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Abstract

In this thesis we answer questions in two related areas of combinatorics:

Ramsey theory and asymptotic enumeration.

In Ramsey theory we introduce a new method for finding desired structures.

We find a new upper bound on the Ramsey number of a path against a kth

power of a path: R(Pn, P
k
n ) ≤

(

k + 1 + 1
k+1

)

n+ o(n).

Using our new method and this result we obtain a new upper bound on the

Ramsey number of the kth power of a long cycle:

R(Ck
n) ≤

(

2k + 4 +
2

k + 2

)

n+ o(n) .

As a corollary we show that, while graphs on n vertices with maximum

degree k may in general have Ramsey numbers as large as ckn, if the stronger

restriction that the bandwidth should be at most k is given, then the Ramsey

numbers are bounded by the much smaller value
(

2k + 2 + 2
k+1

)

n+ o(n).

We go on to attack an old conjecture of Lehel: by using our new method

we can improve on a result of  Luczak, Rödl and Szemerédi [60]. Our new

method replaces their use of the Regularity Lemma, and allows us to prove

that for any n > 218000, whenever the edges of the complete graph on n

vertices are two-coloured there exist disjoint monochromatic cycles covering

all n vertices.

In asymptotic enumeration we examine first the class of bipartite graphs

with some forbidden induced subgraph H. We obtain some results for every

H, with special focus on the cases where the growth speed of the class is

factorial, and make some comments on a connection to clique-width. We

then move on to a detailed discussion of 2-SAT functions. We find the correct

asymptotic formula
(

1 + o(1)
)

2(n
2)+n for the number of 2-SAT functions

on n variables (an improvement on a result of Bollobás, Brightwell and

Leader [13], who found the dominant term in the exponent), the first error

term for this formula, and some bounds on smaller error terms. Finally

we obtain various expected values in the uniform model of random 2-SAT

functions.
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1
Introduction and

preliminaries

1.1 Introduction

Given an object G and a property P , one can ask ‘Does G possess the

property P?’ This may be a trivially easy question, or an exceptionally

hard question: it depends, of course, on the object and the property given.

For example, one could be asked to check if the graph G has chromatic

number 2. In principle this is easy to check, as one can simply check every

possible bipartition of the vertex set; in practice this is a very slow algo-

rithm. But one can instead colour one vertex at a time, if possible choosing

a neighbour of a previously coloured vertex and if possible maintaining a

proper 2-colouring. This gives a 2-colouring if one exists, and is quick even

for quite large graphs.

On the other hand, the question might be whether the graph G is Hamil-

tonian. Now this is again in principle easy to check: but the brute force

method is still slow, and this time there is no known quick method.

Alternatively, one might be asked whether the graph G possesses the Erdős-

Hajnal property [30] (that there is an upper bound, polynomial in n, on the

order of a graph containing none of Kn, En and G as an induced subgraph).
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Chapter 1. Introduction and preliminaries

In this case it is not clear that there is any algorithm, fast or slow, which

will reveal an answer, and indeed the answer is not known for most graphs.

In this thesis we will examine several properties which amount to checking

whether G contains some specific substructure. Of course, these properties

are in principle easy to check, and in fact there will invariably be an algo-

rithm whose running time is polynomial in the order of G. On the other

hand, we will spend very little time checking individual graphs. We will

instead answer questions such as ‘How many graphs possess property P?’,

‘What do graphs with property P look like?’ and ‘How can we find this

substructure?’.

The difficulty of answering these questions is closely related to the difficulty

of checking whether individual graphs possess the property. It is usually

quite easy to analyze a quick algorithm and determine whether it will an-

swer ‘Yes’ or ‘No’ for most graphs, because such an algorithm gives a ‘good

reason’ along with the answer, but it is usually hard to analyze a brute-force

algorithm. For example, if a graph G does not have chromatic number 2

then the above algorithm will find either no edges or an odd cycle in G. Now

we have an idea: we know that most graphs contain a triangle, so we know

that most graphs do not have chromatic number 2. On the other hand, if

one runs the brute-force Hamiltonicity algorithm on a graph and finds that

it is not Hamiltonian, then the ‘reason’ will be the rather unhelpful one that

all the vertex orders were tried and none worked.

We will answer some questions in two major areas of combinatorics dealing

with these problems: Ramsey theory and asymptotic enumeration. Our

notation will follow standard usage (see for example Bollobás [10]), and in

particular logarithms will be to base 2 unless stated otherwise.

1.2 Thesis outline

The rest of Chapter 1 is an introduction to the ideas and methods used

in Ramsey theory and asymptotic enumeration. We discuss outstanding

problems and state (sometimes with proof) well-known theorems which will

7



Chapter 1. Introduction and preliminaries

be useful in the succeeding chapters. We pay particular attention to the

Szemerédi Regularity Lemma and its associated results.

In Chapter 2 we introduce a method for solving certain problems in Ram-

sey theory. Given a two-edge-coloured complete graph G we construct an

auxiliary two-edge-coloured complete graph whose nodes are disjoint mono-

chromatic cliques in G. We prove a variant on the Blow-up Lemma which

allows us to find results on some relatively hard problems by applying sim-

pler Ramsey results to the auxiliary graph.

The kth power of a graph G is defined to be the graph Gk on the same

vertex set with xy an edge of Gk whenever x and y are at distance not more

than k in G.

Our simple Ramsey result is that when the edges of the complete graph on

N(n) vertices are coloured red or blue in any way, there is either a red Pn or a

blue P k
n , whereN(n) is a certain function of the form

(

k + 1 + 1
k+1

)

n+o(n).

Our new method then gives us bounds on the Ramsey number of the kth

power of a long cycle:

(

k +
1

k + 1

)

n+ o(n) ≤ R(Ck
n) ≤

(

2k + 4 +
2

k + 2

)

n+ o(n) .

This immediately gives the same upper bound on the Ramsey number of

any n-vertex graph with bandwidth k; the best previous bound was that of

Graham, Rödl and Ruciński, who showed that there exists c such that any

n-vertex graph with maximum degree 2k (so covering graphs with bandwidth

k) has Ramsey number at most ck log kn.

This chapter is joint work with Graham Brightwell and Jozef Skokan.

In Chapter 3 we prove that the vertices of every two-edge-coloured com-

plete graph on at least 218000 vertices can be covered by a red cycle and

a blue cycle which are vertex-disjoint. This is a partial solution to Lehel’s

conjecture (which states that the result holds for every two-edge-coloured

complete graph) and an improvement on a previous result of  Luczak, Rödl

and Szemerédi [60] (which required a much larger number of vertices). Our

8



Chapter 1. Introduction and preliminaries

improvement comes from avoiding in the proof any use of the Regularity

Lemma; we use instead the method described in the preceding chapter.

A version of this chapter has appeared in Combinatorics, Probability and

Computing [3].

Chapter 4 turns to asymptotic enumeration. Given a bipartite graph H

we find the speed of the class of labelled H-free bipartite graphs: that is,

we estimate the number of labelled bipartite graphs on n vertices with no

induced copy of H.

We focus particularly on the cases where bounds of the form ncn+o(n) exist.

Here we either find the correct value of c, or at least place it within a

small interval (with the single exception of P7 where we have no good upper

bounds); we also give some details of the structure of a typical H-free graph

in these cases. Our upper bounds come from finding fairly natural compact

ways to record the information in an H-free graph, while our lower bounds

are straightforward constructions.

A version of this chapter will appear in the Journal of Graph Theory [4].

Chapter 5 is a short digression on clique-width in hereditary graph classes.

We repeat the definition of clique-width of a graph given by Courcelle, En-

gelfriet and Rozenberg [24], and recall that a class of graphs X is said to

have bounded clique-width if there is some constant c such that no graph

in X has clique-width exceeding c. We observe that the hereditary classes

considered in the previous chapter have bounded clique-width if and only if

their speed is bounded by a function of the form nn+o(n).

We show that a weak version of this is true in general: if X is a hereditary

graph class whose speed is eventually bounded above by the Bell number

(which counts the number of ways to partition [n] into disjoint subsets and

is a function of the form nn+o(n)) then its clique-width is bounded, while if

for every c the speed of X eventually exceeds n!cn then its clique-width is

unbounded.

9
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However we also show that a strong version is not true: there is no function

f(n) such that the hereditary graph class X has bounded clique-width if

and only if its speed is eventually bounded by f(n).

This chapter is joint work with Vadim Lozin and Michaël Rao.

Finally in Chapter 6 we examine 2-SAT functions in some detail.

A Boolean variable has a positive and a negative literal, which are True

respectively with and against the Boolean variable.

A 2-SAT formula (on n variables) is a collection of sets (called clauses) each

of two literals chosen from the 2n literals corresponding to the n variables.

If there exists an assigment of truth values to the variables such that every

clause of the formula contains at least one True literal, then the formula is

called satisfiable, and the assignment is a satisfying assignment.

A 2-SAT function, then, is a Boolean function defined by the satisfying as-

signments of a 2-SAT formula. One obvious large class of 2-SAT functions is

the class of unate 2-SAT functions. These are obtained by choosing for each

of the n variables one of its two literals, then constructing a 2-SAT formula

using only the chosen literals. Bollobás, Brightwell and Leader [13] showed

that there are 2n2/2+o(n2) 2-SAT functions on n variables, and conjectured

that almost every 2-SAT function is unate.

We are able to prove their conjecture, and thus show that the number of

2-SAT functions is
(

1 + o(1)
)

2(n
2)+n. We proceed to find the next largest

class of 2-SAT functions and so determine the first error term in the above

estimate, and go on to bound the sizes of the next error terms. Our work

allows us to approximate various expected values in the uniform model of

random 2-SAT functions.

A version of this chapter has appeared in the Israel Journal of Mathemat-

ics [2].
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Chapter 1. Introduction and preliminaries

1.3 Ramsey theory

Ramsey theory deals with properties that hold for every sufficiently large

structure. We recall Ramsey’s theorem [66], describing a graph version es-

sentially due to Erdős and Szekeres [32] (we give a slightly weaker statement

for simplicity).

Theorem 1.1. Every graph G on at least 4k vertices contains either a clique

or an independent set of k vertices.

Proof. Let G(V,E) be a graph on 22k vertices. Pick a vertex x1 of G. It

has either at least 22k−1 neighbours or at least that many non-neighbours

among the other vertices of G. Let V1 be the larger of Γ(x1) and V −Γ(x1).

Now for each 2 ≤ i ≤ 2k − 1 in succession, pick xi ∈ Vi−1, and let Vi be the

larger of Vi−1 ∩ Γ(xi) and Vi−1 − Γ(xi), choosing the former in the event of

a tie. This is always possible since |Vi| ≥ 22k−i.

x1 x2 x3 x4 x5 x6

Figure 1.1 G[x2, x4, x5, x6] forms an independent set.

The graph G[{x1, . . . , x2k−1}] has the property that each xi sends edges

forward to either all or none of the xj , j > i. Now if there are k vertices

among the xi which do send edges forward then these k vertices form a

clique: but if there are not k such vertices, then there are k vertices which

do not send edges forward, and these form an independent set.

It is often easier to describe and prove Ramsey-style theorems in an equiv-

alent setting: instead of examining simple graphs, we will discuss complete

graphs in which the edges are coloured either red or blue. In this set-

ting, Ramsey’s theorem becomes: Every two-coloured complete graph on

4k vertices contains a monochromatic complete subgraph on k vertices. For

convenience we use normal graph terms to discuss these graphs, prefixing

11



Chapter 1. Introduction and preliminaries

with ‘red-’ rather than the cumbersome ‘In the subgraph given by taking

only the red edges’.

The Ramsey number R(H) of a graph H is defined to be the smallest n such

that any n-vertex two-coloured complete graph contains a monochromatic

H. The existence of R(H) for any H is guaranteed by Ramsey’s theorem

(as H is a subgraph of the complete graph on |H| vertices), but correct

values are known only for a very few graphs H, and even good bounds are

not known in most cases. Often it is clear that an existing upper bound is

far from optimal, but if H is a complicated graph then finding implications

of the statement ‘This two-coloured complete graph does not contain a red

copy of H’ that help us find instead a blue copy of H is hard. Indeed,

even in the seemingly simple case H = Kk and after considerable work, the

best upper bound on R(Kk) is only a little better than the trivial argument

above: Conlon [21] proved that there exists a constant C > 0 such that

R(Kk+1) ≤ k
−C log k

log log k

(

2k

k

)

.

On the other hand, Erdős [27] proved the first exponential lower bound:

that R(Kk) > k
e
√

2
2

k
2 , and the best lower bound, due to Spencer[68], is

R(Kk) > k
√

2
e 2

k
2 —leaving a huge gap between the lower and upper bounds.

If one is presented with a sparse graph H then it is clear that the Ramsey

number should not be exponential in V (H): the condition ‘This two-coloured

complete graph contains no red path on k vertices’ is a much stronger con-

dition than denying the existence of a red clique on k vertices; and at the

same time we do not need especially strong conditions on the blue edges

to construct a blue Pk. We should expect to find a monochromatic path

covering a significant fraction of any two-coloured complete graph. On the

other hand, even though Pk is as sparse as a connected graph can be, we

cannot guarantee to cover all, or even almost all, of the vertices. We can

construct a graph G on vertex set A⊔B, with A of size k− 1 and B of size
⌊

k
2

⌋

− 1 forming red cliques, and the remaining edges between A and B all

blue.

12



Chapter 1. Introduction and preliminaries

A

B

Figure 1.2 No monochromatic Pk exists

In this graph the longest monochromatic path covers only about 2
3 of the

vertices, since the longest red path covers A, while the vertices of any blue

path must alternate between A and B, so again no blue path can contain

more than k− 1 vertices. In fact, the paths are one of the few graph classes

where the Ramsey numbers are known exactly. Gerencsér and Gyárfás [37]

proved an upper bound to match this construction: R(Pk) = k+
⌊

k
2

⌋

−1 for

k ≥ 2.

We will be particularly interested in finding bounds for Ramsey problems

involving sparse graphs; and we will seek linear sized bounds. Naturally, we

need to be precise about what constitutes a ‘sparse’ graph. Consider the

‘furry ball graph’ Gk: this is a connected graph on k vertices, 2(log k)2 of

which form a clique, with the remaining vertices all of degree one. We know

from Spencer’s bound that R(Gk) ≥ klog k, which is super-polynomial, even

though Gk is overall only slightly denser than the path on k vertices.

Figure 1.3 The furry ball

On the other hand, Chvátal, Rödl, Szemerédi and Trotter [20] showed that

there is a constant c(∆) such that every graph on k vertices with maximum

degree ∆—so allowing graphs with almost ∆
2 times more edges than the

furry ball graphs—has Ramsey number bounded above by c(∆)k.

13
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Recall that a graph G is called d-degenerate if it and all its subgraphs have

minimum degree at most d. Burr and Erdős [17] conjectured that bounded

degeneracy should be a good definition of ‘sparse’: that is, there should exist

c(d) such that the d-degenerate graphs on k vertices have Ramsey number no

larger than c(d)k. This remains one of the major open problems in Ramsey

theory.

A major problem with finding both upper and lower bounds on Ramsey

numbers is that we do not in general know very much about what the right

extremal structures should look like. For paths and cycles we do know

exactly, and we can find the exact Ramsey numbers; but for most other

graph classes we have only some ideas and guesses—and relatively poor

bounds.

1.4 Asymptotic enumeration

When one is presented with a graph property, there are two questions one

could naturally ask: does a typical graph possess this property, and what

does a typical graph with this property look like?

For many interesting graph properties, the answer to the first question is ‘no’,

and rather than considering the probability that a graph on n vertices cho-

sen uniformly at random possesses the property (which usually approaches

zero rapidly), it is convenient to replace the first question with: how many

labelled graphs on n vertices possess this property? Balogh, Bollobás and

Weinreich [6], defined the speed of a class of graphs X to be the function

n→ |Xn|, where Xn is the subclass of X consisting of graphs on n vertices.

Of course, for a general graph class nothing of interest can be said about the

speed. Recall that a class of graphs X is called hereditary if whenever G ∈ X ,

every induced subgraph of G is also in X . Even the weak constraint that the

class X is hereditary is enough to lead to interesting results. Again it is clear

that little of interest can be said about |Xn| for small values of n: but the

asymptotics of the speed of hereditary graph classes are sharply constrained.

Scheinerman and Zito [67] originally showed that speeds must lie in one

14
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of several broad categories (eventually constant, polynomial, exponential,

factorial or superfactorial) and Balogh, Bollobás and Weinreich [6], [7], [8]

sharpened their results. In particular, they showed that, while hereditary

classes of graphs have highly constrained and well-behaved speeds when

those speeds are bounded above by n(1−ε)n or below by 2εn2
for any ε > 0,

this is no longer true for hereditary classes whose speeds lie within that gap.

For example, some such classes have speeds which oscillate between ncn and

2n2−ε
.

It remains interesting to ask what the speed of a specific graph property

is. Lerchs [54] defined a cograph as follows: G is a cograph if it is a single

vertex, or if it is the disjoint union of cographs, or if it is the complement

of a cograph. The property of being a cograph is a hereditary property,

and one with a simple forbidden subgraph characterisation due to Corneil,

Lerchs and Stewart Burlingham [23]. Note that by P4 we mean the path on

four vertices (not with four edges).

Lemma 1.2. A graph G is a cograph if and only if it is P4-free.

Proof. First we show that the property of being a cograph is hereditary.

Suppose not: let G be a cograph of minimum order which has an induced

subgraph that is not a cograph, and let H be the smallest induced subgraph

of G which is not a cograph. The singleton graph K1 is a cograph, so G has

at least three vertices. Since the complements G and H also form another

minimal pair, we can assume that G is the disjoint union of two smaller

cographs G′ and G′′. By minimality of G, neither G′ nor G′′ contains H,

and so by minimality of H both G′ ∩H and G′′ ∩H are cographs. But H

is the disjoint union of G′ ∩H and G′′ ∩H, which is a contradiction.

Now we prove the characterisation.

Since P4 is connected and its complement is P4, it is not a cograph. The

property of being a cograph is hereditary, so every cograph is P4-free.

Now suppose that G is a minimal P4-free graph which is not a cograph. Let

x be a vertex. Since G − x is still P4-free it is a cograph. As K1, K2 and

E2 are cographs G− x has at least two vertices, so either it is disconnected
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or its complement is disconnected. Without loss of generality assume it is

disconnected.

SinceG is a minimal P4-free non-cograph, it is connected and its complement

is connected. In particular, there is a vertex y 6= x not adjacent to x. Choose

a vertex z in a component of G− x not containing y.

Because G is connected, there is a minimum-length path from y to z. This

path must go through x, as y and z are in different components of G − x,

and it does not go directly from y to x. Therefore it is a path on at least

four vertices, and by its minimality any four consecutive vertices induce a

copy of P4 in G.

Of course, if G is any cograph we may write a formula for it in terms of the

smaller cographs from which it is built: using the symbols ⊕ and COMPLEMENT

for the graph operations of disjoint union and taking complement, together

with brackets and the vertex labels for the single-vertex basic cographs.

If H is any fixed graph, Prömel and Steger [64] considered the property of

being H-free: that is, of not containing H as an induced subgraph. Every

hereditary property is characterised by a set of forbidden induced subgraphs,

so the classes they consider are the simplest hereditary classes.

Theorem 1.3. If H is an induced subgraph of P4 then the speed of the

H-free graphs is bounded above by nn+o(n). Otherwise the speed is bounded

below by 2( 1
4
+o(1))n2

.

Proof. If H is an induced subgraph of P4 then an H-free graph is certainly

P4-free, therefore it is a cograph by Lemma 1.2.

The formula for a cograph consists of the symbols COMPLEMENT, ⊕, (, ) and

the vertex labels. Since taking the complement of the complement of a graph

has no effect, we may assume that there are at most n of any of the symbols

appearing in the formula for a cograph on n vertices, so that the formula

consists of a string of length at most 4n of symbols chosen from an alphabet

of five (we include a blank character to allow for the cases when less than n

of any symbol is used) with n vertex labels in some order inserted at various

positions. It follows that the number of cograph formulae for cographs on
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n vertices is at most
(5n

n

)

n!5n = nn+o(n), and therefore this is also a bound

on the speed of the H-free graphs.

If on the other hand H is not an induced subgraph of P4 then H contains

one of K3, E3, C5 or C4 as an induced subgraph: by Ramsey’s theorem if

H has six or more vertices one of the first two holds, and it is easy to check

for graphs on five or less vertices.

Bipartite graphs do not contain either K3 or C5 as induced subgraphs, while

the complements of bipartite graphs do not contain E3 as an induced sub-

graph. The split graphs, defined as those graphs whose vertex set admits a

partition into a clique and an empty set, do not contain C4 as an induced

subgraph. It is easy to check that each of these three graph classes has size

2( 1
4
+o(1))n2

; since the H-free graphs must contain at least one of these three

classes, their speed is at least this great.

This theorem relies on a good description of the P4-free graphs, and provides

a reasonably accurate count of the P4-free graphs. It is also not hard to

describe the H-free graph classes for H a proper induced subgraph of P4:

The only K1-free graph is the null graph: the speed is n→ 0

The K2-free graphs are the empty graphs, and the E2-free graphs are the

complete graphs, each with speed n→ 1.

The P3-free graphs are disjoint unions of complete graphs, and the P3-free

graphs are their complements, both by definition having speed equal to the

Bell function n→ Bn = nn+o(n).

However for the larger graph classes the theorem does not say so much:

for example most K4-free graphs are not bipartite graphs, split graphs

or complements of bipartite graphs, and there are significantly more than

2( 1
4
+o(1))n2

of them (every tripartite graph is K4-free)1. This is an illustra-

tion of a general phenomenon. Answers to the two basic questions tend to

come together: more accurate description of the typical structure within a

graph class and more accurate bounds on the speed of the class are often

1Erdős, Kleitman and Rothschild [31] gave a good asymptotic estimate of the number

of K4-free graphs, by showing that they are almost surely tripartite.
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produced by the same argument.

1.5 Quasirandomness and Regularity

1.5.1 Quasirandomness

If U and V are disjoint subsets of vertices of some graph, then we define the

density of the pair (U, V ) to be d(U, V ) = e(U,V )
|U ||V | .

A (large) graph on m vertices is called quasirandom (with density d and

parameter ε) if it has the property that for any disjoint subsets U and V

of the vertices, each of size at least εm, the density d(U, V ) is within ε

of d. Clearly a random graph whose edges are chosen independently with

probability d has this property with high probability. Chung, Graham and

Wilson [18] showed that being quasirandom (for sufficiently large graphs

with sufficiently small values of ε) implies several other properties which a

random graph satisfies with high probability.

For any ε > 0 almost every graph is quasirandom with density 1
2 , so that

a structure theorem should capture the idea of quasirandomness. However

many graphs—for example complete balanced bipartite graphs—are far from

being quasirandom.

If disjoint sets of vertices X1, X2 have the property that for any pair of

subsets X ′
i ⊂ Xi, |X ′

i| ≥ ε|Xi|, the density d(X ′
1,X

′
2) is within ε of the

density d(X1,X2) then (X1,X2) is called an ε-regular pair ; this is the bi-

partite equivalent to quasirandomness. Observe that if the vertices V of

any quasirandom graph (with parameter ε2) are partitioned into ε−1 parts

of equal size, then pairs of parts are ε-regular pairs; while if any partition

of the vertices of a complete bipartite graph that refines the bipartition is

taken, again all pairs of parts are ε-regular.

One might hope that the vertices of any graph could be usefully partitioned

such that all pairs are ε-regular: but this is not possible for small ε unless the

parts all have size one (which is not a useful partition), as is demonstrated by

the ‘half-graph’: the bipartite graph on vertex set {u1, . . . , um, v1, . . . , vm}
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with ui adjacent to vj whenever i ≤ j.

Figure 1.4 The half-graph

A partition into t parts is called ε-regular if all but at most εt2 pairs of parts

are ε-regular: the half-graph does have an ε-regular partition into ε−1 parts

of equal size.

1.5.2 Szemerédi’s Regularity Lemma

In 1975 Szemerédi [69] solved a 1936 question of Erdős and Turán, showing

that for any d > 0 and k, any set of dN integers not larger than N contains

a k-term arithmetic progression, provided that N is sufficiently large.

An important lemma in the proof was described in detail by Szemerédi [70]

in 1976. Called the Szemerédi Regularity Lemma, this amounts to a coarse

structure theorem for general graphs. There now exist several versions.

Theorem 1.4. (Szemerédi Regularity Lemma) For any ε > 0 and k, there

exists a constant K = K(ε, k) such that every graph has a partition into

parts V0, V1, . . . , Vt, k ≤ t ≤ K, where |V0| ≤ ε|V (G)| and the sets V1, . . . , Vt

form an ε-regular partition into parts of equal size.

Other conditions can be imposed: such as insisting that the regular partition

refines some given partition, or that the partition should be ε-regular with

respect to two graphs on the same vertex set. Proofs can be found in e.g.

Bollobás [10]. However the growth of K as ε approaches zero is rapid (a

standard proof gives K as an exponential tower of 2s of height ε−5), and

Gowers [42] has shown this is necessary (even under weakened regularity

assumptions K must grow at least as fast as a tower of 2s of height ε−
1
16 ),

so that results based on the Szemerédi Regularity Lemma are results about

very large graphs.
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In most applications of the Regularity Lemma one is not concerned with

the precise density of a regular pair, but rather that it should not be too

close (in terms of ε) to zero (or sometimes either to zero or one); we will

simply say that a regular pair whose density is not too close to zero is dense,

while a regular pair whose density is close to zero will be called sparse, and

a non-ε-regular pair will be called bad.

Given a graph G with an ε-regular partition we define the reduced graph

R(G) to be the graph whose nodes are the parts V1, . . . , Vt of the ε-regular

partition V0, V1, . . . , Vt of G, with edges coloured either ‘bad’, ‘sparse’ or

‘dense’ to reflect the nature of the underlying pairs of parts.

1.5.3 Regularity and subgraphs

If d > 0 then with high probability a sufficiently large random graph with

edge probability d contains any given fixed subgraph. This remains true for

large quasirandom graphs with small enough values of ε, and the bipartite

version holds for ε-regular pairs.

For example, if each pair of the three disjoint subsets U, V,W of V (G) is

ε-regular with density at least 2ε, ε < 1
2 , then there is a triangle uvw within

G. To see this, let U1 be the vertices in U which are adjacent to less than

ε|V | vertices of V . Since d(U1, V ) < ε, |U1| < ε|U | by ε-regularity of (U, V ).

Similarly the set U2 of vertices of U adjacent to less than ε|W | vertices of

W has size less than ε|U |. Choose any u ∈ U − (U1 ∪ U2), which exists

since ε < 1
2 . Let V ′ be the neighbours of u in V , and W ′ the neighbours

of u in W . By ε-regularity of (V,W ) the density d(V ′,W ′) is at least ε; in

particular there is an edge vw between the two sets as required.

If the density is bounded away from 1 as well, we can find induced subgraphs.

Theorem 1.5. Fix a constant d, 0 < d < 1, and a bipartite graph H with

bipartition (U, V ). Let G be a (necessarily large) bipartite graph whose parts

(X,Y ) form an ε-regular pair with density d. If ε is sufficiently small then

H is an induced subgraph of G.

Proof. Let U = {u1, . . . , us}. By the same argument as before, from at least

20



Chapter 1. Introduction and preliminaries

(1 − 2ε)|X| possibilities we can choose x1 ∈ X with between (d− ε)|Y | and

(d+ ε)|Y | neighbours in Y .

Now the neighbours and non-neighbours of x1 divide Y into two parts which

are not too dissimilar in size. We wish now to find x2 whose neighbours and

non-neighbours divide these two parts into four parts all similar in size:

i.e. we choose x2 from the at least (1− 4ε)(|X| − 1) possibilities which have

both (d−ε)Γ(x1) to (d+ε)Γ(x1) neighbours in Γ(x1) and (d−ε)(Y −Γ(x1))

to (d+ ε)(Y − Γ(x1)) neighbours in Y − Γ(x1).

Continuing this process, finally we choose xs from the (1− 2sε)(|X|+ 1− s)

possibilities that refine the partition of Y given by {x1, . . . , xs−1} into sets

which are all of comparable size. The smallest of these should be of size

min((d− ε)s|Y |, (1− d− ε)s|Y |), and for the argument to work this must be

at least ε|Y |. However we can certainly choose ε > 0 small enough that this

condition will be satisfied, and also small enough that (1 − 2sε) > 0.

Now if G is large enough that ε|Y | ≥ |V |, then we can find H as an induced

subgraph of G; the vertices {u1, . . . , us} map to the vertices {x1, . . . , xs}
and there are sufficient vertices in each of the 2s parts of Y to accomodate

any possible adjacencies between U and V .

Finally, the Blow-up Lemma [50] of Komlós, Sárközy and Szemerédi says

that when embedding graphs of bounded degree we can treat dense regular

pairs almost as if they were complete bipartite graphs.

An (ε, δ)-super-regular pair is a pair of parts X, Y such that whenever

X ′ ⊂ X has size at least ε|X| and Y ′ ⊂ Y at least ε|Y |, so

d(X ′, Y ′) > δ|X ′||Y ′|, and furthermore every x ∈ X has degree at least

δ|Y |, and every y ∈ Y has degree at least δ|X|. It is clear that an ordinary
ε
2 -regular pair of density δ + ε already satisfies the first condition. Then

removing at most ε
2 |X| vertices of low degree from X, and a similar number

from Y , yields an (ε, δ)-super-regular pair.

Given a graph G whose vertices are partitioned into r parts V1, . . . , Vr, let

R(G) be the graph on the same vertex set with xy an edge of R(G) if and

only if xy lies between vertices of an (ε, δ)-super-regular pair Vi, Vj .
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Theorem 1.6. (Blow-up Lemma [50]) Fix ∆, δ, r and c > 0. There exist

positive ε = ε(δ,∆, r, c) and α = α(δ,∆, r, c) such that the following is true.

Let G be a graph partitioned into r parts V1, . . . , Vr each of size m, and let

H be a graph of maximum degree ∆. Suppose that there exists an embedding

φ : H → R(G): then there also exists an embedding ψ : H → G, and for

each v ∈ H, φ(v) and ψ(v) are in the same part Vi.

Furthermore, we may choose vertices x1, . . . of H and for each xi a subset

Cxi
of the part Vj containing φ(xi), and insist that the image under ψ of

each xi is in Cxi
, provided that each Cxi

has size at least cm and that not

more than αm of the xi should be mapped into any one of the Vj .

This lemma is very useful in many situations: for example, as  Luczak [59]

observed, it allows us to reduce the problem of finding a long path in a

graph G to the much easier one of finding a large connected matching in the

dense edges of the reduced graph R(G). Although we will never actually use

these results, we will make use of something closely resembling the Blow-up

Lemma, and the following theorem is a good example of the way in which

we will apply it.

Theorem 1.7. Fix 0 < d ≤ 1. Choose ε < ε(d
2 , 2, 2,

d
2) and α < α(d

2 , 2, 2,
d
2)

as in the Blow-up Lemma. Let G be a graph whose vertices are partitioned

into sets U1, V1, . . . , Ut, Vt,W1,W2, . . . each of size m. Let R(G) be the graph

whose nodes are these vertex sets, with edges between parts whenever they

form ε-regular pairs of density at least d. If UiVi is an edge of R(G) for

each i and these edges are connected in R(G), then if (d − 2ε)m − t > d
2m

and αm > 1 there is a path covering 2mt− 2εmt− 2t2 vertices of G.

Proof. Since R(G) is connected, for each i = 1, . . . , t − 1 we may choose

Pi = pi,1pi,2 . . . pi,|Pi| such that ViPiUi+1 is a path in R(G): except that

we insist that no Pi is empty, so if ViUi+1 is an edge of R(G) we choose

Pi = Ui+1Vi. We will now construct sequentially t − 1 disjoint paths in G,

Qi = qi,1qi,2 . . . qi,|Pi|, where qi,j ∈ pi,j for each i, j, where qi,1 is adjacent to

at least (d − ε)m vertices of Vi and qi,|Pi| is adjacent to at least (d − ε)m

vertices of Ui+1.
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Suppose that paths Q1, . . . , Qi−1 have been constructed. There are in total

m vertices in pi,1, of which less than εm are adjacent to less than (d− ε)m

vertices of Vi (otherwise the εm vertices together with Vi would contradict

ε-regularity). Similarly at most εm vertices fail to be adjacent to (d − ε)m

vertices of pi,2, and at most t vertices may be vertices of previously chosen

paths Q1, . . . , Qi−1. It follows that we can choose a vertex qi,1 of pi,1 not in

any previous path which is adjacent to at least d− εm vertices of each of Ui

and pi,2. Now for each j = 2, . . . , |Pi| we may choose qi,j ∈ pi,j a neighbour

of qi,j−1 and adjacent to at least (d − ε)m vertices of pi,j+1 (or of Ui+1 if

j = |Pi|). This gives the path Qi.

Observe that if (X,Y ) is an ε-regular pair of parts of G with density at least

d, then there are less than εm vertices of X adjacent to less than (d − ε)

vertices of Y , and vice versa. It follows that we can remove εm+ t vertices

from each Ui and Vi to create U ′
i and V ′

i which are disjoint fromQ1∪. . .∪Qt−1

(which meets any one of the parts of G in at most t − 1 vertices) to leave

(2ε, d
2 )-super-regular pairs of parts U ′

i , V
′
i of size (1 − ε)m− t.

Since (d− 2ε)m− t > d
2m, for each 1 ≤ i ≤ t− 1, qi,1 is adjacent to at least

d
2m vertices of Vi and qi,|Pi| is adjacent to at least d

2m vertices of Ui+1.

Applying the Blow-up Lemma to the pair U ′
i , V

′
i we can find a path Ri in

U ′
i ∪ V ′

i , starting in U ′
i and ending in V ′

i , covering every vertex of U ′
i ∪ V ′

i ,

constrained to start in one of the d
2m neighbours of qi−1,|Pi−1| in Ui (if i > 1),

and constrained to end in one of the d
2m neighbours of qi,1 in Vi (if i < t).

Now R1Q1R2Q2 . . . Qt−1Rt is a path in G of the required size.
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1.5.4 Regularity and enumeration

One often encounters the problem: how many graphs are there which do

not contain this given structure? Sometimes we can answer this by showing

that a regular partition must have lots of regular pairs whose density is far

from 1
2 .

Although there are 2m2
labelled bipartite graphs with parts each of size m,

almost all of them have density close to 1
2 . The number with density less

than d < 1
2 is at most dm2

(m2

dm2

)

, which for large m is much smaller than 2m2
.

This can be used to bound, for instance, the number of bipartite graphs not

containing an induced copy of H (originally due to Prömel and Steger [64]).

Theorem 1.8. Let H be any fixed bipartite graph. Then there are 2o(n2)

bipartite graphs on n vertices which do not contain an induced copy of H.

Proof. We will show that for any δ > 0, for sufficiently large n there are at

most 2δn2
such bipartite graphs.

Choose d > 0 to be any number small enough that
(

n2

dn2

)

24dn2
< 2δn2

holds

for all sufficiently large n. Now choose 0 < ε < d sufficiently small that we

may apply Theorem 1.5 with the graph H to a large ε-regular pair.

If G is any large graph not containing H, then we can apply the Regu-

larity Lemma to discover a partition respecting the bipartition into parts

V0, V1, . . . , Vt, where 1
ε < t < K = K(ε). Let m = |V1| = · · · = |Vt|. Each

pair of parts is either bad or has density less than d, or by Theorem 1.5

there would be an induced copy of H.

For each t, there are less than (t + 1)n ways to partition V (G), and given

the partition there are at most
( t2

εt2

)

choices for which pairs should be bad.

There are 2εn2
possible ways to arrange the edges within and from V0, and

2t(m
2 ) ways to arrange the edges within the parts V1, . . . , Vt. Finally, there

are 2m2
choices for edges within each of the εt2 bad pairs, and dm2

(m2

dm2

)

choices for the edges in the less than
(t
2

)

sparse pairs. The total number of

possible graphs is thus at most

K
∑

t=ε−1

(t+ 1)n

(

t2

εt2

)

2εn2
2t(m

2 )2εt2m2
(dm2)(

t
2)
(

m2

dm2

)(t
2)
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and since tm ≤ n, this is bounded above by

K(K + 1)n

(

K2

εK2

)

mK2
23εn2

(

n2

dn2

)

< 2δn2
K(K + 1)n

(

K2

εK2

)

nK2
2−dn2

which is smaller than 2δn2
for sufficiently large n.

This method can be very useful: but because of the bad pairs of parts and

the (usually many) sparse pairs it can only produce the correct coefficient

for the n2 term in the exponent, and not any linear or other smaller terms.

If a more precise estimate is desired then another method must be used to

deal with the typical cases.
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2
Ramsey numbers for Ck

n

2.1 Introduction

Recall that the Ramsey number R(H) of a graph H is defined to be the

minimum N such that however the edges of KN are two-coloured, there

exists a monochromatic copy of H.

Although it would be interesting to find the Ramsey number R(H) exactly

for any graph H, this has only been possible for very simple, very sparse

families of graphs such as paths and cycles, or for small graphs where a

brute force search may be effective. Indeed, for graphs which are not very

sparse even the right order of magnitude is not known. For sparse graphs,

however, there are a great many results. Chvátal, Rödl, Szemerédi and

Trotter [20] proved that for each d there is a constant cd such that, when

H is a graph on n vertices with maximum degree d, R(H) ≤ cdn. Their

original constant cd was very large—a tower of 2s of height approximately

d5—but it was subsequently improved by Eaton [26] to 22O(d)
and again

by Graham, Rödl and Ruciński [43] to 2O(d log d). Alon [5] showed that if

a graph H on n vertices has no edge between vertices of degree greater

than two, then R(H) ≤ 12n. Recently Kostochka and Sudakov [51] proved

a bound almost linear in n on the Ramsey number of any d-degenerate

n-vertex graph, and Fox and Sudakov [35] gave improvements on most of

these bounds for bipartite graphs.
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All of these proofs, of course, at some point must contain a phrase like

‘Either this structure in the red edges, or that structure in the blue edges,

exists’, just as the proof of Theorem 1.1 reaches a step where it insists

that either k of the selected vertices send edges forward, or k of them do

not send edges forward. However it is notable that in most cases at least

one of these conditions amounts to (half of) a quasirandomness condition

‘Provided X ′ ⊂ X and Y ′ ⊂ Y are not too small, the density d(X ′, Y ′) is not

too small’, and the method of embedding the graph H is precisely that which

one would use to show H is a subgraph of a quasirandom graph. For example

the proof of Chvátal et al. makes use of the Szemerédi Regularity Lemma

followed by an argument similar to that of Erdős and Szekeres (Lemma 1.1)

to eventually find d + 1 nodes in the reduced graph which form either a

red-dense or blue-dense clique, while the proof of Graham et al. shows that

either there is a large set of vertices with very high red-density or a large

quasirandom subgraph with positive blue-density.

The argument of Chvátal et al., having established the existence of d + 1

parts, each pair of which is ε-regular and has (without loss of generality) red-

density at least 1
2 , goes on to make use of only this (d+ 1)-partite structure

to embed a red copy of H. It makes no use of any red edges within parts:

because of this the strong quasirandomness condition on pairs of parts is

required. However one can easily imagine that, if there were guaranteed to

be many red edges within parts, then some much weaker condition on pairs

of parts might suffice. In this chapter we describe a method based on this

idea.
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2.2 First ideas

The kth power of a graph G is the graph Gk on the same vertex set, with

xy an edge of Gk if the distance from x to y in G is at most k.

The bandwidth of a graph G on n vertices is the smallest k such that G is a

subgraph of P k
n .

There is an easy lower bound k(n−1)+
⌊

n
k+1

⌋

≤ R(P k
n ). We wish eventually

to find an upper bound of
(

2k + 2 + 2
k+1

)

n+ o(n). We note that this auto-

matically gives an upper bound on the Ramsey number of all the subgraphs

of P k
n —all other n-vertex graphs of bandwidth at most k—which is signifi-

cantly smaller than the previous best bound (since ∆(P k
n ) = 2k, it follows

from Graham, Rödl and Ruciński’s result [43] that R(P k
n ) ≤ 2O(k log k)n ).

Our method strongly suggests that the lower bound is in fact correct: it is

not hard to see, for example, where the factor of two is ‘lost’.

We will mainly focus on a slightly different result: we will prove a bound

R(Ck
n) ≤

(

2k + 4 + 2
k+2

)

n+ o(n) on the kth power of a cycle.

It is worth considering how one could approach this problem. One could

attempt to argue directly—suppose there is no red copy of Ck
n: what can

we immediately deduce about G that might let us find a blue copy? But

without some tools this is hard; Ck
n is not, for example, a subgraph of Ck

m

for other values of m (excluding the trivial cases where n is small).

One obvious tool springs to mind: the combination of the Regularity and

Blow-up Lemmas. With these it is an easy argument that, if there is a

linear sized upper bound on R(P k+1
n ), then R(Ck

n) ≤
(

1 + o(1)
)

R(P k+1
n ).

But this only reduces the problem to that of bounding R(P k
n ); and it would

also mean that, to obtain any non-trivial bound, n would have to grow very

rapidly indeed with k, which is not ideal.

Bounding R(P k
n ) is still not a trivial problem, but there is another tool we

can consider now: we can assume G does not contain a red copy of P k
n , and

since P k
n is a supergraph of P k

m for all m ≤ n, we can consider a largest red

kth power of a path in G. This has fewer than n vertices: and every vertex

outside it is blue-adjacent to at least one of every 2k consecutive vertices.
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By choosing successively disjoint maximum-sized red kth powers of paths in

G, we can argue that G contains a large (k + 1)-partite blue subgraph with

equal parts and a blue density of at least 1
2k between pairs of parts. But it

is still not clear how we might use this to find a blue P k
n .

A method which will work is to find a reasonably large quasi-random sub-

graph of G, or even a collection of k+ 1 disjoint vertex sets such that every

pair of vertex sets is ε-regular with sufficiently large density in one colour,

and use this structure to find the monochromatic copy of Ck
n. This is cer-

tainly possible: one needs only to borrow the method (or even just apply the

result) from the paper of Graham, Rödl and Ruciński. However this sort of

method also has a major limitation: any upper bound on R(Ck
n) obtained

this way would be an upper bound on R(H) for any graph H on n vertices

with maximum degree at most k. Graham, Rödl and Ruciński showed that

there are such graphs H with Ramsey number at least ckn, for some c > 1:

and as we would like to prove an upper bound for R(Ck
n) which is linear in

both n and k, we cannot use this method.

For our proof, we will need two tools: a partitioning method, and an embed-

ding lemma. We recall that Chvátal et al. used the Regularity Lemma and

(in effect) the Blow-up Lemma to ‘blow up’ the easy result that a two-edge-

colouring of a large, very dense graph contains a monochromatic clique on

d + 1 vertices into a proof of linear-sized Ramsey numbers for graphs with

maximum degree d. In the same spirit, we use our tools to ‘blow up’ an

easier Ramsey result into our desired upper bound on R(Ck
n).
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2.3 The embedding lemma

We say that two disjoint sets of vertices in a two-coloured complete graph

are red-adjacent if there is a red Ks,s between them, and blue-adjacent if

there is not. By the Kövari-Sós-Turán theorem [52], being blue-adjacent

strongly limits the number and distribution of red edges.

Lemma 2.1. (Kövari, Sós and Turán [52]) Let G be a bipartite graph

with parts X and Y of sizes a and b which does not contain any Ks,s. If

2
(

s
b

)
1
s ≤ p ≤ 1, then at most 2s

p vertices in X have degree greater than pb.

Proof. Suppose that there were a set Z of 2s
p vertices in X with degree

greater than pb.

Choose a set C of s vertices in Z uniformly at random. The probability that

a given vertex y ∈ Y is adjacent to every vertex in C is

(dZ(y)
s

)

( 2s
p
s

)

.

and so by linearity, Jensen’s inequality and the fact that

2sb ≤
∑

z∈Z

dY (z) =
∑

y∈Y

dZ(y) ,

the expected number of such vertices is

∑

y∈Y

(dZ(y)
s

)

( 2s
p
s

)

≥ b

(2s
s

)

( 2s
p
s

)

≥ b

(

2s − s
2s
p − s

)s

= b

(

p

2 − p

)s

.

which is greater than s. It follows that there is some C ⊂ Z of size s which

does have s common neighbours, giving a copy of Ks,s.

Finally, we can give our embedding lemma. This lemma is essentially what

the Blow-up Lemma would be with pairs of parts which have density ap-

proaching 1 rather than being ε, δ-super-regular.
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Lemma 2.2. Let V1, . . . , Vt be disjoint sets of vertices of the graph G, each

of size at most m. Define a graph G′ on disjoint vertex sets V ′
1 , . . . , V

′
t ,

where |V ′
i | = max(|Vi| −

⌊

4s2m
2s−1
2s (d+ 1)

⌋

, 0) for each i, by putting edges

between all vertices in V ′
i and V ′

j whenever there is no red Ks,s between Vi

and Vj (i.e. Vi and Vj are blue-adjacent). If H is any subgraph of G′ with

maximum degree d, and m ≥ d2, then G contains a blue copy of H.

Proof. If s = 1 then G′ is a subgraph of the graph of blue edges of G, and

the result is trivially true. We will assume s ≥ 2.

Let p = 4s2m−1/2s: then for each i, |Vi| − |V ′
i | ≤ p(d + 1)m. Note that if

p ≥ 1
d+1 then each set V ′

i is empty and there is nothing to prove: so we

can assume p < 1
d+1 . By Lemma 2.1, if X and Y are vertex sets within a

blue-adjacent pair (Vi, Vj) and |Y | ≥
√

m
2ss2s−1 then at most 2s/p vertices in

X have red-degree greater than p|Y |.

Choose an embedding ψ : V (H) → V (G′). Let V (H) = {x1, . . .}. We will

choose successively vertices φ(x1), . . . ∈ V (G) which give an embedding φ of

H into the blue edges of G. For each xi ∈ H set Axi,1 = Vj , where V ′
j is the

part of G′ containing ψ(xi).

The set Axi,t is called the allowed set of xi at time t; we invariably choose

φ(xt) to be within its allowed set at time t. We maintain two properties.

First, that if xixj ∈ E(H) and xi has been embedded, then the allowed set

of xj is entirely within the blue-neighbourhood of xi, and second, that if, at

time t, xi has not yet been embedded, then its allowed set has size larger

than pm/2 = 2s2m
2s−1
2s . This is definitely bigger than the

√
m

2ss2s−1 required

to apply Lemma 2.1. At time 1 the first condition is trivially satisfied, and

the second is true by the choice of the sizes of the V ′
i .

At time t we choose a vertex φ(xt) ∈ Axt,t which is blue-adjacent to at least

(1 − p)|Axl,t| of the vertices of Axl,t for each l > t with xl adjacent to xt.

This is possible since by Lemma 2.1, for each of the at most d neighbours

of xt not yet embedded, at most 2s
p vertices in Axt,t fail to be blue-adjacent

to (1 − p)|Axl,t| of the vertices of Axl,t, and |Axt,t| ≥ pm/2 > d2s
p by choice

of m.

Having chosen φ(xt), for each l > t we set Axl,t+1 equal to Axl,t − {φ(xt)}
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if xtxl /∈ E(H), and equal to Axl,t ∩ Γblue(φ(xt)) if xl is adjacent to xt. It is

clear that the allowed sets maintain the first property. If xi is a vertex not

yet embedded, with ψ(xi) ∈ V ′
j , then there are two reasons why a vertex

v ∈ Vj should not be in Axi,t+1: first, it might not be blue-adjacent to one

of the at most d embedded neighbours of xi, and second, it might be the

image under φ of some preceding vertex (in V ′
j ) of H. Thus we have

|Axi,t+1| ≥ (1 − p)d|Vj | − |V ′
j | > (1 − pd)|Vj | − (|Vj | − p(d+ 1)m) ≥ pm

2

so that the allowed sets maintain both the required conditions. It follows

that this algorithm successfully embeds H into the blue edges of G.

2.4 The easier problem

Just as Chvátal et al. [20] needed the Ramsey result that there exists a

monochromatic (d+1)-clique within a two-edge-coloured large dense graph,

we need a simple Ramsey result to blow up. Unfortunately our result is not

quite so easy to prove: on the other hand it may have some independent

interest. We seek an upper bound on the Ramsey number R(Pn, P
k
n ). Ob-

serve that in light of results such as Theorem 1.7 we would expect to find

that it is relatively easy to bound this number: long paths are not hard to

construct.

In fact we will not need to use the Regularity or Blow-up lemmas on the

way to proving our bound R(Pn, P
k
n ) ≤

(

k + 1 + 1
k+1

)

n+ o(n); though we

will need the embedding lemma from the previous section (which we use

in preference to the Blow-up Lemma because it gives more easily explicit

bounds on the error o(n) term).

For contrast, we provide a lower bound.

Theorem 2.3. The Ramsey number R(Pn, P
k
n ) is bounded below by

k(n− 1) +

⌊

n

k + 1

⌋

=

(

k +
1

k + 1

)

n+ o(n) .

Proof. Let G be a two-edge-coloured complete graph on k(n−1)+
⌊

n
k+1

⌋

−1
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vertices, whose graph of red edges is the disjoint union of k cliques each on

n− 1 vertices and one clique on
⌊

n
k+1

⌋

− 1 vertices.

Figure 2.1 G contains neither a red Pn nor a blue P k
n .

There is up to isomorphism only one proper (k + 1)-vertex-colouring of the

graph of blue edges of G; and one of its parts has size
⌊

n
k+1

⌋

−1. Now there

is also only one proper (k + 1)-vertex-colouring of P k
n , and all of its parts

have size at least
⌊

n
k+1

⌋

. It follows that G contains no blue P k
n , and since

its red components have size at most n − 1 it contains no red Pn either, as

required.

Before giving our upper bound, we need three preliminary results.

First, the Erdős-Gallai extremal theorem for cycles [28]:

Theorem 2.4. Let G be a graph on n vertices and c an integer, 3 ≤ c ≤ n.

Then either G contains a cycle of length at least c or

e(G) < (c− 1)(n − 1)/2 + 1 .

Second, we adapt a result of Kohayakawa, Simonovits and Skokan [49] on

maximum cycles in graphs, giving a much weaker but (for us) more conve-

nient form:

Lemma 2.5. Given a graph G containing vertex disjoint cycles Ct and

Ct′ , if G contains no cycle of length greater than t, then the bipartite graph

G[V (Ct), V (Ct′)] contains no copy of Ks,s, where s =
⌈

t
t′

⌉

+ 2.
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Proof. Suppose not; and let G, Ct, Ct′ be a counterexample. Now G contains

a copy of the bipartite graph Ks,s whose parts are in V (Ct) and V (Ct′), so in

particular there are two vertices of this complete bipartite graph in Ct which

are joined in Ct by a path P of length at least s−1
s t, and two more in Ct′

joined by a path P ′ in Ct′ of length at least s−1
s t′. The vertices V (P )∪V (P ′)

form a cycle of length at least s−1
s (t+ t′) > t, which is a contradiction.

Third, a standard greedy method allows us to find a copy of P k
n in a very

dense graph on only slightly more than n vertices:

Lemma 2.6. Given 0 < ε ≤ (k + 3)−1 and n > 3ε−2, if H is any graph on

at least n + (k + 2)εn vertices such that H contains no cycle of length ε2n

or greater, then H contains a copy of P k
n .

Proof. By Theorem 2.4, H has at most (v(H)−1)(ε2n−1)/2+1 < ε2v(H)n/2

edges. If H had less than n+ kεn vertices of degree smaller than εn, then it

would have at least (v(H) − n− kεn)εn
2 edges, which is a contradiction. So

at least n+kεn vertices of H have degree less than εn. Let H ′ be the graph

with maximum co-degree εn obtained by removing these vertices from H.

The neighbourhood of any set of k vertices of H ′ contains at most kεn ver-

tices: so in H ′ every set of k vertices has at least n common neighbours. We

can embed P k
n into H ′ by a simple greedy procedure: we choose any vertex

to be the first vertex of the path, any neighbour to be the second vertex of

the path, and so on. At each embedding step we only need to find a vertex

which is adjacent to all of the last k vertices embedded, and which has not

yet been used in the embedding. Such a vertex is guaranteed to exist since

any k vertices of H ′ have at least n common neighbours, and we only need

to embed a total of n vertices.

Now we can prove our result.

Lemma 2.7. The Ramsey number R(Pn, P
k
n ) is bounded above by

(

k + 1 +
1

k + 1

)

n+ o(n) .
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Proof. We show that, for any 0 < ε ≤ (k + 3)−1, the Ramsey number

R(Pn, P
k
n ) is bounded above by

(

k + 1 +
1

k + 1
+ (k + 3)ε

)

n for n >
(

16(2k + 1)ε−8
)4ε−2

.

Let G be a two-edge-coloured complete graph on
(

k + 1 + 1
k+1 + (k + 3)ε

)

n

vertices which contains no red Pn. We choose successively vertex-disjoint

maximum-length red cycles in G. Let V1 be the vertex set of the longest red

cycle of G, V2 the vertex set of the longest red cycle of G− V1, and so on.

Since Pn ⊂ Cn, we have n − 1 ≥ |V1| ≥ |V2| ≥ . . .. Let r be the greatest

index such that |Vr| ≥ ε2n, and let W = V (G) −⋃r
i=1 Vi. Since the sets Vi

are disjoint, r ≤ (k+ 1
k+1 + (k+ 3)ε)ε−2 < ε−3 is bounded independently of

n.

If |W | ≥ n + (k + 2)εn then the graph of blue edges in W satisfies the

conditions of Lemma 2.6, so G contains a copy of P k
n . Therefore we will

assume |W | < n+ (k + 2)εn.

Let s =
⌈

n
ε2n

⌉

+ 2 < 2ε−2. By Lemma 2.5 for any 1 ≤ i < j ≤ r, there

is no red copy of Ks,s in G whose parts are in Vi and Vj respectively. We

wish to use this together with Lemma 2.2 to find a blue copy of P k
n (which

has maximum degree 2k). We will use the fact that P k
n is a subgraph of the

complete (k + 1)-partite graph with parts of size
⌈

n
k+1

⌉

. Observe that no

part Vi has size greater than n, and the union of all the parts has size at

least
(

k + 1
k+1 + ε

)

n.

Now choose ℓ1 to be the smallest index such that

ℓ1
∑

i=1

(

|Vi| − 4s2n
2s−1
2s (2k + 1)

)

≥
⌈

n

k + 1

⌉

.

Since 4s2n
2s−1
2s (2k+1)r < εn, this is possible and furthermore

∑ℓ1
i=1 |Vi| < n

(in fact, this sum can only exceed 2
⌈

n
k+1

⌉

+ εn when ℓ1 = 1).

For each 2 ≤ j ≤ k in succession, let ℓj be the smallest index such that

ℓj
∑

i=ℓj−1+1

(

|Vi| − 4s2n
2s−1
2s (2k + 1)

)

≥
⌈

n

k + 1

⌉

.
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Again this is possible, with
∑ℓj

i=ℓj−1+1 |Vi| < n.

We apply Lemma 2.2 to the parts V1, . . . , Vr of G. Let V ′
1 , . . . , V

′
r be the

parts of G′ as in the lemma; since for each 1 ≤ i < j ≤ r the sets Vi

and Vj are blue-adjacent the parts V ′
i and V ′

j span a complete bipartite

graph. Let W1 =
⋃ℓ1

i=1 V
′
i , Wj =

⋃ℓj

i=ℓj−1+1 V
′
i for each 2 ≤ j ≤ k, and

Wk+1 =
⋃r

i=ℓk+1 V
′
i . By choice of n we are guaranteed to find that

|Wk+1| ≥
⌈

n
k+1

⌉

. The Wj form the parts of a complete (k + 1)-partite

subgraph of G′, so that P k
n can be embedded into G′. By Lemma 2.2 G

contains a blue copy of P k
n .

Observe that while the o(n) error term does not decay especially quickly, it

is vastly smaller than any error term arising from a Regularity Lemma proof

would be.

We note that while there are few exact results on Ramsey numbers, there

are some results on the Ramsey number of a path against some other graph:

in addition to Gerencsér and Gyárfás’ result [37] on R(Pm, Pn), Parsons [62]

showed that R(Pm,Kn) = (m − 1)(n − 1) + 1, and various other authors

(see Radziszowski [65] for details) found some results for a few other simple

graph classes. It seems likely that the method above can be extended to

give an exact value for R(Pm, P
k
n ) (for large m and n) with some additional

work.

2.5 Bounding R(Ck
n)

Theorem 2.8. The Ramsey number R(Ck
n) is bounded above by

(

2k + 4 +
2

k + 2

)

n+ o(n) .

Proof. We show that for every sufficiently small ε > 0,

R(Ck
n) ≤

(

2k + 4 +
2

k + 2
+ (4k + 15)ε

)

n

for all sufficiently large n.
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Let G be a two-coloured complete graph on
(

2k + 4 + 2
k+2 + (4k + 15)ε

)

n

vertices, and assume εn >
√
n. By Ramsey’s theorem we can find succes-

sively disjoint monochromatic cliques of size 1
4 log n in G covering all but

√
n vertices of G. Suppose without loss of generality that at least half of

these cliques, V1, . . . , V(k+2+ 1
k+2)t+(2k+7)εt, are red cliques, where t = 4n

log n .

Consider the two-coloured complete graph whose nodes are these cliques,

with two cliques red-adjacent if there is a red K4k,4k between them and

blue-adjacent otherwise.

Figure 2.2 A red-adjacent P4 and a blue-adjacent P 2
7

By Lemma 2.7, if t is sufficiently large, then either there is a red-adjacent

Pt+εt or a blue-adjacent P k+1
t+εt. In the first case we can trivially embed a red

Ck
n into G using the red-adjacent path of red cliques, while in the second

case for sufficiently large n Lemma 2.2 can be applied to find a blue copy of

Ck
n.

Again the decay of the o(n) error term in this theorem is not especially

pleasant: t = 4n
log n must be large enough to make the o(t) error term in

R(Pt, P
k+1
t ) ≤

(

k + 2 + 1
k+2

)

t+ o(t) small, and log n must be large enough

to make the fraction of each red clique covered by Lemma 2.2 close to 1, but

the error term is certainly (eventually) smaller than n
log log n . By contrast, a

Regularity Lemma proof, if one exists, would give an error term resembling
n

log∗ n (where log∗ n is the smallest h such that n is less than a tower of 2s
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of height h).

Note that in the above proof P k+1
t is required rather than P k

t because the

chromatic number of Ck
n is k + 2 when k does not divide n > 4k2; when k

does divide n > 4k2 the chromatic number is k+ 1, only P k
t is required and

the bound may be improved to
(

2k + 2 + 2
k+1

)

n+ o(n).

Corollary 2.9. Whenever G is an n-vertex graph with bandwidth k,

R(G) ≤
(

2k + 2 +
2

k + 1

)

n+ o(n) .

Proof. By the same logic as in the previous proof,

R(P k
n ) ≤

(

2k + 2 +
2

k + 1

)

n+ o(n) :

and every n-vertex graph with bandwidth k is a subgraph of P k
n .
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3
Lehel’s conjecture

3.1 Introduction

In the previous chapter we were concerned with showing that some Ramsey

numbers were linear-sized. Another way of looking at this is to say that

we can guarantee that any two-edge-coloured Kn contains a monochromatic

Ck
r , where

r =
(

1 − o(1)
) n

2k + 4 + 2
k+2

.

This is a structure covering a positive fraction of the n vertices. Now we

will push this to an extreme, and ask for a structure covering all of the n

vertices.

We could, for example, ask for a monochromatic spanning tree. It is easy

to see that this structure always exists: given a two-edge-coloured complete

graph G, either the red edges form a connected graph, in which case they

contain a spanning tree, or there is a red component on vertex set C. In this

case every edge between C and V (G) − C is blue, so the blue edges form a

connected graph and there is a blue spanning tree. But spanning trees are

not especially pleasant structures—and although, for example, a spanning

path would be a nicer structure, G need not contain a monochromatic span-

ning path. Since we wish to find a nice structure covering V (G) we need to

make use of both colours.
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If the vertices of a two-edge-coloured complete graph G can be partitioned

into two sets Cr and Cb, with Cr possessing a red Hamilton cycle and Cb a

blue Hamilton cycle, we say that G has a two-cycle partition. We use slightly

non-standard notation here: we allow the existence of cycles on zero, one

and two vertices, being respectively the null graph, the graph on one vertex,

and the complete graph on two vertices.

In 1972 Lehel [53] made the following conjecture.

Conjecture 3.1. Every two-edge-coloured complete graph has a two-cycle

partition.

The conjecture is known to be true for sufficiently large graphs: in 1998

 Luczak, Rödl and Szemerédi [60] used the Regularity Lemma to show that

there exists n0 such that, for any n ≥ n0, there is a two-cycle partition of G.

Their argument went through the following steps often found in Regularity

Lemma proofs.

They identified an extremal structure (a large monochromatic complete bi-

partite subgraph) whose absence guarantees the existence of a useful sub-

structure (short and well-behaved monochromatic paths exist joining any

pair of large vertex sets). They gave a proof that if the extremal structure

is present in G, then G has a two-cycle partition. They did not need to use

the Regularity Lemma to establish this result.

They then embarked on the proof of the general result: they took an

ε-regular partition (with ε = 10−60) of G, and examined the reduced graph,

finding sets covering a large fraction of G in which (by applying ideas similar

to Theorem 1.7) it is easy to construct paths and cycles. They applied the

extremal result to generate many short monochromatic paths joining these

sets, and finally they found ways to connect the left-over vertices one at a

time to the sets (which is the most difficult part of the proof), giving the

result.

Of course, their use of the Regularity Lemma makes their n0 extremely

large. In this chapter we describe a different proof method, not using the

Regularity Lemma, giving the following theorem.

40



Chapter 3. Lehel’s conjecture

Theorem 3.2. For all n ≥ 218000 and all two-edge-coloured graphs G on n

vertices, there exists a two-cycle partition of G.

We will borrow the first part of their proof, but instead of taking a regular

partition we will apply a similar method to that in the previous chapter of

‘blowing up’ a preliminary Ramsey result by applying it to a graph whose

nodes are monochromatic cliques in G with suitably defined adjacencies.

The preliminary result is a theorem of Gyárfás which ‘almost’ gives a two-

cycle partition of G; most of the difficulty in our proof is, as with the argu-

ment of  Luczak, Rödl and Szemerédi, in finding ways to ensure the left-over

vertices (that are not in cliques, and so on) are incorporated into the final

cycles.

3.2 The preliminary result

It is certainly the case that for every G, Lehel’s conjecture is ‘almost’ true:

Gyárfás [44] proved the following theorem.

Theorem 3.3. For any two-coloured complete graph G we can find within

G a red cycle and a blue cycle which together cover the vertices of G and

have at most one vertex in common.

Although the proof of this theorem is quite short, it involves creating an

intermediate structure on the way to the final result, and the choice of this

intermediate structure is not obvious.

Proof. Given a path or cycle in G, the number of colour changes on the path

or cycle is the number of vertices where a red and a blue edge of the path

or cycle meet.

We first construct inductively a sequence of paths with at most one colour

change, starting with P1 a single vertex of G. Suppose that we have con-

structed a path Pt = (x1, . . . , xt) covering t vertices of G with at most one

colour change. We now want to give a path Pt+1 incorporating another

vertex y of G.

41



Chapter 3. Lehel’s conjecture

If the path Pt has no colour changes or the colour of the edge xt−1xt is equal

to the colour of xty then we set Pt+1 = (x1, . . . , xt, y), which is a path with

at most one colour change.

If this is not the case, but the colours of x1x2 and yx1 are equal, then we

set Pt+1 = (y, x1, . . . , xt).

If neither of the above is acceptable, then the edges x1y and xty are of

different colours, and without loss of generality we may assume x1xt and

x1y are the same colour, which must also be the colour of xt−1xt. Then we

set Pt+1 = (x2, x3, . . . , xt, x1, y).

Now Pn is a path covering all of G with at most one colour change. If Pn is

monochrome and the edge joining its end vertices into a cycle is of the same

colour, then this cycle together with the zero-vertex cycle of the opposite

colour satisfy the theorem.

Otherwise, the cycle C consisting of Pn together with the edge between

its end vertices has two colour changes, occurring at vertices x and y. In-

corporating the edge xy we obtain a monochromatic cycle and a path of

the opposite colour joining consecutive vertices x and y on the cycle whose

interior vertices are not in C1. Without loss of generality assume the mono-

chromatic cycle C1 is red and the path Q1 is blue.

x

y

v

v

Now let u and v be the second and penultimate vertices of Q1. If u = v or

u and v are consecutive vertices of Q1 then they form a blue cycle, disjoint

from C1, and the theorem is satisfied. If uy or vx is blue then C1 together

with the blue cycle through y or x respectively are as desired, while if uv

is blue we have our disjoint cycles of opposite colours covering G. But if

all three edges are red, then we obtain a red cycle C2 by replacing xy with

xvuy which contains two more vertices than C1, and a path Q2 = Q1−{x, y}
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joining consecutive vertices of C2 whose interior vertices are disjoint from

C2. Repeating this step to form ever longer red cycles and shorter blue paths

Ci and Qi is only possible at most |Q1|
2 times before at some step we obtain

the desired red and blue cycles intersecting in at most one vertex.

It is clear that this proof depends substantially on the extra freedom given by

allowing the two cycles to intersect in one vertex. Some attempts to modify

it (dividing into cases depending on the colours of edges near the colour

changes) to yield a proof of Lehel’s conjecture ran into rapidly expanding

numbers of cases that do not quite solve the problem, with no obvious way

out.

3.3 The extremal case

We make use of two theorems from the paper of  Luczak, Rödl and Sze-

merédi [60]. The first gives our result in the case that G contains a large

monochromatic complete bipartite graph.

Theorem 3.4. If there exists a partition V (G) = V1 ⊔ V2 ⊔ V3, such that

min(|V1|, |V2|) ≥ 5 + 2|V3| and V1, V2 form the parts of a blue complete

bipartite graph, then there is a two-cycle partition of G.

The second theorem is a variant on ‘Fact 4.3’ from the same paper, adapted

to give us greater control over the relatively small number of paths we will

need to claim exist.

Theorem 3.5. For every k ≥ 2 and n ≥ 63k, the following holds. Either

V (G) may be partitioned into three sets satisfying the conditions of Theo-

rem 3.4, or given disjoint subsets A, B and C of V (G), where |A|, |B| ≥ n
2k

and |C| ≤ n
5k , there exists a red path of length at most 100k whose initial

vertex is in A, whose final vertex is in B, and whose interior vertices are in

V (G) − (A ∪B ∪C).

Proof. Let R be the graph whose edges are the red edges of G on the vertex

set V (G) − C. Let Nr be the set of vertices at distance exactly r from the

set A, and N ′
r be the set of vertices at distance exactly r from the set B.
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If both
∑50k

r=1 |Nr| > n
2 and

∑50k
r=1 |N ′

r| > n
2 , then there must be a path of

length at most 100k from A to B within R as desired.

If there does not exist any such path, then we may assume without loss of

generality that
∑50k

r=1 |Nr| ≤ n
2 , and so there must be r0, 1 ≤ r0 ≤ 50k, such

that |Nr0 | ≤ n
100k .

Now let V1 = A ∪⋃r0−1
r=1 Nr, V3 = Nr0 ∪ C and V2 = V (G) − (V1 ∪ V3).

We have

|V1| ≥ |A| ≥ n

2k
≥ 5 + 2

( n

5k
+

n

100k

)

≥ 5 + 2|V3| ,

and similarly |V2| ≥ 5 + 2|V3|. By definition of the Ni and N ′
i , all the edges

between V1 and V2 must be blue, satisfying the conditions of Theorem 3.4.

3.4 The non-extremal case

Throughout this section we assume that G does not possess any large com-

plete bipartite graph of either colour, so that we can apply Theorem 3.5 with

either colour. When U = (U1, . . . , Uu) is a list and we refer to an element

Ui, i > u we mean the element Ui mod u.

We first give a basic partitioning result which gives us a structure that would

allow us to cover a large fraction of G with two disjoint cycles, one red and

one blue (if we wanted to). We then describe the desired ‘correction’ of this

structure which allows us to find a two-cycle partition of G. Finally we show

how to get the ‘corrected’ structure.

3.4.1 Clique-cycles

Suppose that U = (U1, . . . , Uu), u ≥ 3, is a list of disjoint red cliques within

V (G). Suppose further that there are specified disjoint red linking paths

ui,i+1 mod u between each pair Ui and Ui+1 whose interior vertices are not

in any Uj. We call this structure an on-colour red clique-cycle. In general

the linking paths will be paths on only two vertices (i.e. single red edges),

and never on more than four.
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Suppose that V = (V1, . . . , Vv), v ≥ 3, is a list of disjoint blue cliques within

V (G), with each pair Vi, Vi+1 spanning a red complete bipartite subgraph

of G. We will call this an off-colour red clique-cycle.

If the Ui and the Vj are disjoint, and furthermore there exist disjoint red

paths P1 and P2 between U1 and V1, each of length at most 18000 + u+ v,

neither of which meet either u1,2 or uu,1, and whose interior vertices are

not in any of the Ui or Vj , we call (U , P1, P2,V) a red clique-cycle pair (see

Figure 3.1(iii) ). We do permit one or both of the sets U and V to be empty,

in which case we require that the paths P1 and P2 are empty.

Given a red clique-cycle pair, it is trivial to see that there exists a red cycle

which passes through every vertex of the on-colour red clique-cycle, both

paths P1 and P2, and mini |Vi| vertices of each of the Vi.

We define similarly blue on-colour and off-colour clique-cycles and a blue

clique-cycle pair.

The purpose of this subsection is to establish the following lemma.

Lemma 3.6. When n ≥ 218000 there exists a partition of the vertices of G

into the following three parts:

a red clique-cycle pair (U , P1, P2,V),

a blue clique-cycle pair (X , Q1, Q2,Y), and

a ‘leftover set’ L1.

The leftover set has size at most 217990 + n
80 + 6(v + y) (where v = |V|

and y = |Y|), and all of the cliques in the off-colour clique-cycles have size

between 8981 and 8989. Furthermore, when two of the clique-cycles are not

empty we have |L1| ≤ 217990 + n
120 + 6(v + y).

Proof. By Ramsey’s Theorem, we can guarantee that any set of 48995 vertices

of G contains either a red or a blue clique of size 8995.

Thus we can find a partition of V (G) into a collection R = R1, . . . of red

cliques each of size 8995, a collection B = B1, . . . of blue cliques each of size

8995, and a set L0 of size at most 217990 < n
1000 .

We say that two red cliques are red-adjacent if there exists a red matching
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of size at least four between them, and blue-adjacent otherwise. This defines

a two-coloured complete graph with vertex set R.

By Theorem 3.3 (Gyárfás’ result), there exist red and blue cycles Cr and Cb

within this graph which cover R and which intersect in at most one member

of R (Figure 3.1(i) ).

We let U ′ = Cr−Cb. Note that Cr and Cb may intersect in at most one clique.

If they do intersect in a clique (Cb)j , so that Cr = (. . . , U ′
s, (Cb)j , U

′
s+1, . . .),

then there is a red path us,s+1 on either three or four vertices from U ′
s to U ′

s+1

through (Cb)j . Since every other pair of sets U ′
i , U

′
i+1 has a red matching of

size four between them, we can construct all the desired disjoint red paths

ui,i+1 mod u as single red edges from the matchings. With these paths, the

list U ′ becomes an on-colour red clique-cycle.

We let Y ′ be the cliques in Cb, with the exception that if Cr ∩Cb = {(Cb)j}
we replace (Cb)j with (Cb)j − us,s+1.

(iii)(ii)(i)

U ′

Y ′′

U

V

P1

P2

Figure 3.1

(i) The red cliques covered by a red and a blue cycle,

(ii) The clique-cycles U ′ and Y ′′ obtained, and

(iii) A red clique-cycle pair.

Now since there is no red matching of size four between any pair Y ′
j , Y ′

j+1

we can remove six vertices from each Y ′
j to obtain Y ′′

j such that each pair

Y ′′
j , Y ′′

j+1 spans a blue complete bipartite graph. The list Y ′′ is an off-colour

blue clique-cycle; each clique in it has size between 8987 and 8989. The two
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clique-cycles U ′ and Y ′′ are disjoint, as in Figure 3.1(ii).

Similarly we say that two blue cliques are blue-adjacent if there exists a blue

matching of size at least four between them, and red-adjacent otherwise. By

applying the theorem of Gyárfás in the same way to B we obtain the disjoint

on-colour blue clique-cycle X ′ and off-colour red clique-cycle V ′′.

We will now construct U , V, X and Y.

First, if |⋃U ′| ≤ n
240 then we set U = ∅ and u = 0, and similarly for V, X

and Y.

For each 1 ≤ i ≤ u either ui,i+1 is a path on three or four vertices or we can

identify a red matching of size four between U ′
i and U ′

i+1 including the edge

ui,i+1. We can similarly identify blue matchings of size four between pairs

in X ′. Let C1 be the union of all the vertices in these identified matchings

and the linking paths.

If both U and V are non-empty then let A1 =
⋃U ′ − C1, and B1 =

⋃V ′′.

Now |C1| ≤ 8 n
8995 <

17n
18000 , |A1|, |B1| ≥ n

360 and the sets A1, B1 and C1 are

disjoint by construction. Thus we can apply Theorem 3.5 with k = 180 to

obtain a minimal red path P1 of length at most 18000 from A1 to B1 which

does not pass through any vertices of C1.

Note that 18000 < n
18000 . We let C2 = C1 ∪ P1, A2 =

⋃U ′ − C2 and

B2 =
⋃V ′′−C2. These three sets still satisfy the conditions of Theorem 3.5,

so applying it we obtain a second minimal red path P ′
2 of length at most

18000 between A2 and B2 which avoids the vertices of C2.

Continuing this, if both X and Y are non-empty we obtain blue paths Q1

and Q′
2 between

⋃X ′−C1 and
⋃Y ′′ which are of length at most 18000 and

such that the paths P1, P
′
2, Q1, Q

′
2 are pairwise disjoint.

We renumber the lists U ′ and V ′′ if necessary such that the path P1 goes

from U ′
1 to V ′′

1 . The path P ′
2 does not necessarily go from U ′

1 to V ′′
1 . But

there is a chain of sets U ′
1, . . . , U

′
p such that P ′

2 terminates in U ′
p and such

that each pair of sets U ′
i , U

′
i+1, 1 ≤ i < p, spans a red matching of size

four contained in C1 (we may assume that if there is a path ui,i+1 of length

greater than one then it comes after p). In each matching one of the four red
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edges must be disjoint from the linking paths; thus we can find a red path

P2 extending P ′
2 into U ′

1 and into V ′′
1 (the latter since consecutive cliques in

V ′′ span red complete bipartite graphs) such that P2 does not intersect any

of P1, Q1, Q′
2 (since these avoid C1) or the linking paths. The path P1 is of

length at most 18000, while |P2| ≤ 18000 + u+ v.

Similarly we can assume Q1 goes from X ′
1 to Y ′′

1 and extend Q′
2 to ob-

tain Q2 which also starts and ends in those sets. Again |Q1| ≤ 18000 and

|Q2| ≤ 18000 + x+ y.

Finally we obtain U = (U1, . . . , Uu) by letting Ui contain all the vertices in

U ′
i that are not interior vertices of any of the paths P1, P2, Q1, Q2, and V, X

and Y similarly. We let L1 contain all the vertices which are not in either

clique-cycle pair.

Observe that since the paths P1 and P ′
2 are of minimal length, neither path

intersects any one of the red cliques Y ′′ in more than two places, and by

construction the paths Q1 and Q2 intersect each clique in at most one place.

Thus for each i, |Y ′′
i | − |Yi| ≤ 6, so that each clique in Y has size between

8981 and 8989. The same holds for the cliques V.

Since a vertex can only be in L1 if it was either in L0, or was removed from

either V ′ or Y ′, or was in a clique-cycle of size at most n
240 , we obtain the

desired bounds on |L1|.

This partition fulfills the requirements of the lemma.

3.4.2 Corrected cycle pairs

Given a partition of V (G) into a red clique-cycle pair, a blue clique-cycle

pair and a leftover set, as provided by Lemma 3.6, we would like to say that

there is a red cycle which covers the red clique-cycle pair and some of the

leftover set and a blue cycle which covers everything else. Unfortunately

this is not quite true. We will need to use a small number of vertices in the

blue clique-cycle pair in constructing our red cycle, and vice versa. In this

subsection we will define a similar concept to a red clique-cycle pair: a red

corrected cycle pair. We will see that it can be covered by a red cycle.
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First we must define some terms, in each case with respect to a given parti-

tion of G into red and blue clique-cycle pairs and a leftover set (as is provided

by Lemma 3.6). A red pickup path is a red path whose start and end vertices

are in the same clique in one clique-cycle, and whose interior vertices are

alternately vertices within the leftover set and within other clique-cycles.

We will see that disjoint pickup paths can be constructed covering every

vertex of the leftover set.

A red balance path is a red path whose initial and final vertices are in the

same clique in a clique-cycle; its purpose is to cover some excess vertices

within off-colour clique-cycles.

We say that a free vertex is any vertex which is not contained in any pickup

or balance path, any of the linking paths in the on-colour clique-cycles, or

the paths P1, P2, Q1, Q2.

When S is a subset of V (G), we let Pick(S) be the number of pickup paths

which start and end in S, Bal(S) be the number of balance paths which

start and end in S, and Free(S) be the number of free vertices in the set S.

Finally, when Vi is a clique in an off-colour clique-cycle V, we define Spin(Vi)

by

Spin(Vi) = Free(Vi) + Pick(Vi) + Bal(Vi) (i ≥ 2 or i = 1, P1 = ∅)

Spin(V1) = Free(V1) + Pick(V1) + Bal(V1) + 1 (i = 1, P1 6= ∅).

We say that the off-colour clique-cycle V is balanced if all its cliques have

the same spin.

We define a red corrected cycle pair to be a collection (U , P1, P2,V, Jr) con-

sisting of a red clique-cycle pair (U , P1, P2,V) together with a set Jr of red

pickup and balance paths, such that the pickup and balance paths are dis-

joint from each other, from the linking paths in the on-colour clique-cycle,

and from the paths P1, P2, and such that the off-colour clique-cycle is bal-

anced.

Lemma 3.7. If G possesses a red corrected cycle pair (U , P1, P2,V, Jr) then

we can find a red cycle Cr in G covering exactly the vertices of the corrected

cycle pair.
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Proof. We construct Cr as follows.

If neither U nor V are empty, we start at the start vertex of P2 in U1.

If this is the start vertex of a pickup or balance path we follow the path

to its end vertex, by definition also in U1. Now if there are any pickup or

balance paths remaining in U1 we move directly to the start vertex and then

along each in turn. We then move to each free vertex in U1 that we have

not yet visited in succession, and eventually to the start vertex of the path

u1,2 and along it.

We now repeat the above procedure for each Ui, 2 ≤ i ≤ u. On returning to

U1 along uu,1 we move to the start vertex of P1 and along it to V1.

We now apply the following process. If the vertex in Vi we are currently at

is one end of a pickup or balance path, we follow the path until we return to

Vi. We now select if possible a vertex in Vi+1 mod v which is the start vertex

of a pickup or balance path which we have not yet visited and move to it; if

this is not possible we move to any free vertex in Vi+1 mod v which we have

not yet visited.

We repeat this process until we are forced to stop. When this occurs, we

are at a vertex in some clique Vi, having travelled every pickup and balance

path and visited every free vertex in Vi+1 mod v. Thus we have been around

the clique-cycle Spin(Vi+1 mod v) times. Since the off-colour clique-cycle is

balanced, we are at Vv and have been along every pickup and balance path

and through every free vertex in
⋃V. We move directly to the end vertex

of P2 in V1 and along P2 to U1, completing the cycle Cr.

If both U and V are empty, we set Cr = ∅. If U is empty but V is not we start

at the start vertex of a pickup or balance path in V1 if this is possible, or

any free vertex in V1 if not, and follow the above procedure until we return

to the start vertex and complete the cycle Cr. If V is empty but U is not we

start at the end vertex of uu,1 in U1 and follow the clique-cycle U as above

until we return to that vertex, completing the cycle Cr.

By the definition of a corrected cycle pair, the red cycle Cr covers exactly

the vertices of the corrected cycle pair.
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3.4.3 Correcting clique-cycle pairs

In this subsection we describe algorithms which take the partition of V (G)

into a leftover set, a red clique-cycle pair and a blue clique-cycle pair given by

Lemma 3.6 and return the desired two-cycle partition, by way of Lemma 3.7.

We will need to use different algorithms depending on the sizes of the various

parts U , V, X and Y. In each case we will construct sequentially a set of

pickup and balance paths on the way to giving corrected cycle pairs. We

will again use the functions Pick , Bal , Free and Spin defined in the previous

subsection; in each case with reference to the current set of pickup and

balance paths at that point in the algorithm. The main obstacle which we

must overcome is the requirement that the off-colour clique-cycles must be

balanced: we start by giving a case where there is an easy ‘quick fix’, and

the only difficulty is the (relatively easy) incorporation of the vertices in the

leftover set into the corrected cycle pairs. We will then go on to the more

involved cases where the ‘quick fix’ cannot be used; these are not really hard,

but simply technical.

We will use the following lemma to obtain a set of pickup paths through all

vertices of the leftover set.

Lemma 3.8. Let A1, . . . , Aa, B1, . . . , Bb, C be disjoint subsets of V (G), where

the Ai are subsets of cliques in one clique-cycle, the Bj are subsets of cliques

in another, and C is a leftover set. Suppose that

2|C| ≤ min(|A1| + · · · + |Aa| − 4a, |B1| + · · · + |Bb| − 4b) .

Then there exist collections Jr and Jb of disjoint red and blue pickup paths

within A1 ∪ · · · ∪ Bb ∪ C such that each red path starts and ends in an Ai

while each blue path starts and ends in a Bj and such that every vertex in C

is in one of the paths. Furthermore in any Ai or Bj the number of vertices

which are in none of the paths Jr or Jb (free vertices) is greater than the

number of vertices which are interior vertices of the paths Jr or Jb.

Proof. We apply the following algorithm. First we mark all vertices as

active. Now for each member c of C in succession, we proceed as follows.
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If there are red edges between c and two active members x, y of some Ai

then we record into Jr the red pickup path x, c, y and mark these vertices

as inactive.

If there is no such red path through c, but there are blue edges between c

and two active members x, y of some Bj then we record into Jb the blue

pickup path x, c, y and mark these vertices as inactive.

If there are neither red nor blue pickup paths, we mark c as remaining.

We let the eventual set of remaining vertices be R. If it is empty, we are

done. If not, then each r ∈ R is red-adjacent to at most one active vertex

in each Ai, and blue-adjacent to at most one active vertex in each Bj .

Observe that there must exist at least one pair of sets Aα and Bβ which

each contain at least five active vertices. Since any two-edge-colouring of

K5,5 has either a red or a blue matching of size three, we are guaranteed

such between the active vertices of Aα and Bβ. We assume without loss of

generality that the former holds.

If R = {r1}, then r1 is blue-adjacent to at most one of the vertices of the

red matching in Bβ, so there is a red path on five vertices from Aα through

r1 and returning to Aα. We record this pickup path into Jr and are done.

If |R| ≥ 2, then let R = {r1, . . . , rr}. Since we have a red matching of

size three between Aα and Bβ we can choose active vertices a1, b1, br+1,

a2 such that a1, b1, r1 and rr, br+1, a2 are both red paths from Aα to r1

and rr respectively. We mark these vertices as interior-inactive. By the

original condition on |C| there remain at least 2|R| + 4b − 2 active vertices

in B1 ∪ · · · ∪Bb.

Now for each 1 ≤ i ≤ r − 1 in succession, since there must be at least

2|R|+4b−1− i active vertices in B1∪· · ·∪Bb (one is made interior-inactive

at each step) we can find an active vertex bi+1 in a set with at least four

more active vertices than interior-inactive vertices which is red-adjacent to

both ri and ri+1, and mark it as interior-inactive.

Finally we record the red pickup path a1, b1, r1, b2, . . . , br, rr, br+1, a2 which

passes through all of R into Jr. This path is the only path which has interior
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vertices in any of the Ai or Bj, and by its construction each of the Ai and Bj

contains more active vertices (in none of the Jr or Jb) than interior-inactive

vertices.

We now give the various algorithms for constructing two-cycle partitions.

Lemma 3.9. If n ≥ 218000 and G has a partition as in Lemma 3.6 in which

both |⋃U|, |⋃X| ≥ n
20 , then G has a two-cycle partition.

Proof. First we modify the off-colour clique-cycles V, Y (if these are not

empty) by removing vertices from each clique in these clique-cycles until

|V1| = |Y1| = 8981 and all the other cliques have size 8980, to obtain V ′

and Y ′. If either clique-cycle is empty we do nothing to it. We create a

new leftover set L2 as the union of L1 and the at most 9(v + y) vertices

removed. The modified off-colour clique-cycles are balanced. Observe that

|L2| ≤ 217790 + n
120 + 15(v + y).

Now we let Ai be the set of free vertices in Ui for each i, Bj be the set of

free vertices in Xj for each j, and C = L2.

Observe that |L2| ≤ 217790 + n
120 + 15 n

8995 <
23n
2000 . Furthermore the number

of free vertices in U is at least |⋃U| − 2u − 2 > 90n
2000 + 4u, and similarly

the number of free vertices in X is at least 90n
2000 + 4x. Thus the sets Ai, Bj

and C satisfy the conditions of Lemma 3.8, and we can apply this lemma to

obtain disjoint sets Jr and Jb consisting of pickup paths which are disjoint

from each other, from the linking edges and paths in U and X , and from the

paths P1, P2, Q1, Q2. Every vertex in L2 is in one of these paths. We modify

U by removing every vertex in Jb to obtain U ′, and we modify X similarly

to obtain X ′.

Now (U ′, P1, P2,V ′, Jr) forms a red corrected cycle pair, which is disjoint

from the blue corrected cycle pair (X ′, Q1, Q2,Y ′, Jb). The two corrected

cycle pairs cover V (G). By Lemma 3.7 their vertices form the desired two-

cycle partition.

This construction was made easier by the ‘quick fix’ of simply removing a

small number of vertices from the off-colour clique-cycles to force them to

53



Chapter 3. Lehel’s conjecture

be balanced. Unfortunately this is not possible in the remaining cases, and

more technical work (rather than new ideas) will be required. We require

the following trivial lemma.

Lemma 3.10. If A and B are disjoint subsets of V (G) each of size at least

three, then either there exists a vertex in A red-adjacent to two vertices in

B, or there exists a vertex in B blue-adjacent to two vertices in A.

This lemma allows us to construct a balance path and so reduce the spin of

the cliques containing A and B by one.

Lemma 3.11. If n ≥ 218000 and both |⋃U|, |⋃Y| ≥ n
20 then we can find a

two-cycle partition of G.

Proof. We modify the off-colour clique-cycle V (if it is not empty) by remov-

ing vertices until each clique has size 8980, except for V1 which has size 8981,

to obtain V ′. We create a new leftover set L2 consisting of L1 together with

the removed vertices. We observe that |L2| ≤ n
1024 + n

120 + 15v + 6y < 23n
2000 .

Since |⋃U| ≥ n
20 we see that there are certainly at least 4|L2| + 130u free

vertices in
⋃U .

Now choose the largest m ≤ 8980 such that |⋃Y|−my ≥ 2|L2|+4y. Observe

that m ≥ 4480. We apply a similar algorithm to that in the previous lemma.

From each clique Yj we choose a subset Bj consisting of |Yj | −m of the free

vertices. Observe that

|B1 ∪ · · · ∪By| = |
⋃

Y| −my ∈ [2|L2| + 4y, 2|L2| + 5y) .

We let Ai be the set of free vertices in Ui for each i. We let C = L2, and

apply Lemma 3.8 to obtain sets Jr, Jb of pickup paths covering L2.

By the definition of the spin of a clique Yj , when a pickup path is constructed

which starts and ends in Yj (using two vertices of Yj) it decreases the spin

of the clique by one, while from Lemma 3.8 the number of vertices of Yj

which are interior vertices of any pickup path is exceeded by the number of

vertices which are in no pickup path. It follows that the use of Lemma 3.8

to create a set of pickup paths causes the spin of the clique Yj to decrease
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by at most
|Bj |
2 ≤ 8981−m

2 . Thus at this point each clique Yj has spin at

least b =
⌊

8980+m
2

⌋

≥ 6730.

We now say that a clique Yj is balanced if Spin(Yj) = b, and unbalanced

otherwise. We note that an unbalanced clique must have spin greater than

b. We call the difference Spin(Yj) − b the excess spin of the clique Yj.

Since |⋃U| ≥ n
20 and not more than 2|L2| vertices in U can be in any of the

paths Jr ∪ Jb we observe that the number of free vertices in
⋃U is still at

least 2|L2| + 130u.

From the definitions of m and b the sum of the excess spins of all the cliques

in Y cannot exceed

|⋃Y| −my

2
≤ 2|L2| + 5y

2
≤ |L2| + 3y < |L2| + 60u .

We construct J ′
r and J ′

b by adding new balance paths sequentially to Jr and

Jb as follows.

If Yj is an unbalanced clique, then Spin(Yj) > 6730, so

Free(Yj) + Pick(Yj) + Bal(Yj) ≥ 6730 .

But each pickup or balance path contributing to Pick(Yj) or Bal(Yj) uses

two vertices from Yj , and |Yj | ≤ 8981. Thus certainly Free(Yj) ≥ 3. Since

|⋃U| ≥ 4|L2| + 130u there must be a clique Ui with Free(Ui) ≥ 3. We can

apply Lemma 3.10: there exists either a red balance path on three vertices

whose ends are free vertices in Ui passing through a free vertex of Vj, or

a blue balance path on three vertices whose ends are free vertices of Vj

passing through a free vertex in Ui. We record the red balance path into J ′
r

if it exists, otherwise the blue balance path into J ′
b. This procedure causes

Spin(Yj) to decrease by one. We repeat this until every clique Yi is balanced.

Finally we modify U by removing all vertices in J ′
b to obtain U ′ and Y by

removing all vertices in J ′
r to obtain the balanced off-colour clique-cycle Y ′.

Now (U ′, P1, P2,V ′, J ′
r) and (X , Q1, Q2,Y ′, J ′

b) are disjoint corrected cycle

pairs covering V (G), and the result follows by Lemma 3.7.

In the next case we have to balance simultaneously two off-colour clique-

cycles; this case requires the most care.
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Lemma 3.12. If n ≥ 218000 and both |⋃V|, |⋃Y| ≥ n
20 then there exists a

two-cycle partition of G.

Proof. We begin similarly to the previous lemma. Choose the largest

mr,mb ≤ 8980 such that

|
⋃

V| −mrv ≥ 2|L1| + 4v and

|
⋃

Y| −mby ≥ 2|L1| + 4y .

Note that mr,mb ≥ 5300.

For each i, choose a set Ai consisting of |Vi|−mr of the free vertices of Vi; for

each j choose a set Bj of free vertices of Yj of size |Yj|−mb. Let C = L1, and

apply Lemma 3.8 to obtain sets Jr, Jb of pickup paths covering every vertex

in L1. By an identical argument to that in the previous lemma, the spin of

any clique Vi has decreased by at most 8989−mr

2 so is at least 8980+mr

2 ≥ 7100.

Similarly each clique Yj now has spin at least 8980+mb

2 ≥ 7100. There remain

at least 2|L1| + 45y free vertices in V, and at least 2|L1| + 45v free vertices

in Y.

Now we must balance both off-colour clique-cycles. We must choose the

parameters br and bb which will be the spins of cliques in the red and blue

off-colour clique-cycles in our eventual corrected cycle pairs.

For a br we define the excess spin of the clique-cycle V by

Excess(V, br) =
v
∑

k=1

(Spin(Vk) − br) .

If we apply Lemma 3.10 with A consisting of three free vertices in some Vi

and B being three free vertices of Yj then we obtain a three vertex balance

path. Incorporating this into our set of balance paths decreases the spin

of both Vi and Yj by one: so if there exist br, bb < 7097 which are not too

small and such that Excess(V, br) = Excess(Y, bb), we can repeatedly apply

Lemma 3.10 until both clique-cycles are simultaneously balanced. Since

Excess(V, br − 1) = Excess(V, br) + v and

Excess(Y, bb − 1) = Excess(Y, bb) + y ,
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choosing br and bb amounts to solving a linear congruence. Unfortunately

this congruence may not be soluble at all (if v and y have a common factor)

or the solution may require br and bb to be too big or small to be useful.

Since the cliques V1 and Y1 each have at least three free vertices, we can

identify either a red or a blue matching between them of size two. Assume

without loss of generality that it is a red matching (α, β), (γ, δ) ∈ V1 × Y1.

We can construct one more (long) balance path using this matching that

allows us to make use of a solution to

Excess(Y, bb) + 10 ≤ Excess(V, br) ≤ Excess(Y, bb) + v + 20 .

This is soluble: we choose bb to be the largest number such that

Excess(Y, bb) + 10 ≤ Excess(V, 7097) ,

and then choosing br ≤ 7097 to be the largest number such that

Excess(V, br) ≤ Excess(Y, bb) + v + 20

gives a solution to both inequalities.

Since 20v ≥ y ≥ v
20 we are guaranteed to find that one of br and bb is between

7077 and 7097.

Since Excess(Y, 7097) cannot exceed |L1| we are guaranteed to find also that

br ≥ 5000, and similarly for bb. We say that a clique in V is balanced if its

spin is br, and similarly for Y. Observe that an unbalanced clique must have

at least three free vertices; at this point every clique in V has spin at least

br + 3, and similarly for Y.

If Excess(V, br) −Excess(Y, bb) = s is even, choose a free vertex ε in Y1 not

in the red matching of size two. Note that v+20 < 2v−4, so that s < 2v−4

and 2 + s
2 < v.

Now choose from each clique V2, . . . , V2+⌊ s
2
⌋ two free vertices, and let B be

a red balance path which starts and ends in the chosen vertices in V2+⌊ s
2
⌋

and whose interior vertices are the other chosen vertices, α, β, γ, δ and if s

is even ε. We record this red balance path along with the paths Jr to create

J ′
r.
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Now the spin of any clique (with respect to the new sets J ′
r, Jb) has decreased

by at most three, so each clique in V has spin at least br and each clique

in Y has spin at least bb. The creation of B has decreased Excess(Y, bb) by

either two or three, depending on whether s is odd or even (the vertices β,

δ and, if s is even, ε in Y1 are no longer free). The creation of B has also

decreased Excess(V, br) by either s+2 or s+3, again depending on whether

s is odd or even (two vertices in each clique V1, . . . , V2+⌊ s
2
⌋ are no longer free

and one balance path has been created in V2+⌊ s
2
⌋). Thus the creation of B

gives us Excess(Y, bb) = Excess(V, br).

We apply Lemma 3.10 repeatedly to construct balance paths on three ver-

tices between the free vertices of unbalanced pairs of cliques Vi and Yj, each

decreasing the spin of both Vi and Yj by one. Eventually every clique in both

off-colour clique-cycles is balanced. We let J ′′
r be the union of J ′

r and the

red balance paths just constructed, and J ′
b be the union of Jb and the blue

balance paths just constructed. We modify V and Y to obtain the balanced

clique-cycles V ′ and Y ′ by removing all vertices in J ′
b and J ′′

r respectively.

Now (U , P1, P2,V ′, J ′′
r ) and (X , Q1, Q2,Y ′, J ′

b) are disjoint corrected cycle

pairs covering V (G), and the result follows.

Finally we consider the possibility that one of the two clique-cycle pairs is

small.

Lemma 3.13. If n ≥ 218000 and |⋃X|, |⋃Y| ≤ n
20 then we have a two-cycle

partition of G.

Proof. We let L2 = L1 ∪
⋃X ∪⋃Y ∪Q1 ∪Q2. Observe that

|L2| ≤ 217990 +
n

80
+ 6(v + y) +

2n

20
+ 2(18000 + x+ y) ≤ 12n

100
.

Now either |⋃U| ≥ 42n
100 or |⋃V| ≥ 42n

100 .

In the former case, we create L3 by removing at most 8v vertices from V
to obtain a balanced clique-cycle V ′. Then, for each ℓ ∈ L3 sequentially, we

apply the following process to obtain a set J of pickup paths.

If ℓ is red-adjacent to two free vertices j1, j2 in any clique Ui then record

into J the pickup path j1, ℓ, j2. Otherwise mark ℓ as remaining.
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Let the set of remaining vertices be R = {r1, . . . , rr}. Each vertex is red-

adjacent to at most one free vertex in any clique Ui. Since |⋃U| ≥ 42n
100 and

each vertex in L3 −R has given a path in J which uses up two vertices from
⋃U , the number of free vertices remaining in

⋃U exceeds |R|+ 3u. We can

follow the same logic as in Lemma 3.8 to greedily construct a blue cycle Cb

whose vertices are alternately the members of R and free vertices from
⋃U .

We modify U by removing all the vertices in Cb to obtain U ′. Then

(U ′, P1, P2,V ′, J) is a red corrected cycle pair which covers exactly the ver-

tices of V (G) not in Cb, so by Lemma 3.7 it is covered by a red cycle Cr.

In the latter case, let m ≤ 8981 be the greatest number such that

v
∑

i=1

(Spin(Vi) −m− 5) ≥ |L2| .

Since |L2| ≤ 12n
100 and |⋃V| ≥ 42n

100 we certainly have that m > 5000. Thus

any clique with spin greater than m must have at least 100 free vertices. For

each ℓ ∈ L2 we apply the following process.

If ℓ is red-adjacent to two free members j1, j2 of a clique Vi which has

Spin(Vi) ≥ m + 5 then we record the red pickup path j1, ℓ, j2. If not, we

mark ℓ as remaining.

Let the set of remaining vertices be R. Let

Excess(V) =
v
∑

i=1

(Spin(Vi) −m) .

Now every clique Vi has spin at least m + 4, and Excess(V) ≥ |R|. We say

that a clique is balanced if it has spin m, and unbalanced otherwise.

We construct red balance paths on three vertices between the free vertices

of pairs of unbalanced cliques Vi, Vj (i, j 6= 1) until either

|R| ≤ Excess(V) ≤ |R| + 1

or there remain no red balance paths on three vertices between free vertices

of pairs of unbalanced cliques. Observe that each balance path constructed

reduces Excess(V) by two.
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In the first case, since the spin of V1 is at least m + 4 we have |R| ≥ 3 and

we can greedily construct a blue cycle Cb passing through all members of

R and either |R| (by choosing vertices alternately from R and V) or |R| + 1

(by having an extra edge in V1 in the cycle) free vertices in the unbalanced

cliques of V, as appropriate. Then we construct V ′ by removing all vertices

of Cb from V; this is a balanced clique-cycle.

In the second case, we have a collection of unbalanced cliques V1, Vr1 , . . .

such that any pair Vri
, Vrj

do not have any red balance path between their

free vertices. Since each clique has at least 100 free vertices, certainly there

are blue edges between the free vertices of any such pair.

If |R| ≤ 1 then we can find further red balance paths between the free

vertices of V1 and of the Vri
until either all the cliques are balanced or any

pair of our remaining unbalanced cliques have blue edges between their free

vertices. In either case we can find a blue cycle Cb which passes through

Spin(Vi)−m of the free vertices of each such Vi; if |R| = 0 it passes through

no other vertices, while if |R| = 1 it passes through the vertex in R also.

If |R| ≥ 2 then we can find a blue cycle Cb covering exactly Spin(Vi)−m free

vertices of each unbalanced clique; between one free vertex in an unbalanced

clique and the next along the cycle we may either have a blue edge or a blue

path of length two passing through a member of R, as appropriate to cover

all the members of R and to guarantee being able to pass from V1 to the

Vri
.

In either case, we let J be the set of red balance paths we constructed and

modify V by removing all vertices in Cb to obtain the balanced clique-cycle

V ′. Then (U , P1, P2,V ′, J) is a corrected clique-cycle which must be covered

by a red cycle Cr, and Cb covers exactly the vertices of G not in it.

3.5 The final result

Let n ≥ 218000. Suppose that G is a two-edge-coloured complete graph on

n vertices.

If G possesses a large monochromatic complete bipartite subgraph satisfying
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the conditions of Theorem 3.4 then it possesses a two-cycle partition.

If G does not possess such a large bipartite subgraph then we may apply

Lemma 3.6 to obtain a partition of V (G) into disjoint red clique-cycle pair

(U , P1, P2,V), blue clique-cycle pair (X , Q1, Q2,Y) and a leftover set.

At least one of U , V, X and Y must cover at least n
20 vertices, since the

leftover set is not larger than 217790 + n
120 + 6(v + y) < n

100 by choice of

n. Without loss of generality, assume that one of U or V covers at least n
20

vertices. If also either X or Y covers at least n
20 vertices then we may apply

one of Lemmas 3.9, 3.11 (which of course also gives the result when X and

V are large) or 3.12 to find that there exists a two-cycle partition of G. If

on the other hand neither X nor Y covers n
20 vertices then we may apply

Lemma 3.13 to discover a two-cycle partition of V (G). �

3.6 Further thoughts

It is not hard to find minor improvements to the proof above, which we do

not give in the interests of a shorter and more readable proof. In particular,

we can define red-adjacency in Lemma 3.6 with a matching of size only three;

we can argue that the leftover set should always be much smaller, and so

on. However even making the most optimistic assumptions—that there is

some way to pick up vertices from the leftover set in long paths rather than

one at a time, that the correct exponent in Ramsey’s Theorem should be

2, and so on—it seems utterly impossible that this method could be made

work with cliques of size smaller than 10 (and so with graphs on less than

1000 vertices). On the other hand, it is already out of the question to check

by brute force computation all graphs on even 100 vertices, so while Lehel’s

conjecture certainly seems reasonable this method will not prove it in full.

We can read the proof of Theorem 3.5 as an algorithm which either produces

the desired path on at most 18000 vertices (in quadratic time) or returns

the large complete bipartite graph required for Theorem 3.4. The proof by

 Luczak, Rödl and Szemerédi of that theorem is again a polynomial time

algorithm finding the red and blue cycles explicitly, and it is easy to check
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that all our proofs amount to polynomial time algorithms, so that we have

a polynomial time algorithm which returns the two-cycle partition of G (if

it exists).

It seems reasonable that there should exist an extension of this result for

larger numbers of colours: if the edges of Kn are k-coloured then we can find

a partition of its vertices into k monochromatic cycles. This is a conjecture

of Erdős, Gyárfás and Pyber [29]. They proved that a partition into ck2 log k

monochromatic cycles suffices, for some constant c; the best known bound

is that a partition into at most 100k log k monochromatic cycles exists for

sufficiently large n, due to Gyárfás, Ruszinkó, Sárközy and Szemerédi [45].

However the methods in this paper do not seem to be easily extended to

dealing with even three colours. We can certainly apply Ramsey’s theorem

in a similar way to obtain a partition into small monochromatic cliques and

a leftover set, and then describe two red cliques as red-adjacent if joined by

a small red matching. But we would then have to define blue- and green-

adjacency between two red cliques; and the obvious way to do this (colouring

by the majority colour of edges) does not even allow us to construct blue

paths along blue-adjacent paths of red cliques.
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4
Forbidden induced bipartite

graphs

4.1 Introduction

In 1992 Prömel and Steger considered the problem of finding the speeds

of hereditary classes defined by one induced subgraph. They proved The-

orem 1.3, and went on to find for every graph which is not an induced

subgraph of P4 the correct coefficient of n2 in the exponent.

Theorem 4.1. For any fixed G 6= K1, the number of graphs on n vertices

which do not contain G as an induced subgraph is

2

�
1− 1

τ(G)−1

�
n2

2
+o(n2)

,

where τ(G) is defined to be the smallest number k such that for every

0 ≤ i ≤ k there is a partition of V (G) into i cliques and k − i indepen-

dent sets.

The only graph with τ(G) = 1 is K1, while the graphs with τ(G) = 2 must

be bipartite graphs whose complement is bipartite: so they cannot have

more than four vertices, and it is easy to check that in fact they correspond

to P4 and its induced subgraphs. Note that the lower bound in their theorem

is easy: by the definition of τ(G), there is an i such that G is not an induced
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subgraph of any graph whose vertex set can be partitioned into i cliques

and τ(G) − i − 1 independent sets. The lower bound comes from counting

graphs of this form.

One possibility would be to attempt to sharpen their results: for exam-

ple Erdős, Kleitman and Rothschild showed that almost every triangle-free

graph is bipartite (which of course gives a very accurate formula) and gave

a similar result for Kl-free graphs, l ≥ 4; and Prömel, Schickinger and Ste-

ger gave a related argument sharpening even that result (they showed that

non-bipartite triangle-free graphs can almost surely be made bipartite by

removing one vertex, and if that fails almost surely removing two vertices

suffices, and so on) and similarly for Kl-free graphs, l ≥ 4. However in this

chapter we will pursue a different question.

Naturally, one can define speeds for structures other than graphs. Bright-

well, Grable and Prömel [14] studied the problem of counting the partial

orders on n elements not containing Q as an induced sub-order, finding for

many partial orders Q the speed of the Q-free partial orders. Their re-

sults were much more complicated than Prömel and Steger’s: they found

sub-orders giving speeds in both ranges given by Prömel and Steger, but

they also gave two further speed categories lying in the gap between those

ranges: speeds bounded between ncn and nCn for some 1 < c < C, and

speeds lying above that category but not faster than 2o(n2). They also left

some sub-orders which could not be classified.

There is, of course, a relationship between graphs and partial orders. Every

partial order has an underlying comparability graph, with edges between

comparable pairs of points in the partial order. Every graph can be drawn

on a sheet of paper, and a partial order obtained by directing edges up the

paper and inserting further directed edges to satisfy transitivity. However

this relationship is not one-to-one: most graphs are not comparability graphs

and one cannot draw them in any way to avoid inserting edges. In particular,

while there is a straightforward correspondence between bipartite graphs

and partial orders of height two (one can direct edges from one part to

the other without violating transitivity) there is no such correspondence

between split graphs and partial orders. When considering the number of
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graphs without—for example—an induced copy of K2,2 one immediately sees

the large class of split graphs, obtained by replacing one of the independent

set parts of a bipartite graph with a clique. These are K2,2-free and their

number is vastly greater than the number of K2,2-free bipartite graphs, so

it dominates the enumeration. But when one enumerates partial orders

which do not contain the height two order Q obtained from K2,2 by setting

one part below the other, there is no large class of size 2Θ(n2) dominating

the count. The smaller classes—for example the height two partial orders

with no induced Q—must be counted, and this is the cause of the extra

complexity in the results of Brightwell, Grable and Prömel.

We wish to uncover the complexity in the graph case that has been hidden

in the results of Prömel and Steger by the large classes like the split graphs:

so we will enumerate the bipartite H-free graphs. Of course, we could obtain

some bounds from the results of Brightwell, Grable and Prömel by translat-

ing back from partial orders of height two to graphs: but we will find that

bipartite graphs are relatively easy to work with. We will obtain results on

more graphs, and sharper results, by working with bipartite graphs directly.

Let G = G[X,Y ] be a bipartite graph with bipartition (X,Y ). We say that

X is the lower part, and Y the upper part, of G. We will draw diagrams

accordingly. We say that the bipartite complement of G is the bipartite graph

which has edges between X and Y exactly where G does not, together with

the bipartition (X,Y ). If z is a vertex in G[X,Y ], then as usual we say that

the degree of z, d(z), is the number of vertices (in the part not containing

z) adjacent to z. We say that the co-degree of z is the number of vertices in

the part not containing z which are not adjacent to z.

Let G = G[X,Y ] and H = H[W,Z]. We say that G contains a copy of H if

there exist W ′ ⊂ X, Z ′ ⊂ Y , such that the induced subgraph of G on the

vertices W ′ ∪ Z ′, with bipartition (W ′, Z ′), is isomorphic to H[W,Z].

We consider three closely related problems.

First, let H = H[W,Z]. We wish to estimate the number Forbm,n(H) of

graphs with bipartitions G[X,Y ] which do not contain a copy of H, in

terms of the sizes m, n of the parts X,Y of G. We will restrict our attention
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to the case n = Θ(m).

Second, let H = H[W,Z]. We wish to estimate the number Forbn(H) of

bipartite graphs G on n vertices such that no bipartition of G contains a

copy of H.

Third, let H be a fixed bipartite graph. We wish to estimate the number

Freen(H) of bipartite graphs G on n vertices such that no bipartition of

G contains a copy of any H[W,Z], (W,Z) a bipartition of H (G is called

H-free).

These three problems are obviously related. If an n-vertex graph G is H-

free, then it certainly does not contain a copy of H[W,Z] for any specific

bipartition of H; if no bipartition of G contains a copy of H[W,Z] then

certainly G[U, V ] does not contain a copy of H[W,Z]. This gives us the

inequalities

Freen(H) ≤ Forbn(H[W,Z]) ≤ 2nForbn−r,r(H[W,Z])

where (W,Z) is any bipartition of H, and r maximises Forbn−r,r(H[W,Z]);

the first inequality becomes an equality when H has only one bipartition

(for example, when it is connected). As we will consider many graphs which

do have several very different bipartitions, this distinction will be important.

As an illustration of the differences between these three problems, consider

the bipartite graph on four vertices SI(2, 1), as shown in Figure 4.1, with

the bipartition as shown there.

Figure 4.1 SI(2, 1) and allowed graphs for the first and second problems

A bipartite graph G[X,Y ] containing no copy of SI(2, 1) with the given

bipartition has the property that for each x ∈ X, either X is adjacent to

no vertex in Y , to exactly one vertex in Y , or to every vertex in Y , for a

total of n+ 2 possibilities for each of the m vertices in X. Since every graph

with this property contains no copy of SI(2, 1) with the given bipartition,

Forbm,n(SI(2, 1)) = (n + 2)m. The second graph in Figure 4.1 contains
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no copy of SI(2, 1) with the given bipartitions – even though it is simply

SI(2, 1) the other way up.

By contrast, suppose that G is a bipartite graph on n vertices such that no

bipartition of G contains SI(2, 1) with the given bipartition. If G contains a

vertex x of degree two or greater, then G must be connected and every vertex

in the part not containing xmust be adjacent to x. ThusG has three possible

structures. First, G has only vertices of degree less than two. Second, G is

a complete bipartite graph. Third, G is not a complete bipartite graph, but

there are two adjacent vertices x and y in G such that every vertex in G is

adjacent to either x or y, and every edge of G meets either x or y. The third

graph in Figure 4.1 is an example of this third structure. It is clear that

this condition is more restrictive than the condition for the first problem.

Finally, suppose that G is a bipartite graph on n vertices such that no bipar-

tition of G contains a copy of SI(2, 1) with any bipartition. Then certainly

G does not contain SI(2, 1) with the bipartition shown in Figure 4.1, so that

G must be one of the three structures mentioned in the previous paragraph.

But G also does not contain SI(2, 1) with the bipartition having two ver-

tices in each part. If n is at least five, the third structure in the previous

paragraph must contain a copy of SI(2, 1) with this alternative bipartition,

so that (for n ≥ 5) G is either a complete bipartite graph or contains only

vertices of degree less than two.

We recall that a simple consequence of the Szemerédi Regularity Lemma

was Theorem 1.8, which states that for any H these three functions are

bounded above by 2o(n2). We will be interested in finding lower bounds and

better upper bounds; we will be particularly interested in finding bounds of

the form ncn+o(n) for constant c.

We will see that the bipartite graphs fall into the following classes: graphs

containing cycles or the bipartite complements of cycles, five infinite families

of graphs, and six exceptional graphs on six and seven vertices. The graphs

in the five infinite families are the following:

• A star with k rays together with l isolated vertices, SI(k, l).

• Two disjoint stars with respectively k and l rays, DS(k, l).
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• DS(k, l) together with an isolated vertex, DS∗(k, l).

• Two joined stars, obtained by taking DS(k, l) and inserting a vertex

adjacent to the centres of each star, JS(k, l).

• Two joined stars together with an isolated vertex, JS∗(k, l).

The six exceptional graphs are simply those bipartite graphs which are at

once forests, complements of forests, and not in the five infinite families.

Given the example of SI(2, 1) where the three problems are clearly different,

one might expect that each problem will need to be solved individually; that

there will be graphs where knowing Forbn,m(H[W,Z]) does not help us find

good bounds on Freen(H). Somewhat surprisingly, this is not true. We are

able to obtain good bounds on Forbn(H[W,Z]) and Freen(H) simply by

choosing the right (W,Z) and r and examining Forbn−r,r(H[W,Z]).

This chapter is organised as follows.

In Section 2 we show that, since there are many (more than ncn for any c)

graphs on n vertices with large girth, the speed of Forbm,n(H) is large for all

H which contain either a cycle or the bipartite complement of a cycle. This

leaves only the five infinite families of graphs and six exceptional graphs.

It is obvious that any graph G with maximum degree (or co-degree) less than

the maximum degree (or co-degree) of H cannot contain a copy of H. There

are nkm bipartite graphs G[U, V ] with parts of sizes m and n respectively

in which every vertex in U has degree at most k. One might perhaps guess

that, when H does not contain a cycle or the complement of a cycle, the

speed of Forbm,n(H) should depend principally upon the maximum degree

or co-degree of H; and it is not too hard to show that for each of the infinite

families this is true.

This would lead us to expect that the lower bounds on Forbm,n(H) should

be given by families of graphs with small maximum degree or co-degree.

Interestingly, this is not always the case. We find large families of graphs

giving substantially better lower bounds than the obvious ones for four of

the five infinite families: DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l). We

68



Chapter 4. Forbidden induced bipartite graphs

are able to show that these large families of graphs actually give the correct

speed for the first three infinite families when k = l.

In Section 3 we describe ways to modify the lower bound examples from

the previous section to obtain lower bounds for Forbn(H) and Freen(H). By

making the right choices for (W,Z) and r, and examining Forbn−r,r(H[W,Z]),

we obtain good bounds for the two quantities.

Finally in Section 4 we use a structural result of Lozin [55] to obtain good

upper bounds on Forbn(H) for all of the exceptional graphs except the path

on seven vertices, P7. We observe that this structural result does not suffice

to bound Forbm,n(H[U, V ]) above for three more of the exceptional graphs

(see Table 4.2).

Our results for each of the three problems are summarised in the Tables 4.2

and 4.3. We observe that the results for the second and third problems differ

only in that forbidding certain graphs (SI(0, l), DS(k, 0) and DS∗(k, 0))

makes sense in the context of the second problem where their bipartition is

fixed, but in the context of the third problem they are examples of simpler

graphs (the empty graph on l+1 vertices, SI(k, 1) and SI(k, 2) respectively).

Note that in a few cases we can find better bounds than those given in

the tables; in particular we can show that the upper bound is correct for

Forbn(JS(1, 0)) and that the lower bounds are correct for Forbn(DS(k, 0)).

A special case that might be of interest is that of the bipartite graphs on n

vertices which do not contain the path on k vertices as an induced subgraph.

Trivially when k = 1, 2 we have respectively zero and one bipartite graphs

which are Pk-free. The P3-free bipartite graphs are the sub-matchings (dis-

joint unions of copies of K1 and K2), of which there are n
n
2
+o(n). The P4-free

bipartite graphs are easily seen to be disjoint unions of complete bipartite

graphs, and there are nn+o(n) such (we note that P4 = JS(1, 0); in this

case the general lower bound in Tables 4.2 and 4.3 can be improved). The

P5-free bipartite graphs are disjoint unions of difference graphs (2K2-free

bipartite graphs), and the P6-free bipartite graphs are a subclass of the bi-

cographs introduced by Giakoumakis and Vanherpe [38]; in both cases there

are nn+o(n) such bipartite graphs. The P7-free bipartite graphs contain the

DS(2, 2)-free graphs, so that there are at least n
3n
2

+o(n) P7-free bipartite
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graphs on n vertices, but we have no good upper bounds. For k ≥ 8, Pk

contains the bipartite complement of C4; and there are 2Ω(n
6
5 ) graphs whose

bipartite complements have girth at least six and so do not contain Pk.
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H Forbm,n(H)

Lower Upper

. . .

k 0

k ≥ 1 (for sufficiently large m, n)

SI(k, l)

. . . . . .

l

k

mmax(k−1,l−1)m+o(m)

k + l ≥ 1

DS(k, l)

. . . . . .
lk

mmax((k−1)m,lm+n)+o(m) mkm+n+o(m)

k ≥ l ≥ 1 or k ≥ 2, l = 0

JS(k, l) DS∗(k, l)

. . .. . .
k l

’

. . . . . .
lk

mmax(km,lm+n)+o(m) mkm+n+o(m)

k ≥ l ≥ 1 or k ≥ 1, l = 0

JS∗(k, l)

. . .. . .
k l

mmax(km,lm+n)+o(m) mkm+2n+o(m)

k ≥ l ≥ 1 or k ≥ 1, l = 0

’ mm+n+o(m)

’ ’ mm+n+o(m) 2o(m2)

m2m+n+o(m) 2o(m2)

AAll other bipartite graphsA 2Ω(m
6
5 ) 2o(m2)

Figure 4.2 Bounds obtained for the first problem

71



Chapter 4. Forbidden induced bipartite graphs

H Forbn(H), Freen(H)

Lower Upper

. . .

k 0

k ≥ 1 (for sufficiently large n)

SI(k, l)

. . . . . .

l

k

nmax(
(k−1)n

2
,
(l−1)n

2
)+o(n)

k + l ≥ 1(∗)

DS(k, l)

. . . . . .
lk

nmax(
(k−1)n

2
,
(l+1)n

2
)+o(n) n

(k+1)n
2

+o(n)

k ≥ l ≥ 1(∗)

JS(k, l) DS∗(k, l)

. . .. . .
k l

’

. . . . . .
lk

nmax(kn
2

, (l+1)n
2

)+o(n) n
(k+1)n

2
+o(n)

k ≥ l ≥ 1 or k ≥ 1, l = 0(∗),

JS∗(k, l)

. . .. . .
k l

nmax(kn
2

, (l+1)n
2

)+o(n) n
(k+2)n

2
+o(n)

k ≥ l ≥ 1 or k ≥ 1, l = 0

’ ’ ’ ’ nn+o(n)

n
3n
2

+o(n) 2o(n2)

AAll other bipartite graphsA 2Ω(n
6
5 ) 2o(n2)

Figure 4.3 Bounds obtained for the second and third problems

(∗) SI(0, l), DS(k, 0) and DS∗(k, 0) apply only to the second problem.
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4.2 Fixed bipartitions

In this section we obtain bounds on Forbm,n(H[W,Z]) for all but a few

exceptional graphs H. This section contains most of the work: we will

deduce results on Forbn(H[W,Z]) and Freen(H) from these bounds.

4.2.1 Short cycles

Most bipartite graphs have either a short cycle in the graph or a short cycle

in the bipartite complement: we deal with these bipartite graphs now. We

do not need to work hard for these results: but this is mainly because we

accept quite crude bounds.

First we show that there are many graphs which do not contain short cycles.

We make use of a geometric construction of Benson [9] showing that there

exists a bipartite graph with large girth and many edges.

Theorem 4.2. For q an odd power of 3, there exists a bipartite graph Bq

with q5 + q4 + q3 + q2 + q + 1 vertices in each part, regular of degree q + 1,

which has girth 12.

We can now easily deduce the following corollary.

Corollary 4.3. There are 2Ω(m
6
5 ) bipartite graphs with bipartitions whose

parts are of sizes m, n = Theta(m), which are connected, whose bipartite

complements are connected, and which have girth at least 12.

Proof. Let q be the greatest odd power of 3 such that q5 +q4 +q3 +q2 +q+1

is not larger than either m or n. Then let G[X,Y ] be a graph obtained by

adding sufficient vertices to the graph Bq given by Theorem 4.2 to ensure

that the parts are of sizes m and n respectively, and sufficient edges to ensure

that G[X,Y ] is connected, while creating no new cycles. This graph has at

least q6 = Ω(m
6
5 ) edges, and girth 12. It is trivial to check that G[X,Y ]

must have connected bipartite complement. Let T be a spanning tree of

G[X,Y ]. Then every spanning subgraph of G[X,Y ] which preserves the

edges of T has girth at least 12, is connected, and has connected bipartite

73



Chapter 4. Forbidden induced bipartite graphs

complement. There are at least q6 −m− n + 1 = Ω(m
6
5 ) edges of G[X,Y ]

which are not edges of T , and hence there are 2Ω(m
6
5 ) such graphs.

Although we do not need the connectedness part of the above corollary at

this stage, it will be useful in a later section.

Corollary 4.3 provides a lower bound on Forbm,n(H) for all H which contain

a cycle of length less than 12, or whose bipartite complement contains such

a cycle. The following corollary allows us to list all the H which do not fall

into that category.

Corollary 4.4. If H = H[U, V ] is a bipartite graph on at least eight vertices,

both of whose parts contain at least three vertices, and n = Θ(m), then

Forbm,n(H) = 2Ω(m
6
5 ) .

Proof. If H contains a cycle, then either the shortest cycle in H is of length

at most 8, or the bipartite complement of H contains a 4-cycle.

But if H is acyclic, then it has at most |H| − 1 edges, so its bipartite

complement has at least 3(|H| − 3) − |H| + 1 = 2|H| − 8 > |H| − 1 edges

and must have a smallest subgraph which is a cycle; since H is acyclic this

cycle is of length at most 8.

Therefore either H or its bipartite complement contains a cycle of length

at most 8, and either the graphs given by Theorem 4.3 all do not contain a

copy of H, or their bipartite complements all do not contain a copy of H.

In either case, we obtain the given bound.

We now have to deal only with those H whose smaller part has zero, one or

two vertices, together with a small number of exceptional cases on six and

seven vertices. The various possibilities are set out in Table 4.2.

4.2.2 Acyclic families

Trivially if one part of H is empty, then for sufficiently large m, n,

Forbm,n(H) = 0.
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If one part of H contains exactly one vertex, then H = SI(k, l) for some

k, l.

Theorem 4.5. For n = Θ(m), Forbm,n(SI(k, l)) = mmax(k−1,l−1)m+o(m).

Proof. A graph G with bipartition (X,Y ) which does not contain a copy of

SI(k, l) is precisely one in which every vertex in X is either adjacent to at

most k− 1 vertices in Y , or to all but at most l− 1 vertices in Y . There are

((

n

0

)

+ . . . +

(

n

k − 1

)

+

(

n

n− l + 1

)

+ . . . +

(

n

n

))m

= mmax(k−1,l−1)m+o(m)

such graphs (note that n = Θ(m), so that nm = mm+o(m)).

We now consider bipartite graphs H = H[W,Z] with two vertices in the

lower part W . These graphs require the most work.

Observe that if the two vertices in the lower part have more than one com-

mon neighbour, or there are two isolated vertices in the upper part, then

either H or its bipartite complement contains a cycle and so Theorem 4.3

gives us a lower bound on Forbm,n(H).

Therefore we need to find bounds for the four infinite families of bipartite

graphs DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l) (see Table 4.2). Note that

the bipartite complement of JS(k, l) is DS∗(k, l), so that the bounds which

we find for the former give immediately bounds for the latter.

Observe that if G[X,Y ] does not contain a copy of DS(k, l), l < k, then it

certainly contains no copy of DS(k, k), so that it suffices to bound above

Forbm,n(DS(k, k)).

Theorem 4.6. For n = Θ(m), Forbm,n(DS(k, k)) ≤ mkm+n+o(m).

Proof. We describe a process for recording information sufficient to recon-

struct a bipartite graph G[X,Y ] containing no copy of DS(k, k).

Choose any order x1, x2, . . . , xm on X such that d(xi) ≤ d(xj) for every

1 ≤ i < j ≤ m.

It is obvious that G contains no copy of DS(k, k) if and only if

|Γ(xi) − Γ(xj)| ≤ k − 1 for each i ≤ j.
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For each 2 ≤ i ≤ m, let Uxi
= Γ(xi−1)−Γ(xi), and let Vxi

= Γ(xi)−Γ(xi−1).

Let Ux1 = ∅, and Vx1 = Γ(x1).

We call the sets Uxi
and Vxi

the removed set and added set at xi.

It is clear that the following information, the basic recording of G, is sufficient

to reconstruct G:

(X,Y )

[Vx1, x1, Vx2 , x2, . . . , Vxm , xm]

[Ux1 , Ux2, . . . , Uxm ]

where we write out the elements of each of the sets in the standard order. We

call the first list [Vx1 , x1, . . .] the list of vertices, and the second list [Ux1 , . . .]

the list of removals.

Observe that the list of vertices is of length at most m+n+ (k− 1)m, since

n ≥ |Γ(xm)| =
∑

i(|Vxi
| − |Uxi

|) ≥∑i |Vxi
| − (k − 1)m.

This is already sufficient to give

Forbm,n(DS(k, k)) ≤ 2m+n(m+ n)km+n

(

n

k − 1

)m−1

= m(2k−1)m+n+o(m) ,

despite only using the fact that consecutive members xi, xi+1 of X may not

be the lower part of a copy of DS(k, l).

In fact, no two members of X are the lower part of a copy of DS(k, k).

We can use this to show that, given the list of vertices, there are not

m(k−1)m+o(m) choices for the list of removals, but only mo(m). Suppose

that y appears in a removed set at some vertex between xi+1 and xj , i < j,

in the degree sequence order, but not in any added set at those vertices.

Then y is adjacent to xi but not to xj . Since xi and xj are not the lower

part of a copy of DS(k, k), |Γ(xi) − Γ(xj)| ≤ k − 1. So we expect to find

that most members of removed sets must also be members of added sets at

nearby vertices in the degree sequence order.

We compress the information given in the removed sets Uxi
. Suppose that y

is the jth member of the removed set at the vertex xi. We define a reference

tag Rxi,j as follows.

If there is a p, − logm ≤ p ≤ logm, such that the entry p after xi in the

list of vertices is y, then let Rxi,j = V :p. We say that the reference tag is a
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good reference tag.

If there is no such p, then let Rxi,j = P :y. We say that this is a bad reference

tag.

We now write out the compressed recording of G:

(X,Y )

[Vx1, x1, Vx2 , x2, . . . , Vxm , xm]

[(Rx1,1, Rx1,2, . . .), (Rx2,1, Rx2,2, . . .), . . .]

It is clear that this recording gives enough information to reconstruct the

basic recording, and hence G.

We will now show that for any G[X,Y ] with no copy of DS(k, k), there are

few bad reference tags.

We divide X into blocks A1, . . . as follows. Let A1 = {x1, x2, . . . , xa} where

xa is within distance logm of x1 in the list of vertices, but xa+1 is not. Let

A2 = {xa+1, . . . , xb}, where xb is within distance logm of xa+1 in the list of

vertices, but xb+1 is not, and so on. Since the list of vertices is of length at

most km+ n, there are at most ⌈km+n
log m ⌉ blocks.

Suppose that Rxi,j = P :y is a bad reference tag: so y is in the removed set

at xi, but it does not appear in the list of vertices within logm of xi. If

xi ∈ Ar = {xc, . . . , xd}, then y does not appear in an added set at any of

xc+1, . . . , xd. If xi 6= xc, then y is adjacent to xc, but not to xd. If there

were k bad reference tags among those at vertices xc+1, . . . , xd then there

would be k vertices in Y adjacent to xc and not to xd. This would mean

that |Γ(xc) − Γ(xd)| ≥ k, so {xc, xd} would be the lower part of a copy of

DS(k, k). Therefore there can be at most 2(k − 1) bad reference tags per

block (at most k−1 at the first vertex in the block, and at most k−1 among

those at the remaining vertices). Therefore there are at most 2k(km+n)
log m bad

reference tags.

There are (1 + 2 logm) possible good reference tags, and n possible bad

ones. Therefore we can bound above the number of possible compressed

recordings by

2m+n(m + n)km+n2(k−1)m(1 + 2 logm)(k−1)mn
2k(km+n)

log m
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so Forbm,n(DS(k, k)) ≤ mkm+n+o(m) as required.

The upper bound in Theorem 4.6 gives the correct speed.

Theorem 4.7. For n = Θ(m), Forbm,n(DS(k, k)) = mkm+n+o(m).

Proof. We have the upper bound already; we construct a family of graphs

which is of sufficient size.

Let X = {1, . . . ,m}, Y = {m + 1, . . . ,m + n}. Let X0 = {1, . . . , ⌊ n
log m⌋}.

Let Y0 = {m + 1, . . . ,m+ ⌊ m
log m⌋}.

Partition X−X0 into sets X1,X2, . . ., each (except possibly the last) of size

⌊logm⌋. We can obtain such a partition by taking any order on X − X0,

which has size m−⌊ m
log m⌋, and letting X1 be the first ⌊logm⌋ vertices in that

order, X2 the next ⌊logm⌋, and so on. There are
(

m− ⌊ m
log m⌋

)

! = mm−o(m)

ways to order X −X0. The number of distinct orders which generate each

partition is |X1|!|X2|! . . . ≤ ⌊logm⌋!⌊
m

log m
⌋+1

= mo(m). Therefore there are

mm−o(m) such distinct partitions.

Partition Y − Y0 into sets Y1, Y2, . . ., each (except possibly the last) of size

⌊logm⌋. Similarly, there are nn−o(n) ways to do this.

Choose, for each vertex xi in X −X0, a set Ni of k − 1 vertices in Y − Y0.

There are n
(k−1)

�
(m−⌊ m

log m
⌋
�
−o(m)

= m(k−1)m+o(m) ways to do this.

Construct a bipartite graph G[X,Y ] as follows. Put an edge from each

i ∈ X0 to each vertex in Y0 ∪ Y1 ∪ . . . ∪ Yi−1. Put an edge from each

m + i ∈ Y0 to each vertex in X0 ∪X1 ∪ . . . ∪Xi−1. Put an edge from each

i ∈ X −X0 to each vertex in Ni.

Observe that whatever choices were made, G does not contain a copy of

DS(k, k). Furthermore, different choices imply different G. Therefore

Forbm,n(DS(k, k)) = mkm+n+o(m) as required.

Observe that if the recording method described in Theorem 4.6 were applied

to a typical graph G[X,Y ] constructed as in Theorem 4.7, then given any

ǫ > 0 we would find the following.

There are no sets Vx of size greater than ǫn.
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The list of vertices is of length at least (k − ǫ)m + n.

There are at most ǫm vertices in X with any given degree.

There are at least m1−ǫ different vertex degrees in X.

It is easy to check, by considering the recording method, that given ǫ > 0,

the speed of graphs G[X,Y ] which do not contain a copy of DS(k, k) and

which fail to satisfy any of the above conditions is at most mkm+n−ǫ′m+o(m),

slower than the speed of Forbm,n(DS(k, k)). In the first two cases, this is

because there are not enough possibilities for the list of vertices, and in the

last two, because there are mǫm distinct orderings of X by increasing degree,

so that each graph can be recorded in mǫm different ways. So the graphs

constructed in Theorem 4.7 are in some sense typical.

Since K1,k = SI(k, 0) is an induced subgraph of DS(k, l), any G[X,Y ] which

does not contain SI(k, 0) does not contain DS(k, l), so we have the lower

bound Forbm,n(DS(k, l)) ≥ m(k−1)m+o(m). It is trivial to check that in the

case k ≥ 2, l = 0, this lower bound gives the correct speed.

Note that, if 1 ≤ l ≤ k−1, since DS(l, l) is an induced subgraph of DS(k, l),

the construction in Theorem 4.7 gives a lower bound

Forbm,n(DS(k, l)) ≥ mmax(lm+n,(k−1)m)+o(m) .

When l = k − 1 this bound is certainly better than the above, and it seems

reasonable to conjecture that it is correct.

We now examine JS(k, l). We will obtain an upper bound by modifying

the argument used in Theorem 4.6; again we will find an upper bound on

Forbm,n(JS(k, k)) and observe that as JS(k, l) is an induced subgraph of

JS(k, k) when k ≥ l, this gives an upper bound for Forbm,n(JS(k, l)).

Theorem 4.8. For n = Θ(m), Forbm,n(JS(k, k)) ≤ mkm+n+o(m).

Proof. Again we will describe a process for recording bipartite graphsG[X,Y ]

which contain no copy of JS(k, k). Observe that if we have some guarantee

that some vertices in X share a common neighbour in Y , then we can apply

the same recording procedure as in Theorem 4.6 to these vertices.
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Observe that G[X,Y ] contains no copy of JS(k, k) if and only if whenever

a pair of vertices x, x′ ∈ X share a common neighbour, with d(x) ≤ d(x′),

so |Γ(x) − Γ(x′)| ≤ k − 1.

It is convenient to record the graph G in several steps. First we find a way

to record the neighbours of the set Q of vertices in X which have at most

log logm neighbours.

We do this as follows. First we construct a set P ⊂ Q by reading through

the vertices in Q in order of decreasing degree, and choosing for P every

vertex whose neighbourhood is disjoint from all those previously chosen.

Now any two vertices in P have disjoint neighbourhoods, and if q ∈ Q− P ,

then there is a p ∈ P whose neighbourhood intersects that of q and which

has d(p) ≥ d(q).

Let Γ(P ) be the set of vertices in Y which are neighbours of at least one

vertex in P . Then we can record the neighbours of each vertex in P by

writing down Γ(P ) and the partition of Γ(P ) into the sets Γ(p) for p ∈ P .

Now let q be in Q−P . There is p ∈ P with d(p) ≥ d(q) and such that p and

q share at least one neighbour. Then |Γ(q)−Γ(p)| ≤ k−1, since {p, q} is not

the lower part of a copy of JS(k, l). So we can record the neighbours of q

by writing down the vertex p, the neighbours of p which are also neighbours

of q, and the at most k− 1 vertices in Γ(q)−Γ(p). This does not require us

to have the vertices in Q− P in any particular order, so we can record the

set Q− P by simply choosing them from X.

So we can record the neighbours of all the vertices in Q in at most

2nm|Γ(P )|2m
(

m2log log mnk−1
)|Q−P |

= mk|Q|+|Γ(P )|−k|P |+o(m)

ways.

Now we record the neighbours of the remaining vertices X ′ = X −Q, each

of which has degree at least log logm > 2k − 1.

We choose a set of vertices S1 ⊂ X ′ by reading through X ′ in order of

increasing degree, and choosing for S1 every vertex whose neighbours are

disjoint from all those previously chosen. Let X1 = X ′−S1. Now S1 satisfies

three properties. First, no two vertices in S1 share a common neighbour.
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Second, every vertex in X1 shares at least one common neighbour with some

vertex in S1. Third, for every x ∈ X1, there is an s ∈ S1 which shares a

common neighbour with x and satisfies d(s) ≤ d(x).

Observe that since G[X,Y ] contains no copy of JS(k, k) and all vertices in

X ′ have degree at least log logm > 2k−1, these three properties imply that

for every x ∈ X1, every s ∈ S1 which shares a common neighbour with x

satisfies d(s) ≤ d(x). For if not, then let s ∈ S1 be a vertex sharing a common

neighbour with x and with d(x) < d(s). Since x shares a neighbour with, and

has degree not smaller than, some s′ ∈ S1, we must have |Γ(s′)−Γ(x)| ≤ k−1

or {x, s′} would be the bottom part of a copy of JS(k, k). Then x has at

least k neighbours in common with s′, none of which are neighbours of s. So

|Γ(x)−Γ(s)| ≥ k, but then {x, s} are the bottom part of a copy of JS(k, k).

We assign to the vertices in X ′ removed sets and added sets Ux, and Vx by

following the process below.

For each s ∈ S1, let Us = ∅ and let Vs = Γ(s).

Let x1 be a vertex in X1 with minimum degree. We distinguish two possi-

bilities.

If x1 shares a common neighbour with only one s1 ∈ S1, then d(x1) ≥ d(s1)

and we can write Γ(x1) = (Γ(s1) − Ux1) ∪ Vx1, where as before we have

|Vx1 | ≥ |Ux1 | ≤ k− 1. We let S2 = (S1 −{s1})∪ {x1}, and X2 = X1 −{x1}.

We say that x1 is part of the degree sequence process starting at s1.

If x1 shares a common neighbour with more than one member of S, then let

these members be s1, . . . , sa. Let Ux1 = (Γ(s1)∪Γ(s2)∪ . . .∪Γ(sa))−Γ(x1),

and let Vx1 = Γ(x1) − (Γ(s1) ∪ . . . ∪ Γ(sa)). Observe that |Ux1 | ≤ a(k − 1),

since none of the sets Γ(si) − Γ(x) have more than k − 1 members. We let

S2 = (S1−{s1, . . . , sa})∪{x1}, and X2 = X1−{x1}. We say that the vertex

x1 joins the neighbourhoods of the vertices s1, . . . , sa.

By construction, no two vertices in S2 share a common neighbour. If x ∈ X2

shares a common neighbour with s ∈ S2, then either s ∈ S1, in which case

d(x) ≥ d(s), or s = x1, in which case d(x) ≥ d(s) by choice of x1. If x ∈ X2,

then x shares a common neighbour with s ∈ S1. Either s ∈ S2, or s shares

a common neighbour with x1. In the latter case, both x and x1 have degree
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Ux
Vx

Uy Uy Uy

Vy

a x b c dy

Figure 4.4 x follows a in a degree sequence process; y joins the

neighbourhoods of b, c and d.

at least d(s) > log logm > 2k − 1, so that x and x1 are each adjacent to all

but at most k− 1 neighbours of s, and so must share a common neighbour.

Therefore S2 and X2 satisfy the same conditions as S1 and X1, so we can

continue this process with x2, a vertex in X2 with minimum degree, and the

set S2, and so on.

If we know that x follows a in a degree sequence process, then we can recover

the neighbours of x given Γ(a), Ux and Vx.

If we know that y joins the neighbourhoods of b, . . . , d, then we can recover

the neighbours of y given Γ(b), . . . ,Γ(d), Uy and Vy.

Then we can write down a recording of G[X,Y ] as in the following example.

(X,Y )

Recording of the low degree vertices and their neighbours

[Vs1, s1, Vx1 , x1, . . .]

[Us1, Ux1 , . . .]

. . .

[Vs|S1|
, s|S1|, . . .]

[Us|S1|
, . . .]

JOIN :b, . . . , d

[Vy, y, . . .]

[Uy, . . .]

JOIN : . . .

. . .

Each of the pairs of lines [Vs1 , s1, Vx1 , x1, . . .], [Us1 , Ux1 , . . .] et cetera repre-

sents a degree sequence process as in Theorem 4.6; so the neighbourhood
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of s1 is Vs1, the neighbourhood of x1 is Γ(s1) ∪ Vx1 − Ux1 , and so on. The

ordering of the degree sequence processes is immaterial.

Each triple of lines JOIN :b, . . . , d, [Vy, y, . . .], [Uy, . . .] et cetera represents a

new degree sequence process; in the example, the first vertex in this degree

sequence process is y, whose neighbourhood is (Γ(b)∪ . . .∪Γ(d))−Uy)∪Vy.

Again the ordering of these triples is immaterial.

As in Theorem 4.6 we call the lists [Vs1 , s1, Vx1 , x1, . . .] et cetera the lists of

vertices and the lists [Us1 , Ux1 , . . .] et cetera the lists of removals.

It is clear that we can reconstruct G from such a recording; we call this the

basic recording of G.

Observe that |S1| ≤ n
log log m , since every member of S1 has at least log logm

neighbours. If Si+1 is obtained from Si by joining the neighbourhoods of j

vertices, then |Si+1| = |Si| + 1 − j. Since |S1| ≤ n
log log m , the total number

of neighbourhoods joined is at most 2n
log log m .

Let Γ(X ′) be the set of vertices in Y which are adjacent to at least one

vertex in X ′. The neighbourhoods of the vertices in Si are disjoint for each

i; so the sum of their sizes is at most |Γ(X ′)| ≤ n. Observe that whether

Si+1 is obtained from Si by letting xi continue a degree sequence process or

by letting it join some neighbourhoods,

∑

s∈Si+1

|Γ(s)| = |Vxi
| − |Uxi

| +
∑

s∈Si

|Γ(s)| .

Now |Uxi
| ≤ k−1 if xi continues a degree sequence process; if xi joins some r

neighbourhoods then |Uxi
| ≤ r(k−1). Since at most 2n

log log m neighbourhoods

are joined in total,

∑

x∈X′

|Vx| ≤ |Γ(X ′)| + (k − 1)|X ′| +
2kn

log logm
.

It follows that the total length of the lists of vertices is at most

|Γ(X ′)| + k|X ′| + 2kn
log log m , and the total length of the lists of removals is

at most (k − 1)|X ′| + 2kn
log log n . The total number of vertices whose neigh-

bourhoods are joined (and which are therefore listed on some JOIN : line in

the recording) is at most 2n
log log m .
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This is already sufficient to give

Forbm,n(JS(k, l)) ≤ 2m+nmk|Q|+|Γ(P )|−k|P |+o(m)(m+ n)
|Γ(X′)|+k|X′|+ 2kn

log log m

. . . n
(k−1)|X′|+ 2kn

log log nm
2n

log log m
+o(m)

= mk|Q|+|Γ(P )|−k|P |+|Γ(X′)|+(2k−1)|X′|+o(m) ≤ m(2k−1)m+2n+o(m) .

As in Theorem 4.6, we expect to find that vertices appearing in Uxi
are

likely to appear in Vxj
for some xj close to xi in the same degree sequence

process. We can make this precise by applying a virtually identical com-

pression argument. We define the reference tag Rxi,j in the same way as in

that theorem, with reference to the list of vertices which contains xi.

We can again divide X ′ into blocks, with each block containing vertices in

just one degree sequence process. If a block starts at a vertex x which joins

the neighbourhoods of r vertices, then it may contain at most k−1+r(k−1)

bad reference tags; otherwise a block may contain at most 2(k − 1) bad

reference tags.

The total length of the lists of vertices is less than 2(km+ n), so that there

are at most 2(km+n)
log m + 2n

log log m blocks, the extra 2n
log log m coming from possible

‘short’ blocks at the ends of degree sequence processes. Therefore there are

at most 3n
log log m bad reference tags in total.

As in Theorem 4.6, we can now write the compressed recording of G, where

instead of writing the lists of removals [Ux, . . .] et cetera, we write lists of

reference tags [(Rx,1, . . .), . . .] et cetera.

This allows us to improve our bound for Forbm,n(JS(k, l)); instead of bound-

ing above the choices for the lists of removals by m(k−1)|X′|+o(m), we can now

bound above the choices for the lists of removals by mo(m). We find that

Forbm,n(JS(k, l)) ≤ mk|Q|+|Γ(P )|−k|P |+|Γ(X′)|+k|X′|+o(m) ≤ mkm+2n+o(m) .

Finally, we wish to obtain the claimed bound. We use our knowledge of the

neighbours of vertices in P to produce an extra-compression of the lists of

vertices.

For each p ∈ P , either we can find an xp ∈ X ′ which is the first vertex in the

lists of vertices to share a common neighbour with p, or Γ(p) ∩ Γ(X ′) = ∅.
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Let P1 be the set of vertices p ∈ P for which xp exists, and P2 = P − P1 be

the vertices whose neighbourhoods are disjoint from Γ(X ′).

For each p ∈ P1, let Ip,xp = Γ(p) ∩ Γ(xp). Since d(xp) > log logm ≥ d(p),

|Ip,xp| ≥ |Γ(p)| − (k − 1).

For each x ∈ X ′, if x 6= xp for every p ∈ P1, let V ′
x = Vx. If x = xp for at

least one p, let

V ′
x = Vx −

⋃

p:x=xp

Ip,xp .

We write down the extra-compressed recording of G as in the following ex-

ample.

{X,Y }
Recording of the low degree vertices and their neighbours

[Ip1,xp1
, xp1 , Ip2,xp2

, xp2, . . .]

[V ′
s1
, s1, V

′
x1
, x1, . . .]

[(Rs1,1, . . .), . . .]

. . .

[V ′
s|S1|

, s|S1|, . . .]

[(Rs|S1|
,1, . . .), . . .]

JOIN :b, . . . , d

[V ′
y , y, . . .]

[(Ry,1, . . .), . . .]

JOIN : . . .

. . .

where P1 = {p1, p2, . . .} with p1 < p2 < . . . in the standard order. We can

clearly recover the compressed recording of G from this; we have only to in-

sert each of the sets Ipi,xpi
into the identified V ′

xpi
. Therefore Forbm,n(JS(k, l))

is bounded above by the number of possible extra-compressed recordings.

We now wish to find the total length of the lists of vertices in the extra-

compressed recording of G[X,Y ]. Recall that

∑

x∈X′

|Vx| ≤ |Γ(X ′)| + (k − 1)|X ′| +
2kn

log logm
.
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Observe that

∑

x∈X′

|V ′
x| =

∑

x∈X′

|Vx| −
∑

p∈P1

|Ip| ≤
∑

x∈X′

|Vx| + (k − 1)|P1| −
∑

p∈P1

|Γ(p)| ,

and

|Γ(X ′)| ≤ n−
∑

p∈P2

|Γ(p)| .

Then the total length of the lists of vertices in the extra-compressed record-

ing is at most |X ′| + n+ (k − 1)|P | −∑p∈P |Γ(p)| + (k − 1)|X ′| + 2kn
log log m .

The list of insertions [Ip1,xp1
, xp1, . . .] can be chosen in at most

(

2
(

log log n
k−1

)

m
)|P |

= m|P |+o(m) ways.

Finally, we can obtain the claimed bound:

Forbm,n(JS(k, l)) ≤

2m+nmk|Q|+|Γ(P )|−k|P |+o(m)m|P |+o(m)mk|X′|+n+(k−1)|P |−|Γ(P )|+o(m)

≤ mkm+n+o(m) .

As DS(k, k) is an induced subgraph of JS(k, k), the family of graphs given

in Theorem 4.7 provides a lower bound for JS(k, k) which matches the upper

bound, so Forbm,n(JS(k, k)) = mkm+n+o(m).

Corollary 4.9. For n = Θ(m), Forbm,n(DS∗(k, l)) ≤ mkm+n+o(m).

Proof. The bipartite complement of DS∗(k, l) is JS(k, l). It follows that we

have Forbn,m(DS∗(k, l)) = Forbn,m(JS(k, l)) ≤ mkm+n+o(m).

Again we observe that Forbm,n(DS∗(k, k)) = mkm+n+o(m).

Corollary 4.10. For n = Θ(m), Forbm,n(JS∗(k, l)) ≤ mkm+2n+o(m).

Proof. Let G = G[X,Y ] be a bipartite graph not containing JS∗(k, l).

Let Y ′ be Y if |Y | is odd, and Y − {y}, some y ∈ Y , if |Y | is even.

Let X ′ be the vertices in X with less than |Y ′|
2 neighbours in Y ′, and X ′′

those with more than |Y ′|
2 neighbours in Y ′. Let m′ = |X ′|, and m′′ = |X ′′|.
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Observe that the neighbourhoods of any two vertices in X ′ cover at most

|Y ′| − 1 vertices. Therefore the subgraph of G[X,Y ] induced by X ′ ∪ Y ′

contains no copy of JS(k, l). Similarly, the subgraph of G[X,Y ] induced by

X ′′ ∪ Y ′ contains no copy of DS∗(k, l). We obtain

Forbm,n(H) ≤ m2n2m(m′)km′+n+o(m′)(m′′)km′′+n+o(m′′) ≤ mkm+2n+o(m) .

4.3 Unfixed bipartitions

We have now established good bounds on Forbm,n(H[U, V ]) for every bipar-

tite graph H[U, V ] except for the six exceptional graphs. It is convenient to

use these bounds to find good bounds on Forbn(H[U, V ]) and Freen(H) at

this point.

Note that if G is a bipartite graph which has a bipartition (X,Y ), then the

statement that no bipartition of G contains a copy of H[U, V ] is certainly

at least as strong as the statement that both G[X,Y ] contains no copy of

H[U, V ] and G[Y,X] contains no copy of H[U, V ]. Then it is trivial that

Freen(H) ≤ Forbn(H[U, V ])

≤ 2n max
r<n

min(Forbr,n−r(H[U, V ]),Forbn−r,r(H[U, V ])) , (4.1)

so that we can obtain an upper bound for Forbn(H[U, V ]) by finding the

worst case of min(Forbr,n−r(H[U, V ]),Forbn−r,r(H[U, V ])), and an upper

bound for Freen(H) by finding the best case of Forbn(H[U, V ]). We will

see that these cases are, respectively, the case r = n
2 and H as drawn in

Table 4.2.

Observe that the condition ‘G with any bipartition does not contain a copy

of H with any bipartition’ is in general significantly stronger than ‘G[X,Y ]

does not contain a copy of H[U, V ]’, so we might expect the upper bounds

obtained from the above inequality to be poor. This is not the case.

Theorem 4.11. If H contains a cycle, or all of its bipartite complements

contain a cycle, then Freen(H) = 2Ω(n
6
5 ). If H[U, V ] or its bipartite comple-

ment contains a cycle then Forbn(H[U, V ]) = 2Ω(n
6
5 ).

87



Chapter 4. Forbidden induced bipartite graphs

Proof. If H contains a cycle or all of its bipartite complements contain a cy-

cle, then either it has girth at most eight, or all of its bipartite complements

have girth at most eight. By Corollary 4.3 there are 2Ω(n
6
5 ) bipartite graphs

on n vertices which are connected, have connected bipartite complement

and girth at least 12. In the first case, all of these graphs contain no copy of

H; in the second case, the unique connected bipartite complement of each

of these graphs contains no copy of H.

We now have only to establish appropriate lower bounds on Freen(H) for

the five infinite families SI(k, l), DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l)

to match those we have for Forbm,n(H[U, V ]). Again, we observe that both

SI(k, 0) and DS(l, l) are induced subgraphs of each of DS(k, l), DS∗(k, l),

JS(k, l) and JS∗(k, l) for l ≤ k; so it suffices to find lower bounds on

Freen(H) for SI(k, l) and DS(k, k).

Theorem 4.12. For any fixed r, there are at least n
rn
2

+o(n) bipartite graphs

whose maximum degree is r and in which no two vertices have three or more

common neighbours.

Proof. Let G be a bipartite graph on n vertices obtained by choosing uni-

formly at random r matchings from {1, . . . , ⌊n
2 ⌋} to {⌊n

2 ⌋ + 1, 2⌊n
2 ⌋} and

putting an edge in G whenever that edge is present in any of the r match-

ings.

We call x, y a problem pair if x and y have at least three common neighbours.

The probability that a given pair of vertices x, y ≤ n
2 is a problem pair is at

most
r
∑

i=3

(

r

i

)(

2r

n

)i

,

so the expected number of problem pairs in G is at most 2
(⌊n

2
⌋

2

)

times that.

For sufficiently large n, this quantity is smaller than 1
2 , so there are at least

⌊n
2 ⌋!r
2

= n
rn
2

+o(n)

choices of r matchings which give rise to graphs G with no problem pairs.

Now given such a graph G, each of the at most rn
2 edges is present in some
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subset of the r matchings, so there are at most (2r)rn/2 = no(n) distinct sets

of r matchings giving rise to G. Thus we have at least n
rn
2

+o(n) distinct

graphs G with maximum degree r and no two vertices having three or more

common neighbours, as required.

Corollary 4.13.

Freen(SI(k, l)) = nmax(
(k−1)n

2
,
(l−1)n

2
)+o(n) ,

and

Forbn(SI(k, l)) = nmax( (k−1)n
2

, (l−1)n
2

)+o(n) .

Proof. The upper bound follows from Theorem 4.5 and the inequality (4.1),

since

Forbn
2

, n
2
(SI(k, l)) = nmax( (k−1)n

2
, (l−1)n

2
)+o(n)

is the worst case.

For the lower bound, if k ≥ l, by Theorem 4.12 we can find n
(k−1)n

2
+o(n)

bipartite graphs which have maximum degree k − 1 and which therefore do

not contain a copy of SI(k, l) with any bipartition. If on the other hand

k < l, then again by Theorem 4.12 we can find n
(l−1)n

2
+o(n) bipartite graphs

which have maximum degree l−1 and in which no two vertices have three or

more common neighbours. Now observe that although SI(k, l) has several

bipartitions, and hence several bipartite complements, all of the bipartite

complements of SI(k, l) have either a vertex of degree l or two vertices

sharing three common neighbours. So there are n
(l−1)n

2
+o(n) bipartite graphs

which do not contain a copy of any of the bipartite complements of SI(k, l),

and there must be n
(l−1)n

2
+o(n) bipartite graphs which do not contain a copy

of SI(k, l). This gives us the required inequality

nmax(
(k−1)n

2
,
(l−1)n

2
)+o(n) ≤ Freen(SI(k, l))

≤ Forbn(SI(k, l)) ≤ nmax( (k−1)n
2

, (l−1)n
2

)+o(n) .

We now have only to bound Freen(DS(k, k)). We use a similar construction

to that in Theorem 4.7.
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Theorem 4.14. Freen(DS(k, k)) = n
(k+1)n

2
+o(n).

Proof. The upper bound follows from the inequality (4.1) and Theorem 4.6.

For the lower bound, let X = {1, . . . , ⌊n
2 ⌋}, Y = {⌊n

2 ⌋ + 1, . . . , n}. Let

X0 = {1, . . . , ⌊ n
2 log n⌋}. Let Y0 = {⌊n

2 ⌋ + 1, . . . , ⌊n
2 ⌋ + ⌊ n

2 log n⌋}.

Partition X−X0 into sets X1,X2, . . ., each (except possibly the last) of size

⌊log n⌋. As in Theorem 4.7, there are n
n
2
−o(n) such distinct partitions.

Partition Y − Y0 into sets Y1, Y2, . . ., each (except possibly the last) of size

⌊log n⌋. Similarly, there are n
n
2
−o(n) ways to do this.

By Theorem 4.12 there are n
(k−1)n

2
+o(n) bipartite graphs with bipartition

{X −X0, Y − Y0} whose maximum degree is k − 1.

Construct a bipartite graph G as follows. Put an edge from each i ∈ X0

to each vertex in Y0 ∪ Y1 ∪ . . . ∪ Yi−1. Put an edge from each m + i ∈ Y0

to each vertex in X0 ∪ X1 ∪ . . . ∪ Xi−1. Put edges between X − X0 and

Y − Y0 in any way such that the maximum degree of the subgraph induced

by (X −X0) ∪ (Y − Y0) is at most k − 1.

Observe that, whatever choices were made, G does not contain a copy of

DS(k, k) with any bipartition. Furthermore, different choices imply different

G. Therefore Freen(DS(k, k)) = n
(k+1)n

2
+o(n) as required.

4.4 Exceptional graphs

The only bipartite graphs which we have not yet covered are those with

three vertices in the smaller part which are acyclic and whose bipartite

complements are acyclic. These are graphs on either six or seven vertices,

shown in Table 4.5.

, , , , ,

P6 P6 Star1,2,2 Star1,2,2 P7 Star1,2,3

Figure 4.5 Exceptional bipartite graphs

Note that the first pair of these are bipartite complements of each other, as
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are the second pair; the last two are both self-complementary.

Each of these exceptional bipartite graphs contains the graph P4, so that

we have trivial lower bounds for each exceptional H. The graph P7 contains

DS(2, 2), so that for this graph we have slightly better lower bounds.

For the first problem, if H is any exceptional graph except P7 we have

Forbm,n(H) ≥ Forbm,n(P4) = mm+n+o(m). We will show that these lower

bounds are correct for the graphs P6 and P6. We have

Forbm,n(P7) ≥ m2m+n+o(m) .

For the second and third problems, if H is any exceptional graph except P7

we have Forbn(H) ≥ Forbn(P4) = nn+o(n) and Freen(H) ≥ nn+o(n); and we

will show these lower bounds are correct. For P7 we have the better lower

bound Forbn(P7) = Freen(P7) ≥ n
3n
2

+o(n), but we are unable to find any

non-trivial upper bounds.

Thus far, we have examined ways to record a bipartite graph one vertex at

a time. An alternative method is to consider breaking a graph down into

smaller pieces by specified operations. Results along these lines are called

decomposition results, and there exist several relating to bipartite graphs.

Giakoumakis and Vanherpe [38] considered the two operations of bipartite

complement and disjoint union. They defined the class of bi-cographs to be

the class of bipartite graphs which can be fully decomposed using only these

two operations: a single vertex in either part is a bi-cograph, the bipartite

complement of a bi-cograph is a bi-cograph, and the disjoint union of two

bi-cographs is a bi-cograph. They were able to prove that the class of bi-

cographs is exactly the class of bipartite graphs which contain no induced

P7, Star1,2,3 or Sun4, where the graph Sun4 is the bipartite graph on eight

vertices given by taking a copy of C4 and adding a matching from the vertices

of the C4 to the other four vertices.

Fouquet, Giakoumakis and Vanherpe [34] then introduced a further de-

composition operation. Suppose that the bipartite graph G[X,Y ] is such

that there exist non-trivial induced subgraphs G1[X1, Y1] and G2[X2, Y2],

with X = X1 ⊔ X2 and Y = Y1 ⊔ Y2, and the subgraph of G[X,Y ] in-
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duced by (X1, Y2) is a complete bipartite graph, while that induced by

(X2, Y1) is an empty graph. Then we say that G1[X1, Y1], G2[X2, Y2] is

a K+S-decomposition of G[X,Y ]. They called decomposition by using

the three operations of taking bipartite complement, disjoint union and

K+S-decomposition the canonical decomposition of a bipartite graph, and

defined the class of weak-bisplit graphs to be those graphs which can be

fully decomposed using the canonical decomposition. They proved that the

weak-bisplit graphs are exactly those bipartite graphs containing no induced

P7 or Star1,2,3.

A prime bipartite graph is one in which Γ(x) = Γ(y) if and only if x = y.

Lozin [55] was able to prove that the class of prime bipartite graphs which

can be decomposed to K1,3-free graphs using the canonical decomposition

is exactly the class of Star1,2,3-free prime bipartite graphs. We will use this

result to obtain our remaining upper bounds, so we state it explicitly and

give a short proof, based on that of Lozin.

Theorem 4.15. Any prime bipartite graph G[X,Y ] that does not contain

an induced copy of Star1,2,3 can be decomposed, using the three canonical

decomposition operations, to the class of K1,3-free graphs (equivalently, to

the class of paths and cycles).

Proof. We observe that if G[X,Y ] is a bipartite graph, then G[X,Y ] has a

K+S-decomposition if and only if the bipartite complement of G[X,Y ] has

one.

Suppose the theorem is false. Then there is a prime bipartite graph G[X,Y ]

of minimal order which does not contain an induced Star1,2,3 and which does

not satisfy the conditions of the theorem.

Since, by the result of Fouquet, Giakoumakis and Vanherpe, every bipartite

graph that is both Star1,2,3-free and P7-free can be fully decomposed by the

canonical decomposition, G[X,Y ] cannot be P7-free. In particular, we may

assume without loss of generality that the vertices U = (1, 2, 3, 4, 5, 6, 7)

induce a P7, in that order, with 1, 3, 5, 7 ∈ Y and 2, 4, 6 ∈ X. We show,

following the method of Lozin, that since G[X,Y ] is prime and Star1,2,3-free,

the possibilities for edges from a vertex z to any induced P7 are very limited.
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Let V be any ordered set of seven vertices of G[X,Y ] inducing a P7 in that

order. Let T be a subset of 1, 2, 3, 4, 5, 6, 7. Then let SV (T ) be the set of

vertices z ∈ V (G[X,Y ]) − V which are adjacent to the vertices in V at

positions T , and not adjacent to those in V at any other position. We will

write S(T ) for SU (T ).

Now we can easily check that S(3) = S(4) = S(5) = S(1, 5) = S(3, 7) =

S(2, 6) = S(1, 3, 5) = S(3, 5, 7) = ∅, for if there were a vertex z in any of

these sets we would find an induced Star1,2,3 within {1, 2, 3, 4, 5, 6, 7, z}.

Suppose x ∈ S(3, 5). Since G[X,Y ] is prime, x and 4 may not have the same

neighbourhoods, and we can assume without loss of generality that there is

y, not in U , which is adjacent to 4 but not to x. Since S(4) is empty y is

adjacent also to at least one of {2, 6}, and we can quickly check that in any

case {1, 2, 3, 4, 5, 6, 7, x, y} contains an induced Star1,2,3. Then S(3, 5) = ∅,

and by similar methods we can check that S(1, 3) = S(5, 7) = ∅.

Now if x is adjacent to 3 or 5 or both, it must be adjacent also to both 1

and 7.

Suppose y ∈ S(2). Since G[X,Y ] is prime, without loss of generality we can

find x adjacent to 1 but not to y. Observe that (y, 2, 3, 4, 5, 6, 7) also induces

a P7, and so x may not be adjacent to 3 or 5 by the previous results applied

to this new P7. But then {1, 2, 3, 4, 5, x, y} induces a copy of Star1,2,3. So

S(2) = ∅, and similarly S(4) = S(2, 4) = S(4, 6) = ∅.

This leaves only S(∅), S(2, 4, 6), S(1), S(1, 7), S(7), S(1, 3, 7), S(1, 5, 7) and

S(1, 3, 5, 7) as possible non-empty sets. These adjacency results hold for

every induced P7 in G[X,Y ].

Observe that if x ∈ S(1) ∪ S(1, 7) then V = (x, 1, 2, 3, 4, 5, 6) induces a P7,

so S(1, 3, 7) = SV (2, 4) = ∅ = SV (2, 6) = S(1, 5, 7); similarly if x ∈ S(7)

then S(1, 3, 7) = S(1, 5, 7) = ∅.

We consider two cases.

Case 1: S(1, 3, 7) = S(1, 5, 7) = ∅.

We define a set A ⊂ V (G[X,Y ]) recursively as follows. First, U ⊂ A.

Second, if V ⊂ A induces a P7, and z ∈ SV (1) ∪ SV (1, 7) ∪ SV (7), then
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z ∈ A. We can think of the set A as being the vertices of G[X,Y ] which

are covered by starting with the P7 induced by U and moving it along one

vertex at a time.

If z ∈ A has two or more neighbours in A, by construction there is an

induced P7 with vertices in A which includes z and two of its neighbours.

Then z has exactly two neighbours in A, or the adjacency results would be

violated with respect to this P7. Thus A induces a subgraph of G[X,Y ]

which is either a path or a cycle on at least seven vertices.

Now if x ∈ X−A is adjacent to some a ∈ A, then there is a set V ⊂ A which

contains a and induces a P7. Since x /∈ A, x /∈ SV (1) ∪ SV (1, 7) ∪ SV (7).

Therefore x ∈ SV (1, 3, 5, 7) ∪ SV (2, 4, 6). By applying the adjacency results

to each P7 contained in A, we see that x is adjacent to every vertex in A∩Y .

Similarly, if y ∈ Y − A, then y is adjacent either to every vertex, or to no

vertex, in A ∩ X. We let the set of vertices in V (G[X,Y ]) − A which are

not adjacent to any vertices in A be E, and let K = S(1, 3, 5, 7) ∪ S(2, 4, 6).

Then V (G[X,Y ]) = A ∪E ∪K.

Since G[X,Y ] is not K1,3-free, there must be a vertex of G[X,Y ] not in A.

Since G[X,Y ] is not disconnected, if there is a vertex in E there must also

be a vertex in K.

Since G[X,Y ] does not have disconnected bipartite complement, if there is

a vertex in K there must also be a vertex in E. Thus there is at least one

vertex in both E and K.

Recall that G[X,Y ] is a counterexample of minimal order. Then the sub-

graph G′ of G[X,Y ] induced by removing the vertex 1 is not a counterex-

ample. Since vertices of G[X,Y ] not in A which are adjacent to 1 are also

adjacent to 3, G′ must be prime, and G′ is certainly Star1,2,3-free.

Observe that G′ is not K1,3-free, for there is a vertex of degree at least three

in K. Its bipartite complement is not K1,3-free, for there is a vertex in E of

co-degree at least three. It is connected, since there is a vertex in K, and

its bipartite complement is connected, since there is a vertex in E. Thus G′

must have a K+S-decomposition G′
1, G

′
2. But it is not hard to check that
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the bipartite graph P6 does not have a K+S-decomposition, and the vertices

2, 3, 4, 5, 6, 7 in G′ induce a P6. So either G′
1 contains all of these vertices, or

G′
2 does; in either case, we can find G1, G2 containing G′

1, G′
2 respectively

which are a K+S-decomposition of G[X,Y ]. This is a contradiction.

Case 2: there is a vertex x in S(1, 3, 7) ∪ S(1, 5, 7).

Consider the bipartite complement J [X,Y ] of G[X,Y ]. This contains an

induced P7 on the vertices (3, 6, 1, 4, 7, 2, 5) in that order, and the vertex x

in S(1, 3, 7)∪S(1, 5, 7) is adjacent to either 5 or to 3, and to no other vertex

in U . Thus J [X,Y ] is a counterexample of minimal order which fulfills the

conditions of case 1, so it does not exist.

This now allows us to count the number of Star1,2,3-free bipartite graphs on

n vertices.

Corollary 4.16. Forbn(Star1,2,3) = nn+o(n).

Proof. Since JS(1, 1) = P5 is an induced subgraph of Star1,2,3, we have the

claimed lower bound.

Now suppose we have a bipartite graph G on n vertices which does not

contain a copy of Star1,2,3.

We can find a bipartite Star1,2,3-free graph G′ which is prime by identifying

sets of vertices with identical neighbourhoods in G.

By Theorem 4.15, either G′ is disconnected, or has a K+S-decomposition,

or is a path (on at least two vertices) or cycle, or one of these is true of its

bipartite complement.

We can record G in the following way. First,we record a bipartition X,Y of

G. Then we find sets of vertices with identical neighbourhoods and replace

each set with single vertices with that neighbourhood, labelled d1, . . .. This

gives a bipartite graph G′ which is prime. If G′ is disconnected, we write

UNION(, followed by the recordings of each of the components of G′, then the

closed bracket. If G′ has a K+S-decomposition, we write K + S(, followed

by the recordings of the decomposition graphs G1 and G2 (where G1 is the

subgraph of G′ induced by X1 ∪Y1 and G2 that induced by X2∪Y2, X1∪Y2

95



Chapter 4. Forbidden induced bipartite graphs

induces a bipartite clique and X2 ∪ Y1 an independent set), followed by the

closed bracket. We write the recording of G1 before that of G2. If G′ is a

path, we write PATH(, followed by the vertices of the path, in the path order,

then the closed bracket. If G′ is a cycle, we write CYCLE(, followed by the

vertices of the cycle, in an order of the cycle, then the closed bracket. If we

cannot do any of the previous we write COMPLEMENT(, then the recording of

the bipartite complement of G′, then the closed bracket. Finally, we replace

the vertices di in the recording of G′ by IDENTIFY(, followed by the set of

vertices with identical neighbourhoods which were identified to give di, then

the closed bracket.

Now the total number of appearances in the recording of UNION(, K + S(,

PATH(, CYCLE( and IDENTIFY( is at most n − 1, and the total number of

appearances of COMPLEMENT( is also at most this number. Thus the whole

recording consists of the bipartition, a linear order on the n vertices of

G[X,Y ], and at most 4n insertions of seven different strings (including

the closed bracket). Thus there are at most 2nnn85n = nn+o(n) possible

recordings of bipartite graphs with n vertices not containing Star1,2,3, and

Forbn(Star1,2,3) = nn+o(n).

Since each of the exceptional graphs except for P7 is an induced subgraph of

Star1,2,3, we see that Forbn(H) = nn+o(n) and Freen(H) = nn+o(n) for each

of P6, P6, Star1,2,2, Star1,2,2 and Star1,2,3.

Observe that if G[X,Y ] does not contain a copy of P6[U, V ], then cer-

tainly G[X,Y ] does not contain an induced Star1,2,3 with any bipartition,

so by Corollary 4.16 Forbm,n(P6) = mm+n+o(m). This immediately gives

Forbm,n(P6) = mm+n+o(m). But we cannot use Corollary 4.16 to bound

Forbm,n(H[U, V ]) for H any of Star1,2,2, Star1,2,2 or Star1,2,3: there are

graphs G[X,Y ] which do not contain a copy of H[U, V ] but which do have

an induced Star1,2,3. For example, Star1,2,3[V,U ] does not contain a copy of

Star1,2,3[U, V ].
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4.5 Remaining problems

There are still some unresolved problems. The most important is to explain

what happens with speeds greater than ncn for any c; when we forbid graphs

containing cycles or their bipartite complements. We have (almost) shown

that there is a gap between the factorial range of speeds and 2Ω(n
6
5 ) con-

taining none of these bipartite properties—but are there more gaps above

this speed? Which graph parameters control the speed? This seems to be a

very hard problem.

A more accessible problem would be to find good bounds on

Freen(P7) = Forbn(P7). A possible approach to finding such bounds would

be to find a decomposition result for P7-free bipartite graphs, perhaps in

a manner similar to Lozin’s result for Star1,2,3-free graphs: but the ‘basic

graphs’ will need to be a large class (as compared to the small class of paths

and cycles Lozin was able to use), since the lower bound on Freen(P7) is

n
3n
2

+o(n). We conjecture that in fact Freen(P7) has speed ncn+o(n) for some

c, and c = 3
2 seems likely. It is worth observing that P5 can be formed by

adding a vertex and two edges to DS(1, 1); and the P5-free bipartite graphs

turn out to be precisely disjoint unions of DS(1, 1)-free bipartite graphs. In

the same way P7 can be formed from DS(2, 2) by adding a vertex and two

edges, and perhaps there is some similar (though certainly not identical)

relationship between P7-free graphs and DS(2, 2)-free graphs.

For completeness, it would be nice to find more accurate bounds for

Forbm,n(H[U, V ]) for each of the four infinite families DS(k, l), DS∗(k, l),

JS(k, l) and JS∗(k, l). We know that the upper bound for JS(1, 0) = P4

is correct, but we conjecture that in every other case the lower bound is

accurate (and so also for Forbn(H[U, V ]) and Freen(H)).

It would be of some interest to find good bounds on Forbm,n(H[U, V ]) for

the three exceptional graphs Star1,2,2, Star1,2,2 and Star1,2,3. It seems likely

that the lower bounds should be correct.

Finally, we recall that Brightwell, Grable and Prömel left unclassified the

speed of partial orders without certain induced sub-orders: those corre-

sponding to the four infinite families DS(k, l), DS∗(k, l), JS(k, l) and
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JS∗(k, l), and the six exceptional graphs. They conjectured that in each

case the correct speed should be nO(n). Our results certainly support this

conjecture: but there is no obvious way to extend them to prove the conjec-

ture.
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5
Speed and clique-width

5.1 Introduction

In 1993 Courcelle, Engelfriet and Rozenberg [24] considered the following

set of (vertex-coloured) graph construction operations:

• Create a vertex v with colour i, denoted i(v).

• Take the disjoint union of two previously constructed graphs G and H

(preserving the vertex colours): G⊕H.

• Put an edge from each vertex of colour i to each vertex of colour j:

ηi,j.

• Recolour all vertices of colour i to colour j: ρi→j.

For example we may construct a path P2 on 2 vertices v1, v2 using these

operations with two colours:

η1,2(2(v1) ⊕ 1(v2)) ,

and then permitting a third colour and iterating

Pn = η1,2(ρ1→2(ρ2→3(Pn−1)) ⊕ 1(vn))

allows the construction of a path of length n.
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On the other hand, it is easy to see that two colours do not allow the

construction of paths on more than six vertices. Suppose that there were

some method of constructing P7 with two colours. The last operation would

have to be an edge creation, since P7 is connected; since any partition of

seven vertices into two parts contains a part with four vertices, and P7 has

maximum degree two, the edge creation operation could not be η1,2. Thus we

can assume that the operation was η1,1, and therefore prior to this operation

there were precisely two vertices with colour one, each of which was the end

of a shorter path whose other vertices were coloured two. Now it is not

possible to construct a four-vertex path with one end vertex given colour

one and the rest colour two: the final operation in such a construction could

not have been either a disjoint union (since P4 is connected) or a recolouring

(since both colours are present), so it would again have needed to be an edge

creation operation. But with three vertices of colour two and one of colour

one, the operation η1,1 does nothing, the operation η1,2 creates a vertex of

degree three, and the operation η2,2 creates a triangle. Thus none of these

could have been the putative final operation: it is not possible to construct

this colouring of P4 with two colours, and so it is not possible to construct

P7 at all.

It is clear that, when there is no limit on the number of colours permitted,

we may construct any graph following these rules: we simply create each

vertex with its own unique colour and put edges between vertices as desired.

On the other hand, if only k colours are permitted then we may not be able

to construct some graphs.

Courcelle, Engelfriet and Rozenberg then defined the clique-width of a graph

cwd(G) to be the least number of colours required to construct (a vertex-

colouring of) G using these four operations. Observe that if H is an induced

subgraph of a graph G, with cwd(G) = k, then we may take the expression

demonstrating that G has clique-width k and omit the vertex creation state-

ments i(v) for each v ∈ V (G)−V (H). This yields an expression constructing

H, demonstrating that cwd(H) ≤ cwd(G).

The concept of clique-width is much studied in complexity theory: many

problems which are in general NP-hard become soluble in polynomial time
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on classes of graphs of bounded clique-width. It is thus interesting to deter-

mine which classes have bounded and unbounded clique-width. In light of

the fact that clique-width does not increase on taking induced subgraphs,

we should study hereditary graph classes.

Recently Lozin and Volz [58] studied clique-width on hereditary classes of

bipartite graphs defined by one forbidden induced subgraph (precisely the

classes we considered in Chapter 4). They were able to describe exactly

which classes do and do not have bounded clique-width. Lozin [57] observed

that in this case (and, trivially, also in the case of hereditary classes of simple

graphs defined by one forbidden induced subgraph) the classes with bounded

clique-width are exactly those whose speed is bounded above by a function

of the form nn+o(n), and asked whether this correspondence between speed

and clique-width could possibly hold for other hereditary graph classes.

We will see that essentially the answer to this question is no: there is a

hereditary class of graphs each of clique-width at most 14 whose speed is

at least n!
(

26

15

)n
, and a hereditary class of graphs on which clique-width is

unbounded, whose speed is at most n!22n. However the correspondence can

only fail for the (admittedly large number of) hereditary classes H whose

speed is a function of the form nn+o(n) (specifically, the speed of H must be

greater than the Bell number Bn but smaller than n!cn for some c depending

only on H).

5.2 Positive results

There does exist some correspondence between the speed of a hereditary

class and the existence of a bound on clique-width in that class. On the one

hand, Scheinerman and Zito [67] and Balogh, Bollobás and Weinreich [6], [8]

gave descriptions of the hereditary graph classes whose speeds are eventually

bounded by the Bell number Bn. We deduce bounds on clique-width.

We need a routine preliminary lemma.
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Lemma 5.1. Let G be any graph on at least two vertices, and G′ = G− x

be the graph obtained by removing the vertex x from G. Then

cwd(G) ≤ 2cwd(G′) + 1 .

Proof. Let G′ have clique-width k, and let I be an expression using k colours

which constructs G′. Let V1 be the neighbours in G of x, and V2 the non-

neighbours.

We construct an expression I ′ using 2k colours by modifying I. First, when-

ever a vertex v ∈ V2 is created with colour i in I, we modify the creation

colour to i + k in I ′. Second, we replace a single edge creation operation

ηi,j in I with four edge creation operations ηi,j , ηi+k,j, ηi,j+k and ηi+k,j+k.

Third, we replace a single recolouring operation ρi→j with two recolouring

operations ρi→j and ρi+k→j+k.

Observe that the expression I ′ creates a coloured graph which is identical

to that created by I, except that the vertices V2 all have colours k greater

in I ′ than I.

Finally we obtain a (2k + 1)-colour expression creating G:

η1,2k+1(η2,2k+1(. . . ηk,2k+1(I ′ ⊕ (2k + 1)(x)) . . .)) ,

so that G has clique-width at most 2k + 1, as desired.

Now we can prove our theorem.

Theorem 5.2. If the speed of a hereditary graph class H is at most Bn for

infinitely many values of n then there is a constant c = c(H) such that the

clique-width of any graph in H is at most c.

Proof. We recall the results of Scheinerman and Zito [67] and Balogh, Bol-

lobás and Weinreich [6], [8] on speeds of hereditary properties. Putting them

together:

If the speed of H is smaller than Bn for infinitely many values of n, there

are two possibilities.

Case 1: The speed of H is bounded by some exponentially growing function.

In this case there exists a c such that whenever G is in H, V (G) may be
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partitioned into c parts, each of which is either a clique or an independent

set, and such that between any pair of parts either no edge is present or

every possible edge is present. It is immediate that the clique-width of G is

at most c.

Case 2: There exists an integer k > 1 such that the speed of H is given by

a function of the form n(1− 1
k )n+o(n). In this case the structure of graphs in

H is a little more complex.

We describe first some specific hereditary classes (those given in Theorem

29 of [6]). Let K be a graph-with-loops on vertex set [k], and Gk a sim-

ple graph on the same vertex set [k]. We construct an infinite graph H ′

on N by partitioning N into intervals of k consecutive vertices, then set-

ting two vertices i and j adjacent if they are in the same interval and

(i mod k)(j mod k) is an edge of Gk. We now construct from H ′ an infinite

graph H on the same vertex set, with ij an edge of H if either ij ∈ E(H ′)

or i and j are in different intervals and (i mod k)(j mod k) ∈ E(K). Fi-

nally, let P(K,Gk) be the hereditary class consisting of all the finite induced

subgraphs of H.

It is clear that if G′ ∈ P(K,Gk) then we can perform the appropriate steps

of this construction using the clique-width expressions with 2k colours to

construct G′, so that these graphs have clique-width at most 2k.

Now (by Theorem 30 of [6]) there is a constant r = r(H) such that whenever

G ∈ H we can remove r vertices from G and obtain a graph G′ in one of

these hereditary classes. Since G′ has clique-width at most 2k, by applying

Lemma 5.1 r times, it follows that G has clique-width at most 2 · 3rk. This

is the desired bound on clique-width in H.

Case 3: if the speed of H is equal to Bn for infinitely many values of n

then there is n0 such that it is equal to Bn for all n ≥ n0, and either for

n ≥ n0 every n-vertex graph is a disjoint union of cliques, or for n ≥ n0 every

n-vertex graph is the complement of a disjoint union of cliques. In either

case there are no graphs in H with clique-width exceeding max(n0, 2).
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The approximation of Bn

Bn ∼ (lnw)
−1
2 wn−wew ,

where w is the solution to n = w ln(w + 1), was given by de Bruijn [16].

Note that this gives us

Bn = n
n−

�
ln ln(n)+1+o(1)

ln n

�
n
.

On the other hand, if for all C a graph class has speed greater than n!Cn,

then it must have unbounded clique-width.

Theorem 5.3. The number of graphs on n vertices with clique-width at

most k is bounded above by n!Cn for some constant C depending on k.

Proof. If a graph on n vertices has clique-width at most k, then there is an

expression using k colours which constructs it. We simply bound above the

number of expressions which could possibly give different graphs. We insist

on a convenient form for these expressions.

Suppose that we are in the process of constructing a graph, and have just

taken a disjoint union of two coloured graphs. We may now apply edge

creation or recolouring operations. We may assume that we perform any

edge creation operations first, and then do any necessary recolouring; the

number of edge creation operations immediately following a disjoint union

operation is thus at most
(k
2

)

+k. It is also clear that the recolouring opera-

tion ρi→j does nothing if there are no vertices of colour i, and is redundant

if there are no vertices of colour j (although in many constructions it makes

notation simpler to perform some redundant recolourings): so each recolour-

ing operation decreases the number of colour classes containing vertices by

one. Thus at most k − 1 recolouring operations may be performed between

disjoint unions.

Now each disjoint union operation joins together two graphs of size at least

one: so the number of disjoint union operations is n− 1, and the number of

vertex creations is n.

Finally, given an expression E, we can choose to record it in the modified

form E′ as follows: E′ consists of first a list of the vertex labels in the order
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they appear in E, followed by a simplified expression obtained by taking the

symbols of E in order and replacing every occurrence of i(v) with i, for each

colour i and vertex label v. It is clear that we can reconstruct E given E′,

so we will count the number of modified forms.

The simplified expressions contain the symbols

i (for each 1 ≤ i ≤ k),

⊕,

ηi,j( for each 1 ≤ i, j ≤ k,

ρi→j( for each 1 ≤ i, j ≤ k, and

),

for a total of k + 1 +
(

k
2

)

+ k + 2
(

k
2

)

+ 1 < 2k2 distinct symbols.

There are at most n + n − 1 + 2(n − 1)(
(

k
2

)

+ k) + 2(n − 1)(k − 1) < 2k2n

symbols in the entire simplified expression. Together with the n! ways in

which the n vertex labels may be ordered, there are at most

n!
(

2k2
)2k2n

= n!Cn

modified expresssions, where

C =
(

2k2
)2k2

.

This is an upper bound on the number of n-vertex graphs with clique-width

at most k.

Although the constant C in the above theorem clearly grows faster than

necessary, it should be at least exponential in k.

Theorem 5.4. The number of graphs on n vertices with clique-width k + 3

is at least n!cn where c = 2
k−2

2

k+1 .

Proof. First observe that using colours 4, 5, . . . , k+ 3 we may construct any

graph we choose on k vertices, with each vertex given its own unique colour.

We may add a special vertex given colour 1 and put this adjacent to all the

other vertices. Now we partition [n] into an ordered sequence of
⌊

n
k+1

⌋

sets
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of size k+1 and if necessary one smaller set. Let G1, . . . , G⌊ n
k+1⌋ be coloured

graphs on the sets of k + 1 vertices.

Now we can construct a graph G on vertex set [n] by joining the special

vertices of the Gi into a path, in the given order, by using the path con-

struction expression above, replacing each vertex creation operation 1(vi)

with the expression for Gi, and 2(v1) with ρ1→2(G1), and finally adding as

isolated vertices any vertices in the smaller set.

Since a path has only two automorphisms, this process can construct the

same labelled graph G in just two ways: the other being of course to take

the ordered partition and the sequence of graphs in the reversed orders.

It follows that the number of distinct graphs that can be constructed in this

way is at least

n!

(k + 1)!
n

k+1

2(k
2)⌊ n

k+1⌋−1 > n!

(

2
k−2
2

k + 1

)n

,

as required.

An interesting observation is that, in the above construction, the number of

recolouring operations used is only 2n
k+1 ; and this can be halved by choos-

ing a better path construction (avoiding the redundant recolourings). This

seems like an incredibly small number of recolourings; one might wonder

whether it is possible to obtain a similar result without using any recolour-

ings. Specifically: does there exist an unbounded function of k, c(k), such

that there are at least n!cn graphs on n vertices which may be constructed

using the clique-width operations, with k vertex colours, and without per-

forming any recolouring operations? It is certainly possible to find Bn such

graphs—there are this many disjoint unions of cliques, all of which have

clique-width one and so can be constructed without recolourings.

5.3 Negative result

Unfortunately speed does not determine whether clique-width is bounded or

not. There is no sharp threshold function f(n) such that the clique-width

of a hereditary class is bounded if and only if its speed is less than f(n).
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A graph G is a unit interval graph if it is possible to choose for each vertex

x of G an interval Ix in R of unit length, such that xy is an edge of G if and

only if the intervals Ix and Iy intersect.

Let X be the class of unit interval graphs. Golumbic and Rotics [41] showed

that this class has unbounded clique-width (and Lozin [56] showed that it

is an inclusion-minimal class with unbounded clique-width). It is clear that

if we have a unit interval representation of G, and G′ is an induced sub-

graph of G, then taking the unit interval representation of G and removing

intervals corresponding to vertices in V (G) − V (G′) yields a unit interval

representation of G′, so X is a hereditary class.

Theorem 5.5. The class X has speed at most n!4n.

Proof. Let G be any unit interval graph on vertex set [n], and fix a unit

interval representation of G. Each interval has a start point and an end

point (moving along R), so we can record a string of length 2n consisting

of n symbols S and n symbols E giving the order along R in which the

starts and ends of intervals occur, and separately record the permutation

σ, where the start point of the interval corresponding to vertex i is the

σ(i)-th start point encountered. Since the intervals are of unit length the

same permutation gives the order in which the end points appear. Although

we cannot reconstruct the unit interval representation from this recorded

information, we can reconstruct the intersections of intervals and hence G.

It follows that there are at most as many unit interval graphs on n vertices

as there are choices of permutations of n and 2n-element strings using two

symbols: namely n!22n.

We note that Hanlon [46] gave a much more precise result, by means of a

generating function method.

The class of graphs with clique-width at most 14 has speed at least n!
(

26

15

)n
,

which is definitely faster than the speed of the class X of unit interval graphs.
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6
Counting 2-SAT functions

6.1 k-SAT functions

Given a collection of n Boolean variables x1, . . . , xn, a satisfying assignment

for a Boolean function S on the n variables is an assignment of True or

False to each variable such that S(x1, . . . , xn) is True. A Boolean function is

defined by its set of satisfying assignments. We identify one special function:

the trivial function is that function with no satisfying assigments.

Associated with a Boolean variable x is a positive literal x and a negative

literal x. The positive literal is True exactly when the variable is True; the

negative literal is True exactly when the variable is False.

A k-clause is a collection of k literals, no two of which are associated with

the same variable. A k-clause is satisfied if and only if at least one of its

literals is True. A SAT formula is a collection of clauses of any size; a k-SAT

formula is a collection of k-clauses, and the formula is satisfied if and only

if all of its clauses are satisfied. A Boolean function SF whose satisfying

assignments are exactly those which satisfy a k-SAT formula F is called a

k-SAT function.

A great deal of work has been done on SAT formulae in general. The prob-

lem of deciding whether a given SAT formula is satisfiable is the archetypal

NP-complete problem of Cook [22]; for fixed k ≥ 3 the problem of decid-
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ing whether a given k-SAT formula has a satisfying assignment is a classic

NP-complete problem (Karp [47]). On the other hand there exist polyno-

mial time algorithms deciding whether a given 2-SAT formula is satisfiable.

Even thirty-five years after these results, many papers are written discussing

variants of SAT with restricted clauses, restricted solutions, and so on, and

finding computational complexities, algorithms which run in polynomial ex-

pected time, et cetera.

The question of whether a random k-SAT formula is satisfiable has been

studied in detail. A sharp threshold between satisfiability and unsatisfia-

bility for 2-SAT was found by Goerdt [39], [40], Chvátal and Reed [19] and

Fernandez de la Vega [33], who showed that a 2-SAT formula with n variables

and rn clauses chosen uniformly at random is almost surely satisfiable when

r < 1, and almost surely unsatisfiable for r > 1. Bollobás, Borgs, Chayes,

Kim and Wilson [11] were even able to describe the behaviour around the

threshold r = 1. Less is known about the problem for k > 2: Achlioptas

and Peres [1] found that (assuming a similar threshold for k-SAT exists) it

is located at (2k loge 2 −O(k))n.

Of course, in a sense the purpose of a k-SAT formula is to give a k-SAT func-

tion, so it seems reasonable that we should make some attempt to under-

stand k-SAT functions. But relatively little is known about k-SAT functions

(for fixed k). These objects are considerably harder to handle: while one

can easily write down a sequence of k-clauses and obtain a k-SAT formula,

and quickly check whether two such sequences correspond to the same k-

SAT formula, there is no obvious way to do the same with k-SAT functions.

Most k-SAT formulae give rise to the trivial function; many k-SAT func-

tions are represented by several different formulae, and it is not generally

obvious when two formulae in fact give the same function (indeed, this is yet

another NP-hard problem); while lists of satisfying assignments, although

easy to compare, do not in general correspond to k-SAT functions.

However there is an obvious large class of k-SAT functions whose members

can be easily generated and distinguished.

We call a k-SAT formula monotone if all of its clauses contain only positive

literals, and a k-SAT function is called monotone if it is given by a monotone
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formula.

Given a k-SAT formula F on n variables, and a subset R of those variables,

we can define a k-SAT formula ρR(F ) by replacing each positive literal

associated to a variable in R with the corresponding negative literal, and

each negative literal associated to a variable in R with the corresponding

positive literal, in every clause of F . We call this process relabelling the

literals, and say R is the set of variables that were relabelled. If S is a

k-SAT function, then for any formula F which gives rise to S, ρR(F ) gives

rise to the same k-SAT function, which we call ρR(S), and whose satisfying

assignments are exactly the satisfying assignments of S with the truth values

of the variables R reversed. The operation ρR is self-inverse.

We say that any k-SAT function which is the result of relabelling some

set of variables on a monotone function is unate. Of course it is easy to

generate unate k-SAT functions by writing down a monotone formula and

relabelling some variables; and the following lemma shows that it is also

easy to distinguish them:

Lemma 6.1. Any unate k-SAT function is given by exactly one k-SAT

formula.

Proof. Suppose not: let F1 be a monotone k-SAT formula, and S the unate

function given by the formula ρR(F1) which is also given by a formula

ρR(F2) 6= ρR(F1). Then F2 6= F1, and ρR(S) is a monotone k-SAT function

defined by two distinct formulae F1 and F2.

If F2 contains a clause C not in F1, then the assignment A of True to all

variables except those whose positive literals appear in C is a satisfying

assignment for F1: either C contains some negative literals, in which case

there are at most k − 1 variables assigned False in A and every k-clause

of positive literals is satisfied by A, or C contains only positive literals, in

which case exactly k variables are assigned False in A, but the only k-clause

of positive literals that is not satisfied by A is C, and C is not in F1. But

A does not satisfy the clause C, so A does not satisfy F2, which contradicts

the assumption that F1 and F2 both define ρR(S).
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Since it is easy to generate and distinguish unate k-SAT functions it is easy

to count them.

Theorem 6.2. The number of unate k-SAT functions on n variables is

between

2(n
k)+n − n2(n−1

k )+n and

2(n
k)+n .

Proof. The upper bound is immediate: there are 2(n
k) monotone formulae

on n variables and 2n choices of R.

To obtain the lower bound, we first observe that if F1 and F2 are monotone

formulae and R1 and R2 are sets of variables, then ρR1(F1) = ρR2(F2) is only

possible when F = F1 = F2 and R1 and R2 differ only on variables whose

positive literals do not appear in F . Since the number of monotone formulae

on n variables which do not use any given positive literal is 2(n−1
k ), at least

2(n
k) − n2(n−1

k ) monotone formulae use all the literals. Their relabellings

are distinct formulae, and by Lemma 6.1 these give the desired number of

distinct unate k-SAT functions on n variables.

It is conjectured that for every k, almost every k-SAT function is unate.

Bollobás, Brightwell and Leader [13] proved some upper bounds on the num-

ber of k-SAT functions on n variables for k ≤ n
2 , and Bollobás and Bright-

well [12] gave upper bounds for k ≥ n
2 . The case k = 1 is trivial.

Theorem 6.3. There are 3n + 1 1-SAT functions on n variables.

Proof. If a 1-SAT formula contains both the clauses (xi) and (xi) then it is

the trivial function. If it does not, then for each 1 ≤ i ≤ n there are three

possibilities: that the formula contains (xi), that it contains (xi), or that it

contains neither clause. These 3n different formulae correspond to distinct

non-trivial 1-SAT functions.

For k ≥ 3 they proved a weak upper bound (in that the coefficient of the

dominant term
(n
k

)

in the exponent is significantly larger than the conjec-

tured value 1).
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Theorem 6.4. For k ≥ 3, there are at most 2
√

π(k+1)(n
k) k-SAT functions

on n ≥ 2k variables.

For the case k = 2 they proved a much stronger upper bound.

Theorem 6.5. The number of 2-SAT functions on n variables is 2(n
2)+o(n2).

We will now examine the 2-SAT functions in more detail, among other things

proving their conjecture that almost every 2-SAT function is unate.

6.2 Almost every 2-SAT function is unate

Let G(n) be the number of 2-SAT functions on n variables. In light of

Theorem 6.2 we know that G(n) ≥ 2(n
2)+n−n2(n−1

2 )+n >
(

1 − 2−
3n
4

)

2(n
2)+n

for sufficiently large n.

In this section we prove a matching upper bound.

Theorem 6.6. For all sufficiently large n,

(

1 − 2−
3n
4

)

2(n
2)+n < G(n) < 2(n

2)+n
(

1 + 2−
n
25

)

,

and almost every 2-SAT function is unate.

The upper bound argument of Bollobás, Brightwell and Leader [13] goes

through three steps. First they argue that only a subclass of 2-SAT func-

tions need to be considered, then they establish a bijection between the

n-variable elements of this subclass and a class of 2n-element posets, each

of which gives rise to a two-coloured graph on n vertices which does not

contain a certain structure. Finally they apply a two-colour version of the

Szemerédi Regularity Lemma to the n-vertex graph, and show that the for-

bidden structure restricts the possibilities for the pairs of parts. Their upper

bound then follows from an argument similar to Theorem 1.8.

Our argument will follow theirs up to the point of constructing two-coloured

graphs, when we choose a different (and in this case more natural) object

to study. We will then apply several enumerating techniques. The 2-SAT

functions which are unate we have already counted. Those which are in some
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sense ‘close to’ unate we will be able to enumerate by identifying the small

flaws which make them fail to be unate and which also restrict the number

of possible choices. For those which are far from being unate, we need to

return to the argument of Bollobás, Brightwell and Leader, borrowing their

use of the Regularity Lemma to obtain an estimate. Finally we make use of

an inductive argument in the style of Kleitman and Rothschild [48] to cover

the remaining possibilities.

Bollobás, Brightwell and Leader observed that G(n) can also be interpreted

as the number of subsets of the n-cube that are the union of subcubes of

codimension 2. However, we will not make use of this viewpoint.

6.2.1 Elementary functions

Given a 2-SAT function, we define its spine to be the set of literals which are

true in all satisfying assignments; obviously any non-trivial function cannot

have both x and x in its spine. We will refer to the variable x being in the

spine of the function.

Suppose that for some pair of literals u, v, in every satisfying assignment

(u ⇐⇒ v). Then we say that the literals are associated ; clearly u, v are

associated if and only if u, v are associated. Then we can say that the

corresponding variables are associated, and trivially this is an equivalence

relation.

We call a 2-SAT function elementary if it has no variables in its spine and no

associated pairs of variables. Let there be H(n) elementary 2-SAT functions

on n variables.

Given any non-trivial 2-SAT function S on n variables, we can reduce it

to an elementary 2-SAT function by ignoring all variables in the spine of

S and all but the lowest numbered in each equivalence class of associated

variables, then compressing the labels to obtain an elementary function on

n − l variables (l ≥ 0). This reduction is at worst
(n

l

)

(2n − 2l + 2)l-to-1,

since for each of the l variables removed (
(n

l

)

choices of label) we can choose

to associate its positive literal to any of the 2n− 2l remaining literals, or to

put either its positive or negative literal in the spine. Thus
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H(n) ≤ G(n) ≤ 1 +

n
∑

l=0

H(n− l)

(

n

l

)

(2n − 2l + 2)l

where the 1 is counting the trivial function.

Since every unate function is certainly elementary, we have

2(n
2)+n

(

1 − 2−
3n
4

)

< H(n) .

It is clear that H(n) is monotone increasing, and we will prove that

H(n) < 2(n
2)+n

(

1 + 2−
n
24

)

for all sufficiently large n. This will be enough

to prove Theorem 6.6.

Proof. LetN be sufficiently large that for all n ≥ N , H(n) < 2(n
2)+n

(

1 + 2−
n
24

)

.

Then we have

G(n) < 1+

n−N
∑

l=0

H(n− l)
(

n

l

)

(2n−2l+2)l +

n
∑

l=n−N+1

H(N)

(

n

l

)

(2n−2l+2)l

<

n−N
∑

l=0

2(n−l
2 )+n−l

(

1 + 2−
n−l
24

)

(

n

l

)

(2n − 2l + 2)l +NH(N)2n(2n)n

< 2(n
2)+n

(

1 + 2−
n
25

)

for sufficiently large n.

We define a bijection between the elementary 2-SAT functions on n variables

and a particular class of partial orders on 2n elements: given any formula

F giving rise to an elementary 2-SAT function SF , let P1(F ) be the relation

on the 2n elements{x1, . . . , xn, x1, . . . , xn} given by a < b if the clause (a, b)

appears in F .

Suppose that there were a sequence a1 < a2 < . . . < ar < a1 in P1(F ).

Suppose we have a satisfying assignment for SF with a1 True. Then as

(a1, a2) must contain a True literal, a2 is also True in any such assignment.

Suppose we have a satisfying assignment for SF with a1 False. Then as

(ar, a1) must contain a True literal, ar must also be False, and by induction

ai must be False for each 1 ≤ i ≤ r in any such assignment. But then a1 and

a2 are associated, contradicting SF being elementary. So no such sequence
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exists. Then let P (F ) be the transitive closure of P1(F ); we see that this is

a partial order.

The relation P (F ) must satisfy (u < v ⇐⇒ v < u), since a sequence of

clauses giving the first relation also gives the second. It cannot have u < u

for any u, since if u is False in a satisfying assignment for SF , the sequence

of clauses certifying u < u certify u True, which is a contradiction, so that

u is in the spine of SF .

A satisfying assignment for SF is an up-set in P (F ) containing exactly one

of each pair of literals. Furthermore, suppose u 6< v in P (F ), then let U

be the smallest up-set containing both u and v; there is no x with u < x

and v < x, as this implies x < v so u < v, so that U contains at most one

of each pair of literals. There is no y with y < v, y < v, for this implies

v < y < v. So we can add in to U one literal at a time to obtain an

up-set containing exactly one of each pair of literals, which is a satisfying

assignment for SF with u and v true. Thus u < v in P (F ) if and only if

(u =⇒ v) is True in every satisfying assignment for SF . So P (F ) depends

only on the function SF and not on the specific formula F giving SF , and

the satisfying assignments of SF can be found given P (F ). Thus there is

a 1-1 correspondence between elementary 2-SAT functions on n variables

{x1, . . . , xn} and partial orders on 2n elements {x1, . . . , xn, x1, . . . , xn} such

that (u < v ⇐⇒ v < u) and there is no u with u < u. We will write P (S)

for the partial order corresponding to the elementary function S.

6.2.2 Reduction to diagrams

At this point we depart from the method of proof in [13]; we develop a line-

and-arrow representation, which turns out to be more amenable to detailed

analysis than the coloured graph representation studied in [13].

The trivial function is not elementary, so that every elementary function

must have a satisfying assignment. For each elementary 2-SAT function S,

choose a satisfying assignment, and let R be the set of variables assigned

False. Let M(S) = ρR(S); then assigning True to all variables is a satisfying

assignment of M(S). Since there are only 2n ways to relabel the literals, the
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restriction of M to the elementary 2-SAT functions on n variables is at worst

2n-to-1. Observe that whatever elementary S was chosen, P (M(S)) cannot

have xi < xj for any i, j, as this is equivalent to (xi =⇒ xj) holding in every

satisfying assignment of M(S), contradicting all True being a satisfying

assignment. Furthermore, M(S) is unate if and only if S is unate.

Call a 2-SAT function nonnegative if it is elementary and all True is a

satisfying assignment. Then M maps from the class of elementary 2-SAT

functions to the nonnegative 2-SAT functions.

Given a nonnegative 2-SAT function S on n variables {x1, . . . , xn}, we con-

struct a diagram D(S), which will be a graph on n points {x1, . . . , xn} in

which some edges are directed (which we call arrows) and some are not

(which we call lines). The directed edges will form a partial order, the par-

tial order within D, and we will use equivalently ‘a < b’ and ‘there is an

arrow from a to b’. We do this as follows. First take P (S), the partial order

on 2n elements associated with S. Then whenever xi < xj in P (S), we put

xi < xj in D(S). Whenever xi < xj is a covering relation in P (S) we put a

line xixj in D(S). Observe that if xi < xj so also xj < xi, and that given

D(S) we can certainly recover P (S) and hence S.

The diagram D(S) is a natural way of representing S in the following sense:

if S is a nonnegative function, and F is a formula for S containing every

possible clause (xi, xj) and a minimal number of clauses (xi, xj), then F is

unique (since the covering graph of a partial order is unique) and the diagram

D(S) is obtained by replacing each clause (xi, xj) with a line between xi and

xj, and each clause xi, xj) with an arrow from xi to xj .

Observe that, in D(S), no pair of points a and b are joined by both a line

and an arrow: ab and a < b. For this would imply that in P (S) we had

b < a < b. We also cannot find each of the following forbidden structures,

shown in Figure 1:

(1) a, b, c such that b < a, c < a and there is a line bc.

(2) a, b, c such that a < b and there are lines ac, bc.

(3) a, b, c, d such that a < b, c < d and there are lines ac, bd.
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a a

a

b

b b

c

c

c

d

(1) (2) (3)

Figure 6.1 Forbidden structures

For if (1) existed, then in P (S), a < b < c < a. If (2) existed, then in P (S),

c < a < b so that c < b cannot be a covering relation. If (3) existed, then in

P (S), b < a < c < d and b < d cannot be a covering relation.

A valid diagram is any diagram in which no two points are joined by both

an arrow and a line, and which does not contain any of the three forbidden

structures. Then certainly the set of valid diagrams on n points contains the

set of all diagrams D(S) for S a nonnegative 2-SAT function on n variables,

and it is equally clear that given a valid diagram D the 2-SAT formula F

obtained by replacing the lines and arrows of D with clauses as above is

a formula for a nonnegative function S whose diagram D(S) is D: so that

S → D(S) is a bijection between the nonnegative 2-SAT functions and the

valid diagrams.

At this point it is worth observing that a monotone 2-SAT function is always

a nonnegative function; it corresponds to a diagram in which there are no

arrows, only lines between points. A unate 2-SAT function, by contrast, is

not usually nonnegative: we get a unate function by relabelling the literals

on a monotone function, and the result is only nonnegative if there were no

clauses consisting of any two of the relabelled literals. So we expect to find

that M is in some sense ‘nearly’ 2n-to-1 on the set of unate 2-SAT functions

on n variables, and we expect to find that most unate nonnegative 2-SAT

functions correspond to diagrams in which there is a large set of points

within which no arrows are found, a small set of points within which no

lines or arrows are found, and between the small and large set no lines are

found and no arrows go from the large set to the small set.

We will bound both the number F (n) of valid diagrams on n points and the
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number of valid diagrams on n points not corresponding to unate functions.

This latter bound will be significantly smaller than F (n), enough so that the

unfortunate fact that M is not exactly 2n-to-1 everywhere does not cause

us problems.

In the rest of this chapter, all diagrams will consist of a top set T , containing

all points which are maximal in the partial order within the diagram, and a

bottom set B, all other points (see Figure 2).

Note that there are no arrows within T , and that every member of B is

below at least one point of T .

T

BB

T

Figure 6.2 A general valid diagram and a diagram arising from a unate

2-SAT function

We will at times want to say that between a and b in a diagram there is

no line or arrow in either direction, when we will simply say that there is

nothing between a and b; we will also sometimes want to say that there is

either a line or an arrow in one or the other direction between a and b, when

we will say there is something between a and b.

Lemma 6.7. A valid diagram corresponds to a nonnegative unate 2-SAT

function if and only if there are no lines between its top and bottom sets,

and no lines or arrows within its bottom set.

Proof. If S is a nonnegative unate 2-SAT function, then let R be a minimal

set of variables such that ρR(S) is a monotone function. If a is a point in

D(S), and a /∈ R, then there certainly is no clause (a, b) in the 2-SAT formula

for S, and so a cannot be below any other point in D, i.e. a ∈ T . If on the

other hand a ∈ R, then the clause (a, b) must appear in the formula for S

(since R is minimal) and a ∈ B. If there is a line tb in D, with t ∈ T, b ∈ B,
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then the clause (t, b) is in the formula for S, so that b, b are both mentioned

in the formula, which is impossible since S is unate. Similarly, if a < b or ab

is in D, with a, b ∈ B, then b, b are in the formula for S which is impossible.

Hence D(S) is of the required form. Now suppose we are given a diagram

D(S) of the required form, corresponding to the nonnegative function S.

Since there is no arrow a < b with a line ac, we see that in P (S) every

relation xi < xj between positive and negative literals is a covering relation,

so ρB(S) is a unate function.

We observe that valid diagrams corresponding to nonnegative unate 2-SAT

functions are in 1− 1 correspondence with graphs with a specified indepen-

dent set B.

Suppose that we attempt to construct a valid diagram. We first choose the

set B, then we choose where to put lines within T , then where to put lines

between B and T , and where to put arrows from B up to T . Then we

can choose where to put lines and arrows within B. But this last choice is

already restricted. Suppose that we have two points a, b ∈ B. Then either

there is, or there is not, a point in T above both a and b. In the former case,

we cannot put a line ab in without creating the forbidden structure (1) and

hence an invalid diagram. In the latter case, we cannot put an arrow from

a to b, for there exists x ∈ T with b < x and hence if a < b then a < x also;

by symmetry, we cannot put an arrow from b to a either. Thus between any

two points in b we have either a choice of nothing or a line between a and

b, or a choice of nothing or an arrow in one or the other direction.

We can now put a crude upper bound on the number of valid diagrams on

n points:

n−1
∑

|B|=0

(

n

|B|

)

2(|T |
2 )3|T ||B|2(|B|

2 )|B|!

simply by following the above construction, noting that there are |B|! ways

to order the points in B, so that there are at most that many ways to decide

the directions of any arrows we might choose in B.

We have now reduced the problem to examining a class of combinatorial
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structures which are relatively easy to handle; we will now develop and

apply tools to handle these structures.

Since we want to find that there are about 2(n
2) valid diagrams, we must

find a way of dealing with the possibilities for lines and arrows between B

and T , and with the requirement to order B. We will do this by dividing

into two cases, when B is small and when it is not. We will need only some

simple approximations to deal with the first case, even though it will turn

out to be the large case. We will apply the Szemerédi Regularity Lemma

followed by an induction argument to dispose of the second case.

6.2.3 Some useful tools

The following will be used frequently to restrict choice, relying on the for-

bidden structure (2) which says that if a point is comparable with one set of

points and connected by lines to another set, then there can exist no lines

between these two sets.

Let V be a set of points, and I be an index set. Suppose that there exist

for each i ∈ I sets Si, Li ⊂ V , with Si ∩ Li = ∅. Call the set

⋃

i∈I

{

{a, b} : a ∈ Li, b ∈ Si

}

the forbidden set (for (Si, Li)i∈I).

Lemma 6.8. Suppose that there is a constant l such that for each i, |Li| ≥ l.

Let S = ∪i∈ISi. Then the forbidden set has size at least l|S|
2 .

Proof. Observe that for each s ∈ S, at least l members of the forbidden

set contain s. But as a given member of the forbidden set can contain at

most two elements of S, this counts each member at most twice, and the

forbidden set has size at least l|S|
2 .

We will usually refer to the Si as the small sets and the Li as the large sets.

When we use this, the set I will be some points in the top or bottom of a

diagram, the sets Li and Si will be points in the other layer connected to i

by arrows or lines (in no particular order), and the forbidden structure (2)
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will dictate that there are no lines between pairs in the forbidden set. This

places two restrictions on the available choices: firstly we have to choose the

Si within S, and secondly we will be unable to choose lines between at least
l|S|
2 pairs.

Some simple bounds will also be useful.

Whenever k ≤ n
3 , we have

∑k
i=0

(n
i

)

< 2
(n
k

)

, since

(

n

i

)

=
i+ 1

n− i
. . .

k

n− k + 1

(

n

k

)

<

(

1

2

)k−i(n

k

)

when i ≤ n
3 .

In [48], Kleitman and Rothschild show that the number of partial orders

on n points is asymptotically 2
n2

4
+O(n log n) (this result is sharpened and

the proof simplified by Brightwell, Prömel and Steger in [15]). Hence there

exists J such that for all n > J , there are fewer than 2
3n2−5n

10 partial orders

on n points. We use J for this number throughout.

6.2.4 The large case

In this subsection, we discuss the case |B| ≤ n
100 . Note that we expect to find

many valid diagrams in this case, as it covers all the diagrams corresponding

to monotone 2-SAT functions and the vast majority of those corresponding

to nonnegative unate functions.

All the diagrams in this case are in some sense ‘close to’ being unate, and

we will establish all our bounds by describing structural flaws which simul-

taneously cause diagrams to not actually be unate and restrict the available

choices. We will in several cases obtain significantly better bounds than we

really need for the proof of our theorem: this will make the proofs of the

later refinements easier.

Theorem 6.9. For all sufficiently large n, there are at most 2(n
2)+(log n)2

valid diagrams on n points with |B| ≤ n
100 , and at most 2(n

2)−
n
23 of these do

not correspond to unate functions. Furthermore, there are at most

2(n
2)−2n

5
4

valid diagrams on n points with 3n
19
20 < |B| ≤ n

100 .
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Proof. Given a diagram and a point x ∈ B, let Γarr(x) = {t ∈ T : t > x}
be the arrow neighbours of x. Let Γline(x) = {t ∈ T : xt is a line} be the

line neighbours of x. Note that there might be points in B connected to x

by arrows or lines, but we do not include them in these sets.

Let P ⊂ B be the set of points x ∈ B with both |Γarr(x)| < n
10 and

|Γline(x)| < n
10 . Let I = B − P .

Now for each point i ∈ I, at least one of |Γarr(x)|, |Γline(x)| is at least n
10 .

We apply Lemma 6.8, with this I, with V = T , with Li the larger of Γarr(i)

and Γline(i), and with Si the smaller. Then l ≥ n
10 , and we have S = ∪i∈ISi.

P

S T

BI

Figure 6.3 A typical valid diagram with |B| ≤ n
100

Let D(B,P, S) be the number of valid diagrams with sets B,P, S (see Fig-

ure 6.3). Then the number of valid diagrams with |B| ≤ n
100 is at most

∑

|B|,|P |,|S|

(

n

|B|

)(|B|
|P |

)(|T |
|S|

)

D(B,P, S) . (6.1)

We will attempt to construct valid diagrams, obtaining an upper bound by

counting the number of choices at each stage, as follows:

First, we choose the sets B,P, S. Then we choose for each point in P its

arrow and line neighbours. Note that
∑

n
10
j=0

(|T |
j

)

< 2
(|T |

n
10

)

, and when n is

sufficiently large,

(

2

(|T |
n
10

))2

< 4(10e)
n
5 < 2|T |2−

n
21

which approximation will be used to bound the number of choices for lines

and arrows connecting to points in P . We choose for each point in I whether

its large set is its arrow or line neighbours, then we choose its large and small

sets.
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We choose where to put lines within T ; by Lemma 6.8 there is a set of size

at least n|S|
20 in which we cannot choose to put lines.

We choose a total order for B, which will orient any arrows we choose to put

in B. For any pair in B(2) we can choose to put either nothing or something,

but we have no choice over whether ‘something’ is a line or an arrow one

way or the other.

This gives us the following upper bound on D(B,P, S).

D(B,P, S) <

(

2

(|T |
n
10

))2|P |
2|I|2|I||T−S|3|I||S|2(|T |

2 )−n|S|
20 |B|!2(|B|

2 )

< 2(n
2)2−

|P |n
21 2−

n|S|
20

+|I||S| log 3
2 2|I||B|! (6.2)

Observe that |I| ≤ |B|, so |I| log 3
2 <

7n
1000 <

n
20 . Then 2−

n|S|
20

+|I||S| log 3
2 ≤ 1,

so in the sum (6.1) giving an upper bound on the number of diagrams, the

only terms which multiply the 2(n
2) term by an amount greater than 1 are

the choices for B, P , S, 2|I|, and |B|!. Together with the sum - over at most

n3 summands - this means that an upper bound for the number of valid

diagrams will be n323nD(B,P, S), taking the worst case for D(B,P, S). We

split the proof into cases, of which only the last will be large:

(i) |P | ≥ 84n
1
4 .

(ii) |P | < 84n
1
4 and |S| ≥ 100n

1
4 .

(iii) |P | < 84n
1
4 , |S| < 100n

1
4 and |B| ≥ 3n

19
20 .

(iv) |B| < 3n
19
20 and at least one of |S| > 0, |P | > 0 holds.

(v) |S| = |P | = 0, |B| < 3n
19
20 and there is a line within B.

(vi) |S| = |P | = 0, 5
√
n ≤ |B| < 3n

19
20 and there is no line within B.

(vii) |S| = |P | = 0, |B| < 5
√
n, there is no line within B and there are at

least two arrows within B.

(viii) |S| = |P | = 0, |B| < 5
√
n, there is no line within B and there is exactly

one arrow within B.
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(ix) |S| = |P | = 0, |B| < 5
√
n and there are no lines or arrows within B.

By Lemma 6.7, all these diagrams correspond to unate 2-SAT functions.

Case (i):

2−
|P |n
21 ≤ 2−4n

5
4 , so that using (6.2) we can see that

D(B,P, S) < 2(n
2)2−

|P |n
21 2|I||B|! < 2(n

2)−3 log n−3n−3n
5
4

for sufficiently large n, so that in this case (6.1) is bounded above by

2(n
2)−3n

5
4 . △

Case (ii):

|I| log 3
2 <

7n
1000 , so 2−

n|S|
20

+|I||S| log 3
2 < 2−4n

5
4 , so that (6.2) gives us

D(B,P, S) < 2(n
2)−4n

5
4
2n|B|! < 2(n

2)−3 log n−3n−3n
5
4

for sufficiently large n, so that in this case (6.1) is bounded above by

2(n
2)−3n

5
4 . △

Case (iii):

Since |P | < 84n
1
4 , so |I| > 2n

19
20 , and there must be either n

19
20 points in I

all of whose arrow sets are their large sets, or that many points all of whose

arrow sets are their small sets. In the first case, there are at least n
10n

19
20

arrows going up from I to the less than n points in T , so one of these points

must be the target of at least 1
10n

19
20 arrows. In the second case, recall that

every point in B must be below at least one point in T , so that all of the

given n
19
20 points must be below points in S, and one point in S must be

above at least n
19
20

|S| of them. Let C be a maximal set of points in B such

that there is one point t ∈ T with t > c for all c ∈ C.

Then |C| ≥ min(n
19
20

10 ,
n

19
20

|S| ) ≥ min(n
19
20

10 ,
n

19
20

100n
1
4

) = n
14
20

100 .

Now we see that within C(2), we can find no lines, since structure (1) is

forbidden. Therefore the structure within C is simply a partial order, and

we recall that for |C| > J , there are at most 2
3|C|2−5|C|

10 partial orders on |C|
points. As a result, in this case, when we choose lines and arrows within B,
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we find that there are at most

2(|B|
2 )−(|C|

2 )|B|!2
3|C|2−5|C|

10 = 2(|B|
2 )− |C|2

5 |B|!

possible choices.

Observe that |C|2
5 ≥ n

7
5

50000 . Consider constructing a diagram in this case:

given B, P , S we choose lines and arrows from P to T , from I to T −S and

to S, within T and finally within B.

We see that we have in in this case an upper bound

D(B,P, S) <

(

2

(|T |
n
10

))2|P |
2|I|2|I||T−S|3|I||S|2(|T |

2 )−n|S|
20 2(|B|

2 )− |C|2

5 |B|!

< 2(n
2)2−

n
7
5

50000 2nn! < 2(n
2)−3 log n−3n−3n

5
4

for n sufficiently large that both n
14
20

100 > J and the above approximations

hold. Then in this case (6.1) is bounded above by 2(n
2)−3n

5
4
. △

At this point, note that we have the required upper bound

3.2(n
2)−3n

5
4
< 2(n

2)−2n
5
4

on the number of valid diagrams with 3n
19
20 < |B| ≤ n

100 .

We also observe that we know that from now |B|, |S|, |P | and |I| are all much

smaller than n, so that for all sufficiently large n, n3
( n
|B|
)(|B|

|P |
)(|T |

|S|
)

< 2n0.99
,

2|I||B|! < 2
n

1000 , and |I| log 3
2 <

n
1000 . We will use these bounds in the fol-

lowing cases.

Case (iv): Applying (6.2) gives us the bound

D(B,P, S) < 2(n
2)2−

|P |n
21 2−

|S|n
20

+|S| n
1000 2|I||B|!

< 2(n
2)2−

|P |n
21 2−

|S|n
21 2|I||B|! < 2(n

2)−
n
22

−n0.99

for sufficiently large n, and (6.1) is bounded above by 2(n
2)−

n
22 for all suffi-

ciently large n. △
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Case (v):

Every point in B is below at least one point in T by definition, and since

|S| = |P | = 0 every point in B is in I and has empty small set, hence

every point in B has its large set its set of arrow neighbours and has no line

neighbours in T . So there are no lines between B and T . This is of course

also true for the following four cases.

There is a line ab within B; there are
(|B|

2

)

ways to choose this line. Then La

and Lb both have size at least n
10 , and do not intersect. Hence La × Lb is a

set of size at least n2

100 within T , and any line in it would cause the forbidden

structure (3) to exist. So we have

D(B,P, S) <

(|B|
2

)

2|B||T |2(|T |
2 )− n2

100 2(|B|
2 )|B|! < 2(n

2)−n0.99−n
5
4

for sufficiently large n.

In this case (6.1) is bounded above by 2(n
2)−n

5
4
. △

Case (vi):

Since B contains no lines the diagram structure within B is simply a partial

order. Since |B| ≥ 5
√
n, whenever n > J2 we can say that there are at most

2
3|B|2−5|B|

10 = 2(|B|
2 )− |B|2

5 ways to choose arrows within B. Then given B, P ,

S we can construct diagrams in this case by choosing the arrows from I = B

to T , the partial order within B, and the lines within T . For sufficiently

large n, this gives us the bound

D(B,P, S) < 2|B||T |2(|B|
2 )− |B|2

5 2(|T |
2 ) < 2(n

2)−5n < 2(n
2)−n−n0.99

so that in this case (6.1) is bounded above by 2(n
2)−n. △

Case (vii):

There are four possibilities for the two arrows that are guaranteed to exist

in B: either a < b < c, or a < b, a < c, or a > b, a > c, or a < b, c < d.

Observe that if a < b, then Γarr(b) ⊂ Γarr(a), so that in each of these

four cases we have restrictions on the choices of arrows going from these

points upwards; 4|T |, 5|T |, 5|T | and 9|T | choices, respectively. This means
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that the choice for arrows between B and T is 2|B||T |−|T |, 2|B||T |−|T | log 8
5 ,

2|B||T |−|T | log 8
5 , 2|B||T |−|T | log 16

9 respectively; so for sufficiently large n we get

D(B,P, S) < 4.2(n
2)−|T | log 8

5 |B|! < 2(n
2)−

3n
5
−n0.99

so that in this case (6.1) is bounded above by 2(n
2)−

3n
5 . △

Case (viii):

Suppose the arrow in B is a < b. Then Γarr(b) ⊂ Γarr(a), so that there are

only 3|T | choices for the arrow neighbours of a, b in T . Then we obtain the

bound

D(B,P, S) < 2

(|B|
2

)

2(|T |
2 )+(|B|−2)|T |3|T | < 2(n

2)−
7n
20

−n0.99

for sufficiently large n, so that here (6.1) is bounded above by 2(n
2)−

7n
20 . △

Case (ix):

We bound directly the number of valid diagrams in this case: we choose B,

lines within T and arrows from B to T . This gives us the bound

∑

|B|<5
√

n

(

n

|B|

)

2(n
2)−(|B|

2 ) < 2(n
2)+

3 log2 n
4

for sufficiently large n, since the largest term in the above sum occurs when
3 log n

4 ≤ |B| ≤ log n, so that the largest term is at most 2(n
2)+log2 n− 9 log2 n

32 .△

Adding up the bounds on each case, we see that, for all sufficiently large

n, Case (ix) dominates and there are at most 2(n
2)+log2 n valid diagrams on

n points with |B| ≤ n
100 . Adding up the bounds on Cases (i)-(viii), we see

that, for all sufficiently large n, Case (iv) dominates and there are at most

2(n
2)−

n
23 valid diagrams on n points with |B| ≤ n

100 which do not correspond

to unate 2-SAT functions.
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6.2.5 The small case

In this subsection, we apply (a version of) the Szemerédi Regularity Lemma

to restrict the possible partial orders, in much the same way as it is applied

in [13], then use an induction argument to show that there really are very

few valid diagrams with |B| > n
100 . We will need a theorem of Füredi.

Theorem 6.10. Let G be a graph on n vertices. Then the proper square of

G, the graph G(2) on V (G) with ab ∈ E(G(2)) if and only if ac, bc ∈ E(G)

for some c, has at least |E(G)| − ⌊n
2 ⌋ edges.

A proof of this is found in Füredi [36]; see also [13].

Lemma 6.11. When |B| > n
100 , for any fixed δ, there exists N such that

for all n > N , there are at most 2(n
2)−2n

5
4

valid diagrams containing a point

x such that |{y : y < x}| > δn.

Proof. Note that if there is a point with δn points below it, then there is a

point in T with δn points below it.

There are two cases to consider:

(1) |T | < δ2

5 n.

(2) |T | ≥ δ2

5 n.

Case (1): We count the number of diagrams with |T | < δ2

5 n and a point in

T having at least δn points below it as follows. Choose a top set. Choose

lines within the top set, and arrows and lines from the top set to the bottom

set such that there exists a point x in the top set above at least δn points

in the bottom set. Let C be some set of δn points below x. Now choose

arrows and lines within B(2)−C(2). Within C(2) we can choose only arrows,

so that the structure on C is simply a partial order. This gives an upper

bound on the number of diagrams in this case:
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∑

|T |

(

n

|T |

)

2(|T |
2 )3|B||T |2(|B|

2 )−(δn
2 )2

3δ2n2−5δn
10 |B|!

< 2(n
2)2n2 δ2

5
log 3

2
− δ2n2

5
+n log n+n+log n

< 2(n
2)−3n

5
4

for all n sufficiently large that both the above approximations hold and

δn > J .

Case (2): Since both |T | ≥ δ2

5 n, |B| ≥ 10−2n, we will be able to apply a

version of the Szemerédi Regularity Lemma to count the number of valid

diagrams in this case as follows.

Given a valid diagram, draw a coloured graph G on n vertices corresponding

to the points of the diagram as follows. Whenever a point in B is below a

point in T , connect them with a red edge in the coloured graph. Whenever

two points are connected by lines, or two points in B are connected by

arrows, connect them with a blue edge in the coloured graph.

Observe that if two vertices in T are connected by a blue edge, so no vertex

in B is connected to one by a red edge and to the other by a blue edge since

this would be the forbidden structure (2) (see Figure 6.4).

If two vertices a, b in B are connected by a blue edge, so there cannot be

three vertices in T , x, y, z, with xa, xb red edges, ya a red edge but yb not

(it does not matter whether yb is a blue edge or not an edge at all), zb a

red edge but za not (again za could be a blue edge or not an edge at all).

This is because if the edge ab corresponds to a line, then a, b, x corresponds

to the forbidden structure (1), while if it corresponds to an arrow from a

to b there would also have to be an arrow from a to z since the partial

order is transitive, and vice versa. Since this coloured graph encodes all the

information contained in the original diagram except the choice of T and

the order on B, there are at most 2nn! times as many valid diagrams in this

case as coloured graphs, with the red edges forming a bipartite graph, not

containing either of these two structures.
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(α) (β)

a b

zxy

Figure 6.4 Forbidden coloured subgraphs

Suppose 0 < ε < 1
1000 . If A,B ⊂ V (G), then let the red-density of the

pair A,B, dr(A,B), be the number of red edges between A and B divided

by |A||B|, and define the blue-density db(A,B) similarly. Call such a pair

ε-uniform if for every A′ ⊂ A,B′ ⊂ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, so

|db(A,B) − db(A
′, B′)| < ε and |dr(A,B) − dr(A′, B′)| < ε.

Let V (G) be partitioned into m sets X1, . . . ,Xt, Y1, . . . , Ym−t where all the

Xi are subsets of T and all the Yi are subsets of B. Suppose that each

part has size q > (1 − 2ε) n
m , except for X1 and Y1 which each have size

at most εn. Call a pair (Xi, Yj) rich if it is ε-uniform, dr(Xi, Yj) > 2ε
1
3

and db(Xi, Yj) > 2ε
1
3 . Call any pair which is not ε-uniform bad, and any

ε-uniform pair with both dr(U, V ) ≤ 2ε
1
3 and db(U, V ) ≤ 2ε

1
3 sparse. Call

the remaining pairs normal.

The following two constructions are standard arguments (see for example

§1.5.3 or [13]) whose proof we omit.

Suppose that (Xi,Xj) is a normal pair, and there exists Yk such that both

(Xi, Yk) and (Xj , Yk) are rich. Then there is a vertex y in Yk connected to a

vertex a in Xi by a red edge and to a vertex b in Xj by a blue edge, with ab

a blue edge. This is the forbidden coloured graph (α), so that if Yk is such

that (Xi, Yk), (Xj , Yk) are rich pairs then (Xi,Xj) must be either a sparse

or a bad pair.

Suppose that (Yi, Yj) is a normal pair, so db(Yi, Yj) ≥ 2ε
1
3 , and there exists

Xk such that both (Xk, Yi), (Xk , Yj) are rich. Then we can find vertices

a ∈ Yi, b ∈ Yj, x, y, z ∈ Xk forming the forbidden coloured graph (β). Again,

if Xk is such that (Xk, Yi) and (Xk, Yj) are rich pairs, then (Yi, Yj) must be

either a sparse or a bad pair.
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Now draw a graph H on m vertices corresponding to the parts of V (G).

Draw an edge between two vertices in V (H) if and only if they correspond

to a rich pair. Then H is bipartite with the Xi making one part and the Yj

the other. Hence the graph H(2) has edges only between vertices Xi,Xj or

Yi, Yj . No edge of H(2) can correspond to a normal pair in G, so all these

edges correspond to bad or sparse pairs in G. We now apply the theorem

of Füredi (as in [13]): if there are r edges in H, there are at least r − ⌊m
2 ⌋

edges in H(2), hence at least that many bad or sparse pairs must be in G.

But it follows from the Szemerédi Regularity Lemma on 2-coloured graphs

(proof following the usual method as in e.g. Bollobás [10]) that in fact every

2-coloured graph has such a partition, for some 1
ε < m < K, where K

depends on ε but not on n, with all the parts of size q ≤ n
m except for X1

and Y1 which have size at most εn, and with at most εm2 bad pairs. We

will find that choosing ε small enough that 62ε
1
3 log e

2ε
1
3

+ 116ε < δ2

10 will

work.

Consider the number of possibilities for a coloured graph not containing

either of the structures (α) or (β). We must choose T , and the parts

X1, . . . ,Xt, Y1, . . . , Ym−t. We must choose which pairs are to be rich, sparse,

bad and normal. We must allow 3q2
possibilities for the edges within every

rich or bad pair. We must allow 32nεn possibilities for the edges with one end

in either X1 or Y1. We must allow 3m q2

2 possibilities for the edges within

parts. Let η = 2ε
1
3 log e

2ε
1
3

, then within normal pairs there are at most

2q2
2
( q2

2ε
1
3 q2

)

< 2q2+1+ηq2
possibilities for the edges, and within sparse pairs

there are at most
(

2
( q2

2ε
1
3 q2

)

)2

< 22+2ηq2
possibilities. There are r rich pairs,

and at most εm2 bad pairs, hence there are s ≥ r− εm2 −⌊m
2 ⌋ sparse pairs.

We divide this into two cases and evaluate the number of valid diagrams

corresponding to coloured graphs in each case:

First, if r ≥ 5(3η + 11ε)m2.

We can count the possible graphs in this case simply by enumerating all the

possibilities to obtain an upper bound:
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∑

|T |,m,r

(

n

|T |

)

mn4m2
3q2(r+εm2+ m

2
)+2εn2

2(q2+1+ηq2)(m2

2
−r−s)+(2+2ηq2)s

<
∑

|T |,m,r

2nmn4m2

(

3

4

)rq2

33εn2+ εn2

2 2(1+ηq2)(m2

2
−r−s)+ n2

2
+εn2+⌊m

2
⌋q2+(2+2ηq2)s

<
∑

|T |,m,r

2nmn4m2

(

3

4

)rq2

2
n2

2 33εn2+ εn2

2 2m2+ηn2+εn2+ εn2

2
+2m2+2ηn2

< nK32nKn4K2
2

n2

2 2−(3η+11ε)n2
23K2

2( 7
2
ε log 3+3η+ 3

2
ε)n2

< 2
n2

2 2log n+n+(n+3) log K+5K2−εn2

< 2(n
2)−n−n log n−3n

5
4

for all sufficiently large n.

It follows that for sufficiently large n, at most 2(n
2)−3n

5
4

valid diagrams give

rise to these coloured graphs.

Second, suppose r < 5(3η + 11ε)m2.

Here we do not count graphs directly: instead we count diagrams, using

the information we now have about the arrows and lines between B and T

to obtain an upper bound. We still need to allow for choice of T, r,m, the

partition, which pairs are to be rich, sparse, bad and normal, and choices

of arrows and lines between B and T corresponding to rich, bad and nor-

mal/sparse pairs. But now we can count the choices within T as 2(|T |
2 ), and

within B as 2(|B|
2 )−(δn

2 )2
3δ2n2−5δn

10 |B|! (since by assumption there is a point

in T above δn > J points in B). Let the number of valid diagrams on n

points which correspond to coloured graphs with less than 5(3η + 11ε)m2

rich pairs in a Szemerédi partition be Dg(n), then Dg(n) is at most

∑

|T |,m,r

(

n

|T |

)

mn4m2
2(|T |

2 )3rq2+3εn2
2(q2+1+ηq2)(t−1)(m−t−1)2(|B|

2 )−(δn
2 )2

3δ2n2−5δn
10 |B|!

since there are at most (t− 1)(m− t− 1) pairs which are normal or sparse

between B and T , and the given upper bound for the number of ways to

choose a normal pair is also an upper bound for the number of ways to
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choose a normal or sparse pair. Simplifying:

Dg(n) <
∑

|T |,m,r

2nmn4m2
2(|T |

2 )3rq2+3εn2
2(q2+1+ηq2)(t−1)(m−t−1)2(|B|

2 )− δ2n2

5 |B|!

< nK32nKn4K2
2(n

2)25(3η+11ε)n2 log 3+3εn2 log 3+K2+ηn2− δ2n2

5 n! .

Since q2(t− 1)(m− t− 1) ≤ |T ||B|, so

Dg(n) < nK32nKn23K2
2(n

2)2(31η+116ε)n2− δ2n2

5 n!

< nK32nKn23K2
2(n

2)2−
δ2n2

10 n! .

Again this is less than 2(n
2)−3n

5
4

for all n sufficiently large that both the

above approximations hold and δn > J .

So for all sufficiently large n, there are at most 3.2(n
2)−3n

5
4
< 2(n

2)−2n
5
4

valid

diagrams with |B| > n
100 and with a point above more than δn others.

Suppose δ = 10−9. Then observe that, if n > 108, the number of partial

orders where no point has more than δn points below it is at most

(

2

(

n

δn

))n

< 2n

(

109en

n

)10−9n2

< 2
40
109

n2+n < 2
n2

2·107 .

This will be all we need now to prove the following theorem.

Theorem 6.12. For all sufficiently large n, there are at most 2(n
2)−n

5
4 valid

diagrams on n points with |B| > n
100 .

Proof. Let δ = 10−9. Let N > 1060 be large enough that both the conclusion

of the previous lemma holds with δ = 10−9 and that for all k > N
2 , we have

at most 2(k
2)−2k

5
4

valid diagrams on k points with 3k
19
20 < |B| ≤ k

100 , as

provided by Theorem 6.9. Let Fs(n) be the number of valid diagrams on n

points with |B| > n
100 .

Let A = Fs(N). We will prove by induction that for every n,

Fs(n) < A2(n
2)−n−n

5
4 . When n ≤ N , this is trivially true by the choice

of A. Now suppose that n > N , and the induction hypothesis holds for

every k < n.
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Given a valid diagram D on n points with |B| > n
100 , we can let P ⊂ T be

the set of points each of which is connected to at most |B|
200 points in B by

lines. Then we can apply Lemma 6.8, with I = T − P and V = B. For

each i ∈ I, we let Si be the set of points below i, and Li be the points in B

connected to i by lines (see Figure 5). Then l ≥ |B|
200 , and by Lemma 6.8 we

have a forbidden set of size at least |B||S|
400 .

BS

I P T

Figure 6.5 A typical valid diagram with |B| > n
100

We consider three cases:

(a) diagrams such that there is a point above at least δn others,

(b) diagrams such that there is no point above δn others, and |S| > |B|
2 ,

(c) diagrams such that there is no point above δn others, and |S| ≤ |B|
2 .

Case (a): By the previous lemma, there are at most 2(n
2)−2n

5
4

such valid

diagrams.

Case (b): We count the number of valid diagrams by choosing the partial

order within the diagram, then choosing the lines within the top set (now

fixed by choice of the partial order) and between the top and bottom sets

(fixing P and S); then we choose the lines within B, observing that there

are at most
(|B|

2

)

− |B||S|
400 ≤

(|B|
2

)

− |B|2
800 ≤

(|B|
2

)

− n2

8.106 places where we can

choose to put lines within B, to obtain an upper bound:

2
n2

2.107 2(|T |
2 )+|B||T |+(|B|

2 )− |B||S|
400 < 2(n

2)−
n2

2.107 < 2(n
2)−2n

5
4

since n > N > 1040.
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Case (c): Since |S| ≤ |B|
2 , |B − S| ≥ |B|

2 . Every point in B − S is under

some point in T , and no point in B−S is under any point in I, hence every

point in B − S is under some point in P . But no point in P can be above

more than δn points, so that |P | ≥ |B|
2δn > 1

200δ . Let P ′ ⊂ P be a set with

|P ′| = 1
200δ . Now observe that the diagram D′ on the k = n − 1

200δ < n

points T ∪B − P ′, with a < b in D′ if and only if a < b in D, and ab a line

in D′ if and only if ab is a line in D, must be a valid diagram.

Since |B| > n
100 , and the points P ′ can be above at most |P ′|δn points of

the top set of D′, the diagram D′ must have bottom set of size at least
n

100 − |P ′|δn = n
200 >

k
200 . Since k

200 > 3k
19
20 , either D′ is a valid diagram on

k > n
2 >

N
2 points with the size of its bottom set in (3k

19
20 , k

100 ], or D′ is a

valid diagram on k < n points with bottom set larger than k
100 . There are at

most 2(k
2)−2k

5
4 possible diagrams in the first case by Theorem 6.9, and by the

induction hypothesis there are at most A2(k
2)−k−k

5
4

possible diagrams in the

second case. So there are at most 2(k
2)−2k

5
4

+A2(k
2)−k−k

5
4
< (A+ 1)2(k

2)−k
5
4

possibilities for D′. Now the following construction includes every diagram

in this case.

Choose a top set T , with 1
200δ ≤ |T | ≤ 99n

100 . Choose a set P ′ of 1
200δ points in

T . Choose lines within P ′ and from P ′ to T −P ′. Choose at most δn points

in B to be below each point in P ′. Choose at most |B|
200 lines going from each

point in P ′ to B. Choose any valid diagram with sufficiently large bottom

set on B ∪ T −P ′. Hence an upper bound for the number of valid diagrams

in this case is:

∑

|T |

(

n

|T |

)( |T |
1

200δ

)

2(
1

200δ
2

)+ 1
200δ

(|T |− 1
200δ

)

(

2

(|B|
δn

)

2

(|B|
|B|
200

)

)
1

200δ

(A+1)2(k
2)−k

5
4

< n22n2(n
2)2−

|B|
200δ 2

1
100δ

(

200e|B|
|B|

)

|B|
20000δ

(A+ 1)2−k
5
4

< A2(n
2)21+ 1

100δ
+log n+2n+

|B| log(200e)
20000δ

− |B|
200δ

−k
5
4

< A2(n
2)21+ 1

100δ
+log n+2n− |B|

400δ
−k

5
4

< A2(n
2)2

1+ 1
100δ

+log n+2n− n
40000δ

−n
5
4 +

�
n

5
4 −k

5
4

�
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< A2(n
2)−2n−n

5
4
21+ 1

100δ
+log n+4n+ 5

800δ
n

1
4 − n

40000δ

< A2(n
2)−2n−n

5
4

since n > 1060 and δ = 10−9.

Then there are at most A2(n
2)−2n−n

5
4

+ 2.2(n
2)−2n

5
4
< A2(n

2)−n−n
5
4

valid dia-

grams with |B| > n
100 . Therefore the induction hypothesis holds for n.

By induction, Fs(n) < A2(n
2)−n−n

5
4 for all n. If n is sufficiently large that

2n > A, then we have Fs(n) < 2(n
2)−n

5
4
, which completes the proof.

6.2.6 The upper bound

Collecting results, from Theorem 6.9 we have that there are at most 2(n
2)−

n
23

valid diagrams on n points with |B| ≤ n
100 that do not correspond to unate

2-SAT functions, for all sufficiently large n. From Theorem 6.12, we have

that there are at most 2(n
2)−n

5
4

valid diagrams on n points with |B| > n
100 ,

for all sufficiently large n.

Since each nonnegative 2-SAT function on n variables can be obtained by

applying M to at most 2n elementary functions on n variables, we have

that there are at most 2n

(

2(n
2)−

n
23 + 2(n

2)−n
5
4

)

elementary 2-SAT functions

which are not unate, for all sufficiently large n.

There are at most 2(n
2)+n unate 2-SAT functions. So we obtain an upper

bound for H(n) valid for all sufficiently large n:

H(n) < 2(n
2)+n

(

1 + 2−
n
23 + 2−n

5
4

)

< 2(n
2)+n

(

1 + 2−
n
24

)

for all sufficiently large n.

6.3 Error terms

Of course, not every 2-SAT function is unate. But we can, with not much

more work, discover the next largest class of 2-SAT functions, which gives us

the size of the first error term in the formula G(n) =
(

1 + o(1)
)

2(n
2)+n. Our

method is even powerful enough to bound the size of further error terms.
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6.3.1 The first error term

It is well known that almost every triangle-free graph is bipartite (see Erdős,

Kleitman and Rothschild [31]). Prömel, Schickinger and Steger [63] have

shown that almost every triangle-free graph which is not bipartite can be

made bipartite by removing just one vertex. We will now prove the equiva-

lent result for our problem.

Let W (n) be the set of 2-SAT functions which are not unate and which

are given by taking a monotone function and changing exactly one positive

literal x in one clause of its formula to the corresponding negative literal x.

Let V (n) be the set of 2-SAT functions given by relabelling variables on the

elements of W (n).

Note that applying the above process to a monotone function results in a

unate function if and only if x is mentioned just once in the formula for the

monotone function.

We can easily find the size of W (n). Observe that all elements of W (n) are

nonnegative; then they are in 1-1 correspondence with the diagrams on n

points which have |T | = n − 1, and x ∈ B is linked to exactly one element

y ∈ T by an arrow, and to at least one other element of T by a line. As

structure (2) is forbidden, for every other z ∈ T there cannot be lines from z

to both y and x. Therefore there are at most n(n− 1)2(n−2
2 )3n−2 such valid

diagrams. There are at least

n(n− 1)
(

2(n−2
2 ) − n22(n−3

2 )
)

(

3n−2 − 2

((

n− 2

0

)

+

(

n− 2

1

))

2n−2

)

such valid diagrams in which every point has at least two lines connected to

it.

Therefore
(

n

2

)

2(n
2)2−2(n−2)

(

1 − o(2−
n
2 )
)

3n−2
(

1 − o(2−
n
2 )
)

< |W (n)|

<

(

n

2

)

2(n
2)2−2(n−2)3n−2

so
(

n

2

)

2(n
2)
(

3

4

)n−2
(

1 − o(2−
n
2 )
)

< |W (n)| <
(

n

2

)

2(n
2)
(

3

4

)n−2
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for sufficiently large n.

Now |V (n)| ≤ 2n|W (n)|, but also if R,R′ are subsets of the n variables and

w,w′ are elements of W (n) corresponding to diagrams in which every point

has at least two lines connected to it, then the functions given by relabelling

the variables R on w and R′ on w′ are distinct unless R = R′, w = w′. Thus

(

n

2

)

2(n
2)+n

(

3

4

)n−2
(

1 − o(2−
n
2 )
)

< |V (n)| <
(

n

2

)

2(n
2)+n

(

3

4

)n−2

.

Now we improve the bounds from Theorem 6.9 to show that V (n) really

is the next largest class of 2-SAT functions after the unate functions. The

following proof is essentially a more precise, but much longer, replacement

for the argument in Case (iv) of Theorem 6.9; it was left to this point to

make that theorem more easily understood.

We observe that three types of diagram correspond to functions in V (n):

(p) the diagrams in which B contains no lines, there is a point x in B which

is connected to exactly one point in T by an arrow and to at least one other

point in T by a line, any arrows in B go to x, and all other points in B are

connected to points in T by arrows only,

(q) the diagrams in which B contains no arrows or lines, there is a point x

in B which is connected to exactly one point in T by a line and to at least

one other point in T by an arrow, and all other points in B are connected

to points in T by arrows only,

(r) the diagrams in which B contains exactly one arrow and no lines, and

there are no lines between B and T .

Theorem 6.13. For all sufficiently large n,

1 +

(

n

2

)(

3

4

)n−2

− 2−
n
2 <

G(n)

2(n
2)+n

< 1 +

(

n

2

)(

3

4

)n−2

+ 2−
418n
1000 .

Proof. We find that the bound in Theorem 6.12 is already good enough, as

are the bounds in Theorem 6.9 Cases (i), (ii), (iii), (v), (vi), (vii). We observe

that the diagrams in Case (viii) already correspond to 2-SAT functions in

V (n) (in form (r) ), and that those in Case (ix) correspond to the unate
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functions, which we have already enumerated with sufficient accuracy. Hence

we only need to improve the bounds given in Case (iv) of Theorem 6.9.

Case (iv) of Theorem 6.9 covered diagrams such that |P | < 84n
1
4 ,

|S| < 100n
1
4 , |B| < 3n

19
20 and at least one of |P | > 0, |S| > 0 holds.

We now split this into several cases and analyse each.

(a) |P | < 84n
1
4 , 1 < |S| < 100n

1
4 , |B| < 3n

19
20 .

(b) |S| ≤ 1, 0 < |P | < 84n
1
4 and |B| < 3n

19
20 .

(c) |S| = 1, |P | = 0, |B| < 3n
19
20 and there are at least two points in B with

non-empty small set.

(d) |S| = 1, |P | = 0, |B| < 3n
19
20 , only one point b ∈ B has |Sb| = 1 and

there is a line within B.

(e) |S| = 1, |P | = 0, 5
√
n ≤ |B| < 3n

19
20 , only one point b ∈ B has |Sb| = 1

and there is no line within B.

(f) |S| = 1, |P | = 0, |B| < 5
√
n, only one point b ∈ B has |Sb| = 1, there is

no line within B but there is an arrow within B.

(g) |S| = 1, |P | = 0, |B| < 5
√
n, only one point b ∈ B has |Sb| = 1 and there

are no lines or arrows within B.

As in the later parts of Theorem 6.9, we will use the bounds |I| log 3
2 <

n
1000 ,

n3
( n
|B|
)(|B|

|P |
)(|T |

|S|
)

< 2n0.99
and 2|I||B|! < 2

n
1000 in the following cases.

Case (a):

We divide this into two sub-cases.

Subcase (1): |S| > 40.

We use (6.2) from Theorem 6.9 which gives us

D(B,P, S) < 2(n
2)2−

|P |n
21 2−

40n
21 < 2(n

2)−n−n0.99

for all sufficiently large n, so that the sum (6.1) from Theorem 6.9 is bounded

above by 2(n
2)−n.

Subcase (2): 2 ≤ |S| ≤ 40.
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We observe that as there are at least two points in S, there are at most
(40

2

)

pairs in T (2) with both points in S, and the forbidden set has size at least

2l − 800, where l is the minimum of the |Li| for i ∈ I. We can construct

diagrams in this subcase, given B, P , S, by choosing the lines and arrows

from the points in P to T , choosing for each point in I lines and arrows to

S and lines to T , using the fact that there are at most
(|T |

l

)

ways to choose

lines from the point i with |Li| = l (|I| ways to choose i), choosing lines and

arrows within B and finally lines within T , taking account of the forbidden

set. This gives us

D(B,P, S) < 2|P ||T |2−
|P |n
21 3|S||I||I|2(|I|−1)|T |

(|T |
l

)

2(|B|
2 )|B|!2(|T |

2 )−2l+800

< 2(n
2)2−

|P |n
21 240|I| log 3

2 2−|T |
(|T |
l

)

2−2l+800|B|! .

Now 240|I| log 3
2 2800|B|! < 2n0.99

for all sufficiently large n, so

D(B,P, S) < 2(n
2)2−2l− 99n

100

(

n

l

)

2n0.99
< 2(n

2)−
n
2
−n0.99

for sufficiently large n, and the sum (6.1) is bounded above by 2(n
2)−

n
2 . △

Case (b):

We divide this into two subcases.

Subcase (1): There is a point p ∈ P with |Sp| >
√
n.

Given B,P, S, we can construct the valid diagrams in this case by choosing

the lines and arrows within B and between B and T , and then choosing

the lines within T . But since |Lp| > |Sp| there are at least n pairs in T (2)

which cannot be chosen as lines, and we can bound above the number of

possibilities by

D(B,P, S) < 2(|B|
2 )|B|!2|P ||T |2−

|P |n
21 2|I|2|I||T−S|3|I||S|2(|T |

2 )−n

< 2(n
2)−n+(1+log 3

2
)|I||B|! < 2(n

2)−
n
2
−n0.99
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for all sufficiently large n, so that in this subcase (6.1) is bounded above by

2(n
2)−

n
2 .

Subcase (2): Every point p ∈ P has |Sp| ≤
√
n.

Now instead of there being
(

2
(|T |

n
10

)

)2
ways to choose the arrows and lines

from each point in P , there are only 4
(|T |

n
10

)(|T |√
n

)

< 2
n
2 ways, for sufficiently

large n.

Hence we can bound above the number of possibilities by

D(B,P, S) < 2(|B|
2 )|B|!2|P ||T |2−

49|P |n
100 2|I|2|I||T−S|3|I||S|2(|T |

2 )

< 2(n
2)−

97|P |n
200 < 2(n

2)−
48n
100

−n0.99

for sufficiently large n, so that in this subcase (6.1) is bounded above by

2(n
2)−

48n
100 . △

Case (c):

Let the two points in B with non-empty small set be a, b. Then the forbidden

set has size at least l = max(|La|, |Lb|). Observe that there are at most l
(|T |

l

)

ways to choose the large sets of each of a, b, and that

(

l

(

n

l

))2

2−l

is maximised at l = (
√

2 − 1)n. We construct the diagrams in this case by

choosing B, l, S, the two points with non-empty small set, whether the large

set of each point in B will be its arrow neighbours or line neighbours, the

small sets of all the points in B, then we choose the large sets of both the

points with non-empty small set, the large sets of the rest of the points in

B, the lines and arrows within B and finally the lines within T . This allows

us to bound (6.1) in this case by

∑

|B|,l

(

n

|B|

)(|T |
1

)(|B|
2

)

2|B|2|B||S|
(

l

(|T |
l

))2

2(|B|−2)|T |2(|B|
2 )|B|!2(|T |

2 )−l
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< 22n0.99
2(n

2)−
198n
100

(

n

n(
√

2 − 1)

)2

2−(
√

2−1)n

< 2(n
2)−

42n
100

for all sufficiently large n. △

Case (d):

We know that every point in B except b has only arrow neighbours in T . If

the line in B does not touch b, or if Lb is the set of arrow neighbours of b,

then we will be able to write down exactly the same bound as in Case (v)

of Theorem 6.9. If b has its large set its line neighbours, and the line in B

is ab for some a ∈ B, then we find that there can be no arrows from a to Lb

or S, since structures (2) and (1) are forbidden. If |La| = l, then we find a

forbidden set of size l in T . We can construct these diagrams by choosing

a, b, arrows from B − {a, b} to T , lines from b to T and arrows from a to

T −S −Lb, the arrow and line connections within B, and finally lines in T .

We can bound this above by:

D(B,P, S) <
∑

l

2

(|B|
2

)

2(|B|−2)|T |
(|T |
l

)

2|T |−l2(|B|
2 )|B|!2(|T |

2 )−l

< 2(n
2)−

n
2
−n0.99

for sufficiently large n, so that in this case (6.1) is bounded by 2(n
2)−

n
2 . △

Case (e):

We use exactly the same argument as in Case (vi) of Theorem 6.9 and get

the same bound. △

Case (f):

Subcase (1): If b has Lb the set of its arrow neighbours in T , or there is an

arrow in B that does not go to or from b, then let the arrow be c < d. We

note that if d < t, then c < t and so there are at most 3|T | choices for arrows

between {c, d} and T . We note that there is also a forbidden set in T of size

at least n
10 between Lb and Sb, so that following the usual logic the number

of diagrams in this subcase is bounded above by:
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∑

|B|

(

n

|B|

)(|T |
1

)

2

(|B|
1

)

2(|B|
2 )|B|!2(|B|−2)|T |3|T |2(|T |

2 )− n
10

< 2(n
2)−|T | log 4

3
− n

10 < 2(n
2)−

n
2 .

Subcase (2): If b has Lb the set of its line neighbours, and the only arrows

in B go to b, then for every point a with a < b, La is the set of arrow

neighbours of a, since Sa is empty. These diagrams correspond to 2-SAT

functions in V (n), in the form (p).

Subcase (3): If b has Lb the set of its line neighbours, and there is an ar-

row in B from b to a, then every point in La is above b, which contradicts

|Sb| = 1. Thus there are no valid diagrams in this subcase. △

Case (g):

These diagrams correspond to 2-SAT functions in V (n), in forms (p) and

(q). △

We have now improved the bounds on Case (iv) of Theorem 6.9, so that

we may say that for sufficiently large n there are at most 2(n
2)−

419n
1000 valid

diagrams which do not correspond either to unate 2-SAT functions or to

2-SAT functions in V (n).

Following the same logic as was used in §6.2.1 to prove Theorem 6.6, we now

obtain for sufficiently large n an upper bound 2(n
2)+n− 418n

1000 on the number of

2-SAT functions which are neither unate nor in V (n).

6.3.2 Other large classes

Prömel, Schickinger and Steger [63] went on to show that almost every

triangle-free graph which is not bipartite and cannot be made so by removing

one vertex can be made bipartite by removing two vertices, and so on.

We will establish an upper bound of 2(n
2)+n−kn on the number of 2-SAT

functions which cannot be made unate by removing 25k variables, where
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k = k(n) < n
1
4 , which is a first step towards proving the equivalent result

for our problem.

Given a 2-SAT function S, let F be the unique maximal 2-SAT formula for

S. If V is a subset of the domain of S, we can define the formula F ′ which

contains exactly the clauses of F that do not contain literals associated to

the variables in V . We say we can remove the variables V from S to get

S′, a 2-SAT function on n− |V | variables given by the formula F ′. Observe

that if R is any subset of the domain of S, then removing the variables V

from ρR(S) gives the same result as removing the variables V from S then

applying ρR.

If we can remove a set of k variables from a 2-SAT function S to obtain a

unate 2-SAT function, then we say that S is k-nearly-unate. If S is k-nearly-

unate but not (k− 1)-nearly-unate, we say that S is exactly k-nearly-unate.

Observe that if S is an elementary function, and the set V of variables is

removed from S to give S′, then P (S′) is precisely the partial order on the

2n− 2|V | literals induced by P (S). If also S is nonnegative, however, D(S′)

is not in general the diagram given by simply removing the points V and

lines and arrows meeting them from D(S). The arrows in D(S′) correspond

to the arrows in D(S) not meeting V . But if ab is a line in D(S), and a ∈ V ,

and c > a, then cb may be a line in D(S′) (if c < b is a covering relation in

P (S′) ). If ab is a line in D(S), and a, b ∈ V , and a < c, b < d, then cd may

be a line in D(S′). However, if e, f are points in D(S′), then ef can only be

a line if either it is a line in D(S) or one of the two above situations occurs.

We will require the following simple lemma.

Lemma 6.14. Let G be any graph, and k any integer. Then we can find

either a set E consisting of at least k
2 independent edges of G, or a set Z

consisting of at most k vertices of G which meets every edge of G.

Proof. Given a graph G, let E be a maximal set of independent edges of G.

Then either E has size at least k
2 , or the set Z =

⋃

E has size at most k. Z

must meet every edge of G since E is maximal.
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Theorem 6.15. For any k = k(n) such that k(n) < n
1
4 for all sufficiently

large n, the set of 2-SAT functions on n variables which are not k-nearly-

unate has size at most 2(n
2)+n− kn

25 for all sufficiently large n.

Proof. We follow essentially the same logic as was used to prove Theo-

rem 6.6.

We observe that for sufficiently large n, if k(n) = 0 then the conclusion

certainly holds for that n by Theorem 6.6, so in the remainder of the proof

we shall assume k > 0.

First we show that for any such k, for sufficiently large n, the set Hk(n) of

elementary 2-SAT functions on n variables which are not k-nearly-unate has

size at most 2(n
2)+n− kn

24 .

We let Dk(n) be the set of valid diagrams corresponding to the nonnegative

2-SAT functions on n variables which are not k-nearly-unate.

As before, we divide Dk(n) into two parts: the diagrams with |B| > n
100 ,

and the diagrams with |B| ≤ n
100 . Theorem 6.12 tells us that the first part

has size at most 2(n
2)−n

5
4

for sufficiently large n, so we only need to bound

the second part.

We bound above the set of valid diagrams with |B| ≤ n
100 corresponding

to 2-SAT functions on n points which are not k-nearly-unate. For such a

diagram, we define the sets Γarr(b), Γline(b) for b ∈ B, I, P , Sa, La for a ∈ I,

S as in Theorem 6.9. We also define sets S′
p, L′

p, for some p ∈ P , and the set

S′ as follows. If p ∈ P , and there is a ∈ I with ap a line in D and La is the

set of arrow neighbours of a, then let S′
p = Γarr(p) − S, L′

p = Γarr(a) − S.

Let S′ be the union of the defined S′
p. We now split the set of these valid

diagrams into five parts:

Case (i): |P | ≥ 84n
1
4 .

Case (ii): |P | < 84n
1
4 and |S| ≥ 100n

1
4 .

Case (iii): |P | < 84n
1
4 , |S| < 100n

1
4 and |B| ≥ 3n

19
20 .

Case (iv): |P | < 84n
1
4 , |S| < 100n

1
4 , |B| < 3n

19
20 and |P | + |S| + |S′| > k.

Case (v): |P | < 84n
1
4 , |S| < 100n

1
4 , |B| < 3n

19
20 and |P | + |S| + |S′| ≤ k.
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By identical logic to that in Theorem 6.9, each of Cases (i), (ii), (iii) contains

at most 2(n
2)−3n

5
4

valid diagrams, for sufficiently large n.

We now provide a bound for Case (iv).

Observe that, if p ∈ P is connected by a line to a ∈ I, with La the set

of arrow neighbours of a, then L′
p = Γarr(a) − S cannot intersect S′

p since

the structure (1) is forbidden. Furthermore, there can be no lines between

S′
p and L′

p since structure (3) is forbidden. Now |L′
p| ≥ n

10 − |S| > n
11 for

sufficiently large n. This means that by Lemma 6.8 there is a forbidden set

in T of size |S′|n
22 , which does not intersect the forbidden set between the

sets Li and Si (i ∈ I) since no member of this new forbidden set has an end

in S. So we can construct any diagram in this case in the usual way: given

B,P, S, choose the lines and arrows from P to T , whether the members

of I have as their large set their set of line or arrow neighbours, the lines

and arrows from I to T − S, the lines and arrows from I to S, the lines

and arrows within B, which fixes S′, and finally the lines within T , taking

account of both the forbidden sets. This allows us to use in this case the

bound

D(B,P, S) < 2|P ||T |2−
|P |n
21 2|I|2|I||T−S|3|I||S|2(|B|

2 )|B|!2(|T |
2 )− |S|n

20
− |S′|n

22

< 2(n
2)2|I||B|!2−

(|P |+|S|+|S′|)n
22

< 2(n
2)−n0.99− kn

23

for sufficiently large n, so that in this case the number of valid diagrams is

bounded above by 2(n
2)−

kn
23 . △

Finally we bound Case (v):

Given a diagram D in Case (v), we draw a graph G with V (G) = I. If

a, b ∈ I, La = Γline(a), Lb = Γarr(b), and either ab is a line or ab being a

line would create one of the forbidden structures (2), (3) (so that ab could

potentially be a line in some diagram D′ obtained by removing variables),

then we put ab ∈ E(G). If a < b in D, La = Γline(a) and Lb = Γline(b), then

we put ab ∈ E(G). If a < b in D, La = Γarr(a) and Lb = Γarr(b), then we

put ab ∈ E(G). Otherwise we do not put ab ∈ E(G).
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We split this case into three sub-cases:

Subcase (a): There is a line ab in I, with both La the set of arrow neighbours

of a and Lb the set of arrow neighbours of b.

In this case, there is a forbidden set of size at least n2

100 in T , and we can

bound above the number of valid diagrams in this case as in Case (v) of

Theorem 6.9, obtaining a bound 2(n
2)−n

5
4

for sufficiently large n.

Subcase (b): There is no line between any two points a, b ∈ I with both La

the set of arrow neighbours of a and Lb the set of arrow neighbours of b. We

cannot find any set of q = k − |P | − |S| − |S′| points in I such that every

edge in E(G) touches the set.

In this case, by Lemma 6.14 there must be a set E of ⌈ q
2⌉ edges in E(G), no

two of which meet at any point.

Suppose we know for each point i ∈ I whether its large set is its set of arrow

or line neighbours. We have previously used the bound 2|I| on the choices

of lines and arrows between I and any given t ∈ T − S. But now observe

that if ab ∈ E, we have only 3 choices for the lines and arrows from a, b to t;

if ab is in E because a < b in D with both La = Γline(a) and Lb = Γline(b),

then we cannot choose to put lines from both a and b to t since structure (2)

is forbidden, and so on. Since the edges in E are independent, we obtain a

bound 2|I|−q3
q
2 on the number of choices of lines and arrows between I and

t.

We can construct every diagram in this case as follows: Given B, P , S, we

choose the ⌈ q
2⌉ edges in E, and whether they are to correspond to lines or

arrows in one or the other direction in D. We choose for each i ∈ I whether

Li is to be the set of line or arrow neighbours of i. We choose the lines and

arrows from I to T − S, taking account of the above restriction, and from

I to S. We choose the lines and arrows from P to T , the lines and arrows

within B, and the lines within T , taking account of both the forbidden sets

(note S′ and the L′
p are already chosen).
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This gives us the upper bound on D(B,P, S)

(

3

(|I|
2

))⌈ q
2
⌉

2|I|+(|I|−q)|T−S|3
q
2
|T−S|3|I||S|2|P ||T |2−

|P |n
21 2(|B|

2 )|B|!2(|T |
2 )−n|S|

20
−n|S′|

22

<
(

3|B|2
)k

2|I||B|!2(n
2)2−

(|P |+|S|+|S′|)n
22

− k−|P |−|S|−|S′|
2

98n
100

log 4
3

< 2(n
2)−

kn
23

−n0.99

for sufficiently large n, so that the number of diagrams in this subcase is

bounded above by 2(n
2)−

kn
23 .

Subcase (c): There is no line between points a, b ∈ I with both La the set of

arrow neighbours of a and Lb the set of arrow neighbours of b. We can find

a set Z of k − |P | − |S| − |S′| points in I which meets every edge in E(G).

Let D′ be the diagram corresponding to the nonnegative 2-SAT function

obtained by removing the k variables V = P ∪ S ∪ S′ ∪ Z from the 2-SAT

function corresponding to D. Recall that the arrows in D′ correspond to

the arrows in D not meeting V , but there may be some lines in D′ which do

not correspond to lines in D, but exist because the covering relations have

changed. We will continue to use T , B to refer to the top and bottom sets

of D, and will use T ′, B′ for the top and bottom sets of D′.

Suppose a ∈ I has La = Γline(a), and a < b for some b ∈ I. Then b has

Lb = Γline(b), otherwise Sa ⊃ Lb, but |Sa| < 100n
1
4 < |Lb|. So either a or

b must be in Z. It follows that any point a ∈ I − Z with La = Γline(a) is

maximal in D′.

Suppose that a point b ∈ I − Z has Lb = Γarr(b), and in D′ there is a line

db for some d. Certainly db cannot have existed in D, as that would imply

either a line between two points whose large sets are their sets of arrow

neighbours, d ∈ S, d ∈ Z or d ∈ P . Furthermore, d /∈ B, as that would

imply either d ∈ P or d ∈ Z, so d ∈ T . Recall that d /∈ V . There are three

possibilities.

First, there could be e ∈ V , with de a line in D and e < b. But then e ∈ I,

since e has at least |Lb| arrow neighbours in T , and this would imply d ∈ S.
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Second, there could be f ∈ V with f < d and fb a line in D. But then

f /∈ I, since this would either imply d ∈ S or fb would be a line between

two points in I with large sets their sets of arrow neighbours. So f ∈ P ,

and then we have d ∈ S′.

Third, there could be a, c ∈ V with a < b, c < d, and ac a line in D.

Since a < b, so a has at least |Lb| arrow neighbours, and a ∈ I. Since

|S| < 100n
1
4 < |Lb|, so La would be the set of arrow neighbours of a. Then

if c ∈ I, we would have either d ∈ S or ac would be a line between two

points in I with large sets their sets of arrow neighbours. So c ∈ P , and we

have d ∈ S′.

Thus we see that we cannot have any point b ∈ I − Z with Lb = Γarr(b)

which meets a line in D′.

Now the top set T ′ of D′ consists of T −S−S′ together with those points in

I −Z whose large set was their line set, while the bottom set B′ of D′ con-

sists of those points in I−Z whose large set was their arrow set. Then there

are no lines within B′. There are no arrows within B′, since Z was removed.

There are no lines between B′ and T ′ as above. Now, by Lemma 6.7, D′

corresponds to an unate 2-SAT function on n − k points, contradicting the

original diagram on n points being in Dk(n). Hence there are no diagrams

in this subcase. △

Adding up the bounds from all the cases, we see that for any k = k(n) with

k(n) < n
1
4 for all sufficiently large n, we have

|Dk(n)| < 3.2(n
2)−3n

5
4

+ 2.2(n
2)−n

5
4

+ 2.2(n
2)−

kn
23

< 2(n
2)−

kn
24

for all sufficiently large n, and |Hk(n)| < 2(n
2)+n− kn

24 .

Since every 2-SAT function which is not k-nearly-unate can be reduced to

an elementary 2-SAT function on n− l variables which is not (k− l)-nearly-

unate if k ≥ l, or to an elementary 2-SAT function on n − l variables if

k < l, we can follow the logic in §6.2.1 and bound above the size of the set

of 2-SAT functions on n variables which are not k-nearly-unate by
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1 +

k
∑

l=0

(

n

l

)

(2n + 2 − 2l)lHk−l(n− l) +

n
∑

l=k+1

(

n

l

)

(2n + 2 − 2l)lH(n− l)

< 1 +

k
∑

l=0

(

n

l

)

(2n+ 2 − 2l)l2(n−l
2 )+n−l− (k−l)(n−l)

24

+

n
∑

l=k+1

(

n

l

)

(2n + 2 − 2l)lH(n− l) ,

which sum is, by the same logic as used to prove Theorem 6.6, dominated

by the term 2(n
2)+n− kn

24 , hence is, for sufficiently large n, bounded above by

2(n
2)+n− kn

25 .

6.4 Expected values

In this section we calculate the asymptotic values of the expectations of some

random variables in the model of 2-SAT functions on n variables chosen

uniformly at random.

Given a 2-SAT function S, let A(S) be the set of satisfying assignments of

S. In proving Theorem 6.6 we made use of a mapping M from elementary

to nonnegative 2-SAT functions, which certainly does not map more than 2n

elementary functions to any nonnegative function. When we defined M we

explained why it is reasonable to assume that most nonnegative functions

are the target under M of nearly 2n nonnegative functions, and in proving

the upper bound on F (n) we justified our belief.

But it is certainly not true that M is exactly 2n-to-1: the number of elemen-

tary functions is less than 2n times the number of nonnegative functions.

This comes from the fact that in constructing M we had to choose one of

several viable options for each elementary function. To be precise, for each

elementary 2-SAT function S we could have chosen any member A of A(S)

and relabelled the variables assigned False in A to obtain the nonnegative

2-SAT function M(S). This provides us with an easy route to a proof of the

following theorem.
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Theorem 6.16. The expected value of |A(S)| is

(

1 + o(1)
)

n
∑

k=0

(

n

k

)

2−(k
2) = 2( 1

2
+o(1)) log2 n .

Let In be the random variable counting the number of independent sets in

Gn, 1
2
. Note that

EIn =

n
∑

k=0

(

n

k

)

2−(k
2) ,

which is asymptotically the same as the expected value of |A(S)|. We should

believe that In and A(S) are related: whenever S is a monotone function,

independent sets in the graph (as a diagram with no arrows) D(S) corre-

spond to satisfying assignments of S, and it seems reasonable that the unate

functions should both dominate the expectation and behave similarly to the

monotone functions.

Proof. The average number of satisfying assignments of a 2-SAT function

on n variables is equal to the sum, over 2-SAT functions S on n variables,
∑

S |A(S)|, divided by the number of 2-SAT functions on n variables: as

we know the latter we need only compute the former. This is equal to the

number of pairs (S,A), where S is a 2-SAT function on n variables and A is

a satisfying assignment of S. First we find the number of such pairs where

S is an elementary 2-SAT function on n variables:

Observe that if (S,A) is a pair as above, with S elementary, then we can

let the set of variables which are assigned False in A be X, and ρX(S) is a

nonnegative 2-SAT function, which corresponds to a unique valid diagram

D. Thus there are as many pairs with S elementary as there are pairs (D,X)

where D is a valid diagram and X is a subset of the n variables. There are

2n possible subsets X, so there are 2nF (n) such pairs. Following the logic in

§6.2.1, the total number of pairs (S,A), where S is any 2-SAT function on

n variables, is (1 + o(1))2nF (n). Now recall that when the valid diagrams

were split into several types, the largest was the class of diagrams in Case

(ix) of Theorem 6.9. There are

2(n
2)

5
√

n
∑

k=0

(

n

k

)

2−(k
2)
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diagrams in that case, so that there are

(

1 + o(1)
)

2(n
2)+n

5
√

n
∑

k=0

(

n

k

)

2−(k
2)

pairs (S,A) where S is a 2-SAT function on n variables and A is a satisfying

assignment for F . It is straightforward to see that the sum is dominated by

the terms with k approximately log n, as with the sum

n
∑

k=0

(

n

k

)

2−(k
2) ,

so that the average number of satisfying assignments of a 2-SAT function

on n variables is
(

1 + o(1)
)

n
∑

k=0

(

n

k

)

2−(k
2)

as required, and the approximation 2( 1
2
+o(1)) log2 n is valid.

There is another way of approximating
∑

S |A(S)|. We could divide the

2-SAT functions up into three classes: the unate functions (whose contribu-

tion we expect to dominate the sum), some large class of non-unate functions

where we can control the number of satisfying assignments, and some small

class of non-unate functions where we cannot control the satisfying assign-

ments but which is too small to significantly affect the sum. In light of

Theorem 6.15 we can make this precise: we know that the unate functions

contribute at least 2(n
2)+n to the sum over 2-SAT functions on n variables

S
∑ |A(S)| (since each has at least one satisfying assignment), we might

believe in our ability to control the number of satisfying assignments of the

non-unate but 50-nearly-unate functions and thus show that their contri-

bution is small, and we know that there are so few 2-SAT functions which

are not 50-nearly-unate that even if each contributes 2n to the sum, their

contribution is still dominated by the unate 2-SAT functions.

This method is more general: we can, for example, use it to calculate mo-

ments of |A(S)|.

Theorem 6.17. The kth moment of |A(S)| is given by

E|A(S)|k =
(

1 + o(1)
)

EIk
n .
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Proof. We evaluate Σ =
∑

S |A(S)|k, where the sum is taken over all 2-SAT

functions on n variables. Since |A(S)|k ≤ 2kn for any 2-SAT function S,

and there are at most 2(n
2)−kn 2-SAT functions on n variables which are not

(25k + 25)-nearly-unate, these functions do not contribute more than 2(n
2)

to Σ.

We need to show that the contribution of the non-unate (25k + 25)-nearly-

unate functions to Σ is similarly insignificant. From Theorem 6.15 we

know that there are at most 2(n
2)+ 24n

25 of these functions. Now if S is a

(25k + 25)-nearly-unate 2-SAT function, then we can remove 25k + 25 vari-

ables to obtain an unate function S′ on n − 25k − 25 variables. If

|A(S′)| ≤ 2
n
50

−25k−25 then S has at most 2
n
50 satisfying assignments, and

the contribution to Σ of these functions is at most 2(n
2)+ 49n

50 .

If, on the other hand, |A(S′)| > 2
n
50

−25k−25 then there are only a few pos-

sibilities for S′: suppose S′ is such a formula, and let S′′ be a monotone

formula obtained by relabelling some set of variables. Choose any ε > 0

such that
∑εn

i=0

(n
i

)

< 2
n
50

−25k−25 is true for all sufficiently large n. Since

|A(S′′)| ≥ 2
n
50

−25k−25 there must be a satisfying assignment A of S′′ in

which at least εn variables are assigned False. It follows that the number of

possibilities for S′′ is at most 2n2(n
2)−(εn

2 ), where the 2n counts the number

of ways of picking the εn variables assigned False and the
(εn

2

)

counts the

number of clauses consisting of two positive literals drawn from the εn vari-

ables, which may not be present in the formula for S′′. Now the number of

possibilities for S′ is 2(n
2)−(εn

2 )+2n, and the number of clauses including the

25k+ 25 removed variables is less than 4(25k + 25)n, so that the number of

possibilities for S is at most 2(n
2)−(εn

2 )+(25k+30)n. Thus their contribution to

Σ is at most 2(n
2)−(εn

2 )+(26k+30)n.

The contribution of the monotone functions to Σ is easy to calculate: the

satisfying assignments of a monotone function are given by the sets of vari-

ables assigned False, which in turn correspond to the independent sets in

the diagram D(S) (which has no directed edges). Thus their contribution is

exactly 2(n
2)EIk

n.

Now if every unate function was obtained by relabelling some unique set of

variables X on a unique monotone formula then the contribution to Σ of the
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unate 2-SAT functions would be exactly 2(n
2)+n

EIk
n. But this is not the case:

there are at most n2(n−1
2 )+n unate functions for which there are two possi-

bilities for the set of variables X to be relabelled, and so on. Nevertheless,

the contribution to Σ of the unate functions is certainly at least

2(n
2)+n

EIk
n −

n
∑

r=1

(

n

r

)

2(n−r
2 )+n

EIk
n−r2

rk =
(

1 − o(1)
)

2(n
2)+n

EIk
n

since EIk
n is monotone increasing with n: and 2(n

2)+n
EIk

n remains an upper

bound.

Finally since EIk
n is certainly larger than 1 we have Σ =

(

1+o(1)
)

2(n
2)+n

EIk
n,

and since the number of 2-SAT functions is
(

1 + o(1)
)

2(n
2)+n we have

E|A(S)|k =
(

1 + o(1)
)

EIk
n as required.

Since E|A(S)| = 2( 1
2
+o(1)) log2 n is sub-exponential the same proof shows that

the central moments of |A(S)| also coincide asymptotically with those of In:

E(|A(S)| − E|A(S)|)k =
(

1 + o(1)
)

E(In − EIn)k, provided that the latter is

not exponentially small.

6.5 Further thoughts

We could certainly continue to extract further classes of 2-SAT functions in

decreasing size order, either in the manner of Theorem 6.13 or by enumerat-

ing the large classes of k-nearly-unate functions for suitable k and appealing

to Theorem 6.15 to show that there are no larger classes left uncounted.

It is obvious that Theorem 6.15 is not best possible: the constant 1
25 is

certainly too small. Also, we conjecture that in fact the result holds for

any function k(n). However, observe that the class of 2-SAT functions on

n variables which consist of the first k variables all having their positive

literals in the spine, and the remaining n− k variables forming a monotone

function, has size 2(n−k
2 ) = 2(n

2)−kn+ k2+k
2 . All functions in this class are

exactly k-nearly-unate, so that we do not expect a sharp upper bound on

the number of non-k-nearly-unate functions to be of a substantially different

form to that given.
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Prömel, Schickinger and Steger [63] found that almost every triangle-free

graph which is not bipartite, and cannot be made bipartite by removing

one vertex, can be made bipartite by removing two vertices, and so on;

Theorem 6.15 suggests that the corresponding result holds for our problem.

We conjecture that the class of 2-SAT functions on n variables which are

exactly k-nearly-unate is larger than the class of those which are exactly

(k+ 1)-nearly-unate by a factor of at least 2εn for all sufficiently large n, all

k, and some constant ε > 1
25 .

Our results only hold for a number n of variables greater than some (very

large) number N . It is worth considering whether we really needed to apply

the Szemerédi Regularity Lemma, which was responsible for causing N to

be so large; to obtain our results we did not make as much use of the lemma

as in [13], where, (implicitly) the Regularity Lemma is applied for an infinite

sequence of ε’s tending to zero, and we did not need the lemma at all to

deal with the large case. However, even if a method of avoiding it could be

found, other parts of the proof require N to be so large as to be useless for

practical application.

We have not attempted to attack the problem posed in [13] of determining

the asymptotic behaviour of the number of k-SAT functions for k > 2; in

[13], the upper bound 2
√

π(k+1)(n
k) is given, and the conjecture offered that

the exponent should in fact be
(n
k

)(

1 + o(1)
)

. One could certainly follow

the methods here: for 3-SAT functions, the first step would be to discard

functions which in some way emulate 2-SAT functions (corresponding to our

move to elementary functions) and then give some kind of 3-uniform hyper-

diagram structure. At this point one would find a major difference between

2-SAT and k-SAT for k ≥ 3. The computational problem of determining

whether a 2-SAT formula is satisfiable has a simple polynomial time algo-

rithm: and the set of forbidden structures is finite (and small). By contrast,

for k ≥ 3 the computational problem is NP -complete, so we should expect

to find that the set of forbidden hyperdiagrams is both infinite and hard to

describe. However, it seems likely that this would not cause insurmountable

problems: even for 2-SAT, the reader will have observed that the forbidden

structure (3) was used just once in the proof of Theorem 6.6, in case (v)
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of Theorem 6.9, and even then its use was unnecessary (the structure (2)

would have produced an acceptable bound for Theorem 6.6, although not

for the later Theorem 6.13). It seems very likely that for 3-SAT and higher

a similar phenomenon will occur: finding the dominant term for the number

of k-SAT function on n variables will only require knowledge of the smallest

few forbidden structures. However the reader will also notice that in the

course of proving Theorem 6.6 we made use of a considerable number of

previous results (such as Kleitman and Rothschild’s enumeration of partial

orders and Füredi’s result on proper squares of graphs) which do not yet

have hypergraph analogues, so that following our methods to prove an upper

bound for even the 3-SAT case would be a very difficult task.
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[29] P. Erdős, A. Gyárfás and L. Pyber, Vertex coverings by monochromatic

cycles and trees, J. Combin. Theory Ser. B 51 (1991), 90–95.
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[52] T. Kövari, V. Sós and P. Turán, On a problem of K. Zarankiewicz,

Colloquium Math. 3 (1954), 50–57.

[53] J. Lehel, private communication.

[54] H. Lerchs, On cliques and kernels, Tech. Report, Dept. of Comp. Sci.,

University of Toronto (1971).

[55] V. Lozin, Bipartite graphs without a skew star, Discrete Math. 257

(2002), 83–100.

[56] V. Lozin, Clique-width of unit interval graphs, arXiv:0709.1935 (2007).

[57] V. Lozin, private communication.

[58] V. Lozin and J. Volz, The clique-width of bipartite graphs in monogenic

classes, Int. J. Found. Comp. Sci. 19 (2008), 477–494.

[59] T.  Luczak, R(Cn, Cn, Cn) ≤ (4 + o(1))n, J. Combin. Theory Ser. B 75

(1999), 174–187.
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[70] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux
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