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Abstract

This thesis studies the application of geometric concepts and methods in the anal-
ysis of strategic-form games, in particular bimatrix games. Our focus is on three
geometric concepts: the index, geometric algorithms for the computation of Nash
equilibria, and polytopes.

The contribution of this thesis consists of three parts. First, we present an algorithm
for the computation of the index in degenerate bimatrix games. For this, we define
a new concept, the “lex-index” of an extreme equilibrium, which is an extension of
the standard index. The index of an equilibrium component is easily computable
as the sum of the lex-indices of all extreme equilibria of that component.

Second, we give several new results on the linear tracing procedure, and its bima-
trix game implementation, the van den Elzen-Talman (ET) algorithm. We compare
the ET algorithm to two other algorithms: On the one hand, we show that the
Lemke-Howson algorithm, the classic method for equilibrium computation in bi-
matrix games, and the ET algorithm differ substantially. On the other hand, we
prove that the ET algorithm, or more generally, the linear tracing procedure, is a
special case of the global Newton method, a geometric algorithm for the compu-
tation of equilibria in strategic-form games. As the main result of this part of the
thesis, we show that there is a generic class of bimatrix games in which an equilib-
rium of positive index is not traceable by the ET algorithm. This result answers an
open guestion regarding sustainability.

The last part of this thesis studies the index in symmetric games. We use a con-
struction of polytopes to prove a new result on the symmetric index: A symmetric
equilibrium has symmetric index1 if and only if it is “potentially unique”, in the
sense that there is an extended symmetric game, with additional strategies for the
players, where the given symmetric equilibrium is unique.
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Introduction

1.1 Geometry and game theory

Geometric ideas are ubiquitous in game theory. Many game theoretic problems
lead naturally to geometric or topological questions. An important example is the
notion of Nash equilibrium, which is the central solution concept in the theory of
strategic-form games. The set of Nash equilibria of a given game carries a natural
geometric structure: It is the set of solutions of a system of polynomial equations
and inequalities, i.e. a semi-algebraic set. In the case of bimatrix games (i.e. two-
player games in strategic form), this set has an even simpler structure: It is given
by a set of linear constraints, coupled with a complementarity condition, hence is
the solution set of a linear complementarity problem. As such, it is a finite union
of polyhedra. This nice geometric structure has been exploited in various aspects
of the study of Nash equilibria.

This thesis explores three geometric concepts that have been widely studied in the
context of strategic-form (and especially bimatrix) games: Polytopes, geometric
algorithms for the computation of Nash equilibria, and the index of an equilibrium.
Before we describe the contribution of this thesis, we would like to give a short
overview of these three concepts in the context of game theory, and explain how
they are linked.

One of the most fundamental geometric concepts used in bimatrix game theory
is that of polyhedra and polytopes. Polytopes have been used both to visualize
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game theoretic ideas and to solve game theoretic problems. A very useful tool in
the study of bimatrix games is the “best-reply polytope”, which is valuable in the
study of Nash equilibria in various respect%n Stenge(1999 used these poly-
topes to refute the conjecture [Quint and Shubi1997) on the maximal number

of Nash equilibria that a x d bimatrix game can havelVon Schemdg2005
studied stability properties of equilibria using a construction based on best-reply
polytopes/Savani and von Sten@¢2006 applied best-reply polytopes to answer

a long-standing open question in algorithmic game theory, namely if the classic
algorithm for the computation of Nash equilibria, the Lemke-Howson algorithm,
has exponential running time.

The computation of one or all Nash equilibria of a bimatrix game is closely linked
to polytopal concepts. For this reason, polytopes constitute a central tool in al-
gorithmic game theory. For example, the extreme equilibria of a bimatrix game
correspond to certain vertices of the best-reply polytope. Hence computing all
Nash equilibria of a bimatrix game essentially corresponds to vertex enumeration
(Vorab’ev, [1958 |Avis et all, [2010). Likewise, polytopes are used in the study of
complementary pivoting algorithms for the computation of a single equilibrium
of a bimatrix game. As mentioned earlier, the set of Nash equilibria in bimatrix
games has a particularly nice geometric structure as the solution set of a linear
complementarity problem. A general algorithm for the solution of such a linear
complementarity problem is Lemke’s algorithitnefnke (1965, which is a com-
plementary pivoting method that walks along edges of a suitable polyhedron. Two
of the best-known algorithms for the computation of equilibria in bimatrix games,
those byLemke and Howsaorf1964 andivan den Elzen and Talmgd991), are

both special cases of Lemke’s algorithBafanj 2006 von Stengel et gl2002),

and as such have a straightforward geometric interpretation in terms of polyhedra.

However, the use of geometric tools for equilibrium computation has not been re-
stricted to bimatrix games. Geometric algorithms have also been developed for
the computation of Nash equilibria in general strategic-form games. An example
is the global Newton method b@ovindan and Wilscrf20033, which is based

on the particularly nice geometry of the graph of the equilibrium correspondence.
The equilibrium correspondence on the space of strategic-form games of a given
dimension maps each game to its set of equilibria. The graph of this correspon-
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dence is a topological manifold, whose one-point-compactification is homeomor-
phic to a sphereohlberg and Merten4dl986). This simple geometric structure

is exploited in the global Newton method for the construction of a geometric al-
gorithm that computes a Nash equilibrium of a given strategic-form game. This
algorithm is an example of the wider class of homotopy (or path-following) algo-
rithms, which trace a path in a generically one-dimensional manifold in order to
find an equilibrium|[Herings and Peeter201(0). Another example of such a ho-
motopy algorithm is the linear tracing procedure introducedHaysanyji(1975),
which generalizes the van den Elzen-Talman algorithm from bimatrix to general
strategic-form games. The tracing procedure plays a crucial role in the equilibrium
selection theory developed byarsanyi and Selte(l988, and in an equilibrium
refinement concept suggestedMyerson(1997).

Algorithmic problems in game theory are closely related to another important ge-
ometric concept, the index. The index of an equilibrium is a topological notion
which assigns to each connected component of Nash equilibria an integer, such
that the indices of all equilibrium components of a game add up to one. The index
was developed bghaple}(1974 in the context of the Lemke-Howson algorithm,
and all algorithms mentioned above have in common that generically, they will
only find equilibria of positive indexGarcia and Zangwil[1981]).

But the relevance of the index has grown way beyond algorithmic issues. The index
of an equilibrium component carries crucial information about many of its proper-
ties. For this reason, the index plays a considerable role in equilibrium refinement
and selection theory. In nondegenerate bimatrix games, equilibrium components
consist of isolated points, whose index can be eith&ior —1. In such games, it

has been shown that several important properties of an equilibrium depend on its
index. As already mentioned, homotopy algorithms for the computation of equi-
libria, like the Lemke-Howson or van den Elzen-Talman algorithms, will generi-
cally find only equilibria of indext+1 (Garcia and Zangwil[1981). Von Schemde
(2005 proved that an equilibrium has positive index if and only if it can be made
the unique equilibrium of an extended game, where strategies with suitable payoffs
are added. Furthermore, the index carries crucial information about the dynamic
stability of an equilibrium with regards to Nash fields (i.e. vector fields that have
exactly the equilibria of the given game as rest points). Positively indexed equi-
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libria can be made dynamically stable by a suitable choice of Nash field, whereas
equilibria with negative index are always unstal®ibauer2003).

In degenerate games, the index is no longer restricted to the vallies —1 but

can take any integer as vall@dvindan et all2003. In this case, the index of an
equilibrium component carries information about the “essentiality” or “stability”

of the component, in terms of payoff perturbations (as opposed to the “dynamic
stability” considered earlier). Various concepts of stability have been suggested
in the search for a satisfying theory of equilibrium refinement and selection, fol-
lowing the main idea that an equilibrium component is stable if it does not vanish
under slight perturbations of the payoffs (d€ehlberg and Merten$1986 and

the subsequent literature). The concept that has been shown to best capture the
interdependence between index and stability is that of hyperstability. An equilib-
rium component is called hyperstable if it is stable in every equivalent game, where
two games are called equivalent if they can be reduced to the same game by delet-
ing “superfluous” strategies that are convex combinations of other strategies. An
equilibrium component is called uniformly hyperstable if the hyperstability con-
dition holds uniformly over all equivalent game§&ovindan and Wilsar{2005

proved that an equilibrium component is uniformly hyperstable if and only if it has
nonzero index.

We can conclude that the index, a purely geometric notion, is relevant to the study
of equilibrium properties both in degenerate and nondegenerate bimatrix games.
But geometric ideas are even more ubiquitous in game theory than our exposition
suggests. To give an exampMerten$(1989 1997 uses homology theory, a tool
from algebraic topology, to study strategic stability. However, we restrict the scope
of this thesis to the three geometric concepts outlined above: Polytopes, geometric
algorithms for equilibrium computation, and the index. The main focus of this
thesis is on bimatrix games, with a notable exception in our study of game theoretic
algorithms in Chaptd8.

1.2 Thesis outline

The contribution of this thesis consists of three parts: As a first result, we present an
algorithm to compute the index in degenerate bimatrix games. In the second part,

10
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we give several new results on the linear tracing proceduifacganyi(1975, and

its bimatrix game implementation, the van den Elzen-Talman algorithm. The last
part studies the index in symmetric games; we use a construction of polytopes to
prove a new result on the symmetric index.

In Chapter[2, we first give an exposition of the index of an equilibrium component
in bimatrix games. Then, as the main result of this chapter, we present an algorithm
for the computation of the index in degenerate games.

In nondegenerate games, the index is easily computable, essentially as the sign of
a suitable determinant. However, in degenerate games, where equilibrium com-
ponents can occur, there is no such straightforward method. Existing algorithms
rely on perturbations of the payoffs of the game, or on interior approximations of

a Nash field. In order to arrive at a simpler algorithm, we extend the definition
of the index of isolated equilibria in nondegenerate games to extreme equilibria
in degenerate games. We call this new index notionléRa@ndexof an extreme
equilibrium.

The crucial ingredient for our algorithm is the following, intuitively appealing re-
sult: The index of an equilibrium component is the sum of the lex-indices over
all extreme equilibria of that component. The lex-index of an extreme equilib-
rium is easily computable, using just the game matriéeB), without resorting to
topological concepts such as perturbations or interior approximations. Hence our
method offers an improvement on existing algorithms.

This chapter is joint work with Bernhard von Stengel, intended for publication.

In Chapter [3 we analyze several geometric algorithms for the computation of
Nash equilibria. Our focus is on the van den Elzen-Talman algorithm, a com-
plementary pivoting method for equilibrium computation in bimatrix games. The
algorithm starts at an arbitrary strategy profile, called prior. Both players adjust
their strategies until an equilibrium is reached. This algorithm has the advantage of
being more flexible than the classic algorithm for equilibrium computation in bi-
matrix games, the Lemke-Howson method: While the Lemke-Howson algorithm
relies on afinite set of starting points, the van den Elzen-Talman algorithm can start
anywhere in the strategy space. Another useful property of the latter algorithm is
that it implements Harsanyi’'s and Selten’s linear tracing procedure, which plays an

11
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important role in equilibrium selection and refinement theory.

We answer several questions regarding these algorithms. First, we show that the
Lemke-Howson and van den Elzen-Talman algorithms differ substantially: The
van den Elzen-Talman algorithm, when started from a pure strategy and its best
response as a prior, in general finds a different equilibrium than the correspond-
ing Lemke-Howson method. Secondly, we prove that the van den Elzen-Talman
algorithm, or more generally, the linear tracing procedure, is a special case of the
global Newton method, a geometric algorithm for the computation of equilibria in
general strategic-form games introduceddxwindan and Wilsdif2003§. As the

third and main result of this chapter, we show that the van den Elzen-Talman algo-
rithm is not flexible enough to find every equilibrium of positive index. Our result

is based on the concept of “traceability”: An equilibrium is called traceable if it
is found by the van den Elzen-Talman algorithm from an open set of pittf|
bauer2003. We prove that there is a generic class of bimatrix games in which an
equilibrium of positive index is not traceable. This result answers an open ques-
tion that arises from a closely related notion of sustainabilfifyerson (1997)
suggested to call an equilibrium sustainable if it is found by the tracing procedure
from an open set of priors. Our result shows that in this sense, not all equilibria of
positive index are sustainable.

A version of ChaptdB has been published in Economic ThedBalthasay2010).

In Chapter[4, we analyze the index in the context of symmetric bimatrix games. A
bimatrix game is called symmetric if the players have the same number of strate-
gies, and the two players are interchangeable. More precisely, this means that the
payoff matrix of one player is the transpose of the payoff matrix of the other player.
Symmetric games play an important role in evolutionary game theory, where a
mixed strategy can represent the frequencies of individual pure strategies that occur
in a population. A symmetric game may have both symmetric and non-symmetric
equilibria. In certain situations — for example if the players have no way of de-
termining which of the two possible player positions they are in — it makes sense
to only consider the symmetric equilibria. In a symmetric game, the “symmetric
index” of a symmetric equilibrium is defined analogously to the index in a general
bimatrix game. For any symmetric equilibrium, its symmetric index may differ
from the “usual” (i.e. bimatrix game) index, as can be seen in simple examples like

12
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the game of chicken.

We prove that in a nondegenerate symmetric game, a symmetric equilibrium has
symmetric index+1if and only if it is “potentially unique” in the sense that there is

an extended symmetric game, with additional strategies for the players, where the
given symmetric equilibrium is unique. The corresponding statement for bimatrix
games has been proved lggn_Schemdd2005. However, the symmetric case
does not follow from the seemingly more general result on bimatrix games for the
following reasons: First, as explained above, the bimatrix index and the symmetric
index of a fixed symmetric equilibrium may differ. Secondly, the game needs to
be extended in a symmetric way, but the extension in the corresponding result on
bimatrix game is always asymmetric.

Our proof relies on a construction of polytopes, which should be of independent
geometric interest. Nondegenerate symmaetricd games correspond to simpli-
cial d-polytopes whose vertices are labelled with labels from the{$et ., d}.

The symmetric equilibria correspond to completely labelled facets of that polytope,
i.e. facets whose vertices have all labeld1...,d} (apart from one completely
labelled facet, which gives rise to an “artificial” equilibrium). Every completely
labelled facet carries a natural orientation. To prove our result on the symmetric
index, it suffices to prove the following statement in the corresponding polytopal
setting: Whenever we have a pair of completely labelled facets of opposite orien-
tation, we can add labelled points to the polytope such that the only completely
labelled facets of the extended polytope are the two given ones. The proof of
this polytopal result is based on ideas developexbim Schemde and von Stengel
(2008, who use a very similar approach for a constructive proof of the correspond-
ing result on the “usual” index of bimatrix games.

We derive the game theoretic result from its geometric counterpart by applying the
above polytopal result to the polytope that corresponds to a given symmetric game.
For a fixed symmetric equilibrium of positive index, we add points to this polytope
such that the only two completely labelled facets of the extended polytope are
the one which corresponds to the given equilibrium, and the “artificial” one. The
added points are then used to define a suitable extension of the symmetric game.
A central part in the step from added points to added strategies is played by a class
of bimatrix games that we callnit vector games These games generalize the

13
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imitation games dMcLennan and Tourk{2007), who prove that every symmetric
game corresponds to a certain imitation game.

Starting from the added points in the extended polytope we create a symmetric ex-
tension of the given symmetric game in two steps: First, we use the added points to
extend the corresponding imitation game to a unit vector game, by adding strate-
gies for the column player. Secondly, we symmetrize this extended game by adding
suitable payoff rows. This second part, the symmetrization, is the crucial step from

the geometric to the game theoretic result. In the final symmetric extension, the

given symmetric equilibrium is unique.

Chaptefis joint work with Bernhard von Stengel, intended for publication.

In the remainder othis chapter, we summarize relevant prerequisites and nota-
tional conventions which we use throughout this thesis.

1.3 Preliminaries

In this section we summarize some terminology and key results about games and
polytopes. The contents of this section can be found in the standard literature on
the subject. For strategic-form games, we refer the readRitzberger(2002), for
bimatrix games tivon Stengel2002 2007). Details on the theory of polytopes

can be found ifGrinbaum(2003 orZiegler (1995.

By vector we mean column vector (although for reasons of space, in examples we
often write vectors as row vectors). Inequalities between vectors hold component-
wise. As usualg denotes theth unit vector, and and1 the all-zero- and all-
one-vector, respectively, with dimension understood from context. For a matrix
C, we denote byC' its transpose. We write for the identity matrix, andE for

the matrix that has all entries equal to one. The dimension of these matrices may
vary according to context. We writ@ = [c;--- ¢y if C is a matrix with columns
ci,...,Cn. ForaselX, we denote byX| its cardinality.

A (finite) strategic-form gamis given by the following data: a finite set of players,

and for each player, on the one hand a finite set of pure strategies that are available
to him, and on the other hand his payoff function sthategy profiles a tuple of
strategies, one for each player. A player’s payoff function assigns to each strategy

14
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profile a real number, which is the payoff that this player receives from the strat-
egy profile. Players are allowed to usexed strategies.e. randomize over their
pure strategies. The payoff function is extended to mixed strategies by taking the
expected payoff. Denote iy ther — 1-dimensional standard simplex:

A ={xcR" |x"1=1 x>0}

The set of mixed strategies of a player who hatrategies can be identified with

Ay, which we also refer to athis player’s strategy spacéVe use the terrstrat-

egy spacdwithout reference to a specific player) for the set of all mixed strategy
profiles, which is the cartesian product of the strategy spaces of all players. In a
fixed “dimension” (i.e. when fixing the number of players, and for each player his
number of strategies) a game is determined by the payoffs to the players from the
pure strategy profiles, i.e. by a finite set of real numbers. Sffaee of gamem

a fixed dimension is defined as the set of all games in that dimension. It can be
identified with a suitably-dimensional real spa®

The central solution concept for a strategic-form game is thiliash equilibrium

A strategy profile is called a Nash equilibrium if no player has an incentive to
deviate unilaterally, i.e. if no player can increase his payoff by changing his strategy
while all other players adhere to the equilibrium profidash(1951) proved that

every strategic-form game has an equilibrium. Egailibrium correspondends

the set-valued function from the space of games to the strategy space that assigns
to each game its set of equilibria.

A bimatrix gameis a two-player strategic-form game, in which the payoffs are
given by twomx n matrices(A, B). The first player chooses a row as pure strategy,
the second a column. The payoffs are then given by the respective matrix entry
of A for the first player, and for the second. We denote the set of strategies of
the first player by{1,...,m}, and that of the second player Bjn+1,...,m+

n} (instead of{1,...,n}). This has the advantage that we can easily distinguish
between strategies of the two players. When a strategy p(&fye is chosen, the
payoff to player one ix' Ay, while that to player two ix'By. A strategyx of
player one is dest replyto a strategy of player two if it gives maximal expected
payoff to player one, i.e. if we have that for all other strategie&the first player

x'Ay>x' Ay

15
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Player two's strategy is a best reply toc if the analogous condition holds for
the payoffs of player two. Theupportof a mixed strategy is the set of all pure
strategies played with positive probability; we denote ishpgz). Thebest reply
condition(Nash[195)) states that a mixed strategys a best reply ty if and only

if every pure strategy in the supportis a best reply tg. A strategy profilgx,y)

is a Nash equilibrium if and only i andy are best replies to each other.

A very useful geometric tool in the study of bimatrix games are the best reply
polyhedron and best reply polytope.pblyhedronis a subset oRY that is a finite
intersection of closed half-spacespalytopeis a bounded polyhedron. Equiva-
lently, a polytope is the convex hull of a finite set of pointsRif. An inequality

¢'x < a is valid for a polyhedrorP if it holds for all pointsx in P. A setF C Pis
afaceof P if there is a valid inequalitg"x < o such thaF = PN {x|c'x=a}.

The dimensionof a faceF of P is the dimension of its affine hulF has dimen-
siond if and only if F containsd + 1, but no more, affinely independent points.
The 0- and 1-dimensional faces are callegticesand edges respectively. For

a polyhedron of dimensiod, the faces of dimensiod — 1 are calledfacets A
d-polytope is ad-dimensional polytope. Thedge graplof a polytope consists of
the vertices of the polytope, connected by its edges. To every polfAepecan
assign a partially ordered set, fexce lattice It consists of the faces &, partially
ordered by inclusion. Two polytopes are calt@anbinatorially equivalenif there

is a bijection between their faces in each dimension that preserves face incidences,
or in other words, if their face lattices are isomorphic. Two polytopes are called
affinely (linearly) isomorphidf there is an affine (linear) map that induces a bijec-
tion between the polytopes. Two polytopes which are affinely isomorphic are, in
particular, combinatorially equivalent (while the converse is generally wrong).

Given a bimatrix gaméA, B), thebest reply polyhedréor player one and two are
defined as
Hi={(x,V) eER"xR|B'x<vl x>01"x=1}
Ha={(y,u) eR"xR |Ay<ul,y>0,1"y=1}
These polyhedra are the upper envelopes of the best reply function, which assigns

to each strategy of a player the other player's payoff from his best reply (the best
reply might not be unique, but the best reply payoff is). It is usefuhb®l the

16
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inequalities that definély, as follows: Fori in {1,...,m}, the inequalityx; > 0

has label, while for j in {m+1,...,m+n}, the inequalitye] B x < v has label.

This induces a labelling on the relative boundaryHaf where a point carries the
labels of all inequalities that are binding in that point. The points on the relative
boundary ofH, are labelled in an analogous way.

We can use the projectignfrom H; onto player one’s strategy spaig to transfer
this labelling to the strategy space. A pax A, gets all labels that occur at some
point in p~1(x). We get a subdivision di, into several labelled regions, where a
pointx has as labels the pure strategie$in..., m} that are unplayed at and the
pure strategies iim+1,...,m+n} that are the other player’s best repliextaVe
call the set of strategies of player one that have a certain Jabéin+1,... ,m+n}

of player two thebest reply regiorwith label j. Player two’s strategy spadg, is
subdivided and labelled in an analogous way.

It is obvious from the best reply condition that a strategy pair is a Nash equilibrium
if and only if every strategy by either player which is not a best reply to the other
player’s strategy remains unplayed. Hence a strategy(paiy is a Nash equilib-

rium if and only if it iscompletely labelleds a point i\, x A, i.€. if every label
in{1,...,mm+1,...,m+n} occurs as a label ofory. In this way the labelling

of the strategy spaces of the two players can be used to visualize Nash equilibria
of low dimensional bimatrix games.

The polyhedraH; andH, are unbounded, which makes them difficult to handle.
However, they can be converted into polytopes, kst reply polytopeswhich
essentially are combinatorially equivalentiia andH, (or more precisely, pro-
jectively equivalent; for a definition of projective equivalence see Ch&htr
Consider the polyhedra

PL={XcR™|X>0,B'x<1}
PR={yeR"[y>0, Ay<1}

If these polyhedra are bounded, they are polytopes, chéetireply polytopesto
achieve boundedness, it suffices to assume that the entries in the payoff n#atrices
andB are positive. This can be done without loss of generality since a constant can
be added to the payoffs of any strategic-form game without changing the structure
of the game.Hs is in bijection withP;\0O, via the map(x,v) — x/v. This map

17



Chapter 1. Introduction

is nonlinear but preserves binding inequalities, and therefore the face incidences.
Hence from the labelling ofl;, we obtain a labelling of the binding inequalities

of P, and then, as above, a labelling of the points on the relative boundd®y of
Similarly, we label the relative boundary Bf. Every completely labelled point of

P1 x P, corresponds to a Nash equilibrium, except for the vebtaxhich carries all

labels because all strategies are unplayed, but does not correspond to any strategy
profile. We call this vertex thartificial equilibrium.

A game is callechondegeneratd no point in Ay, has more tham labels, and no
pointinA, has more than labels (seon Stenge{2002) for equivalent definitions
of nondegeneracy). Equivalently, no strategf either player can have more than
|supfz)| pure best replies. For a nondegenerate game, the polyRppesiP, are
simple i.e. every vertex oP; is contained in exactlyn facets, and similarly for
P,. This implies that in a nondegenerate game, every verté} bas exactlym
labels. Two adjacent vertices Bf sharen— 1 labels, namely the labels of the edge
connecting them. A similar observation holds Fr

The best-known algorithm for the computation of a Nash equilibrium in a non-
degenerate bimatrix game is themke-Howson algorithrfLemke and Howsan
1964. It is a complementary pivoting method that walks along the edges of the
best reply polytopes. Denote I/the edge graph of the product polytopex P..

The vertices ofs are given by pairs of vertices & andP., while the edges of

are given by pairs of a vertex & and an edge d#,, or an edge oP;, and a vertex

of P,. The labellings ofP; andP, induce a labelling of the vertices &f. Choose a
labelk € {1,...,m+n}. A vertex of G is calledk-almost completely labelleifl it

has every label apart from possitiy

If we delete all vertices from the graph that are katlmost completely labelled

(and all corresponding edges) the new gr&ghcontains all completely labelled
vertices, which correspond to Nash equilibria, and all vertices that have as miss-
ing labelk. Since the game is nondegenerate, adjacent verticdBsaiways have

m+ n— 1 labels in common. Hence the completely labelled verticeGohave
degree 1 (which means that they have only one adjacent vertex in the graph), while
the vertices with missing lab&l have degree 2 (they have two adjacent vertices).
This implies thatGy consists of paths and cycles, where the endpoints of paths are
completely labelled vertices. Starting at the vertex corresponding to the artificial
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Chapter 1. Introduction

equilibrium, one can walk along the corresponding pat@inand at the end find
a new completely labelled vertex, which must yield an equilibrium of the game.

For visualization, it is convenient to interpret the Lemke-Howson algorithm in
terms of “picking up” and “dropping” labels in the two players’ strategy spaces.
Instead of walking along edges of the polytdje< P,, one can view the algorithm

as tracing edges of the polyhedrbi x Hy, with “infinity” as starting point. One
can then project the Lemke-Howson path fréfnx H, onto the strategy space.
The terminology of vertices and edges can be taken straightforwardly to the strat-
egy space: A vertex in the strategy spégeof player one is a point witim given
labels, and an edge is a nhonempty set of points with1 given labels. Vertices
and edges in the other player’s strategy spscare defined analogously. By def-
inition, the (projected) Lemke-Howson algorithm moves alternatingly in the two
players’ strategy spaces, jumping from vertex to vertex along an adjoining edge.

To be more precise, assume that the missing lalimlongs to player one. The
projected Lemke-Howson path with missing labiestarts at the vertexey,e;),
where | is the best reply t& (which by nondegeneracy is unique). The vergx
has all labels i{m+1,...,m+n}, apart fromj, and one extra labein {1,...,m},
which is player one’s best reply tp If i =k, then(e,€)) is an equilibrium. If
i # Kk, the labeli must have been present at player one’s vedgetbecause the
only missing label along the pathsks hence can be dropped by player one in the
next step. Player one then walks along the edge given by all labels presgnt at
apart from label, until he reaches a new vertex, where he picks up a new label,
which player two can then drop. This way, the players take turns in picking up
and dropping labels, until an equilibrium is reached. As an example, consider the
Lemke-Howson path with missing label 3 for the following game:

12 0
,B= 0 (1.1)

>

I
o o A
o o A
o o A
© o o

4
0 13
In this example, the Lemke-Howson algorithm finds the equilibrigyi1,0,6/11),

(4/5,0,1/5). We have illustrated the path that the algorithm traces in the strategy
space in Figurd.d We will come back to this example in ChapBr
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(0,0,1)

(0,1,0) (1,0,0) (0,1,0)

® ®

(1,0,0)

Figure 1.1: The Lemke-Howson path with missing label 3 for examfl€ly

The left simplex is player one’s, the right one player two’s. Player one’s strate-
gies are labelled 1-3, player two’s have labels 4-6. The labels in the simplex mark
the players’ best reply regions. The labels outside mark the edges of the simplex
where the corresponding strategy is unplayed. The square dot is the equilibrium
that is found by the Lemke-Howson algorithm. The black arrows give the path
of the algorithm, and are numbered in the order in which they occur.

We have now collected all the prerequisites that we require for the following chap-
ters. Whatever else we need will be explained as we go along.
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The index of an equilibrium
component

2.1 Introduction

In this chapter, we give an exposition to the index, and present an algorithm for the
computation of the index of an equilibrium component in degenerate games. The
index is a topological notion which assigns to each connected component of Nash
equilibria an integer which can be interpreted as an “orientation” of the equilibrium
component. As explained in Chapfrthe index is useful in a variety of contexts,
particularly in the theory of equilibrium selection and refinement.

In nondegenerate games, where all equilibria are isolated, the index of an equilib-
rium can be easily computed, essentially as the sign of a suitable determinant (see
Definition[4.3). However, for equilibrium components in degenerate games, there
is no such explicit formula. A general method to calculate the index of an equi-
librium component works as follows: Choose a nondegenerate perturbation of the
game, compute the equilibria of the perturbed game, and add up the indices of those
equilibria that are close to the given compondeiichelis and Germah@00Q
Ritzberger2002). However, this approach leads to several complications: First,

it is necessary to actually perturb the game. Second, we need to decide on when
an equilibrium of the perturbed game is close enough to the original component
to warrant being included in the calculation of its index. Due to these drawbacks,
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Chapter 2. The index of an equilibrium component

research has focused on games with a simple structure, like outside option games
(see, for exampldilauk and Hurken£002, von Schemde2005), where the index

of a given component is easily computable using the fact that in any bimatrix game,
the indices of all equilibrium components have to add ug-10

However, for most equilibrium components, such a line of argument is not suf-
ficient, hence a more general method is needed. The algorithm that we suggest
is, in a sense, a simplification of the perturbation method described above. How-
ever, since our algorithm does not require any explicit perturbations, it avoids the
disadvantages of this method.

Our algorithm works as follows: For a given equilibrium component in a degen-
erate game we consider its extreme equilibria, and assign to each of these a new
integer, which we call itéex-index The crucial ingredient for our algorithm is the
following, intuitively appealing result:

Theorem 2.1. The index of an equilibrium component is the sum of the lex-indices
over all extreme equilibria of this component.

Since the lex-index of an extreme equilibrium is easily computable, this result gives
immediately rise to a “perturbation-free” algorithm for the computation of the in-
dex of a component of Nash equilibria. For its proof, we use the standard pro-
cedure for index computation, as described above: We perturb the game and add
up the indices of equilibria near a given component. For our purpose, we choose
a lexicographic perturbation. Under this perturbation, every extreme equilibrium
decomposes into a finite number of isolated equilibria of the perturbed game, or
vanishes. The lex-index of an extreme equilibrium is defined as the sum of the
indices of all equilibria of the perturbed game that originate from this particular
extreme equilibrium. Using this definition of the lex-index, Theof2follows
immediately.

The advantage of our method is that the lex-index can be calculated using a very
simple approach. Both the equilibria of the lexicographically perturbed game and
their indices can be easily computed. Also, for every equilibrium of the perturbed
game it is immediately clear which extreme equilibrium of the original game it
comes from. More precisely, the equilibria of the original game solve a linear com-
plementarity problem (LCP), i.e. an optimization problem with linear constraints
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Chapter 2. The index of an equilibrium component

and a complementarity condition (for precise definitions, see Segi)n Every
extreme equilibrium of the original game has one or multiple representations by
“bases” of this LCP. Every basis that is both “lexico-feasible” and “complemen-
tary” corresponds to a unique equilibrium of the perturbed game (the first property,
lexico-feasibility, is needed in order to maintain feasibility of the basis, the second,
complementarity, to keep the equilibrium property in the perturbed game). The in-
dex of this equilibrium can be computed from the payoff matrices using a suitable
lexico-rule. This in turn implies that the lex-index of an extreme equilibrium of the
original game can be easily calculated, by adding up the indices of those equilib-
ria of the perturbed game that come from the bases which represent this particular
extreme equilibrium. It also means that we can avoid explicitly computing the
equilibria of the perturbed game, and their indices. In this sense, the concept of
lex-index, and with it our description of the index of a component in The@dm

does not rely on perturbations of the game.

The structure of the chapter is as follows: In Sedfidh we give a short exposition

to various definitions and properties of the index, and summarize the theoretical
foundations of our algorithm. In Secti@h3 we describe how to perturb a game
lexicographically, and analyze the equilibrium structure of the perturbed game. We
use these perturbations to develop the concept of lex-index, and prove TH&drem

in Section2.4 We also reformulate this theorem as an explicit algorithm, see
Algorithm[2.12

2.2 The index

Let (A,B) be anm x n bimatrix game. Since adding a positive constant to the ma-
trices does not change the structure of the game, we can assume without loss of
generality thatA B > 0O for the remainder of this chapter. Recall that the support
suppz) of a strategy of either player is the set of pure strategies played with pos-
itive probability, and|supfz)| the number of strategies in the supportzofThe

game is called nondegenerate if every strate@f the first player has at most
|supgx)| pure best replies, and similarly for the second player. For an equilibrium
(x,y), denote byA,, andByy, the matrices obtained from andB by deleting all

rows that are not contained in the supporpéind all columns that are not con-
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Chapter 2. The index of an equilibrium component

tained in the support of. In a nondegenerate game, it is straightforward that in an
equilibrium, both players use strategies of equal support size, hence these matrices
must be square. Moreover, they must be nonsingular, since any linear dependency
between rows or columns of the matriclg, or By, can be used to reduce the
support of one of the strategies without changing the set of its pure best replies,
contradicting nondegeneradyop Stengel2002). Theindexof an equilibrium in

a nondegenerate game can be defined as foll[Bvagfley1974:

Definition 2.2. Let(x,y) be a Nash equilibrium of a nondegenerate bimatrix game
(A,B), whereA, B > 0. Theindexof (x,y) is defined as

(—1)lsuPr0l+1sign detAyy) detByy). (2.1)

This definition can be extended to games with potentially non-positive entries: Just
add a sufficiently large constant to the game and then define the index using equa-
tion 2.J). This is well-defined, due to part (b) of the next Proposition.

Actually, in Shapley’s definition of the index, the sign of the index is reversed.
However, the above sign convention has been shown to be more convenient. Shap-
ley’s main result, which motivated his definition of the index, holds regardless of
the chosen sign convention: Equilibria at opposite ends of a Lemke-Howson path
have opposite index.

The following propositionijfon Schemde and von Steng2008 Proposition 2)
collects some well-known properties of the index.

Proposition 2.3. In a nondegenerate game, the index of a Nash equilibrium

(@) is+1or -1,

(b) does not change when adding a positive constant to all payoffs;
(c) only depends on the payoffs in the support of the equilibrium;
(d) does not depend on the order of the players’ pure strategies;
(e) is +1 for any pure-strategy equilibrium;

(f) the sum of the indices over all equilibria-isl.

Most of these properties are obvious from the definition, others require some more
work, seevon Schemde and von Stend2008).

24



Chapter 2. The index of an equilibrium component

In degenerate games, the definition of the index is more involved since Definition
[4.3 can no longer be applied. There are several ways to extend the definition of
the index to degenerate games and components of equilibria, most of which rely
on the notions of global and local degree of a continuous map. The degree is a
quite advanced topological tool, which is based on the concept of orientations of
manifolds. We give a short exposition to the local and global degree of a continuous
map using standard results and methods from algebraic topology (see, for example,
Dold, 1980 Sections IV.5 and VIIl.4, oHatcher[200). An introduction to the
intuition behind the concept of degree can be foun®@émichelis and Germaho
(2000).

To be mathematically precise, we will have to use homology groups (with inte-
ger coefficients). We try, however, to give some geometric interpretation along
the way that should be accessible to a reader without any knowledge in algebraic
topology. The rough idea behind the degree is the following: Consider a topolog-
ical d-manifold X (i.e. a topological space that is locally homeomorphidf.
Intuitively, the manifold is orientable if we can choose “local” orientations around
every pointx in X that are compatible globally, i.e. “glue together nicely”. Hence

a (global) orientation is a collection of local orientations that “fit together”. Now
the global degreeof a continuous mag between compact connected orientable
d-manifoldsX andY measures what happens to the global orientation when we
apply f. Thelocal degreeof f around a poink measures what happens to the local
orientation around. For our purposes, it is not necessary to understand the precise
definition of the index as a local degree. The reader preferring to avoid the topolog-
ical bit can skip the following paragraphs and accept Propo&idas a definition

of the index of an equilibrium component. From Proposiohonwards we will

not need the notion of local or global degree for the remainder of this thesis.

We formalize the intuitive definition of the degree in terms of homology groups.
We assume the reader to be familiar with the concept of homology; otherwise, the
following can be taken as intuitive (albeit imprecise) “definitions”. For a topo-
logical spaceX andi € N, theith homology grougH; X essentially measures the
i-dimensional shape of. For a subsetV of X, theith relative homology group
Hi(X,W) encodes the relationship between the homology gréiidé and H; X,

in a sense made precise by the “long exact homology sequence”. The intuitive
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idea behind the relative homology is to ignore everything that is contained in the
subspac#V. Every continuous map: X — Y between topological spaces induces
group homomorphisnid; f : Hi X — H;Y. If W C X andZ C Y such thatf (W) C Z,

the mapf also induces homomorphisrif : H; (X,W) — H;(Y,Z). A central ob-
servation is that for d-manifold X and a poink in X, the relative homology group

Ha (X, X\{x}) is isomorphic to the grouf of integers. The intuition behind this is

as follows: Relative homology is “local” (in a sense made precise by “excision”, a
very useful tool in homology theory). Sincademanifold X looks locally likeRY,

the groupHg(X,X\{x}) is isomorphic toHg(RY,R9\ {0}), which is a free group
generated by d-cycle (i.e. ad-simplex or "topological ball”) aroun@.

Hence a generator dfiy(X,X\{x}) can be interpreted as the choice of a cycle
around the poink. Intuitively, such a cycle, understood agl-&implex around,
orientsX locally aroundx, by giving the space “direction”. Hence it makes sense
to define alocal orientationof X at a pointx to be a choice of generator of
Ha (X, X\{x}). Equivalently, a local orientation arounds the choice of an iso-
morphismHg (X, X\{x}) = Z. A global orientationis a function that assigns to
each poinix a local orientatioro, in a locally consistent way. A manifold &i-
entableif it has at least one global orientation.

Orientability of a compact, connectddmanifold X implies that the top homology
groupHgX is isomorphic taZ. A global orientation ofX then corresponds to the
choice of such an isomorphism, or equivalently a choice of a generatag>f
This generator is usually called tifiendamental cycl®f X. A continuous map

f : X — Y between compact, connected, orientechanifolds induces a group
homomorphismHg f on the top cohomology groups, which must correspond to
multiplication by an integer. This integer is called tfgdobal) degreeof f. It
counts the “multiplicity” with whichHgqf maps the fundamental cycle ofito

the fundamental cycle ovi, hence quantifies how the global orientation changes
underf.

Similarly to a global degree, a continuous miapX — Y between oriented mani-
folds induces a local degree in the following way: Assume we have a poirthe
range off whose preimagéd ~1(y) consists of only one point. Thenf induces

a homomorphisnHg f : Hg(X, X\ {x}) — Hq(Y,Y\{y}). As seen above, both of
these homology groups are isomorphiczowhere the isomorphism depends on
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the chosen orientation. 3y f corresponds to multiplication by an integer, which

is called thdocal degreeof f overy. This degree measures the number of cycles
aroundy obtained from a cycle aroundunderHg f. If we interpret the cycle as

a local orientation arounxl the local degree quantifies how this local orientation
changes undef. This interpretation coincides with an equivalent definition of
the local degree for differentiable maps of differential manifolds: In the situation
above, assume that additionalfyis differentiable, ana a regular value of. Then

the local degree of overy is the sign of the determinant of the Jacobian.aln

this sense, the local degree indicates if the map is locally orientation-preserving
or -reversing.

The local degree can be extended to the case wheh) is compact, following a
similar concept. A global orientation ofiinduces a local orientation along every
compact subset of. On thedth relative homology groups, this orientation along
the compact set is mapped to an integer multiple of the local orientation ayound
This integer is the local degree éfovery. An important property that we need
later is “locality” of the local degree: The local degreefafvery does not change

if we restrict f to some neighborhood df—(y), since relative homology groups
are “local’”.

Another useful property of the local degree is additivity. Assxnga finite union

of open sets such that the sets~1(y) N X are pairwise disjoint. Then the local
degree off overy is the sum of the local degrees bfx, overy. This means that
the local degree of overy is composed of the local degrees of “localized” (i.e.
restricted) versions of.

A crucial notion in the context of degree is that of a proper map. A continuous map
is properif the inverse image of every compact set is again compact. dhdY

are oriented manifolds, andis connected, then for a proper map X — Y the

local degree ovey is the same for every in Y. (Moreover, if the manifolds are
both compact and connected, this degree equals the global degiees afefined
earlier.)

The degree of a continuous map becomes useful in game theory because the in-
dex of an equilibrium component can be defined in terms of degree. There are
several ways of doing this. For example, the equilibria of a bimatrix game can
be represented as rest points, i.e. zeros, of certain vector fields, Naldfields
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The index of an equilibrium component can then be defined in dynamic terms as
the “Poincaé index” of the corresponding component of zeroes of such a Nash
field (seeRitzbergey1994 orDemichelis and Germah@000). The index of a

component of rest points of a Nash fidids the global degree of the mdp/||f

restricted to a small “sphere” around the component of rest points. It can also be
seen as the local degree fofrestricted to a small neighborhood of the component,
over0. For regular equilibria, it is the sign of the determinant of the corresponding
Jacobian. In this interpretation, the index of a rest point carries information about
its dynamic stability. Equivalently, if we have Mash mapf, i.e. a continuous

map on the strategy space whose fixed points are the equilibria of the game, then
the index of the equilibrium component is the local degreglof f, restricted to

a neighborhood of the component, over zero itbyve denote the identity map).

This definition does not depend on the choice of Nash map, and for nondegenerate
games yields indeed Shapley’s definiti@olvindan and Wilscril9971).

If understood as a fixed point index, the index of an equilibrium component carries
information about the “stability” or “essentiality” of a component. A component

of fixed points of a continuous map is called essential if the component does not
vanish under continuous perturbations of the underlying map. This is equivalent
to its index being nonzer@’Neill,, [1953. Hence an equilibrium component of
nonzero index will be stable in the sense that whatever Nash map we choose, every
perturbation of that map will have a fixed point close to that equilibrium.

In game theoretic terms, this “essentiality” of an equilibrium component with
nonzero index translates into a version of hyperstability, a concept that goes back
to[Kohlberg and Mertengl986). Recall that a pure strategy of one player is called
redundantif that player has amrquivalent strategyi.e. a convex combination of

his other pure strategies that gives the same expected payoff against any strategy of
the other player. From a ganié, B) we get theeductionof the game by deleting

all redundant strategies. Two games are cadlgdivalentif they yield the same
reduced gameGavindan and Wilsdrf2005 call an equilibrium component of a
game(A,B) hyperstableif for every equivalent gam¢A*,B*) and every neigh-
borhoodU of the component, there is@> 0 such that every-perturbation of
(A*,B*) has an equilibrium that is equivalent to some strategy.inrhey call an
equilibriumuniformly hyperstablé& the hyperstability condition is met uniformly,
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i.e. if & can be chosen independently of the equivalent ga@windan and Wil-

son (2005 proved that an equilibrium component has nonzero index if and only
if it is uniformly hyperstable, answering a long-standing open question as to what
the suitable game-theoretic counterpart of topological essentiality should be. For
a detailed discussion of the link between essentiality and the theory of equilibrium
selection se&ovindan and Wilsdif19971).

For computational purposes, we will need yet another definition of the index as the
local degree of the projection from the graph of the equilibrium correspondence
to the space of games. More precisely, consi@@r" x R™" as the space of

m x n bimatrix games. Le€” be the graph of the equilibrium correspondence over
this space of games, i.e. the correspondence which maps each game to its set of
equilibria. Consider the projection map: & — R™" x R™"; by Kohlberg and
Mertens(1986), it is homotopic to a homeomorphism. This means that we can
orientE such thatp has global degreg.

Consider an equilibrium compone@tof a bimatrix gamgA,B), and letU be a
neighborhood o€ in & that “separatesC from all other equilibria of A, B). By

this we mean thadt) does not contain any other equilibria @, B) apart fromC.

Then the index o coincides with the local degree of the projection n@pe-
stricted toU, over the gaméA, B) (seeGovindan and Wilsdil19974 for bimatrix
games, anemichelis and Germah@00Q for general strategic-form games).
Note that by “locality” of the local degree, this definition does not depend on the
choice ofU. From the additivity of the local degree it follows easily that for non-
degenerate as well as for degenerate games, the sum of the indices over all equi-
librium components equals +1. However, the index of an equilibrium component
in degenerate games is no longer restricte¢Htd, —1}; any integer can occur as
index [Govindan et al2003).

It is a well known fact that in order to compute the index of an equilibrium com-
ponent, we can perturb the game slightly, and add up the indices of the equilibria
nearby, see, for exampl®emichelis and German(2000 or [Ritzberger(2002).
However, since this “perturbation-method” is the foundation of our algorithm, we
would like to give and prove a more precise statement, which we suspect to be
well-known but for which we have not found a reference:

Proposition 2.4. Suppose we are given an equilibrium compor@ief anmx n
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bimatrix gamgA, B). For any neighborhood of C in the graph of the equilibrium
correspondenceé’ whose closure does not contain any other equilibridAfB),
there is a neighborhood of (A, B) in the space ofn x n-games such that the fol-
lowing holds: For every gam@\',B') € V, the sum of the indices of the equilibrium
components ofA’, B') that are contained ity equals the index df.

Proof. The proposition is essentially due to the fact that the projection is locally
proper, which implies that the local degree is “locally independent” of the game
chosen. Coupled with additivity of the local degree, the proposition follows. In
more detail, the proof works as follows: Consider the restriction of the projection
plu : U — R™N x R™N. The index ofC is the local degree op|y. The local
degree of a proper map is constant (if the range is conned@edt, (1980 1V.5.12

or VII1.4.5). Hence we just need to find a connected open neighbotaaftthe
game(A, B) such thatp|y is “proper oveN”, i.e. such thap|y,-1(v) is proper.

Let Us(C) be the compacd-neighborhood ofC in the equilibrium graph, and
choosed > 0 small enough such thks(C) is contained iJ. Choose/ such that

for somed > 0, (p|u)~%(V) is contained irJ 5(C) (whereV is the closure o¥/).
Such a choice o¥ is possible since the equilibrium correspondence is upper hemi-
continuous, or more precisely, since its graph is closed (and bethdses not
contain any equilibria apart froi@). For this choice oW, letU’ =U N p~1(V).

By construction oV, ply/ : U’ — V is proper. This, together with localness of
the degree, implies that the local degreepgf is “constant oveN”, by which

we mean that it is the same over evésy,B') in V. By additivity (Dold, 1980
Theorem 1V.5.8 or Proposition VII1.4.7), the latter degree is just the sum of the
indices of the equilibria ofA’, B") that are contained id. O

The version of the index in Propositi@4is most useful for computations, since

it allows for a computation of the index of an equilibrium component based on

perturbations of the game. However, as explained in the introduction, direct ap-
plication of this perturbation-approach leads to several complications. In order to
arrive at a simpler, “perturbation-free” method, we use lexicographic perturbations
as the base of our algorithm, which we develop in the next two sections.
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2.3 Alexicographically perturbed game

Lexicographic perturbations are used to solve degenerate linear programs and lin-
ear complementarity problems by making them nondegeneltantZig [1963).

In game theory, these perturbations have been used to resolve degeneracies in the
Lemke-Howson algorithmLiemke and Howsdril964), and the van den Elzen-
Talman algorithmyon Stengel et al2002). We use a slight variation of the con-

cept of lexicographic perturbations to turn a degenerate game into a nondegenerate
one. In the following section, we use this concept of lexicographic perturbation of

a degenerate game to compute the indices of its equilibrium components.

Recall that the set of equilibria of a bimatrix game can be understood as the solu-
tions to a linear complementarity problem (which is a special case of a quadratic
programming problem with linear constraints and a complementarity condition).
Given a bimatrix gam¢A, B), the equilibria(x,y) of the game are in one-to-one
correspondence with the solutions to the following set of equations and inequalities
(von Stengel1996):

1y=1
—ul+Ay+r=0 (2.2)
y,r >0
and
1'x=1
—Vv1+B'x+s=0 (2.3)
X,s>0
such that
x'r=0=y's (2.4)

The variableau andv give the payoffs to the respective players, arahds are
slack variables that measure how far from being optimal a strategy is.

The systemdd.2) and .3 are linear functions of some constrained and uncon-
strained variables, i.e. they are of the form

D(zZ)=b,Z>0
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for some matrixD, a set ofunconstrainedvariablesz and a set otonstrained
variablesZ. In our case, the only unconstrained variablesieaadyv, respectively;
all other variables are constrained to be nonnegafivés ak x k' matrix, where
k' >k, and has maximal possible rakkln the first caseD is of the form

0 1T 0
25
(—1 A I) 25)
and in the second
0o 1T o
(2.6)
-1 B" |

wherel denotes the identity matrix of suitable size. We will need the following
standard terminology of linear programming and its extensions (see, for example,
Dantzig[1963: A solution to the syster®(z Z) = b is calledfeasibleif it satisfies

the nonnegativity constraings> 0. A feasible solution is calledxtreméf it can-

not be written as a proper convex combination of two other feasible solutions. A
solution toD(z,Z) = bis calledbasicif the columns oD that correspond to the un-
constrained and the nonvanishing constrained variables, are linearly independent.
A basisor basic set of variablesonsists of any set & variables, containing all
unconstrained variables, such that the square matrix given by the colunihs of
corresponding to these variables is non-singular, i.e. those columns form a basis of
R¥. To every such basis we can assign a basic solution of the eqxtzor) = b

by setting the non-basic variables to zero and solving for the basic variables (the
solution is then unique). By abuse of terminology we call a basis feasible if the cor-
responding basic solution is feasible. The sysimZ) =b,Z > 0is callednon-
degeneratéf in every basic feasible solution, all constrained basic variables have
positive value. Bywon Stengel(199€), degeneracy of a bimatrix game (given by
positive matrices) is equivalent to degeneracy of the corresponding sy&eins (
and 3.

A central role in our algorithm is played lBxtreme equilibriaA Nash equilibrium

is called extreme if it cannot be written as a proper convex combination of other
Nash equilibria of the game, i.e. if it gives rise to extreme solution®d) @nd

(2.3. Extreme equilibria have the following property:

Proposition 2.5. An equilibrium(x,y) of a bimatrix gameA, B) is extreme if and
only if the corresponding solutions of the systdgg) and (2.3 are basic.
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Proof. This follows directly from the following standard result: A poif@ ) in
Z={(z,Z) | D(z,Z) =b,Z > 0} is an extreme point a if and only if (z.Z) is a

basic feasible solution. For systems where all variables are constrained, a proof of
this result is given irDantzig (1963 Theorem 7.1.3); the same proof also works
for systems with unconstrained variables. O

We now have all the terminology that we need to describe lexicographic pertur-
bations of bimatrix games. For anx n bimatrix game(A,B) ande > 0, define

a perturbed gaméA(¢),B(e)) whereA(e) = A—E(m,n), B(¢) =B—E(n,m)",
whereE(m, n) is them x n matrix given by

£ ... €
E(mn) =

em ..ogm

~
ncolumns

Perturbing the game in this way essentially corresponds to lexicographic perturba-
tions of the corresponding syster2sd) and £.3): If we replaceA by A(¢) in (2.2,
we get the following system of equations and inequalities:

1'y=1
—ul+Ay+r=(g,....eM" (2.7)
y,r >0
and similarly for systenid.d
1'x=1
—V1+B'x+s=(g,....eM’ (2.8)
X,s>0

A solution to those two perturbed systems yields an equilibriuihof), B(¢) ) if
and only it satisfies the complementarity conditi@dd, i.e. if x L r andy L s.

Since the solutions oP(7) are the same as of the systé?} with A replaced by

A(g), these systems also have the same sets of extreme feasible solutions. As seen
in the proof of Propositiof2.5 the extreme feasible solutions correspond to feasi-

ble bases of the respective systems. Hence the feasible bases of the two systems
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coincide. This may sound obvious, but is equivalent to the following seemingly
non-trivial statement: A subset of+ 1 columns of

0 1T 0
(—1 A |> (9)

is linearly independent and feasible (i.e. the corresponding basic solution is feasi-
ble) if and only if the corresponding subset of

(o 17 o)
(2.10)
~1 A®e) |

is linearly independent and feasible. Similarly, the basic feasible solutions of the
system[2.8) will be the same as those to the syst&a8), with B replaced byB(¢).
We will use this property implicitly several times.

Note that the perturbations i&.{7) and .8 are not standard lexicographic pertur-
bations of £.2) and .3, in that the first row in both systems remains unperturbed.
However, these perturbations still lead to nondegenerate systems. The intuition be-
hind this is that the first line of both systems is never degenerate since the degen-
eracies of a game are contained in the matricasdB, respectively.

Proposition 2.6. For small enougte > 0, the gaméA(g),B(¢)) is nondegenerate.

It is well-known that a lexicographically perturbed system of equations is non-
degenerate. We slightly adapt the standard proof of this fact to suit out non-
standard perturbations. Recall that a nonzero vector is claliécbpositivef its

first nonzero entry is positive, anexiconegativetherwise.

Proof. According tovon Stengel(1996), we need to prove that in any basic fea-
sible solution to the systerf2(?) all basic variables are positive (the correspond-
ing statement for systerZ@) will follow by analogy). Now [Z.7) is of the form
D(u,y,s) = (1,0,...,0)" +(0,¢,...,e™ T for the matrixD given in 25). For any
basis of the column space Df denote bySthe submatrix oD given by the basic
columns. Then the corresponding basic solution is givelsby1,0,...,0)" +

S 10,¢,...,e™T. If we denote the columns & * by [sq,...,Sni1], We get that
the basic solution is given I8 + €S+ - - - + €MSy, 1. The matrixS-1 can have no
zero row since it has full rank. If a row &1 is lexicopositive, the corresponding
basic variable is positive far small enough. If the row is lexiconegative, the basic
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variable is negative (hence the corresponding solution will be unfeasible). Hence
in every basic feasible solution {@.7), the basic variables will be positive. [

In order to use the “perturbation method” from Proposi{idd to calculate the
index of an equilibrium component of a degenerate géfB), we need to under-
stand the equilibrium structure oA(g),B(¢€)). It turns out that for this, we need
to gain some deeper understanding of bases of the sydEeBs(@.3), and their
relationship to extreme equilibria @A\, B). In the light of the proof to Proposi-
tion[Z.8 we would like to remind the reader of the following terminology: A basis
of the systemdd.2) or (Z.3 is calledlexicofeasiblaf for the corresponding basic
matrix S, its inverse matrixd! has only lexicopositive rows, i.e. rows in which the
first non-zero entry is positive. Moreover, we call a pair of base®.8f and 2.3
complementaryf the following condition holds: For ang < j < n we have that
at least one of the variablgs ands; is nonbasic, and similarly for ary<i <m,
that at least one of the variablgsandr; is nonbasic. In particular, this implies that
the corresponding basic solutions satisfy the complementarity cond2idn (

In a nondegenerate game, every equilibrium corresponds to a unique pair of bases
of the systemdd.2d) and £.3). By nondegeneracy of the system, this pair of bases
will have to be complementary and lexicofeasible (where by abuse of terminology
we mean a pair of bases to be lexicofeasible if both bases are). For an extreme
equilibrium (x,y) in a degenerate game, however, there may be several bases for
the systemZ.?) that yieldy as solution, and similarly there may be several bases of
(2.9 that yieldx as solution. Hence we may get several pairs of bas&2)f (2.3

that correspond to the extreme equilibriryy). In general, only a few of such
pairs of bases will be both complementary and lexicofeasible. The next Proposi-
tion tells us how to tell the equilibria dfA(g),B(¢)) from the complementary and
lexicofeasible pairs of bases of the syste&)(and £.3).

Proposition 2.7.

(i) For € > O sufficiently small, the equilibria afA(€),B(€)) are in one-to-one
correspondence with the complementary and lexicofeasible pairs of bases of
22, 23.

(i) Fix such a pair of bases. Astends to zero, the corresponding equilibrium
of (A(¢g),B(€)) converges to an extreme equilibrium @ B). This limit
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equilibrium is given by the corresponding basic solutions of the unperturbed

system¢2.9), (2.9

Proof. By the proof of Propositiof2.6, for smalleg, lexicofeasibility of a basis of

(2.2 is equivalent to feasibility of the corresponding solutions to the sysiem (

and similarly for a basis of the syste@.8. Complementarity of the pair of bases
ensures that conditioi®{4) is met. Moreover the established correspondence is
one-to-one, since in a nondegenerate game, every pair of complementary bases
gives rise to a different equilibrium. This proves the first part of the Proposition.

As to the second part, for any pair of lexicofeasible complementary bases, the basic
feasible solutions of the perturbed systef3)y, (2.8) converge to a solution of the
original systemsd.2), (Z.3. The latter solution must then be feasible as well,
and also satisfies the complementarity conditd)( Hence it corresponds to an
equilibrium of (A, B), which must be extreme due to Proposiflaf O

From now on, when we consider the ga(#€e),B(¢)), let € > 0 be sufficiently
small for Propositiong.6 and2.4i) to hold. Propositiof2.7 links every extreme
equilibrium of the unperturbed ganté, B) to a set of equilibria ofA(¢),B(¢)),

via certain bases of the systehd), (2.9 that yield that extreme equilibrium as a
solution. Note that an extreme equilibrium in a degenerate &gt may give

rise to several complementary pairs of bases, none (or many) of which may be
lexicofeasible. Consider, for example, the degenerate game

A= 11 =B' (2.11)
12

which has two pure Nash equilibriét, 0), (1,0) and(0, 1), (0,1). The first of these
extreme equilibria gives rise to several bases: There are three basic sets of variables
for system[B.2) that contairys: {u,y1,Y2}, {u,y1,r1} and{u,y1,r2}. Analogously,

(2.9 has three corresponding sets of basic variables. Except for the second, these
bases are not lexicofeasible. The bases of the two systems can be combined to nine
different pairs, among which only one is lexicofeasible, namely the pair given by
the basic variablegu, y,r1} and{v,x;,s; }. However, this basis is not complemen-

tary. Hence by PropositidA.4, there will be no equilibrium ofA(g),B(€)) close

to (1,0),(1,0). This is in line with the fact that for any positive the equilibrium
(1,0),(1,0) will vanish in (A(¢),B(¢€)) since it is strongly dominated.
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2.4 Computing the index of an equilibrium component:
The lex-index

Consider an equilibrium componeft of a degenerate gam@\,B). Proposi-

tion 2.7 tells us how to find all the equilibria of the lexicographically perturbed
game(A(€),B(¢)) that are clos€. By Propositiori2.4 we need to calculate the
indices of these equilibria, and add them up in order to get the index of the compo-
nent. The first part boils down to calculating determinants. It turns out that we will
not have to actually compute the determinants of submatricaégfandB(¢), as

we would have to if we wanted to use Definitidi3 for the index computation.
Since we chose a lexicographic perturbation, we will see that it suffices to calcu-
late determinants related to the matridgeandB. Moreover, it turns out that for an
equilibrium of (A(€),B(¢)), its index will depend only on the corresponding com-
plementary pair of lexicofeasible bases, as we will prove in our next Proposition.
First, however, we need to introduce the following notation:

Definition 2.8. For a squarek x k matrixM, denote byM |; 1] the matrix obtained
from M by replacing thath column by the vectdt. Define¢(M), called thesign
of M, to be+1 if the vector

[detM), —det[M |1 1]),...,—det([M | 1])]
is lexicopositive-1if it is lexiconegative, an@ if it vanishes.

The following proposition expresses the index of an equilibriur®g€), B(¢)) in
terms of signs of submatrices AfandB.

Proposition 2.9. For any lexicofeasible and complementary pair, 3) of bases to
(2.9, (2.3, define|B| to be the number of variablegthat are basic (which equals
|a|, the number of variableg; that are basic, since the bases are complementary).
LetA,3 andB,g be the matrices obtained froAand B, respectively, by deleting
all rows and columns corresponding to non-basic variabeandy;.

For ¢ sufficiently small,(a,B) corresponds to an equilibrium of the perturbed
game(A(g),B(¢)). The index of this equilibrium is

(—1)PI*¢(Az5)¢(Bagp)
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Before we prove Propositidd 9, a useful observation:

Lemma 2.10. For a k x k-matrix M and anyk-vector ¢, the determinant ol +

[£,...,&]Iis
k
detM) + Zldet([l\/l i €])
i=
where[M |; ] denotes the matrix obtained from by replacing theith column

with &.

Proof. The determinant is multilinear and vanishes if two columns are linearly
dependent. O

Proof of Propositiof2.9  Since the gaméA(¢),B(€)) is nondegenerate, the sup-
port size of the equilibriuntx,y) is |3|. By Definition[4.3, the index of the equi-
librium is the sign of

(=1)PI**detA(e) ap)detB(€) ap)

To compute the first determinant, abbreviaig; by A, denote the support of
by {i1,...,ik}, wherek = |B], and use Lemm&.I0 with & = —(g'1,..., &%) 7, to
calculate

gh .. gh
k
det(A(g)qp) = det| A — =detA)+ z det([A || &]) (2.12)
gh .. gl =

Laplace determinant expansion along lttrecolumn yields
k .
de[A |1 &) = — 5 (-1)"*"e""detAn)
h=1

where Ay denotes the matrix obtained frof by deleting thehth row andlth
column. Hence we obtain th&.((2) equals

det(A) — i g i(—l)”hAh. —detfA") + % gh(—det[AT |h 1))
h=1 =1 h=1

For smalle this expression (and with it the determinantZad@) is positive (neg-
ative) if and only if the vector

[detAT), —det[AT |11]),...,—det[AT | 1])]
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is lexicopositive (lexiconegative). Hence we get

sign(detA(g)p)) = G(AT)

which cannot be zero since the game is nondegenerate. The same calculation ap-
plied toB(¢) yields the second half of the index calculation. O

Proposition2.9 makes it easy to calculate the index of any equilibrium compo-
nent, and is the final ingredient for our definition of an index concept for extreme
equilibria, the lex-index. According to Propositi@ad, every extreme equilibrium
contributes in a precise way to the equilibria of the perturbed game. This result,
together with Propositidd.g, allows for a suggestive definition of the lex-index of
such an extreme equilibrium. More precisely, for an extreme equilibfiug) of
agamegA, B), defineZ(x,y) to be the set of all lexicofeasible and complementary
pairs of bases o0f29), (2.9 that yield(x,y) as the corresponding basic solution.
Now define thdex-indexof (x,y) to be

(—1)PIH¢(A75)¢(Bag) (2.13)
(a,B)EB(xY)

where|B|, Aqp andB,p are defined as in Propositighd. Essentially, the lex-
index of an extreme equilibrium is the sum of the indices of all equilibria of the
game(A(g),B(¢g)) that come from that extreme equilibrium. For an equilibrium

in a nondegenerate game, the lex-index coincides with the usual definition of the
index. We reformulate the results from Propositi@ 2.1 andZ.9 in terms of

the lex-index, and finally prove Theoréal from the introduction:

Corollary 2.11. The index of an equilibrium component is the sum of the lex-
indices over all extreme equilibria of this component.

The concept of the lex-index for extreme equilibria can be nicely demonstrated us-
2 1 11
ing the following basic example, given by the matriées (l 1) ,B= <1 2) .

This game has just one equilibrium component, whose indexlislts extreme
equilibria are(1,0),(0,1), (1,0),(1,0) and (0,1),(0,1). The component con-
sists of two maximal Nash subsets, i.e. maximal convex set of equililgi@sén
1987). The two maximal Nash sets that form the equilibrium component in this
game are given by the s¢t1,0),(p,1—p) | p € [0,1]}, the other by the set
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{(9,1—-0q),(0,1) | g€ [0,1]}; they intersect in the extreme equilibriuth 0), (0,1).

What are the indices of those extreme equilibria? It is quite obvious (by iteratively
eliminating dominated strategies) that in the lexicographically perturbed game, all
equilibria apart from(0,1), (0,1) vanish. In terms of our algorithm, this corre-
sponds to the observation that the game gives rise to just one lexicofeasible com-
plementary pair of bases (in which the basic variablesuaye ri andv, x,,s;).

This means that the extreme equilibriyt 1), (0,1) has lex-indext1, while the

other two extreme equilibria have lex-index zero.

Although in nondegenerate games the lex-index of an equilibrium coincides with
its index, it still makes sense to distinguish between the two concepts for the fol-
lowing reason: The lex-index depends on the specific perturbation that we chose,
which implies that, in general, it is not independent of the order of pure strategies
in the chosen representation of the game. As an example, consider the degenerate

3x 2game
6 O 01
A=1|5 2|,B=1]2 0
3 3 4 4
This game has one isolated equilibriufg/3,1/3,0),(2/3,1/3), and one equilib-

rium component whose extreme equilibria €0€0,1), (1/3,2/3) and(0,0,1),(0,1).

It is straightforward to see that the isolated equilibrium has ind&xwhich im-

plies that the component has ind&xn the perturbed gam@\(¢),B(¢)), the equi-
librium component decomposes into two equilibria, one of which is pure, hence
has indext1. Since the indices of the two equilibria must add up to zero, the other
equilibrium must have index 1. We conclude that one of the extreme equilibria
has lex-indext-1, the other lex-index-1.

Exchanging the two columns of the game essentially does not change the equilib-
rium structure; we get again an isolated equilibrium and an equilibrium component.
This time, however, the two extreme equilibria of the component vanish if we per-
turb the game using our lexicographic perturbation. This implies that both of the
extreme equilibria of the component have lex-in@ex

To conclude this chapter, we summarize our results in the following algorithm
for the computation of the index of the equilibrium compon@rdf a degenerate
bimatrix game(A, B):
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Algorithm 2.12. Input An equilibrium component of a bimatrix game€A, B).
Output The index ofC.

Method Enumerate all extreme equilibria &, using, for example, one of the
methods byAvis et all (2010. For every extreme equilibrium, compute its lex-
index as defined il 13, using the methodex-index(x,y) in FigureZ1below.
Take the sum of the lex-indices over all extreme equilibri&€pthis sum equals
the index ofC.

bases(X,Y):
B =0
B(x) = {bases offZ.3 corresponding ta};
B(y) = {bases 0fiZ.9) corresponding tg};
for (o, B) in B(x) x B(y):
if (a,B) lexicofeasible and complementary, afwd 3) ¢ %:
#=2U{(a,B)};
OutputA.

lex-index(X,Y):
PB(X,y) = bases(X,Y);
Compute

iky)= 5 (~1P*c(Az5)6(Bap)
(@ B)EA(xy)

whereAq g, Bqg and|B| are defined as in Propositi@hg, andg
is the sign function defined in Definiti@g
Outputi(x,y).

Figure 2.1: Thelex-index method used in Algorithf@. 12 which in turn uses
thebases method.
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Equilibrium Tracing In
Strategic-Form Games

3.1 Introduction

In this chapter we investigate several algorithms for the computation of Nash equi-
libria in strategic-form games. The algorithms[lbemke and Howsdi1964) and

van den Elzen and Talmgd99]) for bimatrix games are complementary pivot-

ing methods; both have been studied extensively. The difference between the two
methods is that while the Lemke-Howson method only allows for a restricted (fi-
nite) set of paths, the van den Elzen-Talman algorithm can start at any mixed strat-
egy pair, called prior, and hence allows to generate infinitely many paths. This
implies that the van den Elzen-Talman algorithm is more flexible than the Lemke-
Howson method. An even more versatile algorithm is the global Newton method
bylGovindan and Wilsdi0033, which works for finite strategic-form games. All
three algorithms can be interpreted as homotopy methodsleve®gs and Peeters
(2010).

We investigate the relations between these three algorithms. We show that the
Lemke-Howson and van den Elzen-Talman algorithms differ substantially: The

van den Elzen-Talman algorithm, when started from a pure strategy and its best
response as a prior, in general finds a different equilibrium than the corresponding
Lemke-Howson method. This is not surprising since both algorithms can be un-
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derstood as special cases of the global Newton method, but in very different ways.
The Lemke-Howson algorithm has been shown to be a special case of the global
Newton method ifGovindan and Wilsdi(2003[); we prove the corresponding re-

sult for the van den Elzen-Talman algorithm. We generalize this observation to
the statement that fdd-player strategic-form games, the global Newton method
implements the linear tracing procedure introducefHbysanyi(1975).

As a special case of the global Newton method, the van den Elzen-Talman algo-
rithm can generically find only equilibria of index1. This leads us to the issue

of traceability of equilibria. FollowingHofbauer(2003, we call an equilibrium

in a bimatrix game traceable if it is found by the van den Elzen-Talman algorithm
from an open set of priors. As explained above, the van den Elzen-Talman algo-
rithm allows for much greater flexibility than the Lemke-Howson method. Hence
one might hope that, unlike the Lemke-Howson algorithm, it is powerful enough
to find all equilibria of index+1. This raises the question if, generically, all equi-
libria of index+1 are traceable. We answer this question negatively by analyzing
traceability in coordination games.

If a nondegeneratd x 3 coordination game has a completely mixed equilibrium,
this equilibrium has index-1. In addition, the game has three pure strategy equi-
libria, also of index+1, and three equilibria of support size two, which have in-
dex —1. [Hofbauer(2003 noted that in a symmetri@ x 3 coordination game, the
completely mixed equilibrium (if it exists) is not traceable. We show that, in gen-
eral, this is only correct as long as we restrict the starting points of the van den
Elzen-Talman paths to symmetric strategy profiles. More precisely, we will see
that the traceability of the completely mixed equilibrium i8 & 3 coordination

game depends on the specific geometry of the best reply regions. We prove that for
certain generic coordination games the completely mixed equilibrium is traceable.
However, we also show that there is a generic set of coordination games whose
completely mixed equilibrium is not traceable. Hence there is an open set in the
space of3 x 3 bimatrix games that all have an untraceable equilibrium of index
+1. This implies that the flexibility of the van den Elzen-Talman algorithm does
not ensure generic traceability of all equilibria of indet.

This, in turn, has important consequences for the concept of sustainabiiyty.
erson(1997) suggested to call an equilibrium sustainable if it can be reached by
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Harsanyi's and Selten’s tracing procedure from an open set of priors. Since the van
den Elzen-Talman algorithm implements the linear tracing procedure, this notion
of sustainability is for nondegenerate bimatrix games equivalent to the concept of
traceability. Hence the results of this chapter imply that generically not all equilib-
ria of index+1 will be sustainable.

The structure of this chapter is as follows: In SecfBoAwe give a short review of

the van den Elzen-Talman method and analyze its relations to the Lemke-Howson
algorithm. In Sectiof8.3 we give a brief exposition of the global Newton method,
before showing that it encompasses the van den Elzen-Talman algorithm and, more
generally, the linear tracing procedure, as a special case. SEci@aontains a
discussion of traceability of equilibria.

A version of this chapter has been published in Economic TheBajth{asar
2010).

3.2 Van den Elzen-Talman versus Lemke-Howson

Thevan den Elzen-Talman algorithwas introduced byan den Elzen and Talmian
(199)). Itis a homotopy method that finds an equilibrium by starting at an arbitrary
prior and adjusting the players’ replies.

Let (A,B) be anmx n bimatrix game. As usual, denote By, andA, the strategy
simplices of players one and two, respectively, and the strategy spafie=by
Am x An. For a subseE of a real vector space, and a real numberenote by
a-Zthe set{az|ze Z}. Take an arbitraryprior or starting point(X,y) € A. For
t €[0, 1], define a new gam@, B)!, in which the players choose a strategyt - Ay,
andy € t- A, respectively, and get the payoff given by the matridesdB against
the strategy profile

(1-tR+X, (1-)y+Y)
The game(A,B)! thus is the game that we get frofA, B) when we restrict the
strategy choices of the players to

A= (1-t)(Xy) +t-A
Thevan den Elzen-Talman algorithtraces equilibria of the gam@, B)!, starting

at the prior(x,y) for t = 0, and reaching an equilibrium d¢fA,B) att = 1. In
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general, degeneracies can occur along the path even in nondegenerate games. A
discussion on how to resolve these can be founsbmStengel et al2002).

The van den Elzen-Talman algorithm can also be described as a complementary
pivoting procedure: A pointx,y) € t - A yields an equilibrium in the restricted
strategy spacA! if and only if there are suitable vectors and real numbers, v

such that the following equations and inequalities hold:

A (1-t)y+y)+r=ul

B" - (1-t)X+X)+s=V1
x'1=ty 1=t (3.1)
x'r=0y's=0

X ry,s>0

The vectorscandy indicate how much weight is put on each strategy in addition to
that given by(1—t)x and(1—t)y. The slack variables ands show how far from
being optimal a strategy is against the other player’s strategy. The real numbers
andyv track the equilibrium payoff during the computation.

As a complementarity pivoting algorithm, the van den Elzen-Talman method can
be understood as a special case of Lemke’s algoritton Stengel et gl2002).

The latter is a method for solving linear complementarity problems, by augmenting
the original problem by a new variable, whose coefficients are given by a so-called
covering vectorlliemke [1965. For the case of van den Elzen-Talman, the new
variable isl1 —t. The covering vector is essentially given by the payéffsand

B'x against the prior.

The van den Elzen-Talman algorithm can also be understood geometrically as a
completely labelled path in the strategy spAcés usual, assume that the players’
pure strategies are numberkd. ., mfor player one andh+ 1, ..., m+nfor player
two. Recall that the best reply region for a pure stratpgy player two is defined
as

A(j) ={xe€ An| jis abestreply to}

Now, for a pointp = (1—t) -X+t-Xx € Ay, define itslabels at timet to be
{ilpea(i)}ufifx =0}
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and similarly for the other player. Then B8.4), a point in the restricted strategy
space)! is an equilibrium of the gam@, B)! if and only if it is completely labelled

at timet. The pivoting steps of the algorithm occur where one of the players picks
up a new label, which then the other player can drop. An analogous description in
terms of “picking up” and “dropping” labels can be used to describe the Lemke-
Howson algorithm, see Secti@in3d orivon Stengel2002). For further details on

the van den Elzen-Talman algorithm we refer the read@éidangs and Peeters
(2010, von Stengel2002), or the original papers byan den Elzen and Talman
(1991,11999.

For a nondegenerate bimatrix game, what happens in the van den Elzen-Talman
algorithm if we take the priox to be any pure strategy vector apids unique best
reply? This would correspond to a starting point of the Lemke-Howson algorithm,
and one might expect the two algorithms to find the same equilibrium.

However, this is not true. An example where the van den Elzen-Talman and Lemke-

Howson paths lead to different equilibria is given by #he 3 bimatrix game

12 0
0

B (32)

>

I
o o A
o o A
o o A
© O o

4
0 13
and starting poink= (0,0,1),y=(0,0,1). We saw earlier that the Lemke-Howson
algorithm from this starting point finds the equilibriu@®y'11,0,6/11), (4/5,0,1/5)

(see exampldl(J) and Figurél.J). However, the van den Elzen-Talman algorithm
starting at this prior finds the pure strategy equilibri¢in0,0), (0,1,0). This can

be seen from a graphical description of the corresponding van den Elzen-Talman
path, which we have given in FiguBl Another interesting feature of this path is
that the homotopy parameter shrinks at some point during the algorithm. A further

discussion of the relationship between the two algorithms will be provided at the
end of the next section.

3.3 Relationships to the global Newton method

Theglobal Newton methofibr equilibrium computation was introduced ®ovin-
dan _and Wilson(20033; it is a homotopy method for the computation of Nash
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(1,00) 0,10 0,10

Figure 3.1: The van den Elzen-Talman path from the pri6y0,1), (0,0, 1) for
exampleB.2). The left simplex is player one’s, the right one player two’s. Player
one’s strategies are labelled 1-3, player two’s have labels 4-6. The labels in the
simplex mark the players’ best reply regions. The labels outside mark the edges
of the simplex where the corresponding strategy is unplayed. The square dot
is the equilibrium that is found by the Lemke-Howson algorithm, (see Figure
[I.7 for a graphic description of the corresponding Lemke-Howson path). The
black arrows give the path of the van den Elzen-Talman algorithm starting at
(0,0,1),(0,0,1), and are numbered in the order in which they occur. The dashed
lines trace the restricted strategy spéteafter step 5 (upper line) and step 7
(lower line).

equilibria in finite strategic-form games. For simplicity, we will first give a de-
scription of the algorithm for bimatrix games, and then explain how to generalize
it to N-player games.

First we need to introduce a procedure of creating new games from old ones that
goes back to the structure theoreniKnhlberg and Merten§l986): Starting from
anmx n bimatrix game(A, B) and directional (column) vectoesse R™, b € R",

define a new gam@A, B) @ (a, b) by adding the vectoa to each column oA, and

the vectorb' to each row of B. Hence the gani&, B) @ (a,b) is given by the

matrices
a1 a b1 ... by

A+l s . ], B+ : (3.3)
am an'] bl cee bn

Note that in general this procedure changes the equilibria of the game.

The idea of the global Newton method is as follows: Assume we would like to cal-
culate an equilibrium of a bimatrix ganté, B). For any pair of directional vectors
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(a,b) as above, consider the réyA,B) © A - (a,b) | A > 0} in the space of games.
Take the graph of the equilibrium correspondence (which is the correspondence
that maps each game to the set of its equilibria) over that ray. The structure theo-
rem byKohlberg and Mertengl986) implies that generically, i.e. fdia, b) outside

a lower-dimensional set, this graph will be a semi-algebraic one-dimensional man-
ifold with boundary, where boundary points are equilibria of the ga/8). If

we can find an equilibrium for largk and trace it along that manifold, we arrive

at an equilibrium of the original game.

Although the idea is conceptually straightforward, its implementation is techni-
cally demanding. Govindan and Wilson take advantage of the differentiable struc-
ture which is implicit in the structure theorem. They convert the problem of tracing
equilibria over a ray to one of calculating zeros of piecewise differentiable func-
tions, and for this they use the “original” global Newton method du&rualé
(1976 (hence the name of the method). For further details we refer the reader to
the original paper biovindan and Wilsai20033.

For our purpose, all we need to know is that for a bimatrix g&f8) and a pair of
directional vectorga, b) in a suitable Euclidean space, the global Newton method
traces equilibria along the graph of the equilibrium correspondence over the ray

{(AB)®A-(ab)[A =0}

In other words, for the grap#i of the equilibrium correspondence, the global New-
ton method traces equilibria along the set

{((AvB)@)‘ -(a,b),(x,y)) €& | A> 0}

A crucial condition for the algorithm to work is that this set is nondegenerate, in the
sense that it is a one-dimensional manifold (with boundary) without branch points
(by this, we also mean that it may have no branch points “at infinity”). Generically,

however, this nondegeneracy condition is satisfied.

The global Newton method can easily be extended to games with more than two
players. Definition[8.3) means that for each player, a bonus is added to his payoff
from each of his pure strategies, regardless of the other player’s strategy. This
concept has an obvious extensiorNigplayer strategic-form gamés where each
playeri has a “bonus vectorg;. As in (3.3, we get a new game® (s, ...,0n)-
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The global Newton method then traces equilibria over rays of the form
{reA-(g,---,08) [ A >0}

We now prove that the global Newton method comprises the van den Elzen-Talman
algorithm as a special case, and give a generalization of this result to the linear
tracing procedure in the case of a finite strategic-form game(A,&) be anmx n
bimatrix game. Choose a starting paRty) € Ay x An. The van den Elzen-Talman
algorithm traces the set

(t,(x,y)) € [0,1] x Am x An | (X,y) € At and (x,y) is}

A B),(XYy)) =
ReT((AB), (X,Y)) {an equilibrium of the gamg@A, B)!

whereA! is the restricted strategy space #AdB)! the corresponding game defined
in Sectior3.2

ForA € R, define the game
(ABY(A) = (AB)@A - (Ay, BTX)

whered is defined as iN3.J. Let & be the graph of the equilibrium correspon-
dence over the space of bimatrix gani®%" x R™" and let

Penm((A,B), (xY)) = {((A,B)Y(A),(xy)) € £| A > 0}

be the set of equilibria over the ray of gamfg#,B)*Y(A) | A > 0}. This is

the set traced by the global Newton method, when choosing as directional vec-
tor (Ay,B"x). The following Proposition states that it is homeomorphic to the
setP:e7 ((A,B), (X,Y)), after removing the starting poin0, (X,y)) from the latter.

This establishes the van den Elzen-Talman algorithm as a special case of the global
Newton method.

Proposition 3.1. Let (A,B) be anm x n bimatrix game. Choose a starting point
(X,Y) € Amx An. LetA 1 (0,1] — R=0, t — 1 —1. Then the map

Rer (A B), (R 9)\{(0,(R3)} — Penu((AB). (X))
(t@-Ox+t 1-0y+ty) = ((ABMAWD), (xY)

is a homeomorphism.
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Proof. In the game(A,B), the payoff vector for player one against the strategy
(1-t)-y+t-yforye Ayis

(1-t)Ay+tAy= ((1—t)(Ay,...,Ay) +tA)y

where we exploit the fact thgt' 1 = 1. Similarly the payoff vector for player two
against a strategfl —t) - X+t -xfor x € Ay is

(1-t)B'x+tB'x= ((1-t)(B'X,...,B'X) +tB" )x
x"-B
=(@-t| : [+tB)'x

x-B

Hence a strategy profilgl—t)-x+t-x,(1—t)-y+t-y) in the restricted strategy
space is an equilibrium A, B)! if and only if (x,y) is an equilibrium of the game
t-(AB)®(1-t)- (Ay,B'X).

Since the equilibria of a game remain unchanged by multiplication of the payoffs
by a positive constant, we get that the Bet((A,B), (X,Y)) is given by

(t,(L—t) - X+t-x,(1—-t)-y+t-y) |t € (0,1],(x,y) is an}

{O.xm} v {equilibrium of the gaméA,B) @ (¢ — 1) - (Ay,Bx)

which ensures that our map maps indeeddqm((A,B), (X,y)). Since it is ob-
viously continuous, we just need to find a continuous inverse. This can be easily
done by taking the inverse mapAoand taking the corresponding continuous map

Penm((AB), (X)) — Fet((AB), (X, ¥)\{(0,(x,9))}
O

The map from Propositid8.1 can easily be extended to the poifit(x,y)) by tak-

ing the one-point-compactification &nm((A,B), (X,Y)). As an immediate con-
sequence we get that a van den Elzen-Talman path is a one-dimensional manifold
(with boundary) without branch points if and only if the same holds for the corre-
sponding path of the global Newton method (where a branch point at the starting
point of the van den Elzen-Talman path would correspond to a branch point “at
infinity” of the path of the global Newton method). If both paths satisfy this non-
degeneracy condition, both algorithms will find the same equilibrium.
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An alternative proof for PropositioB. 1 can be given using Lemke’s algorithm:
For bimatrix games, the global Newton method corresponds to Lemke’s algorithm
(with potentially non-positive covering vectors), &&evindan and Wilsd(20033.

The bonus vector for the global Newton method essentially corresponds to the
covering vector used in Lemke’s algorithm. Using that the van den Elzen-Talman
method is a special case of Lemke’s algorithm, PropodBidriollows.

Proposition3.1 can be generalized thl-player games as follows: It has been
proved invan den Elzen and Talmg999 that the van den Elzen-Talman algo-
rithm implements the linear tracing procedure, which was introducdddvganyji
(1979. The linear tracing procedure is a method for selecting a Nash equilibrium
in anN-player game; it plays a key role in the equilibrium selection theory devel-
oped byHarsanyi and Selte(l988. For any prior (i.e. mixed strategy profile),
the linear tracing procedure traces equilibria over a set of games whose payoffs
are given as a convex combination of the original payoffs, and payoffs against the
prior. To make this more precise, choose\aplayer strategic-form gameand a
prior p, and denote by (o) the payoff of playei against a mixed strategy com-
binationo. For0 <t < 1, define a gam&", which has the same sets of players
and strategies ds, but the payoff i to playeri from a strategy combinatioo
is defined as

(o) =tri(o)+(1-t)ri(a, p-i) (3.4)

where(o;, p-i) is the strategy combination that results frarby replacing player

i's strategyp; by g;. The linear tracing procedure traces the graph of the equilib-
rium correspondence over the set of ganiES| t € [0,1]}, which in almost all
cases will be a one-dimensional manifold. Ear O we can divide the payoffs
given in [8.4) by t without changing the equilibria of the game, and as in the proof
above we can conclude the following generalization of PropodBidnwhich is
one of the central results of this chapter:

Theorem 3.2. The global Newton method implements the linear tracing procedure.

It has been proved (Govindan and Wilsdi2003H) that the global Newton method
also comprises the Lemke-Howson algorithm. Propos#dhraises the ques-
tion of how the latter algorithm as a special case of the global Newton method
differs from the van den Elzen-Talman algorithm. If we take itfreunit vector
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g for some pure strategyof player one, the global Newton method for the ray
(A,B)® A - (&,0) corresponds to the Lemke-Howson algorithm with missing label

i. An analogous statement holds for missing labels of player two; for further details
seeGovindan and Wilsdif2003h). So the Lemke-Howson algorithm corresponds
to taking unit vectors as directional vectors for the global Newton method, whereas
the van den Elzen-Talman algorithm is based on directional ve@gr8 ' x). Fur-

ther differences between the two algorithms will emerge in the analysis of coordi-
nation games in the next section: We will see that in this type of game, the Lemke-
Howson algorithm only finds the pure strategy equilibria, whereas for certain co-
ordination games, the van den Elzen-Talman method can also find the completely
mixed equilibrium.

3.4 Traceability and the index of equilibria

In this section we discuss which equilibria can be traced by the van den Elzen-
Talman algorithm. Of course every equilibrium can be found by taking it as start-
ing point. However, we are only interested in those that are found generically. As
suggested bidofbauen2003), we call an equilibrium of a nondegenerate bimatrix
gametraceableif it can be reached by the van den Elzen-Talman algorithm from
an open set of priors. As explained in Secfid, traceability in this sense corre-
sponds to a notion of sustainability suggestedviyerson(1997). (Govindan and
Wilson (20034 have shown that, generically, every equilibrium found by the global
Newton method has index1. Propositiori3.1then implies that only equilibria of
index+1 are traceable.

The converse question is if, generically, every equilibrium of indéxis trace-
able. This question has been discusseHafbauer(2003 in the context of sus-
tainability. We answer it negatively by giving an analysiscobrdination games
FollowinglHofbauen(2003), we define a coordination game to be a square bimatrix
game(A,B), where the matriced andB have zeros on the diagonal and negative
entries off the diagonal. We restrict our analysis to nondegen@&ratecoordina-

tion games. If such a game has a completely mixed equilibrium, this equilibrium
has index+1, and will be our candidate for non-traceability. In addition, such a
game has three pure strategy equilibria, also of indéxand three equilibria of
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support size two, which have indext.

It is straightforward that in such a game, the Lemke-Howson algorithm only finds
the pure strategy equilibria. These equilibria are traced by the van den Elzen-
Talman method as well, by starting from any prior nearby. However, compared
to the Lemke-Howson method, the van den Elzen-Talman algorithm allows for a
vast variety of starting points. The question is if this increased flexibility suffices
to make the completely mixed equilibrium traceable as weélbfbauer(2003
answered this question negatively for symmetric games, which in general is cor-
rect only as long as we restrict the van den Elzen-Talman algorithm to symmetric
starting point. More precisely, in this section we show that the traceability of the
completely mixed equilibrium depends on the type of coordination game at hand.
On the one hand, we give a class of generic coordination games for which the com-
pletely mixed equilibrium is not traceable. This implies that the flexibility of the
van den Elzen-Talman algorithm does not ensure generic traceability of all equi-
libria of positive index.

On the other hand, we prove that there are coordination games for which the com-
pletely mixed equilibrium can indeed be traced from an open set of starting points.
Hence for this class of games, the van den Elzen-Talman algorithm is stronger
than the Lemke-Howson method, in the sense that the equilibria found by the lat-
ter method are a proper subset of the traceable equilibria. This strengthens known
observations that the van den Elzen-Talman algorithm in general finds more equi-
libria than the Lemke-Howson method. An example of an equilibrium found by the
van den Elzen-Talman algorithm but not by the Lemke-Howson method has been
given byivan den Elzen and TalImg®991). However, the equilibrium considered

in their example has negative index, hence is only found via non-generic van den
Elzen-Talman paths and cannot be traceable.

We start our analysis of traceability in coordination games with the game given by

0 -1 -1
A=|-1 0 -1|=B" (3.5)
-1 -1 0

which corresponds to the “standard” coordination game usually given by the iden-
tity matrix. For this game, it is easy to see that the completely mixed equilibrium
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is not traceable. The van den Elzen-Talman paths in this example are quite sim-
ple; as soon as a path arrives in the “same” best reply regions for both players, the
corresponding pure strategy equilibrium is found, as depicted in A§dre

(0,0.) 0,0,1)

(1,0,0) (0,1,0) (1,0,0) (0,1,0)

Figure 3.2: A van den Elzen-Talman path for examg&%). The dots denote
the prior, or starting point of the algorithm. The black arrows give the path of the
algorithm; the dashed triangles trace the value of the restricted strategy/$pace
after the first step of the algorithm.

Consider the following perturbation of the standard coordination g (

0 -1 -c
A=|-c 0 -1|=8B" (3.6)
-1 -c O

wherec > 0. We call such a game @&coordination game The edges between

any two best reply regions for this game are given by the pq&gs(o, 1,c), ﬁc .

(c,0,1) andﬁC -(1,¢,0), each connected t(l/3,1/3,1/3). We will prove that

the slopes of those edges are crucial to whether the completely mixed equilibrium
in such a game is traceable or not. Hot ¢ < 2, the edges are contained in the
darkly shaded areas in Figu&3 This implies that the smaller angle between any

of those edges and the boundary of the respective player’s strategy space is between

60° and90°. This property is crucial in the proof of the following Theorem.

Theorem 3.3. For any 1 < ¢ < 2, the completely mixed equilibrium in the corre-
sponding3 x 3 c-coordination game defined {8.6) is not traceable. The same is
true for any small (possibly hon-symmetric) perturbation of such a game.

We do not claim this result to be sharp. To the contrary, we would expect an
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(0,0,1)

100) 0 5 (0.1,0)

Figure 3.3: For ac-coordination game, the edges between two best reply regions
are contained in the darkly shaded areak<f ¢ < 2, and in the lightly shaded
areas ifc > 2.

analogous statement to be true for other suitable parangtiensexamplel/2 <
c<1l

Proof. Fix ac-coordination game with < ¢ < 2. We have to analyze the different
paths that can be generated by the van den Elzen-Talman algorithm by choosing
an arbitrary starting poir(,y). First, observe that it suffices to only consider non-
degenerate paths, i.e. paths without branch points or higher-dimensional degenera-
cies. Thisis essentially due to the fact that the van den Elzen-Talman algorithm can
be understood as a special case of Lemke’s algorithm, as explained in $&2tion
Hence van den Elzen-Talman paths can be seen as Lemke-paths, which for almost
all covering vectors will be nondegenerate as long as the underlying linear com-
plementarity problem is nondegenerdiayes[1977). But since the coordination
games at hand are nondegenerate, the corresponding linear complementarity prob-
lem is nondegenerate as weélbf Stengel2002).

Our proof is best understood by geometrically following the paths generated from
different starting points. For illustration we have done this for the last case in
Figure3.4 We will describe the pivoting steps of possible paths using the concept
of “picking up” and “dropping” labels, as described in Sec{®@ Player one’s
strategies are labelled 1-3, and player two’s have labels 4-6. Recall that a point
(1—t)x+ x of player one’s restricted strategy space has as labels firstly the best
replies of player two again§l —t)x+ x, and secondly his own “unused” strategies,
i.e. those with x;, = 0. The labels for a point in the restricted strategy space for
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player two are defined analogously. If we say that at some point a player picks
up or drops a label, we always mean this to be a label in the restricted strategy
space relevant at that point. Recall tAdt) denotes théth best reply region. As
explained above, our choice ©€ (1, 2) means that the edges between any two best
reply regions are in the darkly shaded areas depicted in HB@r& his property,
which we will refer to as Property (*) for the remainder of the proof, is essential
for the geometric structure of the van den Elzen-Talman paths.

Now choose a starting poifit,y) which generates a nondegenerate van den Elzen-
Talman path. We can assume without loss of generalityxthak(4). As always in

a coordination game, if € A(1), the equilibrium(1,0,0), (1,0,0) is found straight
away. Next, assume that A(2), and look at the different cases that may happen.
The case of € A(3) is symmetric (by rotating the strategy space and exchanging
the two players), hence there is no need to discuss it.

In the first step of the algorithm, the homotopy parameter starts growing, while both
players put weight on their respective best replies to the prior. Hence the first part of
the van den Elzen-Talman path is given(¥¥—t) -x+ (0,t,0), (1—t)-y+(t,0,0)).

This path is followed until a new label is picked up, i.e. until the path hits another
best reply region.

e If it hits A(5) or A(2) first, the corresponding pure strategy equilibrium is
found straight away, similarly as in Figuge2

e If the path hitsA(3) first, player two picks up label 3, which then player one
can drop. This means that player one starts putting positive weight on his
third strategy, while the homotopy parametereeds to remain constant in
order to enable the players to keep all necessary labels. Since by Property
(*), the edge betweefd(4) andA(5) is steeper than the edge given by label 1
of player one’s restricted strategy simplex, the path cannak(&it during
this process. If the path hits(6), then the equilibrium(0,0,1),(0,0,1) is
found: Player two can drop label 6, which player one has just found, but
needs to keep labels 2, 3 and 5. Since by Property (*), the edge given by la-
bel 5 of player two’s restricted strategy simplex is containe®B), the only
way this can happen is if the homotopy parametetarts shrinking, until
either of the players reaches the upper vertex of the restricted strategy sim-

56



Chapter 3. Equilibrium Tracing in Strategic-Form Games

plex A', where that player finds a label of his own. Assume this was player
one, picking up label 2 (the case for player two works vice versa). Then
player two can drop that label, i.e. leave the boundary between the best reply
regions, and walk towards the upper vertex of his restricted strategy simplex
(while the homotopy parameter stalls), until he picks up label 4. This in turn
implies that now player one can also leave the boundary of the best reply
regions. The homotopy parameter starts growing, while both players stay
in the upper corner of their restricted strategy spaces, until the equilibrium
(0,0,1),(0,0,1) is found.

The only remaining case is for the first player’s path to remaif(4) un-

til he reaches the upper vertéx—t) -x+ (0,0,t) of his restricted strategy
simplex and picks up label 2. Then the homotopy parameter starts growing
again until one of the following cases occur:

(i) Ifthe path hitsA(1) first, then the equilibriun(l,0,0), (1,0, 0) is found,
by an argument similar to Figu2

(i) Ifthe path hitA(6) first, then the equilibriung0,0,1), (0,0, 1) is found,
again by a similar argument.

(iii) If the path hitsA(5) first, player one picks up label 5, which then player
two can drop. Then the homotopy parameter stalls while player two
puts more weight on his second strategy. At some point he arrives at
A(2) again. Now player one can drop label 2, but needs to keep labels
1,4 and 5. Since due to Property (*), the edge given by label 1 of player
one’s restricted strategy simplex is contained(b), the only way this
can happen is if the homotopy parameter starts shrinking, while both
players walk along the edge between the best reply regions they are
on, away from the barycentéf/3,1/3,1/3). At some point, player
one reaches the right vertex of his restricted strategy simplex, picking
up label 3. This is bound to happen before player two reaches the left
vertex of his restricted strategy simplex: Due to the history of the al-
gorithm we can see that player two’s relevant vertex is further away
(in terms of the homotopy parameter) from the relevant boundary be-
tween best reply regions, than player one’s. Player two can now drop
label 3, i.e. leavé\(3): While the homotopy parameter is stalling, he
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(0,0,1) (0,0,1)

(1,0,0)

(0,1,0) (10,0 (0,1,0)

Figure 3.4: A van den Elzen-Talman-path as in the proof of Theo@Es The

black line segments give the path of the algorithm, the dashed triangles trace the
restricted strategy spa¢e. The upper figure contains the first four steps of the
algorithm, the lower one traces the whole path in greater detail.

walks towards the right vertex of his restricted strategy simplex, where
he picks up label 4. Now player one can le@@), and the equilib-
rium (0,1,0),(0,1,0) is found. For visualization, we have provided a
graphic description of the last case in FigGrd

So far we have proven that for awycoordination game with < ¢ < 2, the com-
pletely mixed equilibrium is not traceable. However, it is easy to verify that for
any small (possibly non-symmetric) perturbation of suaki@ordination game,

the arguments above are still valid. Hence we can extend our result to small per-
turbations of sucle-coordination games. O

As an immediate consequence, we get the central result of this section:

Corollary 3.4. There is an open set in the space3of 3 bimatrix games, such that
every game in that set has an equilibrium of indekthat is not traceable.

We would like to conclude this section by proving that the mixed equilibrium of
ac-coordination game as if8(0) is traceable as soon as> 2. This is essentially
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due to the fact that foc > 2, the relevant angle of the edges between best reply
regions and the boundary of the strategy space becomes smalléfthaa. those
edges are contained in the lightly shaded areas of F[§LEeas opposed to the
darkly shaded ones. This in turn implies that where the homotopy paranusted

to shrink before, now it starts growing, which enables us to find the completely
mixed equilibrium.

Proposition 3.5. For any ¢ > 2, the completely mixed equilibrium in the corre-
sponding3 x 3 c-coordination game is traceable.

Proof. Choose a priofx,y) € A(4) x A(2) such thak is close taA(6) but far from

A(5), whiley is closer taA(3) thanx is to A(5), but further away fronf\(3) thanx

is fromA(6). At the same time, lef be close ta\(1). “Close” and “far” are to be
understood in terms of the homotopy parameter. It should become clear during the
description of the envisaged path what precisely is heeded.

Finally, lety be such that the line from to (1,0,0) intersectsA(3). By these
choices, we can generate the following van den Elzen-Talman path: The path hits
A(3) first, where player two picks up label 3. This means that player one can put
weight on his third strategy, while the homotopy parameter stalls, until his path
hits A(6). Now, player two can drop label 6 but needs to keep labels 2, 3 and 5.
Sincec > 2, the edges between any two best reply regions have a different slope
than for the case where< c < 2, as depicted in Figui8.3 In particular, the

edge betweerh(2) andA(3) is steeper than the edge given by label 5 of player
two’s restricted strategy space. This implies that at this point of the algorithm,
player two’s restricted strategy simplex is still containe@i®). This means that
unlike in the proof of Theorei.3 where in the analogous situation the homotopy
parameter started shrinking, the homotopy parameter now needs to grow in order
to enable player two to keep the necessary labels. Since player one needs to keep
labels 1, 4 and 6, he moves towards the baryce(igs,1/3,1/3) on the edge
betweenA(4) andA(6), while player 2 moves away froifll/3,1/3,1/3) on the

edge betweeA(2) andA(3). At some point, player one arrives(dt/3,1/3,1/3),

where he reachey5) and picks up label 5. By our choice pfclose” toA(1), we

can assume that at this point, the barycefi¢B,1/3,1/3) is contained in player

two’s restricted strategy space. Player two can now drop label 5, i.e. put positive
weight on his second strategy, hence the homotopy parameter stalls and player two
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moves along the edge betwek{®?) andA(3) until he, too, reached/3,1/3,1/3).

Now in turn player one can put positive weight on his first strategy. This implies
that the homotopy parameter can grow until it reaches 1, while both players remain
at the completely mixed equilibrium. Quite obviously, this path can be generated
from an open set of priors, hence the completely mixed equilibrium is traceable.

To conclude the proof, we give a numerical example of the path generated above:
For ¢ = 3, from the starting point given by = (45/100 35/100,20/100), y =
(15/100,40/100 45/100) the van den Elzen-Talman algorithm finds the completely
mixed equilibrium of the correspondingcoordination game, via a path as de-
scribed above. O

3.5 Open questions

The main open question that is raised by Thed8®and Corollary3.4is if similar
results hold for the global Newton method: Is there an equilibrium of ireeihat

is not found by the global Newton method, or more generally, is there an open set
of games such that each of these games has an equilibrium of4dridthat is not
traceable by the global Newton method? Due to PropodBidnthe latter result
would imply our Theorer3.3
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Index and Uniqueness of
Symmetric Equilibria

4.1 Introduction

In this chapter we use constructions of polytopes to prove a theorem, conjectured
by [Hofbauer (2003, about symmetric Nash equilibria of symmetric two-player
games. These games are important in evolutionary game theory, where a “mixed
strategy” represents the frequencies of individual “pure strategies” that are played
in a population.

In a strategic form game, a Nash equilibrium always exists but is not necessarily
unique. An enormous literature in game the@@r{ Dammg1987) considers con-
cepts of equilibrium selection and refinement in order to suggest fewer, preferably
unique, equilibria as “solutions” to a given game. Typically, equilibria are selected
that are “stable” in some sense, for example under perturbations of the payoffs that
define the game (sd&hlberg and Mertensl986 and the subsequent literature).
Hofbauer(2003) discusses various desirable properties of “sustainable” equilibria,
a concept suggested Myerson(1997); often, these properties hold for the equi-
libria of index+1. For example, only equilibria of index1 can be stable under
some “Nash field”, that is, a vector field on the set of mixed strategy profiles whose
rest points are the Nash equilibria.

Hofbauen(2003 conjectured that equilibria of index1 are “potentially unique” in
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the sense that there is an extended game, with additional strategies for the players,
where the given equilibrium is unique. This has been proved for bimatrix games
in von Schemd€2005), with a constructive geometric proofuon Schemde and

von Stenge(2008. We prove the corresponding theorem for symmetric equilibria

of symmetric two-player games (for definitions see Sedid

Theorem 4.1. For a nondegenerate symmetdcx d game(B',B), a symmetric
equilibrium has symmetric index1 if and only if it is the unique symmetric equi-
librium in an extended symmetric garf@', G).

As explained in Chapté?, the index of an equilibrium is an involved topological
notion. Theorerd. 1, however, characterizes the symmetric index in purely strate-
gic terms, without resorting to any concepts from topology. &oern bimatrix
games(A,B), the analogous statement to Theoiédiholds with the word “sym-
metric” omitted. (In this chapter we uskrather thamm for the number of rows of

the game matrices because most of our geometric objects |i&&.)nThis result

for bimatrix games was first provedwon Schemd¢200%) using topological argu-
ments. The statements for bimatrix and symmetric games are independent because
for a symmetric game, the bimatrix game index may differ from the symmetric
index (we give an example after Definitid3 below). Also, the symmetric game
needs to be extended symmetrically, whereas in the bimatrix game setting, only
strategies for one player are added.

We prove Theore.Jusing polytopes. The symmetric game given in Theddeln

is used to define a simplicidtpolytope. The polytope igbelledin the sense that
each vertex haslabelin {1,...,d}. A facet iscompletely labelledf the set of la-

bels of itsd vertices is{1,...,d}. The completely labelled facets correspond to the
symmetric equilibria of the game, and one “artificial equilibrium” associated with a
special faceFy. The orientation of a completely labelled facet is equal to the index
of the corresponding equilibrium, except for a change of sign in even dimension
(see LemmH@.7). According to a standard “parity argumenPapadimitrioli1994)
known from the Lemke-Howson algorithrhémke and Howsaril964 [Shapley
1974, completely labelled facets come in pairs of opposite orientation. We state
this result in Propositiod.9 below. Its proof uses a very intuitive geometric argu-
ment, which relies heavily on the simpliciality of the polytope.
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The following is our central result in the polytope setting.

Theorem 4.2. LetP* be a labelled simpliciatl-polytope with0 in its interior, and

let Fp and F be two completely labelled facets of opposite orientation. Then there
are labelled points such that the convex h@t of these points anB” has only

Fo andF as completely labelled facets.

The added points in Theoreh2 will be used to define the added strategies in
Theorem4d.1 In order to get from added points to added strategies, we intro-
duce a special class of bimatrix games, which we gait vector gamesA unit
vector game is a bimatrix game where the columns of the first player’s payoff ma-
trix are unit vectors. This concept generalizes the imitation games introduced by
McLennan and Tourky2007), where the first player’'s payoff matrix is the identity
matrix. We show that each labelled simplicial polytdpe corresponds to a unit
vector game; the completely labelled facetd6f correspond to the equilibria of
this game (see Lemr#@a10). For the labelled polytope” defined from a symmet-

ric game(B ', B), the corresponding unit vector game is the imitation gémB).
Hence Lemm&.10generalizes the result froMcLennan and Tourky2007) that

the symmetric equilibria ofB",B) are in one-to-one correspondence to the equi-
libria of (I,B).

Starting from a symmetric gan{®", B), we use Theoref.2to add points to the
corresponding labelled polytog®”. These added points can be used to extend
the corresponding imitation gan(k B) to a unit vector game, by adding strategies
for the column player. We then have to symmetrize this game, by adding suit-
able payoff rows. The added rows are essentially given by the payoffs of the first
player in the extended game (see LenihdHl). This is the crucial step for deriving
Theoren#. 1 from Theoren.2

This Chapter is organized as follows: In Secibd we give a short exposition of
symmetric games and the symmetric index. Sedfi@explains how symmetric
games are linked to labelled polytopes. Symmetric equilibria of a symmetric game
correspond to completely labelled facets of the underlying polytope. SéE#ion
introduces the natural concept of an orientation of such a completely labelled facet,
which up to a dimension-dependent sign coincides with the symmetric index of
the corresponding symmetric equilibrium. In SectlbBwe introduce unit vector
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games, and show how to use these to derive our main result, Thdafieimom its
geometric counterpart, Theoréhl

In the subsequent sections, we give a constructive proof of ThédiZrthe main

idea of which goes back to a proof sketch of a related result in the non-symmetric
setting byvon Schemde and von Sten@2008. However, the authors omit crucial
details, and their proof sketch relies on results about polytopes which we prove in
this chapter. Sectidd.6 describes a central concept for our construction, the “P-
matrix prism”, which is a particular type of completely labelled polytope with only
two completely labelled facets. A known result on P-matrices allows us to prove
Theoren.2 using a “stack” of three P-matrix prisms. For this to work, we need
to re-arrange the polytop@” in a suitable way; this is done in Sectidid In
Section4.8 we use a stack of P-matrix prisms to prove TheokeBfor the case

that the two given completely labelled facets are disjoint. The non-disjoint case
will be treated in Sectiod.9 The final Sectio@.I0mentions open problems.

This chapter is joint work with Bernhard von Stengel.

4.2 The symmetric index

A symmetric gamés a bimatrix gaméB ', B) for a square matri® (denoting the
payoffs to the column player), that is, the game remains unchanged if the players
are exchanged. Bymmetric equilibriunof a symmetric game is an equilibrium of

the form(x,x), where both players use the same mixed strategy. Any symmetric
game has a symmetric equilibriufddsh[1951). A symmetric game may also have
non-symmetric equilibria, but in certain situations - i.e. if the players have no way
of determining which of the two possible player positions they are in - only the
symmetric equilibria are considered. Symmetric games and equilibria have been
studied in a variety of contexts, especially in evolutionary game theory (see, for
example/Gale et al.[195Q or[Hofbauer and Sigmund99§).

Savani and von Steng€2006 introduced a symmetric version of the Lemke-
Howson algorithm. Followinhapley(1974), this algorithm can be used to define

a symmetric version of the index, as follows: Consider a nondegenerate symmetric
game(B',B) with B > 0, and a symmetric equilibriunix,x), and letBx be the
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square matrix obtained froB by deleting all rows and columns not in the support
of x. As in Sectiorl.3 nondegeneracy implies that this matBy has full rank.

The symmetric index of a symmetric equilibrium can now be defined analogously
to the “ordinary” index:

Definition 4.3. Let (B',B) be a nondegenerate symmetric game Wtk 0 and
let (x,x) be a symmetric equilibrium witk = |supgx)|. Thesymmetric inde>of
(x,X) is defined as

(—1)%1sign detByy) (4.1)

In analogy to the non-symmetric case, the symmetric version of the index has
a straightforward interpretation in terms of the symmetric Lemke-Howson algo-
rithm: Symmetric equilibria at opposite ends of Lemke-Howson paths have oppo-
site symmetric indexXGarcia and Zangwill1981). Like for the “ordinary” index,
there are multiple ways of defining the symmetric index; for example, a version of
the symmetric index based on the Poiricardex of the replicator dynamics has
been suggested iHofbauer and Sigmun@.99§.

In a symmetric bimatrix game, the “ordinary” index (as in Definiti) is in
general different from the symmetric index. For example, the symm2tki@
game(A,B) of “chicken”, whereA = B = [e; €1], has two non-symmetric pure
equilibria and a mixed equilibrium which is the only symmetric equilibrium. That
mixed equilibrium has index 1 for the bimatrix game, but symmetric indexl..

The symmetric index has the following properties, which require that its sign alter-
nates with the parity of the support size a¢4dlf (compare PropositidA.3or (vor
Schemde and von Stenp2008§ Proposition 2) for the corresponding statement for
the “ordinary” index).

Proposition 4.4. In a nondegenerate symmetric game, the symmetric index of a
symmetric equilibrium

(@) is+1or—1;

(b) does not change when adding a positive constant to all payoffs;

(c) only depends on the payoffs in the support of the symmetric equilibrium;

(d) does not depend on the order of the players’ pure strategies;

(e) is +1 for any pure-strategy symmetric equilibrium; and
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(f) the sum of the symmetric indices over all symmetric equilibriadis

The proof of this proposition works analogously to the proof of the corresponding
properties of the “ordinary index” (see, for examplen Schemde and von Stengel
2008. As mentioned, (a) holds because the game is nondegenerai.anals
therefore full rank. It is easy to see that for a square ma&rand scalas, the
determinantdetC + sE) is a linear function ofs, which is not constant i€ is
nonsingular, and does not change siga i 0 andC > 0. This implies (b), and it

is the reason why we require that> 0 in Definition[4.3

In Propositiori4.4, claim (c) holds by definition, and shows that the index does
not change when considering the equilibrium in an extended game with additional
strategies (which are not played in the equilibrium). Condition (d) holds because
rows and columns are exchanged equally to maintain the symmetry of the game.
Property (e) is desirable, as discussediperson (1997 andHofbauer(2003),
because pure-strategy equilibria are particularly convincing solutions to a game.
Property (f) follows from a “parity argument” that we will prove in Proposiffba

It implies that a unique symmetric equilibrium must have index

An example is the “coordination game” with thlex d identity matrix| as payoff
matrix (its payoffs are only nonnegative, and not all positive, but Defirl#igstill
applies). In this game, any nonempty Set {1,...,d} of pure strategies defines
a symmetric equilibriuntx, x) with supgx) = Sandx as the uniform distribution
onS Its symmetric index is-1if |§ is odd, otherwise-1.

4.3 Polytopes and symmetric equilibria

Polyhedra have been used sivogob’eVv (1958 to represent equilibria of bimatrix
games. Consider a nondegenerdte n bimatrix game with payoff matrisB =
[by---by] for player 2. (A special case is a symmetdicc d game(B',B) with
n=d.) Assume that the polyhedron

P={xeR%|x>0x'B<1'} (4.2)

is bounded. Recall tha is called abest replypolytope. Anyx in P— {0} is
interpreted as a mixed strategyl' x of player 1. Any tight inequalitx"b; < 1
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describes a pure best repjyagainstx with payoff 1/1"x (because any column
other thanj gives at most that payoff).

We require thaP is bounded for the following reason (see alem Stenge(2002,
Fig. 2.5) for a more detailed geometric interpretatid?)s bounded if and only if
the functionx — 1" xis bounded o®. Equivalently, player 2's best-reply payoff to
any mixed strategy is always positive, because bj < Ofor all columnsb; of B
would imply thatx-t € P for arbitrarily large scalars> 0. Clearly,P is bounded
if B> 0, but possibly also when some entrieBodire negative, as in the following
example:

(5 V) el QRO e

Here, the three vertices &f other thar0 represent the pure strategies of player 1
and the mixed strateg{8/5,2/5)". For the symmetric gamg',B), these three
vertices define symmetric equilibria, the pure ones with paylofisand1, respec-
tively, and the mixed one with payoff/5.

We will always start with a matri8 > 0, but will later add inequalities'b < 1

to P with vectorsb that may have negative entries. This is allowed because then
P stays bounded. The columbsand suitable rows, will be added to the payoff
matrix to obtain an extended game.

Because the gived x n game is nondegenerate, no mixed strategy player 1

has more thafsupfx)| pure best replies. Equivalently, no more tlthinequalities

in (4.2 are tight for anyx in P. This means tha® is a simple polytope, and that
none of the inequalities’ bj is redundant in the sense that it can be omitted without
changing the polytope (except when it defines the empty face, which means that the
respective pure strategyis never a best reply; then thgh column can be omitted

from the game). We assume that the game is hondegenerd®ds simple, and

each binding inequality d? in (4.2) defines a facet.

Recall that each facet &f gets dabel as follows. Forl <i < d, the facet{x € P|
x = 0} gets label. For1 < j <n, the facet{x € P | x"bj = 1} gets labelj. Any
pointxin P has the labels of the facets it lies on.

Consider a symmetric gantB', B), wheren = d, and a poink in P — {0}, which
corresponds to a mixed strategy= x/1"x. Then a label of x represents either
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an unplayed strategy of player 1 (whegn= 0), or a best reply of player X(bj =
1). Hence, by the best reply condition, the mixed strategy pdix') defines a
symmetric equilibrium if and only ik is completely labelled.

The vertex0 of P is completely labelled, but it does not define an equilibrium.
However,0 serves as a starting point for a symmetric version of the Lemke-Howson
algorithm [Savani and von Steng&006 p. 402). The symmetric Lemke-Howson
algorithm computes a path of edgesRfwhich starts at a completely labelled
vertex ofP, for exampled, and ends at a different completely labelled vertex. The
endpoints of any Lemke-Howson path have opposite symmetric index, @herse
index—1 in agreement witH4, 1) whenk = 0. This implies Propositiod.4(f). We
prove a dual version of this observation in Proposiich

We will use thepolar (or dual) polytopeP” instead ofP. Suppos&) is a polytope,

Q={xeRY|x'¢<1 1<i<k} (4.4)

with vectorscy, . .., ¢ in RY. Then thepolar (Zieglet, 1995 of Q is given by

Q” =convcy,...,c} (4.5)

The polytopeP in (4.2) has to be translated in order to h@a its interior so that it
can be written in the fornid(4). Moreover, it is convenient to have the negative unit
vectors—g as vertices oP”, by translating® to the polytope® = {x— 1| x € P}.
ThenOis in the interior ofP if 1is in the interior ofP (like in the example4.3),
that is, if

1"bj<1 forl<j<n (4.6)

This can be assumed without loss of generality by multiplying all payofBsviith
a suitably small positive constant, which does not change the game.

Thenx ¢ P = {x—1|xcP}ifand only ifX +1>0and(xX +1)'B < 1, that is,
—x <1for1<i<d andx’Tbj/(l— lTbj) < 1for 1< j<n.Writing P* instead
of P'®, we therefore obtain

P~ =con({—ey,...,—eg}U{bj/(1-1Tbj) 1< j<n}) (4.7)

The facets oP” correspond to the vertices 8fand vice versaZieglet, [1995).
The polytopeP” is simplicial (i.e. every facet has exactlyvertices) because
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is simple. The labels of the facets Bfbecome labels of the vertices Bf*. By
construction, these vertices are with labeli for 1 <i <d, andb;/(1— 1Tbj)
with label jfor1 < j <n.

The facet corresponding to the ver@pf P is given by
Fo=con{—ey,...,—e4} (4.8)

Becausdy = {x € P> | —1"x = 1}, the normal vector oF is —1, which is the
vertex of P’ that is the translated vertéof P.

In general, a faceE of P hasnormal vectorv if F = {x € P* | v'x=1} and
v x < 1is valid for all x in P2. The normal vectors of faces other thanm,
represent mixed strategies, as follows.

Lemma 4.5. Let F # Fy be a facet ofP” in (@.7) with normal vectorv. Then
v represents the mixed strategy= (v+1)/1" (v+ 1), andx = 0 if and only if
—g € F for 1 <i <d. Any other labelj of F, so thatb;/(1— 1Tb,-) is a vertex
of F, represents a pure best replyxo

Proof. This holds because the polar of the polar is the original polyt@pegler,
1995. More preciselyP”* is P’ above, so the normal vector= (vy,...,vy) ' is
a vertex of? and thusy+ 1is a vertex ofP in (4.2). If —g € F, thenv; = —1 and
thereforex; = 0, and vice versa. O

Lemmald.3 means that the labels of a fadetof P*, whose normal vector rep-
resents a mixed strategy are the unplayed pure strategiesxior the pure best
replies tox. Observe that by nondegeneracy, every symmetric equilibfiur) of
(B",B) gives rise to a facet &~ whose normal is— 1, suitably scaled. Together
with the following result, this implies that the symmetric equilibria(Bf , B) are
in one-to-one correspondence with the completely labelled fac&s of

Corollary 4.6. LetF # Ry be a facet oP” in (@.7) with normal vectow, and let
Xx=(v+1)/17(v+1) asin Lemm&.B Then(x,x) is a symmetric equilibrium of
(BT,B) if and only ifF has all labelsi, ..., d.

Proof. An equilibrium (x,X) is given by those mixed strategigsso that for all
i=1,...,d, eitherx, = 0 (that is,—g with labeli is a vertex offF) ori is a best
reply tox. By Lemmd4.g this mean$ has all labels. O
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A more direct representation of mixed strategies as normal vectors of facets has
been considered iBarany et al.(2005. The representation uses an unbounded
polyhedron rather than a polytope, as follows. Consider the colwno$ B as
points inRY and let the polyhedro® be thenonnegative convex hullf these
points; that isP is the intersection of all halfspaces with nonnegative normal vec-
tors that contain all pointsy, . ..,b,. Then a normal vector of any facet ofP, is,
suitably scaled, a mixed strategy where the polmjtthat lie on the facet are the
pure best replieg to x. By construction, the polytopB” is, with the exception

of the additional facef,, combinatorially equivalent to the polyhedréh The
vertices; of P are scaled to become verticesRsf in (4.9).

We will later enlargeP” by adding pointg so that (among other things) remains
afacet oicony P” U{c}), thatis,—1" ¢ < 1. These points correspond to additional
columnsb of the game matri®B given by

b=c/(1+1"c) (4.9)

because theb/(1— 1"b) = cin agreement with4.7).

4.4 Oriented facets

Considering the simplicial polytope” in (£.7) rather than the simple polytope

P in (4.2 has the advantage that orientations of facets are easily defined and vi-
sualized. IfF is a completely labelled facet ¢, we assume that its vertices
ai,...,aq are given in the order of their labels, thatashas label, for 1 <i < d.

Then theorientationof F is

sign defa; - - - aq] (4.10)

The orientation oF coincides with the symmetric index of the corresponding sym-
metric equilibrium, except for a change of sign in even dimension:

Lemma 4.7. Let (BT, B) be a nondegenerate symmetdc d game, and leP”

be the polytope iff4.7) with n=d. Then the orientation of a completely labelled
facetF of P2, multiplied by(—1)4+1, is the symmetric index of the correspond-
ing symmetric equilibrium, whei®) corresponds to the artificial equilibrium with
index—1.
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Proof. WhenF = Fy, then its orientation isign det(—1) with the negative identity
matrix —I, which is+1 whend is even and-1 whend is odd.

Let (x,X) be a symmetric equilibrium ofB",B), and letF = conV{ay,...,aq}
be the corresponding completely labelled faceP6f Here,a has labeli for
1<i<d,wherea = —g if i € supgx) by Lemmd435, anda; = b;j/(1—1"b;) for
j € suppx). For the sign of the determinant, we can ignore the sdalidr—1"b;),
which is positive byl{.8). Hence, withk = [supgXx)|,

sign detay, .. .,aq] = sign(—1)9 X det(B,y) = (—1)9"1(—1)**Isign defBy)
which proves the claim. O

In general, the orientation of a nonsingular matrix is the sign of its determinant.
When a facet is not completely labelled, there is no natural order of writing down
its vertices as columns of a matrix. However, tadjacentfacets sharel — 1
vertices, so by keeping thesle- 1 columns fixed, the respective matrices differ

in only one column. The following lemma states that these matrices have opposite
orientation. Itis very intuitive in low dimension, which suggests its straightforward
proof.

Lemma 4.8. Consider a simpliciatl-polytope withO in its interior, and two adja-
centfacets with verticds ay, ..., a4 andc, ay, . . ., a4, respectively. Thejp a - - - a4]
and[c a&---ag] have opposite orientation.

Proof. We show that there are positive realandt so thatbs—+ ct is in the linear
span ofay,...,aq. Then

O=defbs+cta---a4] =s-detb a---ag] +t-defc a---a4]

which implies thatletb & - - - a4] anddefc & - - - a4] have opposite sign as claimed,;
the determinants are nonzero because the hyperplanes through the two facets do not
containO.

Lets, t, andr,,...,rq be reals, not all zero, so that
d
bs+ct+ Za;ri =0 (4.11)
=

where clearlys# 0,t # 0, and w.l.o.gs > 0. Letv andw be the normal vectors to
the two facets, sothat g =1,v'b=1,vic<landw'a=1,w'c=1,w'b<1,
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for 2 <i < d. Then multiplying @11 with bothv" andw' givesv' (bs+ ct) =
w' (bs+-ct), thatis,(1-w'b)s= (1-v'c)t and thug = (1-w'b)s/(1-v'c) >0
where by .11 bs+ctis in the linear span ddy, .. ., aq. O

The following observation is proved with the path-following algorithniLeimke

and Howsol{1964), in its symmetric form/$avani and von Steng&006 p. 402),
applied to the polar polytope @t in (4.2). It is the classic form of a “polyno-
mial parity argument with direction” that defines the computational class PPAD
(Papadimitrioi1994. It is similar to the well-known proof b)Cohen(196%) of
Sperner's LemmaSperner192§. We give a simplified version of the proof by
Shapley(1974 that is based on exchanging columns of determindrémke and
Grotzinger(1976) give a similar proof based on abstract orientations of simplices
in an oriented pseudo-manifold (see dSaves and Sca(@ 976, andTodd (1976),

for orientation and index methods in the context of simplicial concepts).

Proposition 4.9. In a labelled simpliciad-polytope with0 in its interior, the com-
pletely labelled facets come in pairs of opposite orientation.

Proof. Consider all facets that have all labels except possibly labeThis in-
cludes any completely labelled facet, which we write as a mgix - a4] where
vertex g of the facet has labeal for 1 <i < d. The other facets have vertices
bi,az,...,a,...,a4, wherea; has labelj for 2 < j < n andb; has the duplicate
labeli € {2,...,n}. For these facets, we consider the two matrices

biay---a ---aq] and [ga--- &_1biayq - agl (4.12)

which have determinants of opposite sign. Consider all these matrices as nodes of a
bipartite graph, with the matrices of negative determinant in one partition class and
those of positive determinant in the other. Connect the two matric@s1B by a

“blue” edge. Secondly, join any other two matrices by a “red” edge if they have the
same lastd — 1 columns. This defines two adjacent facets. Their comuoherl
columns are not contained in any other matrix. By Lenffh# the two matrices

have opposite orientation, so the graph is indeed bipartite.

Every node in that graph has degree one or two. Any such graph is a collection of
paths and cycles. The nodes of degree one, which are the endpoints of the paths,
correspond to completely labelled facets and are only incident to a red edge. The

72



Chapter 4. Index and Uniqueness of Symmetric Equilibria

other nodes are also incident to a blue edge. Any path starts and ends with a red
edge and is of odd length because the colors of the edges on the path alternate.
Hence, the endpoints of any path have opposite orientation, as claimed. [

dlt

a31

Figure 4.1: Example of the path-following argument used to show Proposi-
tion[d.9 A vertexa; or b; has label.

Figured.Jillustrates the preceding proof fdr= 3. Each vertex; or bj has label

iin {1,2,3}. There is only a single path, which we starfat a, ag] which cor-
responds to a completely labelled facet with negative orientation (clockwise order
of a3, ap,a3). That path ends db; ay bs], oriented positively (anticlockwise). The
path corresponds to the following sequence of matrices, with alternating orienta-
tion, and red edges shown with=": [a; ap ag] — [by &z ag), [az bz a3] — [bz by ag],

[ag by b3] — [ap by b3, [b2 a2 ba] — [b1 a2 b]. Only “red” edges are shown in Fig-
ure[d.], as arrows from a matrix with negative to one with positive orientation, so
a facet as iN4.12 where labell is missing is both endpoint and starting point of a
red arrow; the “blue” edges just refer to an exchange of matrix columns.

The change from one simplicial facet to another is equivalent to a pivoting step
as used in the simplex algorithibéntzig [1963. The described paths may be
exponentially longlorris, 1994).

A dual best reply polytop®” has the completely labelled fadgj, and therefore

by Propositiorid.g at least one other completely labelled faEet This implies

that every nondegenerate symmetric game has at least one symmetric equilibrium.
(This is also true for degenerate games, with additional considerations.)
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4.5 From unit vector to symmetric games

In this section, we show how Theoréfd implies Theorenid. 1 Given a non-
degeneratel x d symmetric gaméB ', B), we consider the labelled polyto&*

in (A.7). Then the symmetric equilibrium of index1 considered in Theore@.1
corresponds to a completely labelled fa€ewhich has opposite orientation Eg.
According to Theorerf.2, there are additional pointsin RY so that the con-

vex hull Pﬁxt of these points and d®* has onlyF andFRy as completely labelled
facets. Using4.9), the added points correspond to added columns of the ni&trix
which then has columns for soma > d. Furthermore, these points have labels

in {1,...,d}. The following lemma shows how these labels can be used to define
a bimatrix game whose equilibria correspond to the completely labelled facets of

the extended polytopéf)(t.

Lemma 4.10. Consider a labelled simpliciadl-polytopeQ with O in its interior,
spanned by a set of vertices

{_617"‘7_ed7cla"'7cn}

so thatFyp in (4.8 is a facet 0fQ. Let—g have labei for 1 <i <d, and letc; have
labell(j) € {1,...,d} for 1 < j <n. Let(U,B) be thed x n bimatrix game with
U =[g@): &mn) andB = [by --- by], whereb; = ¢;/(1+1'cj) for 1< j <n.

Then the completely labelled facétsof Q, with the exception dfy, are in one-
to-one correspondence to the Nash equilibpiay) of the gamgU, B), wherex

corresponds t& as in Lemm&LB, andy is a suitable unit distribution.

Proof. Consider a facef of Q so thatF = conv{—e |i e K} U{c;|] € J}) #Fo.
Let v be the normal vector t&, and letx = (v+1)/17 (v+ 1) as in Lemma&.3
Thenx is a mixed strategy of player 1, which has supgdrt ..,d} — K, a set of
size|J|. Furthermore is the set of pure best replies xadby player 2, who has
payoff matrixB.

In order to obtain an equilibriurfx,y) of (U,B) for some mixed strategy € R"
of player 2, only best replies may be played with positive probabiityr y;. For
player 2, this means that > 0 only if j € J. For player 1, we need)| pure
best replies. Because the columns of player 1's payoff mbkrace unit vectors,
this works only ify; = 1/]J| for j € J andy; = 0 otherwise, and if for everyc
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supgx) ={1,...,d} — K, there is somg € J so that = | (j) because then column

j of U is the unit vectom ;). This is exactly the condition that the set of labels
of F, namelyK U{l(j) | j € 3}, is{1,...,d}, thatis,F is completely labelled, as
claimed. O

The bimatrix gameéU, B) considered in the previous lemma may be callechi

vector gamethat is, all columns of player 1's payoff matrix are suitable unit
vectors. A special case is amitation game(l,B) whereB is a square matrix

andl is the identity matrix. Imitation games have been introducetVlbizennain

and Tourky(2007), who showed that the symmetric equilibtiax) of a symmet-

ric game(B", B) are in one-to-one correspondence with the equilibxjg) of the
imitation game(l, B), wherey is the uniform distribution osupgx). This obser-

vation can be used to apply computational hardness results about symmetric games
to bimatrix games. Furthermore, the symmetric indefxoX) is equal to the index

of (x,y) in the bimatrix gamél,B).

The following lemma provides the main step for deriving Theoefifrom The-
oremi4.2 It explains how to get from a particular extension of an imitation game
(1,B) to a symmetric extension of the corresponding symmetric g@heB).

Lemma 4.11. Considerd x d matricesl andB, wherel is the identity matrix, and
d x k matricesU andB’, where all columns dff are unit vectors, and let

B B
G:(UT 0) (4.13)

Then any symmetric equilibriufz, z) of (G, G) gives rise to a Nash equilibrium
(x,y) of the unit vector gamé]l U], [B B]), wherex, =z/59 ;z for 1 <i <d
andy is a suitable uniform distribution, whose support is containeftlin .., d} if
and only if the support df is.

Proof. LetU = [g ) 6], and consider the support pfvith the two sets
S={i|z>01<i<d}, T={j|z4j>01<j<k} (4.14)

If Swas empty, only the rond+ j for j € T of player 2’s payoff matrixG would
be played with positive probability when player 1 ugeslowever, byd.13 each
such row[e,T(j) 0'] has a single payoft in one of the firsid columns, and zeros
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elsewhere, so no column of the fodw- j would be a best reply agairsand(z, z)
would not be an equilibrium ofG™,G). SoS# 0, andx is well defined as the
re-scaled vectofzs,...,zq) .

We can assume that the unit vecteyg, for j € T are all distinct. Otherwise, if
&(j) = &(j for somej, j’ € T andj # |, we could replace by a mixed strategy
which agrees witlz except thaly, j = g4 j + 241 j andZy, j = 0, so thatj’ can be
omitted fromT. The two mixed strategiesandz give the same expected payoffs,
2" G=2"G, and give rise to the same strategyut has smaller support (this can
only occur in degenerate games).

In the unit vector gamé[l U], [B B]), the pure best replies to player 1's mixed
strategy include (and in a nondegenerate game are exactly) the following columns:
d+ jforall j € T, because the laktcolumns ofx' [B B and ofz' G are the same
except for the factof 4, zs. Secondly, any columiin

R=S\{I(j)[ieT} (4.15)

is a best reply ta, because fot <i < dtheith entry ofx' [B B]is (z' G)i/ T,z
if i {I(j)]j €T} (inparticularj € R), or (2" G)i —z44j)/ 33 1z if i =1(j) for
somej € T. In the latter case, the varialdg, j is a “slack variable” for player 2's
payoff in columnl (), so if this column is a best reply 1 it is no longer a best
reply tox.

The set of pure best replies xaherefore containRu{d+ j | j € T}, which has
the same size as the supp8mf x. Player 2’s mixed strategyin the unit vector
game withy; = 1/|§ for| e Ru{d+ j | j € T} andy, = 0 otherwise is therefore a
best reply tax. Againsty, player 1, who has payoff matrix U] in the unit vector
game, receives payoff/|S§ for each rowi in R (via theith column ofl), and payoff
1/|S for each rowi = I(j) for somej € T (via the jth columng;, of U). These
are exactly the rows in the supp&of x. All other rows give expected payoff zero
againsty. Soxis a best reply tg, and(x,y) is an equilibrium of([| U],[B B]), as
claimed. O

Assuming that Theore@.2 holds, we use the preceding lemma to prove our main
result, Theorerd.] as follows.

Proof of Theorerd. 1l Let(B',B) be a nondegeneratie< d game with symmetric
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equilibrium (x,x) of symmetric indext-1, and letP” be the dual best reply poly-
tope in @.7) with n=d. By Lemmad4.7, x corresponds to a completely labelled
facetF of P2 with opposite orientation t&,. By Theoreni.2, we can add a set
of verticescy, ..., to P®, where eaclt; has some label(j) in {1,...,d} for

1 < j <Kk, so that the labelled polytopﬁéXt = conMP> U{cy,...,c}) has onlyF
andFp as completely labelled facets. Ldt= [gq) -], and let thejth col-
umn of thed x k matrix B’ bec;/(1+ 1ch), for1 < j <k. By Lemmd4.1Q any
completely labelled facet dp, with the exception ofy, corresponds to a Nash
equilibrium of ([I U],[B B]). Hence, the only such Nash equilibrium (isy)
wherey; = 1/|suppx)| for i € supgx) andy; = O otherwise, which corresponds
to the given symmetric equilibriurtx,x) of (B",B). Then(x,x) extended to the
symmetric gaméG', G) with G as in is the unique symmetric equilibrium
of (G, G), because by Lemni@&T] any other symmetric equilibrium would give
rise to a different Nash equilibrium ¢fl U],[B B). O

4.6 P-matrix prisms

In the remaining sections, we prove Theoié® We use a class of matrices that
allows us to construct polytopes with known completely labelled facets. These are
the P-matrices, which are known from mathematical programming, in particular
for linear complementarity problem€éttle et al,[1992). A d x d matrix A is aP-
matrixif all its principal minors are positive; a principal minorAis a determinant

of the formdet(Asg) for any subseSof {1,...,d}, whereAssis the submatrix of

A obtained by deleting all rows and columnsfofhat are not ir&.

P-matrices are useful for our purposes because they allow the construction of a
particular type of labelled polytope, the “P-matrix prism”, which has only two
completely labelled facets. Here we use the notion of prism in a very general sense
to denote the convex hull of two parallel simplicdshnson et al2003 show that

every matrix of positive index can be written as the product of three P-matrices.
Given two completely labelled facets of a labelled simplicial polytope of opposite
orientation, we can use this matrix decomposition to create a “stack” of three P-
matrix prisms between the two facets. These prisms are placed such that each pair
of intersecting prisms meets in a pair of completely labelled facets. Since each
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prism only has two completely labelled facets, the only completely labelled facets
of the final stack of three prisms are the two given facets of the original polytope
(see Figur@.2in Sectiorid. 7 for a graphic illustration of the idea).

In order for this approach to work we need to resolve two problems. First, for a
general P-matrix, we cannot prove that the corresponding P-matrix prism has only
two completely labelled facets. Hence we need to restrict the class of P-matrices
considered. This leads to the second issue: We need to change the decomposition
result inJohnson et al2003 to hold for this restricted class of P-matrices. In this
section, we deal with these two problems (Theoked? resolves the first issue,

and Propositio®.13 the second); we restrict ourselves to P-matrices which are
permutation-similar to upper triangular matrices.

For a permutatiomrof {1,...,d}, the corresponding permutation matrix is the ma-
trix Ep = [€q1)---€mq) ', i.e. the matrix whoséth row is given by theri)th
unit vector. Multiplying a matrixA = [a;---aq] by E;! from the right yields
AE;l = [@m(1) - Qa)), 1-€. permutes the columns by, Multiplying a matrix
A=a;---ag]" from the left byEy yields ExA = [ay)---ana)] ', which means
that the rows are permuted oy Two d x d matricesA, B are permutation-similar

if there is a permutation matri;; such thaB = EnAE,;l, i.e.Bis obtained fromA

by permuting both the rows and columnsfby . A matrix that is permutation-
similar to a P-matrix is again a P-matrix.

For a matrixC, let conC) be the convex hull of its column vectors. Because
we reserve the lettei® andQ for polytopes, we denote P-matrices by letters like
R ST.

Theorem 4.12. Let R be ad x d matrix that is permutation-similar to an upper
triangular P-matrix (i.e. an upper triangular matrix with positive diagonal entries),
and that satisfieR" 1 = A 1whereA # 1. Then the polytopE :=conV|l , R, where

g andr; have labei, only has the two “trivial” completely labelled facet®n\1)
andconvR).

Proof. First, assume thaR = [rq,...,rq] is an upper triangular P-matrix. We
will prove the claim using induction on the dimensidrof the polytopeP. For

d = 2, the claim is obvious. Fod > 2, consider the polytope generated by the
pointsey,...,e4_1,r1,...,rq_1. This polytopeP’ is contained in the hyperplane
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{x € RY|xg = 0}, hence its dimension is less thanBy the induction hypothesis we
can conclude that the only completely labelled facet®’ afreconey,...,eq4_1}
andconv{ry,...,rg_1}.

Hence the only non-trivial completely labelled facetscon\{l , P] could be the
ones containing the vertices,...,e4_1,rg Or r1,...,rq_1,€4. Let us first prove
that there is no facet containing the first set of points. The p@nts.,ey_1,rq
are affinely independent, and span a hyperplane giveixby'x= 1}, wherev is
of the form(1,...,1,x) for

~l-rg1—--—Tg@-
A —Tg1——T4@d-1)
The denominator does not vanish sifice rqy — - - - —rqg—1) = r'ad > 0 by assump-

tion. If A >1(or< 1)thenv'eg =x< 1(or>1). Sincev'ri=Afor1<i<d-1
this means thaty, ... ,rq_1 andey are on opposite sides of the hyperplane spanned
bye,...,e4_1,rq, hence the latter set of points cannot be contained in a facet.

If the polytopeconV! , R] is simplicial we are done, since then by Proposiéo8
completely labelled facets have to come in pairs. If the polytope is not simplicial,
we need to prove that there is no facet containing the affinely independent points
ri,...,rq—1,€4. The affine hyperplane spanned by those points is of the form
vix=A}wherev=1+ (A —1)eq. Hencev'g =1for1<i<d-—landv'rg =

A + (A — Drqgq. Sincergq > 0 by assumptiony'rg > A if and only if A > 1. This
implies thatry ande; ...,eq_1 are on opposite sides of the hyperplane spanned by
r,...,rd_1, €4, hence the latter set of points cannot be contained in a facet.

Now consider a matriR and some permutation so thatE,RE;* is an upper tri-
angular P-matrix. We need to prove that the polytBmenerated by the columns

of Randl, where theth columns of both matrices have labhgtannot have any
completely labelled facets except for the trivial ones. This can essentially be seen
using the above result for upper triangular P-matrices, since multiplicatid by
from the left is just an affine transformation, while multiplication from the right by
E;! permutes the vertices of the polytope and can be offset by a corresponding re-
labelling. More precisely, assunfewas a completely labelled facet cdnvl , R],
spanned byej, j € J, andr,k € K, whereJUK = {1,...,d}. As made precise
earlier, multiplication of a matrix b¥;* from the right is equivalent to permut-

ing the columns of that matrix. Hence the polytdp@enerated by the columns of
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R =RE;!andl’ = IE;! still hasF as a facet, which is spanned by ik columns
of I’ for j € m1(J), and thekth columns ofR, for k € m1(K). The labelling of

P induces a natural labelling d?, where the label of thgh column ofR andl’

is 7(i). Now permute the labels of the polytopé by m1; this is equivalent to
giving theith column ofl’ andR labeli. ThenF is still a completely labelled
facet of the relabelled polytop@. Now we can apply the linear transformation
E to the relabelled polytopeonVl’, R]. Since this does not change the combi-
natorial structure nor the labelling of the polytope we can concludeBffatis a
completely labelled facet of the polytogenyl , ExRE;!]. This facet is spanned
by the unit vectorsj, j € m1(J), each with labelj, and by thekth columns of
ExRE;! for k € m1(K), each with labek. By the first part of the proof, either
m1(J) or m1(K) must then have been empty, which in turn implies that eifher
or K must have been empty. O

In Theoren#.12 the condition thaR is permutation-similar to a P-matrix is cru-
cial: The matrix

2 1 2
R=(0 1 1
0 0 -1

is upper triangular but not a P-matrix, and the polytepeVl , R] has four com-
pletely labelled facets.

The following useful result is due i@ohnson et al2003, who proved that every
matrix with positive determinant is the product of at most three P-matrices. Using
the same proof, their result can easily be modified so that it applies to P-matrices
that are permutation-similar to upper triangular matrices, which we need for our
construction.

Proposition 4.13. Every non-diagonal matriXA with positive determinant is the
product of exactly three matrices

A=RST

whereR, SandT are permutation-similar to upper triangular P-matrices.

We essentially follow the proof alohnson et al(2003 Theorem 2.6) for non-
diagonal matrices, and point out where we keep track of the shape of the P-matrices.
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We first need the following lemma, analogousdahnson et (2003 Lemma 2.4).

A d x d matrix has anested sequence of positive principal miniblis contains a

sequence of positive principal minors of descending odger., 1, such that each
minor’s index set contains the next.

Lemma 4.14. For every non-diagonafl x d matrix A with positive determinant
there exists a matriR such thatAR has a nested sequence of positive principal
minors, andR is permutation-similar to a lower triangular P-matrix.

Proof. The proof is by induction oml. SinceA is non-diagonal, we can find a
permutation matrixE, such thath' = E;AE;! has its entrya], non-zero. It now
suffices to find a matriR, permutation-similar to an upper triangular P-matrix,
such thatA’R has a nested sequence of positive principal minors, as then does
E 1 (AREr=A(E;'REy).

Ford = 2, choose such thas, + &;,r > 0. Then for

(1)

A'Rhas a nested sequence of positive principal minors.

()

wherel is the(d — 1) x (d — 1) identity matrix, and = (rq,rz,1,...,1) forrq,ro €

Now ford > 2, let

R that we will have to choose suitably. We get

c1_ (10

-r |
Rln-1_ b v’
u B

whereB is a(d — 1) x (d — 1)-matrix. Write A"~ = (aijj)1<i j<d. If a12=0, the

second column o'~ must have one non-zero off-diagonal entry: The product

Now partition

of the first line of A with the second column &%~ must be zero, which implies
that if all off-diagonal entries of the second columnf! were zero, the whole
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column would have to be zero sineg, # 0. Hence for the first column d8 we

get that its entnybj; = a(’ 12 = 0 for somei > 2. If aj» # 0, we can choose,

i+1
such that

bo1 = —ra0n2+ 032 #0

Hence in both caseB is non-diagonal. The (1,1) entry &R is &, + a},r1 +
ajafo+aj,+ - +a)y. Sincea), # 0, we can choose; such that this sum is
positive. Sincedet R"1A'~1) > 0, Cramer’s rule implies thadetB) > 0. Hence
detB~1) > 0, andB~! is also non-diagonal.

By induction hypothesis there igd— 1) x (d — 1) matrix S, permutation-similar to
alower triangular P-matrix, such thBt1Shas a nested sequence of positive princi-
pal minors. Hence so h& B, since any principal minor of a non-singular matrix
M equals the determinant M, multiplied by the complementary principal minor
of the inverse matrit— (Cottle et al,[1992. Moreover,S ! is permutation-
similar to a lower triangular P-matrix (in particular, it has positive determinant).
We get

1 0 1 0\ ,a_(1 0 b vl (b WV
0 st/ \—r | “\o st/\u B/ \stu siB

where the latter matrix has positive determinant, hence by choi@aohested
sequence of positive principal minors. But the product of the first two matrices is

w1 (10
-S'ly st

which is permutation-similar to a lower triangular P-matrix siScé is. O

Proof of Propositiorid. I3 By Lemmald.14 there exists a matriX such that
AT~1 has a nested sequence of positive principal minors Tartds permutation-
similar to a lower triangular P-matrix (hence soliz This means that there is a
permutation matrixE,; such thatE,ATE-! has a leading sequence of positive
principal minors. TherE,AT 1E;! has aLU-factorizationE,AT 1E;! = LU,
whereL andU are lower and upper triangular P-matrices, respectivi@bttle et
all, [1992). We get

A=E'LUE,T = (E;'LEn)(EUEL)T
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Since every lower triangular P-matrix is permutation-similar to an upper triangular
P-matrix, the result follows foR = E;'LE; andS= E;UE;. O

4.7 Re-arranging the polytopeP”

In the following sections, we give a proof of our main theorem in the polytope
version, Theored.2 We want to use the P-matrix prisms from the previous sec-
tion, whose completely labelled facets we know. Our goal is to create a stack of
such prisms between the two completely labelled faEesd F of the polytope

P~ in TheorenZ.2 One of the completely labelled facets of a P-matrix prism is
always the faceton\l), which is spanned by the unit vectors. To adapt to this,
we have to move the polytofe” such thatF is spanned by the unit vectors as
well. For this reason we formulate a slightly different version of Theddein
Propositiord.18 whereP” is transformed accordingly. After this transformation,
the facetF has positive orientation (this will become clear later when we explain
the transformation in more detail).

The idea of the proof then is as follows: If we wrile= con\C), where the
columns ofC are ordered according to their labellir@must have positive deter-
minant. Using Propositiodd.13 we writeC = RSTas a product of three matrices
that are permutation similar to upper triangular P-matrices. Using these matri-
ces, we generate a stack of three polytopes between the FaegidF,, such that
each polytope in the stack has only two completely labelled facets, i.e. its top and
bottom. More precisely, we use the three polytopesVl! , R}, conR, RS and
conRS C] for our stack. All that remains to do is to expand the facetsvR)
andconv(RS of the polytopes in the stack to “catch” all of the polytdpe in the
interior of the extended polytope, except for the top faeeind bottom facek.

For a visualisation see Figufe2

One of the crucial points for this idea to work is that the fa¢etsndFy have to

be parallel. This is only possible if the two facets are disjoint; if the share certain
points, we have to impose an analogous technical condition, stated as equation
(4.19 in Propositiord. 18

In the remainder of this thesis, we will often have to refer to the columns of a given
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RN

Figure 4.2: Example of using Theore#.12 and Propositiof.13to create a
stack of polytopes that by extension makes the faEetsd Fy the only com-
pletely labelled facets of the extended polytope.

matrix. Unless stated otherwise, we use the corresponding lowercase letter for the
columns of a matrix, i.ec; for a matrixC etc.

Proposition 4.15. LetP” = conV{l , C, C'] be a labelled simplicial polytope, where
C andC’ are positived x k andd x n matrices respectively, for sonZe< k <d
andn > 0. Assume that all columns @fandC’ are contained in the open half-
space{x|1"x> 1}, and bothg (for 1 <i < d) andg (for 1 <i <K) have label (we
do not need any condition on the labelsQf. Suppose we are given a positively
oriented completely labelled facet

F =convcy,...,Ck, &+1,---,€4}

Denote by((l)) the vector withO's in the firstk coordinates and’s in the others,
and by() the vectorl — (). Assume thafE can be written as

F={xeP*|(al)+ () *x=1} (4.16)

for somea < 1, where(a (5) + (3)) Tx < 1 for x € P*. Then we can add labelled
vertices td” such that the only completely labelled facets of the extended polytope
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are F andFy = conv(l). It suffices to addk(d —k+ 1) vertices ifk < d, and2d
vertices ifk =d.

It is easy to see that PropositiddlSimplies Theorerd.2 Before we see how this
works, two useful results:

Lemma 4.16. For 6 > 1/d and E the matrix having all entries equal tb, the
affine transformation

RY - RY, x> (3E —1)"x
is orientation preserving ifl is odd, and orientation reversing otherwise.

Proof. It suffices to calculate the determinant&® — |. By multi-linearity of the
determinant and Laplace expansion, this determinant is easily seedidg-b#)4 1+
(—1)9, which is positive (negative) d is odd (even). O

Lemma 4.17. Every pure strategy equilibrium in a non-degenerate bimatrix game
can be made the unique equilibrium by adding one strategy for the column player.
The payoff column for the row player can be chosen to be a suitable unit vector.

Proof. This is straightforward; sedon Schemd¢2005 Lemma 4.1). O

Now we prove that PropositidhIBimplies Theorerdl.2

Proof of Theorent.2 Assume we are given a labelled simplici@polytope

P2 with 0 in its interior, and let/y andF be two completely labelled facets of
opposite orientation. By linearly transforming the polytdpe, we can assume
without loss of generality that the completely labelled fdgeis spanned by the
negative unit vectors, each labelled canonically, whilis still contained in the
polytope. By a coordinate change and a relabelling of vertices we can assume the
completely labelled facét to be of the fornF = conV{c,...,ck, —&+1,...,—€4}

for somel < k < d, wherec; has label, and the negative unit vectors still have their
canonical labelling. Le€ = [c;---c], and denote b¢’ the (potentially empty)
matrix of the remaining vertices &~ i.e. the vertices neither iR nor /. We

are now in the situation of a polytope given by a unit vector game as in Lemma
410 Hence the completely labelled facetsRsf correspond to the equilibria of
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a bimatrix gamg[U U’],[B B]), whereB,B' are rescaled versions 6fC’, and
U,U’ consist of unit vectors.

For the cas& = 1, there is a simple game-theoretic proof for the fact that we can
make the two facets andF, the only completely labelled facets of the polytope by
adding just one strategy (see Lemichd?). Hence for the remainder of the proof,
we can assumie> 2.

We can rescale the rows @8 B'|, each by a positive scalar, such that the strat-
egy of the row player in the equilibrium corresponding to the f&cét uniformly
distributed. This corresponds to multiplyifl§ B'| from the left by a suitable di-
agonal matrix with positive diagonal entries. This procedure does not change the
combinatorial structure d®, hence neither that d**: In the definition ofP, we

can easily replac8 by a multipleDB for some positive diagonal matri?, and
obtain a linearly equivalent polytope. Also, by a suitable choice of rescalation, we
can assume théxis still contained irP>.

.
After rescaling, the facef is given by{x € P> | <ﬁ(é) - (8)) x = 1} for some

o > —1, with (ﬁ(é) — (2))Tx < 1 for all verticesx of P> that are not irF. By
applying the affine transformatiofy, : x — (I + HE)X+ pl = x+ p(1'x+ 1)1,

for u big enough, we can assume without loss of generality@y&t > 0. This

affine transformation leavds invariant and stretches the rest of the polytope to-
wards infinity, while keeping 0 in the interior of the polytope. Sifcemains in

the polytope, during the transformation no facet-defining hyperplane crosses the
origin, hence~ andF, keep their orientation.

Note that a linear transformation of a polytope by a non-singular misltichanges

a normalv on a facet to (M")~1v, which is the normal oMF. Translating a
polytope changes the normal on a facet by a positive real scalar as long as the facet-
defining hyperplane does not cross the origin. Hence in our case, the normal on the
transformed faceT, (F) is again of the forn@ (5) — (), for some nevar > —1.

We need to put the polytoge” “in the right position” by movingr to con\(l),

andF to some facet of positive orientation. To achieve this, we cannot use the “ob-
vious” linear transformation-1, since the transformed facetF would have neg-
ative orientation. Instead, we choose the following affine transformation: We add
(% + €)1 to all vertices for some smadl > 0, and then apply the linear transforma-
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tion that mapﬂ(% +¢€) — e to . By abuse of notation, we denote the transformed
facets again by andF, respectively. We can choosesmall enough such th&t

does not change orientation during the translation. This means that the facet defin-
ing hyperplane which definds does not cross the origin, which also implies that,

by similar considerations as above, this hyperplane is transformed by the transla-
tion to {x | (@(3) — (3))"x= A} for someA > 0, and by the subsequent linear
transformation to{x | (a (3) — B(9))"x = A} for somea, B, with strict inequality

for vertices not inF. We might even assume = 1, which implies8 = 1 (since

ey € Fif k< d), anda < 1sincea = (a((l)) + (2)) e < 1 (using thate; ¢ F).

Finally, after applying the linear transformati()(‘é + €)E — 1)~ to the translated
polytope, by Lemm#&t.16 both F and Ry have positive orientation. Hence we
can apply Propositiod. 15 and add labelled vertices to the transformed polytope
to make the facetsy andF the only completely labelled facets. Reversing all
transformations does not change the combinatorial structure of the polytope. This
proves that Propositidh.I53implies Theoren@l.2 O

4.8 Disjoint completely labelled facets

All that remains to be done is proving Propositldd3 This proof takes up the
remainder of this chapter. As explained in the previous section, we would like
to insert a stack of P-matrix prisms between the two completely labelled facets
andFp. For this, we need the two completely labelled facet®®fto be parallel
(Figureld.2in Sectiori4. 7 provides an intuition for the reasons behind this). This
can only be achieved if the two facets are disjoint. For this reason, we first give a
proof for the case of disjoint completely labelled facets in the present section. In
terms of symmetric equilibria, disjoint facets correspond to the case of a symmetric
equilibrium of full support. The general case is treated in Se@i@n

We now prove the following result, which is slightly stronger than Propo<#ia8

for disjoint completely labelled facets.

Proposition 4.18. For d > 2, consider a labelled d-polytoge” = conl ,C, C']
whereC € R%*9 andC’ € R4*" (for somen > 0). Assume there is some> 1 such
thatC'1=Aland1l<C''1< Al ThenP2 has two parallel disjoint completely
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labelled facet$y = conVl) andF = convC). If F is positively oriented, we can
add a set od pairwise distinct labelled pointX = {xi,...,Xyq} to the polytope
P~ such that the following conditions hold:

(@) Peﬁt =convl,C,C’, X] has only two completely labelled facetenv(1) and
conv(C) (where by abuse of notation we wrXefor the matrix|x; . .., Xq]).

(b) Any column ofZ’ is caught in the relative interior of the convex hull of the
added points, i.eC’ C relint(conuX)).

(c) Givengy, gz > 0 small enough, we can choose the Xetuch that it consists
of two subset%; and X;, each of cardinalityd, such that for allx € Xy,
17x=1+¢& and for allx € Xo, 1Tx = A — &, and P., is the union of the
three polytopesonv(l, X;), conv(Xz, X2) andconvXz,C).

(d) All points inX are extremal points dfP(fxt.

Note that this result is slightly stronger than what we actually need for the purposes
of this section: In order to prove Propositidd3 we could omit conditions (b)-(d)

and assume th&,C’ > 0. However, we will need this stronger version to extend
the proof to polytopes with non-disjoint completely labelled facets in Seldién

Before we prove the proposition, we collect a few ingredients for the proof. The
following Lemma is needed for the top and bottom facets of each of the “stack”
polytopes to be parallef

Lemma 4.19. If a matrix M is permutation-similar to an upper triangular P-
matrix, then so ar®M andMD for any diagonal matriXD with positive entries.

Proof. The claim is obvious foM an upper triangular P-matrix. Fbt permutation-
similar to such a matrix, the claim follows directly using the following observation:
For any permutation matrik,; and any diagonal matri we get

DE,; = E;D’ (4.17)

for a suitable diagonal matri®’. This is due to the fact that multiplying,; by
D from the left results in the rows @&, being scaled by the respective diagonal

IWhenever we use the term “stack(ed) polytope” in this chapter, we do not refer to the different
technical term as used in polytope theory (Besglel, (1995, but mean it in our illustrative sense,
hoping that this does not lead to confusion.
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entries ofD, whereas multiplyingg;; with D’ from the right means scaling the
columns ofE;;. Using thatE;; has only one nonzero entry in each row and column,
(4.1 follows easily. O

The following three results will be used for expanding the facetsvyR) and
conRS.

Proposition 4.20. Consider ad x d matrix M such thatM "1 = A 1 for some con-
stantA # 1. For any vectors such thats'1 = 0, the shear that leaves the unit
vectors invariant and maps; to m; + sis a bijective affine transformation, hence
leaves the combinatorial structure of the polytama\| , M] invariant.

Proof. Define an affine transformatioh: RY — RY, x — x+ %1. Consider the line

L = R1and its orthogonal complement- = {x|x"1=0}. Let f : L — L* be the

linear map given byl — s%. ThenS: Lt oL — LY aL, (x,y) — (x+ f(y),y)

is a bijective linear mao (a linear shear). Now the desired shear, which leaves the
unit vectors invariant and moves to m; + s, is given byT o SoT~1, and the claim

follows. U

In order to state the next results we need to remind the reader of the concept of a
projective map. For an introduction to projective maps in the context of polytopes
consultGriinbaum(2003 or [Ziegler (1995, of which we give a very short sum-
mary here. A projective maponRY, given by ad x d matrix Z, vectorsa, z€ RY,

and some real numbeay, 1, is defined as

ZX+z
a'x+ag;1

(Z Z) (4.19)
al ag1 '

is non-singular, such a projective map is called a projective transformation. If

T:{xeRY|a'x+ag,1 #0} - RY x— (4.18)

If the matrix

a=0, such a projective transformation reduces to an affine transformation. We say
that a projective transformationis valid for a polytopeP c RY if P is contained

in one of the two half-spaces on whichs defined. Thent(P) is combinatorially
equivalent toP. This view of projective maps suffices for our purposes, but a
projective map as defined I8 can also be understood as the map of projective
spacePYR — PYR arising from the linear map oR9t! given in @.19. For a
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short and accessible treatment of projective space and projective maBalsee
(200)).

Proposition 4.21. Consider a matrixvl such thatM "1 = A1 for some constant
A > 1. For any real numbers > 1 andu # % there is a projective transforma-
tion that is valid for the polytopeonV(l,M), and mapsn to tm; + ul while leaving
the unit vectors invariant.

Proof. Chooses = % The projective transformation given by
(1-A—-¢g)x
1™x—A —¢

is defined on the polytopsonyl , M] for € > 0, i.e.t > 1. It maps each unit vector

X

to itself, and each vectan totm.

Now defineu = "5 (sincet,A > 1, the denominator does not vanish). Define an
affine map

X+— (I + HE)x—pul
which is bijective if and only ifu # —1/d, oru # % This transformation leaves
the unit vectors invariant, and maps, to tm + ul. The concatenation of the two
maps yields the desired projective transformation. O

Corollary 4.22. Consider non-singular matricéd,N suchthaM '1=A1,N"1=
A’1for some constants # A’. Choose any poirgin the hyperplangx |x'1=A}.
Then for anyt > 0andM’ =M +t(M —[s:--g]), the polytopeeconM’, N] is pro-
jectively equivalent t@onyM, N|. This means that we can replace the vertices
m by m; +t(m — s) without changing the combinatorial structure of the polytope
conM, N]. Geometrically, this corresponds to “blowing up” the faazin\ M)
from the point of reference

Proof. By applying the linear transformatidd— to the polytopeconM , N], we
can assume without loss of generality thb& | andA £ 1. We can even assume
A > 1, since otherwise we can reflect the polytope in the hyperplahg’1 =1},
using the reflection

2
T:X»—>x—a(lTx—l)-1

and applying our result to the polytogenvT M, 1], with the reflected reference
pointTs
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For the case wherd =1 andA > 1, the idea is as follows: First we apply a shear
that movess to %1, then we blow up the sheared polytope using the projective
transformation in Propositidd.2], after which we need to undo the shear. More
precisely, defines' = %1— s, and consider the shear that leaves the unit vectors
invariant and mapsy tom; + . Definet’ =t+1andu= (1—-t")A/d. Thent’ > 1

andu # % and the projective transformation in ProposilBl mapsm; + ' to

t'(m +5) +ul. Undoing the first shear mapgm +s') +ultot’(m+s)+ul—s.

The concatenation of these three maps leaves the unit vectors invariant, and maps
m to

t'(m +s’)+u1—s’:t’(m+%1—s)+(1—t’)%1—%1+s
=t'm —t's+s
=m+tm —ts

Hence we get the desired map as the concatenation of a projective transformation
with two affine isomorphisms, and the claim follows. O

Proof of Propositiod.18 To provide geometric intuition we have sketched the
proof in Figurdd.2 We assume the columns Gfto be given in the order of their
labels. This implies thadetC) > 0 sinceF has positive orientation. € is non-
diagonal, we can by Propositi@dal3write C as the product of exactly three matri-
cesC = RST, which are each permutation-similar to an upper triangular P-matrix.

If Cis diagonal, it must be of the forrhl, hence can obviously be written as such

a product as well. Without loss of generality we can assume that the columns of
the P-matrices are scaled such that they add up to a suitable positive constant. This
can be achieved by choosing suitable positive diagonal maftidesand writing

C = (RD)(D1sD)(D'~1T) (4.20)
which by Lemmad.19does not change the fact that the factors in this product are
permutation-similar to upper triangular P-matrices.

Let R = RS For any choice of\1,A, with 1 < A; < A; < A, we can assume by
(@20 thatR"1 = 1A and R'1=1X,. We can choosd; and A, such that all
verticesC’ which are not contained in the completely labelled facets are contained
in the set

{yeRY| A1 <y'1< A} (4.21)
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By Theoreni4d.12 each of the three “stack” polytopesn\! , R},conR, R] and
conR', C] has only two completely labelled facets, that is its “top” and “bottom”
facet. Essentially, all we need to do now is blow up the two middle facets of the
stack, i.e.conyR) and con(R)), so that their convex hull (together withand

C) contains the polytop®”, and then make sure that we get a proper “stack” of
polytopes, i.e. that the convex hull bfR, R andC is indeed the union of the three
stack polytopes.

By Corollary[4.22 we can blow up the facetonVR) from its barycentes, i.e.
replace it by
R =(1+t)R—t[s...q

for somet > 0, without changing the combinatorial structure of any of the stack
polytopes. We can then “translate” the blown-up famatR;) into different hy-
perplanes by adding a suitable scalar multipleLldb the facet. This does not
change the combinatorial structure of any of the stack polytopes (as long as we
do not put any pair of facets into the same hyperplane, which would “squash” the
corresponding stack polytope). This is due to the fact that translating one of the
facets of a stack polytope by a multiple borresponds to applying the affine map

X— (I +UE)X—puvl=x+pu(1"x—v)1 (4.22)

for suitable choices oft andv. Denote the translation @ into the hyperplane
{x|x"1= A"} by R /. More precisely,

A=A\

g 1

Riy=R+

Choosé big enough such that for evedy in the closed intervdll, A], the convex
hull of I,C andR; containsP”. Such a must exist, since the function

[1,A] = R,A" — inf{t € [0,00) | P> C conVl , C, R ']}

is continuous, hence bounded. By slightly increadingie can assume that not
only P~ is contained irconvl , C, R /] for everyA’ € [1,A], but that the vertices
C’ of P2 that are neither off nor onF are even contained in the relative interior
of that convex hull. Moreover, we can assutrte be sufficiently large such that
Fo is contained in the relative interior @nVR; 1), the translation otonuR;)
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into the hyperplangx | x"1 = 1}. Finally, we can assume that the analogous
statement holds for the facel® and F: Denote byR the blow-up ofR from

the barycenter ofonR') by the factort, and byR ', the translation oR to the
hyperplang{x | x"1 = A}. Then we can assuntéo be sufficiently large such that
F is contained in the relative interior bnR, ).

Our choice of the expansion factoimplies thatP” is contained in the polytope
convl,C, R, R], andC' in its relative interior. However, so far our construction
does not guarantee that the polytagm\l ,C, R, R] is the union of the three
stack polytopesonV! , R], conR;, R] andconyR;, C], whose facet structure we
know (in terms of completely labelled facets). To achieve this, we need to move
the middle facetgonvR;) andconvR)) sufficiently outwards. By our choice of
expansion parameténve can translate the facebnuR;) arbitrarily close to the
facetFy, and the facetonvR)) arbitrarily close to the facdt, while keeping the
polytopeP” inside the corresponding convex hull (a@lin its relative interior),

and without changing the combinatorial structure of any of the stack polytopes. By
replacingR: by R 11¢,, andR by R/M—sz for some suitably smaly, & > 0, we
ensure that when we put the three stacks polytopes together, they do not start “inter-
fering with each other”: No point iRy can see any pointin the upper stack polytope
con\/[l-“(;#\_g2 ,C|, nor does any vertex iR see a point in the lower stack polytope
conVl, R 1+¢] (Where we say that two points gonvl, C, Ri1+e,, R, ] “se€”

each other if the convex hull of those two points does not intersect the relative
interior of the polytope).

We can conclude that for any small enough choice;p€, > 0, we get that

Q =conl,C, R 144, R{?/\fsz]
=conVl, Ry14g]UCONVR 146, , R, U conv[R{,)\_g2 ,C]

i.e. the first polytope is indeed the union of three stack polytopes, as desired. We
can conclude that the facets@fare given by the facets of the three stack polytopes,
apart from those that have been glued together (which are the two middle facets of
the stack). Since by our choice §f Q contains every verte€’ in its relative
interior, this implies that foX = [Ri11¢ R, . the extended polytopéﬁXt =
conVl,C,C’, X] does not have any completely labelled facets apart ffoend

Fo, which proves statement (a) of the Proposition. Statements (b)-(d) are obvious
from our construction. O
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4.9 General completely labelled facets

In this section we prove Propositi@l5for the case in which the two completely
labelled facets are not disjoint. This proof concludes our proof of Thed@m

The main challenge in this case is that we cannot stack P-matrix prisms between
the two facet§ andFy of P2, since they share vertices. To overcome this problem,
we project the “disjoint” part of the polytope into a lower dimensional space. The
projected polytope inherits the labelling frd?#', and has two completely labelled
facets, which are the projections BfandF. These two projected facets are dis-
joint and parallel. This means that we can apply Proposiid@to add points to

this lower-dimensional polytope to make the projected facets unique.

We then need to “lift” the added vertices back into the higher dimensional space, so
that we can use them as added vertices for the original poly\R6pd-or technical
reasons, this process of “lifting” creates several copies of each vertex added in the
lower dimension. Hence the number of vertices adde®'tégs no longer bounded

by a linear function, as in the previous section, but grows quadratically.

We use the following projective projection to create a lower-dimensional polytope

from P2
[kX

1- (9 x
wherely is thed x d matrix[e;---& 0---0]. We would like to apply this projection

p:{xeR| (%) 'x#£1} > RY, x— (4.23)

to the polytopeonyl , C, C'] in Propositiorid.15to get a lower-dimensional poly-
tope with disjoint completely labelled facets. The projection is not defined on the
lastd — k unit vectors (which are the shared verticegandFRy), hence we need to
restrict it to the remaining vertices Bf*. Figure4 Jillustrates how the projection
transforms al-polytope into a lower dimensional polytope.

In the following lemma, we analyze the facet structure of the projected polytope.

Lemma 4.23. Consider ad-polytopeQ = con\l , A] for somed x n-matrix A > 0
that satisfies(g)TA < 1, meaning that the projectiop in (4.23 is defined on all
columns ofA. DefineQy to be thek-polytope given as the convex hull of the points
eL,...,&, p(a),...,p(a). Then every facet of Q that consists of the lagt — k
unit vectorse, 1, . ..,€g and some other vertices, . .., Xs (note thatQ need not be
simplicial) yields a faceF = con{ p(x1),..., p(Xs) } of the polytopey.
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Figure 4.3: Example of a projection as i#23 applied to a labelled simplicial
polytope of the formconyl,C,C'] as in Propositiofd. 18 whered = 3 and

k= 2. The 3-polytope has several completely labelled facets, among these the
unit simplex, which is the large dashed triangle on the “back” of the polytope,
and the shaded facet. The shaded 2-polytope is the projection of this 3-polytope;
the thin dashed lines indicate the projection lines.

Proof. First, observe tha@y is indeed &-dimensional polytope. This is due to
the fact that for any set of points,...,x € {a1...,an,€1,...,&} any affine de-
pendence of thg(xi), Y{_;vp(x) = 0 with 3{_, ¥ = 0, gives rise to an affine
dependence ofy, ..., X, 6.1,...,64 Via

r r d r
” izlwp()q) - ‘; - é) " T j:%rl (izll_((:j)lq(xi)o € (4.24)

where

r d r r d r
i; 1—(§)Txi - j:%l (uzl 1—(§)Txi (Xm) - i; 1—(§)Txi . j:Z—l-l(Xi)j) - izlyl -0

SinceQ is ad-polytope, there is at least one columrof A that is not contained in

the affine hull of the unit vectors, hence by the above calculaii@n) cannot be
contained in the affine hull af, . .., &, henceQx must bek-dimensional.

Now consider a facet = con{xy,...,Xs,&.1,---,€4} Of Q, given by some hy-
perplane with normal vectar This means that for somec R, v x < u for every
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x € Q, with equality exactly foxx € F. By scaling this inequality we can assume
that u = 1 (if u is negative, the direction of the inequality is reversed, but our
argument still works). Since € F for i > k, we get that; = 1 for thosei.

We claim thatF is defined as a face @ by the hyperplane with normal vec-
tor v(k) = (vi,...,%,0,...,0). We need to prove that all verticasf Qx satisfy
v(k) "x < 1, with equality ifx € F, and strict inequality otherwise. This is obvious
for the unit vector®y, . .., &; for any columng; = (a1, ..., aq) of A, the inequality
via < 1implies

V()T p(a) = 2j=1Viaj 3 j-1Viaj

_ _ <1 (4.25)
1-3% a0 1-3,,1via;

Since (E)Tai < 1 for all columnsa; of A, the last inequality is strict i¥' & < 1,

and becomes an equalityif a = 1. SoF is indeed a face dy, and sincé had

at leastd extremal points, the argument at the beginning of the proof implies that
F« must have had at leaktaffinely independent points. Henégis a proper face

of maximal dimension, i.e. a facet. O

The following Lemma provides a useful projective transformation with which we
can influence the shape of the normals on a given polytope.

Lemma 4.24. Consider ad-polytopeQ such thatl"x > 1 for all x € Q andFy =
{x€ Q|1"x =1} is a facet ofQ. LetF be another facet that can be written in
the formF = {x€ Q| v'x=1} wherev'x < 1forall xc Q. Let0 < u < 1, and
consider the projective transformation

1
T(X) = ——=————7— X 4.26
Then in the transformed polyto® = 7(Q), the facetr (F) has normal
w=pul+(1-p)-v (4.27)

Any point on the hyperplangx | 1"x = 1}, which containg, is unchanged un-
derrt.

Proof. The inverse projection map * that map<Q’ to Q is given by

_ 1-—p
T Hy) = m'y
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Forx € Qand hencg = 1(x) € Q, we want thav " x < 1is equivalent tav"y < 1.
The latter inequality statesx/(u(1"x) +1—p) <1, or (W—pul)"x<1—p.
This follows fromw — ul = (1— ) -v, that is, when4.Z holds, which also
implies thatv' x = 1 if and only ifw'y = 1. O

Proof of Propositioid. I3 We can now prove Proposititdh 15 for the case of
non-disjoint facets, i.e. fok < d. As explained earlier, we would like to project
the “disjoint” part of the polytope into a lower dimensional space, using the pro-
jection defined in4.23. For this projection to be defined on the polytope, we need
that the normal(g)a + (3) on the facef satisfiesa > 0. This can be achieved

by applying the transformationin (4.26) for somey close to 1. Since from now

on we are only going to consider the transformed polytope, we denote the trans-
formed polytope again bp”, the transformed vertices ByC,C’ (wherel is still

the identity matrix), and the transformed completely labelled facets bypd F.

We will add suitable vertices to the transformed polytope to make the transformed
facets unique. All we need to take care of is that at the end of our construction,
we will be able to re-transform the extended polytope usint(this restriction is
quite significant; it will force us to add a quadratically growing number of vertices,
instead of the linearly growing number in the previous section).

Denote byp the projection defined ifd{23. After the transformatiom, the ver-
ticesc;, ! of P~ still have positive entries, and the normal on the transformed facet
F is of the form(5) a + (3) for somea € (0,1). Hence for any columnof [C C],
we have that

()< (Qa+@)=1
which implies that the projectiop is defined forc. Consider the labelle&-
polytopeQ spanned by, ..., e andp(ci), ..., p(ck), p(c}),. .., p(c), which lives
in the subspace dRY spanned by the first unit vectors. The vertices and
p(ci) have label (for 1 <i <K); the verticeg(c}), ..., p(c,) might have labels in
{k+1,...,d}, but these labels are irrelevant since those vertices will vanish when
we add new labelled vertices later. By Lemitha3 the polytope has two disjoint
completely labelled facets

Go =convey,..., &}, G=cony{p(c),...,p(ck)}
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Observe that since the normal Bris of the form((l))or + (2) we have
ale’ () +q () =1 (4.28)
for 1 <i < k. By definition of p, we get forl <i <k

o 4
i) 1=
RS

hence the facei& andG are parallel irk-dimensional space. Also, since

€281 /0>1 (4.29)

defp(cy)--- p(ck)] =t-defci---Cc &1+ €

for some positive real numbéy we get that the orientation @ is the same as
the orientation ofF, thus positive. Hence we can apply Proposiffbf8 to the
polytopeQ with completely labelled facets andGgp, and add verticeg, ..., yx €
R x {0,...,0} with labels in{1,...,k} to Q such that the only completely labelled
facets 0fQext = cONMQU {y1,...,Y2}) areG andGo.

Assume that we could construct from the ¥et {y1,...,yx} of added vertices a
new set of labelled point that satisfy the following conditions:

(i) the verticeC’ of the polytopeP” are caught in the relative interior of the
convex hull of the new pointX and the lastl — k unit vectors, i.e.

C’ C relint(conV{X , & 1---€4])

where by abuse of notation we wri¥ for the matrix whose columns are
given by the vectors iX.

(i) for each vectok in X, we get thatp(x) is in'Y, and the labels of and p(x)
agree.

(iii) for each vectox in X, 17x < 1/u for the u chosen at the beginning of the
proof when we applied the projectianfrom (4.26). This means that the
inverse projectiorr 1 is well-defined on each of the

We claim that those verticeéwould do the trick for our original polytope. For this,
we need to prove theﬁ’ﬁXt = conVl,C,C’, X] has no completely labelled facets
except foiF andFy. Condition (i) above implies that fdr<i <n, ¢/ vanishes in the
relative interior otPﬁxP By condition (i), the labels oX are contained if1, ..., k}.

In order for a facet¥ to be completely labelled, it must then contain the vertices
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&.1,---,€d, and some other verticés, ... ,bs € XU{cy,...,c}U{ey,..., &} with
labelsl, ..., k. By condition (ii) above and condition (d) of Propositidrld each
of these vertices is mapped Ipyto a vertex 0fQgyt.

Then, Lemmad.Z3implies that.Zx = con{ p(by),...,p(bs)} is a completely la-
belled facet of thé-polytopeQexs, i.€. %k has to be eitheGg or G. Since the only
vertex ofPe%(t that is projected by ontog is g, and the only vertex projected onto
p(ci) is ¢, this implies thab; = g for all i, or thatb; = ¢; for all i, respectively. In
the first case, we ge¥ = Fy, in the second# = F. Due to condition (iii) above,
we can now re-transfornf'?(:ﬁt using the transformation—! given in 4.9). Since
this re-transformation does not change the combinatorial structU?@tpf/ve are
done.

Hence all that we need to do is find poissatisfying conditions (i)-(iii) above.

The original verticey will satisfy (i) and (ii), but in general not (iii). This is due

to the following problem: By condition (c) of Propositi@al8 we can choose a
small positivee such that every; in the “first” set{yi,...,yk} of added vertices
satisfiesl"y; = 1+ €, while everyy; in the “second” sef{y.1,...,Yx} satisfies

1"y, = 1/a — . Sinceu < 1, we can assume that y; < 1/u for the first set of
vertices, but this inequality may not be true for the second set of added vertices. If
we havel'y; < 1/u for all added vertices we are done, by settig Y.

Otherwise, we revert to the following trick: Since the inverse transformation
is valid for the polytopd®”, we can conclude th@&” c {x|1"x < 1/u}. Choose
€ > 0 such that botiP” andyj, ...,y are contained in the open half-spape|
1"x < % —g}. Denote byH the hyperplandx | 1"x = % — ¢}, and byH ™ the cor-
responding closed halfspace containi®fg. By condition (b) of Propositiod.18
p(c)) is contained in the relative interior abnyY) for 1 <i < n. This, together
with positivity of ¢, implies thatc] is in the relative interior of thel-polytope
convY &;1-- €y

It is useful to adapt the first set of verticésg,...,y«} slightly: Forl <i <Kk,

we replacey; by xi = eq + p(yi — e4), wherep is chosen such thag € H (i.e.

o= 1/1‘#;*11). The parametep is independent of the choice bflue to condition

(c) of Propositiorid. 18 Sincep > 1, the pointy; is a convex combination of
X and ey, and we get tha€’ is in the relative interior of the convex polytope
M = conv{X4, ... X, Yk+1, - - -, Y2k, €&+1, - - - »€d . By our choice of the hyperplarié¢
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it also follows thatC’ is contained in the relative interior of the polytopE =
MNH~. We would like to use the vertices of the latter polytdge to complete
our desired set of points.

What are the vertices dfl —, expressed in terms of the verticesM? M~ keeps
those vertices ol that are contained iH—, looses those vertices bf that are in
the opposite open halfspake”\H, and gets a new vertex ¢ for each edge df1
from a vertex oM in H™\H to a vertex oM in H*\H. Since we replaced the ver-
ticesys, ..., Yk by vertices«, ..., X contained irH, the only vertices oM inH~\H
are the unit vectorsy, ..., e4. HenceM has verticesy, 1, ..., €q4,X1, .- ., X, and ad-
ditionally gets a vertex at each intersection of an edgd @fith the hyperplanéd
that hasy; as one endpoint ang| as the other endpoint, for sorke-1 <i < 2k
andl < j <d. For eachkk+ 1 <i < 2k, denote byX; the set of vertices d¥1 that
arise from an edge betwegnand one of thej. What is the cardinality ok;? By
condition (c) of Propositiod. 18 for anyk+ 1 <i < 2k, there is no edge from

to any of the verticesy,...,&. Hence the worst that can happen is that we get an
edge for each paify;,e;), wherek+1 <i < 2k, andk+1 < j <d. This means
that for eachy;, the cardinality ofX; is at mostd — k.

Viewing X; as matrices, 1K = [x1 - - - Xk Xi+1 - - - Xok|, Wherex; inherits the label of
yi, and the columns oX| inherit the label ofyj. By construction, this set satisfies
condition (i) above. Condition (iii) is true since by constructitdr, c H™ C {x|
1"x < 1/u}. As for condition (i), observe that for anyc Rk x 0 c RY, anyp > 0
andj € {k+1,...,d}

) (e +p(x—e)=1+p(() x-1)=1-p<1

hence the projectiop defined in[@.23) is defined on that point, anple;j + p(x—

€j)) = x. The last equation, which is true only since the ldst k coordinates

of x vanish, implies condition (ii). Hence we have found the desiredXset
[X1---Xk Xkr1- -+ Xg] Of labelled vertices that need to be added to the polyRpe

to makeF andFy the only completely labelled facets. The cardinality of this set is
at mostk + k(d — k). O
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4.10 Open questions

In the previous section we have seen that for a symmetric equilibrium of positive
index, with support sizk < d in ad x d symmetric game, we might need to ddd

k(d — k) strategies to make the equilibrium unique. As a first improvement on this
bound we would hope to achieve a linear bound.irHowever, an even stronger
bound might be suggested: It is quite obvious that any pure Nash equilibrium of
some bimatrix game can be made unique by adding a single strategy for the column
player (see Lemmd.17). This raises the question whether it should in general
suffice to addk strategies, wherkis the size of the support.

Another open question concerns our P-matrix construction. In Theldrggwe
proved that for P-matrices that are permutation-similar to an upper triangular ma-
trix, the corresponding “canonical P-matrix-prism” has only two completely la-
belled facets. This statement is certainly true for any positive P-matrix as well, as
long as the corresponding prism is simplicial. Otherwise Propo#tiaould be

used to construct a principal minor of negative determinant. However, it is unclear
in how far Theoren@.12holds for general P-matrices.

101



Bibliography

Avis, D., G. Rosenberg, R. Savani, and B. von Stengel (2010), Enumera-
tion of Nash equilibria for two-player gameEcononomic Theory2, DOI
10.1007/s00199-009-0452-2, appeared online February 2009.

Balthasar, A. (2010), Equilibrium tracing in strategic-form ganfi&onomic The-
ory 42, DOI 10.1007/s00199-009-0442-4, appeared online February 2009.

Barany, I., S. Vempala, and A. Vetta (2007), Nash equilibria in random games.
Random Structures and Algorithn&l (4), 391-405.

Cohen, D. I. A. (1967), On the Sperner lemmdaCombinatorial Theory, 585—
587.

Cottle, R. W.,, J.-S. Pang, and R. E. Stone (1992)¢ Linear Complementarity
Problem.Academic Press, San Diego.

Dantzig, G. B. (1963)L.inear Programming and Extensior8rinceton University
Press, Princeton, N.J.

Demichelis, S., and F. Germano (2000), On the indices of zeros of Nash fields.
Journal of Economic Theor94, 192-217.

Dold, A. (1980),Lectures on Algebraic Topolog$pringer-Verlag, Berlin.

Eaves, B. C. (1971), The linear complementarity probl&anagement Science
17,612-634.

Eaves, B. C., and H. Scarf (1976), The solution of systems of piecewise linear
equationsMathematics of Operations Reseabhl-27.

102



Bibliography

Gale, D., H. W. Kuhn and A. W. Tucker (1950), On symmetric gamesjals of
Mathematics Studiez4, 81-87.

Gallier, J. (2001)Geometric methods and applications. For computer science and
engineering Springer-Verlag, New York.

Garcia, C. B., and W. I. Zangwill (1981athways to Solutions, Fixed Points, and
Equilibria. Prentice-Hall, Englewood Cliffs.

Govindan, S., A. von Schemde, and B. von Stengel (2003), Symmetry and p-
Stability. International Journal of Game TheoB2, 359—-269.

Govindan, S., and R. Wilson (1997), Equivalence and invariance of the index and
degree of Nash equilibrig&sames and Economic Behavidt, 56—61.

Govindan, S., and R. Wilson (1997), Unigueness of the index for Nash equilibria
of two-player games=conomic Theory0, 541-549.

Govindan, S., and R. Wilson (2003), A global Newton method to compute Nash
equilibria.Journal of Economic Theorj0, 65-86.

Govindan, S., and R. Wilson (2003), Supplement to: A global Newton
method to compute Nash equilibria. Accessed onlingwat. nyu.edu/jet/

supplementary.html.

Govindan, S., and R. Wilson (2005), Essential equilibPieaceedings of the Na-
tional Academy of Sciences of the UB¥, 15706-15711.

Grinbaum, B. (2003)Convex Polytope2nd ed. Springer-Verlag, New York.

Harsanyi, J.C. (1975), The tracing procedure: A Bayesian approach to defining
a solution forn-person noncooperative gamdsternational Journal of Game
Theory 4, 61-94.

Harsanyi, J.C., and R. Selten (1988)general theory of equilibrium selection in
gamesMIT press, Cambridge.

Hatcher, A. (2001)Algebraic TopologyCambridge University Press.

Hauk, E., and S. Hurkens (2002), On forward induction and evolutionary and
strategic stabilityJournal of Economic Theori06, 66—90.

103


www.nyu.edu/jet/supplementary.html
www.nyu.edu/jet/supplementary.html

Bibliography

Herings, P. J.-J., and R. Peeters (2009), Homotopy methods to compute equilib-
ria in game theoryEconomic Theory2, DOI 10.1007/s00199-009-0441-5, ap-
peared online February 2009.

Hofbauer, J. (2003), Some thoughts on sustainable/learnable equilibria. Paper pre-
sented at the 15th Italian Meeting on Game Theory and Applications, Urbino,
Italy, July 9-12, 2003. Accessed onlineaitp: //www.econ.uniurb.it/
imgta/PlenaryLecture/Hofbauer.pdf.

Hofbauer, J., and K. Sigmund (199&yolutionary Games and Population Dy-
namics.Cambridge University Press, Cambridge.

Jansen, M. J. M. (1981), Maximal Nash subsets for bimatrix gaiasal Re-
search Logistics Quarterlg8, 147-152.

Johnson, C. R., D. D. Olesky, and P. van den Driessche (2003), Matrix classes
that generate all matrices with positive determin&AM Journal on Matrix
Analysis and Applicationg5, 285—-294.

Kohlberg, E., and J.-F. Mertens (1986), On the strategic stability of equilibria.
Econometriceb4, 1003-1037.

Lemke, C. E. (1965), Bimatrix equilibrium points and mathematical programming.
Management Sciendd, 681-689.

Lemke, C. E., and S. J. Grotzinger (1976), On generalizing Shapley’s index theory
to labelled pseudomanifoldstathematical Programming0, 245-262.

Lemke, C. E., and J. T. Howson, Jr. (1964), Equilibrium points of bimatrix games.
Journal of the Society for Industrial and Applied Mathematizs413—-423.

McLennan, A., and R. Tourky (2007), Imitation games and computation. Discus-
sion Papers Series 359, School of Economics, University of Queensland, Aus-
tralia.

Mertens, J.-F. (1989), Stable equilibria — a reformulation, Padvtathematics of
Operations Researct¥, 575-625.

Mertens, J.-F. (1991), Stable equilibria — a reformulation, PaNldthematics of
Operations Researchg, 694—753.

104


http://www.econ.uniurb.it/imgta/PlenaryLecture/Hofbauer.pdf
http://www.econ.uniurb.it/imgta/PlenaryLecture/Hofbauer.pdf

Bibliography

Morris, W. D., Jr. (1994): Lemke paths on simple polytogdathematics of Op-
erations Research9, 780-789.

Myerson, R. B. (1997), Sustainable equilibria in culturally familiar gamedJm:
derstanding Strategic Interaction: Essays in Honor of Reinhard Sedtgs W.
Albers et al., Springer, Heidelberg, 111-121.

Nash, J. F. (1951), Non-cooperative ganmfsnals of Mathematics4, 286—295.

O’Neill, B. (1953), Essential sets and fixed poisaerican Journal of Mathemat-
ics 75, 497-509.

Papadimitriou, C. H. (1994), On the complexity of the parity argument and other
inefficient proofs of existencelournal of Computer and System Sciend8s
498-532.

Quint, T., and M. Shubik (1997), A theorem on the number of Nash equilibria in a
bimatrix game. International Journal of Game Theory 26, 353—359.

Ritzberger, K. (1994), The theory of Normal form games from the differentiable
viewpoint,Int. J. Game Theorg3, 207-236.

Ritzberger, K. (2002)Foundations of Non-Cooperative Game Theddxford
University Press, Oxford.

Savani, R. (2006), Finding Nash equilibria of bimatrix gant&iD thesis

Savani, R., and B. von Stengel (2006), Hard-to-solve bimatrix gaBmmomet-
rica 74, 397-429.

Shapley, L. S. (1974), A note on the Lemke—Howson algoritMathematical
Programming Study: Pivoting and Extensiond 75-189.

Smale, S. (1976), A convergent process of price adjustment and global Newton
methodsJournal of Mathematical Economi& 107-120.

Sperner, E. (1928), Neuer Beweid fdie Invarianz der Dimensionszahl und des
GebietesAbhandlungen aus dem Mathematischen Seminar der Hamburgischen
Universiét 6, 265-272.

105



Bibliography

Todd, M. J. (1976), Orientation in complementary pivot algorithMathematics
of Operations Research 54—66.

van Damme, E. (1987)Stability and Perfection of Nash Equilibrigbpringer-
Verlag, Berlin.

van den Elzen, A. H., and A. J. J. Talman (1991), A procedure for finding Nash
equilibria in bi-matrix gamesZOR — Methods and Models of Operations Re-
search35, 27-43.

van den Elzen, A. H., and A. J. J. Talman (1999), An algorithmic approach toward
the tracing procedure for bi-matrix gamé&sames and Economic Behavip8,
130-145.

von Schemde, A. (2005)hdex and Stability in Bimatrix Gamelsecture Notes in
Economics and Mathematical Systems, Vol. 1853, Springer-Verlag, Berlin.

von Schemde, A., and B. von Stengel (2008), Strategic characterization of the in-
dex of an equilibrium. In:Symposium on Algorithmic Game Theory (SAGT)
2008 eds. B. Monien and U.-P. Schroeder, Lecture Notes in Computer Science,
Vol. 4997, Springer-Verlag, Berlin, 242—-254.

von Stengel, B. (1996), Computing equilibria for two-person gameshnical Re-
port 253, Dept. of Computer Science, ETHiZCh.

von Stengel, B. (1999), New maximal numbers of equilibria in bimatrix games.
Discrete and Computational Geomef¥, 557-568.

von Stengel, B. (2002), Computing equilibria for two-person games. Chapter 45,
Handbook of Game Theory, Vol, 8ds. R. J. Aumann and S. Hart, North-
Holland, Amsterdam, 1723-1759.

von Stengel, B. (2007), Equilibrium computation for two-player games in strategic
and extensive form. Chapter 3 Afgorithmic Game Theoryeds. N. Nisan, T.
Roughgarden, E. Tardos, and V. Vazirani, Cambridge Univ. Press, Cambridge,
53-78.

von Stengel, B., A. H. van den Elzen, and A. J. J. Talman (2002), Computing
normal form perfect equilibria for extensive two-person ganigEmnometrica
70, 693-715.

106



Bibliography

Vorob’ev, N. N. (1958), Equilibrium points in bimatrix gamé&heory of Proba-
bility and its Applications3, 297-309.

Ziegler, G. M. (1995)Lectures on Polytope&pringer-Verlag, New York.

107



	Introduction
	Geometry and game theory
	Thesis outline
	Preliminaries

	The index of an equilibrium component
	Introduction
	The index
	A lexicographically perturbed game
	Computing the index of an equilibrium component: The lex-index

	Equilibrium Tracing in Strategic-Form Games
	Introduction
	Van den Elzen-Talman versus Lemke-Howson
	Relationships to the global Newton method
	Traceability and the index of equilibria
	Open questions

	Index and Uniqueness of Symmetric Equilibria
	Introduction
	The symmetric index
	Polytopes and symmetric equilibria
	Oriented facets
	From unit vector to symmetric games
	P-matrix prisms
	Re-arranging the polytope P
	Disjoint completely labelled facets
	General completely labelled facets
	Open questions

	Bibliography

