Traceability and the index of equilibria

In this section we discuss which equilibria can be traced by the van den Elzen-

Talman algorithm. Of course every equilibrium can be found by taking it as start-

ing point. However, we are only interested in those that are found generically. As

suggested byHofbauer(2003), we call an equilibrium of a nondegenerate bimatrix

gametraceableif it can be reached by the van den Elzen-Talman algorithm from

an open set of priors. As explained in Section3.1, traceability in this sense corre-

sponds to a notion of sustainability suggested byMyerson(1997). Govindan and

Wilson(2003a) have shown that, generically, every equilibrium found by the global

Newton method has index+1. Proposition3.1 then implies that only equilibria of

index+1 are traceable.

The converse question is if, generically, every equilibrium of index+1 is trace-

able. This question has been discussed inHofbauer(2003) in the context of sus-

tainability. We answer it negatively by giving an analysis ofcoordination games.

FollowingHofbauer(2003), we define a coordination game to be a square bimatrix

game(A,B), where the matricesA andB have zeros on the diagonal and negative

entries off the diagonal. We restrict our analysis to nondegenerate3×3 coordina-

tion games. If such a game has a completely mixed equilibrium, this equilibrium

has index+1, and will be our candidate for non-traceability. In addition, such a

game has three pure strategy equilibria, also of index+1, and three equilibria of
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support size two, which have index−1.

It is straightforward that in such a game, the Lemke-Howson algorithm only finds

the pure strategy equilibria. These equilibria are traced by the van den Elzen-

Talman method as well, by starting from any prior nearby. However, compared

to the Lemke-Howson method, the van den Elzen-Talman algorithm allows for a

vast variety of starting points. The question is if this increased flexibility suffices

to make the completely mixed equilibrium traceable as well.Hofbauer(2003)

answered this question negatively for symmetric games, which in general is cor-

rect only as long as we restrict the van den Elzen-Talman algorithm to symmetric

starting point. More precisely, in this section we show that the traceability of the

completely mixed equilibrium depends on the type of coordination game at hand.

On the one hand, we give a class of generic coordination games for which the com-

pletely mixed equilibrium is not traceable. This implies that the flexibility of the

van den Elzen-Talman algorithm does not ensure generic traceability of all equi-

libria of positive index.

On the other hand, we prove that there are coordination games for which the com-

pletely mixed equilibrium can indeed be traced from an open set of starting points.

Hence for this class of games, the van den Elzen-Talman algorithm is stronger

than the Lemke-Howson method, in the sense that the equilibria found by the lat-

ter method are a proper subset of the traceable equilibria. This strengthens known

observations that the van den Elzen-Talman algorithm in general finds more equi-

libria than the Lemke-Howson method. An example of an equilibrium found by the

van den Elzen-Talman algorithm but not by the Lemke-Howson method has been

given byvan den Elzen and Talman(1991). However, the equilibrium considered

in their example has negative index, hence is only found via non-generic van den

Elzen-Talman paths and cannot be traceable.

We start our analysis of traceability in coordination games with the game given by

A =




0 −1 −1

−1 0 −1

−1 −1 0


 = B> (3.5)

which corresponds to the “standard” coordination game usually given by the iden-

tity matrix. For this game, it is easy to see that the completely mixed equilibrium
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is not traceable. The van den Elzen-Talman paths in this example are quite sim-

ple; as soon as a path arrives in the “same” best reply regions for both players, the

corresponding pure strategy equilibrium is found, as depicted in Figure3.2.
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Figure 3.2: A van den Elzen-Talman path for example (3.5). The dots denote

the prior, or starting point of the algorithm. The black arrows give the path of the

algorithm; the dashed triangles trace the value of the restricted strategy space∆t

after the first step of the algorithm.

Consider the following perturbation of the standard coordination game (3.5):

A =




0 −1 −c

−c 0 −1

−1 −c 0


 = B> (3.6)

wherec > 0. We call such a game ac-coordination game. The edges between

any two best reply regions for this game are given by the points1
1+c · (0,1,c), 1

1+c ·
(c,0,1) and 1

1+c · (1,c,0), each connected to(1/3,1/3,1/3). We will prove that

the slopes of those edges are crucial to whether the completely mixed equilibrium

in such a game is traceable or not. For1 < c < 2, the edges are contained in the

darkly shaded areas in Figure3.3. This implies that the smaller angle between any

of those edges and the boundary of the respective player’s strategy space is between

60◦ and90◦. This property is crucial in the proof of the following Theorem.

Theorem 3.3. For any1 < c < 2, the completely mixed equilibrium in the corre-

sponding3×3 c-coordination game defined in(3.6) is not traceable. The same is

true for any small (possibly non-symmetric) perturbation of such a game.

We do not claim this result to be sharp. To the contrary, we would expect an
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Figure 3.3: For ac-coordination game, the edges between two best reply regions

are contained in the darkly shaded areas if1 < c < 2, and in the lightly shaded

areas ifc > 2.

analogous statement to be true for other suitable parametersc, for example1/2 <

c≤ 1.

Proof. Fix ac-coordination game with1< c< 2. We have to analyze the different

paths that can be generated by the van den Elzen-Talman algorithm by choosing

an arbitrary starting point(x,y). First, observe that it suffices to only consider non-

degenerate paths, i.e. paths without branch points or higher-dimensional degenera-

cies. This is essentially due to the fact that the van den Elzen-Talman algorithm can

be understood as a special case of Lemke’s algorithm, as explained in Section3.2.

Hence van den Elzen-Talman paths can be seen as Lemke-paths, which for almost

all covering vectors will be nondegenerate as long as the underlying linear com-

plementarity problem is nondegenerate (Eaves, 1971). But since the coordination

games at hand are nondegenerate, the corresponding linear complementarity prob-

lem is nondegenerate as well (von Stengel, 2002).

Our proof is best understood by geometrically following the paths generated from

different starting points. For illustration we have done this for the last case in

Figure3.4. We will describe the pivoting steps of possible paths using the concept

of “picking up” and “dropping” labels, as described in Section3.2. Player one’s

strategies are labelled 1-3, and player two’s have labels 4-6. Recall that a point

(1− t)x+ x of player one’s restricted strategy space has as labels firstly the best

replies of player two against(1−t)x+x, and secondly his own “unused” strategies,

i.e. thosei with xi = 0. The labels for a point in the restricted strategy space for
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player two are defined analogously. If we say that at some point a player picks

up or drops a label, we always mean this to be a label in the restricted strategy

space relevant at that point. Recall that∆(i) denotes theith best reply region. As

explained above, our choice ofc∈ (1,2) means that the edges between any two best

reply regions are in the darkly shaded areas depicted in Figure3.3. This property,

which we will refer to as Property (*) for the remainder of the proof, is essential

for the geometric structure of the van den Elzen-Talman paths.

Now choose a starting point(x,y) which generates a nondegenerate van den Elzen-

Talman path. We can assume without loss of generality thatx∈ ∆(4). As always in

a coordination game, ify∈ ∆(1), the equilibrium(1,0,0),(1,0,0) is found straight

away. Next, assume thaty∈ ∆(2), and look at the different cases that may happen.

The case ofy∈ ∆(3) is symmetric (by rotating the strategy space and exchanging

the two players), hence there is no need to discuss it.

In the first step of the algorithm, the homotopy parameter starts growing, while both

players put weight on their respective best replies to the prior. Hence the first part of

the van den Elzen-Talman path is given by((1−t) ·x+(0, t,0),(1−t) ·y+(t,0,0)).

This path is followed until a new label is picked up, i.e. until the path hits another

best reply region.

• If it hits ∆(5) or ∆(1) first, the corresponding pure strategy equilibrium is

found straight away, similarly as in Figure3.2.

• If the path hits∆(3) first, player two picks up label 3, which then player one

can drop. This means that player one starts putting positive weight on his

third strategy, while the homotopy parametert needs to remain constant in

order to enable the players to keep all necessary labels. Since by Property

(*), the edge between∆(4) and∆(5) is steeper than the edge given by label 1

of player one’s restricted strategy simplex, the path cannot hit∆(5) during

this process. If the path hits∆(6), then the equilibrium(0,0,1),(0,0,1) is

found: Player two can drop label 6, which player one has just found, but

needs to keep labels 2, 3 and 5. Since by Property (*), the edge given by la-

bel 5 of player two’s restricted strategy simplex is contained in∆(3), the only

way this can happen is if the homotopy parametert starts shrinking, until

either of the players reaches the upper vertex of the restricted strategy sim-

56



Chapter 3. Equilibrium Tracing in Strategic-Form Games

plex ∆t , where that player finds a label of his own. Assume this was player

one, picking up label 2 (the case for player two works vice versa). Then

player two can drop that label, i.e. leave the boundary between the best reply

regions, and walk towards the upper vertex of his restricted strategy simplex

(while the homotopy parameter stalls), until he picks up label 4. This in turn

implies that now player one can also leave the boundary of the best reply

regions. The homotopy parameter starts growing, while both players stay

in the upper corner of their restricted strategy spaces, until the equilibrium

(0,0,1),(0,0,1) is found.

The only remaining case is for the first player’s path to remain in∆(4) un-

til he reaches the upper vertex(1− t) · x+(0,0, t) of his restricted strategy

simplex and picks up label 2. Then the homotopy parameter starts growing

again until one of the following cases occur:

(i) If the path hits∆(1) first, then the equilibrium(1,0,0),(1,0,0) is found,

by an argument similar to Figure3.2.

(ii) If the path hits∆(6) first, then the equilibrium(0,0,1),(0,0,1) is found,

again by a similar argument.

(iii) If the path hits∆(5) first, player one picks up label 5, which then player

two can drop. Then the homotopy parameter stalls while player two

puts more weight on his second strategy. At some point he arrives at

∆(2) again. Now player one can drop label 2, but needs to keep labels

1, 4 and 5. Since due to Property (*), the edge given by label 1 of player

one’s restricted strategy simplex is contained in∆(5), the only way this

can happen is if the homotopy parameter starts shrinking, while both

players walk along the edge between the best reply regions they are

on, away from the barycenter(1/3,1/3,1/3). At some point, player

one reaches the right vertex of his restricted strategy simplex, picking

up label 3. This is bound to happen before player two reaches the left

vertex of his restricted strategy simplex: Due to the history of the al-

gorithm we can see that player two’s relevant vertex is further away

(in terms of the homotopy parameter) from the relevant boundary be-

tween best reply regions, than player one’s. Player two can now drop

label 3, i.e. leave∆(3): While the homotopy parameter is stalling, he
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Figure 3.4: A van den Elzen-Talman-path as in the proof of Theorem3.3. The

black line segments give the path of the algorithm, the dashed triangles trace the

restricted strategy space∆t . The upper figure contains the first four steps of the

algorithm, the lower one traces the whole path in greater detail.

walks towards the right vertex of his restricted strategy simplex, where

he picks up label 4. Now player one can leave∆(4), and the equilib-

rium (0,1,0),(0,1,0) is found. For visualization, we have provided a

graphic description of the last case in Figure3.4.

So far we have proven that for anyc-coordination game with1 < c < 2, the com-

pletely mixed equilibrium is not traceable. However, it is easy to verify that for

any small (possibly non-symmetric) perturbation of such ac-coordination game,

the arguments above are still valid. Hence we can extend our result to small per-

turbations of suchc-coordination games.

As an immediate consequence, we get the central result of this section:

Corollary 3.4. There is an open set in the space of3×3 bimatrix games, such that

every game in that set has an equilibrium of index+1 that is not traceable.

We would like to conclude this section by proving that the mixed equilibrium of

a c-coordination game as in (3.6) is traceable as soon asc > 2. This is essentially
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due to the fact that forc > 2, the relevant angle of the edges between best reply

regions and the boundary of the strategy space becomes smaller than60◦, i.e. those

edges are contained in the lightly shaded areas of Figure3.3, as opposed to the

darkly shaded ones. This in turn implies that where the homotopy parametert used

to shrink before, now it starts growing, which enables us to find the completely

mixed equilibrium.

Proposition 3.5. For any c > 2, the completely mixed equilibrium in the corre-

sponding3×3 c-coordination game is traceable.

Proof. Choose a prior(x,y)∈ ∆(4)×∆(2) such thatx is close to∆(6) but far from

∆(5), while y is closer to∆(3) thanx is to ∆(5), but further away from∆(3) thanx

is from ∆(6). At the same time, lety be close to∆(1). “Close” and “far” are to be

understood in terms of the homotopy parameter. It should become clear during the

description of the envisaged path what precisely is needed.

Finally, let y be such that the line fromy to (1,0,0) intersects∆(3). By these

choices, we can generate the following van den Elzen-Talman path: The path hits

∆(3) first, where player two picks up label 3. This means that player one can put

weight on his third strategy, while the homotopy parameter stalls, until his path

hits ∆(6). Now, player two can drop label 6 but needs to keep labels 2, 3 and 5.

Sincec > 2, the edges between any two best reply regions have a different slope

than for the case where1 < c < 2, as depicted in Figure3.3. In particular, the

edge between∆(2) and∆(3) is steeper than the edge given by label 5 of player

two’s restricted strategy space. This implies that at this point of the algorithm,

player two’s restricted strategy simplex is still contained in∆(2). This means that

unlike in the proof of Theorem3.3, where in the analogous situation the homotopy

parameter started shrinking, the homotopy parameter now needs to grow in order

to enable player two to keep the necessary labels. Since player one needs to keep

labels 1, 4 and 6, he moves towards the barycenter(1/3,1/3,1/3) on the edge

between∆(4) and∆(6), while player 2 moves away from(1/3,1/3,1/3) on the

edge between∆(2) and∆(3). At some point, player one arrives at(1/3,1/3,1/3),

where he reaches∆(5) and picks up label 5. By our choice ofy “close” to∆(1), we

can assume that at this point, the barycenter(1/3,1/3,1/3) is contained in player

two’s restricted strategy space. Player two can now drop label 5, i.e. put positive

weight on his second strategy, hence the homotopy parameter stalls and player two
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moves along the edge between∆(2) and∆(3) until he, too, reaches(1/3,1/3,1/3).

Now in turn player one can put positive weight on his first strategy. This implies

that the homotopy parameter can grow until it reaches 1, while both players remain

at the completely mixed equilibrium. Quite obviously, this path can be generated

from an open set of priors, hence the completely mixed equilibrium is traceable.

To conclude the proof, we give a numerical example of the path generated above:

For c = 3, from the starting point given byx = (45/100,35/100,20/100), y =

(15/100,40/100,45/100) the van den Elzen-Talman algorithm finds the completely

mixed equilibrium of the correspondingc-coordination game, via a path as de-

scribed above.

3.5 Open questions

The main open question that is raised by Theorem3.3and Corollary3.4is if similar

results hold for the global Newton method: Is there an equilibrium of index+1 that

is not found by the global Newton method, or more generally, is there an open set

of games such that each of these games has an equilibrium of index+1 that is not

traceable by the global Newton method? Due to Proposition3.1, the latter result

would imply our Theorem3.3.
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4
Index and Uniqueness of

Symmetric Equilibria

4.1 Introduction

In this chapter we use constructions of polytopes to prove a theorem, conjectured

by Hofbauer(2003), about symmetric Nash equilibria of symmetric two-player

games. These games are important in evolutionary game theory, where a “mixed

strategy” represents the frequencies of individual “pure strategies” that are played

in a population.

In a strategic form game, a Nash equilibrium always exists but is not necessarily

unique. An enormous literature in game theory (van Damme, 1987) considers con-

cepts of equilibrium selection and refinement in order to suggest fewer, preferably

unique, equilibria as “solutions” to a given game. Typically, equilibria are selected

that are “stable” in some sense, for example under perturbations of the payoffs that

define the game (seeKohlberg and Mertens, 1986, and the subsequent literature).

Hofbauer(2003) discusses various desirable properties of “sustainable” equilibria,

a concept suggested byMyerson(1997); often, these properties hold for the equi-

libria of index+1. For example, only equilibria of index+1 can be stable under

some “Nash field”, that is, a vector field on the set of mixed strategy profiles whose

rest points are the Nash equilibria.

Hofbauer(2003) conjectured that equilibria of index+1 are “potentially unique” in
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the sense that there is an extended game, with additional strategies for the players,

where the given equilibrium is unique. This has been proved for bimatrix games

in von Schemde(2005), with a constructive geometric proof invon Schemde and

von Stengel(2008). We prove the corresponding theorem for symmetric equilibria

of symmetric two-player games (for definitions see Section4.2):

Theorem 4.1. For a nondegenerate symmetricd×d game(B>,B), a symmetric

equilibrium has symmetric index+1 if and only if it is the unique symmetric equi-

librium in an extended symmetric game(G>,G).

As explained in Chapter2, the index of an equilibrium is an involved topological

notion. Theorem4.1, however, characterizes the symmetric index in purely strate-

gic terms, without resorting to any concepts from topology. Ford× n bimatrix

games(A,B), the analogous statement to Theorem4.1holds with the word “sym-

metric” omitted. (In this chapter we used rather thanm for the number of rows of

the game matrices because most of our geometric objects live inRd.) This result

for bimatrix games was first proved invon Schemde(2005) using topological argu-

ments. The statements for bimatrix and symmetric games are independent because

for a symmetric game, the bimatrix game index may differ from the symmetric

index (we give an example after Definition4.3below). Also, the symmetric game

needs to be extended symmetrically, whereas in the bimatrix game setting, only

strategies for one player are added.

We prove Theorem4.1using polytopes. The symmetric game given in Theorem4.1

is used to define a simpliciald-polytope. The polytope islabelledin the sense that

each vertex has alabel in {1, . . . ,d}. A facet iscompletely labelledif the set of la-

bels of itsd vertices is{1, . . . ,d}. The completely labelled facets correspond to the

symmetric equilibria of the game, and one “artificial equilibrium” associated with a

special facetF0. The orientation of a completely labelled facet is equal to the index

of the corresponding equilibrium, except for a change of sign in even dimension

(see Lemma4.7). According to a standard “parity argument” (Papadimitriou, 1994)

known from the Lemke-Howson algorithm (Lemke and Howson, 1964; Shapley,

1974), completely labelled facets come in pairs of opposite orientation. We state

this result in Proposition4.9below. Its proof uses a very intuitive geometric argu-

ment, which relies heavily on the simpliciality of the polytope.
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The following is our central result in the polytope setting.

Theorem 4.2.LetP4 be a labelled simpliciald-polytope with0 in its interior, and

let F0 andF be two completely labelled facets of opposite orientation. Then there

are labelled points such that the convex hullP4ext of these points andP4 has only

F0 andF as completely labelled facets.

The added points in Theorem4.2 will be used to define the added strategies in

Theorem4.1. In order to get from added points to added strategies, we intro-

duce a special class of bimatrix games, which we callunit vector games. A unit

vector game is a bimatrix game where the columns of the first player’s payoff ma-

trix are unit vectors. This concept generalizes the imitation games introduced by

McLennan and Tourky(2007), where the first player’s payoff matrix is the identity

matrix. We show that each labelled simplicial polytopeP4 corresponds to a unit

vector game; the completely labelled facets ofP4 correspond to the equilibria of

this game (see Lemma4.10). For the labelled polytopeP4 defined from a symmet-

ric game(B>,B), the corresponding unit vector game is the imitation game(I ,B).

Hence Lemma4.10generalizes the result fromMcLennan and Tourky(2007) that

the symmetric equilibria of(B>,B) are in one-to-one correspondence to the equi-

libria of (I ,B).

Starting from a symmetric game(B>,B), we use Theorem4.2 to add points to the

corresponding labelled polytopeP4. These added points can be used to extend

the corresponding imitation game(I ,B) to a unit vector game, by adding strategies

for the column player. We then have to symmetrize this game, by adding suit-

able payoff rows. The added rows are essentially given by the payoffs of the first

player in the extended game (see Lemma4.11). This is the crucial step for deriving

Theorem4.1from Theorem4.2.

This Chapter is organized as follows: In Section4.2we give a short exposition of

symmetric games and the symmetric index. Section4.3 explains how symmetric

games are linked to labelled polytopes. Symmetric equilibria of a symmetric game

correspond to completely labelled facets of the underlying polytope. Section4.4

introduces the natural concept of an orientation of such a completely labelled facet,

which up to a dimension-dependent sign coincides with the symmetric index of

the corresponding symmetric equilibrium. In Section4.5we introduce unit vector
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games, and show how to use these to derive our main result, Theorem4.1, from its

geometric counterpart, Theorem4.2.

In the subsequent sections, we give a constructive proof of Theorem4.2, the main

idea of which goes back to a proof sketch of a related result in the non-symmetric

setting byvon Schemde and von Stengel(2008). However, the authors omit crucial

details, and their proof sketch relies on results about polytopes which we prove in

this chapter. Section4.6 describes a central concept for our construction, the “P-

matrix prism”, which is a particular type of completely labelled polytope with only

two completely labelled facets. A known result on P-matrices allows us to prove

Theorem4.2 using a “stack” of three P-matrix prisms. For this to work, we need

to re-arrange the polytopeP4 in a suitable way; this is done in Section4.7. In

Section4.8 we use a stack of P-matrix prisms to prove Theorem4.2 for the case

that the two given completely labelled facets are disjoint. The non-disjoint case

will be treated in Section4.9. The final Section4.10mentions open problems.

This chapter is joint work with Bernhard von Stengel.

4.2 The symmetric index

A symmetric gameis a bimatrix game(B>,B) for a square matrixB (denoting the

payoffs to the column player), that is, the game remains unchanged if the players

are exchanged. Asymmetric equilibriumof a symmetric game is an equilibrium of

the form(x,x), where both players use the same mixed strategy. Any symmetric

game has a symmetric equilibrium (Nash, 1951). A symmetric game may also have

non-symmetric equilibria, but in certain situations - i.e. if the players have no way

of determining which of the two possible player positions they are in - only the

symmetric equilibria are considered. Symmetric games and equilibria have been

studied in a variety of contexts, especially in evolutionary game theory (see, for

example,Gale et al., 1950, or Hofbauer and Sigmund, 1998).

Savani and von Stengel(2006) introduced a symmetric version of the Lemke-

Howson algorithm. FollowingShapley(1974), this algorithm can be used to define

a symmetric version of the index, as follows: Consider a nondegenerate symmetric

game(B>,B) with B > 0, and a symmetric equilibrium(x,x), and letBxx be the
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square matrix obtained fromB by deleting all rows and columns not in the support

of x. As in Section1.3, nondegeneracy implies that this matrixBxx has full rank.

The symmetric index of a symmetric equilibrium can now be defined analogously

to the “ordinary” index:

Definition 4.3. Let (B>,B) be a nondegenerate symmetric game withB > 0 and

let (x,x) be a symmetric equilibrium withk = |supp(x)|. Thesymmetric indexof

(x,x) is defined as

(−1)k+1sign det(Bxx) (4.1)

In analogy to the non-symmetric case, the symmetric version of the index has

a straightforward interpretation in terms of the symmetric Lemke-Howson algo-

rithm: Symmetric equilibria at opposite ends of Lemke-Howson paths have oppo-

site symmetric index (Garcia and Zangwill, 1981). Like for the “ordinary” index,

there are multiple ways of defining the symmetric index; for example, a version of

the symmetric index based on the Poincaré index of the replicator dynamics has

been suggested inHofbauer and Sigmund(1998).

In a symmetric bimatrix game, the “ordinary” index (as in Definition4.3) is in

general different from the symmetric index. For example, the symmetric2× 2

game(A,B) of “chicken”, whereA = B = [e2 e1], has two non-symmetric pure

equilibria and a mixed equilibrium which is the only symmetric equilibrium. That

mixed equilibrium has index−1 for the bimatrix game, but symmetric index+1.

The symmetric index has the following properties, which require that its sign alter-

nates with the parity of the support size as in (4.1) (compare Proposition2.3or (von

Schemde and von Stengel, 2008, Proposition 2) for the corresponding statement for

the “ordinary” index).

Proposition 4.4. In a nondegenerate symmetric game, the symmetric index of a

symmetric equilibrium

(a) is +1 or −1;

(b) does not change when adding a positive constant to all payoffs;

(c) only depends on the payoffs in the support of the symmetric equilibrium;

(d) does not depend on the order of the players’ pure strategies;

(e) is +1 for any pure-strategy symmetric equilibrium; and
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(f) the sum of the symmetric indices over all symmetric equilibria is+1.

The proof of this proposition works analogously to the proof of the corresponding

properties of the “ordinary index” (see, for example,von Schemde and von Stengel,

2008). As mentioned, (a) holds because the game is nondegenerate andBxx has

therefore full rank. It is easy to see that for a square matrixC and scalars, the

determinantdet(C + sE) is a linear function ofs, which is not constant ifC is

nonsingular, and does not change sign ifs≥ 0 andC > 0. This implies (b), and it

is the reason why we require thatB > 0 in Definition4.3.

In Proposition4.4, claim (c) holds by definition, and shows that the index does

not change when considering the equilibrium in an extended game with additional

strategies (which are not played in the equilibrium). Condition (d) holds because

rows and columns are exchanged equally to maintain the symmetry of the game.

Property (e) is desirable, as discussed inMyerson(1997) andHofbauer(2003),

because pure-strategy equilibria are particularly convincing solutions to a game.

Property (f) follows from a “parity argument” that we will prove in Proposition4.9.

It implies that a unique symmetric equilibrium must have index+1.

An example is the “coordination game” with thed×d identity matrixI as payoff

matrix (its payoffs are only nonnegative, and not all positive, but Definition4.3still

applies). In this game, any nonempty setS⊆ {1, . . . ,d} of pure strategies defines

a symmetric equilibrium(x,x) with supp(x) = Sandx as the uniform distribution

onS. Its symmetric index is+1 if |S| is odd, otherwise−1.

4.3 Polytopes and symmetric equilibria

Polyhedra have been used sinceVorob’ev(1958) to represent equilibria of bimatrix

games. Consider a nondegenerated× n bimatrix game with payoff matrixB =

[b1 · · ·bn] for player 2. (A special case is a symmetricd× d game(B>,B) with

n = d.) Assume that the polyhedron

P = {x∈ Rd | x≥ 0, x>B≤ 1>} (4.2)

is bounded. Recall thatP is called abest replypolytope. Anyx in P−{0} is

interpreted as a mixed strategyx/1>x of player 1. Any tight inequalityx>b j ≤ 1
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describes a pure best replyj againstx with payoff 1/1>x (because any column

other thanj gives at most that payoff).

We require thatP is bounded for the following reason (see alsovon Stengel(2002,

Fig. 2.5) for a more detailed geometric interpretation):P is bounded if and only if

the functionx 7→ 1>x is bounded onP. Equivalently, player 2’s best-reply payoff to

any mixed strategyx is always positive, becausex>b j ≤ 0 for all columnsb j of B

would imply thatx · t ∈ P for arbitrarily large scalarst > 0. Clearly,P is bounded

if B > 0, but possibly also when some entries ofB are negative, as in the following

example:

B =

(
1/2 −1/3

−1/4 1

)
, P = conv

{(
0

0

)
,

(
2

0

)
,

(
0

1

)
,

(
3

2

)}
(4.3)

Here, the three vertices ofP other than0 represent the pure strategies of player 1

and the mixed strategy(3/5,2/5)>. For the symmetric game(B>,B), these three

vertices define symmetric equilibria, the pure ones with payoffs1/2 and1, respec-

tively, and the mixed one with payoff1/5.

We will always start with a matrixB > 0, but will later add inequalitiesx>b≤ 1

to P with vectorsb that may have negative entries. This is allowed because then

P stays bounded. The columnsb, and suitable rows, will be added to the payoff

matrix to obtain an extended game.

Because the givend×n game is nondegenerate, no mixed strategyx of player 1

has more than|supp(x)| pure best replies. Equivalently, no more thand inequalities

in (4.2) are tight for anyx in P. This means thatP is a simple polytope, and that

none of the inequalitiesx>b j is redundant in the sense that it can be omitted without

changing the polytope (except when it defines the empty face, which means that the

respective pure strategyj is never a best reply; then thejth column can be omitted

from the game). We assume that the game is nondegenerate, soP is simple, and

each binding inequality ofP in (4.2) defines a facet.

Recall that each facet ofP gets alabelas follows. For1≤ i ≤ d, the facet{x∈ P |
xi = 0} gets labeli. For1≤ j ≤ n, the facet{x∈ P | x>b j = 1} gets labelj. Any

pointx in P has the labels of the facets it lies on.

Consider a symmetric game(B>,B), wheren = d, and a pointx in P−{0}, which

corresponds to a mixed strategyx′ = x/1>x. Then a labeli of x represents either
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an unplayed strategy of player 1 (whenxi = 0), or a best reply of player 2 (x>bi =

1). Hence, by the best reply condition, the mixed strategy pair(x′,x′) defines a

symmetric equilibrium if and only ifx is completely labelled.

The vertex0 of P is completely labelled, but it does not define an equilibrium.

However,0serves as a starting point for a symmetric version of the Lemke-Howson

algorithm (Savani and von Stengel, 2006, p. 402). The symmetric Lemke-Howson

algorithm computes a path of edges ofP which starts at a completely labelled

vertex ofP, for example0, and ends at a different completely labelled vertex. The

endpoints of any Lemke-Howson path have opposite symmetric index, where0 has

index−1 in agreement with (4.1) whenk = 0. This implies Proposition4.4(f). We

prove a dual version of this observation in Proposition4.9.

We will use thepolar (or dual) polytopeP4 instead ofP. SupposeQ is a polytope,

Q = {x∈ Rd | x>ci ≤ 1, 1≤ i ≤ k} (4.4)

with vectorsc1, . . . ,ck in Rd. Then thepolar (Ziegler, 1995) of Q is given by

Q4 = conv{c1, . . . ,ck} (4.5)

The polytopeP in (4.2) has to be translated in order to have0 in its interior so that it

can be written in the form (4.4). Moreover, it is convenient to have the negative unit

vectors−ei as vertices ofP4, by translatingP to the polytopeP′ = {x−1 | x∈ P}.
Then0 is in the interior ofP′ if 1 is in the interior ofP (like in the example (4.3)),

that is, if

1>b j < 1 for 1≤ j ≤ n (4.6)

This can be assumed without loss of generality by multiplying all payoffs inB with

a suitably small positive constant, which does not change the game.

Thenx′ ∈ P′ = {x−1 | x∈ P} if and only if x′+1≥ 0 and(x′+1)>B≤ 1, that is,

−x′i ≤ 1 for 1≤ i ≤ d andx′>b j/(1−1>b j)≤ 1 for 1≤ j ≤ n. Writing P4 instead

of P′4, we therefore obtain

P4 = conv({−e1, . . . ,−ed}∪{b j/(1−1>b j) | 1≤ j ≤ n}) (4.7)

The facets ofP4 correspond to the vertices ofP and vice versa (Ziegler, 1995).

The polytopeP4 is simplicial (i.e. every facet has exactlyd vertices) becauseP
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is simple. The labels of the facets ofP become labels of the vertices ofP4. By

construction, these vertices are−ei with label i for 1≤ i ≤ d, andb j/(1−1>b j)

with label j for 1≤ j ≤ n.

The facet corresponding to the vertex0 of P is given by

F0 = conv{−e1, . . . ,−ed} (4.8)

BecauseF0 = {x ∈ P4 | −1>x = 1}, the normal vector ofF0 is −1, which is the

vertex ofP′ that is the translated vertex0 of P.

In general, a facetF of P4 hasnormal vectorv if F = {x ∈ P4 | v>x = 1} and

v>x≤ 1 is valid for all x in P4. The normal vectors of facetsF other thanF0

represent mixed strategies, as follows.

Lemma 4.5. Let F 6= F0 be a facet ofP4 in (4.7) with normal vectorv. Then

v represents the mixed strategyx = (v+ 1)/1>(v+ 1), and xi = 0 if and only if

−ei ∈ F for 1≤ i ≤ d. Any other labelj of F, so thatb j/(1−1>b j) is a vertex

of F, represents a pure best reply tox.

Proof. This holds because the polar of the polar is the original polytope (Ziegler,

1995). More precisely,P44 is P′ above, so the normal vectorv = (v1, . . . ,vd)> is

a vertex ofP′ and thusv+1 is a vertex ofP in (4.2). If −ei ∈ F , thenvi =−1 and

thereforexi = 0, and vice versa.

Lemma4.5 means that the labels of a facetF of P4, whose normal vector rep-

resents a mixed strategyx, are the unplayed pure strategies inx or the pure best

replies tox. Observe that by nondegeneracy, every symmetric equilibrium(x,x) of

(B>,B) gives rise to a facet ofP4 whose normal isx−1, suitably scaled. Together

with the following result, this implies that the symmetric equilibria of(B>,B) are

in one-to-one correspondence with the completely labelled facets ofP4:

Corollary 4.6. Let F 6= F0 be a facet ofP4 in (4.7) with normal vectorv, and let

x = (v+1)/1>(v+1) as in Lemma4.5. Then(x,x) is a symmetric equilibrium of

(B>,B) if and only ifF has all labels1, . . . ,d.

Proof. An equilibrium (x,x) is given by those mixed strategiesx so that for all

i = 1, . . . ,d, eitherxi = 0 (that is,−ei with label i is a vertex ofF) or i is a best

reply tox. By Lemma4.5, this meansF has all labels.

69



Chapter 4. Index and Uniqueness of Symmetric Equilibria

A more direct representation of mixed strategies as normal vectors of facets has

been considered inBáŕany et al.(2005). The representation uses an unbounded

polyhedron rather than a polytope, as follows. Consider the columnsb j of B as

points inRd and let the polyhedron̂P be thenonnegative convex hullof these

points; that is,P̂ is the intersection of all halfspaces with nonnegative normal vec-

tors that contain all pointsb1, . . . ,bn. Then a normal vectorx of any facet ofP̂, is,

suitably scaled, a mixed strategy where the pointsb j that lie on the facet are the

pure best repliesj to x. By construction, the polytopeP4 is, with the exception

of the additional facetF0, combinatorially equivalent to the polyhedron̂P. The

verticesb j of P̂ are scaled to become vertices ofP4 in (4.7).

We will later enlargeP4 by adding pointsc so that (among other things)F0 remains

a facet ofconv(P4∪{c}), that is,−1>c< 1. These points correspond to additional

columnsb of the game matrixB given by

b = c/(1+1>c) (4.9)

because thenb/(1−1>b) = c in agreement with (4.7).

4.4 Oriented facets

Considering the simplicial polytopeP4 in (4.7) rather than the simple polytope

P in (4.2) has the advantage that orientations of facets are easily defined and vi-

sualized. IfF is a completely labelled facet ofP4, we assume that its vertices

a1, . . . ,ad are given in the order of their labels, that is,ai has labeli, for 1≤ i ≤ d.

Then theorientationof F is

sign det[a1 · · ·ad] (4.10)

The orientation ofF coincides with the symmetric index of the corresponding sym-

metric equilibrium, except for a change of sign in even dimension:

Lemma 4.7. Let (B>,B) be a nondegenerate symmetricd×d game, and letP4

be the polytope in(4.7) with n = d. Then the orientation of a completely labelled

facetF of P4, multiplied by(−1)d+1, is the symmetric index of the correspond-

ing symmetric equilibrium, whereF0 corresponds to the artificial equilibrium with

index−1.
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Proof. WhenF = F0, then its orientation issign det(−I) with the negative identity

matrix−I , which is+1 whend is even and−1 whend is odd.

Let (x,x) be a symmetric equilibrium of(B>,B), and letF = conv{a1, . . . ,ad}
be the corresponding completely labelled facet ofP4. Here, ai has labeli for

1≤ i ≤ d, whereai =−ei if i 6∈ supp(x) by Lemma4.5, anda j = b j/(1−1>b j) for

j ∈ supp(x). For the sign of the determinant, we can ignore the scalar1/(1−1>b j),

which is positive by (4.6). Hence, withk = |supp(x)|,

sign det[a1, . . . ,ad] = sign(−1)d−k det(Bxx) = (−1)d+1(−1)k+1sign det(Bxx)

which proves the claim.

In general, the orientation of a nonsingular matrix is the sign of its determinant.

When a facet is not completely labelled, there is no natural order of writing down

its vertices as columns of a matrix. However, twoadjacentfacets shared− 1

vertices, so by keeping thesed− 1 columns fixed, the respective matrices differ

in only one column. The following lemma states that these matrices have opposite

orientation. It is very intuitive in low dimension, which suggests its straightforward

proof.

Lemma 4.8. Consider a simpliciald-polytope with0 in its interior, and two adja-

cent facets with verticesb,a2, . . . ,ad andc,a2, . . . ,ad, respectively. Then[b a2 · · ·ad]

and[c a2 · · ·ad] have opposite orientation.

Proof. We show that there are positive realss andt so thatbs+ ct is in the linear

span ofa2, . . . ,ad. Then

0 = det[bs+ct a2 · · ·ad] = s·det[b a2 · · ·ad]+ t ·det[c a2 · · ·ad]

which implies thatdet[b a2 · · ·ad] anddet[c a2 · · ·ad] have opposite sign as claimed;

the determinants are nonzero because the hyperplanes through the two facets do not

contain0.

Let s, t, andr2, . . . , rd be reals, not all zero, so that

bs+ct+
d

∑
i=2

air i = 0 (4.11)

where clearlys 6= 0, t 6= 0, and w.l.o.g.s> 0. Let v andw be the normal vectors to

the two facets, so thatv>ai = 1, v>b= 1, v>c< 1 andw>ai = 1, w>c= 1, w>b< 1,
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for 2≤ i ≤ d. Then multiplying (4.11) with bothv> andw> givesv>(bs+ ct) =

w>(bs+ct), that is,(1−w>b)s= (1−v>c)t and thust = (1−w>b)s/(1−v>c) > 0

where by (4.11) bs+ct is in the linear span ofa2, . . . ,ad.

The following observation is proved with the path-following algorithm ofLemke

and Howson(1964), in its symmetric form (Savani and von Stengel, 2006, p. 402),

applied to the polar polytope ofP in (4.2). It is the classic form of a “polyno-

mial parity argument with direction” that defines the computational class PPAD

(Papadimitriou, 1994). It is similar to the well-known proof byCohen(1967) of

Sperner’s Lemma (Sperner, 1928). We give a simplified version of the proof by

Shapley(1974) that is based on exchanging columns of determinants.Lemke and

Grotzinger(1976) give a similar proof based on abstract orientations of simplices

in an oriented pseudo-manifold (see alsoEaves and Scarf(1976), andTodd(1976),

for orientation and index methods in the context of simplicial concepts).

Proposition 4.9. In a labelled simpliciald-polytope with0 in its interior, the com-

pletely labelled facets come in pairs of opposite orientation.

Proof. Consider all facets that have all labels except possibly label1. This in-

cludes any completely labelled facet, which we write as a matrix[a1 · · ·ad] where

vertex ai of the facet has labeli, for 1≤ i ≤ d. The other facets have vertices

bi ,a2, . . . ,ai , . . . ,ad, wherea j has labelj for 2≤ j ≤ n andbi has the duplicate

label i ∈ {2, . . . ,n}. For these facets, we consider the two matrices

[bi a2 · · · ai · · · ad] and [ai a2 · · · ai−1 bi ai+1 · · · ad] (4.12)

which have determinants of opposite sign. Consider all these matrices as nodes of a

bipartite graph, with the matrices of negative determinant in one partition class and

those of positive determinant in the other. Connect the two matrices in (4.12) by a

“blue” edge. Secondly, join any other two matrices by a “red” edge if they have the

same lastd−1 columns. This defines two adjacent facets. Their commond−1

columns are not contained in any other matrix. By Lemma4.8, the two matrices

have opposite orientation, so the graph is indeed bipartite.

Every node in that graph has degree one or two. Any such graph is a collection of

paths and cycles. The nodes of degree one, which are the endpoints of the paths,

correspond to completely labelled facets and are only incident to a red edge. The
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other nodes are also incident to a blue edge. Any path starts and ends with a red

edge and is of odd length because the colors of the edges on the path alternate.

Hence, the endpoints of any path have opposite orientation, as claimed.

a

b

b
1

a 3
2

3

b2

1a

Figure 4.1: Example of the path-following argument used to show Proposi-

tion 4.9. A vertexai or bi has labeli.

Figure4.1 illustrates the preceding proof ford = 3. Each vertexai or bi has label

i in {1,2,3}. There is only a single path, which we start at[a1 a2 a3] which cor-

responds to a completely labelled facet with negative orientation (clockwise order

of a1,a2,a3). That path ends at[b1 a2 b3], oriented positively (anticlockwise). The

path corresponds to the following sequence of matrices, with alternating orienta-

tion, and red edges shown with “→”: [a1 a2 a3]→ [b2 a2 a3], [a2 b2 a3]→ [b3 b2 a3],

[a3 b2 b3]→ [a2 b2 b3], [b2 a2 b3]→ [b1 a2 b3]. Only “red” edges are shown in Fig-

ure4.1, as arrows from a matrix with negative to one with positive orientation, so

a facet as in (4.12) where label1 is missing is both endpoint and starting point of a

red arrow; the “blue” edges just refer to an exchange of matrix columns.

The change from one simplicial facet to another is equivalent to a pivoting step

as used in the simplex algorithm (Dantzig, 1963). The described paths may be

exponentially long (Morris, 1994).

A dual best reply polytopeP4 has the completely labelled facetF0, and therefore

by Proposition4.9 at least one other completely labelled facetF . This implies

that every nondegenerate symmetric game has at least one symmetric equilibrium.

(This is also true for degenerate games, with additional considerations.)
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4.5 From unit vector to symmetric games

In this section, we show how Theorem4.2 implies Theorem4.1. Given a non-

degenerated×d symmetric game(B>,B), we consider the labelled polytopeP4

in (4.7). Then the symmetric equilibrium of index+1 considered in Theorem4.1

corresponds to a completely labelled facetF which has opposite orientation toF0.

According to Theorem4.2, there are additional pointsc in Rd so that the con-

vex hull P4ext of these points and ofP4 has onlyF andF0 as completely labelled

facets. Using (4.9), the added points correspond to added columns of the matrixB

which then hasn columns for somen≥ d. Furthermore, these points have labels

in {1, . . . ,d}. The following lemma shows how these labels can be used to define

a bimatrix game whose equilibria correspond to the completely labelled facets of

the extended polytopeP4ext.

Lemma 4.10. Consider a labelled simpliciald-polytopeQ with 0 in its interior,

spanned by a set of vertices

{−e1, . . . ,−ed,c1, . . . ,cn}

so thatF0 in (4.8) is a facet ofQ. Let−ei have labeli for 1≤ i ≤ d, and letc j have

label l( j) ∈ {1, . . . ,d} for 1≤ j ≤ n. Let (U,B) be thed×n bimatrix game with

U = [el(1) · · · el(n)] and B = [b1 · · · bn], whereb j = c j/(1+ 1>c j) for 1≤ j ≤ n.

Then the completely labelled facetsF of Q, with the exception ofF0, are in one-

to-one correspondence to the Nash equilibria(x,y) of the game(U,B), wherex

corresponds toF as in Lemma4.5, andy is a suitable unit distribution.

Proof. Consider a facetF of Q so thatF = conv({−ei | i ∈K}∪{c j | j ∈ J}) 6= F0.

Let v be the normal vector toF , and letx = (v+ 1)/1>(v+ 1) as in Lemma4.5.

Thenx is a mixed strategy of player 1, which has support{1, . . . ,d}−K, a set of

size |J|. Furthermore,J is the set of pure best replies tox by player 2, who has

payoff matrixB.

In order to obtain an equilibrium(x,y) of (U,B) for some mixed strategyy∈ Rn

of player 2, only best replies may be played with positive probabilityxi or y j . For

player 2, this means thaty j > 0 only if j ∈ J. For player 1, we need|J| pure

best replies. Because the columns of player 1’s payoff matrixU are unit vectors,

this works only ify j = 1/|J| for j ∈ J andy j = 0 otherwise, and if for everyi ∈
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supp(x) = {1, . . . ,d}−K, there is somej ∈ J so thati = l( j) because then column

j of U is the unit vectorel( j). This is exactly the condition that the set of labels

of F , namelyK ∪{l( j) | j ∈ J}, is {1, . . . ,d}, that is,F is completely labelled, as

claimed.

The bimatrix game(U,B) considered in the previous lemma may be called aunit

vector game, that is, all columns of player 1’s payoff matrixU are suitable unit

vectors. A special case is animitation game(I ,B) whereB is a square matrix

andI is the identity matrix. Imitation games have been introduced byMcLennan

and Tourky(2007), who showed that the symmetric equilibria(x,x) of a symmet-

ric game(B>,B) are in one-to-one correspondence with the equilibria(x,y) of the

imitation game(I ,B), wherey is the uniform distribution onsupp(x). This obser-

vation can be used to apply computational hardness results about symmetric games

to bimatrix games. Furthermore, the symmetric index of(x,x) is equal to the index

of (x,y) in the bimatrix game(I ,B).

The following lemma provides the main step for deriving Theorem4.1 from The-

orem4.2. It explains how to get from a particular extension of an imitation game

(I ,B) to a symmetric extension of the corresponding symmetric game(B>,B).

Lemma 4.11. Considerd×d matricesI andB, whereI is the identity matrix, and

d×k matricesU andB′, where all columns ofU are unit vectors, and let

G =

(
B B′

U> 0

)
(4.13)

Then any symmetric equilibrium(z,z) of (G>,G) gives rise to a Nash equilibrium

(x,y) of the unit vector game([I U ], [B B′]), wherexi = zi/∑d
s=1zs for 1≤ i ≤ d

andy is a suitable uniform distribution, whose support is contained in{1, . . . ,d} if

and only if the support ofz is.

Proof. Let U = [el(1) · · · el(k)], and consider the support ofzwith the two sets

S= { i | zi > 0, 1≤ i ≤ d}, T = { j | zd+ j > 0, 1≤ j ≤ k} (4.14)

If Swas empty, only the rowsd+ j for j ∈ T of player 2’s payoff matrixG would

be played with positive probability when player 1 usesz. However, by (4.13) each

such row[e>l( j) 0>] has a single payoff1 in one of the firstd columns, and zeros
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elsewhere, so no column of the formd+ j would be a best reply againstzand(z,z)

would not be an equilibrium of(G>,G). So S 6= /0, andx is well defined as the

re-scaled vector(z1, . . . ,zd)>.

We can assume that the unit vectorsel( j) for j ∈ T are all distinct. Otherwise, if

el( j) = el( j ′) for somej, j ′ ∈ T and j 6= j ′, we could replacezby a mixed strategŷz

which agrees withzexcept that̂zd+ j = zd+ j +zd+ j ′ andẑd+ j ′ = 0, so thatj ′ can be

omitted fromT. The two mixed strategiesz andẑ give the same expected payoffs,

z>G= ẑ>G, and give rise to the same strategyx, but ẑhas smaller support (this can

only occur in degenerate games).

In the unit vector game([I U ], [B B′]), the pure best replies to player 1’s mixed

strategyx include (and in a nondegenerate game are exactly) the following columns:

d+ j for all j ∈ T, because the lastk columns ofx>[B B′] and ofz>G are the same

except for the factor∑d
s=1zs. Secondly, any columni in

R= S\{l( j) | j ∈ T} (4.15)

is a best reply tox, because for1≤ i ≤ d theith entry ofx>[B B′] is (z>G)i/∑d
s=1zs

if i 6∈ {l( j) | j ∈ T} (in particular,i ∈ R), or ((z>G)i−zd+ j)/∑d
s=1zs if i = l( j) for

some j ∈ T. In the latter case, the variablezd+ j is a “slack variable” for player 2’s

payoff in columnl( j), so if this column is a best reply toz, it is no longer a best

reply tox.

The set of pure best replies tox therefore containsR∪{d+ j | j ∈ T}, which has

the same size as the supportSof x. Player 2’s mixed strategyy in the unit vector

game withyl = 1/|S| for l ∈R∪{d+ j | j ∈ T} andyl = 0 otherwise is therefore a

best reply tox. Againsty, player 1, who has payoff matrix[I U ] in the unit vector

game, receives payoff1/|S| for each rowi in R (via theith column ofI ), and payoff

1/|S| for each rowi = l( j) for some j ∈ T (via the jth columnel( j) of U). These

are exactly the rows in the supportSof x. All other rows give expected payoff zero

againsty. Sox is a best reply toy, and(x,y) is an equilibrium of([I U ], [B B′]), as

claimed.

Assuming that Theorem4.2holds, we use the preceding lemma to prove our main

result, Theorem4.1, as follows.

Proof of Theorem4.1. Let (B>,B) be a nondegenerated×d game with symmetric
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equilibrium(x,x) of symmetric index+1, and letP4 be the dual best reply poly-

tope in (4.7) with n = d. By Lemma4.7, x corresponds to a completely labelled

facetF of P4 with opposite orientation toF0. By Theorem4.2, we can add a set

of verticesc1, . . . ,ck to P4, where eachc j has some labell( j) in {1, . . . ,d} for

1≤ j ≤ k, so that the labelled polytopeP4ext = conv(P4∪{c1, . . . ,ck}) has onlyF

andF0 as completely labelled facets. LetU = [el(1) · · ·el(k)], and let thejth col-

umn of thed×k matrix B′ bec j/(1+1>c j), for 1≤ j ≤ k. By Lemma4.10, any

completely labelled facet ofQ, with the exception ofF0, corresponds to a Nash

equilibrium of ([I U ], [B B′]). Hence, the only such Nash equilibrium is(x,y)

whereyi = 1/|supp(x)| for i ∈ supp(x) andyi = 0 otherwise, which corresponds

to the given symmetric equilibrium(x,x) of (B>,B). Then(x,x) extended to the

symmetric game(G>,G) with G as in (4.13) is the unique symmetric equilibrium

of (G>,G), because by Lemma4.11, any other symmetric equilibrium would give

rise to a different Nash equilibrium of([I U ], [B B′]).

4.6 P-matrix prisms

In the remaining sections, we prove Theorem4.2. We use a class of matrices that

allows us to construct polytopes with known completely labelled facets. These are

the P-matrices, which are known from mathematical programming, in particular

for linear complementarity problems (Cottle et al., 1992). A d×d matrixA is aP-

matrix if all its principal minors are positive; a principal minor ofA is a determinant

of the formdet(ASS) for any subsetSof {1, . . . ,d}, whereASS is the submatrix of

A obtained by deleting all rows and columns ofA that are not inS.

P-matrices are useful for our purposes because they allow the construction of a

particular type of labelled polytope, the “P-matrix prism”, which has only two

completely labelled facets. Here we use the notion of prism in a very general sense

to denote the convex hull of two parallel simplices.Johnson et al.(2003) show that

every matrix of positive index can be written as the product of three P-matrices.

Given two completely labelled facets of a labelled simplicial polytope of opposite

orientation, we can use this matrix decomposition to create a “stack” of three P-

matrix prisms between the two facets. These prisms are placed such that each pair

of intersecting prisms meets in a pair of completely labelled facets. Since each
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prism only has two completely labelled facets, the only completely labelled facets

of the final stack of three prisms are the two given facets of the original polytope

(see Figure4.2 in Section4.7for a graphic illustration of the idea).

In order for this approach to work we need to resolve two problems. First, for a

general P-matrix, we cannot prove that the corresponding P-matrix prism has only

two completely labelled facets. Hence we need to restrict the class of P-matrices

considered. This leads to the second issue: We need to change the decomposition

result inJohnson et al.(2003) to hold for this restricted class of P-matrices. In this

section, we deal with these two problems (Theorem4.12 resolves the first issue,

and Proposition4.13 the second); we restrict ourselves to P-matrices which are

permutation-similar to upper triangular matrices.

For a permutationπ of {1, . . . ,d}, the corresponding permutation matrix is the ma-

trix Eπ = [eπ(1) · · ·eπ(d)]>, i.e. the matrix whoseith row is given by theπ(i)th

unit vector. Multiplying a matrixA = [a1 · · ·ad] by E−1
π from the right yields

AE−1
π = [aπ(1) · · ·aπ(d)], i.e. permutes the columns byπ. Multiplying a matrix

A = [a1 · · ·ad]> from the left byEπ yields EπA = [aπ(1) · · ·aπ(d)]>, which means

that the rows are permuted byπ. Two d×d matricesA,B are permutation-similar

if there is a permutation matrixEπ such thatB= EπAE−1
π , i.e.B is obtained fromA

by permuting both the rows and columns ofA by π. A matrix that is permutation-

similar to a P-matrix is again a P-matrix.

For a matrixC, let conv(C) be the convex hull of its column vectors. Because

we reserve the lettersP andQ for polytopes, we denote P-matrices by letters like

R,S,T.

Theorem 4.12. Let R be ad× d matrix that is permutation-similar to an upper

triangular P-matrix (i.e. an upper triangular matrix with positive diagonal entries),

and that satisfiesR>1= λ1 whereλ 6= 1. Then the polytopeP := conv[I , R], where

ei andr i have labeli, only has the two “trivial” completely labelled facetsconv(I)

andconv(R).

Proof. First, assume thatR = [r1, . . . , rd] is an upper triangular P-matrix. We

will prove the claim using induction on the dimensiond of the polytopeP. For

d = 2, the claim is obvious. Ford > 2, consider the polytope generated by the

pointse1, . . . ,ed−1, r1, . . . , rd−1. This polytopeP′ is contained in the hyperplane
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{x∈Rd|xd = 0}, hence its dimension is less thand. By the induction hypothesis we

can conclude that the only completely labelled facets ofP′ areconv{e1, . . . ,ed−1}
andconv{r1, . . . , rd−1}.
Hence the only non-trivial completely labelled facets ofconv[I , P] could be the

ones containing the verticese1, . . . ,ed−1, rd or r1, . . . , rd−1,ed. Let us first prove

that there is no facet containing the first set of points. The pointse1, . . . ,ed−1, rd

are affinely independent, and span a hyperplane given by{x | v>x = 1}, wherev is

of the form(1, . . . ,1,x) for

x =
1− rd1−·· ·− rd(d−1)

λ − rd1−·· ·− rd(d−1)

The denominator does not vanish sinceλ−rd1−·· ·−rd(d−1) = rdd > 0 by assump-

tion. If λ > 1 (or < 1) thenv>ed = x< 1 (or > 1). Sincev>r i = λ for 1≤ i ≤ d−1

this means thatr1, . . . , rd−1 anded are on opposite sides of the hyperplane spanned

by e1, . . . ,ed−1, rd, hence the latter set of points cannot be contained in a facet.

If the polytopeconv[I , R] is simplicial we are done, since then by Proposition4.9

completely labelled facets have to come in pairs. If the polytope is not simplicial,

we need to prove that there is no facet containing the affinely independent points

r1, . . . , rd−1,ed. The affine hyperplane spanned by those points is of the form{x |
v>x = λ} wherev = 1+(λ −1)ed. Hencev>ei = 1 for 1≤ i ≤ d−1 andv>rd =

λ +(λ −1)rdd. Sincerdd > 0 by assumption,v>rd > λ if and only if λ > 1. This

implies thatrd ande1 . . . ,ed−1 are on opposite sides of the hyperplane spanned by

r1, . . . , rd−1,ed, hence the latter set of points cannot be contained in a facet.

Now consider a matrixR and some permutationπ so thatEπRE−1
π is an upper tri-

angular P-matrix. We need to prove that the polytopeP generated by the columns

of R and I , where theith columns of both matrices have labeli, cannot have any

completely labelled facets except for the trivial ones. This can essentially be seen

using the above result for upper triangular P-matrices, since multiplication byEπ

from the left is just an affine transformation, while multiplication from the right by

E−1
π permutes the vertices of the polytope and can be offset by a corresponding re-

labelling. More precisely, assumeF was a completely labelled facet ofconv[I , R],

spanned byej , j ∈ J, andrk,k ∈ K, whereJ∪K = {1, . . . ,d}. As made precise

earlier, multiplication of a matrix byE−1
π from the right is equivalent to permut-

ing the columns of that matrix. Hence the polytopeP′ generated by the columns of
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R′ = RE−1
π andI ′ = IE−1

π still hasF as a facet, which is spanned by thejth columns

of I ′ for j ∈ π−1(J), and thekth columns ofR′, for k ∈ π−1(K). The labelling of

P induces a natural labelling onP′, where the label of theith column ofR′ andI ′

is π(i). Now permute the labels of the polytopeP′ by π−1; this is equivalent to

giving the ith column ofI ′ andR′ label i. ThenF is still a completely labelled

facet of the relabelled polytopeP′. Now we can apply the linear transformation

Eπ to the relabelled polytopeconv[I ′ , R′]. Since this does not change the combi-

natorial structure nor the labelling of the polytope we can conclude thatEπF is a

completely labelled facet of the polytopeconv[I , EπRE−1
π ]. This facet is spanned

by the unit vectorsej , j ∈ π−1(J), each with labelj, and by thekth columns of

EπRE−1
π for k ∈ π−1(K), each with labelk. By the first part of the proof, either

π−1(J) or π−1(K) must then have been empty, which in turn implies that eitherJ

or K must have been empty.

In Theorem4.12, the condition thatR is permutation-similar to a P-matrix is cru-

cial: The matrix

R=




2 1 2

0 1 1

0 0 −1




is upper triangular but not a P-matrix, and the polytopeconv[I , R] has four com-

pletely labelled facets.

The following useful result is due toJohnson et al.(2003), who proved that every

matrix with positive determinant is the product of at most three P-matrices. Using

the same proof, their result can easily be modified so that it applies to P-matrices

that are permutation-similar to upper triangular matrices, which we need for our

construction.

Proposition 4.13. Every non-diagonal matrixA with positive determinant is the

product of exactly three matrices

A = RST

whereR,SandT are permutation-similar to upper triangular P-matrices.

We essentially follow the proof ofJohnson et al.(2003, Theorem 2.6) for non-

diagonal matrices, and point out where we keep track of the shape of the P-matrices.
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We first need the following lemma, analogous toJohnson et al.(2003, Lemma 2.4).

A d×d matrix has anested sequence of positive principal minorsif it contains a

sequence of positive principal minors of descending orderd, . . . ,1, such that each

minor’s index set contains the next.

Lemma 4.14. For every non-diagonald× d matrix A with positive determinant

there exists a matrixR such thatAR has a nested sequence of positive principal

minors, andR is permutation-similar to a lower triangular P-matrix.

Proof. The proof is by induction ond. SinceA is non-diagonal, we can find a

permutation matrixEπ such thatA′ = EπAE−1
π has its entrya′12 non-zero. It now

suffices to find a matrixR, permutation-similar to an upper triangular P-matrix,

such thatA′R has a nested sequence of positive principal minors, as then does

E−1
π (A′R)Eπ = A(E−1

π REπ).

Ford = 2, chooser such thata′11+a′12r > 0. Then for

R=

(
1 0

r 1

)

A′Rhas a nested sequence of positive principal minors.

Now for d > 2, let

R̂=

(
1 0

r I

)

whereI is the(d−1)× (d−1) identity matrix, andr = (r1, r2,1, . . . ,1) for r1, r2 ∈
R that we will have to choose suitably. We get

R̂−1 =

(
1 0

−r I

)

Now partition

R̂−1A′−1 =

(
b v>

u B

)

whereB is a (d−1)× (d−1)-matrix. WriteA′−1 = (αi j )1≤i, j≤d. If α12 = 0, the

second column ofA′−1 must have one non-zero off-diagonal entry: The product

of the first line ofA′ with the second column ofA′−1 must be zero, which implies

that if all off-diagonal entries of the second column ofA′−1 were zero, the whole
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column would have to be zero sincea′12 6= 0. Hence for the first column ofB we

get that its entrybi1 = α ′
(i+1)2 6= 0 for somei ≥ 2. If α12 6= 0, we can chooser2

such that

b21 =−r2α12+α32 6= 0

Hence in both casesB is non-diagonal. The (1,1) entry ofA′R̂ is a′11 + a′12r1 +

a′13r2 + a′14 + · · ·+ a′1d. Sincea′12 6= 0, we can chooser1 such that this sum is

positive. Sincedet(R̂−1A′−1) > 0, Cramer’s rule implies thatdet(B) > 0. Hence

det(B−1) > 0, andB−1 is also non-diagonal.

By induction hypothesis there is a(d−1)×(d−1) matrixS, permutation-similar to

a lower triangular P-matrix, such thatB−1Shas a nested sequence of positive princi-

pal minors. Hence so hasS−1B, since any principal minor of a non-singular matrix

M equals the determinant ofM, multiplied by the complementary principal minor

of the inverse matrixM−1 (Cottle et al., 1992). Moreover,S−1 is permutation-

similar to a lower triangular P-matrix (in particular, it has positive determinant).

We get

(
1 0

0 S−1

)(
1 0

−r I

)
A′−1 =

(
1 0

0 S−1

)(
b v>

u B

)
=

(
b v>

S−1u S−1B

)

where the latter matrix has positive determinant, hence by choice ofS a nested

sequence of positive principal minors. But the product of the first two matrices is

R−1 =

(
1 0

−S−1w S−1

)

which is permutation-similar to a lower triangular P-matrix sinceS−1 is.

Proof of Proposition4.13. By Lemma4.14, there exists a matrixT such that

AT−1 has a nested sequence of positive principal minors, andT−1 is permutation-

similar to a lower triangular P-matrix (hence so isT). This means that there is a

permutation matrixEπ such thatEπAT−1E−1
π has a leading sequence of positive

principal minors. ThenEπAT−1E−1
π has aLU-factorizationEπAT−1E−1

π = LU ,

whereL andU are lower and upper triangular P-matrices, respectively (Cottle et

al., 1992). We get

A = E−1
π LUEπT = (E−1

π LEπ)(E−1
π UEπ)T
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Since every lower triangular P-matrix is permutation-similar to an upper triangular

P-matrix, the result follows forR= E−1
π LEπ andS= E−1

π UEπ .

4.7 Re-arranging the polytopeP4

In the following sections, we give a proof of our main theorem in the polytope

version, Theorem4.2. We want to use the P-matrix prisms from the previous sec-

tion, whose completely labelled facets we know. Our goal is to create a stack of

such prisms between the two completely labelled facetsF andF0 of the polytope

P4 in Theorem4.2. One of the completely labelled facets of a P-matrix prism is

always the facetconv(I), which is spanned by the unit vectors. To adapt to this,

we have to move the polytopeP4 such thatF0 is spanned by the unit vectors as

well. For this reason we formulate a slightly different version of Theorem4.2 in

Proposition4.15, whereP4 is transformed accordingly. After this transformation,

the facetF has positive orientation (this will become clear later when we explain

the transformation in more detail).

The idea of the proof then is as follows: If we writeF = conv(C), where the

columns ofC are ordered according to their labelling,C must have positive deter-

minant. Using Proposition4.13, we writeC = RSTas a product of three matrices

that are permutation similar to upper triangular P-matrices. Using these matri-

ces, we generate a stack of three polytopes between the facetsF andF0, such that

each polytope in the stack has only two completely labelled facets, i.e. its top and

bottom. More precisely, we use the three polytopesconv[I , R], conv[R, RS] and

conv[RS, C] for our stack. All that remains to do is to expand the facetsconv(R)

andconv(RS) of the polytopes in the stack to “catch” all of the polytopeP4 in the

interior of the extended polytope, except for the top facetF and bottom facetF0.

For a visualisation see Figure4.2.

One of the crucial points for this idea to work is that the facetsF andF0 have to

be parallel. This is only possible if the two facets are disjoint; if the share certain

points, we have to impose an analogous technical condition, stated as equation

(4.16) in Proposition4.15.

In the remainder of this thesis, we will often have to refer to the columns of a given
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Figure 4.2: Example of using Theorem4.12and Proposition4.13 to create a

stack of polytopes that by extension makes the facetsF andF0 the only com-

pletely labelled facets of the extended polytope.

matrix. Unless stated otherwise, we use the corresponding lowercase letter for the

columns of a matrix, i.e.ci for a matrixC etc.

Proposition 4.15.LetP4 = conv[I , C, C′] be a labelled simplicial polytope, where

C andC′ are positived× k and d×n matrices respectively, for some2≤ k≤ d

and n≥ 0. Assume that all columns ofC andC′ are contained in the open half-

space{x |1>x> 1}, and bothei (for 1≤ i≤d) andci (for 1≤ i≤ k) have labeli (we

do not need any condition on the labels ofC′). Suppose we are given a positively

oriented completely labelled facet

F = conv{c1, . . . ,ck,ek+1, . . . ,ed}

Denote by
(0

1

)
the vector with0’s in the firstk coordinates and1’s in the others,

and by
(1

0

)
the vector1− (0

1

)
. Assume thatF can be written as

F = {x∈ P4 | (α(1
0

)
+

(0
1

)
)>x = 1} (4.16)

for someα < 1, where(α
(1

0

)
+

(0
1

)
)>x≤ 1 for x∈ P4. Then we can add labelled

vertices toP4 such that the only completely labelled facets of the extended polytope
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are F and F0 = conv(I). It suffices to addk(d− k+ 1) vertices ifk < d, and2d

vertices ifk = d.

It is easy to see that Proposition4.15implies Theorem4.2. Before we see how this

works, two useful results:

Lemma 4.16. For δ > 1/d and E the matrix having all entries equal to1, the

affine transformation

Rd → Rd, x 7→ (δE− I)−1x

is orientation preserving ifd is odd, and orientation reversing otherwise.

Proof. It suffices to calculate the determinant ofδE− I . By multi-linearity of the

determinant and Laplace expansion, this determinant is easily seen to beδd(−1)d−1+

(−1)d, which is positive (negative) ifd is odd (even).

Lemma 4.17. Every pure strategy equilibrium in a non-degenerate bimatrix game

can be made the unique equilibrium by adding one strategy for the column player.

The payoff column for the row player can be chosen to be a suitable unit vector.

Proof. This is straightforward; seevon Schemde(2005, Lemma 4.1).

Now we prove that Proposition4.15implies Theorem4.2

Proof of Theorem4.2. Assume we are given a labelled simpliciald-polytope

P4 with 0 in its interior, and letF0 andF be two completely labelled facets of

opposite orientation. By linearly transforming the polytopeP4, we can assume

without loss of generality that the completely labelled facetF0 is spanned by the

negative unit vectors, each labelled canonically, while0 is still contained in the

polytope. By a coordinate change and a relabelling of vertices we can assume the

completely labelled facetF to be of the formF = conv{c1, . . . ,ck,−ek+1, . . . ,−ed}
for some1≤ k≤ d, whereci has labeli, and the negative unit vectors still have their

canonical labelling. LetC = [c1 · · ·ck], and denote byC′ the (potentially empty)

matrix of the remaining vertices ofP4, i.e. the vertices neither inF nor F0. We

are now in the situation of a polytope given by a unit vector game as in Lemma

4.10. Hence the completely labelled facets ofP4 correspond to the equilibria of

85



Chapter 4. Index and Uniqueness of Symmetric Equilibria

a bimatrix game([U U ′], [B B′]), whereB,B′ are rescaled versions ofC,C′, and

U,U ′ consist of unit vectors.

For the casek = 1, there is a simple game-theoretic proof for the fact that we can

make the two facetsF andF0 the only completely labelled facets of the polytope by

adding just one strategy (see Lemma4.17). Hence for the remainder of the proof,

we can assumek≥ 2.

We can rescale the rows of[B B′], each by a positive scalar, such that the strat-

egy of the row player in the equilibrium corresponding to the facetF is uniformly

distributed. This corresponds to multiplying[B B′] from the left by a suitable di-

agonal matrix with positive diagonal entries. This procedure does not change the

combinatorial structure ofP, hence neither that ofP4: In the definition ofP, we

can easily replaceB by a multipleDB for some positive diagonal matrixD, and

obtain a linearly equivalent polytope. Also, by a suitable choice of rescalation, we

can assume that0 is still contained inP4.

After rescaling, the facetF is given by{x∈ P4 |
(

α
(1

0

)− (0
1

))>
x = 1} for some

α > −1, with
(

α
(1

0

)− (0
1

))>
x < 1 for all verticesx of P4 that are not inF . By

applying the affine transformationTµ : x 7→ (I + µE)x+ µ1 = x+ µ(1>x+ 1)1,

for µ big enough, we can assume without loss of generality thatC,C′ > 0. This

affine transformation leavesF0 invariant and stretches the rest of the polytope to-

wards infinity, while keeping 0 in the interior of the polytope. Since0 remains in

the polytope, during the transformation no facet-defining hyperplane crosses the

origin, henceF andF0 keep their orientation.

Note that a linear transformation of a polytope by a non-singular matrixM changes

a normalv on a facetF to (M>)−1v, which is the normal onMF . Translating a

polytope changes the normal on a facet by a positive real scalar as long as the facet-

defining hyperplane does not cross the origin. Hence in our case, the normal on the

transformed facetTµ(F) is again of the formα
(1

0

)− (0
1

)
, for some newα >−1.

We need to put the polytopeP4 “in the right position” by movingF0 to conv(I),

andF to some facet of positive orientation. To achieve this, we cannot use the “ob-

vious” linear transformation−I , since the transformed facet−IF would have neg-

ative orientation. Instead, we choose the following affine transformation: We add

( 1
d +ε)1 to all vertices for some smallε > 0, and then apply the linear transforma-
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tion that maps1( 1
d +ε)−ei to ei . By abuse of notation, we denote the transformed

facets again byF andF0, respectively. We can chooseε small enough such thatF

does not change orientation during the translation. This means that the facet defin-

ing hyperplane which definesF does not cross the origin, which also implies that,

by similar considerations as above, this hyperplane is transformed by the transla-

tion to {x | (α(1
0

)− (0
1

)
)>x = λ} for someλ > 0, and by the subsequent linear

transformation to{x | (α(1
0

)−β
(0

1

)
)>x = λ} for someα,β , with strict inequality

for vertices not inF . We might even assumeλ = 1, which impliesβ = 1 (since

ed ∈ F if k < d), andα < 1 sinceα =
(

α
(1

0

)
+

(0
1

))
e1 < 1 (using thate1 /∈ F).

Finally, after applying the linear transformation(( 1
d + ε)E− I)−1 to the translated

polytope, by Lemma4.16 both F and F0 have positive orientation. Hence we

can apply Proposition4.15and add labelled vertices to the transformed polytope

to make the facetsF0 and F the only completely labelled facets. Reversing all

transformations does not change the combinatorial structure of the polytope. This

proves that Proposition4.15implies Theorem4.2.

4.8 Disjoint completely labelled facets

All that remains to be done is proving Proposition4.15. This proof takes up the

remainder of this chapter. As explained in the previous section, we would like

to insert a stack of P-matrix prisms between the two completely labelled facetsF

andF0. For this, we need the two completely labelled facets ofP4 to be parallel

(Figure4.2 in Section4.7 provides an intuition for the reasons behind this). This

can only be achieved if the two facets are disjoint. For this reason, we first give a

proof for the case of disjoint completely labelled facets in the present section. In

terms of symmetric equilibria, disjoint facets correspond to the case of a symmetric

equilibrium of full support. The general case is treated in Section4.9.

We now prove the following result, which is slightly stronger than Proposition4.15

for disjoint completely labelled facets.

Proposition 4.18. For d≥ 2, consider a labelled d-polytopeP4 = conv[I , C, C′]

whereC∈Rd×d andC′ ∈Rd×n (for somen≥ 0). Assume there is someλ > 1 such

thatC>1 = λ1 and1 < C′>1 < λ1. ThenP4 has two parallel disjoint completely
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labelled facetsF0 = conv(I) andF = conv(C). If F is positively oriented, we can

add a set of2d pairwise distinct labelled pointsX = {x1, . . . ,x2d} to the polytope

P4 such that the following conditions hold:

(a) P4ext = conv[I , C, C′ , X] has only two completely labelled facets,conv(I) and

conv(C) (where by abuse of notation we writeX for the matrix[x1 . . . ,x2d]).

(b) Any column ofC′ is caught in the relative interior of the convex hull of the

added points, i.e.C′ ⊂ relint(conv(X)).

(c) Givenε1,ε2 > 0 small enough, we can choose the setX such that it consists

of two subsetsX1 and X2, each of cardinalityd, such that for allx ∈ X1,

1>x = 1+ ε1 and for all x ∈ X2, 1>x = λ − ε2, andP4ext is the union of the

three polytopesconv(I ,X1), conv(X1,X2) andconv(X2,C).

(d) All points inX are extremal points ofP4ext.

Note that this result is slightly stronger than what we actually need for the purposes

of this section: In order to prove Proposition4.15, we could omit conditions (b)-(d)

and assume thatC,C′ > 0. However, we will need this stronger version to extend

the proof to polytopes with non-disjoint completely labelled facets in Section4.9.

Before we prove the proposition, we collect a few ingredients for the proof. The

following Lemma is needed for the top and bottom facets of each of the “stack”

polytopes to be parallel.1

Lemma 4.19. If a matrix M is permutation-similar to an upper triangular P-

matrix, then so areDM andMD for any diagonal matrixD with positive entries.

Proof. The claim is obvious forM an upper triangular P-matrix. ForM permutation-

similar to such a matrix, the claim follows directly using the following observation:

For any permutation matrixEπ and any diagonal matrixD we get

DEπ = EπD′ (4.17)

for a suitable diagonal matrixD′. This is due to the fact that multiplyingEπ by

D from the left results in the rows ofEπ being scaled by the respective diagonal

1Whenever we use the term “stack(ed) polytope” in this chapter, we do not refer to the different

technical term as used in polytope theory (seeZiegler, 1995), but mean it in our illustrative sense,

hoping that this does not lead to confusion.
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entries ofD, whereas multiplyingEπ with D′ from the right means scaling the

columns ofEπ . Using thatEπ has only one nonzero entry in each row and column,

(4.17) follows easily.

The following three results will be used for expanding the facetsconv(R) and

conv(RS).

Proposition 4.20. Consider ad×d matrix M such thatM>1 = λ1 for some con-

stantλ 6= 1. For any vectors such thats>1 = 0, the shear that leaves the unit

vectors invariant and mapsmi to mi +s is a bijective affine transformation, hence

leaves the combinatorial structure of the polytopeconv[I , M] invariant.

Proof. Define an affine transformationT :Rd →Rd,x 7→ x+ 1
d1. Consider the line

L =R1 and its orthogonal complement,L⊥ = {x | x>1= 0}. Let f : L→ L⊥ be the

linear map given byα1 7→ s dα
λ−1. ThenS: L⊥⊕L→ L⊥⊕L,(x,y) 7→ (x+ f (y),y)

is a bijective linear mao (a linear shear). Now the desired shear, which leaves the

unit vectors invariant and movesmi to mi +s, is given byT ◦S◦T−1, and the claim

follows.

In order to state the next results we need to remind the reader of the concept of a

projective map. For an introduction to projective maps in the context of polytopes

consultGrünbaum(2003) or Ziegler (1995), of which we give a very short sum-

mary here. A projective mapτ onRd, given by ad×d matrixZ, vectorsa,z∈Rd,

and some real numberad+1, is defined as

τ : {x∈ Rd | a>x+ad+1 6= 0}→ Rd, x 7→ Zx+z
a>x+ad+1

(4.18)

If the matrix (
Z z

a> ad+1

)
(4.19)

is non-singular, such a projective map is called a projective transformation. If

a= 0, such a projective transformation reduces to an affine transformation. We say

that a projective transformationτ is valid for a polytopeP⊂ Rd if P is contained

in one of the two half-spaces on whichτ is defined. Then,τ(P) is combinatorially

equivalent toP. This view of projective maps suffices for our purposes, but a

projective map as defined in (4.18) can also be understood as the map of projective

spacePdR→ PdR arising from the linear map onRd+1 given in (4.19). For a
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short and accessible treatment of projective space and projective maps seeGallier

(2001).

Proposition 4.21. Consider a matrixM such thatM>1 = λ1 for some constant

λ > 1. For any real numberst > 1 andu 6= 1−tλ
d , there is a projective transforma-

tion that is valid for the polytopeconv(I ,M), and mapsmi to tmi +u1 while leaving

the unit vectors invariant.

Proof. Chooseε = λ−1
t−1 . The projective transformation given by

x 7→ (1−λ − ε)x
1>x−λ − ε

is defined on the polytopeconv[I , M] for ε > 0, i.e.t > 1. It maps each unit vector

to itself, and each vectormi to tmi .

Now defineµ = u
tλ−1 (sincet,λ > 1, the denominator does not vanish). Define an

affine map

x 7→ (I + µE)x−µ1

which is bijective if and only ifµ 6=−1/d, oru 6= 1−tλ
d . This transformation leaves

the unit vectors invariant, and mapstmi to tmi +u1. The concatenation of the two

maps yields the desired projective transformation.

Corollary 4.22. Consider non-singular matricesM,N such thatM>1= λ1, N>1=

λ ′1 for some constantsλ 6= λ ′. Choose any pointsin the hyperplane{x | x>1= λ}.
Then for anyt > 0 andM′ = M + t(M− [s· · ·s]), the polytopeconv[M′ , N] is pro-

jectively equivalent toconv[M , N]. This means that we can replace the vertices

mi by mi + t(mi −s) without changing the combinatorial structure of the polytope

conv[M , N]. Geometrically, this corresponds to “blowing up” the facetconv(M)

from the point of references.

Proof. By applying the linear transformationN−1 to the polytopeconv[M , N], we

can assume without loss of generality thatN = I andλ 6= 1. We can even assume

λ > 1, since otherwise we can reflect the polytope in the hyperplane{x | x>1= 1},
using the reflection

T : x 7→ x− 2
d
(1>x−1) ·1

and applying our result to the polytopeconv[TM , I ], with the reflected reference

pointTs.
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For the case whereN = I andλ > 1, the idea is as follows: First we apply a shear

that movess to λ
d 1, then we blow up the sheared polytope using the projective

transformation in Proposition4.21, after which we need to undo the shear. More

precisely, defines′ = λ
d 1− s, and consider the shear that leaves the unit vectors

invariant and mapsmi to mi +s′. Definet ′ = t +1 andu= (1− t ′)λ/d. Thent ′ > 1

andu 6= 1−t ′λ
d , and the projective transformation in Proposition4.21mapsmi +s′ to

t ′(mi +s′)+u1. Undoing the first shear mapst ′(mi +s′)+u1 to t ′(mi +s′)+u1−s′.

The concatenation of these three maps leaves the unit vectors invariant, and maps

mi to

t ′(mi +s′)+u1−s′ = t ′(mi +
λ
d

1−s)+(1− t ′)
λ
d

1− λ
d

1+s

= t ′mi− t ′s+s

= mi + tmi− ts

Hence we get the desired map as the concatenation of a projective transformation

with two affine isomorphisms, and the claim follows.

Proof of Proposition4.18. To provide geometric intuition we have sketched the

proof in Figure4.2. We assume the columns ofC to be given in the order of their

labels. This implies thatdet(C) > 0 sinceF has positive orientation. IfC is non-

diagonal, we can by Proposition4.13writeC as the product of exactly three matri-

cesC = RST, which are each permutation-similar to an upper triangular P-matrix.

If C is diagonal, it must be of the formλ I , hence can obviously be written as such

a product as well. Without loss of generality we can assume that the columns of

the P-matrices are scaled such that they add up to a suitable positive constant. This

can be achieved by choosing suitable positive diagonal matricesD,D′ and writing

C = (RD)(D−1SD′)(D′−1T) (4.20)

which by Lemma4.19does not change the fact that the factors in this product are

permutation-similar to upper triangular P-matrices.

Let R′ = RS. For any choice ofλ1,λ2 with 1 < λ1 < λ2 < λ , we can assume by

(4.20) that R>1 = 1λ1 andR′>1 = 1λ2. We can chooseλ1 andλ2 such that all

verticesC′ which are not contained in the completely labelled facets are contained

in the set

{y∈ Rd | λ1 < y>1 < λ2} (4.21)
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By Theorem4.12, each of the three “stack” polytopesconv[I , R],conv[R, R′] and

conv[R′ , C] has only two completely labelled facets, that is its “top” and “bottom”

facet. Essentially, all we need to do now is blow up the two middle facets of the

stack, i.e.conv(R) and conv(R′), so that their convex hull (together withI and

C) contains the polytopeP4, and then make sure that we get a proper “stack” of

polytopes, i.e. that the convex hull ofI ,R,R′ andC is indeed the union of the three

stack polytopes.

By Corollary 4.22, we can blow up the facetconv(R) from its barycenters, i.e.

replace it by

Rt = (1+ t)R− t[s. . .s]

for somet ≥ 0, without changing the combinatorial structure of any of the stack

polytopes. We can then “translate” the blown-up facetconv(Rt) into different hy-

perplanes by adding a suitable scalar multiple of1 to the facet. This does not

change the combinatorial structure of any of the stack polytopes (as long as we

do not put any pair of facets into the same hyperplane, which would “squash” the

corresponding stack polytope). This is due to the fact that translating one of the

facets of a stack polytope by a multiple of1 corresponds to applying the affine map

x 7→ (I + µE)x−µν1 = x+ µ(1>x−ν)1 (4.22)

for suitable choices ofµ andν . Denote the translation ofRt into the hyperplane

{x | x>1 = λ ′} by Rt,λ ′ . More precisely,

Rt,λ ′ = Rt +
λ ′−λ1

d
1

Chooset big enough such that for everyλ ′ in the closed interval[1,λ ], the convex

hull of I ,C andRt,λ ′ containsP4. Such at must exist, since the function

[1,λ ]→ R,λ ′ 7→ inf{t ∈ [0,∞) | P4 ⊂ conv[I , C, Rt,λ ′ ]}

is continuous, hence bounded. By slightly increasingt, we can assume that not

only P4 is contained inconv[I , C, Rt,λ ′ ] for everyλ ′ ∈ [1,λ ], but that the vertices

C′ of P4 that are neither onF nor onF0 are even contained in the relative interior

of that convex hull. Moreover, we can assumet to be sufficiently large such that

F0 is contained in the relative interior ofconv(Rt,1), the translation ofconv(Rt)
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into the hyperplane{x | x>1 = 1}. Finally, we can assume that the analogous

statement holds for the facetsR′ and F : Denote byR′t the blow-up ofR′ from

the barycenter ofconv(R′) by the factort, and byR′t,λ the translation ofR′t to the

hyperplane{x | x>1 = λ}. Then we can assumet to be sufficiently large such that

F is contained in the relative interior ofconv(R′t,λ ).

Our choice of the expansion factort implies thatP4 is contained in the polytope

conv[I , C, Rt , R′t ], andC′ in its relative interior. However, so far our construction

does not guarantee that the polytopeconv[I , C, Rt , R′t ] is the union of the three

stack polytopesconv[I , Rt ], conv[Rt , R′t ] andconv[R′t , C], whose facet structure we

know (in terms of completely labelled facets). To achieve this, we need to move

the middle facetsconv(Rt) andconv(R′t) sufficiently outwards. By our choice of

expansion parametert we can translate the facetconv(Rt) arbitrarily close to the

facetF0, and the facetconv(R′t) arbitrarily close to the facetF , while keeping the

polytopeP4 inside the corresponding convex hull (andC′ in its relative interior),

and without changing the combinatorial structure of any of the stack polytopes. By

replacingRt by Rt,1+ε1, andR′t by R′t,λ−ε2
for some suitably smallε1, ε2 > 0, we

ensure that when we put the three stacks polytopes together, they do not start “inter-

fering with each other”: No point inF0 can see any point in the upper stack polytope

conv[R′t,λ−ε2
, C], nor does any vertex inF see a point in the lower stack polytope

conv[I , Rt,1+ε1] (where we say that two points inconv[I , C, Rt,1+ε1 , R′t,λ−ε2
] “see”

each other if the convex hull of those two points does not intersect the relative

interior of the polytope).

We can conclude that for any small enough choice ofε1, ε2 > 0, we get that

Q = conv[I , C, Rt,1+ε1 , R′t,λ−ε2
]

= conv[I , Rt,1+ε1]∪conv[Rt,1+ε1 , R′t,λ−ε2
]∪conv[R′t,λ−ε2

, C]

i.e. the first polytope is indeed the union of three stack polytopes, as desired. We

can conclude that the facets ofQare given by the facets of the three stack polytopes,

apart from those that have been glued together (which are the two middle facets of

the stack). Since by our choice oft, Q contains every vertexC′ in its relative

interior, this implies that forX = [Rt,1+ε1 R′t,λ−ε2
], the extended polytopeP4ext =

conv[I , C, C′ , X] does not have any completely labelled facets apart fromF and

F0, which proves statement (a) of the Proposition. Statements (b)-(d) are obvious

from our construction.
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4.9 General completely labelled facets

In this section we prove Proposition4.15for the case in which the two completely

labelled facets are not disjoint. This proof concludes our proof of Theorem4.2.

The main challenge in this case is that we cannot stack P-matrix prisms between

the two facetsF andF0 of P4, since they share vertices. To overcome this problem,

we project the “disjoint” part of the polytope into a lower dimensional space. The

projected polytope inherits the labelling fromP4, and has two completely labelled

facets, which are the projections ofF andF0. These two projected facets are dis-

joint and parallel. This means that we can apply Proposition4.18to add points to

this lower-dimensional polytope to make the projected facets unique.

We then need to “lift” the added vertices back into the higher dimensional space, so

that we can use them as added vertices for the original polytopeP4. For technical

reasons, this process of “lifting” creates several copies of each vertex added in the

lower dimension. Hence the number of vertices added toP4 is no longer bounded

by a linear function, as in the previous section, but grows quadratically.

We use the following projective projection to create a lower-dimensional polytope

from P4:

p : {x∈ Rd | (0
1

)>
x 6= 1}→ Rd, x 7→ Ikx

1−(0
1

)>
x

(4.23)

whereIk is thed×d matrix [e1 · · ·ek 0· · ·0]. We would like to apply this projection

to the polytopeconv[I , C, C′] in Proposition4.15to get a lower-dimensional poly-

tope with disjoint completely labelled facets. The projection is not defined on the

lastd−k unit vectors (which are the shared vertices ofF andF0), hence we need to

restrict it to the remaining vertices ofP4. Figure4.3 illustrates how the projection

transforms ad-polytope into a lower dimensional polytope.

In the following lemma, we analyze the facet structure of the projected polytope.

Lemma 4.23. Consider ad-polytopeQ = conv[I , A] for somed×n-matrix A > 0

that satisfies
(0

1

)>
A < 1, meaning that the projectionp in (4.23) is defined on all

columns ofA. DefineQk to be thek-polytope given as the convex hull of the points

e1, . . . ,ek, p(a1), . . . , p(an). Then every facetF of Q that consists of the lastd− k

unit vectorsek+1, . . . ,ed and some other verticesx1, . . . ,xs (note thatQ need not be

simplicial) yields a facetFk = conv{p(x1), . . . , p(xs)} of the polytopeQk.
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1
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2 1

Figure 4.3: Example of a projection as in (4.23) applied to a labelled simplicial

polytope of the formconv[I , C, C′] as in Proposition4.15, whered = 3 and

k = 2. The 3-polytope has several completely labelled facets, among these the

unit simplex, which is the large dashed triangle on the “back” of the polytope,

and the shaded facet. The shaded 2-polytope is the projection of this 3-polytope;

the thin dashed lines indicate the projection lines.

Proof. First, observe thatQk is indeed ak-dimensional polytope. This is due to

the fact that for any set of pointsx1, . . . ,xr ∈ {a1 . . . ,an,e1, . . . ,ek} any affine de-

pendence of thep(xi), ∑r
i=1 γi p(xi) = 0 with ∑r

i=1 γi = 0, gives rise to an affine

dependence ofx1, . . . ,xr ,ek+1, . . . ,ed via

0 =
r

∑
i=1

γi p(xi) =
r

∑
i=1

γi

1−
(0

1

)>
xi

xi−
d

∑
j=k+1

(
r

∑
i=1

γi

1−
(0

1

)>
xi

(xi) j

)
ej (4.24)

where

r

∑
i=1

γi

1−
(0

1

)>
xi

−
d

∑
j=k+1

(
r

∑
i=1

γi

1−
(0

1

)>
xi

(xi) j

)
=

r

∑
i=1

γi

1−
(0

1

)>
xi

(1−
d

∑
j=k+1

(xi) j) =
r

∑
i=1

γi = 0

SinceQ is ad-polytope, there is at least one columnai of A that is not contained in

the affine hull of the unit vectors, hence by the above calculationp(ai) cannot be

contained in the affine hull ofe1, . . . ,ek, henceQk must bek-dimensional.

Now consider a facetF = conv{x1, . . . ,xs,ek+1, . . . ,ed} of Q, given by some hy-

perplane with normal vectorv. This means that for someµ ∈R, v>x≤ µ for every
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x∈ Q, with equality exactly forx∈ F . By scaling this inequality we can assume

that µ = 1 (if µ is negative, the direction of the inequality is reversed, but our

argument still works). Sinceei ∈ F for i > k, we get thatvi = 1 for thosei.

We claim thatFk is defined as a face ofQk by the hyperplane with normal vec-

tor v(k) = (v1, . . . ,vk,0, . . . ,0). We need to prove that all verticesx of Qk satisfy

v(k)>x ≤ 1, with equality ifx∈ Fk, and strict inequality otherwise. This is obvious

for the unit vectorse1, . . . ,ek; for any columnai = (α1, . . . ,αd) of A, the inequality

v>ai < 1 implies

v(k)>p(a) =
∑k

j=1v jα j

1−∑d
j=k+1 α j

=
∑k

j=1v jα j

1−∑d
j=k+1v jα j

≤ 1 (4.25)

Since
(0

1

)>
ai < 1 for all columnsai of A, the last inequality is strict ifv>ai < 1,

and becomes an equality ifv>ai = 1. SoFk is indeed a face ofQk, and sinceF had

at leastd extremal points, the argument at the beginning of the proof implies that

Fk must have had at leastk affinely independent points. HenceFk is a proper face

of maximal dimension, i.e. a facet.

The following Lemma provides a useful projective transformation with which we

can influence the shape of the normals on a given polytope.

Lemma 4.24. Consider ad-polytopeQ such that1>x≥ 1 for all x∈ Q andF0 =

{x ∈ Q | 1>x = 1} is a facet ofQ. Let F be another facet that can be written in

the formF = {x∈ Q | v>x = 1} wherev>x≤ 1 for all x∈ Q. Let0≤ µ < 1, and

consider the projective transformation

τ(x) =
1

µ(1>x)+1−µ
·x (4.26)

Then in the transformed polytopeQ′ = τ(Q), the facetτ(F) has normal

w = µ1+(1−µ) ·v (4.27)

Any point on the hyperplane{x | 1>x = 1}, which containsF0, is unchanged un-

der τ.

Proof. The inverse projection mapτ−1 that mapsQ′ to Q is given by

τ−1(y) =
1−µ

1−µ(1>y)
·y
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Forx∈Q and hencey= τ(x) ∈Q′, we want thatv>x≤ 1 is equivalent tow>y≤ 1.

The latter inequality statesw>x/(µ(1>x) + 1− µ) ≤ 1, or (w− µ1)>x≤ 1− µ.

This follows from w− µ1 = (1− µ) · v, that is, when (4.27) holds, which also

implies thatv>x = 1 if and only if w>y = 1.

Proof of Proposition4.15. We can now prove Proposition4.15 for the case of

non-disjoint facets, i.e. fork < d. As explained earlier, we would like to project

the “disjoint” part of the polytope into a lower dimensional space, using the pro-

jection defined in (4.23). For this projection to be defined on the polytope, we need

that the normal
(1

0

)
α +

(0
1

)
on the facetF satisfiesα > 0. This can be achieved

by applying the transformationτ in (4.26) for someµ close to 1. Since from now

on we are only going to consider the transformed polytope, we denote the trans-

formed polytope again byP4, the transformed vertices byI ,C,C′ (whereI is still

the identity matrix), and the transformed completely labelled facets byF andF0.

We will add suitable vertices to the transformed polytope to make the transformed

facets unique. All we need to take care of is that at the end of our construction,

we will be able to re-transform the extended polytope usingτ−1 (this restriction is

quite significant; it will force us to add a quadratically growing number of vertices,

instead of the linearly growing number in the previous section).

Denote byp the projection defined in (4.23). After the transformationτ, the ver-

ticesci ,c′i of P4 still have positive entries, and the normal on the transformed facet

F is of the form
(1

0

)
α +

(0
1

)
for someα ∈ (0,1). Hence for any columnc of [C C′],

we have that

c>
(0

1

)
< c>

((1
0

)
α +

(0
1

))≤ 1

which implies that the projectionp is defined forc. Consider the labelledk-

polytopeQ spanned bye1, . . . ,ek andp(c1), . . . , p(ck), p(c′1), . . . , p(c′n), which lives

in the subspace ofRd spanned by the firstk unit vectors. The verticesei and

p(ci) have labeli (for 1≤ i ≤ k); the verticesp(c′1), . . . , p(c′n) might have labels in

{k+1, . . . ,d}, but these labels are irrelevant since those vertices will vanish when

we add new labelled vertices later. By Lemma4.23, the polytopeQ has two disjoint

completely labelled facets

G0 = conv{e1, . . . ,ek}, G = conv{p(c1), . . . , p(ck)}
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Observe that since the normal onF is of the form
(1

0

)
α +

(0
1

)
, we have

α(c>i
(1

0

)
)+c>i

(0
1

)
= 1 (4.28)

for 1≤ i ≤ k. By definition ofp, we get for1≤ i ≤ k

p(ci)>1 =
c>i

(1
0

)

1− (0
1

)>
ci

(4.28)= 1/α > 1 (4.29)

hence the facetsG andG0 are parallel ink-dimensional space. Also, since

det[p(c1) · · · p(ck)] = t ·det[c1 · · ·ck ek+1 · · ·ed]

for some positive real numbert, we get that the orientation ofG is the same as

the orientation ofF , thus positive. Hence we can apply Proposition4.18 to the

polytopeQ with completely labelled facetsG andG0, and add verticesy1, . . . ,y2k ∈
Rk×{0, . . . ,0} with labels in{1, . . . ,k} to Q such that the only completely labelled

facets ofQext = conv(Q∪{y1, . . . ,y2k}) areG andG0.

Assume that we could construct from the setY = {y1, . . . ,y2k} of added vertices a

new set of labelled pointsX that satisfy the following conditions:

(i) the verticesC′ of the polytopeP4 are caught in the relative interior of the

convex hull of the new pointsX and the lastd−k unit vectors, i.e.

C′ ⊂ relint(conv[X , ek+1 · · ·ed])

where by abuse of notation we writeX for the matrix whose columns are

given by the vectors inX.

(ii) for each vectorx in X, we get thatp(x) is in Y, and the labels ofx andp(x)

agree.

(iii) for each vectorx in X, 1>x < 1/µ for the µ chosen at the beginning of the

proof when we applied the projectionτ from (4.26). This means that the

inverse projectionτ−1 is well-defined on each of thex.

We claim that those verticesX would do the trick for our original polytope. For this,

we need to prove thatP4ext = conv[I , C, C′ , X] has no completely labelled facets

except forF andF0. Condition (i) above implies that for1≤ i≤ n, c′i vanishes in the

relative interior ofP4ext. By condition (ii), the labels ofX are contained in{1, . . . ,k}.
In order for a facetF to be completely labelled, it must then contain the vertices
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ek+1, . . . ,ed, and some other verticesb1, . . . ,bs∈X∪{c1, . . . ,ck}∪{e1, . . . ,ek}with

labels1, . . . ,k. By condition (ii) above and condition (d) of Proposition4.18, each

of these vertices is mapped byp to a vertex ofQext.

Then, Lemma4.23 implies thatFk = conv{p(b1), . . . , p(bs)} is a completely la-

belled facet of thek-polytopeQext, i.e.Fk has to be eitherG0 or G. Since the only

vertex ofP4ext that is projected byp ontoei is ei , and the only vertex projected onto

p(ci) is ci , this implies thatbi = ei for all i, or thatbi = ci for all i, respectively. In

the first case, we getF = F0, in the second,F = F . Due to condition (iii) above,

we can now re-transformP4ext using the transformationτ−1 given in (4.9). Since

this re-transformation does not change the combinatorial structure ofP4ext, we are

done.

Hence all that we need to do is find pointsX satisfying conditions (i)-(iii) above.

The original verticesY will satisfy (i) and (ii), but in general not (iii). This is due

to the following problem: By condition (c) of Proposition4.18, we can choose a

small positiveε such that everyyi in the “first” set{y1, . . . ,yk} of added vertices

satisfies1>yi = 1+ ε , while everyyi in the “second” set{yk+1, . . . ,y2k} satisfies

1>yi = 1/α − ε . Sinceµ < 1, we can assume that1>yi < 1/µ for the first set of

vertices, but this inequality may not be true for the second set of added vertices. If

we have1>yi < 1/µ for all added vertices we are done, by settingX = Y.

Otherwise, we revert to the following trick: Since the inverse transformationτ−1

is valid for the polytopeP4, we can conclude thatP4 ⊂ {x | 1>x < 1/µ}. Choose

ε > 0 such that bothP4 andy1, . . . ,yk are contained in the open half-space{x |
1>x < 1

µ −ε}. Denote byH the hyperplane{x | 1>x = 1
µ −ε}, and byH− the cor-

responding closed halfspace containingP4. By condition (b) of Proposition4.18,

p(c′i) is contained in the relative interior ofconv(Y) for 1≤ i ≤ n. This, together

with positivity of c′i , implies thatc′i is in the relative interior of thed-polytope

conv[Y ek+1 · · ·ed].

It is useful to adapt the first set of vertices{y1, . . . ,yk} slightly: For 1≤ i ≤ k,

we replaceyi by xi = ed + ρ(yi − ed), whereρ is chosen such thatxi ∈ H (i.e.

ρ = 1/µ−ε−1
1>yi−1 ). The parameterρ is independent of the choice ofi due to condition

(c) of Proposition4.18. Sinceρ > 1, the pointyi is a convex combination of

xi and ed, and we get thatC′ is in the relative interior of the convex polytope

M = conv{x1, . . .xk,yk+1, . . . ,y2k,ek+1, . . . ,ed}. By our choice of the hyperplaneH
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it also follows thatC′ is contained in the relative interior of the polytopeM− =

M∩H−. We would like to use the vertices of the latter polytopeM− to complete

our desired set of pointsX.

What are the vertices ofM−, expressed in terms of the vertices ofM? M− keeps

those vertices ofM that are contained inH−, looses those vertices ofM that are in

the opposite open halfspaceH+\H, and gets a new vertex onH for each edge ofM

from a vertex ofM in H−\H to a vertex ofM in H+\H. Since we replaced the ver-

ticesy1, . . . ,yk by verticesx1, . . . ,xk contained inH, the only vertices ofM in H−\H
are the unit vectorse1, . . . ,ed. HenceM has verticesek+1, . . . ,ed,x1, . . . ,xk, and ad-

ditionally gets a vertex at each intersection of an edge ofM with the hyperplaneH

that hasyi as one endpoint andej as the other endpoint, for somek+ 1≤ i ≤ 2k

and1≤ j ≤ d. For eachk+1≤ i ≤ 2k, denote byXi the set of vertices ofM that

arise from an edge betweenyi and one of theej . What is the cardinality ofXi? By

condition (c) of Proposition4.18, for anyk+1≤ i ≤ 2k, there is no edge fromyi

to any of the verticese1, . . . ,ek. Hence the worst that can happen is that we get an

edge for each pair(yi ,ej), wherek+ 1≤ i ≤ 2k, andk+ 1≤ j ≤ d. This means

that for eachyi , the cardinality ofXi is at mostd−k.

Viewing Xi as matrices, letX = [x1 · · ·xk Xk+1 · · ·X2k], wherexi inherits the label of

yi , and the columns ofXj inherit the label ofy j . By construction, this set satisfies

condition (i) above. Condition (iii) is true since by construction,M− ⊂ H− ⊂ {x |
1>x< 1/µ}. As for condition (ii), observe that for anyx∈Rk×0⊂Rd, anyρ > 0

and j ∈ {k+1, . . . ,d}
(0

1

)>
(ej +ρ(x−ej)) = 1+ρ(

(0
1

)>
x−1) = 1−ρ < 1

hence the projectionp defined in (4.23) is defined on that point, andp(ej +ρ(x−
ej)) = x. The last equation, which is true only since the lastd− k coordinates

of x vanish, implies condition (ii). Hence we have found the desired setX =

[x1 · · ·xk Xk+1 · · ·Xd] of labelled vertices that need to be added to the polytopeP4

to makeF andF0 the only completely labelled facets. The cardinality of this set is

at mostk+k(d−k).
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4.10 Open questions

In the previous section we have seen that for a symmetric equilibrium of positive

index, with support sizek< d in ad×d symmetric game, we might need to addk+

k(d−k) strategies to make the equilibrium unique. As a first improvement on this

bound we would hope to achieve a linear bound ink. However, an even stronger

bound might be suggested: It is quite obvious that any pure Nash equilibrium of

some bimatrix game can be made unique by adding a single strategy for the column

player (see Lemma4.17). This raises the question whether it should in general

suffice to addk strategies, wherek is the size of the support.

Another open question concerns our P-matrix construction. In Theorem4.12we

proved that for P-matrices that are permutation-similar to an upper triangular ma-

trix, the corresponding “canonical P-matrix-prism” has only two completely la-

belled facets. This statement is certainly true for any positive P-matrix as well, as

long as the corresponding prism is simplicial. Otherwise Proposition4.9could be

used to construct a principal minor of negative determinant. However, it is unclear

in how far Theorem4.12holds for general P-matrices.
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