
Scientific Uncertainty and Decision

Making

Seamus Bradley

A thesis submitted to the Department of Philosophy,

Logic and Scientific Method of the London School of Eco-

nomics for the degree of Doctor of Philosophy, London,

September 





Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD degree

of the London School of Economics and Political Science is solely my own work

other than where I have clearly indicated that it is the work of others (in which

case the extent of any work carried out jointly by me and any other person is

clearly identified in it).

Part of section . has been published as Bradley (). A version of chapter 

has been published as Bradley ().

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced

without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the

rights of any third party.

I declare that my thesis consists of 95497 words.

Dedication

Thanks to all the people at conferences with whom I have discussed my ideas.

Thanks especially to Chris Clarke, Jonny Blamey, Alastair Wilson, David Etlin,

Richard Pettigrew, Wendy Parker, Robbie Williams and Alan Hájek. Thanks to

the students and staff at the LSE who have been incredibly helpful. Thanks to

Dean Peters, Foad Dizadji-Bahmani, Conrad Heilmann, Ittay Nissan. Thanks to

Katie Steele, Lenny Smith and Dave Stainforth for comments on parts of drafts.

Thanks to my supervisors Richard Bradley and Roman Frigg for support and

encouragement.

Thanks also to my family for their support. Above all, thank you Megan, for

keeping me (almost) sane.





Abstract

It is important to have an adequate model of uncertainty, since decisions must be

made before the uncertainty can be resolved. For instance, flood defenses must be

designed before we know the future distribution of flood events. It is standardly

assumed that probability theory offers the best model of uncertain information. I

think there are reasons to be sceptical of this claim.

I criticise some arguments for the claim that probability theory is the only

adequate model of uncertainty. In particular I critique Dutch book arguments,

representation theorems, and accuracy based arguments.

Then I put forward my preferred model: imprecise probabilities. These are sets

of probability measures. I offer several motivations for this model of uncertain

belief, and suggest a number of interpretations of the framework. I also defend

the model against some criticisms, including the so-called problem of dilation.

I apply this framework to decision problems in the abstract. I discuss some

decision rules from the literature including Levi’s E-admissibility and the more

permissive rule favoured by Walley, among others. I then point towards some

applications to climate decisions. My conclusions are largely negative: decision

making under such severe uncertainty is inevitably difficult.

I finish with a case study of scientific uncertainty. Climate modellers attempt

to offer probabilistic forecasts of future climate change. There is reason to be

sceptical that the model probabilities offered really do reflect the chances of future

climate change, at least at regional scales and long lead times. Indeed, scientific

uncertainty is multi-dimensional, and difficult to quantify. I argue that probability

theory is not an adequate representation of the kinds of severe uncertainty that

arise in some areas in science. I claim that this requires that we look for a better

framework for modelling uncertainty.
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. Introduction

But whatever Socrates may

say, it remains the case, as

anyone can see, that people

who stick to philosophy

become strange monsters, not

to say utter rogues; even the

best of them are made useless

by philosophy.

(Bertrand Russell)

Uncertainty is ubiquitous. It is important to understand what uncertainty is, and

where it comes from. It is also important to know how to reason about uncer-

tainty, and particularly how to make decisions when faced with uncertainty. The

standard set of formal methods for dealing with uncertainty is built around the

mathematical theory of probability. This has been a remarkably successful theory,

with a huge number of applications. I will argue that there are circumstances

where probability theory is too restrictive a representation of uncertainty. There

are alternatives to probability theory. I will argue that in cases of severe uncer-

tainty, they are better suited to represent uncertainty than probability theory is.

More generally, I want to argue that we shouldn’t expect rationality to determine

the right course of action in every circumstance. In cases of severe uncertainty, it

might be that all that rationality can do is rule out some options as impermissible.

This is an important project because one area where severe uncertainty is

prevalent is in the field of climate science. Decisions of global importance need to

be made that rely on scientific evidence from climate science. Thus, it is important

to properly represent the uncertainty present in order to facilitate good decisions.

The standard precise probabilistic methodology might suggest an unwarranted

level of certainty. This certainty could encourage decision makers to attempt to

optimise their responses. But such optimisation with possibly faulty probabilities

does not give any guarantee of success.

Before we can start a study of the alternatives to the orthodox probabilistic
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theory, it will be instructive to study that theory in detail. I outline the formal

preliminaries and introduce the central concepts of the dissertation in chapter .

There will be some work to do here in justifying particular choices I make about

how to set up the framework. Many arguments have been put forward that

purport to show that probability theory is the best model of uncertain reasoning

and decision making. Call the view that probability theory is the best model of

uncertain reasoning “Probabilism”. So a prerequisite for this project is that we

show how and why these arguments fail or are not appropriate in the current

context. This is the aim of chapter .

I do not argue that probability theory is never an appropriate model of uncer-

tainty. Often it is a very good one, and I hope to be conservative in the ways I

go beyond the standard theory. I discuss a variety of methods for going beyond

orthodox probability theory in chapter . Various arguments for my preferred

framework will be offered, and two problems with learning in this imprecise prob-

ability framework will be discussed. My favoured framework will be used in

chapter  to discuss decision making under severe uncertainty. The conclusions

are somewhat negative. Decision making under severe uncertainty is difficult,

perhaps unavoidably so. It is, however, important to recognise that difficulty,

and to not be misled into making poor decisions by over-precise estimates of

uncertainty. More generally I think it is asking too much of rationality to always

determine a fully precise probability function that represents your uncertainty,

whatever the state of your evidence. Furthermore, I think that in situations of

severe uncertainty it is not a good idea to attempt to look for optimal courses of

action. Optimising on weak evidence like this isn’t necessarily a good idea.

I will offer a case study of scientific uncertainty in chapter . The claim is that

given the multitude of sources of uncertainty and error, perhaps we would be

better off using a more permissive formal framework for reasoning about the

uncertain scientific propositions. Finally, chapter  returns to the issue of decision

making and climate change, and the particular problems that we encounter there.

.. Characterisations of uncertainty

I should mention something about my use of the word “uncertainty”. I am using

this as a catch-all term for all the ways one might fail to be certain about things.

Economists and decision theorists sometimes make a distinction between “risk”

where the probabilities are known, and “uncertainty” where they are not. This



. Introduction 

distinction is traced back to the work of Frank Knight (Knight ). Unfortu-

nately, physicists have the opposite view: “uncertainty” connotes a situation where

you know the probabilities and “ambiguity” is the term for a situation where the

probabilities are unknown. I use uncertainty to cover both of these possibilities.

The terminology is not as stable as this suggests, but to the extent that it is stable,

it has stabilised in incompatible ways in different disciplines.

There have been several attempts to classify kinds of uncertainty. For example

Walker et al. () offer a framework for understanding uncertainty when using

evidence from models to make decisions. They identify three distinct “axes” of

uncertainty of relevance for “model-based decision support”. These are:

Location Where exactly the error enters into the process

Level How much the uncertainty affects the model-relevant predictions

Nature Whether the uncertainty is due to a deficiency in the modelling, or due to

unavoidable natural variation

The National Institute of Standards and Technology’s Guidelines for Evaluating and

Expressing Uncertainty also note the distinction between Random and Systematic

errors (Taylor and Kuyatt ). This is a distinction that falls under the Walker et

al. category of nature of uncertainty. The NIST document notes that this distinction

often matches up with a difference in how the uncertainty can be reported: random

errors are often evaluated statistically, systematic errors are not. They also note

that the categories are somewhat dependent on perspective:

The nature of an uncertainty component is conditioned by the use

made of the corresponding quantity, that is, on how that quantity

appears in the mathematical model that describes the measurement

process. When the corresponding quantity is used in a different way, a

“random” component may become “systematic” and vice versa.

Taylor and Kuyatt (, p. )

On a similar note, Lo and Mueller () distinguish a number of types of

uncertainty, based on what techniques can be used to deal with them and what

amount of data you need to overcome them. The view of physics they present is

rather naïve, but their main aim is to draw a distinction between the “easy” cases

in physics and the “hard” cases in economics and finance. They take uncertainty in

physics to be a lot more clear-cut than it often is; they are keen to stress that finance

and economics are much less certain – riddled with more severe uncertainties –
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than physics. In chapter  I will argue that many of the kinds of uncertainty that

Lo and Mueller think are worrying in finance and economics are also troubling

in areas like climate science. There may be differences in the severity of the

uncertainties encountered in physics and in finance, but it is a difference of degree,

not a difference in kind. They distinguish what is often called “risk” (known

probabilities) from uncertainty. They then go on to distinguish three grades of

uncertainty. The first they call reducible uncertainty which is uncertainty where

the state space is known, and it is reasonable to assume a fixed stable background.

Classical statistics uses observations to reduce the uncertainty to risk. Below this

we have partially reducible uncertainty where the above conditions no longer hold

straightforwardly. There might be time-varying parameters, model uncertainty,

non-linearities and so on. In short, there may be aspects of the target system

that render invalid the standard statistical results necessary to warrant statistical

inference (for example the Law of Large Numbers or the Central Limit Theorem).

At this level, more sophisticated modelling techniques will be necessary, perhaps

only a coarse-grained model of the phenomena is possible. There are however

enough regularities in the target system that progress can be made, however

piecemeal and tentative. Below this there is the level of irreducible uncertainty.

Irreducible uncertainty is our epistemic situation with respect to those things that

are not governed by any regularities or statistical laws at all. No amount of data,

no sophistication of technique is enough to accommodate things that fall in this

category. As Lo and Mueller point out,

irreducible uncertainty seems more likely to be the exception rather

than the rule. After all, what kinds of phenomena are completely

impervious to quantitative analysis?. . . The usefulness of the concept is

precisely in its extremity. By defining a category of uncertainty that

cannot be reduced to quantifiable risk – essentially an admission of

intellectual defeat – we force ourselves to stretch our imaginations to

their absolute limits before relegating any phenomenon to this level.

Lo and Mueller (, p. )

These categories are not wholly distinct, nor are they unrevisable. Solar eclipses

would have been irreducibly uncertain for primitive tribes, but they can now be

predicted with such accuracy that no uncertainty remains. Assigning something to

some category or another will be relative to a state of information: more evidence,

better theories or better model techniques might change what level something sits

at. This is pushing in the same direction as the NIST Guidelines passage quoted
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earlier. For the statistics to help at the level of reducible uncertainty, for instance,

we need to know things like that there is a stable background. But on reflection,

we might take Hume’s worry about induction seriously and conclude that we

can never be certain of that sort of thing. This undermines pretty much every

reduction of uncertainty to risk. What we take ourselves to know and to believe

depends in part on what we take for granted. Consider betting on the roll of some

dice. If we take for granted that the dice are fair, then this is a case of risk. If

however we don’t take this for granted, we are in a case of reducible uncertainty.

Nothing about the dice has changed. The difference in epistemic situation is due to

what is taken for granted. What decides what can be taken for granted in a given

situation is something extra-rational: we must appeal to some sort of Duhemian

Scientific Good Sense (Duhem ) and leave it at that.

Kandlikar, Risbey, and Dessai () discuss how to represent different kinds

of uncertainty. We can understand this as a cashing out of the level of uncertainty

category from Walker et al. (). The best case scenario is that you know enough

to produce a probability density function (PDF) that encapsulates all there is to

know about the uncertain process at issue. Failing this, perhaps you can only put

upper and lower bounds on the possible values of the variables of interest. If even

this isn’t possible, then you might still be able to assess the order of magnitude of

the expected effect. The lowest useful level of information is just to say whether the

change in the variable will be positive or negative (the sign of the effect): whether

the trend is upwards or downwards. If none of these factors can be usefully drawn

from the evidence, then you are effectively in a state of complete ignorance.

Regan, Colyvan, and Burgman () offer a typology of uncertainty for ecol-

ogists. They define two broad kinds of uncertainty: Epistemic and Linguistic.

Epistemic uncertainty is due to unknown factors in the world; linguistic uncer-

tainty is uncertainty we have in virtue of the inexact way language matches up

with nature. I am particularly interested in the epistemic uncertainties, and my

characterisation of epistemic uncertainties is not all that different from theirs.

Understanding the nature and diversity of scientific uncertainty is important

for policy making. Oversimplifying scientific evidence, or downplaying the un-

certainties involved is to the detriment of model based decision making (Covey

; Stirling ). This is an important theme for the thesis: an adequate under-

standing of uncertainty must be communicated to – and used by – the decision

makers.

It is often assumed that probability theory offers the right representation of
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uncertain information. The aim of this thesis is to explore this idea. Given the

above diversity of kinds of uncertainty and severity of uncertainty, perhaps there

is room for other formal frameworks.

.. General lessons

I would like to briefly set out the aims of the current dissertation.

The first important lesson I would like to draw out in this dissertation is that

uncertainty comes in many forms. Chapter makes this point explicitly for the

case of climate science uncertainty. But the multifariousness of uncertainty is an

important motivation for exploring extensions of probability theory (chapter ).

And indeed, the multidimensional nature of uncertainty is one important reason

to be sceptical of those arguments that purport to show that probability theory is

the correct formal model of uncertainty (chapter ).

A consequence of the myriad forms of uncertainty is that representing un-

certainty is important for good decision making. Furthermore, we need this

representation of uncertainty to be part of what decision makers use to make their

decisions. In section .. I give an example of how an inadequate representation

of the state of your evidence can lead to an intuitively bad decision. Related to

this point is the idea that we aren’t always in a position to choose optimal acts. In

cases of severe uncertainty, we can’t know what is “really” optimal, and what ap-

pears optimal given our incomplete evidence needn’t be a good option. Adequate

representation of severe uncertainty blocks these “premature optimisations”. This

is an important point to bear in mind when it comes to making decisions based on

(uncertain) climate evidence (chapter ).

My most general claim, the one that perhaps best brings together the disparate

chapters of this work is this: we need a subtler understanding of what rationality

is, and what we can expect of it. Rationality is a theme that runs through this

dissertation: what is it rational to believe?; what is it rational to choose? Rationality

is often taken to be part of what determines the answer to these questions. I think

in the case of severe uncertainty, we shouldn’t expect there to be determinate

answers to these questions. So what rationality is doing is simply ruling out some

of the options as irrational. This shift in understanding of rationality allows us

to focus on what conditions are required for rationality to do more. Imprecise

probabilism is a representation of uncertainty that is only definite to the extent

that the evidence sanctions definite degree of belief (chapter ). This is a formal
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model of uncertainty that is true to the idea that rationality needn’t always give

determinate answers. Once we commit to moving beyond the standard probability

theory framework, we need to look at what decision making looks like (chapter ).

This is another place where our subtler understanding of rationality becomes

important. The discussion of interpreting the choice function is an example of

where this arises.

The same theme arises in chapter  as well: we shouldn’t take evidence from

climate models as giving us determinate answers to questions about the future

evolution of the climate, but rather as giving us some indications of what sorts of

scenarios to prepare for. The final chapter (chapter ) again stresses this point

that it is important to be clear what we can expect – in terms of decision relevant

advice – from our modelling of the climate. Of course, this negative conclusion

is not of much help to policy makers who actually have to make decisions based

on this incomplete picture of the future evolution of the climate; the last chapter

discusses some strategies for making decisions when the evidence doesn’t give

you enough advice.

These last two chapters should be seen as a case study of uncertainty in science

that is motivated by the same concerns that led to the formal conclusions of

the earlier chapters. That is, in both cases I am motivated by my interest in a

weaker standard of rationality, and by a concern for adequate representation of

uncertainty for the purposes relevant to the context.



. A framework for belief,

uncertainty, value and action

The greatest challenge to any

thinker is stating the

problem, in a way that will

allow a solution.

(Bertrand Russell)

This chapter serves as a summary of the formalism used throughout the rest of the

dissertation. It also serves as an introduction to the ideas and concepts appealed

to. Ultimately, I am interested in rational belief and action under severe uncertainty.

These concepts – “rational”, “belief”, “action”, “severe uncertainty” – will all need

explanation, as will some other related concepts.

I will first discuss modelling decision problems in the abstract. Then I will move

on to a discussion of the formal details. I have split this discussion into two parts.

These are the objective and subjective parts of decision problems. This distinction

is not sharp, and it is a little arbitrary. The idea is that the objective aspects of a

decision problem will be common to all agents. Agents may, however, differ in

the subjective parts. The same acts will be available to all agents, but different

agents might value the outcomes differently. The distinction is not sharp because

sometimes the chances of the events determine the beliefs in them. The intuition

behind drawing the distinction where I do is that there is nothing “normative”

going on in the objective half: this is supposed to be just a neutral characterisation

of the problem. The normativity comes in in the subjective part.

Bermúdez () discusses the possibility of normatively assessing the way you have framed the

decision problem. I don’t assess that sort of thing here.
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.. Modelling decision problems

When one is modelling a decision scenario, there are three kinds of things that are

relevant. There are objects of value, objects of belief, and objects of choice. This is

“object” in a grammatical sense: these are objects in that they are the object of a

verb. In the current context, it is the decision maker who is the subject of those

verbs. For example, the objects of value are the things the subject values. I don’t

mean to suggest that all objects of value are material objects.

The objects of value are the things you are concerned to bring about, or to

prevent from happening. For example, “getting caught in the rain”; “winning the

bet”. If there were no such objects of value, then there’d be no reason to “decide”

anything. The objects of belief are the contingencies that will affect what happens.

They influence which of the objects of value end up occurring. For example, “it

is raining”; “your horse wins the race”. Finally, the objects of choice also affect

which outcomes come about, but the objects of choice are those eventualities you

have it in your power to control. For example “take the umbrella”; “bet on the

horse called Categorical Imperative”.

Let’s take a simple example. In this example, the objects of value are “get wet”

which is a contingency you are keen to avoid; “carry umbrella” which is a nuisance,

but not so bad as being caught in the rain; and “don’t get wet”. The objects of belief

are “it rains” or “it doesn’t rain”. The objects of choice are “bring umbrella” and

“don’t bring umbrella”. It should be clear that both the objects of belief and the

objects of choice influence which of the objects of value ends up coming about. It

should also be clear that it is in your power to choose between the objects of choice

– you have it in your power to bring about the fact that you take an umbrella or

not – but you don’t have the same power over the objects of belief (whether or not

it rains).

It rains It doesn’t rain

Bring umbrella Don’t get wet Carry umbrella

Don’t bring Get wet Don’t get wet

Table ..: A simple decision problem

Fixing the relevant elements of these three categories is the first part of mod-

elling a decision problem. One might worry that these types of objects all seem

to be somewhat “subjective”. That is to say, it isn’t really the proposition “it is
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raining” that influences whether or not you get wet, but rather, it is what makes

it true that it is raining that causes the getting wet. It might be that “it is raining”

logically entails “you get caught in the rain”, but what you value is not the truth

value of that proposition: you (dis)value the actual state of getting caught in the

rain. This subtlety can be glossed over by assuming that the logical relationships

between these subjective objects mirror the relationships between the things in the

world that determine your happiness. That is, the “world” makes the proposition

true. The other way of sweeping this issue aside is to make sets of possible worlds

be the objects of belief. I discuss this later, when I introduce events and truth.

How sharp this tripartite distinction between objects of value, belief and action

is, is a matter of controversy. Savage ( []) makes the separation of the

categories absolute. Jeffrey () makes these things less distinct. I return to

this question later in section .., once I have set out the formal details of the

frameworks.

.. Objective elements of decision problems

Ultimately, we are interested in rational belief and rational action, but first we need

to work out what beliefs are, and what action involves. Belief is a propositional

attitude. It is important for a number reasons. There are norms that govern

rational belief: directly through what it is reasonable to believe; and indirectly

through belief’s action-guiding role and what actions are reasonable. Before we

get to belief, we need a characterisation of what the objects of belief are.

... Events

Belief is belief about something: You can have beliefs about whether it will rain,

about which horse will win the race and so on. When we model belief, we make

the objects of belief sentences that say things about the world. A belief is an

attitude directed at things in the world. The content of a belief can be something

like “It is raining” or “The die lands on a four”. These are sentences about states

of affairs; about events in the world. Using these basic sentences we can construct

compound sentences like “The die lands on a four or it is raining”. This “or” is

formalised as “_”. Using “X” to stand for “The die lands on a four” and “Y ” to

I leave it open for now whether these relationships are logical, causal, evidential. . .
While it is possible to construct these logical compounds, I’m not sure how a decision problem

would rest on the truth value of a disjunction with disjuncts from different domains like this.
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stand for “It is raining”, we can rewrite this compound as “X_Y ”. More generally,

for any X1,X2 sentences, we can construct the compound X1_X2. This is also a

sentence, we can have beliefs about it. Of course, what beliefs we have about the

compound will be somehow related to what beliefs we have in the basic sentences.

It is useful to have some other kinds of compound sentences available to us: let

“X ^Y ” mean the proposition “X and Y ”; and let “ X” mean “it is not the case

that X” or “not X” for short. Again, what beliefs you have in these compounds

is related to your beliefs in the basic sentences. We can then write complex

compound sentences like this: pX _Y q^ p Z ^Y q.

More formally, we have a set of elementary letters L“ {x1,x2 . . .xn}which is finite

unless otherwise stated. The infinite case introduces some complexity which is, for

the most part, besides the point in the current project. We have a set of sentences

built up from these propositions and the usual logical connectives  ,^,_. Two

important elements of this logic, the tautology and the contradiction, will be

identified as J and K respectively. The tautology is always true, the contradiction

is never true. This terminology follows Paris (). We can identify J with

X _ X and K with X ^ X. Jeffrey’s system is importantly different: Jeffrey’s

algebra is atomless. This means that, among other things, there are infinitely many

elementary letters.

One might want to disagree with the understanding of belief as a propositional

attitude. “No,” you might say, “my beliefs are about the world.” The objects of

belief are in the world. However, I think this way of speaking doesn’t do justice

to the intuition that beliefs are intensional. For example, you can believe that

Clark Kent is in the room, but not believe that Superman is in the room: this is

not contradictory. However, Clark Kent’s being in the room is extensionally the

same as Superman’s being in the room. So it seems that if beliefs are about the

world directly, you can’t have the above pair of beliefs. That’s not to say that you

can’t make sense of this aspect of intensionality and have your beliefs be about the

world, but it’s subtle. Weisberg () makes the same point. Having the objects of

belief be “in the world” also makes i somewhat mysterious what compounds like

However, there are cases where it is necessary to work with an infinite language. Most notably,

the theorems of Savage (..), Fine/Villegas (..) and Cox (..) don’t work unless the

language is infinite.
More carefully, the tautology is true under all assignments of truth values to the elementary

letters; the contradiction, false under all such assignments.
Whether the atomlessness is a requirement of rationality, rather than a structural feature

required for the representation theorem will be discussed later.
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X _Y correspond to. Are these logical operators to be understood as operating on

the things in the world? What would that mean? It seems more straightforward to

have the objects of belief be linguistic: we know how to handle logical operators

on linguistic things.

The sentences that are the objects of belief are sentences about the world, so

belief isn’t totally divorced from the world. This intermediate step allows us to

deal with intensionality in a natural way. That said, this property of my preferred

way of understanding belief won’t feature in this dissertation.

We are going to be discussing degrees of belief in these sentences. It is per-

haps reasonable, and certainly convenient, to stipulate that logically equivalent

sentences are believed equally strongly. So we will build this constraint into

our framework by only defining our belief functions over equivalence classes of

logically equivalent sentences. So take the set of compounds build up from L and

the logical connectives, and then use the equivalence relation “”” to partition this

into classes of equivalent sentences. We will use elements of the equivalence class

to stand for the class. Call such equivalence classes propositions. This is called the

“Lindenbaum algebra” and behaves well under the logical connectives. Call this

SL.

Real human reasoners typically don’t believe all logically equivalent proposi-

tions equally strongly. I am uncertain of many mathematical expressions which

are equivalent either to J or to K. But as long as I don’t know which, I am uncer-

tain. However, logical omniscience does still seem normatively compelling, even

if it is unrealistic. What reason could you have for believing logically equivalent

propositions to different degrees apart from logical ignorance? It does at least

seem required of you that if you know P and Q are equivalent, then you should be-

lieve them to the same degree. I think Kyburg () has it right when he says that

belief in X involves a commitment to appropriate beliefs in things logically related

to X. For example, Kyburg believes the axioms of set theory, and he thereby takes

himself to be committed to all the theorems of set theory, even those he doesn’t

know. He might act against such a commitment through ignorance, but he should

feel foolish if such a failure was pointed out to him. Full logical omniscience of

the kind built in by the focus on the Lindenbaum algebra is obviously too strong a

I haven’t yet introduced the machinery to make precise exactly what this “”” relation is, but I

hope it is obvious from standard accounts of propositional logic. In fact, later I will discuss

different sorts of equivalence relation, so this initial vagueness serves a purpose.
Note that it follows that it doesn’t matter what X we use to pick out J and K: they are all in the

same equivalence class anyway.
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requirement. Relaxing this assumption would be an interesting project, but it is

not a project I shall undertake here.

As we have seen, events have a structure: we can use logical operators like

^,_, on them. Specifically, they have the structure of an algebra. For our

purposes, this basically means that if X,Y P SL then so are X ^Y ,X _Y and  X.

As hinted at earlier, there is an alternative way to cash out what an event is.

This is to say that an event is a set of possible worlds. And then define beliefs as

being about sets of possible worlds. This is the way Halpern () starts. Then

events have a kind of set-structure, rather than logical structure: X Y Y is an

event that corresponds to X _Y as described above. That is, it is an event which

obtains whenever at least one of X or Y does. This way, which corresponds to the

“extensional” understanding of belief alluded to earlier, doesn’t allow the kind of

Superman/Clark Kent beliefs, nor does it allow failures of logical omniscience.

Again, logical omniscience and intensionality won’t feature in this dissertation, I

mention these subjects only to justify my choice of logical rather than set-theoretic

framework. These two understandings of what the content of belief are are not

really in conflict, anyway. Indeed, the translation between them is straightforward.

But to discuss it, I need to introduce another new idea.

... Truth

Believing true propositions is the aim of rational belief. What propositions are

true is what decides which actions lead to which outcomes. So let’s look at truth.

We have a truth valuation function v which outputs vpXq “ 1 if X is true and

vpXq “ 0 if X is false. That is,

Definition .. v : SLÑ {0,1} is a (classical) truth valuation function if

• vpX _Y q “max {vpXq,vpY q}

• vpX ^Y q “min {vpXq,vpY q}
As a matter of fact, since all the belief functions I look at have the property of being monotonic,

I don’t need to stipulate this. It follows from monotonicity that logically equivalent sentences

are believed equally strongly. However, I include this discussion of the Lindenbaum algebra

here because I want to make it clear that this is a choice about how I am conceptualising the

objects of belief. In the current setting, logically equivalent sentences being believed equally

strongly is overdetermined: either of the Lindenbaum algebra move or monotonicity would be

sufficient to secure the property.
Or that is at least part of the aim of rational belief. Disbelieving false propositions is just as

important. In any case, truth and falsity are inextricably linked concepts, duals of each other.
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• vp Xq “ 1´ vpXq

Let’s call the set of such functions V. Your intuitions about how truth interacts

with the standard logical operators should allow you to see the reasonableness of

these properties for functions in V. v describes how the world is with respect to

all the propositions of interest.

With this terminology in place, we can now see how to translate between sets of

possible world talk and proposition talk. Since v assigns a 1 or a 0 to all members

of SL, it effectively picks out a unique “possible world”. Call rXs the set of v PV

such that vpXq “ 1. rXs is the set of possible worlds where X is true. It should

be clear that rX _ Y s “ rXs Y rY s and rX ^ Y s “ rXs X rY s. Also, r Xs “ rJszrXs.

Finally, rXs Ď rY s if and only if X ( Y . Thus, talking of propositions or of sets of

worlds amounts to the same thing.

Sometimes I will borrow some “set talk” to talk about propositions. I will often

use “A partition of SL” to mean “A set of sentences of SL such that every v P V

makes exactly one of them true.” I hope it’s clear that if the Xi have this property,

the rXis do indeed partition the set V. I will also, on occasion talk of a “subset”

of Y . By this I mean an X such that rXs Ď rY s. X is a “subset” of Y when Y is a

consequence of X.

We can now properly define the equivalence relation at the basis of our Linden-

baum algebra as follows: X ” Y iff rXs “ rY s. We are operating purely semantically

here. This might seem a rather round-about way of doing things. Why not just

start with beliefs being over sets of “possible worlds” and be done with it? This is

a very common approach in the literature. The reason to take this long way round

is that the sets of possible worlds approach builds in the assumption of logical

omniscience at the most basic level, and it is thus hard to relax. By taking this cir-

cuitous route to the basic set up, I have left open the possibility of relaxing logical

omniscience. That is, I can replace “”” with “–”, some alternative equivalence

relation signifying “known mutual entailment” or something like that. As long as

this “plays nicely” with the logical connectives, then we can construct a quotient

algebra in the same way we can construct the Lindenbaum algebra out of the “””

relation.

If L contains n elementary letters {x1, . . . ,xn}, then there are 2n distinct propo-

sitions of the form: ˘x1^˘x2^ ¨¨ ¨ ^˘xn. Where `xi means xi and ´xi means
Once we have in place the Lindenbaum algebra, that is.
Meaning, if X – X1 and Y – Y 1 then X ˚Y – X1 ˚Y 1 for any connective “˚”. In other words, “–”

is a congruence relation. Thanks to David Makinson for helping with this point. Note that such

an approach would require a weaker version of monotonicity as well.
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 xi . For every vi there is exactly one such proposition that it makes true. Call it

ti . That is, viptiq “ 1 and for j ‰ i, viptjq “ 0. The tis partition SL. These ti are the

atoms of the algebra SL.

To recap, we have a set of basic elementary letters L “ {x1,x2, . . . ,xn} and a

collection of compounds of L made by using the connectives ^,_, . We take

equivalence classes of these things using the logical equivalence relation, we call

this SL. These are the things we have beliefs over.

... Outcomes

Another kind of thing of interest in the context of decision making is outcomes:

consequences, objects of value. Outcomes are the kinds of thing that you value or

disvalue; the kind of thing you have preferences over; the things that result from

your choosing to act one way or another. For example “Eat ice cream” might be

the outcome of choosing to have dessert. Savage ( []) leaves outcomes

as more or less structureless, uninterpreted primitives in his theory. They simply

form a set; you have preferences over this set; acts are functions which map into

this set. That’s all there is to say about them.

Jeffrey () on the other hand, makes outcomes the same sort of thing as

events (and everything else): outcomes are simply a type of proposition. They are

a type of proposition that we have preferences over. Outcomes are propositions of

the form X ^A where X is a state of the world and A is an act. An outcome just is

the conjunction of the act you perform and the state of the world. Understanding

what an act is, is just understanding the conjunctions of the act with the possible

propositions. Joyce () points out that “Jeffrey outcomes” can’t appear in more

than one space in the decision matrix. So Joyce distinguishes fine-grained Jeffrey

outcomes from coarse-grained Savage outcomes which are disjunctions of Jeffrey

outcomes that you are indifferent between. In another sense, Savage outcomes are

more fine-grained than Jeffrey outcomes. This is so since Savage outcomes must

specify all the value-relevant details of the combination of act and event, whereas

Jeffrey outcomes can leave many details underspecified. The relationship between

these two concepts is subtle, and need not concern us here, since in what follows I

will be mostly sticking to outcomes that are of fixed monetary value.

Anscombe and Aumann () give some structure to their outcomes. Some

outcomes are just basic goods like Savage’s. But others are “lotteries”. A lottery

In fact, according to Savage, you only have preferences over them in virtue of having preferences

over the constant acts, but intuitively outcomes are the things we have preferences over.
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gives you one of a number of prizes with a certain probability. If the probabilities

are known, it is called a roulette lottery. If the probabilities are unknown, it is

called a horse lottery. The prizes can either be basic goods, or they can be more

lotteries. The former sort are called simple lotteries, the latter compound lotteries. I

won’t discuss this addition much. For my purposes, it will suffice to take outcomes

to be unstructured, unalloyed goods.

If we effect the same liberalisation with outcomes as we did for events – namely

to have differently described but logically equivalent outcomes treated differently

– we can rationalise some kinds of experimentally observed preferences that don’t

fit the standard model. Lois Lane can prefer being saved by Superman to

being saved by Clark Kent, despite those outcomes being extensionally equivalent.

Consider two different descriptions of extensionally the same outcome. Tversky

and Kahneman () discuss how people can have different preferences over

these outcomes depending on how the outcome is framed. For instance, people

respond differently to an act framed in terms of the number of deaths it would

cause rather than the number of lives it would save, even if the prospects are

extensionally the same. In effect, we allow the outcomes to be intensional in the

same way we might allow the events to be intensionally described. This isn’t a

project I pursue here, but I note that it is possible.

The set of outcomes in a decision problem will be called O. Outcomes are

going to be described using o1, o2 . . . and sets of outcomes shall be O1,O2 . . . So

O Ą O1 Q o1. This is a convention I shall try to roughly stick to with all my

formalism. An “x” will be referred to by a small letter, a set of xs by a capital “X”

and “the set of (all) the xs” by a bold capital “X”. Capital blackboard bold (X) and

script letters (X ) will then be used for other complex entities. Lowercase boldface

will typically denote important types of function.

... Acts

A third important aspect of decision problems is what the agent can do about

it. If you are in a decision problem, you need to know what acts are available

to you; what the objects of choice are. Savage thought of acts as functions from

states to outcomes. In the current set up, this seem a little strange. Having acts

be functions from propositions to outcomes seems to gloss over the fact that it is

Later, we will see that I allow myself mixed acts. One can interpret mixed acts as being lotteries

over basic acts. The difference is purely cosmetic.
Bermúdez (, Chapter ) discusses this possibility.
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not the propositions that really determine which acts are successful. What makes

taking your umbrella a successful act is that it is raining; not that the proposition

“it is raining” is true. Despite this, I hope it is clear that this sort of approach

will work fine, as long as what determines the truth of the propositions that are

arguments of the act functions is completely distinct from the decision problem.

In slogan form: “The world decides what propositions are true”. Or perhaps “The

truth of event propositions and the success conditions of acts have a common

cause: the world”. If some of the relevant propositions are in your control – or are

correlated with propositions in your control – then lots of weird stuff can happen.

To keep things simple, I demand that what act you perform cannot influence what

event obtains. Bringing an umbrella cannot influence whether or not it rains. This

is the condition of act independence of states: which state occurs is independent of

which act is performed.

Jeffrey thought of acts as propositions you have it in your power to make true.

To recover “Savage acts” in Jeffrey’s framework, you have to enrich your language

with a new kind of connective which is a kind of non-truth-functional conditional

(Bradley ; Joyce ).

Acts are the things you choose among and which – along with the true state of

the world – determine which outcome comes about. Given how outcomes were

characterised, it seems clear that this is how things should be. Not having the

clear distinction between the elements of the decision problem makes Jeffrey’s

theory harder to deal with, in some ways. Joyce follows Jeffrey in making acts be

propositions. I will go against Jeffrey and side with Savage. Not because I think

Jeffrey is wrong, but because I think that Savage’s abstraction is suitable for my

purposes. I discuss the differences between the frameworks in section ...

The set of available acts is A and elements of A will be a1, a2 . . . and sometimes

f ,g . . . Typically the set of basic acts available will be finite. From these basic

acts, other acts can be built up. If we have some kind of random device that, say,

outputs a 1 with probability p and a 0 otherwise, we can generate mixed acts.

pf `p1´pqg is the act “get whatever f gets you with probability p, get whatever g

gets you otherwise”. Anscombe and Aumann, and von Neumann and Morgenstern

allow themselves this kind of mixed act. There might be some subtlety attached

to how mixed acts are generated, but I don’t think this will impact on my current

project (Schwarz ms.).

A paradigm example of an act is a bet or wager. I will have a lot more to say

about bets when we get to the Dutch book argument in section .. When you



. A framework for belief, uncertainty, value and action 

bet on a horse, or on your football team, you are betting on a proposition like

“The horse will win” or “My team will win”. How much money you end up with

depends on the eventual truth or falsity of that proposition. In the case of bets,

it is clear what factors of the state of the world determine the success of the act.

And thus, it is obvious which propositions serve as the proxies for those factors.

Acts can be defined as functions from propositions to outcomes or as functions

from the atoms to outcomes or as functions from a partition of SL to outcomes.

.. Subjective elements of decision problems

We have now seen the “objective” parts of a decision problem: the events, the

outcomes and the acts. As the agent facing the decision problem, you must bring

with you the “subjective” parts of it: beliefs and values. These are the things

that can be normatively assessed. It seems reasonable to say “Bob’s beliefs are

irrational” but it does not seem reasonable to say “Bob’s options are irrational”.

There are two important things to consider when evaluating the available acts

in a decision problem. The first is “how good are the possible outcomes?” and

second “how likely is it that each of these outcomes will obtain?” Answering these

questions in tandem gives you the concept of “expectation”. How good do you

expect an act to be? The goodness of an act will depend on what outcomes it leads

to under what circumstances, and how likely those circumstances (events) are.

These ideas are encapsulated in several functions, which we shall discuss in

turn. The basic functions are the belief function, which maps events to numbers;

and the value function which maps outcomes to numbers. The derived function is

the expected value function, which maps acts to numbers. We also look at some

related concepts: preference, and choice functions.

For the time being, I am going to focus on belief functions, which are my main

interest. I will, for the most part, just take it as read that there is a value function

which behaves appropriately in whatever context I am discussing.

For this to be a good example, it needs to be the case that you are otherwise uninterested in

which outcome eventuates. That is, if you have a basic preference for your team to win, whether

or not you have bet on them, then this isn’t quite so straightforward.
Of course, if you take the modelling of the decision problem to be a subjective process on the

part of the agent, then it’s reasonable to say that Bob has modelled the problem in an irrational

way. But I hope my main point is clear. Bermúdez () discusses rational assessment of the

decision modelling procedure.
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... Relations and representation

Before moving on to the meat of this section, I want to review a couple of ideas

that crop up in various places, and so are worth discussing briefly. The first is that

of a relation. The second, that of a representation.

At various points we shall discuss a variety of different relations. One important

kind of relation is the preference relation which relates outcomes, or sometimes

acts. Say “ϕ � ψ” means “ϕ is at least as good as ψ”. Sometimes one considers a

relation among events, with “ϕ � ψ” meaning “ϕ is at least as likely as ψ”. We

have already met the entailment relation where “ϕ ( ψ” means “ϕ entails ψ”.

Different kinds of relations will have different properties. What properties are

appropriate for a relation depends on what the relation is for. Some properties

that will be important in what follows are listed below.

Transitivity If ϕ � ψ and ψ � ξ then ϕ � ξ

Completeness ϕ � ψ or ψ � ϕ for all ϕ,ψ

Weakly Connected If ϕ ‰ ψ then ϕ � ψ or ψ � ϕ

Reflexivity ϕ � ϕ for all ϕ

Irreflexivity  pϕ � ϕq for all ϕ

Symmetry If ϕ � ψ then ψ � ϕ

Asymmetry If ϕ � ψ then  pψ � ϕq

Antisymmetry If ϕ � ψ and ψ � ϕ then ϕ “ ψ

“�” will be understood as a reflexive relation, while “�” will be the irreflexive part

of it. That is, we have the following two definitions.

Definition .. From the reflexive relation � define its irreflexive and symmetric

parts:

• ϕ � ψ iff ϕ � ψ and  pψ � ϕq

• ϕ „ ψ iff ϕ � ψ and ψ � ϕ

Some trivial conclusions that we will need to appeal to later are collected in this

lemma:
Some of the relations in what follows will have subscripts: �X . The relations �X ,„X relate to

�X in the obvious way.
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Lemma .. For reflexive � and �,„ defined as in Definition ..:

• If ϕ � ψ then  pψ � ϕq

•  pϕ � ϕq

Two important weakenings of transitivity should be mentioned here.

Acyclic For all ϕ1,ϕ2, . . . ,ϕn we have ϕ1 � ϕ2,ϕ2 � ϕ3, . . . ,ϕn´1 � ϕn implies

 pϕn � ϕ1q

Suzumura consistent For all ϕ1,ϕ2, . . . ,ϕn we have ϕ1 � ϕ2,ϕ2 � ϕ3, . . . ,ϕn´1 �
ϕn implies  pϕn � ϕ1q

A transitive reflexive relation is known as a preorder. An antisymmetric pre-

order is a partial order. A set equipped with a partial order is known as a poset. A

complete relation is sometimes called total or connected. A complete antisymmetric

preorder is a complete order, total order or linear order. A complete, transitive, sym-

metric relation is called an equivalence relation. The relation of logical equivalence

in our discussion of the Lindenbaum algebra is an equivalence relation in this

sense.

One can think of a relation as a set of ordered pairs of elements in its domain.

Call this set R�. We have ϕ � ψ if and only if pϕ,ψq P R�. It then makes sense to

talk about the intersection of relations, or their union in terms of the intersection

(union) of the corresponding sets of ordered pairs. I will use this trick later. Note

that R� “ R”YR�.

There are at least two places where we will have a relation over some domain

(events, acts) and we will want to represent it by a function from that domain into

another domain (typically the real numbers). We will see one example of this in

the next section, but since this is something that will happen more than once, we

discuss it briefly in abstract here.

The idea is that a function f : XÑ R represents a relation �f if and only if:

If x �f x1 then f pxq ě f px1q (.)

For example, if the objects were sticks of various lengths, and the relation of

interest was “is longer than” then the function that returns the length of the stick

in centimetres represents the structure in the right way. That is x is longer than x1

iff lenpxq ą lenpx1q. I will return to this length example in detail in section ...

One can generalise this to representations where f is a function into an arbitrary

space equipped with its own relation, but in general we will stick to representing
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things with real numbers. Chu and Halpern (, ) provide a very general

theory of decision with representations by arbitrary posets, rather than the reals.

For representation more generally, the classic work is Krantz et al. ().

... Representing belief

From qualitative probability to belief functions

There are some things you believe more strongly than others. For example, I

currently have a stronger belief in “It will rain tomorrow” than I do in “I will win

the lottery this week”. So there is a relation of qualitative probability or strength

of belief between propositions in SL. The idea is that there is some relation �b

over SL where “X �b Y ” is understood to mean “X is at least as likely as Y ”. We

might proceed by considering what properties this relation of qualitative belief

should have, but I will postpone that project until section ... Typically, one

understands degree of belief as being characterised by the belief functions that

represent this relation.

Definition .. A belief function is a function b : SLÑ R.

Let B be the set of all such belief functions. Belief comes in degrees and belief

functions are supposed to capture this notion of strength of belief. A higher

number assigned to an event should be interpreted as a stronger belief. We’ve

already seen one such kind of function: V. We won’t typically be thinking of the

valuation functions as belief functions, but they do satisfy the basic definition.

Consider bpJq and bpKq for some arbitrary b P B. It seems reasonable that

no proposition is more strongly believed than a tautology is believed. And no

proposition is less believed than a contradiction. So it makes sense to restrict our

attention to functions with the following property:

Bounded For all X we have bpKq ď bpXq ď bpJq

Now it also makes sense to fix the values of bpKq and bpJq. The actual value of

the numbers is not important, only the relations among them (which encode the

relations of relative strength of belief among the propositions). So let’s fix these

values:

Normalised bpKq “ 0 bpJq “ 1



. A framework for belief, uncertainty, value and action 

Probability

The most important kind of belief function, the probability function, satisfies both

of the above properties, and another important property.

Additive bpX _Y q`bpX ^Y q “ bpXq`bpY q

This isn’t typically how you’ll find additivity defined, but it’s my favourite way. It

is from Joyce ().

Definition .. A probability measure pr P B is a belief function that is Bounded,

Normalised and Additive

This is my “official definition” of probability. Note that probabilities so defined

are finitely additive, but not necessarily countably additive. Throughout this

dissertation, I will restrict myself to finite additivity. There is some controversy

over whether countable additivity is rationally required of belief, but that is a

concern that does not have a bearing on the current project.

The more standard way to define probability, I call the “incompatible proposi-

tions” definition. A probability measure pr P B is a belief function that satisfies

these properties:

iI For all X we have prpXq ě 0

iiI For all X,Y incompatible propositions, prpX _Y q “ prpXq`prpY q

iiiI prpJq “ 1

Note that by induction, (iiI ) entails that for incompatible X1,X2 . . .Xn, we have

prp
∨n
i“1Xiq “

∑nprpXiq.

Yet another way of defining probability – the “partition additivity” approach –

is to say that pr P B is a probability if:

iP For all X we have prpXq ě 0

Countable additivity is the property that countable infinite disjunctions of propositions are

equal to the sum of their individual beliefs.
In fact, Williamson () shows that any finitely additive probability function over a logical

language has a unique extension to a countably additive probability function. So in the current

setting, the only question is whether or not we allow infinitary disjunctions to be objects of

belief. But the general point stands: one might want to consider beliefs over slightly different

logic structures – structures for which Williamson’s result does not hold. In these circumstances

there would be a genuine question as to whether countable additivity was a requirement of

rationality.
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iiP If Xi partition SL then
∑

prpXiq “ 1

These three ways of defining probability amount to the same thing.

Theorem .. The following things are equivalent:

• A belief function pr P B is Bounded, Normalised and Additive:

• pr satisfies the incompatible propositions definition

• pr satisfies the partition additivity definition

Proof Let pr P B be a probability function as defined by the official definition.

I show it also satisfies the incompatible propositions definition. (iI ) and (iiiI )

follow straightforwardly from pr being Bounded and Normalised. If X and Y are

incompatible, then X^Y ” K, so prpX^Y q “ 0. So, by Additivity: prpX_Y q`0“

prpXq`prpY q. So (iiI ) is satisfied.

Next I show that the incompatible propositions definition implies the partition

additivity definition. (iP ) is the same as (iI ). The elements of a partition Xi are

such that their disjunction is J. So by (iiiI ) prp
∨
Xiq “ 1. Elements of a partition

are incompatible, so by (iiI ) we know that 1“ prp
∨
Xiq “

∑
prpXiq.

Once we have shown that the partition additivity definition entails our official

definition, we will be done. Let pr P B now satisfy the partition definition. For

incompatible X,Y we have {X,Y , pX _Y q} is a partition. So is {X _Y , pX _Y q}.
From this it follows that prpXq`prpY q “ prpX_Y q. Now take X 1,Y 1 which are not

necessarily incompatible. We have X 1^ Y 1, X 1^Y 1 and X 1^Y 1 are incompatible,

and their disjunction is X 1_Y 1. So:

prpX 1q`prpY 1q “ prpX 1^Y 1q`prpX 1^ Y 1q`prpY 1^X 1q`prpY 1^ X 1q

“ prpX 1^Y 1q`prpX 1_Y 1q

So pr satisfies our official definition of additivity. Since pr is nonnegative, and

every proposition can be a member of some partition, boundedness and normali-

sation are also satisfied. �

We turn now to a relationship between truth and belief. This relationship will

be important later.
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Definition .. Let V` be the convex hull of V. That is, V` is the set of b P B such

that there exist λi with the following properties:

λi ě 0∑
λi “ 1

bpXq “
∑

λi vipXq for all X

That is, b is a weighted sum of truth valuations.

With this definition, we can state a theorem that shows that V` is exactly the

set of probability functions in B when SL is finite. This result is apparently due

to De Finetti, though I haven’t found it in his Theory of Probability. Paris ()

contains something close to this result on pp. –, but it isn’t as general as I’d

like. That is, it only applies to classical truth value functions, and only applies

to spaces that contain atoms. This is more or less the result I prove below. Paris

mentions a different result due to Glenn Shafer, but gives no reference in Paris

( []). Whether this also holds for infinite spaces I am not sure.

Theorem .. V` is the set of all and only the probability functions over SL.

Proof This proof sketch follows Paris (). First we show that if pr is a prob-

ability function, then there exist λi such that prpXq “
∑
λi vipXq with

∑
λi “ 1.

Recall, that for each atom ti there exists exactly one vi with viptiq “ 1. That is,

exactly one valuation function makes true exactly one maximally specific of the

ways the world could be. Let λi “ prptiq. Since pr is bounded and normalised,

λi ě 0.

Now we must show that
∑
λi “ 1 and that for every X P SL, prpXq “

∑
λi vipXq.

Every X is a disjunction of tis.
∑
λi vipXq “

∑
prptiqvipXq. Now the vipXq in

the sum means that we effectively only count those ti that are true when X is

true. So the sum becomes the sum of the prptiqs where ti is a disjunct of X. Thus∑
prptiqvipXq “ prpXq.

We now prove the other direction: given λi , we show that bpXq “
∑
λi vipXq is

a probability function. bpXq ě 0 since all the λis are non-negative, and so are the

outputs of vi . Take some partition of SL, call it {Xj}. To prove b is a probability

function, all we need to do now is show that
∑

bpXjq “ 1 (See Theorem ..).∑
j

bpXjq “
∑
j

∑
i

λi vipXjq

“
∑
i

λi
∑
j

vipXjq
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Now since Xj partition SL, for any v PV we have
∑

j vpXjq “ 1. Thus:∑
i

λi
∑
j

vipXJq “
∑

λi

“ 1 �

This theorem will be useful later. For example, it is the basis of Joyce’s argument

discussed in section .. Williams (a,b) discusses modified versions of this

theorem for convex hulls of different kinds of sets of nonclassical valuation func-

tions. For a set of nonclassical truth valuations W, we can ask how to characterise

the set of convex combinations of W. Call it W`. For some particular sets W, we

know what the convex hull contains, but there doesn’t seem to be a general result.

Conditional probability

Before moving on, I’d like to briefly consider an important modification to the

probability framework. Instead of taking these unconditional probabilities prpXq

as the basic entity, we might consider taking our probability functions to be two-

placed conditional probability functions prpX|Y q. We read this as “the probability

of X given Y ”. We often interpret the conditional probability of X given Y as what

your belief in X would be if you learned Y was true. In this section I talk as if this

link between conditional probability and updated probability is uncontroversial.

It is not, but it is intuitive, and it makes the presentation slightly less awkward.

One could replace “learning X” with “supposing that X” throughout this section.

Before we can define conditional probability, we need a slightly more sophisticated

concept of the space of belief. My presentation follows that of Halpern (, p. –

). Instead of being defined over the set of sentences SL, conditional probability

functions are defined over SLˆSL1 where SL1 is a subset of SL that is closed under

consequence. That is, if X P SL1 and X ( Y then Y P SL1. Often SL1 is taken to

be SLz{K}. A conditional probability function is a function pr : SLˆ SL1 Ñ R.

Conditional probability measures satisfy versions of Bounded, Normalised and

Additive for all X,X1,X2 P SL and Y P SL1

Bounded prpK|Y q ď prpX|Y q ď prpJ|Y q

Normalised prpK|Y q “ 0 and prpJ|Y q “ 1 and prpY |Y q “ 1

Additive prpX1|Y q`prpX2|Y q “ prpX1^X2|Y q`prpX1_X2|Y q
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These are basically the unconditional properties rewritten, replacing every in-

stance of prp¨q with prp¨|Y q and they hold for all Y P SL1. The only addition is the

third component of the Normalised axiom which says that the conditional prob-

ability of Y given Y is also 1. This is plausible: on learning Y , you should come

to believe Y to the highest degree. This isn’t so much a substantive assumption

as a characterisation of the kind of learning we are concerned with. So for each

Y the function prp¨|Y q is an unconditional probability function. In particular, it

is common to identify the unconditional probability prp¨q with the conditional

probability function conditioned on J: prp¨q “ prp¨|Jq Conditional probabilities

also have a new axiom that describes how the first and second arguments interact:

Conditional If X2,X3 P SL
1 and X1 P SL then:

prpX1^X2|X3q “ prpX1|X2^X3qprpX2|X3q

Using the convention that prp¨q “ prp¨|Jq, and setting X1 “ X,X2 “ Y ,X3 “ J

we can rearrange the terms in the above equation to give us the following:

prpX|Y q “
prpX ^Y q

prpY q
(.)

This equation is typically understood as the definition of conditional probability

out of basic unconditional probabilities. On the current view, this equation is a

consequence of the definition of basic conditional probabilities. This approach has

the advantage that conditional probabilities can be defined even if the conditioning

event – Y in the above example – has prpY q “ 0. The ratio analysis, as Hájek ()

calls it, is undefined if the denominator is zero. Taking SL1 to be the set of X P SL

such that prpXq ą 0, we have a perfect agreement between the two definitions of

probability. The advantage of taking conditional probabilities to be the basic units

is that it allows us to define larger SL1 and still have everything work nicely.

Halpern offers a nice argument for why the ratio formula should characterise

a kind of learning. Given that this formula is a simple manipulation of Con-

ditional, this argument lends weight to the reasonableness of that axiom. I will

describe the theorem in words, and then give it formally. First, if you learn X,

it seems reasonable that you now assign  X minimum belief. This is basically

just a characterisation of what kind of learning we are talking about: you learn

The argument works just as well if you think of it as an argument about a certain kind of

supposing.
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X with certainty. Second, learning X with certainty (and nothing else) shouldn’t

change your beliefs with respect to how likely the various realisations of X are.

Imagine you learn that your horse Categorical Imperative has placed: has finished

in the top three. This information shouldn’t change your attitudes to the relative

likelihoods that the horse came first or second or third. That is, it would be strange

if you thought it much more likely that the horse would come third than it is

that it would come second, but on learning only that he placed, you become more

confident of a second place relative to a third place. Halpern – using the “possible

worlds” talk we discussed above – put the intuition this way:

One reasonable intuition is that if all that the agent has learned is X,

the the relative likelihood of worlds in X should remain unchanged.

Halpern (, p. , with notational changes)

This is a condition of rigidity. The following theorem proves that any updated

probability measure that accords with the above intuitions will satisfy the ratio

formula with respect to the prior probability.

Theorem .. If the following properties hold for X1,X2 P SL and Y P SL1 with

X1 ( Y , X2 ( Y and prpX2q ą 0:

prp Y |Y q “ 0

prpX1q

prpX2q
“

prpX1|Y q
prpX2|Y q

then for any Z P SL:

prpZ|Y q “
prpZ ^Y q

prpY q

Proof The proof can be found in Halpern (, p. ) �

I think that Hájek (, ) is right that conditional probabilities are the

better basic building block. However, for my purposes the distinction will not

matter. I will therefore simplify the formalism by sticking to unconditional

probability functions. But it should be borne in mind that these are “really”

conditional probabilities conditioned on J.

For the alternative belief functions that I discuss below, there may well be

conditional counterparts to the unconditional ones I discuss, but I shall not

discuss them: Interesting as they may be, and foundationally superior as they may

be, their interest is orthogonal to mine. I thus dispense with the extra formalism

required to treat them and remain resolutely unconditional.
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Capacities

In characterising probability theory above, I mentioned a few properties of belief

functions. I think that (Bounded) is non-negotiable. I also think that (Normalised)

is effectively the articulation of a convention, rather than a substantive restric-

tion on belief functions. So all the alternative belief functions will satisfy these

properties. I call these the basic conditions.

Another property that I feel is pretty important is the following:

Monotonic If X ( Y then bpXq ď bpY q

Note however that anyone committing the conjunction fallacy violates this prop-

erty. Non-monotonic reasoning is a big research area in logic, and an important

one. But that is about inference whereas this property is about static beliefs at a

time. I think it has some intuitive weight.

Our first, most permissive set of belief functions is the Choquet capacity:

Definition .. cq P B is a Choquet capacity if it is Bounded, Normalised and

Monotonic.

See Eichenberger and Kelsey () for a discussion of Choquet capacities. Call CQ

the set of all Choquet capacities. This is quite a permissive framework. Indeed,

for most purposes, Choquet capacities will not be informative enough. The

(Monotonic) property is quite a weak property. It only tells us, for instance, that

bpX _Y q ě bpXq. It doesn’t tell us how bpX _Y q relates to, say, the sum of bpXq

and bpY q. This motivates our next definition:

Definition .. A belief function b P B is 2-monotone if:

bpX _Y q ě bpXq`bpY q´bpX ^Y q

A 2-monotone capacity is (Monotonic). Why this property is called “2-monotone”

will become clear once we introduce the more general n-monotone property. Before

Since X^Y ( X, we must have bpX^Y q ď bpXq. But this is exactly what doesn’t happen with

people committing the conjunction fallacy: they take “Linda is a bank teller” to be less probable

than “Linda is a bank teller and an active feminist.” See Tversky and Kahneman () for

more on the conjunction fallacy.
If X ( Y then Y ” X_p X^Y q. So bpY q “ bpX_p X^Y q ě bpXq`bp X^Y q´bpX^ X^Y q.

So bpY q ě bpXq`bp X^Y q. The result follows since b is nonnegative.
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we do that, let’s have a look at one more instance of it: 3-monotone:

bpX _Y _Zq ě bpXq`bpY q`bpZq

´bpX ^Y q´bpX ^Zq´bpY ^Zq

`bpX ^Y ^Zq

The degree of belief in the disjunction is the sum of the singleton beliefs, minus

the sum of the beliefs about pairs, plus the belief in the triple conjunction. n-

monotone just extends this basic inclusion-exclusion idea to arbitrary n. The idea

is simple, its actual description takes some getting used to.

Definition .. A belief function b P B is n-monotone if:

b

 n∨
i“1

Xi

ě n∑
i“1

∑
{IĎ{1,...,n}:|I |“i}

p´1qi`1 b

∧
jPI

Xj


This is basically an “inclusion-exclusion” rule. It says that belief in n-element

disjunctions is related to sums of belief values of conjunctions of subsets of the

big disjunction. Taking each part of the right hand side from the inside out:

b

∧
jPI

Xj

 I is some subset of {1, . . . ,n}
so this is the belief in the

conjunction of some subset

of disjuncts of our big dis-

junction.

p´1qi`1 b

∧
jPI

Xj

 The p´1qi`1 means we add

conjunctions with an odd

number of elements, and

subtract the even ones.∑
{IĂ{1,...,n}:|I |“i}

p´1qi`1 b

∧
jPI

Xj

 I ranges over all i-element

subsets of our big disjunc-

tion. So we add or subtract

all the i element conjuncts,

depending on whether i is

odd or even.
n∑
i

∑
{IĂ{1,...,n}:|I |“i}

p´1qi`1 b

∧
jPI

Xj

 Finally we sum over the

size of the subsets from 1

to n.
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In the 2-monotone case this amounts to adding the singletons and subtracting

the conjunction of the two. 3-monotonicity amounts to adding the singletons,

subtracting all the conjunctions or pairs and then adding the conjunction of all

three. An n-monotone function is pn´ 1q-monotone.

Dempster-Shafer belief

Now we can introduce Dempster-Shafer belief functions. DS Belief functions will

offer a middle ground between the informative, restrictive probabilities, and the

looser Choquet framework.

Definition .. A Dempster-Shafer belief function is an infinite-monotone capac-

ity.

A DS belief function has the n-monotone property for all n.

A useful way to think about DS belief is in terms of the associated concept of a

mass function.

Definition .. Call mp‚q a mass function when:

mpKq “ 0

mpXq ě 0∑
XPSL

mpXq “ 1

Note that a mass function is not a representation of belief in the same way that b is.

That is, more strongly believed events needn’t have more mass. A mass function

characterises “how much belief to associate with X, that can’t be associated with

subsets of X”. A mass function represents belief through the associated belief

function.

With this concept of a mass function we can characterise DS belief in a different

way. We also characterise the related concept of a plausibility function plaus.

Definition .. Call belpXq a D-S belief function and plauspXq a D-S plausibility

function if, for some mass function m:

belpXq “
∑
Y(X

mpY q plauspXq “
∑
Y* X

mpY q

Add K as a final disjunct and it all cancels out.
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The belief, or support, of X is the sum of the masses of the subsets of X. If the

mass function is non-zero for atoms only, then the belief function is a probability

measure.

The DS belief function bel is interpreted as the extent to which the evidence

supports the conclusion X. The plausibility function plaus represents the extent

to which the evidence fails to support the contrary hypothesis. In other words, plaus

represents the extent to which the evidence is consistent with X.

Call DS the set of all DS belief functions. It is clear that, for all X we have

plauspXq “ 1´belp Xq, so DS adequately captures both functions.

Theorem .. of Halpern (, p. ) shows that the two formulations of DS

belief functions are effectively interchangeable in finite domains. That is, whether

you take a DS function defined as an infinite-monotone capacity or defined by its

associated mass function amounts to the same thing, at least for finite domains. For

infinite domains, there are belief functions with no corresponding mass function.

These classes of belief functions are not unrelated. Every probability function

is a D-S belief function, and every D-S belief function is a Choquet capacity. In

other words: VĂV` ĂDSĂ CQĂ B.

... Representing value

Preference relations

We need a way to express an agent’s having a preference between things. We take

ϕ � ψ to mean “ϕ is at least as good as ψ” and ϕ � ψ to mean “ϕ is better than ψ”.

Call these weak preference and strong preference, respectively.

In section ., the preference relation will be among bets, but in section .

the preference will be among acts more generally. Elsewhere, one might wish to

consider a preference relation among outcomes.

Value functions

As in the case of qualitative probability and belief functions, preference can

be represented by value functions or utility functions. The idea is the same as

for representing belief. The preference relation “�u” is represented by a value

function, or utility function u iff: whenever o �u o1 we have upoq ě upo1q.

We extend this u function on outcomes to an “expected value” function on

acts as follows. The idea is that in making a decision you weight the values you

associate with the outcomes by how likely you consider those outcomes to be. As
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we have seen, what event obtains influences what outcome occurs. So the weights

on the outcomes should connect with the degrees of belief in the events, somehow.

In the standard Savage framework, this amounts to multiplying the utility of

the outcome which is the result of the act function acting on an event, by the

probability of that event, and summing over the possible events. That is, we find

some partition of SL, {Xi} such that the acts we are considering are constant on

each Xi and we sum over these events.

Definition .. The expectation of an act a with respect to a probability function

pr is:

Eprpaq “
∑
i

prpXiqupapXiqq

Choice of partition isn’t that important here, since any refinement of the partition

will give you the same value. The same is not true for other kinds of belief function.

This problem will be taken up later.

The time spent on representations of belief versus representations of value is

indicative of my concerns in the rest of the dissertation. For the most part, I take

it for granted that the value of an outcome is adequately represented by the cash

value associated with it.

.. Difficulties, caveats, alternatives

This section collects a miscellany of things I feel I should mention before moving

on to the more substantive chapters.

... Some standard caveats

Before continuing, we need to make clear a couple more caveats. These are fairly

standard simplifying assumptions in the literature and nothing hangs on these

details. We assume that you are risk neutral. This means, for instance that a

preference among bets reflects your opinion of the relative value of the bets rather

than a preference to avoid taking risks. (See Allingham , Chapter ; Binmore

, pp. –; Peterson , pp. –). For example consider flipping a fair

coin. Risk neutrality would mean that you would be indifferent between the

following two bets: (a) paying one Euro for the chance to win two Euros if Heads

comes up (b) paying one million Euros for the chance to win two million Euros

if Heads comes up. Most people are happier to take the first rather than the
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second bet. In general, people are sensitive to the variance of a bet, not just its

mean. This illustrates that people are not normally risk-neutral, but that they are

risk-averse: they tend to avoid big risks. In general people are more wary of bigger

gambles, even if the potential winnings are proportionally bigger as well. In fact,

conceptually, there are two distinct things going on here – even if in practice they

are dealt with formally in the same way. First, people tend to disvalue big risks:

gambles with high variance in expectation are dispreferred. Second, the value of

one Euro depends on how much money you already have: A million Euros is not a

million times as good as one Euro. In both cases the standard formal assumption

is that utility is linear with money. This builds in both that risk has no disutility,

and also that money does not have diminishing marginal value. I am somewhat

unhappy with the conceptual identification of these things that is often made, but

for the present, I am happy to make both assumptions. I am not endorsing the

claim that risk neutrality is rational. Indeed, I think there may be good reasons for

thinking it isn’t, except in very special cases. Okasha () gives an evolutionary

argument for the rationality of some level of risk aversion. Buchak (ms.) sets out a

decision theory that allows a level of risk aversion to be rational. I think these are

interesting projects, but I think I can safely bracket these issues given my focus.

We also assume a “state independence”. That is, how good the outcome is does

not depend on whether you have bet on it or not. The sort of things we want

to rule out are the following: imagine you are betting on the weather and the

possible prizes include an umbrella, sunglasses and so on. Now, which weather

event occurs affects your attitude toward the prizes: presumably you value the

umbrella much more if it is raining versus its being sunny, and vice versa for the

sunglasses. This makes things messy, so let’s stipulate that the value of the prizes

is independent of the state that is actualised. I discuss state independence in more

depth when I deal with representation theorems in section ..

There are some further simplifications I shall be making. The decisions I

consider take place at a time. So there are no sequences of decisions. I also keep

your utility function determinate: I will not allow imprecise utilities for the time

being. I will also avoid the issue of whether sets of probability ought to be

convex, I don’t think they need be, although in this dissertation I normally assume

they are.

I am not arguing that these caveats are always reasonable to impose. But I think

But see Bradley ()
But see Kyburg and Pittarelli (, §) for some discussion of problems with convexity. See also

Bradley () for comments on convexity when both probabilities and utilities are imprecise.
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they are a useful abstraction, and the problems arising from relaxing them are

orthogonal to the problems I am focusing on here.

... Jeffrey’s system, computer architecture and abstraction

It may seem strange that Jeffrey makes everything into propositions: intuitively,

acts, states and outcomes are all rather different kinds of things. I want to explain

why Jeffrey’s approach makes sense, and then explain why I don’t follow him.

Think about an integrated circuit. Everything is just a number: the machine

code instructions, the data, the addresses of the data. . . But, what makes things

work is the way the number is treated: that’s what makes something a machine

code, or an address or what have you. A number in memory is treated as an

instruction if, when it is read, it leads to particular transistors to turn particular

circuits on or off. What makes some number a piece of data is if it is used to decide

whether to send a high or a low signal through those circuits controlled by the

instruction. What makes a number a memory address is if the instruction that

preceded it is the sort of instruction that takes an address as an argument.

In the same way, despite acts, outcomes and states all being the same sort of

things, they are dealt with differently. Indeed, one might think of Savage’s ap-

proach as formalising the separation that is implicit in the attitudes we have to

the various kinds of propositions. To stretch the analogy further, higher level

computer programming languages will abstract away from the machine code. This

involves distinguishing different kinds of entities (often called types). So despite

the fact that everything is fundamentally a number, some kinds of symbols will

be used to refer to instructions, some other method will be used for referencing

addresses, and some other way to indicate an actual number. Higher level pro-

gramming languages will have different kinds of objects: strings, floating point

numbers, signed integers, unsigned integers, lists. . . These are all, at base, numbers

in memory, but it’s useful to have different shortcut methods for manipulating

them, since they need to be treated differently. If two numbers are representing

particular strings of letters, then it doesn’t make sense to add them together. You

can do it, but the result doesn’t have any meaningful interpretation.

Or not even: everything is just a particular configuration of particular parts of physical computer

memory. Certain configurations of open/closed transistors, or high/low current are understood

as representing certain binary digits 1 or 0 which are interpreted as numbers.
Charles Petzold does an excellent job of explaining computer architecture in his book Code

(Petzold ).
Annoyingly, the “`” operator is often overloaded to do string concatenation, instead of adding
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I think the same sort of thing is going on in the relationship between the decision

theory frameworks. Everything can be thought of, at base, as a proposition.

But some kinds of propositions we want to think of as events, and their logical

structure and interrelationships are important. For other propositions, it is the

preference structure which is important to us.

Often, the abstraction of treating different kinds of propositions as different

is a legitimate move: things are conceptually simpler. Savage sets things up in

this simple way. But it is a “leaky abstraction” as all abstractions are. What

this means is that in the edge cases, in the unusual circumstances, the abstraction

breaks down. And when this happens, all sorts of strange behaviour can emerge.

As long as you are aware of the problems and do your best to avoid them, then

you can safely use the abstracted theory. Thus I adopt Savage’s strict distinctions

between acts, states and outcomes.

Bradley () explains exactly what needs to be done to a “Jeffrey-like” frame-

work to make it look “Savage-like”. This amounts to treating acts as conjunc-

tions of particular kinds of conditionals in an enriched space. These are not

truth-functional conditionals, but there is some disagreement about what sort of

conditionals they are. Joyce () offers one approach, Bradley () another.

So, acts will now be thought of as functions from states to outcomes. But we

should keep in mind that they are “really” conjunctions of conditionals of a certain

kind.

.. Conclusion

We have now set up the formalism that will see us through the rest of the disser-

tation. It is abstract, and idealised in many ways, as we have seen. However, the

hope is that some insight can be drawn from this system nevertheless.

the underlying numbers together.
The term is from Spolsky ()



. Arguments for probabilism

The long run is a misleading

guide to current affairs. In

the long run we are all dead.

Economists set themselves

too easy, too useless a task if

in tempestuous seasons they

can only tell us that when the

storm is past the ocean is flat

again.

(John Maynard Keynes)

There were quite a few preliminary details to set out in the previous chapter,

so it may be useful to take a moment to explain how this chapter fits into the

overall project. The ultimate aim is to develop a better account of belief and

decision under severe uncertainty. Before I do this, it will be helpful to see what

the standard approach to these issues is. I take probabilism to be the standard

approach and so this chapter is devoted to discussing and criticising the arguments

for probabilism. The next chapter will contain further discussion of probabilism,

and will present some further problems for the standard view.

In section . I discuss one of the most influential arguments for probabilism:

the Dutch book theorem. Next, in section . I tackle the other main type of

argument: representation theorems. Having dealt with these two well discussed

strands of justification for probabilism, I move on to some less well known views.

A recent kind of argument that relies on measuring inaccuracy of belief is sum-

marised in section .. Finally, in section . I discuss some other attempts to

justify probabilism.

There are a couple of things to explain here. First “coherent” often means

conforming to the rules of probability. So incoherent credences are those that

Recall that probabilism is the view that takes probability theory to be the best model of belief

under uncertainty.
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contravene one or other of the axioms of probability. I don’t like using “coherent”

to mean “conforming to probability theory”, since the suggestion is then that non-

probabilists are incoherent. This is a value judgement I do not endorse. So perhaps

I should call probabilists “probabilistically coherent” or just “p-coherent”. One

could then talk of other kinds of coherence: “DS-coherent”, meaning conforming

to the axioms for Dempster-Shafer beliefs.

Sometimes probabilism is taken to include the various alternative approaches I

outlined above. My use of the term “probabilism” is somewhat more restricted: I

use it to mean coherence with probability theory as outlined in Definition ... I

do however endorse the more general claim that degrees of belief can and should

be modelled formally. In fact, I even endorse the claim that probability theory has

a privileged role to play in our understanding of degrees of belief. I return to this

point at the end of the chapter.

.. Dutch book argument

An awful lot of ink has been spilled over the Dutch book argument (DBA). People

have criticised its prudential character, that it relies on pragmatic concerns about

preferring higher utility outcomes. People have suggested that betting behaviour

is not a good proxy for belief (e.g. Bradley and Leitgeb ). Any number of

other issues have been raised with it. See Hájek () for an overview. I am

sidestepping much of the current and past debate over the status of the Dutch

book argument. I want to explore in detail what one needs to assume in order to

prove the theorem, and ask when are those assumptions justified.

Degrees of belief have a role in decision making, and betting is a paradigm

case of that. So there should be some connection between betting behaviour and

belief. The connection may not be as tight as proponents of the DBA would have

us believe, but there is still something to be learned about belief by studying the

constraints on reasonable betting.

Standardly the theorem is traced back to the work of Bruno De Finetti and

F.P. Ramsey in the s and s. My aim here is not historical, so I do not want to

go back to those original authors and see whether modern treatments are faithful

to those pioneers’ works. What I will do is take one specific modern treatment

Much of this section draws on Bradley ()
 I am here making a claim about where the argument is generally traced to: not one about who

it should be traced to.
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of the theorem and go through it in detail. I will also mention another different

approach to the theorem.

As a first approximation the Dutch book argument says that if your credences

are “non-probabilistic” then you are open to a Dutch book. Non-probabilistic

means just that your credences don’t conform to the axioms of probability. A

Dutch book is a set of bets that guarantee a sure loss to whoever takes them. But

strictly speaking the Dutch book argument does not say this: it talks in terms of

betting behaviour and implicitly assumes that betting behaviour lines up with

belief. So, let’s restate the DBA in terms of betting behaviour. It says if your betting

odds are non-probabilistic then you are open to a Dutch book and you will lose

money. So, if your degrees of belief are the sole determinant of your betting odds,

then your degrees of belief had better be probabilistic.

But this can’t be the whole story, since actual bookmakers do offer odds that

are not probabilistic! If this naïve Dutch book argument were true, then bookies

offering nonprobabilistic odds would have been exploited to bankruptcy long ago.

So there must be more to the story than that. To give a fairer appraisal of DBA, I

need to explore in detail the theorem that gives the argument its strength.

This will be a rather long and involved discussion of what is, ultimately, a rather

simple theorem. The aim is to carefully assess exactly what restrictions on betting

behaviour are required to secure the theorem. Along the way, we will see which

parts of the theorem can be proven with restricted sets of constraints. Since I

will find only some of the conditions to be rationally compelling, it is worthwhile

seeing what can be done without the contentious axioms.

... A formal framework for gambling

The Dutch book argument talks in terms of betting behaviour, so we need a formal

method for talking about bets. I borrow much of this formalism from Halpern

(). Frank Döring () has a slightly more general framework for describing

bets, but when he moves to discussions of Dutch books, he places restrictions on

the allowable bets so as to make the two frameworks much the same.

For our purposes, a bet is an ordered pair of an event in SL and a “betting

quotient”. For a bet of stake s and potential winnings w, the betting quotient is

α “
s
w

. The higher the α the more likely you think the event in question is. The

greater the proportion of the winnings you are willing to risk on a bet, the more

likely you think the event is. So bets will be ordered pairs of the form pX,αq where

X P SL and α P R. What is relevant about a betting scenario is the betting quotient
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and the event in question.

The argument can be made that the absolute size of the stake and the potential

winnings relative to your current wealth are also relevant in gambling. For

example, in poker, a good player will act differently depending on whether she

is chip-leader or short-stacked. The way Joyce () sets up his decision theory

builds this element in. Joyce makes you sensitive to overall levels of wealth, rather

than changes in level of wealth. While this is better in actual cases, in this rarefied

setting we are assuming that utility is linear with money and that the punter is risk

neutral. This is for the sake of simplicity, rather than for any principled reason.

Concerns about the diminishing marginal utility of money, and your attitude to

risk are orthogonal to the concerns of the current project. Severe uncertainty is

hard enough on its own, so I will help myself to these sorts of simplifications

throughout. I am not making any claims that these simplifications are always

permissible, simply that the complications they lead to are orthogonal to the

concerns of the current project.

A bet pX,αq pays out vpXq. That is, if X is true the bet pays out 1, and it pays

out 0 if X is false. The bet costs α, that is to say the stake is α because we have set

the winnings w “ 1. The bet p X,1´αq is called the complementary bet to pX,αq.

Think of the complementary bet p X,1´αq as “selling” the bet pX,αq. Whenever

you take a bet pX,αq, the bookie is effectively taking on the complementary bet

p X,1´αq. Table . illustrates the “mirror image” quality that the payoffs of

complementary bets have.

vpXq “ 1 vpXq “ 0

pX,αq 1´α ´α

p X,1´αq ´p1´αq α

Table ..: Payoffs for a bet and its complement

What I am interested in here is how betting behaviour might serve to force

degrees of belief to be probabilistic. In this respect, the important parts of the bet

are the event bet on and something that is supposed to correlate with the agent’s

strength of the belief in that event. The betting quotient serves this purpose.

Think of the bets like this: when you buy a bet pX,αq you pay α and get a ticket

that says X. If it turns out that X is indeed the case – that is it turns out that

vpXq “ 1 – then you return to the bookie and redeem your ticket. That is, you
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hand in your ticket to the bookie and he gives you £1. So your net gain is 1´α. If

X fails to be the case – if vpXq “ 0 – then the ticket is worthless and you have lost

your α.

There are two possibilities for the “neutral bet”: pJ,1q or pK,0q. That is, the

bet that costs 1 and guarantees a payoff of 1 or the free bet with no prospect of

winning anything. Preferring a bet to one of these suggests that you would accept

that bet: the bet is “better than nothing”. I return to the issue of preference versus

acceptance later. These neutral bets bets are complementary to each other.

A set of bets B “ {pX1,α1q, . . .pXk ,αkq} costs κpBq “
∑
αi and pays out πvpBq “∑

vpXiq. That is, you get 1 for every event that you bet on that is true. So the value

of a set of bets B is τvpBq “ πvpBq´κpBq. The value of the bet is how much it pays

out, minus what the bet cost. The complementary set of bets BC is just the set of

bets complementary to those in B: {p X1,1´α1q . . .p Xk ,1´αkq}

Theorem .. For all v PV and B we have τvpB
Cq “ ´τvpBq

Proof Assume that B consists of n bets: {pX1,α1q,pX2,α2q, . . . ,pXn,αnq}. The cost

of the complementary bet is:

κpBCq “ p1´α1q` p1´α2q` . . .`p1´αnq

“ n´
∑

αi

“ n´κpBq

As for the payout: for every bet that B wins, BC does not, and for every bet that B

does not win, BC does. There is a total of n up for grabs and exactly one of B or

BC wins on each of the n events. More concisely, from the properties of v PV, we

know that vp Xiq “ 1´ vpXiq. So:

πvpB
C
q “

∑
vp Xiq

“
∑

(1´ vpXiq)

“ n´
∑

(vpXiq)

“ n´πvpBq

Putting these two results together it follows that a set of bets wins exactly as

This is an abuse of notation. BC is not the set-theoretic complement of B at all, but something

rather more subtle.
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much as the complementary set of bets loses:

τvpB
C
q “ pn´πvpBqq´ pn´κpBqq

“ ´πvpBq`κpBq

“ ´τvpBq �

This shows that the neat complementarity of the payouts of complementary

bets illustrated in Table . holds for sets of complementary bets as well.

pX,αq is the same as a bet with odds of “1´ α : α”. This is for English-style

odds. That is, “odds-to” rather than “odds-for”. Apparently in the U.S. odds look

different and the corresponding bet would have odds of “1 : α”.

Odds can be defined directly in terms of bets; as a ratio of the profit to the

stake. Profit is the win minus the stake. So for the bet pX,αq, a stake of α gives

a profit of 1´ α if X obtains. To tie this in with the above discussion of α as a

betting quotient, recall that our potential winnings are fixed at 1. So α plays the

role of both the betting quotient and the stake. α “
s
w
“
α
1

. There is no loss of

generality here, since if you wanted to play a “high stakes” gamble with large

potential winnings, say 100, you can simply buy one hundred copies of the bet.

You could just buy 100 copies of pX,αq. One could make the size of the stake an

extra parameter (as Paris (,  []) does) and then add a constraint to

the effect that preferences among bets are insensitive to the size of the stakes. That

is, a bet would be a triple pX,α,sq that costs sα and pays out αvpXq. The constraint

would then be that if pX,α,sq � pX 1,α1, sq then the same preference holds for all s1.

A more formal rendering of this sort of “stake independence” appears as Savage’s

P in a later section.

Recall the standard caveats from section ... We want any preference among

bets to indicate a difference in the punter’s degrees of belief in those events. That

is, we want to say that if a punter prefers bet A to bet B when A and B pay out the

same, then that reflects the punter’s belief that the event in A is more likely than

the event in B.

... Rationality constraints on betting preference

I am now ready to set out the proof of the Dutch book theorem. This section

lays out the preliminaries, the constraints on betting preference. The next section

contains the proof proper. First I will make clear exactly what conditions have

The odds-to of a fair coin landing heads should be “ to ”. Odds-for would be “ for ”.
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to hold for the argument to follow. That is, I show what conditions have to be

satisfied in order for you to be constrained by the DBA. These conditions come

from Halpern (). This treatment is nonstandard. I chose Halpern’s treatment

because it is the one that makes clearest the assumptions one makes in proving

the theorem. They are also interestingly weaker than might be expected. I will

later discuss how it relates to other more classical outlines.

The preference relation we are characterising is one that holds between sets

of bets, but this straightforwardly determines a relation between the bets them-

selves by its action on singleton sets, so I use the “�” symbol for relations among

individual bets as well.

Halpern’s first constraint is the following:

Bet Dominance For sets of bets B1 and B2: If τvpB1q ě τvpB2q for all v P V

then B1 � B2. And if τvpB1q ą τvpB2q for some v then B1 � B2.

This is a dominance principle. I call it Bet Dominance to distinguish it from a

principle called Dominance that comes up in the gradational accuracy argument

(section .). What this says is that if B1 is guaranteed to give at least as much

money as B2 in every situation, then you should (weakly) prefer B1 to B2. And

if B1 sometimes gets you strictly more money, you should strictly prefer it. This

condition relates preference among bets to payoffs of bets. It is this condition

that gives the theorem its pragmatic character. Important steps in the proof work

by showing that if you are in violation of one of the axioms of probability, then

it can be shown that you prefer a sure loss to a sure gain, thus contradicting

Bet Dominance. Note that this condition does not entail that you are rationally

obliged to prefer a bet with higher expected value: you are only obliged to prefer a

bet with higher guaranteed value. This is one way Halpern’s conditions are weaker

than might be expected. Indeed, it would be strange if Halpern’s argument relied

on expectation: this is supposed to be a behaviourist argument, so it should not

appeal to the inner mental life of the agents and what they expect.

Halpern’s second condition is simply that betting preferences should be transi-

tive.

Transitivity For sets of bets B1,B2,B3: if B1 � B2 and B2 � B3 then B1 � B3

This second condition gives some structure to the set of bets. Transitivity and the

fact that the weak preference relation is reflexive means that the relation gives

the set of bets the structure of a partial preorder.

Reflexivity follows from Bet Dominance.
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The third condition is that complementary bets are comparable.

Complementarity For all X either pX,αq � p X,1´ αq or p X,1´ αq �
pX,αq

This condition relates complementary events. In other words it relates betting

behaviour regarding an event to behaviour regarding the complementary event.

Or it connects your attitude to buying bets to your attitude to selling bets. This

gives further structure to the betting preferences. Since we are using betting

behaviour as a way of discussing uncertainty, this condition relates uncertainty

in an event to uncertainty in its complement. Note this is an inclusive “or”: both

disjuncts of (Complementarity) can hold.

Note that this condition is much weaker than demanding that the preference re-

lation be complete, or total. It is only between complementary bets that the relation

must hold one way or the other. In other words, it can still be acceptable, rational,

that neither B1 � B2 nor B2 � B1, as long as the bets are not complementary. This

is the condition I will end up rejecting. I shall defer my criticisms of it until the

end of this section.

The final condition states that if you prefer some bets individually, you prefer

them as a set. Or, as Halpern puts it “preferences are determined point-wise”.

(Halpern , p. )

Package If pXi ,αiq � pYi ,βiq for each i then:

{pX1,α1q, . . .pXk ,αkq} � {pY1,β1q, . . .pYk ,βkq}

This relates single bets to sets of bets. It is sometimes called the “package prin-

ciple” and has been criticised (see e.g. Schick ). I think it’s fairly acceptable:

I don’t feel the force of the objections against it. I will however show what it is

possible to prove in the absence of this condition.

This constraint is fairly weak. Note the things it does not say: it does not say

that if B1 � B2 then for each pX1,α1q P B1,pX2,α2q P B2 that pX1,α1q � pX2,α2q. Nor

does it guarantee in general that if B1 � B2 and B3 � B4 then B1YB3 � B2YB4.

These constraints impose a certain structure on an agent’s preference among bets.

This concludes the discussion of the constraints on rational betting preference. It

However, it can be shown that both disjuncts of (Complementarity) are true for at most one

value of α for any X.



. Arguments for probabilism 

is claimed that failing to have preferences structured in this way is irrational. The

intuitive appeal of most of the conditions should be apparent.

Real bookies violate (Complementarity). They do not offer “symmetric” odds

on and against an event. But of course, real bookies’ odds do not reflect their

beliefs in the way agent’s preferences in Dutch book situations should. Bookies

are out to make money. The move away from symmetry allows bookies to make

money whichever way the outcome goes. They are, in effect, collectively Dutch

booking their punters. This assumption of Dutch book arguments is not often

made explicit, but it is important: agents in the DBA are not out to make money,

nor are they trying to lose money; they simply bet according to their beliefs in

order to break even. That is, these agents are setting their betting quotients in such

a way as to reflect what they consider fair prices. The agents are like a cooperative

insurance agency: they want to set their premiums in such a way as to cover the

losses they expect, but they also want to set their premiums as low as possible.

That’s why their betting behaviour is supposed to tell us about their beliefs. That’s

why (Complementarity) is supposed to be justified. I shall have more to say on

this point later.

... Consequences of betting preference conditions

The following two definitions will be absolutely vital to the proof.

Definition .. Your limiting betting quotients are defined:

• αX “ sup {α : pX,αq � p X,1´αq}

• βX “ inf {β : p X,1´ βq � pX,βq}

That is, αX is the largest value you’re willing to buy the bet at, and βX is the

smallest value at which you’ll sell the bet. The Dutch book theorem, in its usual

form amounts to arguing that prpXq “ αX is a probability measure. That is, we

need to show that αJ “ 1; αX ě 0 for every X; and that αX_Y “ αX ` αY for

incompatible X,Y .

I don’t do this directly. I try to do as much of the proof as possible with as

few of the conditions as possible. It turns out that you can do a lot without

Betting quotients that satisfy this condition are symmetric in the sense that if the odds on X are

1´α : α then the odds against X are α : 1´α.
This is an analogy that is due to Lenny Smith.
This is using the “incompatible propositions” definition of probability.
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(Complementarity), and then use it just at the end to show αX “ βX . And then

the last details fall into place.

I set out the proof as follows. First I show that only the first two conditions

– (Bet Dominance) and (Transitivity) – are required to give prpXq “ αX and

prpXq “ βX the structure of a Choquet capacity. Then I show that with (Package)

as well I can demonstrate that prpXq “ αX is a Dempster-Shafer belief function and

that prpXq “ βX is a Dempster-Shafer plausibility function. Finally, I introduce

(Complementarity) and demonstrate that the full Dutch book theorem now holds.

The proof is not “efficient” in that the theorem can be proved much quicker if all

the conditions are available from the start. However, I think that the intermediate

results that I derive on the way are interesting in their own rights. And since I

don’t endorse all the constraints on betting preference, those intermediate results

will be all that will be required for rationality, in my view.

What the Dutch book theorem actually proves

The Dutch book theorem shows us that limiting betting quotients must have a cer-

tain structure if your betting preferences satisfy the above restrictions. Typically

the Dutch book theorem is taken to tell us something about belief, not just about

betting quotients. To make this move, we need one further assumption. We need

something that makes the link between betting quotients and belief tight enough

that structure imposed on betting quotients allows us to infer the same structure

imposed on belief. One way to do this is to interpret degrees of beliefs as your

limiting willingness to bet. This is the line that Williamson () takes. I think

this is too strong a connection between belief and betting behaviour. Obviously

revealed betting preferences have some strong connection to belief, but I don’t

think that betting preference exhausts the functional role that belief plays. I

discuss in more detail what I understand belief to be when I discuss my preferred

model in the next chapter (section .).

Despite this, it does seem that there should be a strong link between belief and

betting behaviour. So we shall assume that you are willing to bet in line with your

beliefs. To secure the conclusions we want, we need to be able to assume that

betting behaviour reveals the structure of your beliefs.

One might think that there are distinctions in belief state that can’t be elicited

by differences in betting behaviour. Even so, the Dutch book theorem tells us

something about your betting quotients. This tells us something about your beliefs,

but we mustn’t make the mistake of thinking that betting quotients are beliefs:
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they are consequences of beliefs, only. So the following sections are going to put

the Dutch book theorem in terms of betting quotients. It will then be up to us to

decide what the consequences of this are for belief. How we do this depends on

what we think the relationship is.

Betting quotients are Choquet capacities

To show that betting quotients are Choquet capacities we need to show that they

are normalised, bounded and monotonic. Normalisation first.

Lemma .. αK “ 0 αJ “ 1 βK “ 0 βJ “ 1

Proof Note that τvpK,αq “ ´α for all v. Likewise τvpJ,1´αq “ α for all v. For

α ă 0, this means that pK,αq � pJ,1´αq by Bet Dominance. Thus αK ě 0. For

α ă 0, we have pJ,1´αq � pK,αq. So pK,αq� pJ,1´αq. So αK ď 0. Thus αK “ 0.

Proofs of the other three results follow in exactly the same way. �

So our betting quotients are normalised.

We move on to monotonicity now. First we have a couple of quick lemmas

regarding preference for smaller bets and for bigger events. Note that many of

these lemmas also have a “strict” version, but I leave that implicit, since I never

actually need to use the strict versions.

Lemma .. For all events, X:

• If α ď α1 then pX,αq � pX,α1q

• If β ě β1 then p X,1´ βq � p X,1´ β1q

Proof This follows immediately from (Bet Dominance). �

That is, you prefer the bet that costs you less if the bets win/lose in the same

circumstances. And similarly, if you’re selling the bet, you prefer to sell it for

more money.

Lemma .. If X ( Y then for all α:

• pY ,αq � pX,αq

• p X,1´αq � p Y ,1´αq

Choquet capacities were defined above in Definition .., p. .
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Proof The first half follows directly from (Bet Dominance). The second half

follows from the first half and the observation that if X ( Y then  Y ( X. �

This too should be intuitive. If you keep the stake fixed, you would prefer a bet

that wins in more circumstances. And if you are selling the bet it is the other way

around: you prefer to sell a bet on a smaller event.

Lemma .. For all events, X, the following two biconditionals hold:

• pX,αq � p X,1´αq if and only if α ď αX

• p X,1´ βq � pX,βq if and only if β ě βX

Proof We shall do the “if” part first; we assume α ď αX .
pX,αq � pX,αXq by Lemma ..

pX,αXq � p X,1´αXq by definition

p X,1´αXq � p X,1´αq by Lemma ..

So: pX,αq � p X,1´αq by (Transitivity)

Now the “only if” part. pX,αq is preferred to its complement. It follows that

α ď αX because αX is defined as the largest value for which that bet is preferred to

its complement. The proof of the second result is similar. �

The above lemmas together allow us to prove the following:

Theorem .. If X ( Y then:

αX ď αY and βX ď βY

Proof Assume X ( Y . Then:
pY ,αXq � pX,αXq by Lemma ..

pX,αXq � p X,1´αXq by definition

p X,1´αXq � p Y ,1´αXq by Lemma ..

pY ,αXq � p Y ,1´αXq by Transitivity

So: αX ď αY by Lemma ..
The proof of the other result proceeds in the same way. �

Since K ( X and X ( J for all X, monotonicity entails boundedness. We

have proved that prpXq “ αX has the structure of a Choquet capacity, as does

prpXq “ βX .
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We can in fact prove more than just that prpXq “ αX and prpXq “ βX are

capacities. We can show that they are capacities intimately related to each other.

It is hardly surprising that values at which you buy a bet and values at which you

sell those bets are connected.

Theorem .. For all X; αX “ 1´ β X

Proof Note that   X “ X and 1´p1´ β Xq “ β X , and thus that pX,1´ β Xq �
p X,β Xq. So by Lemma .. we know that 1´ β X ď αX .

1´ p1´αXq “ αX . So from the definition of αX it follows that p  X,1´ p1´

αXqq � p X,1´αXq. Therefore, by Lemma .., 1´αX ě β X . Thus, 1´β X ě αX .

Therefore αX “ 1´ β X �

In fact, if we allowed our “αs” to range over some only partially ordered set of

goods with unique maximal and minimal elements, rather than real numbers, then

one can prove that (Bet Dominance) and (Transitivity) are enough to show that

the belief function so defined is Halpern’s “plausibility measure”. See Halpern

(, p. –) or Chu and Halpern () for details.

Betting quotients are Dempster-Shafer belief measures

All of the above results rely only on (Bet Dominance) and (Transitivity). From

now on, the results will also require (Package).

Theorem .. For all X; αX ď βX

Proof The set of bets {pX,αXq,p X,1´ βXq} is preferred to its complement by

definition of αX and βX and (Package). The payout of this set of bets is always

1. The cost of the bets together is αX ` 1´ βX . So the value of this set of bets is

always βX ´αX . If it were the case that αX ą βX , this net gain would be negative,

and the complementary set of bets would have positive net gain, by Theorem ...

This contradicts (Bet Dominance), so the conclusion is that αX ď βX �

This is a proof strategy that we shall use a lot: we make some assumptions about

some betting quotients. We find some set of bets (often a set of bets with one bet

on each element of a partition of SL) and we show that this set is preferred to its

complement but that it has a negative payout in every world (that is, for every v).

The definitions of τv and friends need tweaking, but all the modifications are straightforward.
 In fact, the next few results require only (Bet Dominance) and (Package). Until we get to

Theorem .., which also requires (Transitivity), no interesting structure is imposed.
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So its complement has a positive payout in every world by Theorem ... This

violates (Bet Dominance), so whatever assumption we made about the αs must

be wrong. Often I will show that the set has a negative payout and jump straight

to the conclusion that the assumption is wrong.

Our next aim is to show that αX is superadditive and that βX is subadditive. That

is, we want to demonstrate that the following two inequalities hold for disjoint

X and Y : αX_Y ě αX `αY and βX_Y ď βX ` βY . Before we do that, we will need

some more lemmas.

Lemma .. If exactly one of the Xi are true then:∑
αXi ď 1 and

∑
βXi ě 1

Proof Each pXi ,αXi q is preferred to its complement by definition. So by (Package)

they are preferred as a set. This set of bets always wins 1, no matter what v is used,

since exactly one Xi is true. If
∑
αXi ą 1 then the net gain would be negative,

contradicting (Bet Dominance). The proof of the second half is similar. �

Note that with (Complementarity) and Lemma .. it is already possible to prove

that prpXq “ αX conforms to the partition definition of probability.

Note that exactly one of {X _ Y , pX _ Y q} is true and therefore, by the above

lemma, that 1ě αX_Y `α pX_Y q.

Two final inequalities will allow us to prove the result we want.

Lemma ..

αX_Y `αX^Y ď βX ` βY and βX_Y ` βX^Y ě αX `αY

Proof The following set of bets is preferred to its complement by definition (plus

(Package)): {pX _ Y ,αX_Y q,pX ^ Y ,αX^Y q,p X,1´ βXq,p Y ,1´ βY q}. This set of

bets wins 2 everywhere. Its cost is p1´ βXq ` p1´ βY q `αX^Y `αX_Y . Thus the

set of bets wins βX ` βY ´ pαX_Y `αX^Y q everywhere. So in order to avoid this

being negative, αX_Y `αX^Y ď βX ` βY . The other half of the proof is similar. �

We now have everything we need to prove the following theorem:

Theorem .. For all incompatible X,Y :

• αX_Y ě αX `αY

• βX_Y ď βX ` βY
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Proof Consider the bet B“ pX_Y ,αX`αY q. This has exactly the same payout as

C “ {pX,αXq,pY ,αY q}. Because X and Y are incompatible, C never wins 2. So by

(Bet Dominance), B � C (and indeed, C � B). C � CC by definition and (Package).

Now by (Bet Dominance) again, CC � BC . So by (Transitivity) B � BC . αX_Y
is defined as the maximum value for which a bet on X _ Y is preferred to its

complement. This value is at least αX `αY , since B � BC . So αX_Y ě αX `αY .

Much the same proof works for the corresponding result involving βX_Y . �

Lemma .. and Theorem .. don’t quite get us what we’d really like to prove.

To prove a more general result directly – namely that αX_Y `αX^Y ě αX `αY –

we need another constraint on preference among sets of bets. I have proved these

slightly unsatisfactory theorems because they, together with Complementarity,

are sufficient to prove what we want without recourse to the extra principle. The

required principle is the following:

Distribution Invariance For set of bets B“ {pX1,α1q,pX2,α2q, . . . ,pXn,αnq},
if B � BC then κpBq ď

∑
αXi .

This principle requires that preference among sets of bets is determined only by

the total cost of the set and not how that cost is distributed among the individual

bets. The converse of this principle is a consequence of Bet Dominance.

Lemma .. For all X,Y

αX `αY ď αX_Y `αX^Y

Proof Let B “ {pX _ Y ,αXq,pX ^ Y ,αY } and let C “ {pX,αXq,pY ,αY q}. τvpBq “

τvpCq for all v. So by Bet Dominance B „ C. Also, τvpB
Cq “ τvpC

Cq so BC „ CC .

C � CC by definition and Package. Putting these facts together with Transitivity

we have that B � BC . So by Distribution Invariance we have that αX ` αY ď

αX_Y `αX^Y . �

The same proof can be used to show that the αs are n-monotonic for any n. If we

define belpXq “ αX and plauspXq “ βX these functions are Dempster-Shafer belief

and plausibility measures, respectively.

When we introduced Dempster-Shafer belief functions, we also introduced

the connected notion of a mass function. We can construct the mass function out

In section .. on p. ...
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of our betting quotients. First, let’s define mpXq as follows:

mpXq “ αX ´
∑
Y+(X

mpY q (.)

By “Y +( X” I mean Y entails X but X does not entail Y . That is, rY s Ĺ rXs.

Strictly speaking this should be an inductive definition on the size of X, but it’s

fairly clear how it works. This will turn out to be a mass function as defined in

Definition .. on p. . Note that this sum is “ranging over proper subsets of

rXs”. mpXq picks up all the mass not already attributed to subsets of X. So for

example, the mass of an atom is just equal to its maximal betting quotient. That

is mptq “ αt. From this assumption and Lemma .. it follows that mpXq ě 0 for

all X; because K ( X, for all X. It just remains for us to show that the sum of

the masses of all events is equal to 1. This follows from the fact that the atoms

partition the event space, and thus
∑
αti ď 1 by Lemma ...

We now show that the DS belief function defined by this mass function does

indeed have the right relationship to all all the betting quotients.

Theorem .. For all X: belpXq “ αX .

Proof By definition:

belpXq “
∑
Y(X

mpY q

“mpXq`
∑
Y+(X

mpY q

“ αX ´
∑
Y+(X

mpY q`
∑
Y+(X

mpY q

“ αX �

We can also prove, in a similar way, that plauspXq “ βX is a D-S plausibility

function, though I won’t go through that here. So bel defined this way is infinite

monotone. We have proved as much as we can without (Complementarity).

Betting quotients are probabilities

Finally, we add (Complementarity) to our arsenal of rationality constraints and

now we can prove the full Dutch book theorem.

Lemma .. For all X, αX “ βX .
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Proof For all β ą αX , it is not the case that pX,βq � p X,1´βq. So by (Complementarity),

p X,1´βq � pX,βq. So αX “ inf {β : p X,1´ βq � pX,βq}“ βX by Definition ...�

So our superadditive αX and our subadditive βX are forced to be the same. This

is enough to derive the final result.

Theorem .. prpXq “ αX is a probability measure.

Proof By Lemma .., and the above result, we know that αX_Y “ αX `αY for

incompatible X,Y . So prpXq “ αX is additive. We have already shown that this

function is bounded and normalised. �

Note that the above argument doesn’t make use of Lemma .. and hence it

doesn’t require Distribution Invariance.

... Paris’ Dutch book argument

As I said, the above proof is non-standard. It is quite different from most other

treatments of the DBA, so I shall spend some time comparing it to another proof.

I shall discuss J.B. Paris’ approach to the Dutch book theorem. This part is based

on Paris (,  []).

Paris considers the following scenario.

[S]uppose that 0 ď p ď 1 and that the expert is required to make a

choice, for stake S ą 0 between:

• gaining Sp1´ pq if vpXq “ 1 whilst losing Sp if vpXq “ 0

• losing Sp1´ pq if vpXq “ 1 whilst gaining Sp if vpXq “ 0

Paris (, p. )

This is clearly a choice between a bet on X and a bet against X. In my above

discussion of Halpern I just set the stake to be S “ 1. If we do the same here, then

we can see that Paris’ framework relies on choosing between complementary bets.

Paris defines a number which is supposed to be the maximum value at which you

prefer the first of these to the second. This is exactly the definition of αX we had

above. The conclusion is, of course, that if the belief function defined by these

maximum values is not a probability function, then you are open to a Dutch book:

a set of bets that guarantees that you lose money.

It should be obvious that the overall value of a collection of bets of the above

form is: ∑
i

SipvpXiq´ piq (.)
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where taking the first kind of bet for Xi means setting Si positive, and taking the

second means setting Si negative. Paris’ definition of a Dutch book is a set of

Si and Xi such that the value of (.) is negative. He proves that there exists no

Dutch book if and only if the pis are convex combinations of v PV.

It is implicit in his argument that one should always have a preference between

complementary bets, which is exactly the content of (Complementarity). Paris

simply does not worry about the possibility that the expert has no preference

between the two bets. Paris makes this commitment explicit in his later paper.

Paris says that throughout the paper he is making the assumption that “for any

θ P SL, stake S ą 0 and η P r0,1s either one is willing to accept [the first bet] or one

is willing to reverse roles and [accept the second bet].”

However, Paris is interested in a different kind of modification to the scenario.

He is interested in valuation functions v that don’t obey the classical rules. And

one of the situations he explains in his  [] leads to the conclusion that

belief functions should be Dempster-Shafer belief functions.

To reiterate: the valuation function v serves to decide which bets win, and which

lose. So if you bet on an event X and it turns out that vpXq “ 1, you win. In the

original Dutch book theorem, the v functions of interest are those whose outputs

are classical truth values, ones that obey the classical truth conditions which we

saw earlier in Definition ...

Paris extends the Dutch book argument to cases where the v function need not

obey the classical definition. Instead of learning the truth value of all atoms, you

learn some (possibly non-atomic) proposition X. The v rule of interest now is vX
which operates like this: vXpY q “ 1 iff X ( Y . In the context of these alternative v

functions, the “Dutch book method” then produces the result that to avoid Dutch

books, your belief function should be a Dempster-Shafer belief function. In fact,

Paris’ result is quite general. For any set of valuation functions W, Paris’ theorem

shows that to avoid a Dutch book you have to have a belief in the convex hull of

W. Paris shows that for a particular choice of W, then using a result from Jaffray

(), W` is exactly the DS belief functions. So it is important how the “truth”

of events is determined.

This is an interesting convergence of results. Above I showed that by modifying

the restrictions on the agent’s betting preference, you can derive a “Dutch book-

like” result for DS theory. Paris shows that a similar result obtains if one instead

 Paris ( [], fn , p. )
Classical truth valuations were defined in Definition .. on p. .
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keeps the betting preference restrictions in place, but modifies the conditions

under which bets win. I think these two results are pulling in the same direction

and it is the aim of section .. to draw out these conclusions. This result is

worth mentioning both because it gives an alternative route to nonprobabilism,

but also because Robbie Williams has recently used a similar technique to subvert

a different argument for probabilism (Williams a,b).

... Loose ends

There are some minor issues I would like to discuss in this short section. First, I

want to address the difference between a fair bet and a favourable bet. And second,

I wish to point out the difference between preference among bets and acceptance

of a bet. Finally, I discuss the “converse theorem challenge”.

Fair or favourable

Hájek () rightly argues that the Dutch book argument is often set out in terms

of “fair” bets: bets at odds that are fair according to your beliefs. This is to be

contrasted with “fair-or-favourable” odds, which are bets at fair odds or better, by

the lights of your beliefs. For example, say you were betting on a fair coin’s landing

heads. Your belief in this event is bpHq “ 1
2 . The odds of -for- on this event are

fair by the lights of your belief. Longer odds are not fair, but favourable. If you’re

willing to accept -for- on heads, then of course it makes sense to take -for- or

-for- on the same event (although you might get suspicious of someone offering

-for- on a fair coin’s landing heads). These bets are favourable. It is worth

noting that Halpern’s framework always talks in terms of fair-or-favourable bets

and the norms govern both. αX represents your fair betting quotient, anything

less than that counts as favourable. Lemma .. guarantees that favourable bets

are preferred to their complements; Lemma .. and Lemma .. guarantee that

more favourable bets are more preferred.

Preference or acceptance

Note that Paris’ argument is in terms of bets you would accept, given your beliefs.

Halpern’s argument is only in terms of your preference among bets. To illustrate

the difference between preference and acceptance, consider the fact that you can

have a preference among bets without being willing to accept either. It seems
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rational to have the following preference: pK,0.1q � pK,0.3q, although you would

certainly not want to buy either bet. That is, you can a preference for paying less

for a bet, even if you don’t want to buy any bet on an impossible event.

So how do we bridge the divide between preference among bets and acceptance

of bets? We could characterise acceptance as follows: you accept a bet pX,αq just

in case pX,αq � p X,1´αq. Or perhaps instead we could say that you prefer a bet

just in case you prefer it to the neutral bet pJ,1q. Or we could do this by appeal to

b. You would accept the bet pX,αq when bpXq ě α. It should be obvious that bpXq

will coincide with αX by definition. These characterisations amount to the same

thing.

Converse theorems

What is still missing from the above argument is the oft-neglected “converse

theorem” (Hájek ). That is, we have not proved that if your betting quotients

are probabilistic, then there does not exist a Dutch book against you. The above

argument (in section ..) shows only that it is irrational to be nonprobabilistic.

It does not show that being probabilistic protects you from this irrationality. In

the present set up, proving the converse theorem would mean showing that if

b P V` then if you set your betting quotients in accordance with you b, you

satisfy Halpern’s conditions. In fact, it would require you to have your preferences

among bets determined only through the expectation associated with b, in order

to have you satisfy Halpern’s conditions. This is possible, but I won’t go through it

here. Paris ( []) is also immune to Hájek’s “converse theorem” challenge.

Paris explicitly makes his Dutch book argument an “if and only if” claim: so he

effectively shows the converse theorem to be true as well.

... What’s wrong with the DBA?

This section mainly deals with why one might want to “get off the bus” before

we add (Complementarity). That is, we are concerned with whether it might

be reasonable to finish with just Dempster-Shafer betting quotients: under

what circumstances it might be reasonable to deny that one’s betting preference

should be constrained by (Complementarity). Reasons for this idea have to do

Indeed, it follows from (Bet Dominance).
I don’t think DS theory is all that much better as a model of belief, but I do think it is a more

reasonable restriction on rational betting quotients.
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with concerns about vagueness or ambiguity undermining the rationale for the

symmetry condition.

Consider an analogy to discussions of vagueness. Imagine we are trying to

determine the boundary between two regions. The boundary is vague. On one

side, we are unequivocally in one region, call it X. On the other side we are

certainly in  X. The boundary between them is indistinct. We can say that “up to

at least this point we are definitely in X” without committing ourselves to saying

“after this point we are certainly in  X.” Now consider throwing a dart at this

region (imagine that the dart has a uniform probability over the whole region).

You are offered a bet on whether the dart will land in the X region. The nature of

the game forces us to assign some numerical betting quotient to X, call it bpXq.

But because of the uncertainty, the vagueness, we are not thereby committing

ourselves to saying that all the remaining probability belongs to  X, that is we

are not saying that 1´bpXq “ bp Xq. So you can recognise some bets on whether

X will occur as being good, and some as being bad. But there is a third category:

bets you aren’t sure about.

Given that (Complementarity) seems to be relating belief in an event to belief

in its complement, it seems like this would be the constraint to relax if one were

worried about vagueness. I think the analogous move makes sense for cases of

severe uncertainty or ambiguity. Paris’ discussion of “the Dutch book method”

for non-classical valuation functions (Paris  []) is also revealing. Here

we seem to be saying that if the criteria for a successful bet are somehow “non-

classical” then we need not restrict ourselves to probability measures. Vagueness

might induce this kind of non-classical criteria for success.

The Paris approach seems to invite questions about the interpretation of the

valuation function. Is this supposed to have some metaphysical import? What

does it mean to say that the valuation function is non-classical? Does this mean

that the world is somehow non-classical? It may be possible to give this valuation

function an epistemic reading. However, the “deny (Complementarity)” approach

I took in section .. is, I feel, safer, since the rationality conditions on betting

preference clearly have no metaphysical import. They are more clearly about the

agent’s attitude to vagueness. So my approach works even when we know that bet

winnings are determined classically. Since my interest is in how to formally deal

 Fuzzy logic, one approach to dealing with vagueness, can also be modified to offer a theory

of upper and lower probabilities: see Halpern (, pp. –). So this analogy is not so

far-fetched
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with uncertainty and ambiguity, situating the problem in the agent’s epistemic

state is preferable to situating it in the logic of which bets win. Nevertheless, that

Paris’ approach leads to similar conclusions only strengthens the argument.

So nonprobabilistic betting behaviour can demonstrate, not your irrationality,

but the weakness of your epistemic state. For example, Ellsberg style choices do

not show that you are behaving irrationally, but that you are in the possession of

an incomplete, vague, ambiguous picture of the gambling scenario.

.. Representation theorems

The Dutch book argument is one big strand of argument for probabilism. The other

such strand is the representation theorem argument. Representation theorems in

slogan form say “If you conform to some reasonable restrictions on preference, and

assumptions about the structure of the world; then there is a probability function

that agrees with your choices.” This is a very rough characterisation, there are

myriad different representation theorems that are importantly and interestingly

different. I look at some of these in turn, I will not discuss proofs in detail.

... Representation in general

Before going on to talk about the representation theorems of specific interest in

this context, I want to take some time to discuss the concept of representation in

general. There is a mathematical field known as “measurement theory” which

deals with these sorts of questions. We are ultimately interested in when one

particular formal structure can be represented by another. In particular, we are

interested in when certain kinds of order structures can be represented by a

function.

I will briefly outline the simplest such case: length. Certain kinds of rigid bodies

– sticks, pencils, book spines, arm spans – can be ordered by how long they are. For

my purposes I take those things that can be so ordered to be called “sticks”. Sticks

needn’t be stick-like, one can compare the diagonal size of a computer screen to

the long edge of a piece of paper. The important thing is that there is an obvious

way to compare these lengths. I briefly set out the basic idea of a representation

theorem here.

I discuss these games in the next chapter.
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. Length is a quantity – a property that admits of degrees – that attaches itself

to some kinds of things.

. Call “sticks” things that have a length. For my purposes, pencils, arms, book

spines, the imaginary line between your outstretched fingers: these are all

sticks.

. Some sticks are longer than others. Say “X �len Y ” means “X is at least as

long as Y ”.

. There is an operation you can perform on sticks: composition. You can lay

sticks end to end and parallel. Call the compound of X and Y , X ‘Y . It is

also a stick.

. The set of sticks (S) has some structure. For all X,Z we have X‘Z �len X. If

X �len Y then X ‘Z �len Y ‘Z.

. There is a privileged stick: the null stick. No stick is shorter than the null

stick.

. Given some technical conditions, there is an additive function len : SÑ R
that assigns to each stick, a real numbered value: its length. len represents

�len and is unique up to affine transformation.

. By “len represents �len” we mean that X �len Y if and only if lenpXq ě

lenpY q.

. By “len is additive” we mean lenpXq` lenpY q “ lenpX ‘Y q.

Measurement theory studies this idea of representing a quantity. You get theorems

that look like this: “If S, ‘ and �len have the right sort of properties, then the

function len will have certain other properties.” The properties of the function

that represents the quantity tell us things about that quantity itself. For example,

contrast length and temperature. Length has an additive representation. However,

not so for temperature. There’s no interesting physical composition procedure such

that temperature is additive with respect to that procedure. Put two thermal

bodies in contact and the temperature of the composite body will be some sort of

average of the two temperatures of the composite bodies before composition, not

their sum. So this tells us that length and temperature are interestingly different

as quantities, not just as regards their representations.

Ellis calls length an extensive quantity, and temperature intensive.
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There is a mathematical theorem that backs up point  on this list. For the

technical details, the classic work is Krantz et al. (). See also Ellis () and

Kyburg () for more philosophical treatment.

I want to take a moment here to emphasise that only some aspects of the

representation function can be understood to be telling us things about the world.

For example, there exists a particular representation function that measures the

particular stick X as having a length lenpXq “ 42. This is a fact about the function

that we don’t take seriously as a fact about the world. The X stick has no intrinsic

property of “forty-two-ness”. The point is that there will be other functions that

don’t give X that value of length that will represent the quantity just as well. So a

stick that is, say 42 centimetres will be some other number (16.5) of inches long.

But it is the same length. So it is only properties invariant under an appropriate

class of transformations that we take to tell us something about the world (Stevens

).

That, in brief, is what a representation theorem looks like. We will be interested

in representation theorems that say something, not about length or temperature,

but about your beliefs and values. The general case is taken up in Krantz et al.

(, Chapter ).

... Eliciting beliefs

In the case of representations of subjective probability and utility, it is trickier

than for length, because we are trying to represent two things – your beliefs and

your values – but we only have the one yardstick: your choice behaviour. We take

choice behaviour to reflect preference.

To get at the intuition behind representation theorems, I consider first ways you

might try to elicit someone’s degrees of belief in various events. Ramsey, De Finetti

and Savage all thought about how one might go about finding out what an agent’s

actual degrees of belief might be through finding out what preferences they held.

These theorems, being behaviourist in character, don’t want to assume anything

about your mental life. They look only at the overt, observable consequences of

whatever goes on in your head. That is, they look only at your observed choices,

which reveal your preferences among the options.

What we effectively do in the Dutch book argument is use a given linear scale

See Krantz et al. (, Chapter ).
I think this behaviourist character of the theorems has misled some people to think that only

what can be elicited in this way can be real.
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(money) to calibrate beliefs by preferences on bets. That is, we calibrate “strength

of preference” on a previously given linear scale. This is like using a ruler to

determine what our len function should return for a given stick. Or imagine

learning that a column of mercury in a tube of constant diameter has a height

proportional to the air temperature. We can then use our understanding of length

(or height) to calibrate the temperature scale. Calibrating belief scales works in

the same way. We can imagine offering you a series of bets where the event is

fixed but the stake changes. There will be some “tipping point” value at which

you no longer prefer the bet to its complement. We write this value down and

repeat, thereby building up a record of your betting quotients (and therefore, it is

assumed, your beliefs). We need a monetary scale – a ruler, if you like – to get this

strategy off the ground. We are calibrating our belief scale (temperature) to the

previously given linear scale of money (length).

The von Neumann–Morgenstern approach uses objective chances to calibrate

utility (von Neumann and Morgenstern [] ). Instead of keeping the

event fixed and shifting around the stake to elicit your beliefs, these authors use

a different trick. They shift around the objective chances with which various

consequences arise and calibrate their value function that way. Anscombe and

Aumann () use a similar trick to von Neumann and Morgenstern, but they

use some objective chances to elicit subjective probabilities for other events as

well.

Ramsey uses a neat trick to elicit strength of belief without recourse to such an

explicit yardstick (Ramsey ). He assumes that there exist some propositions

about whose truth value you have no preference either way. He calls these ethically

neutral propositions. His idea is to pinpoint the “probability one half” point by

finding an ethically neutral proposition X0.5 with the following property: for

outcomes o1 � o0, you are indifferent between gaining o1 if X0.5, o0 if  X0.5 and

gaining o0 if X0.5, o1 if  X0.5. That is, despite preferring to get o1, you have

no preference about which of X0.5 or  X0.5 would be the better way to get it.

Ramsey can then use these ethically neutral probability one half propositions to

calibrate a utility scale. Choose o0, o1 such that o1 � o0. Now fix the utility of

these outcomes as follows: upo0q “ 0,upo1q “ 1. There is an outcome, o0.5 such

that you are indifferent between it and o1 if X0.5, o0 if  X0.5. Fix upo0.5q “ 0.5.

Using a similar procedure you can find further outcomes that have utility 0.25

and 0.75, and so on. To extend it to things preferred to o1, we look for that

We obviously need quite strong richness assumptions to guarantee that there are outcomes with



. Arguments for probabilism 

o2 such that you are indifferent between o2 if X, o0 if  X and o1. Likewise for

things dispreferred to o0. Once Ramsey has built up this utility scale, it can be

used to calibrate degrees of belief in a similar way to how we used bets above to

calibrate belief. See Bradley () for more details on Ramsey’s method. What’s

impressive about Ramsey’s approach is that no previously existing linear scale

is needed to get the whole thing to work. As Bradley points out, however, there

are some strong assumptions in the background. Ramsey’s assumptions make his

method a good way of eliciting beliefs, but the axioms don’t make so much sense

as constraints on rational preference.

Savage’s method, like Ramsey’s, doesn’t need a previously existing scale to

calibrate measures of belief against. Unlike Ramsey, Savage tries to make his

axioms, as much as possible, reasonable constraints on rational preference. The

order is also reversed: Savage derives a measure of belief first and uses that to fix

the utilities.

... Savage’s Foundations of Statistics

Savage’s representation theorem for personal probability is spread through chap-

ters , and  of his classic Foundations of Statistics (Savage  []). Much like

the Dutch book theorem as I presented it, the basic idea is to look at your choices

or preferences under uncertainty and then to impute beliefs to you. Savage’s

approach is interesting, because he starts without making any assumptions about

your utility scale. All he needs to assume is that you have preferences over a

remarkably rich collection of acts. The trick is to help himself to particular kinds

of acts, that can be used to elicit your beliefs about events. He builds a “qualitative

probability” ordering out of the preferences over these sorts of acts, and then

uses essentially the same proof as Krantz et al. () to arrive at a probabilistic

representation. Once he has defined probability, he then goes on to show that

the preferences determine a utility scale up to linear transformation.

Savage’s world

Savage considers a set of possible worlds – the states – and defines events as sets of

such worlds much as Halpern () does. We can go the other way and define

the events as the sentences of a language SL, and define the states as the atoms

of this language. Alternatively, since there is a bijection between the atoms and

the right properties for all the values we want to specify.
This is anachronistic. Krantz et al. acknowledge that their proof owes much to Savage’s work.
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members of V, we could have the states be described by the valuation functions.

Some of Savage’s conditions will require that there be uncountably many states.

Savage then defines consequences as those things that might matter to a person

and that might be brought about by some act. The set of consequences O – what

we earlier called outcomes – is effectively an unstructured set of things you might

care about. It derives its structure from other features of the system. An act is

then a function from atoms in SL to consequences O. I will denote the set of acts

A as before.

An act determines, for each way the world could be, the consequences that

would befall you were you to perform that action when the world were in that

state. Finally, it is shown that given certain assumptions about the structure of

preference among acts, there is one and only one probability measure that accords

with preference in a certain way.

The restrictions on preference

In this section, I list the assumptions Savage makes about preference among acts.

Reading “a1 � a2” as “a1 is at least as good as a2”, the first condition says that the

relation is a total order.

P For all a1, a2, a3 PA:

• a1 � a2 or a2 � a1

• If a1 � a2 and a2 � a3 then a1 � a3

In other words, � satisfies transitivity and completeness. Note this is stronger than

(Complementarity) from section .., and similar worries apply here. Savage

contemplates the possibility of allowing “�” to be a partial order, but dismisses

the project since doing so would be “losing much in power and advancing little,

if at all, in realism” (Savage  [], p. ). In his presentation, Joyce makes

the two parts of this definition distinct axioms. This is because the second part is

arguably a principle of rationality while the first part is not (Joyce , p. ).

Savage defines various relations out of this preference relation. He needs the

notion of “preference among acts, given a certain condition is known to obtain”. That

is, he needs preference conditioned on an event: “a1 � a2 given X”. For example,

you may on balance decide you prefer to not carry an umbrella. However, your

preference given that it is raining is to carry the umbrella. This is done by saying

that if a1 and a2 lead to the same consequences outside of X, then a1 � a2 given X
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if and only if a1 � a2. The second condition – known in the literature as the “Sure

Thing Principle” – is then:

P For every event X, the relation � given X is total.

Calling this the STP is perhaps a little misleading: a lot of the work is being done

by the definition of the relation “a � b given X”. We will meet the STP again a

number of times, and when we do meet it again, it will be more obvious what the

content of the principle is. For now, I pass over it without further comment.

A constant act is one that gives the same consequence for all states. For all

practical purposes, a constant act can be identified with its constant consequence.

Savage relies on these constant acts to impose a preference ordering on the conse-

quences through the ordering among acts. P says that for acts that are constant on

X, whichever constant consequence is preferred determines which act is preferred

given X.

P If a1pxq “ o1 and a2pxq “ o2 for every x P rXs, then a1 � a2 given X, if and

only if o1 � o2

Note that “o1 � o2” is a preference between outcomes rather than acts. Savage

determines preference between outcomes by the proxy of constant acts. Imagine

there’s an act that always gives outcome o1. And another that always gives o2.

It’s reasonable to understand preference between the outcomes as meaning a

preference between the constant acts that give those outcomes.

An important assumption is being introduced here that is worth making more

apparent. What this requires is that how much oi is valued does not depend

on which event obtains. We mentioned this kind of assumption earlier: how

much you value the lottery that wins an umbrella depends on whether or not

it rains. P rules out these sorts of possibilities. In many cases, the outcomes

are not state independent in this way. For example imagine taking bets on future

catastrophic climate change. The money you stand to gain if the climate system

does go catastrophically wrong will likely be worth a lot less than the money is

worth if things carry on as before. In this case, I’d recommend taking gambles

that involve payouts in canned food, drinking water and solar panels. Or imagine

making a big bet on the proposition “there will be hyperinflation in the UK by

”. Of course, if you win, there will have been hyperinflation, and thus the

money has become near-worthless. These examples illustrate state-dependent

utilities. Having your values depend on the states like this is ruled out by P.
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The Savage-style response to these problems is to refine the outcomes. He

suggests that – to return to the simple umbrella case – the outcomes have been

mis-specified. The outcome is not in fact the same whether it’s raining or not:

the outcomes are “umbrella when raining” and “umbrella when sunny”. With

outcomes specified at that level of detail, the Rectangular Field Assumption (RFA)

looks less convincing. The RFA says that all possible functions from states to

outcomes define acts. The more fine-grained you make these sorts of outcomes,

the less reasonable it seems that you can find constant acts. For instance, what

sort of act could possibly win you “umbrella when raining” when the event “it is

sunny” obtains?

Savage then moves on to constructing a relation among events. Consider the

choice between two acts: aX , aY such that aX wins you a prize when X obtains, and

aY wins you the same prize when Y obtains. That is, aXpxq “ o1 for all x P rXs and

aXpxq “ o2 for all x R rXs, and o1 � o2 and similarly for aY .

vpXq “ 1 vpXq “ 0

aX o1 o2

bX o11 o12

vpY q “ 1 vpY q “ 0

aY o1 o2

bY o11 o12

Table ..: Table of consequences for acts relating to P

Whatever the prize is (assuming it is actually preferable to not receiving any

prize) it seems reasonable that given the choice, you will pick the act that cor-

responds to the event you consider more likely (compare Lemma ..). In this

way I could elicit your “qualitative probability” by asking you to pick between

acts. Savage’s P effectively says that for any two pairs of “prize functions” like

this, you always pick the same way. Basically, this guarantees that the actual prize

offered isn’t relevant to which of the acts you pick.

P For o1, o2, o
1
1, o

1
2 PO with o1 � o2 and o11 � o

1
2, and aX , aY ,bX ,bY P A with

X,Y P SL: If the consequences for the acts are as in Table ., then: if aX � aY
then bX � bY

To rule out a particularly uninteresting pathological case, we assume that

there are two consequences, such that one is strictly preferred to the other. This

guarantees that there will be some nontrivial prize function.

The term is due to Broome (, p. –,–).
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P There are at least two constant acts, o1, o2 such that o2 � o1

Next, P claims that you can cut up the states of the world small enough such

that changing the action of two acts on some small part of the space makes no

difference to the preference order among those acts. This is basically a demand

that the set of states be rich enough to be infinitely subdivided.

P If a1 � a2 then, for every o PO there is a partition of SL such that a11 � a
1
2

and a1i is identical to ai on all but one partition element, and a1i takes the value o

on that one element.

What P demands is that no matter how fantastic some consequence o is, you

can always cut the event space up small enough so that an act modified to give

you o on some tiny part of the space doesn’t affect you preference among the acts.

No matter how brilliant a prize, one can contemplate a situation so implausible

that getting that prize in that implausible situation makes no difference to your

preferences.

Finally, Savage’s last constraint demands that if a is preferred to every conse-

quence that b can produce on X, then a � b given X. It is, in short, a dominance

condition.

P If a � bpxq given X for every x P rXs, then a � b given X.

Note that “a � bpxq” is actually a preference for an act over an outcome. As above,

we understand this as shorthand for a preference for a over the constant act that

always returns bpxq for a fixed x. P has the flavour of what Bradley () calls

“The Averaging Slogan”:

No prospect is better (or worse) than its best (worse) realisation in a

set of mutually exclusive and exhaustive prospects. (p. )

Savage proves that you can extract a “qualitative probability” from preference

among acts. Savage shows that, given a rich enough space of states, acts and con-

sequences, only one probability measure “agrees with” the qualitative probability

thus determined. In the next section I will discuss qualitative probability, but first

I shall mention some problems with Savage’s approach.

Problems with Savage’s approach

Here I outline a number of problems with Savage’s approach.
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Preference among acts is taken as the basic preference relation, and preference

among consequences is derived from this. Psychologically, this seems backwards:

it is because of a particular preference among the possible consequences — along

with my judgements of the likelihoods of various possible states of the world —

that I prefer some act to another. That is, it feels to me as if it is my beliefs and

values that determine my choices, not the other way around. One might respond

that yes, there is something psychologically backwards about this approach, but

that’s not necessarily a point against in as regards its adequacy as a model of

belief. In the same way we can measure temperature by its effect on the height

of a column of mercury, even though it is the temperature that determines the

height, not vice versa. That is, the representation, the elicitation is focusing on the

effect rather than the cause of the behaviour, but it is a meaningful representation

nevertheless.

State independence – the outcomes’ being independent of the states – seems

to be a rather strong assumption. In some circumstances it seems reasonable:

betting under normal circumstances where the economic conditions are assumed

to be stable, for example. But in many real-world decision examples, the state of

the world does impact the value of many of the outcomes we are trying to bring

about. This is at least an assumption that can be dropped. There is a lot of work

on “state-dependent utilities” and representation theorems for them (Schervish,

Seidenfeld, and Kadane ). Given that many decisions based on scientific

evidence, especially climate decisions, seem to have state-dependent utilities, it

seems like this should be an assumption I should avoid. However, I think the

question of state independence is orthogonal to my interest, which is in severe

uncertainty. Given that this issue is difficult enough, I feel I am warranted in

making the state independence assumption when I discuss decision making.

There is another kind of independence built into Savage’s framework. This one

is harder to get rid of, since it is not just an assumption that can be dropped. This

is act independence. Act independence means that which act is performed does not

affect the chances of the various states obtaining. For example, choosing to bet on

Categorical Imperative does not make it more or less likely that that horse should

win. This is built into the setup of Savage’s system by having acts be functions

from states to outcomes. Jeffrey’s system, by doing away with this way of framing

acts, doesn’t build in act independence.

Act independence is interestingly and radically violated in some decision prob-

lems we face in a climate change decision context. Indeed, many of the options on
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the table are specifically designed to lower the chance of catastrophic warming. Any

kind of mitigation action is a deliberate attempt to change the chances with which

various climate states will obtain.

Act independence is a much more problematic assumption, I feel, than is state

independence, in this context. However, for the most part I will be making the

assumption. Again, this is not because I think it is a warranted assumption,

but because I feel that the problems it raises are somewhat orthogonal to the

problems of severe uncertainty. Even if the set of decision problems to which

my conclusions are relevant is restricted to adaptation decisions (as opposed to

mitigation decisions), I think a thorough understanding of severe uncertainty will

be useful. It would certainly be interesting to drop this assumption, but I will

have to leave this for future work. One approach would be to understand the

states as being conjunctions of dependency hypotheses that tell you what would

happen were a certain act to be performed. This seems to go against the colloquial

understanding of what it is we have beliefs about: I have a belief about whether it

will rain, not whether a certain bundle of dependency hypotheses (“If I were not

take an umbrella I would get wet”. . . ) holds. Even given this, it seems that such

bundles of dependency hypotheses make the RFA less plausible in much the same

way the “reconceptualise the outcomes” response to state independence does.

The richness of Savage’s world – with its infinitely divisible state space – may

seem troubling. For all practical purposes, only a finite number of elicitations can

be done. So one can never in practice narrow down the representation of a real

subject’s mental state to unique probability and utility functions. But the more

preferences are elicited, the more I can know about your beliefs and utilities. The

richness is only really required for the uniqueness of the result, and can be seen as

a kind of “limiting ideal” rather than as any requirement of rationality. I return to

this point later.

Meacham and Weisberg () object to the use of representation theorems as

a basis for decision theory. Their argument is that representation theorems can’t

accurately characterise real agents’ beliefs, nor can they provide a normatively

compelling grounding. The failure of what they call Characterisational Represen-

tationalism relates to things I have already discussed: failures of real agents to

satisfy the axioms (STP or completeness for example). The failure of Normative

Representationalism is connected to an argument due to Zynda () that any

agent whose belief can be represented by a probability function can also be repre-

sented by a nonprobabilistic function, as long as a commensurate modification to
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the choice rule is also made. The upshot, for both Meacham and Weisberg and

for Zynda is that we can’t use representation theorems to get beyond qualitative

belief orderings in terms of normative assessment of belief.

A stronger problem, perhaps, and one that I think Zynda’s argument suggests is

that “being representable some way or other is cheap. . . ; it’s more demanding to

actually be that way.” (Hájek , p. ). Hájek goes on to give the example of

Voodooism as a rival to probabilism. You prefer A to B just in case there are more

A-favouring spirits than there are B-favouring spirits. The claim is that agents can

be represented as having such warring voodoo spirits, but that does not make it the

case that there are such spirits.

... Representing qualitative belief

Whether you get your qualitative belief ordering from Savage’s elicitation pro-

cedure, or just try to justify the axioms on �b directly, you end up at the same

point.

Savage’s theorem works by using your preferences to determine a qualitative

belief ranking. Fine () just starts with the qualitative belief order and shows

it is representable by a probability function if it satisfies certain axioms. These

axioms are similar to the ones that Savage imputes to you on the basis of your

preferences over acts. Krantz et al. () give a similar result. There is much

work in this area on minimal necessary and sufficient conditions for a probabilistic

representation.

Ultimately, all the arguments require that the ordering be complete. They also

all require that the domain of objects of belief be uncountably rich. These are

necessary conditions on the probabilistic representation’s being unique. If the

ordering is only partial, or if the space of beliefs is only finite, then there will be

many probability functions that represent the ordering. The idea is that either of

these weakenings introduces “wiggle room” that allows one to shift the probability

mass around between propositions and maintain the same ordering among the

elements. When the ordering is dense, this wiggle room is severely constrained.

Joyce (, pp. –) sets out the axioms more or less as follows:

• Normalisation: J �b K

I have suppressed those details that only matter for the case of countable additivity. Happily this

also means that the alternative axiomatisations of Krantz et al. () or Fine () coincide

perfectly for this part.
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• Boundedness: J �b X �b K for all X

• Ranking: �b is a partial order

• Completeness: X �b Y or Y �b X for all X,Y

• Quasi-additivity: If X ^Z ” K” Y ^Z then

– X �b Y iff X _Z �b Y _Z

– X �b Y iff X _Z �b Y _Z

• Richness: If X �b Y then there exists a partition of SL: {Zi} such that X �b

Y _Zi for all i

The first couple of these look very similar to conditions we saw imposed on

belief functions in section ... Some of the conditions should also remind us of

conditions from Savage’s axioms for preference. Qualitative belief that satisfies

the above axioms can be represented by a unique probability function. Proofs of

this result can be found in Fine (); Krantz et al. (); Villegas ().

Note agents with DS beliefs can violate Quasi-additivity. Let belpY q “ 0 “

belpZq and let belpXq ą 0. Let Z “  Y . Note that belpX _ Zq ě belpXq but

otherwise it is unconstrained; so set belpX _ Zq ă 1. However, belpY _ Zq “ 1

because DS belief is normalised. This violates quasi-additivity. The trick is that

a lot of “belief mass” can accrue to disjunctions, while leaving very little mass

on the individual disjuncts. So if one thought that Quasi-Additivity captured

something distinctive about the structure of qualtiative belief, and thus of degree

of belief more generally, then DS belief would not be a good representation of it.

... Other representation theorems

Savage’s wasn’t the first representation theorem, nor was it the last. I don’t aim to

be exhaustive in my survey of representation theorems, but I do want to mention

some other important theorems.

The first is Richard Jeffrey’s representation theorem, building on mathematical

work by Ethan Bolker. This is an interestingly different theorem, because it does

away with some of the constraints imposed by Savage’s framework. This comes at

the cost of the representation not being unique.

The second representation theorem I discuss is due to Luce and Raiffa. This is

important because they use choice sets rather than preference relations as the basic

entity. I will make use of this way of speaking when I discuss imprecise decision.
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Jeffrey’s system

I won’t go into much detail about Jeffrey’s system. As I mentioned in chapter ,

Jeffrey makes states, outcomes and acts all into propositions. So he doesn’t build

in the act-independence of the states as Savage does. Nor does he make the same

strong state-independence of the outcomes assumption that Savage does.

These differences make his representation theorem much harder. In fact, the

representation he achieves is not unique in the way Savage’s is. One can get a

unique representation only by extending Jeffrey’s framework. There are two ways

to do this. One way, due to Joyce (), is to augment the set up with a second

relation: a relation of qualitative belief. That is, you have a preference relation

and a qualitative belief relation, and these – under certain assumptions – give you

a unique representation. The other way of achieving uniqueness, due to Bradley

(), is to turn the algebra into a conditional algebra by adding a particular kind

of (non-truth-functional) conditional binary operator to the language.

Despite being Savage-like in taking acts to be functions, my approach is influ-

enced by Jeffrey and by Joyce’s discussion of Jeffrey because I am aware of the

importance of the assumptions I am making about what acts are. Indeed, one of

the important lessons learned from studying imprecise decision is that the details

of how acts bring about outcomes is important. This idea is even more important

in causal decision theory, where you explicitly model ideas about how your actions

influence the outcomes.

Luce and Raiffa’s choice set approach

There is an interestingly different approach to representation of belief in Luce and

Raiffa (). Instead of representing a preference relation, Luce and Raiffa model

an agent as having a choice set. That is, they model an agent as choosing some

subset of the options available as “the good ones”. The conclusion that is drawn

from their discussion is that if you satisfy the conditions on your choice set, then

there is a probability function such that your choice maximises expectation with

respect to it.

I mention this because later (in section .) I will use the related idea of a “choice

function” as my primary representational tool when discussing imprecise decision.

A choice function, C , is a function from a set of acts into a subset of that set: C pAq
picks out the best options from A.

But see Jeffrey () and chapter  of Joyce ().
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Luce and Raiffa impose rationality constraints on the choice set such that there

is a preference relation that can be closely associated with it. By this I mean that

the conditions on the choice set are such that something is in the choice set if and

only if it is maximal with respect to the associated ordering.

Informally, their important axioms are as follows (see Luce and Raiffa ,

pp. –):

• C pAq is never empty

• If f P C pAq and g dominates f (in the sense that gpXq � f pXq for all X) then

g is in C pAq

• If some g in A dominates f , then f is not in C pAq

• Adding a new act to the set of options can’t make an old non-choiceworthy

act choiceworthy, and can only make a previously choiceworthy act non-

choiceworthy if the new act is itself choiceworthy

• The Sure Thing Principle

• Probability mixtures of choiceworthy acts are choiceworthy (i.e. the choice

set is convex)

They state a theorem (p. ) to the effect that if your choice rule satisfies these

properties, then there is some probability function such that you can be repre-

sented as maximising expected utility with respect to it. Luce and Raiffa note

that it is not the case that every act that maximises with respect to that proba-

bility need be such that your choice rule deems it choiceworthy. Satisfying Luce

and Raiffa’s conditions makes maximising expectation a necessary condition on

choiceworthiness, but not necessarily a sufficient condition.

... Richness, Completeness and Extendability

Common to all the above arguments is an assumption that whatever relation you

are dealing with – a preference relation or a qualitative belief relation – it should

be complete, and it should be defined on a suitably rich algebra of events.

The richness and completeness assumptions are not required to demonstrate

the existence of a probability representation, but only to prove its uniqueness. In

the next chapter I will argue that sets of probabilities are a better representation

The results are due to Amartya Sen (Sen , ).
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of uncertainty, so I am happy with non-unique representation. Indeed, I will later

argue that non-unique probabilistic representation is one way to justify imprecise

probabilism (section ..).

Let’s think how we might defend these assumptions. Let’s take the richness

first. One might argue that instead of being a requirement on actual beliefs, the

richness assumption could be an assumption about extending your beliefs. The

idea being that it should be possible for you to continue adding more propositions

to your event algebra indefinitely. Arguably, this understanding of the richness

assumption as one of extendability is the understanding Savage himself had of it.

He says:

Suppose, for example, that you yourself consider B ≺b C, that is, you

would definitely rather stake a gain in your fortune on C than on B.

Consider the partition of your own world into 2n events each of which

corresponds to a particular sequence of n heads and tails, thrown by

yourself, with a coin of your own choosing. It seems to me that you

could easily choose such a coin and choose n sufficiently large so that

you would continue to prefer to stake your gain on C, rather than on

the union of B and any particular sequence of n heads and tails.

Savage ( [], pp. –, with some notational change)

So Savage thought that arbitrarily fine distinctions of probability judgement could

be made by extending the algebra to include a suitably rich collection of otherwise

uninteresting and independent events.

Some have suggested that completeness is also like this (Hawthorne ; Jeffrey

; Joyce ). Hawthorne for example says that incomplete belief orderings

are perfectly reasonable. However, it would be unreasonable for an agent to

have a preference that could not be extended into a complete one. He says that

there being no complete extension of your belief ordering points to an implicit

incoherence. That is, if X and Y are incomparable, and there is no complete

extension of the relation, then neither of X � Y ,Y � X is even possible for you.

This seems to be incoherent. So Hawthorne requires only that the relation be

completeable. He does the same sort of thing for richness.

You might fail to have a preference for several different reasons. For example,

you might fail to have a preference simply by never having considered the possi-

bility of having to make the choice between the options. This is incompleteness

I will talk about preference, but I feel that much the same argument can be made for the

qualitative belief ordering.
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through failure of introspection. Or perhaps you fail to have a preference simply

because the evidence you have about the choices is so weak that no preference is

sanctioned. This is a stronger kind of failure of completeness. Some might want

to argue that only the first kind of incompleteness is permissible: only through

failure of introspection can your preferences be incomplete. I would argue that

the second kind of incompleteness is also permissible. There can be cases where

even when you turn your attention to the choices, you remain unable to determine

a preference either way.

... Against behaviourism

In both the Dutch book argument and the representation theorem sections, I have

suggested that I find completeness of preference to be an unreasonable axiom.

There is, however, one school of thought that would take issue with this claim:

behaviourism.

The behaviourist might argue against incomplete preferences as follows: having

no preference should be modelled as being indifferent. There’s no way to elicit the

difference between the two states, so there is no real difference between them. The

claim is that there is no behavioural difference between the two attitudes. That is

to say that no (reasonable, robust) method of preference elicitation can distinguish

these two kinds of attitude. So, the argument goes, we should not represent

differences we cannot elicit. My response to this is just to say that there is more to

belief than dispositions to choose. So possibility of elicitation isn’t an appropriate

necessary criterion for the reality of some aspect of belief. Mark Kaplan argues as

follows:

Both when you are indifferent between A and B and when you are

undecided between A and B you can be said not to prefer either state

of affairs to the other. Nonetheless, indifference and indecision are

distinct. When you are indifferent between A and B, your failure to

prefer one to the other is born of a determination that they are equally

preferable. When you are undecided, your failure to prefer one to the

other is born of no such determination. Kaplan (, p. )

If pressed to choose, you will plump for one or other of the incommensurable

options. A behaviourist could take this fact to point to some sort of disposition

to act. This disposition to act in this way when faced with that choice is exactly

Ittay Nissan has helpfully pressed me on this point.
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what the preference relation is supposed to be capturing. The behaviourist would

argue that this suggests there really is no difference. I would respond to this by

arguing that there is an important distinction in the character of the dispositions

in the incommensurability case as opposed to the preference case: a distinction

worth representing.

On a purely instrumentalist level, we can still show that there is some difference

in character between indifference and incommensurability. If you are indifferent

between a and b, then you will prefer a` ε to b for any small positive gain ε. You

cannot induce a preference between incommensurable goods by this procedure of

“sweetening” one of the options. So the behaviourist is wrong to suggest that there

is no difference to elicit between indifference and incommensurability.

The more general point to make as regards my disagreement with the be-

haviourist position is the following. Behaviourists take probability and utility to

be merely a summary of a consistent agent’s preferences. The summary can then

form a useful tool to predicting further action: one could always work out what

your preferences are given the preferences you have already demonstrated, but

using the summary functions makes things easier. I don’t find behaviourism at all

compelling as an explication of belief. Or rather, I take your elicited behaviour

to be only part of what characterises your belief state. I however take probability

and utility to be independently meaningful psychological quantities of some form

or another. Instead of summarising preference, I take probability and utility (or

rather, belief and value) to be the inputs to a decision problem. It is the job of

decision theory to help you manipulate those inputs in such a way as to arrive at

the best outcome. If we took the behaviourist’s view on probability and utility, the

action guiding aspect wouldn’t involve decision theory at all: the action guiding

advice from a behaviourist amounts to “introspect on your preferences and choose

the most preferred option”. To me this is backwards: we are using what we know

about how you value things and how likely you think things are to determine

what the preferences should be. The preference determining procedure should

determine preferences that are consistent, that is, that are in line with the ratio-

nality axioms of decision theory. So there is some feedback between preference

determining decision procedures and preference constraining axioms of rational-

ity. And the representation theorem would tell us that any decision procedure

that determines preferences that satisfy these axioms is effectively a maximising

expected utility procedure. Would, that is, if all the axioms of the representation

theorem had independent intuitive force as constraints on preference. I have
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argued that they don’t and that the behaviourists’ response to my criticism misses

the point, since I am coming at decision theory from a different angle.

Bermúdez () distinguishes several different projects that use decision the-

ory as a tool. These are decision theory used to guide action; to normatively assess

action; and to explain and predict action. He also outlines two understandings

of utility: the substantive and the operational. The substantive understanding of

utility takes utility to be a measure of some sort of “goodness”: some aspect of the

outcomes that feeds into the motivations for choice. The operational understand-

ing of utility takes utility to be part of the behaviourist preference-summarising

machinery I discussed above. I situate myself as being primarily interested in

the action-guiding and normative dimensions of decision theory, and endorsing

a substantive understanding of utility. The behaviourist takes the operational

understanding of utility and is more interested in the explanation or prediction di-

mension of decision theory. Given these differences of outlook, it is not surprising

that we should disagree.

Joyce goes further and argues that not only are the two outlooks distinct, but

also that the behaviourist outlook is deficient.

There are just too many things worth saying that cannot be said within

the confines of strict behaviourism. . . The basic difficulty here is that

it is impossible to distinguish contexts in which an agent’s behaviour

really does reveal what she wants from contexts in which it does not

without appealing to additional facts about her mental state. . . An even

more serious shortcoming is behaviourism’s inability to make any sense

of rationalizing explanations of choice behaviour. Joyce (, p. )

Ultimately, the behaviourist’s “explanation” of your choice is that you were satis-

fying your preferences. This is unhelpfully circular.

.. Epistemic utility

Dutch book arguments and representation theorems have been criticised for

relying on agents’ actual or hypothetical choices. The pragmatic nature of these

arguments has been questioned (Christensen , ). It has been suggested

that preference among acts is not the sort of thing that should constrain epistemic

rationality. These pragmatic considerations, it is claimed, should not influence

the structure of your beliefs. To counter this criticism, some authors have offered
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arguments for probabilism that rely on purely epistemic premises. Pettigrew

() outlines three types of epistemic utility argument. I will outline the general

approach and introduce the several types of epistemic utility argument. I will

then outline the premises of one specific argument, that of Joyce (). The proof

will be relegated to Appendix A.

... Scoring rules in general

The idea common to all these types of argument is to score a belief function, and

the aim is to have beliefs that score well. For example, one sort of score you might

use is the “distance from the truth”. If you had some appropriate sort of measure

of distance from truth, then you could use this to score various kinds of beliefs.

This is the kind of approach that Joyce takes. He gives a characterisation of what

properties an inaccuracy measure should have and then proves a theorem: “If your

credences are incoherent (nonprobabilistic), then there is a coherent (probabilistic)

belief function that is more accurate in every possible world”. This is a domination

argument. Another argument that builds on inaccuracy measures is that of, for

example Leitgeb and Pettigrew (a,b). Instead of being accuracy dominated,

in this argument it is shown that nonprobabilistic beliefs have higher expected

inaccuracy. A slightly different argument is motivated by the idea that it is not

closeness to the truth but calibration that is the important thing about beliefs.

The proofs behind these types of arguments then show that probabilistic beliefs

are better calibrated. Finally, there are arguments that start from the idea that

whatever else is true of a good belief function, it should expect itself to be the best.

That is, it is a flaw in a belief function if by its own lights, some other function

does better. Scoring rules that reward this property of belief functions are known

as proper scoring rules. These sorts of arguments (like Predd et al. ()) are called

propriety arguments.

All the arguments have a similar structure. They all purport to show that

probabilistic credences are better because they do better at some putative epistemic

good-making feature.

Domination arguments are not one of Pettigrew’s categories. The remaining three types – from

Pettigrew () – are all kinds of expected utility arguments.
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... Admissible scoring rules

For now, I focus my attention on Joyce (). What is important about your

beliefs is that they are accurate. If it were the case that your degrees of belief

could be more accurate than they actually are, I would consider that a failure of

rationality. Scoring rules arguments start from the axiom that it is desirable to

minimise the inaccuracy of your credences. More specifically, they argue that

it is a defect to be accuracy dominated. Call your current credences b. If there

is some other belief function, b1 that is more accurate in every possible world,

then your rationality is impugned. That is, if your beliefs are such that there is

a way you could always have more accurate beliefs, it’s irrational to stick with

the defective b. The conclusion of scoring rules arguments is typically that you

should be probabilistically coherent. That is, you should have degrees of belief

that satisfy the axioms of probability.

Much hangs on exactly how one formalises the idea of inaccuracy, and Joyce

criticises several earlier attempts at doing this for begging the question: by having

the idea of probability somehow built in to what inaccuracy measure to use.

Joyce’s own approach is to impose some conditions on what counts as a legitimate

scoring rule. The argument then goes “Whatever scoring rule is picked from

this class, your beliefs are accuracy dominated unless you are probabilistically

coherent”. This result is rather surprising. It says that if your degrees of belief are

not probabilistic, then there’s a probability measure which does better however the

world turns out.

This section explores Joyce’s discussion of accuracy measures. This mainly

draws on Joyce (). I will also mention criticism of Joyce’s paper in for example

Hájek () and Maher () and Joyce’s response to these (Joyce ).

In his  paper, Joyce seems to allow the event space SL to be finite or

countable, though Maher () and Joyce () restrict themselves to the finite

case. I shall stick to the finite case throughout.

Now we are ready to start characterising inaccuracy measures.

Definition .. An inaccuracy measure is a function I : BˆVÑ R.

Ipb,vq is a measure of how far from the “truth” (designated by v) the belief function

b is. So, Joyce’s claim becomes the following: whatever I you are using, if your

Actually, it says you always do at least as well and sometimes strictly better. In the interest of

rhetorical force, I’ve swept aside some of the subtlety.
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b is probabilistically incoherent (i.e. if b P BzV`) then there is c P V` such that

Ipc,vq ď Ipb,vq for all v.

A final point before we come to the conditions themselves is that Joyce makes

extensive use of the idea of “mixtures” of belief functions. If b,b1 P B, then there

is a “line” between them. This geometrical structure is what Joyce exploits in the

proof.

Definition .. bb1 is the “line segment” between b and b1. c P bb1 if and only if

c“ λb`p1´λqb1, for some λ P r0,1s. That is: cpXq “ λbpXq` p1´λqb1pXq for all

X.

With these preliminaries in place it is time to look at the conditions that Joyce

imposes on inaccuracy measures.

Structure For each v PV, Ipb,vq is a non-negative, continuous function of b

that goes to infinity in the limit as bpXq goes to infinity for any X P SL.

Inaccuracy Ipb,vq clearly attains a minimum of 0 when b “ v. So I is non-

negative. This minimum being zero is partly conventional. But it would seem

unusual to say that a belief function has some non-zero inaccuracy with respect

to itself. . . That is, if you fully believe all the truths and fully disbelieve all the

falsehoods, it would be strange to insist that your beliefs had any inaccuracy other

than zero. By tending to infinity in the limit, Joyce is merely trying to capture the

idea that, since v is bounded, so should b be. Patrick Maher offers an alternative

description of this last part of the Structure condition.

Structure (Maher) For all X P SL and ε ą 0 there exists δ ą 0 such that, for

all b P B, if |bpXq| ą δ then Ipb,vq ą ε (Maher , p. )

Since the biggest a truth value can get is 1, as your belief function assigns bigger

and bigger numbers to X, the more inaccurate it must get. Note this is due to

the convention that valuation functions assign the value 1 to the truth. But this

isn’t doing much work. We only need that truth and falsity are assigned bounded

values. You could replace 0 and 1 throughout with vpKq and vpJq and nothing

drastic would happen to the argument.

Extensionality At each possible world v, Ipb,vq is a function of nothing

other than the truth values that v assigns to propositions in SL and the degrees of

confidence that b assigns to these propositions.
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With this condition, Joyce simply wants to rule out anything other than the

truth and the belief affecting inaccuracy. For example, simplicity, verisimilitude,

pragmatic usefulness of beliefs are all barred from directly affecting the “goodness”

of a belief. This differentiates his project from, for example that of Maher (),

who is interested in a broader notion of epistemic utility.

Joyce argues that the norm of accuracy is by far the most important norm when

one is concerned with epistemology. One could also argue that by having accurate

beliefs, you also help yourself conform to some lesser norms. For example, having

accurate beliefs will normally be pragmatically advantageous. Of course one can

construct cases where believing the truth would be pragmatically bad, but in

general, the two aims will line up.

Joyce also argues that having a false but “almost true” belief (a verisimilar belief)

will lead one to have other true beliefs. So while both Copernicus and Kepler

had false beliefs about the orbit of the Earth, Kepler’s beliefs would be overall

better. Copernicus believed the orbit of the Earth around the Sun was circular.

Kepler believed the orbit was elliptic. The actual orbit is almost elliptic, but

perturbed by the influence of the Moon and other celestial bodies. So both Kepler

and Copernicus held a false belief to a high degree, but one would like to be able

to say that Kepler’s beliefs were somehow better, in virtue of being closer to the

truth. Joyce’s response to this objection is to say that despite being false, Kepler’s

belief in an elliptic orbit around the Sun would lead him to have other, strictly

true beliefs that Copernicus didn’t have. Joyce gives the example of “that the

average distance of the Earth to the Sun is different in different seasons”. So “the

overall effect of Kepler’s inaccurate belief was to improve the extensional accuracy

of his system of beliefs as a whole.” (p.  Joyce , Joyce’s emphasis). Strictly

speaking if one’s beliefs differed only in what one believed about the shape of

Earth’s orbit, then they would be equally inaccurate. Joyce’s point is that believing

the more verisimilar proposition will cause changes in other beliefs which will

be strictly true. These differences cannot be captured within the gradational

accuracy framework. But then, these differences rely on the semantic content of

the propositions about which we have beliefs, so the inability of the framework to

fully capture these things is unsurprising and should not be seen as a defect. In

short, the claim is that verisimilar beliefs have more true consequences than less

verisimilar beliefs. A proper argument for this claim would involve developing a

method for counting the consequences of sentences. In any case, Joyce ()
Discussions with Foad Dizadji-Bahmani helped clarify this point.
This might be tricky. If V is the more verisimilar belief and V 1 the less verisimilar one, then
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doesn’t rely on extensionality.

And now, onto the next condition.

Dominance If bpY q “ b1pY q for every Y P SL other than X then Ipb,vq ą

Ipb1,vq if and only if |vpXq´bpXq| ą |vpXq´b1pXq|

What Joyce is getting at with this condition is that inaccuracy of a belief function

somehow supervenes on the inaccuracies of the individual beliefs that make it

up. Those individual inaccuracies are straightforwardly measured by the distance

from the truth (designated by vpXq).

Normality If |vpXq´bpXq| “ |v1pXq´b1pXq| for all X P SL, then Ipb,vq “

Ipb1,v1q

Again, this condition is saying that if some belief function is always exactly as

far from the truth as another, then they are just as inaccurate as each other. It is

quite a strong condition. It says not only that if b and b1 are always equally far

from v, they are equally inaccurate, but further that even if they are the same

distance from different valuations – v,v1 – they are equally inaccurate.

The final two conditions are the most controversial. They are the two that Maher

() criticises, and they are crucial to Joyce’s result. They relate to the idea of

mixtures of belief functions.

Weak Convexity Let m“ p1{2b`1{2b1q be the midpoint of the line segment

between b and b1. If Ipb,vq “ Ipb1,vq, then it will always be the case that Ipb,vq ě

Ipm,vq with equality only if b“ b1.

Think of b and b1 as two epistemic agents. What this condition says is that if the

two of them are equally inaccurate, they can’t do better than effecting some sort of

epistemic compromise. This condition says roughly that if two epistemic peers

disagree on something, they should “split the difference”. That is, if b is just as

inaccurate as b1 then an equal mixture of the two, m will be no more inaccurate.

The final condition says that equally biased mixtures will always be equally

inaccurate:

Symmetry If Ipb,vq “ Ipb1,vq, then for any λ P r0,1s one has:

Ipλb`p1´λqb1,vq “ Ipp1´λqb`λb1,vq

whenever X is a consequence of V , V 1_X is a consequence of V 1.
There has been much recent discussion on the correct response to disagreement among peers.

Joyce’s paper predates much of it. See Christensen () for an overview.
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Consider the case where λ is large. The left hand side of this equation is a mix-

ture that is biased towards b and against b1. The right hand side is biased towards

b1. What the condition says is that these two biased “compromises” between b and

b1 will be equally inaccurate. These two conditions impose constraints on how

inaccuracy of mixtures is related to inaccuracy of the things they are mixtures of.

Joyce’s main theorem, then, in its final form is as follows:

(Main Theorem) If gradational inaccuracy is measured by a function

I that satisfies Structure, Extensionality, Dominance, Normality,

Weak Convexity and Symmetry, then for each c P BzV` there is a

c1 PV` such that Ipc,vq ą Ipc1,vq for every v PV.

Joyce (, pp. –)

... Comments on epistemic utility

There are a number of problems that have been raised with this argument. I think

the same sort of problems crop up against the other types of epistemic utility

argument, so while the following discussion will be largely in terms of Joyce’s

argument, things should carry over straightforwardly to the other arguments I

mentioned earlier.

The underdetermination of the inaccuracy measure

The argument deliberately says as little as possible about which inaccuracy mea-

sure you should use: this makes the argument as general as possible. But it does

lead to a problem: I is underdetermined. Which inaccuracy measure you use will

affect which probability function accuracy dominates your nonprobabilistic belief.

So without knowledge of which inaccuracy measure is “the right one” you don’t

know how to change your credences so as to avoid being accuracy dominated. In

fact, there are two problems here. First, just knowing that your beliefs are accuracy

dominated doesn’t tell you how to change your beliefs. Knowing your beliefs are

dominated tells you that they are bad, but it doesn’t show that the dominating

beliefs are good. Of course, the dominating beliefs are better in that they don’t have

the defect of being dominated, but there might be an even better belief to move

to which doesn’t dominate your current beliefs. So, even if you knew the right

inaccuracy measure, the advice you would get from this domination argument

would be fairly weak. And if we don’t even know which inaccuracy measure we

should use, we can’t even make use of that weak advice.
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Does it even make sense to talk about there being some correct measure of

inaccuracy? And if not, what exactly is the normative upshot of Joyce’s argument?

Hájek () worries about this. In short, his worry is that the theorem does not

guarantee that moving to any probability function will make you less inaccurate.

Here’s an analogy (adapted from Aaron Bronfman and Jim Joyce, per-

sonal communication). Suppose that you want to live in the best city

that you can, and you currently live in an American city. I tell you that

for each American city, there is a better Australian city. (I happen to

believe this.) It does not follow that you should move to Australia. If

you do not know which Australian city or cities are better than yours,

moving to Australia might be a backward step. You might choose

Coober Pedy. Hájek (, p. , fn. )

Hájek then mitigates the worry as follows:

That said, the calibration argument may still be probative, still diag-

nostic of a defect in an incoherent agent’s credences. To be sure, she

is left only with the general admonition to become coherent, without

any advice on how specifically to do so. Nevertheless, the admonition

is non-trivial. Compare: when an agent has inconsistent beliefs, logic

may still be probative, still diagnostic of a defect in them. To be sure,

she is left only with the general admonition to become [consistent],

without any advice on how specifically to do so. Nevertheless, the

admonition is non-trivial. (ibid)

Perhaps you could take the set of all probability functions that accuracy dominate

your nonprobabilistic belief relative to some set of reasonable inaccuracy measures.

This set of probabilities would then be the right belief to have. I will return to this

in the next chapter.

Nonclassical logic and accuracy domination

Williams (a,b) points out that Joyce’s argument is sensitive to the underlying

logic in exactly the same way that Paris ( []) showed Dutch book theorems

are. That is, Joyce’s result rests on proving something about the convex hull of the

truth valuations. So in the same way the Dutch book theorem ends up sanctioning

Dempster-Shafer betting quotients if the underlying logic is a kind of non-classical

one, Joyce’s argument leads to the same conclusions.
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Not all epistemic utility arguments have this feature, however. For example,

the theorem of Joyce () is sufficiently different that the same trick doesn’t

obviously work. The assumption of classical logic comes in, in that paper when the

set of “world vectors” is defined as the set of vectors with a 1 in one position and 0

everywhere else: this framework is built up from a partition of the event space. A

nonclassical world vector might allow more than one atom to get a nonzero value.

In any case, it isn’t clear what the upshot of Williams’ argument is when applied

to these newer gradational accuracy arguments.

The size of belief space

It is worth noting that in setting up his framework, Joyce is thinking of B as a

vector space. Maher picks up on this point and adds that Joyce is considering B to

be a subset of Rn where n is the number of atoms. So vector
ÝÑ
b represents a belief

function b, for some ordering of the atoms in the following way: the length of the

projection of
ÝÑ
b onto the ith coordinate gives the value of b for the ith atom. What

value does the vector representation give to compound sentences, for example

ti _ tj? There is a whole class of belief functions that agree on values for the atoms

but disagree on compound sentences. Leitgeb and Pettigrew (a,b) explicitly

restrict themselves to this way of thinking. This focus on the atoms is a subtle way

to beg the question. It shifts the goalposts in favour of those functions that are

determined by their actions on the atoms only, that is, in favour of V`. Note that

functions that are superadditive but not additive aren’t determined by the action

on the atoms, since superadditivity involves an inequality, rather than an equality.

For this reason one might prefer to think of the vector space in question being

of dimension of the cardinality of SL. That is, there is an axis for every proposition,

not just the atoms. There is then some non-trivial structure on the “world vectors”.

For example, if a particular “world vector” has 0 in the ith proposition, and jth

proposition, then, if k is the proposition corresponding to the disjunction of the

ith and jth, the kth coordinate must be 0 too. But what determines this structure?

Perhaps the structure of the v functions determines the structure of the world

vectors. Now there should be some connection between a coordinate representing

a disjunction and coordinates representing its disjuncts, but what should that

relationship be? I don’t claim to have an answer to this question, but I do want to

stress that assuming that a belief function is determined by its action on the atoms

is a substantive assumption. The same argument works for those arguments that

Take for example, any Dempster-Shafer belief function that assigns 0 to all the atoms.
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take the belief function to be defined over some partition of the space (Joyce ;

Predd et al. ).

Real valued belief, real valued inaccuracy

There is a further point: Joyce takes his belief functions to be real valued functions.

No other types of functions are even considered to be candidates for representing

belief. As I will argue in the next chapter, there is a better representation in terms

of sets of probability functions. Joyce also takes his inaccuracy measures to be real

valued functions.

I think uncertainty is not a single-dimensional thing. There are importantly

different ways to be uncertain about something. These differences cannot be

represented by mapping propositions onto a linear, one-dimensional scale like the

real line. What gradational accuracy arguments secure is the conditional claim

that if belief and inaccuracy are to be modelled by real valued functions, then

probability theory is privileged. I deny the antecedent of this claim. All the other

gradational accuracy arguments I am aware of make the same assumptions and

are thus open to the same criticism.

In chapter , I will discuss a case study of scientific uncertainty. The uncertainty

we encounter there is certainly not single-dimensional.

The structure of belief space

As well as the size of belief space, there is another issue to do with its structure.

Joyce’s Structure condition included the claim that Ipb,vq is a continuous function

for each v. Continuity of a function is defined relative to a topology on its domain.

The topology doesn’t necessarily have to be specified directly: sometimes there

will be some obvious metric on the space, and the metric induces a topology

(Sutherland ). Joyce can’t really be appealing to some implicit metric on the

space, since his whole proof relies on constructing a measure of distance on the

space of belief functions. Joyce is perhaps appealing to the standard topology on

the vector space representation of the belief function. But the standard topology

on a vector space is one induced by a standard metric.

The intuition behind demanding that I be continuous is this: “a tiny change in

one of my beliefs, bpXq say, shouldn’t cause a huge difference in the inaccuracy

of my beliefs”. The topology (or the metric) is what gives content to the idea of a

“tiny change” in belief. So maybe what Joyce needs is some kind of proposition-

wise continuity of inaccuracy relying just on differences between |bpXq ´ vpXq|.
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This is in fact what Pettigrew () has, instead of continuity. But, even this

use of absolute difference could be criticised for implicitly relying on the notion

of Euclidean distance. Why should the proposition-wise distance of my belief

from the truth be measured by the Euclidean distance between them? Why not

|bpXq´ vpXq|2 or log |bpXq´ vpXq|?

It seems that I might be labouring this point, but the history of analysis is

rife with examples of how the intuitive concept of “continuity” is a tricky beast

to pin down formally. Appendix  of Lakatos () gives a lively account of

one such episode. Given that Joyce’s “Lemma-” (Theorem A.. in the current

setting) relies on a result from topology, it is important to understand what this

continuity assumption means. It seems the implicit topological/metrical notions

are doing some work for Joyce, so I think it is worthwhile voicing these worries

about that framework. Leitgeb and Pettigrew (a) and its followup are much

more explicit in the presuppositions they rely on, but the privileged role given to

Euclidean notions of distance could still be questioned in their proof.

Quite a bit of what Joyce wants to do with this idea of continuity can be achieved

just by thinking about “continuity along mixtures”. For example, in the proof

of Theorem A.., we only need continuity along the lines of mixtures. But

Theorem A.. relies on V` being a closed, bounded region. These topological

properties can’t be captured as easily by just focusing our attention to lines. The

theorem of Joyce () also relies on the inaccuracy functions being continuous:

the theorem involves the use of Brouwer’s fixed point theorem. It would be

interesting to see exactly what conditions need to be imposed on the space of

belief functions. Assuming the standard topology on the reals and assuming

Euclidean distance on the axes (on the propositions) is certainly sufficient. But

are there weaker conditions for which the theorem holds? Or can an elementary

justification for why the standard topology and Euclidean distance gives the right

notion of “a tiny change in belief”?

There isn’t time to discuss in detail other importantly different and interesting

theorems in this area. There are a few niggling technical worries with the original

theorem, only some of which are addressed in the literature since Joyce ().

I think ultimately justifying probabilism through gradational accuracy is ham-

strung by the insistence on real-valued belief and real-valued inaccuracy, and by

 Pettigrew’s other conditions are slightly different from Joyce’s, so it’s simplifying things some-

what to say that his “Proposition-wise continuity” does all the work of Joyce’s continuity

assumption.
 Leitgeb and Pettigrew make this very point themselves
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underdetermination of the inaccuracy measure.

.. Other arguments

... Cox’s theorem

A strangely neglected argument for probabilism can be found in a paper by

physicist R.T. Cox from . The main thrust of the argument is that we want our

degrees of belief to match up with classical logic in the limit, and codifying this

desideratum in a particular way forces us to conclude that degrees of belief must be

represented by something isomorphic to a probability measure. Cox takes his cue

here from Keynes’ “logical theory” of probability (Keynes ). Probability is here

taken to be a “logic of plausible inference” or “logic of reasonable expectation”.

The basic entity in Cox’s proof is “pA|Xq” which is the degree of plausibility

of proposition A given state of information X. And pA|B,Xq is interpreted as the

degree of plausibility of A given the state of information X plus the truth of B. This

is not quite how Cox himself expressed it, this is the reformulation of Van Horn

(). Cox had the “X” also being a true proposition and read pA|Bq. as “the

degree of plausibility of A given the truth of B”. The difference is subtle and

I won’t dwell on it here. For now, it suffices to say that a state of information

can include true propositions, but can also contain “soft information that says

nothing with certainty but still affects one’s assignments of plausibilities” (Van

Horn ). One might imagine that X could contain statistical information: this

says nothing with certainty, but can still give you strong reason to believe certain

generalisations.

So these things, pA|Xq and so on, are by definition, real numbers. They measure

the degree to which some proposition is plausible given certain evidence. These

numbers aren’t completely unconstrained. For example, pA|A,Xq seems like it

should have some maximal value: the degree of A’s plausibility given A’s truth

should be fixed. True things are maximally plausible, or rather, things known to

be true are maximally plausible. The plausibility of A^B is somehow related to

the plausibility of its components and so on.

These kind of concerns are what drives Cox’s argument. Cox’s proof proceeds

by giving some plausible constraints on how p A|Xq should relate to pA|Xq, for

example. And how pA^B|Xq should relate to pA|Xq,pB|Xq,pB|A,Xq . . . and so on.

Given the functional relationships between these numbers, Cox proves that the

only functions that will do the job are isomorphic to probabilities.
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I follow the presentation of Van Horn () in this section. Other treatments

of the theorem, outside of Cox’s  paper, can be found in: Halpern (a,b);

Jaynes (); Paris ().

Van Horn calls the requirements “R,R. . . ”; I will replace these with more

semantically transparent labels. So let’s get on to the first requirement.

Basic pA|Xq, the plausibility of proposition A given state of information X is a

single real number.

This condition just tells you what kind of thing we are taking plausibilities to be.

It is a substantive claim to say that plausibilities can be represented by a single real

number: it implies that all plausibilities can be compared. I have already discussed

my scepticism of this sort of demand for complete comparability. It rules out it

ever being the case that there are two propositions such that you can’t tell which

is more plausible. I have already discussed my views on the reasonableness of

incommensurability.

Maximality There exists a real number T, such that for every X and A,

pA|Xq ď T

This condition says that there is some maximal value that plausibility can take.

Nothing can be strictly more plausible than something known to be true. Van

Horn uses “J” for this value, rather than “T”, but I want to keep “J” reserved for

the proposition that gets the plausibility value “T”. At this stage I’d be happy to

just set T“ 1 by fiat, as this convention fits with what I’ve done in earlier sections.

However I refrain from doing this, because Cox actually proves that this must be

the case.

Both the above two requirements are contained in Van Horn’s R, but I have

separated them, because I think each deserves comment on its own.

Next, a bit of terminology. A state of information, X, is consistent if there is no

proposition A for which both pA|Xq “ T and p A|Xq “ T. This is the “plausibility

analogue” of a set of sentence’s being consistent if there is no sentence such that it

and its negation can be derived from the set.

Our next condition is in the same vein: it says that these plausibility values

behave in the obvious way as regards logic.

Compatibility Plausibility assignments are compatible with the propositional

calculus:

• If A and A1 are tautologically equivalent, then pA|Xq “ pA1|Xq
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• If A is a tautology, then pA|Xq “ T

• pA|B,C,Xq “ pA|B^C,Xq

• If X is consistent and p A|Xq ă T then A,X is also consistent.

This just says that plausibility behaves as we would expect vis-à-vis logic. So

tautologically equivalent propositions are equally plausible, tautologies are max-

imally plausible. This is motivated by the desire that our logic of plausible

inference be continuous with classical logic in the limit.

These have been fairly straightforward conditions so far. Now the requirements

get more interesting.

Negation There exists a non-increasing function S0 such that p A|Xq “

S0pA|Xq for all A and X

This is effectively saying that the plausibility of the negation of a proposition

stands in some functional relationship to the plausibility of the proposition itself.

The function is non-increasing because as A gets more plausible (as pA|Xq gets

bigger)  A shouldn’t get more plausible as well. Some of what I said against

Complementarity will also apply here. I don’t think that, in general, this tight

link between an event and its negation should hold.

Note that ( A Ø   A so by Compatibility, pA|Xq “ p  A|Xq. From this it

follows that pA|Xq “ S0pS0pA|Xqq. If we define F “ S0pTq then we know that

F ď pA|Xq ď T. This is so since pA|Xq “ S0p A|Xq ě S0pTq by Maximality and

the fact that S0 is non-increasing. Van Horn says that this holds for consistent X,

although I’m not sure the qualification is necessary.

So far, so uncontroversial. The next requirement is not so obviously reasonable,

and much of the debate around Cox’s theorem has been on whether or not this

requirement is justifiable.

Universality There exists a nonempty set of real numbers P0 with the follow-

ing two properties:

• P0 is a dense subset of pF,Tq. That is, for every pair of real numbers a,b P P0

such that Fď aă b ď T there is some c P P0 such that aă c ă b.

• For every y1, y2, y3 P P0 there exists some consistent X with a basis of at

least three elementary letters – call them A1,A2,A3 – such that pA1|Xq “

y1,pA2|A1,Xq “ y2 and pA3|A1,A2,Xq “ y3.
The domain of S0 is the subset of the real numbers that are plausibility values.
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A basis for X is the set of elementary letters that X tells us about. That is, X is a

state of information that is informative about the set of elementary letters in its

basis.

This requirement feels pretty strong: it requires that the space of plausibilities

be quite rich. There are no finite dense sets, so this requirement forces there

to be infinitely many values that plausibility can take, and thus infinitely many

propositions. Van Horn’s name for this condition “Universality” hints at the reason

why he thinks it isn’t as problematic as it seems. The idea is that if this is supposed

to be a logic of plausible inference – something that extends classical logic – then

it should be similarly context neutral. It should apply in all situations. The idea is

that whatever else our logic should do, it should “be capable of handling a case

where we have three completely unrelated atomic propositions with arbitrary

plausibilities.” (Van Horn , p. ) It is this assumption that Halpern (a)

criticises. Similar worries arise with Savage’s assumptions about the richness of

the state space (P).

It is reasonable to expect that the plausibility of the conjunction of propositions

is somehow related to the plausibility of the propositions individually. In fact

it turns out that pA^B|Xq is related to certain conditional plausibilities as well.

Van Horn () discusses why this should be. It should not be wholly unintuitive

that the following functional dependence should hold.

Conjunction pA^B|Xq “ FppA|B,Xq,pB|Xqq where F is a strictly increasing

function in both arguments.

This should perhaps remind you of the discussion of conditional probability and

in particular of the (Conditional) condition (p. ).

Jaynes () gives the following reasoning for the above requirement:

In order for A^ B to be a true proposition, it is necessary that B is

true. Thus the plausibility pB|Xq should be involved. In addition, if B

is true, it is further necessary that A should be true; so that plausibility

of pA|B,Xq is also needed. . . [If a] robot has pB|Xq and pA|B,Xq it will

not need pA|Xq. That would tell it nothing about A^B that it did not

have already.

Jaynes (, Following Van Horn in adapting the notation)

But see Arnborg and Sjödin () for a possible way out. The trick is to replace “infinitely

rich algebra” with “algebra that could be extended so as to be infinitely rich”. We have already

encountered the idea of “richness as extendability” so I won’t say any more here.
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The idea is that pA^B|Xq can’t be worked out from just pA|Xq and pB|Xq, since we

don’t know the correlation between them. But with pA|B,Xq and pB|Xq, we know

everything there is to know.

These requirements allow us to prove a variety of facts about our plausibilities

which will ultimately force them to be isomorphic to probabilities. For example,

the function F in our final condition is such that, for all x,y,z:

Fpx,Fpy,zqq “ FpFpx,yq, zq (.)

This follows from the associativity of logical conjunction. A result from func-

tional analysis shows that any function with this form is such that there is a

continuous, strictly increasing function g with gpFpx,yqq “ gpxq` gpyq. Defining

wpxq “ exppgpxqq allows us to say that:

wpA^B|Xq “ wpA|B,XqwpB|Xq (.)

These things are now starting to look a lot like probabilities. In fact, one can prove

that wpTq “ 1 and wpFq “ 0, which is strange, since these values are typically

taken to be conventional.

Van Horn then defines α as the fixed point of S1, a function that extends S0 to

all of rF,Ts. That is, S1pαq “ α. Where S1 is a function on rF,Ts such that for all A

and consistent X, S1pA|Xq “ S0pA|Xq. This α is unique since S1 is non-increasing.

Then r is defined as follows: r “ ´ log2{ logwpαq. Finally, define prpxq “ wpxqr .

This pr is then shown to be a probability measure. pr´1 is shown to be well

defined, so there is a tight relationship between x and prpxq, so much so that

whether we talk about the plausibilities x or their associated transformation into

probabilities prpxq makes no difference.

All this manoeuvring allows us to show that prp A|Xq “ 1´prpA|Xq, which,

together with the above results, shows that our plausibilities pA|Xq are isomorphic

to probabilities through the mapping pr.

This has been a fairly cursory look at Cox’s theorem, but I imagine I am al-

ready trying my reader’s patience by belabouring these points. The argument is

mathematically sophisticated but philosophically unilluminating.

I will not spend long commenting on Cox’s theorem, since my criticisms of it

have already come up elsewhere. Having plausibility measured on a real valued

scale is too strong as it rules out incommensurability. I have discussed this when

talking about preference relations, and again when talking about Joyce’s assump-

tion that belief is measured with real valued functions. Second, the negation
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assumption builds in a strong complementarity between an event and its negation;

a complementarity that I feel is unwarranted. I discussed much the same thing

in regard to Complementarity in section ... Jon Williamson offers several

criticisms of this argument for probabilism. Among them, he suggests that the

continuity of F – the conjunction function – “seems to be less a rational constraint

than a technical convenience” and that the basic assumptions make too strong an

assumption about an agent’s logical omniscience (Williamson , p. ).

... Structure via calibration

One might think that reflection on the objects of belief might suggest something

about the structure of belief. We’re happy with the idea of using the logical

structure of the objects of belief to justify (weak) norms of belief. Consider the

earlier discussion of logical omniscience: if two sentences stand in a particular

logical relationship, then you are committed to treating them the same way.

Perhaps other aspects of the structure of the objects of belief can ground norms of

belief. Can probabilism be grounded by investigating this structure?

Think about flipping coins or drawing cards: it seems like beliefs about these

things are constrained in various ways. Our beliefs about coin flips should match

up with the chances, or with the observed frequencies. This offers another way

of arguing for probabilism. Paris (, pp. –) shows that observed relative

frequencies are probabilities. This suggests that if you want to apportion your

belief to the evidence, you should at least have your beliefs be probabilistic. All

the ways the evidence might be share this structural feature, so your belief should

also have this feature.

We can see the argument that frequencies must be probabilistic as an instance

of the theorem that probabilities are convex combinations of truth values (The-

orem ..). It is thus open to the same trick as Paris ( []) applies to

the Dutch book argument and Williams (a,b) does to gradational accuracy

arguments. Namely, changing the underlying logic affects the outcome. One way

we might rationalise this move in the current context is as follows: Perhaps the

statistics you have gathered are deficient in some way. Perhaps when counting

people by hair colour, the light wasn’t always so good, so you weren’t sure whether

someone’s hair was brown or black. What do you do? Perhaps you guess: you say

This section draws on my paper “Nonprobabilistic chance?” Thanks to audiences at the LSE PhD.

student seminar and at the British Society for the Philosophy of Science annual conference –

July , University of Stirling.
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“it might have been brown or black, let’s say black”. Or perhaps you’d reason as

follows: “I can’t tell whether Bob’s hair was brown or black, so let’s put him in

the disjunctive ‘brown or black’ category, without putting him in either of the

disjuncts.” The statistics you build up in this way will determine a non-classical

valuation function, and your statistics will be superadditive, but not additive. This

is what Walley and Fine () do, and what Walley () does in much more

detail. Or you might just argue that there is genuine indeterminacy or vagueness

in the world. So what to conclude about what norms of belief are sanctioned by the

structure of events is at the very least dependent on some substantive assumptions

about the nature of events.

This argument also has the flaw that it only works for cases where there is

statistical evidence of the right sort. We might cast our net further and argue that

beliefs should match the objective chances or rather, your beliefs should at least

have the structure common to all possible chances. And if the objective chances

must be probabilistic, so too should the beliefs be. More carefully, there are various

principles – like Lewis’ Principal Principle for example – that suggest that beliefs

are somehow constrained by chances. According to the PP, credences should be

expectation values of chance functions. If chance functions are probabilities, then

so should the credences be.

I have yet to see convincing arguments that chances must have the structure

of probabilities. One would need such an argument to have the above line of

reasoning hold any water. In fact, there are some reasons to think that they needn’t

be. For example, if objective chances are some kind of quantity – a property

that admits of degrees – then there is some sort of thing to which the quantity

attaches to. When we were discussing length earlier I called the things that the

quantity “length” attaches to “sticks”. Let’s call the things chance attaches to

“events”. For chances to be probabilistic, events must have a certain structure:

they must form an algebra. One thing to note is that we need X ^ Y “ Y ^X,

since we must have chpX ^Y q “ chpY ^Xq. Typically in formal representations

of quantum events, like in quantum logic, you don’t have this commutativity.

It is true that in all observable bases, you do have commutativity, and indeed

the mod-squared amplitudes are additive, but this isn’t generally true (Rédei

; Rédei and Summers ). Krantz et al. () discuss “QM-qualitative

probabilities”, where these differ by not always having conjunctions. That is, it

can be that X and Y are in your event structure, but X ^ Y isn’t. Note this is

For instance, if X says something very specific about a particle’s position and Y something
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a different point from “Humphreys’ paradox” (Humphreys ; Suárez ,

forthcoming). The issue there is what the link is between conditional chances and

conditional probabilities.

There is also a well-known tension between the demands of probability theory

and infinite spaces. Consider throwing a dart at the real unit interval. What

is the chance that the dart hits a rational number? The intuitive answer is that

Q �ch K: that is, hitting a rational number is more likely than the impossible event.

This is a long-winded way of saying that hitting a rational number is possible.

But probability theory forces upon us the conclusion that chpQq “ 0. So it seems

that probabilistic chance isn’t making some distinctions we might want to make

between these sorts of events. There has been some back-and-forth on hyperreal

probability theory recently that I don’t want to get into, but it is another thing to

bear in mind (Hájek ms.).

In any case, it seems like intuitions or folk conceptions of the “event concept”

aren’t strong enough to support the claim that chances are probabilities.

.. The interaction between the arguments

I have outlined several arguments for probabilism. How are we to assess these

arguments? What criteria are appropriate to an assessment of arguments for

probabilism?

... Criteria for assessing the arguments

A first possible way of distinguishing between the arguments is in terms of the

size and structure of the domains the argument requires. For example, does it only

work for finite spaces of events? Perhaps you are a finitist, and find arguments that

require infinite spaces unappealing. Perhaps you think that given the richness of

the structure of the actual world, arguments that only hold for finite domains are

worthless. In either case, this is a relevant variable for assessment.

Another yardstick against which to measure different arguments for probabilism

is how well they deal with conditional probabilities. We have independent reasons

specific about its momentum, then while chpXq and chpY q might have values, chpX ^ Y q

doesn’t make sense, since it would violate the uncertainty principle. See p.  of Krantz et al.

().
That is, there is a tension if you buy into the idea that chpXq ą 0 is a necessary condition for X

being possible. Hájek and Schaffer () both endorse this idea.
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for thinking that conditional probability should be taken as the basic notion and

standard unconditional probabilities defined in terms of them (see, for example

Hájek ). So it seems that it would be a point in its favour if one of these

arguments could be straightforwardly applied to conditional probabilities as

well as to unconditional ones. I am talking here about synchronic conditional

probabilities as the basic notion: this should not be confused with discussions

of updating one’s probabilities on learning new evidence via conditionalisation.

These two ideas are obviously related, but they are not the same thing.

On the topic of conditionalisation, we could ask about other norms that are

closely associated with probabilism. For example, can there be an analogous

argument for the norm that you should update your beliefs by conditionalising?

Or can you justify a norm of calibration this way? It seems like a good epistemology

should have its norms justified in harmonious ways.

You might also have a particular view on the nature of belief, and thus find

certain arguments appealing or unappealing depending on whether they fit with

your views. For example, many people think that belief is an epistemic thing, and

thus a prudential argument like the Dutch book argument is getting at the wrong

thing.

Finally, it seems like a flaw in an argument if it is easy to modify to give different

conclusions. That is, if “nearby” arguments suggest different norms of belief,

then this undermines the correctness of the original argument. For example, as

mentioned earlier, J.B. Paris gives a Dutch book argument for DS belief functions

by modifying the valuation functions. So a probabilist who wants to use Dutch

book arguments must really be committed to the valuations’ being classical to

secure her conclusion. Then the argument is only as good as her argument for the

claim that “ideal” bets are settled by classical logic.

... Assessing the arguments

Now I wish to assess each of these on each of the criteria I mentioned above.

The first of these was the nature of the objects of belief. More specifically, I am

interested in the structure and the size of the space of propositions. Probabil-

ity measures are defined over an algebra of events or propositions. What’s at

stake here is what sort of assumptions are made about this algebra in the above

arguments. Gradational accuracy arguments typically assume that the algebra in

question is finite. Joyce () doesn’t make clear whether he restricts himself to

finite domains, but Maher () takes him to be doing so, and Joyce () is
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explicit about it. Dutch book arguments normally tend to assume finiteness as

well. There are results for infinite cases though they are significantly harder. It

also seems like any pragmatic argument that requires you to take infinitely many

bets is significantly weaker. The jury is still out on whether countable additivity is

reasonable. Howson () argues that it is not, while Williamson () takes it

to be so.

Representation theorems, on the other hand, tend to assume that the space

of acts over which one is choosing is really quite rich and this makes the space

of beliefs very rich as well. That is, it is not only infinite, but structured in a

particular way. Fishburn () says that typically one assumes that the set of

states is non-denumerably infinite. Finiteness does not preclude there being a

probabilistic representation, but it does preclude its uniqueness. Cox’s theorem

also requires that the algebra of propositions be structured in a way that can only

be satisfied by infinite spaces. Halpern (a,b); Paris () make these claims

but see Snow () for a dissenting opinion.

Which of these (finite or rich) you find more appealing depends on your taste.

On the one hand it seems that your boundedness, your finitude means that it is

reasonable to assume you have only a finite number of opinions. On the other

hand, it certainly feels as if the world is rich enough that the things about which

you could have opinions is unbounded, potentially infinite.

Now, which arguments work with conditional probabilities? Cox’s theorem

is already couched in terms of conditional probabilities, so that’s a point in its

favour. Fishburn () offers a representation theorem that grounds conditional

probabilities in terms of conditional acts.

There are arguments to the effect that Dutch book arguments cannot be used

to justify conditional probability. Döring () argues this point. As for

gradational accuracy, it is an open question, as far as I know. That is, there are no

results I am familiar with in this vein.

Now, which arguments can be used to offer other important norms for belief

like conditionalisation, calibration, equivocation? Dutch book theorems do well

here: there are arguments of a similar character for all of the above norms. For

example, Paris (, pp. –) or Halpern (, pp. –). For the latter two –

calibration and equivocation – see, for example, Williamson (). Leitgeb and

Pettigrew (a,b) offer a gradational accuracy argument for conditionalisation,

 For example, Fine’s axioms C and C (Fine )
Döring seems to suggest that Jeffrey conditionalisation is immune to his criticism, but that

would mean building a whole new foundation of Jeffrey conditional probabilities
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but as Pettigrew () says, there are many open questions in this area still. Rep-

resentation theorems for updating look very much like representation theorems

for conditional probabilities, but with the extra axioms being understood in a

different way.

Which arguments fit with which conceptions of what beliefs are? If you are

inclined to think that beliefs are the sort of things that are action guiding, then it

seems that you will be convinced by Dutch book-type arguments. If, on the other

hand, beliefs are something you ascribe to others in order to understand their

actions, then representation theorems seem like the right way to go. If beliefs are

somehow internal but not necessarily action guiding – if belief is an attitude we

take towards propositions – then gradational accuracy arguments, or qualitative

belief representation look like the most reasonable kinds of argument. Cox’s

theorem looks like it is motivated by a similar conception of beliefs to gradational

accuracy arguments, but rather than looking at the relationship between proposi-

tions and the world, it looks at the relationships of partial entailment among the

propositions themselves.

Related to this last criterion is the question of whether utility is important.

Dutch books and representation theorems seem to be tied up in practical rational-

ity and questions of action, reward, punishment and so on. Gradational accuracy

or Cox’s theorem, on the other hand, seem to be oblivious to questions of utility.

If you think your belief shouldn’t be tied to your conception of what is practically

good, then the first two kinds of arguments are not going to be convincing. Having

said that, one might take the Dutch book to be merely dramatising an inconsis-

tency in a nonprobabilistic agent’s credences. This would suggest that the focus

on utility is misleading and that Dutch book arguments aren’t so grounded in

pragmatic concerns. Gibbard () goes further in arguing that this is something

of a false dichotomy. He argues that a pure concern for truth can only be a con-

cern for the guidance value of the beliefs. So even purely epistemic values are

somewhat instrumental.

One might ask: are there arguments similar to the ones above but whose conclu-

sion is something other than probability? That is, is there a Dutch book theorem

that justifies, not probability, but Dempster-Shafer belief theory, for example? My

discussion of the Dutch book theorem highlights exactly these sorts of results.

The relevance of this is as follows: say you need four assumptions about betting

behaviour in order to prove the Dutch book theorem. Now, imagine that in the

The phrase is from Hájek ().
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absence of one of those conditions, you can prove instead that degrees of belief

ought to be Dempster-Shafer functions. This makes you wonder whether that

fourth condition is reasonable, and whether it’s better to stick with DS theory. In

a way, these other theorems “in the neighbourhood” of the Dutch book theorem,

weaken it, or at least make you scrutinise the assumptions. The theorem would

come as a package, each of its presuppositions integral to the argument.

Williams (b) has an argument based on the method in Paris ( [])

that shows that you can modify the argument of Joyce () to give the conclusion

that degrees of belief ought to be Dempster-Shafer functions. Economics literature

is rife with representation theorems for a vast array of different kinds of models

of belief and utility. There are a number of weaker results in the mould of Fine’s

qualitative probability approach, for example Koopman (); Seidenfeld ();

Seidenfeld, Schervish, and Kadane (). Whether Cox’s theorem is modifiable in

this way is, I think, an open question but I would guess that it is not so amenable

to modification.

... Are the arguments for probabilism mutually reinforcing?

Given the different motivations the various arguments rely on, and given that

the arguments are successful to varying degrees on a number of points, it seems

that there isn’t much common ground where these arguments might be mutually

reinforcing. If you are the kind of person who thinks that it’s reasonable to restrict

ourselves to finitely many propositions, then it looks like representation theorems

and Cox’s theorem are going to be unsatisfying. Then depending on whether

you thought belief was tied more strongly to practicality or to epistemology, only

one of the remaining two arguments would be appealing. If, on the other hand,

you thought it was better that beliefs cover a rich algebra of propositions, then

at least gradational accuracy would be ruled out. Say you thought it important

that probabilism relate to conditional probability measures. This might rule out

Dutch book arguments. If you thought degrees of belief were about your attitude

to propositions, then representation theorems wouldn’t seem to be doing the right

thing at all. So wherever you stand, only one theorem is really convincing. In brief,

given a particular attitude to what beliefs are, most arguments for probabilism

are unconvincing.

One might criticise this line of thought by saying “but I care about practical

rationality and epistemic rationality!” You might continue: “I think epistemic

rationality suggests (via gradational accuracy) that beliefs ought to be probabilities,
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and practical rationality (via Dutch books) secures the same conclusion.” The two

arguments seem reinforcing despite their different starting points. But this misses

the point. Dutch books secure the claim that degrees of belief as action-guiding

mental states – as determinants of betting quotients – should be probabilities.

Gradational accuracy says that degrees of belief as estimates of truth values should

be probabilities. The burden of proof is on whoever claims these two ways of

thinking of belief are the same. At the very least one needs to claim that estimates

of truth values are a good guide to action. I’m not suggesting that such an

argument can’t be made, indeed, I think true beliefs will often be practically

useful. But I do want to stress that the link between the two kinds of degrees

of belief needs to be quite strong for the arguments to be mutually reinforcing.

Arguably, Gibbard () offers exactly the needed connection between practical

rationality and epistemic rationality.

I think it is perfectly reasonable to say that my beliefs fail to satisfy the axioms

of qualitative probability (for example, maybe my �b ordering is only partial),

but I nevertheless consider the constraints on betting imposed by the Dutch book

argument to be rational. So while it is the case that I should act “as if” I had

some probability function, subjectively, my beliefs don’t have the structure of

probabilities. The probabilist might respond that my phenomenological “beliefs”

aren’t doing any work, they aren’t guiding action, so they aren’t what’s at stake. But

that’s just to deny that probability plays the role that the proponent of qualitative

belief claims it does.

To make the claim that these arguments for probabilism are mutually reinforc-

ing, one needs an argument to the effect that the different kinds of beliefs under

discussion are tightly linked. That’s not to say I don’t think such an argument can

be made, but just to point out that arguments for probabilism do not reinforce

each other without such an argument. Let’s say you wanted Joyce’s nonpragmatic

argument and a Dutch book type argument to be mutually reinforcing. You

would need to argue that the sort of epistemic beliefs that Joyce is interested

in and the practical action guiding beliefs under consideration in Dutch book

arguments should have the same structure. And how would you go about arguing

this, without being able to appeal to arguments for probabilism? Gibbard ()

argues that a concern for accurate beliefs can only come from a desire for beliefs

Something like this sort of idea is motivating the “Transferable Belief Model” which allows

nonprobabilistic beliefs, but forces them to collapse into some probability function when you

have to make a decision (Smets and Kennes ).
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with high guidance value. And guidance value is the sort of practical thing that

action-guiding beliefs should do well at.

Consider the following – admittedly rather odd – scenario. A crazy neuroscien-

tist induces you to undergo an advanced brain scan that can ascertain whether or

not you believe certain propositions. The neuroscientist tells you that if you have

a certain false belief, he will reward you handsomely. Here it seems that value

for the truth and pragmatic value have come apart: epistemic value is maximised

by disbelieving the falsehood, while practical value is maximised by believing

the falsehood. The reason is because of the strange way that the reward is tied

directly to your beliefs rather than to your actions as informed by your beliefs.

Proponents of Gibbard’s view needn’t be moved much by such outlandish ex-

amples, but they do, I think, show that there is at least a conceptual wedge to

be driven between practical and epistemic utility. What I take the above “crazy

neuroscientist” example to show is that there’s some implicit assumption about

how beliefs influence value in Gibbard’s argument.

It is certainly true that it is often practically valuable to have high credence

in the truth, but that’s a far cry from claiming that structurally, these disparate

types of belief are similar. What about the claim that there is just one kind of

thing – belief – and it fulfils all these roles. But that is just stating, by fiat, that

the question under discussion has been decided. Belief is a slippery concept and

I can’t see any a priori reason to rule out pluralism. Another argument that you

might offer for the claim that epistemic beliefs and action-guiding beliefs ought to

be structurally similar is that there are independent arguments that each of these

ought to have this particular structure and that therefore, they ought to have the

same structure. But that is just putting the cart before the horse. An appeal could

be made to theoretical unity at this point. We don’t have strong reasons to believe

that these disparate things we call “belief” have a common structure, nevertheless,

there is some value in having a unified framework for modelling all of them, and

probabilism provides that. This argument shouldn’t, however, be taken to be an

argument against exploring alternative frameworks for modelling belief when

probabilism is found to be inadequate.

It does, however, suggest a different line of argument. Perhaps the very indepen-

dence of the different arguments is a way in which they are mutually reinforcing.

“See:” says the probabilist, “no matter what you think about the structure of

This paragraph was in part inspired by a talk Hilary Greaves gave at a “Philosophy of Probability”

conference in Oxford on “Cognitive Decision Theory”.
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the algebra of events, the conclusion is the same: probabilism. Whatever you

think about the nature of belief, I have an argument that says you should be a

probabilist.” I don’t think this is all that convincing. If I think beliefs should be

action guiding in the way Dutch books assume they are, then why should Joyce’s

argument convince me at all? Given some position on the various considerations

discussed above, it seems that some arguments are going to be irrelevant and

therefore not convincing.

Maybe you could say “I have no firm position on what beliefs are, but whatever

they are, there’s an argument that says they’re probabilities.” This is a sort of

“supervaluation” move. On all precisifications of the idea of belief, it is true that

there is an argument for probabilism. So probabilism is “super-true”. But this

is only as strong as the weakest argument for probabilism. While this may give

you a weak sort of “robustness” argument for probabilism, it doesn’t mean that

gradational accuracy arguments make Dutch book arguments more convincing,

for example.

.. Probabilism as a regulative ideal

I have offered a range of arguments for probabilism, and I hope I have shown how

each is flawed. However, I don’t want to just completely ignore these arguments,

and I don’t want probabilism to have no role in my theory of uncertain belief. The

criticisms I made of the various arguments’ premises have been motivated in part

by worries about severe uncertainty. So, if there is no severe uncertainty then

probabilism should be warranted. Probabilism is serving as an ideal case, like the

frictionless plane in physics. We are interested, in Henry Kyburg’s nice phrase, in

the “laws of frictionless thought” (Kyburg , p. ). Just as in the case of the

frictionless plane, an idealisation can be an important part of getting to the heart

of some particular phenomenon.

When you are certain of everything, your probability function reduces to a

valuation function. In the same way, when you are sufficiently sure of things that

there is no severe uncertainty, then your belief representor should reduce to a

probability function. In a way, I think the move from probability to imprecise

probability mirrors the move from valuation function to probability: the previous

framework proves to be inadequate given the nature of the evidence (or lack

thereof) that you have.
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On two occasions I have been

asked, “Pray, Mr. Babbage, if

you put into the machine

wrong figures, will the right

answers come out?” I am not

able rightly to apprehend the

kind of confusion of ideas

that could provoke such a

question.

(Charles Babbage)

The previous chapter argued that the orthodox method for representing graded

belief has some flaws. The main aim of this chapter is to outline my preferred al-

ternative representation of belief. I motivate and defend the imprecise probabilities

approach. More generally, this chapter further develops the kind of limited view

of rationality that I subscribe to.

This choice, of course, encapsulates some particular value judgements about

what a representation of belief is supposed to do. Not least, my view that only a

weak standard of rationality is in play in cases of severe uncertainty. So I shall

discuss that as well. As we saw in section ., there are many reasons to think

about formal representations of belief.

The plan is to first give some details of my preferred outlook on imprecise

probabilism. Then I discuss how the theory should be understood. I then discuss a

variety of ways to motivate the theory. After this, I briefly survey a couple of similar

systems. Finally, I discuss learning and updating with imprecise probabilities.

.. What is imprecise probabilism?

The basic insight of the imprecise probabilities approach is to represent belief by

a set of probabilities instead of a single probability. So instead of having some
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pr represent your belief, you have P , a set of such functions. Call this set your

representor. I will discuss various ways you might interpret the representor later

(in section .) but for now we can think of it as follows. Your representor is a

credal committee: each probability function in it represents the opinions of one

member of a committee that, collectively, represents your beliefs.

Often, it is assumed that your degree of belief in a proposition, X, is given by

P pXq “ {prpXq : pr P P }. I will adopt this notational convention, with the proviso

that I don’t take P pXq to be an adequate representation of your degree of belief in

X. I return to this point later. From this we can derive an “imprecise expectation”.

If Eprpf q is the expected value of act f with respect to probability pr, then EP pf q

is:

Definition .. EP pf q “ {Eprpf q : pr P P }

The same proviso holds of EP pf q as held of P pXq. I will often drop the subscript

“P ” when no ambiguity arises from doing so.

From these concepts we can define some “summary statistics” that are often

used in discussions of imprecise probabilities. Your “lower envelope” of X is:

P pXq “ infP pXq. Likewise, your “upper envelope” is P pXq “ supP pXq. In the

same way we can talk about the bounds of the spread of your expectation. Your

“lower prevision” is defined as Epf q “ infEpf q and your upper prevision (E )

defined in the obvious way.

One might want to call “lower prevision” “lower expectation”, but we must

be careful: Walley () and Cozman (n.d.) use “lower expectation” to mean

something slightly different. The difference won’t be relevant here, so I stick

with the more intuitive terminology of “expectation”. Note however, that this

is a (minor) deviation from what is standard in the literature. One might also

prefer to term P pXq a “lower probability” rather than a “lower envelope”. I will

allow myself to do this, but I should note that this is again slightly non-standard.

Remember also that these summary statistics are not properly representative of

your belief. Information is missing from the picture. I will have more to say about

this later.

One might wonder whether taking representors to be sets of conditional prob-

abilities as the basic item might not be a better way to do things. Hájek ()

argues that conditional probabilities should be taken to be the basic entity, and

This term is due to van Fraassen ().
It hardly needs spelling out that if I am sceptical of P pXq as a representation of belief, I am

doubly so of P pXq.
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unconditional probabilities should be defined out of them. I agree with Hájek but

in what follows, this point won’t really make any difference, so I will continue to

talk mostly of unconditional probabilities. Bear in mind that these are “really”

conditional probabilities conditioned on J.

.. Interpreting the framework

How are we to understand claims like P pXq “ 0.3? More generally, what interpre-

tation should be given to the set of probabilities? Before we can ask this question,

we need to ask an even more basic question.

... What is a model of belief a model of?

Imprecise probabilities aren’t a radically new theory. I see them as merely a slight

modification of existing decision theory for situations of ambiguity. Often your

credences will be precise enough, and your available actions will be such that

you act more or less as if you were a strict Bayesian. I see imprecise probabilities

as the “Theory of Relativity” to the strict Bayesian “Newtonian Mechanics”: all

but indistinguishable in all but the most extreme situations. Howson ()

makes a similar analogy between modelling belief and models in science. Both

involve some requirement to be somewhat faithful to the target system, but in

each case faithfulness must be weighed up against various theoretical virtues like

simplicity, computational tractability and so on. Likewise Hosni (ms.) argues that

what model of belief is appropriate is somewhat dependent on context. There

is of course an important disanalogy in that models of belief are supposed to be

normative as well as descriptive, whereas models in science typically only have to

play a descriptive role.

One standard interpretation of the probability calculus is that probabilities

represent “degrees of belief” or “credences”. This is more or less the concept that I

have been considering so far. But what is a degree of belief? There are a number of

ways of cashing out what it is that a representation of degree of belief is actually

representing. It is important to get these concepts clear before we continue. I am

Recall the discussion of section ...
This analogy goes deeper: in both cases, the theories are “empirically indistinguishable” in nor-

mal circumstances, but they both differ radically in some conceptual respects. Namely, the role

of absolute space in Newtonian mechanics/GR; how to model ignorance in the strict/imprecise

probabilist case.
“Descriptive” is here being used in a fairly broad sense to include activities like prediction.
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going to adopt the convention of using degree of belief to refer to the thing being

modelled, and credence as the thing doing the modelling. I will try to keep to a

similar convention as regards value (the thing modelled) and utility (the thing

modelling).

One of the most straightforward understandings of degree of belief is that

credences are interpreted in terms of an agent’s limiting willingness to bet.

Williamson () takes this line. The idea is that your credence in X is q just

in case q is the value at which you are indifferent between the bets pX,qq and

p X,1´ qq. This is the “betting interpretation”. This is the interpretation behind

Dutch book arguments: this interpretation of belief makes the link between bet-

ting quotients and belief strong enough to sanction the Dutch book theorem’s

claim that beliefs must be probabilistic.

A related interpretation of credence is to understand credence as being just a

representation of an agent’s dispositions to act. This interpretation sees credence

as that function such that your elicited preferences and actions can be represented

as those of an expected utility maximiser with respect to that function. Your

credences just are that function that represents you as a rational agent. A slightly

more sophisticated version of this sort of idea is to understand credence to be

exactly that component of the preference structure that the probability function

represents in the representation theorem.

One might take the view that credence is modelling some kind of mental or psy-

chological quantity in the head. Strength of belief is a real psychological quantity

and it is this that credence should measure. Unlike the above views, this interpre-

tation of credence isn’t easy to operationalise. It also seems like this understanding

of strength of belief distances credence from its role in understanding decision

making. The above behaviourist views take belief’s role in decision making to be

central to or even definitional of what belief is. This psychological interpretation

seems to divorce belief from decision. Whether there are such stable neurological

structures is also a matter of some controversy.

A compromise between the behaviourist views and the psychological views is to

say that belief is characterised in part by its role in decision making. This leaves

room for belief to play an important role in other things, like assertion or reasoning

and inference. So the answer to the question “What is belief?” is: “Belief is

whatever psychological factors play the role imputed to belief in decision making

For precise probabilism, “rational agent” means “expected utility maximiser”. For imprecise

probabilism, rational agent must mean something slightly different.
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contexts, assertion behaviour, reasoning and inference”. There is room in this

characterisation to understand credence as measuring some sort of psychological

quantity that causally relates to action, assertion and so on. This is a sort of

functionalist reading of what belief is. Eriksson and Hájek () argue that

“degree of belief” should just be taken as a primitive concept in epistemology. The

above attempts to characterise degree of belief then fill in the picture of the role

degree of belief plays.

I want to be a little non-standard in my understanding of belief. I don’t want to

focus solely on human-sized agents and their personal beliefs. I’d also like to use

the same formal framework to theorise about the explicit decision weights used in

real cost-benefit analyses. These don’t necessarily match any particular human

agent’s personal beliefs: they are what might be called “institutional credences”.

These are the sort of credences of interest in scientific decision making, which will

be the topic of a later chapter.

In any model of uncertain belief and uncertain inference, there are some things

about which you are uncertain. But in every case there are some things that are

taken for granted. Imagine a toy example of drawing marbles from an urn. The

observed frequencies of colours is used as evidence to infer something about the

frequencies of colours in the urn. In this model, you take for granted that you are

accurately recognising the colours and are not being deceived by an evil demon or

anything like that. That’s not to say that we couldn’t model a situation where there

was some doubt about the observations: the point is that in the simple case, that

sort of funny business is just ruled out. There are certain aspects of the situation

that are taken for granted: that are outside the modelling process. This is the same

in science: when we model the load stress of a particular design of bridge, we

take for granted the basic physics of rigid bodies and the facts about the materials

involved. This point relates to what I was saying earlier about models of belief

being like models in science. It also relates to the discussion of Lo and Mueller

() and the idea of level of uncertainty being relative to what you take for

granted (section .).

Of course, in this case I am moving away from having belief be tied to psychological quantities.

But belief is still somehow tied up with whatever structural features of the institutional set up

and the beliefs of the individuals involved that are involved in decision making.
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... What makes belief rational?

Once we’ve decided what sort of thing belief is, we need to decide what we will

mean by rational belief. There are levels of normativity here. The most basic

constraints on rational belief, those that almost everyone will assent to, are basic

structural constraints: it is unreasonable, irrational to believe contradictory things.

For precise probabilists these structural constraints will include adherence to the

axioms of probability theory. Imprecise probabilists will not accept this structural

constraint in the same form, although probability theory still maintains some

of its normative force for them. Some might maintain that the basic structural

constraints are all that is required for rationality. I call these people radical

subjectivists.

One might also demand that rational beliefs should be responsive to the evi-

dence, in a certain sense. Williamson () calls this “empirically-based Bayesian-

ism”. Note here we are talking about a synchronic norm: your current evidence

should inform your current credences. There’s a separate issue of how new ev-

idence should change your credences, but I don’t want to discuss that yet. If

you thought that obeying the structural constraints and being in accord with the

current evidence was all there was to rationality, and that as long as you did that,

you could believe what you like, I would term you an empirical voluntarist.

W.K. Clifford argued that

. . . it is wrong always, everywhere and for anyone to believe anything

on insufficient evidence Clifford (, p. )

This suggests that there needs to be a procedure for determining what the correct

belief should be when the evidence underdetermines belief. Clifford seems to be

thinking in terms of outright (full) belief and so the correct attitude would be

suspension of judgement. If you are a Bayesian, you need to do a little work to find

out what the appropriate level of belief is. The Objective Bayesian has one such

method of determining the correct belief when the evidence is weak. I find myself

sympathetic to objectivists but, as I discuss later, I am sceptical of the details of

Objective Bayesianism.

William James criticised Clifford’s objectivism and argued for a kind of volun-

tarism that I mentioned above (James ). James starts by agreeing with the

intuition motivating Clifford’s remarks:

Indeed, radical subjectivists will argue that adherence to a diachronic evidential norm is enough

to guarantee that credences are suitably responsive to evidence.
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All this strikes one as healthy, even when expressed by Clifford with

somewhat too much robustious pathos in the voice. Free-will and

simple wishing do seem, in the matter of our credences, to be only fifth

wheels to the coach. (p. )

He goes on to point out that there seem to be competing epistemological pressures.

Believe truth! Shun Error! — These, we see, are two materially different

laws; and by choosing between them we may end by coloring differently

our whole intellectual life. (p. )

James worries that Clifford is too focused on shunning error and that any such

commitment will lead to an impractical level of scepticism. The widespread sus-

pension of belief that James thinks Clifford’s view leads to is, he claims, impossible.

When the evidence doesn’t decide what to believe for us, we must believe some-

thing, and nothing but free choice is left to decide what that belief should be. I take

it to be important to any sort of objectivist project in the imprecise probabilities

mould to respond to this worry about the danger of a looming scepticism.

So there are three levels of normativity for rational belief. One might consider

only structural constraints. One might think that empirical constraints limit your

choice of belief. Or one might think that empirical constraints determine your

choice of belief.

In the kinds of scientific decision making contexts that I will eventually return

to, these are the kind of probabilities of interest. In this context, I feel, objec-

tivism certainly has the upper hand over any form of permissivism or voluntarism.

Whatever might be the case of real individual agents’ freedom over their beliefs,

institutional credences shouldn’t be based on hunches, gut feeling or what have

you: only the evidence should count. Given that we are understanding these

institutional credences as explicit decision weights used in decision making, there

must be a “paper trail”. At some stage, the use of these rather than those weights

might have to be justified: reasons given for why the cost benefit analysis sanc-

tioned this rather than that course of action. Jamesian relativism precludes having

the reasons for belief that are necessary in this context.

Even at the level of desiring that your evidence determine your beliefs, I think

there is a certain level of subjectivity or arbitrariness that is unavoidable. First,

there is choice of a formal language to describe the objects of belief. This choice

could have an impact. It certainly has an impact for Objective Bayesianism, as

Williamson () points out in chapter . It is perhaps a little less clear whether
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this language-relativity is as big a problem for the imprecise case. Whether or not

it is, there are other elements of subjectivity that enter the process. When setting

up the model of belief, I have to decide what things to take for granted – what

facts to take as part of the background information. There is also the question

of ascertaining exactly what import various kinds of evidence you might receive

should have. To take a simple example, what should the import be of observing

 heads out of  tosses of a coin? One would like to say, at the very least, that

this rules out the possibility of the coin’s being heavily biased toward tails. But

it is logically possible that a tails-biased coin could come up heads  out of 

tosses. The question is “What standard of evidence do we need to assent to

some claim?” The standard of logical proof is obviously too strong. Indeed, it

seems like logic alone cannot determine what standard of evidence we require.

There is some subjectivity in fixing the standards for evidence: but once this is

done, the evidence determines your belief. In different ways, Kyburg’s evidential

probabilities model (Kyburg ; Kyburg and Teng ) and the unreliable

probabilities model of Gärdenfors and Sahlin () both build in this kind of

subjectivity. Kyburg by the thresholds for acceptance, Gärdenfors and Sahlin with

their reliability threshold ρ0. Both of these models will be discussed a little later.

I will return to this point later, but for now I want to point out that the ideal

of a purely objective model of belief isn’t going to work. What I mean by this is

that it seems like principles of rationality alone don’t seem to determine what

language you should frame your beliefs in, nor do they determine what standard

of evidence is appropriate. That’s not to say that these things are subjective – they

may just be inescapable aspects of your psychology – but just that they are not

determined by the principles of rationality alone. We can and should mitigate and

constrain how the elements of subjectivity enter the process.

... What represents belief?

So now we have a better idea of what it is that a model of belief should do. But

which part of our model of belief is representing which part of the belief state?

The first thing to say is that P pXq is not an adequate representation of the belief

in X. That is, one of the values of the sets of probabilities approach is to capture

certain kinds of non-logical relationships between propositions that are lost when

focusing on, say the associated lower probability. For example, consider tossing

The extreme finite frequentist might disagree: that it comes up heads more often tails makes it

the case that it isn’t tails-biased, so what I described is impossible.



. Imprecise probabilism 

a coin of unknown bias. P pHq “ P pT q “ r0,1s, but this fails to represent the

important fact that prpHq “ 1´prpT q for all pr P P . This complementarity can

play an important role in reasoning and decision. This is a point I will return to

several times. I mentioned it when I introduced “P pXq”, I am mentioning it again

now, and I will return to this theme when I discuss updating later (section .).

P pXq might be a good enough representation of belief for some purposes. For

example in the Ellsberg game which we shall meet later (section ..), these sets

of probability values (and their associated sets of expectations) are enough to

rationalise the paradoxical preferences. How good the representation needs to be

depends on what it will be used for. Representing the sun as a point mass is a good

enough representation for basic orbital calculations, but obviously inadequate

if you are studying coronal mass ejections, solar flares or other phenomena that

depend on details of the internal dynamics of the sun.

... Imprecise and indeterminate

Sometimes a distinction is made between imprecise credences and indeterminate

credences. The idea is that there are two distinct kinds of belief state that might be

modelled by sets of probabilities. An imprecise belief is one where there is some

probability function that reflects your preferences, but you don’t know what it is,

so you use a set. An indeterminate belief is a belief state where there is genuine

indeterminacy in your beliefs. Steele () argues that it is the indeterminate

beliefs that are interesting.

I am following Walley () in using the term “imprecise probability” to

cover cases of indeterminate probability. This is an unfortunate aspect of a

somewhat standard terminology. It has been suggested to me that “indeterminate

probabilities” is a better name for the items I am interested in. I am somewhat

inclined to agree, but this advice came far too late in the day for me to effect

such a terminological upheaval in the current project. In any event, “imprecise

probability” is still infinitely better than the term “mushy credence”.

... Interpretations of the representor

There are a number of ways to understand what P is supposed to represent. I

mention a couple here, although a better handle on the interpretation is probably

gained from looking at the arguments in favour of the position, which I shall turn

to in a moment.
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One way one might want to interpret P is as a set of plausible chance func-

tions, for a given confidence interval. One could interpret Kyburg’s Evidential

Probabilities in this way (see section ..).

The worry with viewing P as a set of possible chance functions is that it doesn’t

seem to be properly responsive to evidence. Imagine tossing a biased coin, with

chance of heads either 1
3 or 2

3 . So if this were the right interpretation of the

representor, P pHq “
{

1
3 ,

2
3

}
. Since coin tosses are independent, evidence of previous

coin tosses would not change anything about the representor. Intuitively however,

seeing  out of  tosses land heads is good evidence that the true chance is 2
3 .

See Halpern (, Example .., pp. –).

The above worry – that sets of chances aren’t responsive to new evidence sug-

gests another interpretation. This interpretation of the representor that is due to

Joyce () is to consider each probability in the representor as a member of a

credal committee. This committee represents all the possible prior probabilities you

could have that are consistent with the evidence. Each credal committee member

is a fully opinionated Jamesian voluntarist. The committee as a whole, collectively,

is a Cliffordian objectivist.

The idea is that the elements of your representor are ways that sufficiently better

evidence might have determined your credence. There is something somewhat

“supervaluationist” about this understanding of the representor. Indeed, connec-

tions between imprecision and vagueness are deep and interesting. I shall discuss

them again later. One can think of the committee as containing members whose

beliefs encode all the possible situations that need to be taken into account. Col-

lectively, the committee must reason and decide. The overall committee opinion

somehow supervenes on the opinions of the members of the committee. Each

committee member, whatever the prior belief, is sensitive to the evidence. Thus,

representors so interpreted should respond to evidence appropriately. Later we

will see that this is not quite right.

Finally, one might take imprecise probabilities to just be a representation of

“fuzzy” or “incomplete” attitudes. This would motivate having credal states

represented by intervals or sets of numbers rather than precise values. The sets of

probabilities approach might then be seen as a solid formal foundation for that

sort of representation.

Though this isn’t the only interpretation of Evidential Probabilities.
Joyce attributes it Adam Elga. Weatherson (ms.) discusses something similar.
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.. Conceptual arguments for imprecise

probabilism

In the last chapter I spent a long time discussing various arguments for precise

probabilism that have been put forward. I ultimately find the arguments want-

ing. Not because they are deeply flawed, but because they impose too strong

constraints on your belief. Given the kinds of severe uncertainty I am concerned

with, probabilism seems like an unattainable ideal. In this section I want to offer

some positive arguments why the imprecise framework is better than its precise

cousin.

I offer some epistemological, conceptual arguments; and, in the next section,

some arguments of a more formal character.

Most of the following epistemological or conceptual arguments in favour of im-

precise probabilism can be seen as different attempted articulations of a common

idea. When modelling belief, it is almost universally agreed that it is important to

reflect the evidence you have in the belief you hold. Especially in the case where

you are modelling belief for the purpose of decision making, evidence should be

represented. I claim that there is an important corollary of this principle: you

ought to represent your ignorance. That is, it is important to have your representa-

tion of belief reflect your evidence, but it should also reflect where your evidence

is lacking. In a number of ways, precise probabilism glosses over this important

point.

... Incomparability and indifference

In chapter  I discussed some arguments that made use of preference relations,

or qualitative belief relations. In all these cases, the relation was assumed to be

complete. In cases of severe uncertainty, I don’t consider completeness to be

reasonable. That is – to take the preference example – I think it reasonable to have

no preference in either direction. This is, I feel, an importantly different attitude

to being indifferent between the options (see section ..).

Is it really reasonable to say that an agent has a preference between any two

possible acts? In the context of eliciting an agent’s preference, it might be a

In section . the preference was only assumed to have a strictly weaker property, but what I

have to say here holds of this case too.
Indeed, given the Rectangular Field Assumption and the Richness axiom, the space of acts over

which you are expected to have a preference is unreasonably vast.
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reasonable thing to assume, since “having neither preference” is more or less

behaviourally indistinguishable from “being indifferent” (i.e. having both pref-

erences). But I think there is an important difference between positively holding

both weak preferences and having neither preference. In the context of the kinds

of uncertainty I am interested in, I think this difference will be important, so

lumping “no preference” together with “indifference” is not justified. As I have

said above, I am coming from a quite different direction from those motivated

by behaviourist concerns. My concern is to represent your epistemic/doxastic

state so as to facilitate good decision making in cases of severe uncertainty. A

representation theorem is besides the point.

The question I am asking is “given the current state of evidence, what is the

right belief state to have in order to best make the right decisions?” I take it that

it is possible for evidence to not decide which of two hypotheses is more likely,

which of two possible actions will do better. I think it is important that our model

of belief should accommodate these facts.

Various of the arguments for probabilism required unreasonable things of you.

Representation theorems required you to have preferences over astonishingly

rich spaces of acts; Dutch book theorems required you to be able to determine

preference between arbitrary bets: would you rather bet on getting at least one

1 on four rolls of a die or on getting at least one pair of 1s on  rolls of two

dice? In either case it seems like there are discriminations of preference that are

required of you that you simply cannot make. From this and the contrapositive

of an “ought-implies-can” principle, we conclude that the conjunction of the

axioms cannot be normative. More specifically, at least some of the axioms are

not normative constraints. Arguably completeness and richness are among those

axioms that shouldn’t be considered normative; Joyce () agrees. We can now

ask what can be proved in the absence of the purely structural axioms? This

surely gives us a handle on what is really required of the structure of belief. The

specific answer to this question will be left until the section on formal arguments

(section .).

This is apparently the problem that bankrupted the Chevalier de Méré and caused him to turn

to Blaise Pascal for an explanation. This in turn led to the birth of probability theory.
Perhaps this example won’t convince if you take on board the idea that our agents are logically

omniscient. But just imagine bets on propositions where you know nothing about the nature of

the propositions. Surely here is a case where indifference is not warranted. That is, replace the

lack mathematical ability with some evidential failing in the example.
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... Weight of evidence, balance of evidence

Joyce () suggest that there is an important difference between the weight

of evidence and the balance of evidence. This is a distinction that collapses in

precise probabilism. Joyce argues – and I agree – that the distinction is worth

representing. This idea has been hinted at by a great many thinkers including J.M.

Keynes, Rudolf Carnap, C.S. Pierce and Karl Popper (See references in Gärdenfors

and Sahlin ; Joyce ). Imprecise probabilism allows you to represent this

difference.

Consider tossing a coin known to be fair. Let’s say you have seen the outcome

of a hundred tosses and roughly half have come up heads. Your degree of belief

that the coin will land heads should be around a half. This is a case where there is

weight of evidence behind the belief.

Now consider another case: a coin of unknown bias is to be tossed. That is,

you have not seen any data on previous tosses. In the absence of any relevant

information about the bias, symmetry concerns might suggest you take the chance

of heads to be around a half. This opinion is different from the above one. There

is no weight of evidence, but there is nothing to suggest that your attitudes to H

and T should be different. So, on balance, you should have the same belief in both.

However, when offered the choice between betting on the fair coin’s landing heads

as opposed to the unknown-bias coin’s landing heads, it doesn’t seem unreasonable

to prefer the former. But if both coins have the same subjective probabilities

attached, what rationalises this preference? So these two different cases get

represented as having the same probabilistic belief. Joyce argues that there is a

difference between these beliefs that is worth representing. Imprecise probabilism

does represent the difference. The first case is represented by P pHq “ {0.5}, while

the second is captured by P pHq “ r0,1s. Another way to understand what is wrong

with the precise probabilist’s response to this coin example is due to Karl Popper

(quoted in Gärdenfors and Sahlin (, p. )). If the precise probabilist must

have prpHq “ 0.5 before any evidence has arrived, and if the evidence (E) that

arrives is that the coin lands heads about half of the time, then the posterior belief

will be prpH |Eq “ 0.5. The evidence, therefore is irrelevant: it has had no impact

The phrase “coin of unknown bias” is a little awkward, since there’s no sense in which what is

unknown is a bias. Bias with respect to what? The coin could only said to be biased if we had a

pre-existing idea that the coin should land tails as often as heads. We should perhaps speak of a

“coin with unknown chance of heads”. Or if chance-talk is not allowed, “coin with disposition

to generate unknown statistics”. Hykel Hosni was helpful in pressing me on this point.
This is related to the Ellsberg cases I mention in a moment (section ..).
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on the belief.

Kaplan (, ) makes the same point. He suggests that to conflate the two

cases discussed above is to commit the “sin of false precision” (Kaplan , p –

). He notes that it is not the case that it is always unreasonable or impossible for

you to have precise beliefs: in that case precision could serve as a regulative ideal.

Kaplan’s argument is that to expect to always have precise beliefs is to fail to give

evidence its due (p. ). I think precise probabilism does still serve as something

of a regulative ideal, but it is the belief of an ideal agent in an idealised evidential

state. Idealised evidential states will include things like tossing a coin known to

be fair.

Scott Sturgeon perhaps puts the point best when he says:

[E]vidence and attitude aptly based on it must match in character. When

evidence is essentially sharp, it warrants sharp or exact attitude; when

evidence is essentially fuzzy – as it is most of the time – it warrants at

best a fuzzy attitude. In a phrase: evidential precision begets attitudi-

nal precision; and evidential imprecision begets attitudinal impreci-

sion. Sturgeon (, p. , Sturgeon’s emphasis)

Hawthorne () argues that Bayesians need both degree-of-belief and also

degree-of-support measures. I think this is pushing in the same direction as Joyce’s

argument. Hawthorne’s motivation and his solution are different, but ultimately,

both his project and the current argument are trading on the idea of degree of

belief and degree of support coming apart, and both being important aspects of

belief. The basic idea in both cases is that it’s not just what the evidence says, but

also how much evidence there is.

It might be objected that the difference between weight and balance of evidence

can be captured within a single probability measure by attending to the extent to

which updating on various kinds of evidence would change the posterior belief.

In the case where there has already been some evidence, extra evidence won’t

do much to shift the belief in Heads. However, in the case of no evidence, the

belief will be more prone to shifts due to new evidence. Brian Skyrms identifies a

property that plays something of this role, but in the context of propensities and

lawlikeness. He calls it “Resiliency” (Skyrms ).

If all we wanted was something that corresponded to the distinction between

weight and balance of evidence, then this would be fine. However, if we want the

Or, more properly, a coin taken to be fair.
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distinction to be of relevance in decision making, then it needs to be represented in

such a way that it can impact on decisions. The imprecise probabilities approach

can do this because the difference in belief is relevant to decision. Arguably, the

single measure approach cannot. Or rather, the standard decision theory is not

sensitive to this difference in the possible future updated beliefs. We could of

course come up with some sort of “resiliency-weighted expected utility” which

would nullify this objection. And presumably at least some of the other objections

to standard probability theory can be dealt with the same way. But the more we do

this, the epicycles on epicycles we add to our precise probabilist framework, the

less clear it becomes that this has any advantage in simplicity over the imprecise

framework.

Strictly speaking, what I have argued here is only half the story. I have shown

that there is a difference between the representations of belief as regards weight

and balance. But that still leaves open the question of exactly what is representing

the weight of evidence? We could, of course, just measure the amount of evidence

in each case. The fair coin case is like the unknown-bias case, but you have

some extra information. In this sense, the beliefs in the former are based on

stronger weight of evidence. But what aspect of the belief reflects this? It seems

unsatisfactory to simply use P pHq´P pHq as a measure of the weight of evidence

for H . This would get wrong cases of conflicting evidence. (Imagine two equally

reliable witnesses: one tells you the coin is biased towards heads, the other says

the bias is towards tails.) We can, I think, sidestep this problem. The advantage

of imprecise probabilities in these cases is not that they represent the weight of

evidence per se, but that they allow a representation of the difference between weight

and balance such that we can rationalise differences in behaviour that we think are

due to this distinction.

Sadly, it is not always true that imprecise probabilities represent this difference.

In cases of dilation (see section ..) more evidence can cause the upper and lower

probabilities to get further apart. I defer an analysis of this awkward fact until I

have presented the phenomenon of dilation in detail.

... Ellsberg problems

There are a number of examples of decision problems where we are intuitively

drawn to violate precise probabilism. And indeed, experimental subjects do seem

to express preferences that violate the axioms. Imprecise probabilities offers a way

of representing these intuitively plausible and experimentally observed choices as
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rational. One classic example of this is the Ellsberg paradox. Here I adapt a version

of the problem from Halpern ().

Example  I have an urn that contains a hundred marbles. Thirty marbles

are red. The remainder are blue or yellow in some unknown proportion.

What are we to think about this example? The standard precise probabilist

beliefs would have prpRq “ 0.3, and then, using some symmetry reasoning, we get

prpBq “ prpY q “ 0.7{2“ 0.35.

These probabilities suggest that you should prefer a bet on yellow to a bet (for

the same stakes) on red. In the betting formalism from section ., you should have

the following preference: pB,0.3q � pR,0.3q. However, experimental evidence – for

example Camerer and Weber () – suggests that real agents often prefer bets

on red to bets on yellow and also prefer red to blue. These revealed preferences

are difficult to square with the standard precise probabilist story. That is, no

probability function determines an agent who has the following preferences:

• pB,0q „ pY ,0q

• pR,0q � pB,0q

• pR,0q � pY ,0q

• pR,0.3q „ pB_Y ,0.7q

The first three of these reflect the experimentally observed (and intuitively reason-

able) preferences, the fourth reflects the intuition that red should have a betting

quotient of 0.3 reflecting its known probability.

The imprecise probabilist can model the situation as follows: P pRq “ 0.3,P pBq “
P pY q “ r0,0.7s. Modelling the ambiguity allows us to rationalise real agents’

preferences for bets on red. To flesh this story out would require a lot more to

be said about decision making. I defer this task until the next chapter, but the

intuition is that aversion to ambiguity explains the preference for red over blue or

over yellow.

As Steele () points out, the above analysis rationalises the Ellsberg choices

only if we are dealing with genuinely indeterminate beliefs. If we were dealing

with a case of “unknown precise belief” then there would exist some pr in the

Note that this expression of the belief state misses out some important details. For example,

for all pr P P , we have prpBq “ 0.7´prpY q. For the point I am making here, this detail is not

important.
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representor such that rational choices maximise Epr. For the Ellsberg choices,

there is no such pr.

Let me be clear here that I take the current project to be a normative one. So what

is important here is the ability of the imprecise probability model to rationalise

the intuitively compelling response to this decision problem. Even a normative

theory should, perhaps, have one eye on its descriptive adequacy so that the

intuitively reasonable results are also the experimentally observed is reassuring.

But the important feature is that the imprecise probability model can capture

some intuitively reasonable behaviour that the standard account cannot. Put it

this way: the intuitive Ellsberg preferences put a constraint on what the norms can

say. The norms should rationalise behaviour that we consider reasonable. Thus,

descriptive adequacy in this case points to success as a normative theory. One

might argue the other way: one might argue that the norms of precise probabilism

are rationally compelling and that therefore the observed behaviour is irrational.

One man’s modus ponens is another man’s modus tollens.

Here is another decision problem. This one is set up to make clear that the

agents are violating an apparently plausible principle of rationality known as the

Sure Thing Principle. I will discuss this principle in more detail in chapter .

R B Y

L1 “ pR,0q 1 0 0

L2 “ pB,0q 0 1 0

L3 “ pR_Y ,0q 1 0 1

L4 “ pB_Y ,0q 0 1 1

Table ..: Another decision problem

The bets involved in this problem can be shown as in Table . (using the same

urn set up as before). The paradoxical preferences that people tend to exhibit are

L1 � L2 but L4 � L3. These pairs of bets differ only in what happens in the “Y ”

column, so the preference should go the same way in each case. That is, L1 and

L3 look the same if you ignore the Y column. Likewise for L2 and L4. Now, in the

choice between L1 and L2, the Y column shouldn’t make a difference, since you

get the same thing if Y from both bets. Likewise for L3 and L4. So you should

choose the same way in both choices. That is, L1 � L2 iff L3 � L4. These are not the

preferences people tend to express.
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Again, a similar analysis to the one above allows the imprecise probabilist to

rationalise these preferences.

... Objective Bayesianism without precision

I find myself sympathetic to much of what Williamson () argues in defence

of Objective Bayesianism. Williamson offers a list of criteria for an adequate

theory of rational belief. I agree with the spirit of Williamson’s norms, but not the

precise forms he appeals to. Williamson’s norms are: Probabilism, Calibration

and Equivocation. I will say a little about each in turn. It turns out that I agree

with the spirit of each norm, but I disagree with the exact versions Williamson

advocates.

The first of the norms of Objective Bayesianism is Probabilism. This is the claim

that degrees of belief should be probabilities. I feel I have probably already said

enough to make clear what my opinion of this norm is. Williamson uses what he

calls the “betting interpretation” of degrees of belief. That is, he takes your having

a degree of belief p in X to mean that p would be the betting quotient you would

agree to buy or sell bets on X. This set up should be familiar from section .. But

the use it is put to is different. Williamson is serious about interpreting degrees of

belief as simply meaning having a particular disposition to accept certain betting

quotients as fair.

Williamson accepts, in effect, what I earlier called Complementarity. He is

aware of the apparent unreasonableness of this as a constraint on betting prefer-

ence, but argues that it is appropriate for an interpretation of degrees of belief.

That is, he concedes that actual models of real-world betting are better off not

taking Complementarity as a constraint, but that this does not preclude the “fair

buy/sell betting quotient” being a reasonable explication of strength of belief.

And given this, the Dutch Book Argument secures the conclusion that degrees of

belief must be probabilistic.

As I spent some time discussing in the previous chapter, I don’t buy this conclu-

sion. I do however accept that probability theory serves as a regulative ideal: in

the absence of severe uncertainty, strength of belief is appropriately modelled by

probability theory. But when there is severe uncertainty – when Complementar-

With the proviso that I don’t quite buy the centrality of pragmatic “avoiding sure loss” argu-

ments.
I actually think epistemic utility arguments are stronger than the pragmatic betting related

arguments for probabilism. Williamson doesn’t consider these kinds of arguments.
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ity is unwarranted – the DBA sanctions DS belief functions. So if I were to accept

a modified version of Williamson’s “betting interpretation of belief”, then the

appropriate model of belief would be Dempster-Shafer theory. But I don’t agree

with this. I take one part of the understanding of degree of belief to be its role in

decision making. But this role is not exhausted by the setting of betting quotients.

So while the buying quotients and selling quotients do somehow constrain belief,

DS theory isn’t the complete theory of belief.

The second norm of Objective Bayesianism is Calibration. The spirit of the

Calibration norm is that your degrees of belief should be sensitive to your evidence.

As Hume puts it:

A wise man. . . proportions his belief to the evidence.

Hume ( [], p. )

Williamson considers a variety of formal ways of cashing out what this sensitivity

to evidence should amount to (pp. –). All of these various ways essentially

put constraints on what probability functions would count as beliefs consistent

with the evidence. So an evidential constraint is essentially a set of probability

functions, and Calibration is the claim that your belief should be in the set of

probability functions determined by your evidential constraints. Williamson

considers two broad kinds of evidence: evidence of chances and structural con-

straints. The first kind of evidence consists of constraints like {prpXq “ x} or

{prpXq P rx,ys}. These are essentially constraints that tell you what the chance

of a certain proposition is. Principles like Miller’s principle or Lewis’ Principal

Principle are examples of precursors of the Calibration norm. In our Ellsberg

example, we had a constraint of this form: {prpRq “ 0.3}.
The second sort of evidential constraint – the structural constraints – will be

things like “X and Y are independent”, or “X is more likely than Y ”. In the

Ellsberg example the constraint {prpBq “ 0.7´prpY q} is a constraint of this form.

Williamson offers a pragmatic argument for the chance constraint (pp. –),

but doesn’t offer much in the way of justification of the structural constraints. In

any case Calibration seems justifiable on directly epistemological grounds. Of

course your degrees of belief should be responsive to your evidence! That’s what

they are for. How exactly the evidence you have imposes constraints on the per-

missible set of probabilities is tricky. Statistical evidence might inform constraints

Later, in section .., I discuss my reasons for not being content with DS theory.
There are, in fact, many distinct notions of independence for sets of probabilities. See Cozman

().
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of the first kind. Evidence of causes might inform structural constraints.

The exact constraints that evidence puts on belief are difficult to pin down,

as Williamson agrees. But I certainly endorse the idea that evidence should

constrain belief. What I would like to highlight here is that Williamson uses sets

of probabilities to represent the constraints that evidence imposes of belief.

The constraints that evidence puts on belief can’t be mere consistency. That is, it

can’t be that a belief is ruled out only when it is formally inconsistent with the

evidence. Consider the evidence that  of  tosses of a coin of unknown bias

have landed heads. It is consistent with this evidence that the coin is heavily biased

towards tails. However, intuition suggests that in this case the evidence should

determine that belief in heads should be around 2
3 . Wheeler and Williamson ()

offer the beginnings of an understanding of how the Calibration norm should

be cashed out using Henry Kyburg’s work on Evidential Probabilities. Deciding

what beliefs should be considered consistent with the evidence will involve an

element of subjectivity. I discuss Evidential Probabilities in a little more detail in

section ...

The final norm of Objective Bayesianism is Equivocation. This norm says that

degrees of belief should be as equivocal as is consistent with the evidence. That is,

Calibration determines a set of possible probability functions, and Equivocation

determines which of those should be used as your belief: it picks the most equiv-

ocal one. The most equivocal member of P is denoted ⇓P . This is a necessary

step since Williamson’s version of the Probability norm only allows for a single

probability to represent belief. Equivocation can be seen as one way of cashing

out what I think of as the “dual norm” of Calibration: you should not believe

anything more strongly than is sanctioned by the evidence. I agree with this

idea: that evidence constrains belief, and that going beyond your evidence is also

unreasonable. However, I take issue with Williamson’s cashing out of this idea

in terms of his Equivocation norm. I will say two things about this. First, I will

discuss Williamson’s argument from caution. Second, I will discuss Williamson’s

argument against the interval-valued probabilist.

Equivocation, for the Objective Bayesian, amounts to choosing the probability

function consistent with the evidence that is closest to the equivocator function.

This is a special probability function that assigns the same probability to all

atoms of the algebra of events. The argument for this Equivocation norm is

another pragmatic argument: equivocal beliefs lead to more cautious behaviour

and thus minimise worst-case expected loss. Williamson’s argument relies on the
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Figure ..: The decision problem of Example 

following claim: “the risks associated with actions triggered by middling degrees

of belief tend to be less severe than those triggered by extreme degrees of belief.”

(Williamson , pp. –). The argument for this is an appeal to intuitions: you

can afford to take risky decisions only when you are confident of the outcome

(that is, only when you have extreme beliefs). But I think Williamson is conflating

degree of belief and degree of support. The following example serves to illustrate

the difference.

Example  You are betting on a coin of unknown bias. It will be tossed twice.

The following bets are available to you.

Half Win £0.50

Different Win £1` ε if the coin lands on different sides each time,

win ε otherwise

HH HT TH T T

Half 0.5 0.5 0.5 0.5

Different ε 1` ε 1` ε ε

As is clear from Figure ., Different maximises expectation only when prpHq

is very close to a half. Imagine you have no evidence about the bias of the coin.

It seems the high risk action – the action with higher variance in expectation – is

the one sanctioned by a middling credence. Extreme beliefs in this case would
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sanction the constant (zero risk) action. If you were now given lots of evidence

that the coin lands heads very nearly half the time, then and only then does it seem

reasonable to choose betting on Different. This illustrates that it isn’t high degree

of belief that triggers high-risk actions, but it is high degree of support. The two

are indistinguishable at the level of beliefs in the Objective Bayesian framework;

this prompts Williamson to conflate them.

So I don’t think Williamson’s argument from caution works. Williamson is

committed to getting close to the equivocator being the right way to have non-

committal beliefs. I would argue that taking the full set of probabilities consistent

with the evidence is the more non-committal approach. Williamson meets this

challenge head-on (pp. –). There are two arguments against the imprecise

view that I wish to address.

First, Williamson argues that imprecise probabilities can fail to determine an

optimal action. He may be right about this, although a more sophisticated analysis

of imprecise decision theory would be required to properly ground this claim (see

chapter ). But even if it is true that imprecise probabilities make decision making

hard, this is not a bug: it’s a feature! In the presence of severe uncertainty decision

making should be hard. It’s obvious that if you have very little evidence, then it

should be difficult to determine what the best course of action is. So Williamson’s

claim that Objective Bayesianism is better because it makes decision theory easier

is misguided: it makes decision theory too easy. There are only some circumstances

when “Newtonian mechanics is easy, so we should use it rather than GR” is a

good argument. Important, decision relevant uncertainties are lost when you

equivocate. It is helpful to know when your evidence doesn’t make choice among

the options straightforward. This should focus the decision maker on other aspects

of the available options, like their reversibility, their robustness, their adaptability

and so on. This line of argument will take centre stage in a later chapter. This

argument can be recast in terms of my weaker version of rationality. Williamson

argues that imprecise probabilities might fail to determine a best course of action.

I argue that such a failure is an advantage because imprecise probabilities fail to

determine an optimal action just when we shouldn’t expect rational constraints

on choice to determine such an action.

Williamson’s second argument against imprecise probabilities is a direct re-

The figure has ε “ 0.05. If the figure isn’t sufficiently convincing, consider that as ε tends to 0,

Different tends to a weakly dominated act.
Williamson is actually concerned with interval-valued probabilities, but his comments carry

over to the full imprecise probabilities framework.
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sponse to the claim that Objective Bayesianism fails to distinguish weight of

evidence and balance of evidence. Williamson argues that on the contrary, impre-

cise probabilism is wrong to make the distinction. This is because weight/balance

is a distinction concerned with evidence, not with belief. The claim is that the

distinction should not be represented at the level of belief. Williamson is right

that the weight/balance distinction is one that is primarily about evidence. But, I

would argue that the weight/balance distinction is decision relevant. And if it is

belief – not evidence – that informs decision, the distinction needs representing

on the level of belief. If I am right about Williamson’s conflating of degree of

belief and degree of support in his discussion of extreme beliefs leading to risky

actions, then he has already really conceded that both parts of the distinction are

decision relevant.

Ultimately, my objection boils down to this: I feel it is important that the full

range of the set of probabilities be represented. The equivocation norm is the

wrong way to be true to Clifford’s maxim. We shouldn’t want to try to reduce our

uncertainty down into a single probability measure. Representing the diversity of

the calibrated probability functions is important.

... Suspending judgement

A precise Bayesian can’t even ask when it is reasonable to suspend judgement.

That is, the precise probabilist does not have the resources to represent the state of

withholding belief. This is related to the distinction between weight and balance

mentioned above.

Consider the coin of unknown bias again. The Bayesian agent must have a

precise belief about the coin’s landing heads on the next toss. Given the complete

lack of information about the coin, it seems like it would be better just to suspend

judgement. That is, it would be better not to have any particular precise credence.

But there just isn’t room in the Bayesian framework to do this. The function must

output some number.

It is helpful to look at the relationship between DS theory and probability theory

in this context. One interpretation that is given of the Dempster-Shafer belief

function belpXq is that it represents the degree to which the available evidence

supports X. Then belp Xq is the degree to which the evidence supports  X. One

can then consider the quantity IpXq “ 1´belpXq ´belp Xq. This measures the

degree to which the evidence is silent on X. Huber () points out that precise

Williamson tacitly concedes this in using his model of belief to discuss decisions.
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probabilism – which is a special case of DS theory – can then be understood as

making the claim that no evidence is ever silent on any proposition. That is,

IpXq “ 0 for all X. One can never suspend judgement. This is a nice way of seeing

the strangeness of the precise probabilist’s attitude to evidence.

The committed precise probabilist would respond that setting prpXq “ 0.5 is

suspending judgement. This is the maximally noncommittal credence. I would

argue that this only seems to be the right way to be noncommittal if you are wedded

to the precise probabilist approach. Suspending judgement is something you do

when the evidence doesn’t determine your credence. But for the precise probabilist,

there is no way to signal the difference between suspension of judgement and

strong evidence of probability half. This is just the weight/balance argument

again.

To make things more stark, consider the following delightfully odd example

from Adam Elga:

A stranger approaches you on the street and starts pulling out objects

from a bag. The first three objects he pulls out are a regular-sized tube

of toothpaste, a live jellyfish, and a travel-sized tube of toothpaste. To

what degree should you believe that the next object he pulls out will

be another tube of toothpaste? Elga (, p. )

In this case, unlike in the coin case, it really isn’t clear what intuition says about

what would be the “correct” precise probabilist suspension of judgement. What

Objective Bayesian Equivocation recommends will depend on seemingly arbitrary

choices about the formal language used to model the situation.

Another response to this argument would be to take William James’ response to

W.K. Clifford. James argued that as long as your beliefs are consistent with the

evidence, then you are free to believe what you like. So there is no need to ever

suspend judgement. Thus, the precise probabilist’s inability to do so is no real

flaw. This attitude, which I called epistemic voluntarism has some adherents, but

also some detractors. The main line of argument against voluntarism is that there

is no reason for your belief’s being thus and so, rather than some other way.

I side with the Objective Bayesian in thinking that it is better for your beliefs

to not have this subjective, unreasoned element. Your evidence should not just

constrain your belief; it should determine it. There is then a need to be able to

suspend judgement when evidence is silent. That is, we are interested in rational
Williamson is well-aware of this language relativity problem. He argues that choice of a language

encodes some of our evidence.
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belief: belief informed by rational constraints. When the evidence is silent, it

seems that rationality cannot but require that you suspend judgement.

On the subject of suspending judgement, consider the question of logical omni-

science again. In the case of full or categorical belief, you can be logically ignorant

in two distinct ways: you can believe the negation of a consequence of your other

beliefs; or you can simply fail to believe some consequence of your beliefs. The sec-

ond is clearly a lesser sin, and the modifications to your beliefs required in order

to accommodate believing the consequence are easier to achieve. In the graded

belief case, there is no such distinction: a precise probabilist must have some

particular value attach to every proposition. There is only one way to be logically

ignorant; which is to fail to believe consequences of a proposition more strongly

than the proposition itself. There is no easy way to effect the appropriate belief

change in order to accommodate learning of your mistake for the precise proba-

bilist. I take this to show that if we wanted to explore logical ignorance and graded

belief, an imprecise probabilist framework, with its resources for suspending

judgement, would be better suited than a precise probabilist framework.

... Regress, vagueness and practicality

Imprecise probabilities is a theory born of our limitations as reasoning agents,

and of limitations in our evidence base. If only we had better evidence, a single

probability function would do. But since our evidence is weak, we must use a set.

In a way, the same is true of precise probabilism. If only we knew the truth, we

could represent belief with a valuation function, or just a set of sentences that are

fully believed. But since there are truths we don’t know, we must use a probability.

And indeed, the same problem arises for the imprecise probabilist. Is it reasonable

to assume that we know what set of probabilities best represents the evidence?

Perhaps we should have a set of sets of probabilities. . . Similar problems arise for

theories of vagueness (Sorensen ). We objected to precise values for degrees

of belief, so why be content with sets-valued beliefs with precise boundaries?

This is the problem of “higher-order vagueness” recast as a problem for imprecise

probabilism. Why is sets of probabilities the right level to stop the regress at? Why

not sets of sets? Why not second-order probabilities? Why not single probability

In the belief revision literature this can be made precise: Remedying the situation where you

fail to believe a consequence is achieved by an addition. Remedying the situation where you

believe the negation of a consequence is achieved by a revision, which is (by the Levi identity)

a contraction then an addition (Hansson ).
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functions? This is something of a pragmatic choice. The further we allow this

regress to continue, the harder it is to deal with these belief-representing objects.

So let’s not go further than we need.

I have argued above that imprecise probabilism does have some advantage

over precise probabilism, in the capacity to represent suspending judgement, the

difference between weight and balance of evidence and so on. So we must go at

least this far. But for the sake of practicality, we need not go any further. This

is, ultimately, a pragmatic argument. Actual human belief states are probably

immensely complicated neurological patterns with all the attendant complexity,

interactivity, reflexivity and vagueness. We are modelling belief, so it is about

choosing a model at the right level of complexity. If you are working out the tra-

jectory of a cannonball on earth, you can safely ignore the gravitational influence

of the moon on the cannonball. Likewise, there will be contexts where simple

models of belief are appropriate: perhaps your belief state is just a set of sentences

of a language, or perhaps just a single probability function. If, however, you are

modelling the tides, then the gravitational influence of the moon needs to be in-

volved: the model needs to be more complex. I am arguing that an adequate model

of belief under severe uncertainty needs to move beyond the single probability

paradigm. But a pragmatic argument says that we should only move as far as we

need to. So while you need to model the moon to get the tides right, you can get

away without having Venus in your model. This relates to the contextual nature

of appropriateness for models of belief that I mentioned earlier.

... Nonprobabilistic chance

What if the objective chances were not probabilities? If we endorse some kind

of connection between known objective chances and belief – for example, Lewis’

Principal Principle (Lewis ) or a form of calibration norm – then we might

have an additional reason to endorse imprecise probabilism. It seems to be a

truth universally acknowledged that chances ought to be probabilities, but it is

a “truth” for which very little argument has been offered. For example, Schaffer

() makes obeying the probability axioms one of the things required in order to

play the “chance role”, but offers no argument that this should be the case. Joyce

() says “some have held objective chances are not probabilities. This seems

unlikely, but explaining why would take us too far afield.” (p. , fn. ). Various

other discussions of chance – for example in statistical mechanics (Frigg b;

Loewer , ) or “Humean chance” (Lewis , ) – take for granted
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that chances should be probabilistic. Obviously things are confused by the use

of the concept of chance as a way of interpreting probability theory. There is,

however, a perfectly good pre-theoretic notion of chance: this is what probability

theory was originally invented to reason about, after all. This pre-theoretic chance

still seems like the sort of thing that we should apportion our belief to, in some

sense. And there is very little argument that chances must always be probabilities.

If the chances were nonprobabilistic in a particular way, one might argue that

your credences ought to be nonprobabilistic in the same way.

I want to give a couple of examples of this idea. First consider some physical

process that doesn’t have a limiting frequency but has a frequency that varies,

always staying within some interval. It might be that the best description of such

a system is to just put bounds on its relative frequency. If we took a Humean

perspective on what chances are, this would make it the case that its chance is

nonprobabilistic (Hájek and Smithson ). If you were committed to appor-

tioning your credence to the chances, then in worlds with these sorts of entities,

you ought to have nonprobabilistic credences. If instead you lived in a world of

genuine indeterminacy, then imprecise statistics would also move you towards

nonprobabilistic credence (I discuss imprecise statistics in the next section).

.. Formal arguments for imprecise probabilism

I have above discussed some conceptual, epistemological reasons to consider

imprecise probabilism superior. I now consider more formal arguments. These

include some subversions of the arguments for probabilism that occurred in the

last chapter, as well as some new ones.

... Completions of incomplete preferences

As should be clear from the previous discussion, I am no fan of complete prefer-

ences (section ..,..). However, I don’t believe that complete preferences are

irrational: I simply feel that completeness of preference is a counsel of perfection.

Since there is an Ought-Can principle at work, and since you cannot always have

complete preferences because of severe uncertainty, it follows that we must not

demand that you ought to have such preferences. My objection to completeness is

a “not-ought” objection, not an “ought-not” objection.

Precise probabilism is serving as a regulative ideal. Completeness of preference
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is what the thoroughly informed agent ought to have. Without complete prefer-

ence, Savage’s representation theorem doesn’t work. However, for each completion

of the incomplete preference ordering, the theorem follows. So if we consider the

set of probability functions that are such that some completion of the incomplete

preference is represented by that function, then we can consider this set to be

representing the beliefs associated with the incomplete preference. We also get,

for each completion, a utility function unique up to linear transformation.

A similar kind of argument can be given for the richness assumptions. That

is, the uncountable infinity of states required to ensure the uniqueness of the

probability function was considered unreasonable in the previous chapter. If

this richness is considered, not as a condition on reasonable models of decision

problems, but as a condition of extendibility, then it isn’t as unreasonable. The idea

is that your state space may be finite or countably infinite, but it should at least in

principle be possible to extend it consistently to a richer one. So again, consider

each possible sufficiently rich extension of a finite or countable state space. For

each extension, the representation theorem holds. Taking the set of probability

functions thus acquired delivers us an imprecise probability representation.

So, sets of probabilities offer a representation of incomplete preferences or

incomplete qualitative belief orderings. If all we wanted was a way to represent

incomplete beliefs, what need would we have of this framework, however? Surely

the preference ordering or the belief ordering itself would serve as a good enough

representation. However, there are kinds of belief state, kinds of opinion, that

I feel I have and that the ordinal representation fails to adequately represent.

For example, I can think “X is much more likely than Y ”, or that “X and Y are

independent”. These kinds of belief attitude aren’t captured by the ordinal

representation. So the set of probability approach allows one to represent these

more subtle kinds of belief state. Thus we should move beyond the merely ordinal

representation of belief.

Given that a particular purely ordinal preference ordering that satisfies Savage’s

postulates will have a unique probability representation, it could be argued that

the “is twice as likely” type information is somehow in the ranking. The point,

however, is that it isn’t represented in a way that we can easily see it. If we want a

I don’t wish to wade into the debate about genuinely incommensurable goods. For the purposes

of the current debate, let’s assume there are no such basic incommensurabilities in play. But

see Hsieh ().
Obviously, I can’t be appealing to probabilistic independence here, but there is an intuitive sense

in which events can be independent.
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model where we can discuss this kind of “slightly more than ordinal” information,

the brute preference ordering isn’t appropriate, even if it is in some sense formally

adequate to express those aspects of belief.

The purely ordinal approach to representing belief can’t do justice to the action

guiding dimension of decision theory. Consider the choice between bets pX,αq

and pY ,βq where X �b Y but β ≺u α. That is, X is more likely than Y , but the bet

on Y leads to a better prize (the bet costs less). How are we to trade off the better

prize versus the bet more likely to win? It depends on the strength of belief and

how much the prizes are valued. The representation theorems take these sorts of

preferences among bets – or lotteries or acts more generally – and uses them to

determine cardinal measures of belief and value. But if you want to use decision

theory as a way to help us determine these preferences by using your attitudes to

the events and prizes, then the purely ordinal approach isn’t sufficiently expressive

to allow you to make all the determinations you might want.

... Unknown correlations

Haenni et al. () motivate imprecise probabilities by showing how they can

arise from precise probability judgements. That is, if you have a precise proba-

bility for X and a precise probability for Y , then you can put bounds on prpX^Y q

and prpX _ Y q, even if you don’t know how X and Y are related. These bounds

give you intervals of possible probability values for the compound events.

For example, you know that prpX^Y q is bounded above by prpXq and by prpY q

and thus by min{prpXq,prpY q}. If prpXq ą 0.5 and prpY q ą 0.5 then X and Y must

overlap. So prpX ^Y q is bounded below by prpXq`prpY q´ 1. But, by definition,

prpX ^ Y q is also bounded below by 0. So we have the following result: if you

know prpXq and you know prpY q, then, you know that prpX^Y q is somewhere in

the interval:

rmax{0,prpXq`prpY q´ 1} , min{prpXq,prpY q}s

Likewise, bounds can be put on prpX_Y q. prpX_Y q can’t be bigger than when

X and Y are disjoint, so it is bounded above by prpXq`prpY q. It is also bounded

above by 1, and thus by the minimum of those expressions. It is also bounded

below by prpXq and by prpY q and thus by their maximum. Putting this together,

Apparently Seidenfeld and Levi also favour this motivation.
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prpX _Y q will be in the interval:

rmax{prpXq,prpY q} , min{prpXq`prpY q,1}s

So if your evidence constrains your belief in X and in Y , but is silent on their

interaction, then you will only be able to pin down these compound events to

certain intervals. Any choice of a particular probability function will go beyond

the evidence in assuming some particular correlation between X and Y . That is,

prpXq and prpX|Y q will differ in a way that has no grounding in your evidence.

... Imprecise statistics

The statistical evidence that we often use to constrain our beliefs does not, as a

rule, give us precise probabilities. This is the motivating idea behind the work

of Peter Walley (Walley , ; Walley and Fine ). This is related to a

similar idea propounded by Kyburg and Teng (), which I will discuss later.

A contrived example will serve to illustrate the idea behind what I mean by

“imprecise statistics”. Imagine you are collecting statistics on hair colour, and

you have a number of categories: Grey, Blonde, Brown, Black. . . And imagine you

are collecting data in the evening. You see someone who has dark hair, but you

can’t tell whether they have brown or black hair, given that the light is fading.

You might be tempted just to guess one way or the other and put the subject in

one category. However, the motivating idea behind imprecise statistics suggests

putting the subject in the disjunctive category “Brown or Black” without putting

them in either of the disjunct categories. The statistics thereby built up would be

superadditive, but not additive.

... Imprecise scoring rules

This argument has some of the same flavour as the “completions of incomplete

preference” idea above. If epistemic utility arguments appeal to you, but you

can’t decide on exactly which inaccuracy measure to use, then take the set of all

probability functions that accuracy dominate your nonprobabilistic belief and

take this set as the right belief.

One might want to go further and try to generalise epistemic utility functions

such that they can measure the utility of sets of measures. Then one might try to

prove that sets of probability functions are vindicated. I don’t know of any work

in this area.
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Perhaps it would help to step back and ask the more basic question. What makes

a set of probabilities a good belief? First let’s look at the question of what makes a

good probabilistic belief. Say you make a prediction that there’s a % chance of

a “barbecue summer”. That summer in fact turns out to be unusually cold. You

take a lot of flak for having made a bad prediction. How aggrieved should you

be? More generally, when is a probabilistic prediction a good one? There is quite a

literature on this question. For example, see Bröcker and Smith ().

One can score beliefs in the same way you can score probabilistic forecasts.

This gives you a way to answer the question “What is a good belief?”. The same

question arises in the imprecise probabilities setting. What is a good imprecise

belief? Can scoring rules be modified to answer this question? One crude attempt

at scoring imprecise beliefs would be to take the set of inaccuracy values for each

pr P P as representing the inaccuracy of the representor. Note the analogy to

taking sets of expectation pointwise. We could then consider the upper and lower

limits of this set of inaccuracies. I don’t know of any work on this, and am sceptical

that this crude approach will yield much in the way of interesting results.

If the aim were to use some sort of scoring rules approach to vindicate impre-

cise probabilism, we would have to be careful to set things up so as to not give

an advantage to singleton probabilities. For example, if the inaccuracy of the

representor were its average inaccuracy, then there would always be a precise

probabilistic belief with lower inaccuracy: that’s how averages work! Implicit

in the DS approach to belief – with its understanding of “suspend judgement”

to mean belpXq “ 0 “ belp Xq – is the idea that it is better to underestimate a

chance that to overestimate it. Presumably if we built scoring rules that built in

this asymmetry then they would vindicate DS theory over probability theory. In

fact, it is some sort of asymmetry of this sort that was at work in my earlier Dutch

book theorem for DS theory: focus on the buying odds (the αXs) means that we

end up with DS belief functions. Williams (a) points to an analogy between

Dutch book arguments and gradational accuracy. Betting success could be seen as

a kind of score, so this gives hope for the possibility of “asymmetric” gradational

accuracy arguments to vindicate nearby theories.

It is well known that the Brier score can be decomposed into parts, each of

which can be given an intuitive interpretation (Joyce , Section ). The decom-

position in fact holds of any strictly proper scoring rule (Bröcker ). The terms

Let’s not worry for now what I mean by average.
The decision problems of Frigg et al. (b) set up an asymmetry by only offering selling odds,

and not buying odds. So the conclusion there is effectively a DS plaus measure.
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of the decomposition are a calibration term and a discrimination term. The first

tells you how reliable your belief was and the second tells you how informative

your belief was. Presumably any sort of asymmetry in the scoring rule should

be built into the calibration part, rather than the discrimination part.

... Non-classical logic

We saw earlier that at least the Dutch book and gradational accuracy arguments

can be subverted by replacing the underlying logic by a non-classical one. If

you were a big fan of intuitionistic logics of some variety, for example, then

perhaps these facts would convince you to abandon probability theory. However,

this route would not lead you directly to a sets-of-probabilities approach, since

the conclusions of the above mentioned arguments sanctioned Dempster-Shafer

theory. Indeed, it is built into both frameworks that some sort of single-function

model of belief will be chosen.

So to make this sort of argument work for me, I would need to argue that sets of

probabilities offer a good explication of DS theory and other nearby theories. I

will do a bit of this in section .. But I don’t consider this my main motivation

for imprecise probabilities, so I won’t discuss this too much.

.. Nearby theories

Imprecise probabilities do not exist in a vacuum. There are many similar alterna-

tives to precise probabilism in the vicinity. I discuss a few of the more important

and more interesting ones.

... Evidential probabilities

Evidential probabilities are a kind of “interval-valued” probability together with

a thorough theory for inferring them from statistical data, and for logically rea-

soning about them. The theory is most fully set out in Kyburg and Teng ()

and more clearly in Haenni et al. (); Wheeler and Williamson (). The

theory is discussed more with an eye to the concerns of psychologists and experi-

mental economists in Kyburg (). The fundamental guiding principle behind

This is following Joyce. The discrimination term can be further broken down into terms that

Bröcker calls “uncertainty” and “resolution”. The details aren’t important at this level.
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the inference from data step comes from “Reichenbach’s principle”, which can be

explained as follows:

If we are asked to find the probability holding for an individual future

event, we must first incorporate the case in a suitable reference class.

An individual thing or event may be incorporated in many reference

classes. . . We then proceed by considering the narrowest reference class

for which reliable statistics can be compiled.

Reichenbach quoted in Kyburg and Teng (, p. )

Given a particular significance level, we take statistically significant sample

frequencies as evidence of population frequencies. The significance level is used

to determine the “Evidential Corpus” of evidence claims that determines belief.

We give a kind of “confidence interval” of values for the population frequency. We

take this interval as an interval-valued representation of the correct belief about

the property in question. The significance level, which is somewhat subjective,

can be thought of in this context as a sort of “threshold for reliability of statistics”.

Relative to this choice of significance level, the impact of evidence is objective

and determinate. So evidential probabilities are relative to a choice of significance

level. This is an element of subjectivity in the theory.

Wheeler and Williamson () discuss using evidential probabilities as a

method for putting restrictions on which probability functions are compatible

with a certain corpus of statistical data. If we stop there – rather than going

the further step and equivocating – then we can take evidential probabilities as

sanctioning a particular (imprecise) representor as the correct belief to have about

the world.

I don’t take evidential probabilities to be a rival to my brand of imprecise prob-

abilism, so much as a method for inferring representors from data. Indeed, I am

sympathetic to Wheeler and Williamson’s interpretation of evidential probabilities

as providing a method for carrying out the Calibration procedure of Objective

Bayesianism.

As typically understood, Evidential Probabilities are interval-valued functions,

or at least set-valued functions. They are not sets of probability functions. How-

ever, it is easy enough to understand the interval valued function as determining

a set of probabilities, P , such that P pXq is exactly the interval for X for all X.
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... Unreliable probabilities

Gärdenfors and Sahlin () introduce a theory that they term Unreliable Prob-

abilities. It bears some resemblance to Kyburg’s theory – they in fact discuss

Kyburg – but it is a theory built with decision making in mind. The basic idea

is that you have a set of probabilities and attached to each probability function

is a measure of its reliability. Depending on the circumstances, you pick some

reliability threshold ρ0 and restrict your attention to the set of probabilities that

are at least as reliable as that threshold. They then have a story about how decision

making should go with this set. I defer discussion of the decision part to a later

chapter. Note that they don’t really need a measure of reliability, all they need

is something to order the probabilities in P . The threshold then becomes some

cut-off probability: anything less reliable than it doesn’t make the cut.

Gärdenfors and Sahlin don’t really discuss this measure of reliability a great

deal. Presumably reliability increases as evidence comes in that supports that

probability function. Gärdenfors and Sahlin offer an example to illustrate how

reliability is supposed to work. They consider three tennis matches. In match A,

you know that the two tennis players are of roughly the same level and that it will

be a tight match. In match B, you have never even heard of either player and so

cannot judge whether or not they are well matched. This should remind you of

the weight/balance distinction I discussed earlier. In match C you have heard that

the players are really unevenly matched: one player is much better than the other,

but you do not know which of the players is significantly better. If we graphed

reliability of a probability against how likely that probability thinks it is that the

player serving first will win, the graphs would be as follows: graph A would be

very sharply peaked about 0.5; graph B would be quite spread out; graph C would

be a sort of “U” shape with high reliability at both ends, lower in the middle.

Graph A is peaked because you know that the match will be close. You have

reliable information that the player serving has about a % chance of winning.

Graph B is spread out because you have no such information in this case. In case

C, you know that the probability functions that put the chances at near – are

unreliable: all you know is that the match will be one-sided.

The index on Kyburg’s evidential corpora and the current reliability index

Let’s assume there are no other events in our algebra in order to guarantee that each probability

value for server-wins corresponds to one and only one probability. This is for illustrative

purposes only.
Case C here is an excellent example of why convexity of imprecise probabilities should not be

mandated.
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threshold both indicate a place where an element of subjectivity enters rational

belief. Where to set that cut-off affects which things get counted as beliefs and

which things influence learning, deliberation, choice, action, assertion and so on.

The threshold is somewhat arbitrary, perhaps context sensitive, but not rationally

derivable in any case.

What might be part of deciding how reliable pr P P is? One idea we might

use is that probabilities that have scored well at predicting past evidence (by

the lights of some scoring rule like the Brier score, for instance) are reliable.

Probabilities that consistently assign high probability to events that don’t happen

and low probability to events that do happen will not score well and will thus be

considered unreliable. This method of scoring the reliability of probabilities will

help with some of the problems we encounter in section ..

What might be deciding what the threshold for inclusion in P is? Earlier I

suggested that it could include an element of subjectivity. It should vary with

context. Perhaps the threshold should be something like “anything more than

% of the most reliable pr gets in”.

With this framework we can begin to ask some interesting questions: such

as “what are the preconditions for reliability to covary with distance from the

equivocator?” Williamson seems to think that reliability always covaries with

distance from ⇓P ; I have discussed above why I think this is mistaken. However,

the two things will often coincide and it would be interesting to see whether we

can understand more carefully what the relationship is.

... Dempster-Shafer theory

We have already met some of the formal details of Dempster-Shafer theory in

section ... Here I outline a little more broadly the motivations behind the

project.

The DS belief function belpXq is considered to represent the degree to which

the evidence supports X. To return to the imprecise statistics example, we can see

that the evidence that the subject has dark hair supports the proposition that the

subject has brown or black hair, but one might take the view that the evidence

isn’t sufficient to support either disjunct.

It is well known that DS belief functions are intimately related to imprecise

I’m not suggesting that this interpretation of the situation is uncontroversial: a committed

precise Bayesian might argue that dark hair is equally strong evidence for each disjunct, or

something along those lines.
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probabilities. Every DS belief function can be associated with a set of probabilities

such that the lower probability of that representor is that DS function. This is

the content of Halpern’s theorem .. (Halpern , p. ).

The problem, I feel, with DS theory is that it makes decision theory harder,

without really providing the advantages of imprecise probabilities. But I want to

just focus on one way that decision making with DS belief functions seems to get

things wrong. Let’s imagine that we want DS decision making to work more or

less like it does for probabilities. That is, we want to take the bel function and just

drop it in as a replacement for pr throughout our decision making discourse. So

agents should be acting to maximise:∑
i

belpXiqupapXiqq (.)

There’s a little subtlety here. What is that i ranging over? That is, what are the

Xi? Is it ranging over the atoms? Is it ranging over some partition such that each

act is constant on each element of the partition? Since probabilities are additive,

this doesn’t matter at all for the precise probabilist. But for DS belief, it matters a

lot! Consider this pair of bets on a coin of unknown bias: {pH,0.4q,pT ,0.4q}. This

should straightforwardly come out as being an acceptable set of bets whatever

your beliefs. But consider the DS-expected utility on the partition {H,T }:

belpHqp1´ 0.8q`belpT qp1´ 0.8q (.)

Now, if bel is such that belpHq “ 0“ belpT q, as would be reasonable for complete

ignorance of the coin’s bias, then this set of bets is valued at zero. Valuing this

set of bets at 0 determines preferences that are in conflict with Bet Dominance.

However, the act of taking both bets also happens to be constant on the trivial

partition {J} since H _ T ” J. With this partition, the DS-expected value comes

out as 0.2.

There are two lessons to take from this. First, DS-expected utility seems to be

sensitive to choice of partition. I take this to be a flaw of a decision theory. This

sort of difference of presentation should not affect the choiceworthiness of the

acts. Second, some choices of partition seem to lead to undesirable choice profiles.

The natural way to pick a partition in a principled way would be to just sum the

bel-weighted utilities over the atoms. But this choice is most likely to lead to

odd results, as equation (.) shows. I suppose you could try to argue that the

correct partition is the coarsest partition such that all the acts are constant on all

The set of probabilities is not unique. There is, however, a unique convex set.
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the elements of that partition. This would rule in favour of the trivial partition

in the example. But this sort of rule looks ad hoc, and vulnerable to odd results

through gerrymandering the set of bets on offer to manipulate the partition.

Imprecise probabilities don’t have this problem. Expectation is done pointwise

for each member of the representor, and since each pr P P is a probability, the

choice of partition doesn’t matter. These problems for DS theory are also problems

for many similar theories: Choquet expected utility, upper and lower probabilities,

interval valued probabilities and so on. In each case, the way out of the problem

is to find the imprecise probability that best matches the representation, and

use that as the basis for decision making. As I suggested above in the case of

Evidential Probability, one can interpret an interval valued probability as the set

of probability functions with values in the intervals.

.. Updating beliefs

So far, I have only discussed “static” or “synchronic” structure on belief. But

beliefs change in response to evidence. I won’t have too much to say about this

in the following chapters, but I feel something should be said about updating

sets of probabilities. There are two reasons for this. First, no formal model of

belief would be complete without a discussion of how belief should respond to

new evidence. Second, imprecise probabilities suffer from some problems with

updating.

... Kinds of learning

There are, as I see it, several kinds of updating. I shall describe a few here. I

don’t mean to suggest that this list is exhaustive, nor that each kind of learning

requires its own mechanism. But there do seem to be interesting distinctions to

draw between each of the following kinds of learning.

Learning a proposition

The simplest kind of learning is arguably learning that a proposition is true. This

is the sort of learning that is straightforwardly modelled by conditionalisation

For an alternative characterisation of types of learning, see Bradley () where three types of

learning are considered – revision, formation and withdrawal – with parallels to the literature

on AGM-type revision for full belief.
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in the precise case. The most obvious way to update sets of probabilities in this

case is to take sets of updated probabilities. And it seems natural to understand

“updated probabilities” as meaning conditionalised probabilities. Grove and

Halpern () offer a theorem that says that given certain conditions on how

updating should work, sets of conditionalised probabilities is the only method for

updating imprecise probabilities. Their conditions are not all intuitive and I don’t

mean to discuss them further.

An argument for a slightly weaker conclusion goes as follows. Whatever else

happens, updating for singleton sets of probabilities should be exactly like updat-

ing single probability functions. This is effectively a kind of “boundary condition”

on updating. We want things to reduce to conditionalisation in the precise limit.

The imprecise probabilities framework I am developing is supposed to be a some-

what conservative generalisation of orthodox Bayesianism. Take P E to be P
updated on evidence E. This first condition amounts to:

If P “ {pr} then P E “ {prp¨|Eq} (.)

Second, if P contains all the functions in P 1, then updating P should result in a

representor that contains all of the updated version of P 1. That is:

If P 1 Ď P then P 1E Ď P E (.)

This second condition can be seen as a commitment to a kind of “pointwise” view

of how updating should work. It denies that any kind of holistic properties of the

representor should impact on how each committee member updates. Together,

these imply that an updated representor should contain at least all the conditional

probabilities of its members. The procedure that takes the updated represen-

tor to be exactly the set of conditional probabilities has been called generalised

conditioning.

A related, more restricted kind of updating has been contemplated by Gilboa

and Schmeidler (). They take the updated representor to consist of only those

conditionalised probabilities that assigned the evidence a high prior probability.

They call this “Maximum likelihood” updating. This is a “subset” of generalised

conditioning, in that the ML update is always contained in the GC update.

Learning a constraint

Imagine if you were to learn “X is more likely than Y ”. This seems like it is

interestingly different from learning the truth of a proposition. This sort of
Proof: P Ě pr for all pr P P . So P E Ě {prp¨|Eq for all pr P P .
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updating might best be captured by recalibrating. That is, by repeating the

calibration procedure we discussed in section .. and section ...

Henry Kyburg’s Evidential Probabilities aren’t updated by conditioning. At

each stage, the same process is conducted: given the current state of evidence,

the evidential probability of X is the proportion of Xs in the smallest reference

class for which we have good statistics. When new evidence comes in, the EP in

X could change if the evidence determines statistics for a smaller reference class

containing X.

The Objective Bayesian paradigm also rejects conditionalising as a method of

updating. Like Evidential Probabilities, OB uses the same procedure to determine

credence at each stage. Evidence determines the set of consistent probabilities,

and then you must equivocate over them. If we ignore the equivocation part, we

have a view of learning where new evidence can change the belief in X if the

evidence rules out some previously consistent probability functions.

The difficulty that these sorts of approaches have is to do with diachronic consis-

tency and reasoning about the future. It seems reasonable that what you imagine

your beliefs would be were you to learn E and what your beliefs actually are once

you learn E should match. In orthodox Bayesianism, the conditional probability

plays a double role in being both belief under supposition of E and belief up-

dated by E. So responses to evidence that take this recalibration route must tell

a convincing story about how supposing-that-E beliefs relate to learning-that-E

beliefs. If supposing that E involves doing the updating “in a subjunctive mood”,

or something like that, then there will be no inconsistency, but it will probably

be computationally intensive. The nice thing about the orthodox Bayesian way is

that the supposing-that-E beliefs are already part of your credence.

Undermining evidence

Another possible sort of learning is to discover that some source of evidence

previously thought to be reliable turns out not to be. You then have to reassess

all the evidence that came to you from that source in the light of its unreliability.

Weisberg () gives an example of this sort of evidence.

What you’d like to do in response to this sort of evidence is “rewind” to before

you learned whatever it was the unreliable source told you, and then go through all

your evidence since then and revise your attitudes in the light of it, without your

belief state being tainted by the unreliable evidence. Whether such a procedure is

practicable or even possible is something I shall not discuss further.
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Testimony and higher-order evidence

This is related to the above kind of update. You interact with other agents and

they will report their opinions to you. What are you to make of these reports? On

some simple models, you will take the other agents to be perfectly truthful and

this kind of learning will collapse into the first or second kind. But what if the

reports are noisy? Or the agents possibly strategically untruthful? What sort of

change in belief is appropriate in these circumstances? Under this heading we

can group concerns about the epistemology of disagreement (Christensen ) as

well as discussions of principles of reflection (van Fraassen ): think of your

future self as another agent whose opinions you care about. We can also see work

in Bayesian epistemology on unreliable signals as being an attempt to model this

sort of update (Bovens and Hartmann , Chapters  and ).

Language change

Even more drastically, we can imagine modelling changes in formal language that

describe the objects of belief. For instance, an agent might learn that “Superman”

and “Clark Kent” are co-referring terms. Or that “The philosopher Nagel” could

refer to either of at least three distinct persons. Or imagine someone at the

beginning of the Nineteenth Century. Such a person would not have had any

beliefs about the planet Neptune, since it wouldn’t be discovered until the middle

of the century. After its discovery in , astronomers had to expand the set

of propositions over which they had beliefs given all the new kinds of Neptune-

related facts they now had.

... Dilation

There are, as we have seen, a number of different ways you might try to update your

credences on learning new evidence. In this section, I discuss some problems for

generalised conditioning and related theories. I focus on generalised conditioning

because it is the most common updating rule assumed in the literature and

because it is closest in spirit to orthodox Bayesianism. It makes achieving precise

Bayesianism in the precise limit easy. So these are problems for learning of the

first type.

Imprecise probabilities suffer from two updating-related problems. The first

of these – dilation – is well studied. This section will discuss it briefly. The next

section deals with the less discussed problem of belief inertia. These are problems
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for generalised conditioning and related updating methods like the maximum

likelihood method.

Dilation occurs when a precise representor becomes less precise on learning

something. This seems worrying, since one would hope that evidence should

decrease your ambiguity and thus sharpen your beliefs. Roger White’s coin puzzle

(White ) has been influential in the debate about imprecise credence in the

philosophy literature, and so I feel I should outline and discuss his example. The

example is, however, a little more complex than it needs to be, so once I have set

out his example, I will introduce my own example which makes things clearer, I

feel. The difference is a difference in presentation only.

White’s coin puzzle

White’s coin puzzle goes like this. I have a proposition P , about which you know

nothing at all. I have written whichever is true out of P and  P on the Heads side

of a fair coin. I have painted over the coin so you can’t see which side is which. I

then flip the coin and it lands with the P uppermost. Using P to stand for your

credences before the flip, and P Pup
for your credences after having seen the coin

land, and Hup and Pup for the propositions that the coin lands “Heads up” and “P

up” respectively the following claims seem plausible.

. P pP q “ X

. P pHupq “
1
2

. P Pup
pP q “ P Pup

pHupq

. P Pup
pP q “ P pP q

. P Pup
pHupq “ P pHupq

The first is just a commitment to imprecise probabilism: if you know nothing

about P , your belief in P should be maximally imprecise. Let X stand for whatever

it is that fulfils this commitment. The second is just a commitment to have your

beliefs guided by the objective chances. Third, seeing the coin land P uppermost,

Pup, means that you now know that the coin landed Heads up if and only if P is

true. That is, Pup is now equivalent to Hup ” P . You should thus have the same

beliefs in Hup and in P . The fourth and fifth items on this list just formalise the

intuition that seeing the coin land Pup shouldn’t change your opinions about the

truth of P , nor about whether the coin landed Heads.
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Pup

 Pup

 Pup

Pup

Hup  Hup

P

 P

Figure ..: White’s coin example, visually (after Joyce )

Figure . shows the situation for one particular belief about how likely P

is. The horizontal line can shift up or down, depending on what the committee

member we focus on believes about P .

From the above claims, we can show that X – the maximally imprecise belief

state – can only be 1
2 (Dodd forthcoming).

X “ P pP q

“ P Pup
pP q

“ P Pup
pHupq

“ P pHupq

“
1
2

The figure makes this clear. The only way that learning that you are in the grey

area would leave you with conditional probability of Hup of exactly a half is if P

had prior probability 1
2 . It is only when the horizontal line is exactly in the middle

that the proportion of grey on the P side of the horizontal line is a half. White’s

paper seems to argue in favour of some form of the principle of indifference, so

perhaps this result isn’t all that inimical to his views. However, I should think

that many people will find this a strange outcome.

In order to diagnose this strangeness, let’s consider a variation on White’s puzzle.

I have a stack of cards labelled “” up to “”. On the back of the number 

card I write whichever is true of P and  P . I write the false one on the back

of all the other cards. I shuffle the cards and draw one at random. I show you

that the drawn card has a P on it. Were White’s above argument still valid in

this example, the only possible value for P pP q would be 1
100 . However White’s

argument is not valid: premise  is false. It is not the case that P Pup
pP q “ P pP q.
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Seeing that a P -card is drawn at random is good evidence that P is false, since the

odds favour a draw of a false proposition. This means that there is no requirement

for the observation of Pup to be irrelevant in this situation. What this shows is that

despite the irrelevance of the number to the truth of P , the way the game is set

up can make a particular outcome good evidence for or against P . Note thus that

White’s premise  is only true because of an apparently unimportant feature of

the set-up. A biased coin would undermine the argument. We can, however, build

cases where dilation occurs even if we use a biased coin, but the initial belief in

these cases cannot be perfectly precise. I will give an example in the next section,

when I discuss the simpler set-up.

Now consider a case where there are only two cards, but you are initially pretty

confident that P . Seeing the P -card drawn now looks like it should be evidence

that the number  card has been drawn. This now goes against White’s premise .

Again, the game set-up makes it such that these apparently irrelevant instances of

evidence can carry information. A little more precisely, consider the case where

you know P to be true. Now seeing Pup is solid gold uncontrovertible evidence that

Hup. Likewise, being very confident of P makes Pup very good evidence for Hup.

If instead you were sure P was false, Pup would be solid gold evidence of Hup’s

falsity. So it seems that P Pup
pHupq is proportional to prior belief in P . So let’s go

back to the original coin example and consider what it means to have an imprecise

belief in P . Among other things, it means considering possible that P could be

very likely. It is consistent with your belief state that P is such that if you knew

what proposition P was, you would consider it very likely. In this case, Pup would

be good evidence for Hup, and therefore premise  would be false. Note that in

this case  Pup would be just as good evidence against Hup. Likewise, P might be

a proposition that you would have very low credence in, and thus Pup would be

evidence against Hup. This shows that if you are taking the imprecise position

seriously, you can’t assume that Pup can’t make a difference to your belief in Hup.

Put differently, the point is that since P Pup
pHupq is proportional to prior belief in

P , and your imprecise prior contains all the various priors for P , the posterior had

better contain all the posterior beliefs in Hup.

It seems strange to argue that your belief in Hup should dilate from 1
2 to r0,1s

upon learning Pup. It feels as if this should just be irrelevant to Hup. However, Pup

is only really irrelevant to Hup when P pP q “ 1
2 . Any other precise belief you might

have in P is such that Pup now affects your posterior belief in Hup. The imprecise

probabilist takes into account all the ways Pup might affect belief in Hup.
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Now I want to show that it is right that P Pup
pHupq should be equal to P pP q.

Consider some further principles:

. For all pr P P we have prpHup|P q “ prpHupq and therefore that prp Hup| P q “

prp Hupq

. Pup ” pHup^ P q_ p Hup^ P q

. Hup^ Pup ”Hup^ P

Knowing just P doesn’t change your beliefs in Hup. Their influence on each

other is mediated through Pup, if you like. P and Hup are completely independent

of each other until you know something about Pup which ties them together. Hence

condition .  is just a description of the logical relationships between the events.

It tells you how exactly Pup ties together the events P and Hup. This logic can be

seen in Figure ..  is a straightforward consequence of .

Now note that we can run the following argument for all pr P P since we know

that prpHupq “
1
2 .

prpPupq “ prpHup^ P q`prp Hup^ P q

“ prpP qprpHup|P q`prp P qprp Hup| P q

“ prpP qprpHupq`prp P qprp Hupq

“ prpP q
1
2
`p1´prpP qq

1
2

“
1
2

Note that your belief in P seems to drop out of your belief in Pup which seems a

little odd. But this is due to the game set-up, not due to any funny conditions I

have imposed. The trick is that, as the above derivation makes clear, Pup is true

when one of two conditions holds. These conditions are such that whenever one is

unlikely, the other is likely and vice versa. With this fact in hand we can now do

the following:

prpHup|Pupq “
prpHup^Pupq

prpPupq

“
prpHup^P q

prpPupq
by 

“
prpP qprpHup|P q

1
2

by the above argument

“ 2prpP qprpHupq by 

“ prpP q

Note that this result fits with the intuitive argument I gave earlier: if you have a

strong belief in P , then learning Pup is going to make you more confident of Hup.
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The above argument, coupled to White’s condition  would show that prpP q “ 1
2

as before. I take this to show that White’s condition  is unreasonable.

What I take this to show is that dilation is not forced on us by the reasonableness

of claims  to , but that dilation is the correct response given the unknown value

of the evidence Pup supplies about Hup. Given the reasonableness of conditions 

and , dilation really is the correct response to the evidence Pup.

Even if we accept dilation as a fact of life for the imprecise probabilist, it is still

weird. Even if all of the above argument is accepted, it still seems strange to say

that your belief in Hup is dilated, whatever you learn. That is, whether you learn

Pup or  Pup, your posterior belief in Hup looks the same: r0,1s. Or rather, what it

shows to be weird is that your initial credence was precise.

Marbles in urns

Now I want to introduce a slightly easier example of dilation. Imagine you know

that there are a total of  black and white marbles distributed somehow among

the urns X and Y . Each urn contains marbles. In other words, you know that

prpB|Xq “ 1´prpB|Y q for all pr P P . An urn will be selected at random by flipping

a fair coin, and a marble drawn from it. Consider your credences before learning:

P pW q “ {0.5}“ P pBq. You know that the number of white marbles and the number

of black marbles are equal and that over the two urns their probabilities average

out. It seems rational that your conditional credences are, however, imprecise:

you know nothing about how the marbles are distributed between the urns, and

so your belief representor, P , plausibly includes probabilities that represent

the possibility that urn X contains only white marbles and also functions that

represent the possibility that X contains no white marbles, and everything in

between. That is, PXpW q “ PXpBq “ P Y pW q “ P Y pBq “ r0,1s. So learning which

urn is drawn from dilates your belief for white/black from {0.5} to r0,1s. This

illustrates the problem of dilation: updating on X or updating on Y both dilate

your credence in B and in W from {0.5} to r0,1s. That is, your beliefs in B and W

get less precise, once you learn either X or Y . Note that this analysis of the problem

makes an assumption about what the right belief after learning ought to be. It

assumes the generalised conditioning strategy mentioned earlier.

Dilation seems like a problem. Why should your belief in B change on learning

something that doesn’t really affect what you know of the situation? Given that

you don’t know how X correlates with B, why should learning X make a difference

to your belief in B? Of course the point is that your representor encodes all
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possible kinds of correlations between the events. It still seems strange that the

prior belief is precise and the posterior belief is not, but note that some prior

beliefs are imprecise in this case, for example P pB^Xq.
I think, ultimately, dilation is a fact about imprecise probabilities that we must

learn to live with. It is ubiquitous (Herron, Seidenfeld, and Wasserman ;

Seidenfeld and Wasserman ). We must still do what we can to make dilation

seem less strange. The first thing to point out is that dilation only seems odd

because of the focus on P pBq. Recall that P pBq is only a summary statistic: it is

only a first approximation to what represents your belief in B.

Second, note that the prior belief is precise only because of the symmetry built

in to the example. We know that, if X and Y are disjoint and exhaustive events,

then for any event B,

prpBq “ prpXqprpB|Xq`prpY qprpB|Y q. (.)

Moreover, for our particular marbles in urns example, the following symmetry

also holds for all pr P P :

prpB|Xq “ 1´prpB|Y q.

Putting these together, we see that, for all pr P P ,

prpBq “ prpXqprpB|Xq`prpY qp1´prpB|Xqq.

It now follows from the fact that prpXq “ 1{2“ prpY q for all pr P P that prpBq “

1{2 for all pr P P . This is how the symmetry of B given X, and B given Y , leads to a

precise prior in our example. So each committee member “knows” how it will shift

on learningX or Y . It just so happens that for each member who thinks B andX are

positively correlated, there is one who thinks the correlation is negative to exactly

the same degree. This ensures that the final belief, whether X or Y is learned looks

“the same” at the level of P pBq. Note that the weirdness is due to two things: the

symmetry prpB|Y q “ 1´prpB|Xq; and the fact that prpXq “ 1
2 . If we didn’t have

the symmetry, it might be that, for example most of the marbles are in urn X and

only one black marble is in urn Y . The probabilities would then be prpB|Xq “ 9
19

and prpB|Y q “ 1. Which would mean that P pBq would include prpBq “ 28
38 . So

the initial belief would not be precise. Since we could have swapped black and

white around, we also have P pBq would include prpBq “ 10
38 . As you increase the

number of marbles, the range P pBq covers tends to r1
4 ,

3
4s. Likewise, the precise

initial belief also relies on the coin’s being fair. Let’s repeat the above calculation
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but without assuming prpXq “ 1
2 (but let’s assume the symmetry holds).

prpBq “ prpXqprpB|Xq`prpY qprpB|Y q

“ prpXqprpB|Xq` p1´prpXqqp1´prpB|Xqq

“ prpB|Xqr2prpXq´ 1s ` 1´prpXq

It is obvious from this that the prpB|Xq only drops out when prpXq “ 1
2 . If prpXq “

1
3 then

prpBq “
prpB|Xq` 1

3

So if, as in the original example, the proportions in the urns are completely

unknown we have P pBq “ r1
3 ,

2
3s. So dilation still occurs (since the conditional

probabilities are still maximally imprecise) but its extent is less severe.

The standard examples of dilation in the literature (e.g. Seidenfeld and Wasser-

man ; Walley ; Wheeler ms.) typically take the form of known proba-

bilities in two events having an unknown correlation; like the case discussed in

section ... The probabilities of X and Y are known, as are the (unconditional)

probabilities of B and W . But the correlation between B and X is unknown, and

this causes problems. In White’s coin example, this structure isn’t so clear. White’s

puzzle also perhaps trades on the intuition that fair coins land heads up about half

the time, no matter what is learned. The literature on the Sleeping Beauty puzzle

offers illustrations of how strong this intuition is (Bradley and Leitgeb ; Elga

; Schwarz ms.). For these reasons, I think that it is better to think about the

current marbles-in-urns example.

Dilation doesn’t seem quite so mysterious now. This example makes it clearer

that P consists of a bunch of functions that encode specific opinions about how

learning X would affect belief in B. White’s example didn’t make this clear and

thus made dilation seem more mysterious than it should. It is a non-obvious

aspect of the set up of White’s coin puzzle that makes it the case that the updated

credence in Hup should change unless the prior is exactly 1
2 . In the marbles in urns

example, this link is made more obvious.

Reflection and dilation

It has been suggested that dilation examples show that imprecise probabilities

violate the Reflection Principle (van Fraassen ). The argument goes as follows:

“given that you know now that whether you learn X or you learn Y your credence

in B will be r0,1s (and you will certainly learn one or the other), your current
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credence should also be r0,1s.” The general idea is that you should set your

credences to what you expect your credences to be in the future. More specifically,

your credence in B should be the expectation of your future possible credences

in B over the things you might learn. Given that, for all the things you might

learn in this example your credence in B would be the same, you should have

that as your prior credence also. So having a precise credence in B to start with is

irrational. Your prior P is not fully precise though. Consider P pB^Xq. That is, the

prior belief in the conjunction is imprecise. So the alleged problem with dilation

and reflection is not as simple as “your precise belief becomes imprecise”. The

problem is “your precise belief in B becomes imprecise”; or rather, your precise

belief in B as represented by P pBq becomes imprecise.

I think the issue with reflection is more basic. What exactly does reflection

require of imprecise probabilists in this case? Now, it is obviously the case that

each credal committee member’s prior credence is its expectation over the possible

future evidence. That is exactly what equation (.) expresses. But somehow, it is

felt, the credal state as a whole isn’t sensitive to reflection in the way the principle

requires. Each pr P P satisfies the principle, but the awkward symmetries of the

problem conspire to make P as a whole violate the principle. This looks to be the

case if we focus on P pBq as an adequate representation of that part of the belief

state. But as I have said before, this is not an adequate way of understanding the

credal state. P pB|Xq ‰ P pBq, but is this what reflection should require? Given

that I think dilation is actually the reasonable response to the examples discussed,

I think this suggests that we should look for a version of reflection that allows

dilation.

If you were keen on reflection and wanted something to respect the principle,

then perhaps you would make the following definitions.

QprpXq “

∑
i

qpX|EiqprpEiq,q P P
 (.)

QpXq “
{
QprpXq,pr P P

}
(.)

QprpXq is what pr expects your credal state to be relative to learning some Ei from

a partition. Qpr is what committee member pr expects the committee belief to be

after learning some Ei . That is, pr takes each committee member (q) and works

out what its beliefs would be on learning Ei . pr then takes the expectation over

these (that is, expectation using her own beliefs pr). QpXq is the set of the opinions
See also Bradley and Steele (ms.[c]); Topey ().
One man’s modus tollens is another man’s modus ponens. . .
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of the prs. You could then take this Q to be the right representation of belief. It

will respect reflection and not be subject to dilation: QpBq “ r0,1s. Even if worries

about Q being sensitive to choice of partition {Ei} could be overcome, I don’t think

this would be a particularly sensible response to dilation.

So dilation is a funny feature of imprecise updating. It is something imprecise

probabilists must learn to deal with, but it is not a fatal flaw. Work still needs to

be done to find out what sort of reasonable reflection principle holds of imprecise

probabilities; what sort of representation of imprecise belief – that replaces P pBq
– can be said to be properly reflective. Dilation might lead to some odd results

in sequential decisions with learning, but that is beyond the scope of the current

project.

Dilation and the weight/balance distinction

It seems that examples of dilation undermine my earlier claim that imprecise

probabilities allow you to represent the difference between the weight and balance

of evidence: learning X appears to give rise to a belief which one would consider

as representing less evidence since it is more spread out. This is so because the

prior credence in the dilation case is precise, not through weight of evidence,

but through this symmetry I discussed earlier. We cannot take narrowness of

the interval rP pXq,P pXqs as a characterisation of weight of evidence since the

interval can be narrow for reasons other than because lots of evidence has been

accumulated. So my earlier remarks on weight/balance should not be read as

the claim that imprecise probabilities can always represent the weight/balance

distinction. What is true is that there are cases where imprecise probabilities can

represent the distinction in a way that impacts on decision making. Dilation shows

that I probably can’t say much more than that.

... Belief inertia

To introduce this second problem for imprecise probabilism, I want to return to an

example similar to the one I discussed in relation to understanding the representor

as a set of possible chances. This was based on Example .. from Halpern ().

Consider tossing a coin of unknown bias. Let’s say that the proposition Hi encodes

the history of observed tosses of the coin up to (but not including) the ith toss.

And let’s say that Xi is the proposition “The ith toss will land heads”. So P pXi |Hiq

But see Bradley and Steele (ms.[a]).
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is the belief in the next coin landing heads given the history of the coin up to

that point. Let’s say that there are a number of chance hypotheses Ck on the table

which each give some particular objective chance of the coin’s landing heads. For

each pr P P we have:

prpXiq “
∑
k

prpXi |CkqprpCkq (.)

prpXi |Hiq “
∑
k

prpXi |Ck ^HiqprpCk|Hiq (.)

Conditioning on the chance hypothesis screens off any correlation between Hi and

Xi , because coin tosses are i.i.d. so:

prpXi |Ck ^Hiq “ prpXi |Ckq (.)

So any learning that happens goes through the effect of the history of tosses on the

chance hypotheses prpCk|Hiq. Fix some pr, then by the Central Limit Theorem,

the posterior probability converges to the chance almost certainly. This is true

however biased against the true Ck the prior is (assuming it doesn’t assign zero

to the truth). That is, as i increases – as more coin tosses are observed – exactly

one Ck has its posterior probability tend to 1. This is a good result. The precise

Bayesian can learn.

And this is, of course, true for each probability in P . However, there is a worry

that despite this, there is a sense in which the imprecise probabilist might not be

able to learn in the same way. Let’s break down the important term in equation

..

prpCk|Hiq “
prpHi |CkqprpCkq

prpHiq
(.)

Now, the prpHi |Ckq are determined by whatever that Ck says the objective chance

of heads is. That’s some basic combinatorics and the binomial distribution. So then

things come down to this ratio of prior probabilities. If you know nothing about

the chance hypotheses or the histories of coin tosses before any coins are tossed,

then it seems reasonable that your representor contain functions that assign any

allowable values to these sentences. In particular, P should contain functions

that assign values to prpCkq and therefore, through equation . to prpCk|Hiq

arbitrarily close to 0 and arbitrarily close to 1. Given the role prpCk|Hiq plays in

learning about Xi , this entails that P pXi |Hiq “ p0,1q, however big i is. That is,

however much information you have gathered on the bias of the coin, there is

some prior probability in your representor that is so confident that the chance is

thus and so, that it won’t be moved much by all the evidence you have amassed.
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It might seem like I have said two contradictory things, but careful attention

to quantifier order shows this is not true. First I said “pick a pr, this pr will

eventually converge to the chance”. Second I said “pick some initial sequence of

coin tosses Hi , at this time, there will be pr functions that have failed to converge,

and indeed that have remained arbitrarily far from convergence”.

The case can be seen clearly if we say there are only two chance hypotheses:

C1 “ 〈chpHq “ 1
3〉 and C2 “ 〈chpHq “ 2

3〉. And let’s say we have seen one hundred

tosses, with approximately two thirds heads. This is, arguably good reason to

believe C2 and disbelieve C1. However, if you started off being fully non-committal

as to whether C1 or C2, then there are probabilities in your representor arbitrarily

close to probability one in C1. More specifically, fix Hi , now for any ε ą 0, there

will be some pr P P such that prpC2|Hiq ă ε. To see this all you need to do is make

prpC1q close enough to 1. Now, it is also true that for this pr, with enough evidence,

it will eventually begin to believe C2. But for this new higher level of evidence

there’s an even more intransigent prior that was even closer to prpC1q “ 1 to begin

with, and so on. The problem is that you’re always stretching out the really crazy

priors from the ends of the interval.

Thus, sadly, it seems that P pXi |Hiq “ P pXiq however much evidence is in Hi . So

it seems that the imprecise probabilist cannot learn. Now, if we look at the credal

committee members, they seem to be “bunching up” around one particular value,

but there’s always enough arbitrarily opinionated priors to always cover the same

interval.

I don’t claim to have a good solution to this problem, but let me note two

things. First, there is something to this intuition that the committee members are

“bunching up”. Whatever measure you put over the set of probability functions –

whatever “second order probability” you use – the “mass” of this measure gets

more and more concentrated around the true chance hypothesis. Second, if your

committee contained only finitely many members, then these problems would

disappear. There would be a “most opinionated” member who would eventually

believe the true chance. The problem arises in the infinite case because there

are always more extreme, more opinionated priors. The endpoints don’t move

(if prpC1q “ 1, no amount of evidence can shift it) so no matter how much the

posteriors get squished together around the true chance, there’s always more

A similar subtlety of quantifier order and what to hold fixed is well known in the phenomena of

sensitive dependence on initial conditions and continuous dependence on initial conditions in

chaos theory.
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intransigent priors being stretched out from near the endpoints. Taking large

finite samples of probabilities from the representor doesn’t help with the problem

of dilation, which can occur for finite sets of probabilities, so this isn’t a full

solution to the problems of updating. If the prior representor’s endpoints were

not 0 and 1 but values strictly larger and smaller respectively, then the problem

doesn’t arise. This would be a very strong version of a principle of regularity.

Maybe there is the beginnings of an answer to this problem of belief inertia in

the above comments. Perhaps learning should be understood as the movement of

the functions, rather than the spread of values of the posteriors. This doesn’t offer

much solace to the decision theorist, who would very much like to take certain

bets on the coin toss and not others after learning some Hi , bets that she wouldn’t

have taken before learning. But if the sets of values for Xi are the same in each

case, then how is this to be rationalised?

Sets of probability values, or rather, sets of expected values are going to play a

big role in decision making. So it seems that just repeating the mantra “P pXq does

not represent belief in X” can’t be all there is to responding to these problems.

Can we say something more helpful to the decision theorist? Here are a couple of

observations. First note that |prpXi |Hiq´ 2
3 | ď |prpXiq´ 2

3 | for all pr P P . So there

is a sense in which the evidence does make certain bets look more favourable.

Everyone agrees that a betting quotient of 2
3 looks better after learning than it did

before.

A second response to the problem of belief inertia is to consider what the

“problematic” functions have in common: they are all outrageously opinionated

at the start. Is it reasonable to be so confident that the chance is one third that

seeing two thirds heads in a hundred tosses only leads you to assign probability ε

to the proposition that the chance is two thirds? Maybe some kind of p-value-like

“reasonableness cutoff” would allow you to ignore the crazy intransigent committee

members? This response seems to somehow go against the inclusive, not-going-

beyond-the-evidence roots of the imprecise probability framework. But if we take

this to be “subjective” only in the sense that the choice of standard of evidence

is subjective is, then this is perhaps enough to justify this response. The scoring

rules approach to the reliability measure I discussed earlier in section .. could

help with this problem. Those extreme probabilities over the chance hypotheses

The large finite sample approach will appear again in the next chapter, as one possible solution

to the problems with decision making.
The standard principle of regularity has it that only tautologies should get degree of belief 1

and only contradictions get 0.
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are going to give rise to predictions that will have very low scores. If we use this

as a criterion for reliability and then employ some sort of reliability cut-off, then

they will drop out and the imprecise probabilist can learn after all. This happens,

however low our reliability threshold is, so long as it does actually rule out some

functions eventually. Perhaps there is something to the Maximum Likelihood

method, or at least to the intuition behind it: you can safely ignore pr if pr makes

the observed history very unlikely.

Wilson () gives an example of another quirk where the posterior representor

becomes more precise despite the evidence intuitively strongly supporting one

hypothesis over the other. His solution is something like this second solution:

excise the implausible priors.

A third response – and this is a response to both dilation and belief inertia –

is to argue that what these examples show is that conditionalisation is not the

right update rule. Perhaps the above problems speak in favour of going for some

sort of recalibration update rule. Returning to the marbles in urns example of

dilation, learning X does not give you any smaller reference class for which you

have reliable statistics. That is, the “marble drawn from X” reference class (which

we now know is the right one) is not a class for which we have good statistics.

This means that the credence for B is still the proportion of black marbles in

the “urn X or urn Y ” reference class. Thus, PXpBq “
1
2 for this kind of updating.

The uncertainty regarding whether GC satisfies Reflection – or whether it even

needs to satisfy Reflection – makes the worries regarding diachronic consistency

of recalibration update rules less of a sticking point: all the update methods have

problems on this front.

In any case, there is work still to be done on this topic. For now I want to move

on to discussing how to make decisions using imprecise probabilities.
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An economist is an expert

who will know tomorrow

why the things he predicted

yesterday didn’t happen

today.

(Lawrence J. Peter)

This chapter is the second half of the project I started in the last chapter: namely,

to develop a conservative extension of the orthodox view on rational belief and

decision under uncertainty. Such an extension is needed because of the difficulty

that the standard view has with belief under severe uncertainty. This chapter

focuses on decision making under severe uncertainty. A later chapter (chapter )

discusses similar issues from a more practical angle.

We have now seen what imprecise probabilities are. This chapter asks the

question “How should we make decisions with imprecise probabilities?” As we

shall see, it is not nearly as simple as in the case of standard Bayesian decision

theory.

After introducing the concept of a choice function, I situate imprecise choice

between two other better-studied kinds of choice problem. I then discuss various

kinds of imprecise choice and discuss their flaws. I use this discussion to motivate

some criteria for rational imprecise choice.

.. The choice function

We have already met choice functions briefly in section .. when we discussed

Luce and Raiffa’s representation theorem. We are going to be a little more careful

here, as these functions will be central to this chapter. We think of a choice

function as something that takes the set of available acts and outputs the set of

choiceworthy acts. That is, it maps a set of acts into a subset of that set.
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Definition .. A choice function is a function C : 2A Ñ 2A such that for all AĂA

we have C pAq Ď A and C pC pAqq “ C pAq.

We interpret C pAq as being the set of choiceworthy acts among the feasible acts

A. Call C pAq the “choice set”. There are many ways of interpreting C pAq. A

“Strong” interpretation would say that acts in C pAq are all equally the best act:

there is nothing to choose between the acts in C pAq and you should be equally

happy to take any of them. A weaker interpretation might be to say that all the

acts in C pAq are better than the acts not in C pAq. This interpretation does not

preclude there being strict preference between the acts in C pAq. An even weaker

interpretation would be just to say that C pAq includes the best act, but to make

no further assumptions about how acts in C pAq compare to those outside C pAq or

among themselves.

I think that at least some of the scepticism about particular imprecise choice

functions can be defused by being clear about what kind of interpretation we give

the function. In precise Bayesianism, we can always take the strong interpretation

of the choice function, but this interpretation might not always be applicable in

the imprecise case.

Obviously, a weaker kind of choice function is less useful, but it may be that

that is all we can achieve in this context. To return to a theme that runs all through

this thesis, the kind of severe uncertainty at issue here might just preclude the

determinate answers to decision theoretic questions we might wish to have. This

relates directly to my weaker understanding of rationality. That is, perhaps in

cases of severe uncertainty, rationality can only deliver us a weaker kind of choice

set.

Rationality can provide necessary conditions for an act to be choiceworthy – or

rather, sufficient conditions for an act to be unchoiceworthy – but it is harder to see

why rationality should always provide necessary conditions for choiceworthiness.

One criticism that was levelled at the imprecise probabilities approach in the

last chapter was the claim that imprecise choice functions might fail to always

determine an act that was optimal: they might fail to give you any advice. As I

said when I discussed this earlier, such a criticism misses the point. To criticise

imprecise choice for this flaw is to hold the theory to too high a standard. In cases

of severe uncertainty, such determinate answers shouldn’t always be available.

A choice group talk by Conal Duddy on “shortlisting” inspired much of this discussion of

interpretations of choice sets.
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So perhaps it’s best to keep two projects separate. First we want to know what

rationality demands of imprecise decision; second we want to know how we

should act in cases of imprecision. The answer to the former question might not

fully determine an answer to the latter. But in those cases, we still need an answer

to the second question. We will have to accept that the answer might not be fully

rational. That’s not to say that it will be irrational – violating rationality – but just

that it will be arational: without rationality. Rationality can only get us so far. I

leave the latter question until I discuss a specific example in the final chapter. I

do this because I think the response to how to make decisions when rationality

doesn’t determine the answer will be context sensitive.

.. Kinds of decision

Here I situate the imprecise decision problem between two more familiar examples

of decision problem. These examples differ only in the kind of belief representation

you have. That is, we can think of the acts, outcomes and states being the same

throughout. All that changes is the representation of belief over the states.

Example  Let’s say I offer you the choice of two tickets c and d (on the

understanding that you could choose neither n).

c Gain £ if X, lose £ otherwise

d Lose £ if X, gain £ otherwise

n Gain £ whatever happens

X  X

c 10 ´5

d ´5 10

n 0 0

Which of these tickets should you pick? Well, you might say, it depends on what

you think about X. The next three sections outline three different kinds of decision

problems, involving three different kinds of attitude you might have to X. The

three kinds of attitude are not fully distinct: one shades into the other, as we shall

see.

... Ignorance

Let’s say you know absolutely nothing about X: you have no idea what sort of

proposition it might be. In this instance you are in a situation of decision under

ignorance. Decision theorists have been exploring this sort of problem for some
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time and the theory of decision under complete ignorance is pretty well covered

(see Peterson  chapter  or Luce and Raiffa  chapter ). So there are

some possible events (in the example above, we have X and X) and which obtains

determines what your payout will be. These are the objects of belief, as we have

seen before. You know nothing about which event is the case, so how ought you

choose?

Probably the simplest decision rule is “Maximise minimum possible gain”. I

call this rule “Wald”. So you evaluate each act by its lowest possible outcome,

and you act to maximise that. Let’s define the worst and best outcomes that a can

lead to as follows:

Definition .. For a PA

• a“minX{apXq}

• a“maxX{apXq}

Definition .. WaldpAq “ argmaxaPA{a}

This rule recommends going for n in Example . That is, Waldp{c,d,n}q “ {n}.
Is this a reasonable decision rule? Consider Example :

Example  You are offered the choice between these two acts:

a £100 if X, £1 otherwise

b £2 whatever happens

X  X

a 100 1

b 2 2

Wald sanctions taking b in this case. The following reasoning might support

choosing a over b: “Unless X is very unlikely, a is the better bet.” The point is

that in genuine decision under ignorance, you can’t rule out the possibility that

X is very unlikely. So choosing a on this basis would be to make an unwarranted

probabilistic assumption about how likely X could be. Criticism of particular

ignorance choice rules often implicitly makes unwarranted assumptions about

the probabilities of the various states. Some approaches we will see later basically

amount to trying to make a principled probabilistic assumption in cases like this.

If Wald seems a rather pessimistic way of looking at things, perhaps the Hur-

wicz rule would suit better. It says “Maximise a weighted sum of maximum and

minimum possible gains”.

I borrow this naming scheme from Milnor ()
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Definition .. HurwiczρpAq “ argmaxaPA{ρa`p1´ ρqa}

If ρ “ 1 then this is just the same as Wald. For all but the biggest values of ρ,

Hurwicz opts for a in the decision problem in Example . In Example , for ρ ď 2
3 ,

c and d are both chosen over n, otherwise n is chosen.

A different way to look at Example  is as follows: “even when b is better than a,

the difference is small. But when a is the better act, it is much better. This points

to another possible ignorance rule: Savage. Also known as “minimax regret”, this

rule says you should evaluate acts in terms of their “regret” and aim to minimise

your maximum possible regret. Regret is defined as the difference between what

you got from your act and what you could have got in that state by choosing a

different act. So we first define Reg which gives us the maximum regret of an act

a. Then Savage outputs the acts that minimise this quantity.

Definition .. Regpaq “maxX maxbPA{bpXq´ apXq}

Definition .. SavagepAq “ argminaPA{Regpaq}

So for Example , the maximum regret of a is 1, because if X turns out false, you

could have got 2 by choosing b rather than the 1 you actually got. b’s maximum

regret is 98 because if X is true, you could have got 100 from a rather than the 2

you actually did from b. Savage opts for n in Example .

Another way you might try and evaluate acts is not in terms of their regret, or in

terms of the maximal and minimal outcomes, but in terms of the average outcome.

This is the essence of Laplace. How this rule is normally formulated is to say

“treat each state as equally likely, and maximise expectation”. This comes out the

same as saying “maximise average outcome”. So assign probability of X and  X

to be one half each and then maximise expectation. Laplace effectively claims

that there is a warranted probabilistic assumption in cases of ignorance. Laplace

subsumes ignorance under the category of decision under uncertainty, which we

shall turn to shortly.

There is some debate over which ignorance rule is the best. I find the debate

somewhat strange: if you know literally nothing about the situation you find

yourself in, why assume there should be some rationally determined course of

action? Might it not be the case that you simply don’t have enough information

to make an informed choice? That’s not to say that “anything goes”. There are

still unequivocally bad options even in decision under ignorance. For example,

consider the case where we have acts a,b,c and act a is b´ 5. That is, it is 5 worse

than b for all states. It seems obvious that a should not be chosen. But this does
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not mean we are any closer to an answer as to which of b or c is better. I will return

to this point later.

Before we move on, note that all of these rules satisfy the following property: if

apXq ě bpXq for all X, then b is not in the choice set. This property of not choosing

acts that are dominated is typically something we would like to have for our choice

rule.

... Probabilistic expectation

Ignorance is one extreme of decision problems. To return to Example , the other

extreme is where you know exactly the probability of X. Perhaps you know that

X is the proposition “The next flip of this biased coin will be heads”. In this

case, again, decision theory has you covered: decision under risk typically says you

should maximise expected value. Let’s say you have examined this biased coin

and found the probability of heads for it to be 4
5 . Under these circumstances c will

£

prpXq

´5

0

5

10

1

c

d

4
5

£7

£´2

Figure ..: c and d as functions of degree of belief

have expected value £7 and d will have £´2 (see Figure .). So c is a better bet

Well, the other extreme is where you know whether or not X is true, but that is uninteresting for

decision theory
There are dissenting voices, I shall ignore them
Graphs of expectation against probability appear in Seidenfeld () and Steele ()
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in this case. I don’t have much to say about this case, except that it serves as a kind

of “ideal limit” for imprecise decisions.

Recall that we defined probabilistic expectation in Definition .. as:

Eprpaq “
∑
i

prpXiqupapXiqq

So the above probabilistic expectation-based rule is then:

Definition .. MaxExpprpAq “ argmaxaPA
{
Eprpaq

}
The Laplace rule we saw in the previous section is a special case of this rule: the

special case where the pr in question assigns equal probability to all states.

... Imprecision

Now we come to imprecision. How are you to decide when you know something

about X, but not enough to determine a probability distribution over the state

space?

You could always resort to “decisions under ignorance” discussed above. But

this seems unsatisfactory: if you know something about the probabilities, this

information should feed into your decision making. This seems to be the guiding

norm of decision theory: your decisions should be guided by your current state of

knowledge. Ignoring the probability information you do have in your representor

seems to violate this norm.

You can’t use the same maximising rule that precise probabilists can, because

there’s no guarantee that there will be one act that maximises expectation with

respect to all probabilities in the representor. But when there is one act that

maximises with respect to all probabilities, then you should certainly choose it.

If all probabilities agree that a maximises, then a should be in the choice set.

We could put it this way: a minimum requirement on imprecise choice is that if

Epaq ěEpbq for all b, then a is optimal.

To return to Example , which I discussed earlier, which of the bets c or d ought

you take? Let’s say your belief in X ranges over the interval r0.2,0.8s. For each

probability in your representor there is some expected value assigned to each

event. For example, in Figure ., the probability that assigned 4
5 toX has expected

value £7 for c and £´2 for d. We can consider the sets of expected values. For

Indeed, on some interpretations of credence, it’s impossible: that is, how you act is what

determines what your beliefs are.
Recall the definitions of these things from page .
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each act, there is a range of expected values in the representor. Act c’s expectation

covers the range r´2,7s as does act d. Act n is such that all probabilities in the

representor give it expected value £0 (see Figure .).

£

´5

0

5

10

c d

n

Figure ..: The range of expected values

There is no clear best act in this scenario. So how best to make decisions? In the

strict Bayesian model there is some act that maximises expected value. Or some

collection of acts each of which maximises expectation. Figure . for the strict

Bayesian would just be a series of dots, and it is obvious that the highest dot is the

best. In the imprecise case, intervals can overlap, so what is “best” is not as clear.

Acts whose expectations overlap are “incommensurable”. It is not clear how to

compare them to each other, thus evaluating them with respect to each other is

difficult.

This imprecise belief model is, in a sense, “between” these two better studied

modes of decision making. If there is just a single probability in your represen-

tor you’d better act like a maximiser. If your representor contains all possible

probability functions – if all possible probability functions are compatible with

your evidence – then you are effectively in a state of complete ignorance and you’d

better act accordingly.

This is deliberately vague: whichever decision-under-ignorance rule you endorse, you’d better

act that way when all probability measures are in your representor. Personally, I don’t find any

of the ignorance rules compelling, so maybe an approach to imprecise decision will inform the
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Note that I have been restricting myself to choices that happen at a time. I will

not be discussing sequential choice at all. The static case will give us problems

enough as it is.

.. How to think about imprecise choice functions

What does a reasonable imprecise choice rule look like? First, we need to be clear

about what sort of rule we are interested in. Are we looking for one that admits of

the strong interpretation discussed earlier? Or only some less strong interpreta-

tion? Second, we could wonder about necessary conditions on reasonable choice,

or we could wonder about sufficient conditions.

There are many places in the literature where enterprises like this this have

been developed. There are a great many ways we could approach the question of

how best to settle on an imprecise decision rule. I survey some ways here.

One major source of inspiration is the literature on decision under ignorance.

This will suggest some kinds of choice rule, as well as some of the conditions for

reasonable imprecise choice. The most important sources here will be Milnor

() and Luce and Raiffa ().

Another important inspiration will be work on social choice theory: how to

aggregate many individuals’ preferences into a single group choice. If we think of

each probability in your representor as a member of a credal committee that has

to vote on what you should do, then the parallel between imprecise decision and

social choice becomes clear. Here I will draw on Arrow’s theorem (Gaertner )

and the work of Amartya Sen (Sen , ).

There are two ways one might frame the discussion: in terms of an ordering

over the acts (Arrow, Milnor), or in terms of a choice rule (Luce and Raiffa, Sen). I

will talk in terms of choice rules, but we will see that relations will also play an

important role.

There are two ways we could describe conditions on the choice function. One is

just to put conditions on the functional form of the choice function. That is, we

could impose intuitive conditions on the function with respect to how it interacts

with unions and intersections of sets of acts. For example, is it reasonable to

demand that if B Ď A Ď A then C pBq Ď C pAq? It turns out the answer is no. But

that’s an example of the kind of condition we might think to impose on a choice

choice of ignorance rule.
But see Bradley and Steele (ms.[a],[b]); Steele ().
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function.

There is another way we might want to impose constraints on reasonable choice

functions. This is by restricting various kinds of relation associated with the choice

function.

For this, we need some definitions.

Definition .. A choice function C pairwise satisfies a relation � when, for all

a,b PA:

• If a � b then a P C p{a,b}q

• If a � b then {a}“ C p{a,b}q

Definition .. A choice function C satisfies a relation � when, for all a,b P AĎA:

• If a � b then b R C pAq

• If a„ b then a P C pAq ô b P C pAq

We could then constrain reasonable choice by demanding that the choice function

(pairwise) satisfies some particular relation defined on the acts. If C satisfies �
then it pairwise satisfies it, but the converse need not be true.

A relation can also determine a kind of choice function.

Definition .. The maximal set for a relation � is M �:

M �pAq “ {a P A : Db P A,b � a}

This M � is the set of acts that aren’t strictly dispreferred to something else in the

set.

Theorem .. (i) M � is a choice function and (ii) M � pairwise satisfies �. (iii) If �
is acyclic on A where A is finite then M �pAq is non-empty. (iv) Furthermore, if � is

transitive, then M � satisfies �.

Proof (i) M �pAq Ď A by definition. It is equally obvious that M �pM �pAqq “

M �pAq.

(ii) We need to show that if a � b then a P M �p{a,b}q. The only way a could

fail to be in M �p{a,b}q is if b � a. But this is ruled out by definition of �. If

a � b then a � b, so by the above, we have that a PM �p{a,b}q, and by definition,

b RM �p{a,b}q.
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(iii) Let � be acyclic on some finite A. By a result similar to Lemma *l of Sen

(, p. ), acyclicity is sufficient to ensure non-emptiness of M �pAq.

(iv) If a � b then b RM �pAq by definition. Finally, assume for contradiction that

a„ b and a PM �pAq but b RM �pAq. This means there exists some c � b. But b � a
so by transitivity c � a, contradicting a PM �pAq. �

Call a choice rule C more discriminating than C 1 when C pAq Ď C 1pAq for all A.

M � is the least discriminating choice function that satisfies �.

Theorem .. If C satisfies � then C pAq ĎM �pAq for all A.

Proof Let a P C pAq. Assume for contradiction that there is some b P A such that

b � a. If there were such a b, then a would not have been in C pAq by definition of

“satisfies”. Thus  Db P A,b � a. This is exactly the condition required for inclusion

in M �. �

What if, instead of talking about maximality, we talked about optimality?

Definition .. The optimal set for a relation � is: O�pAq “ {a P A : @b P A,a � b}

What we will find is that optimality – which is stronger than maximality – is too

strong a property. That is, O� is often empty. Consider the set {a,b} where no

preference holds between the two options. For this set, there are no optimal acts –

although both acts are maximal. If the relation is complete, reflexive and acyclic

then O� is nonempty (Sen , p. ).

In summary, we want to analyse what sort of choice rule makes sense for impre-

cise decision. We are going to proceed by imposing certain intuitive constraints

on choice and showing that certain decision rules violate these principles. The

principles will come in two flavours: restrictions on the functional form of C and

relations that C must satisfy.

... The basic requirements on imprecise choice

Here we want to put in place the absolutely basic, non-negotiable properties of

decision rules. Let’s consider a first possible decision rule. What about C pAq “ A.

This satisfies the definition of a choice function. Unfortunately, it is thoroughly

unhelpful! This choice rule is maximally permissive, or minimally discriminating.

In general, we would like our choice rules to be as discriminating as possible.

Strictly speaking, we don’t really need transitivity here: we only need that b „ a and c � b imply

c � a.
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This is something of a guiding principle for this chapter: ceteris paribus, more

discriminating choice rules are better.

It seems obvious that if Epaq ě Epbq for all b, then a should be chosen. If a

cannot do worse than the best any other act can do, then a is clearly the best act.

Definition .. IDpAq “ {a P A : @b P A Epaq ěEpbq}

This is the decision rule that Henry Kyburg suggests in Kyburg (). It is called

“Principle III”. Unfortunately, ID is often empty. That is, there is often no

unambiguously best act in this sense.

This sort of failure to choose any choiceworthy acts seems a flaw in a choice rule.

This suggests the first absolutely non-negotiable principle on choice functions:

Decisiveness If C pAq “H then A“H.

We need our choice functions to actually help us make choices. If the choice

function can just “give up” then it isn’t really that useful. There may be cases

where “giving up” is in fact the right thing to do; for example in cases where you

have to choose among acts of the form “n days in heaven followed by eternity in

hell” for all n P N. It seems no choice of n is permissible, since there will always be

a much larger n. Even if we want to grant this, the ID rule looks like it is definitely

giving up too easily.

But we can use this interval dominance idea to further restrict reasonable choice

rules: when some act does interval dominate all others, then the dominating act

should be in the choice set.

Definition .. a �ID b iff Epaq ěEpbq

Note this is defined directly as an irreflexive relation, since it doesn’t lend itself to

having a reflexive part. This gives us another non-negotiable condition.

Interval Dominance C satisfies �ID

Often �ID is empty, so this condition will put no restrictions on choice. However,

when it is not empty, the restrictions it puts on choice are reasonable.

So the plan in the following sections is to suggest some possible imprecise

decision rules, including the main contenders from the literature, and show what

conditions they violate.

In response to Teddy Seidenfeld’s comments (pp. –), Kyburg changes his mind (p. ).

We will discuss this in due course.
Note that a �ID b and b �ID a implies a and b have the same precise expectation. So the second

condition of Definition .. is still reasonable in this odd case.
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.. Ignorance analogues

Now we move on to consider some imprecise decision rules built as “imprecise

analogues” of our rules for decisions under complete ignorance.

... Maximising lower and upper expectation

So our first decision rule is probably the simplest possible rule: “maximise E”. We

might term this E Wald after the way it mirrors our “maximise minimum gain”

rule (Wald) for decisions under ignorance.

Definition .. E WaldpAq “ argmaxaPA{Epaq}

This is sometimes described as “gamma-maximin” (Seidenfeld ). Like Wald

in the ignorance case, this rule maybe seems overly pessimistic. This is the rule

that Gärdenfors and Sahlin () advocate.

Maybe some rule that takes account of both the top and bottom of the interval

would do the trick? Take an “ambiguous analogue” of the Hurwicz criterion:

Definition .. E HurwiczρpAq “ argmaxaPA{ρEpaq` p1´ ρqEpaq}

This is actually a whole class of different decision rules depending on choice of ρ.

If ρ “ 1 then we recover maximise lower prevision (E Wald). If a precise ρ value

seems arbitrary, perhaps consider looking for acts that do well for many different

values of ρ. Bandyopadhyay () suggests a rule that, effectively, amounts to

preferring a to b just in case a is better according to all values of ρ. This is obviously

an incomplete relation, but it is more discriminating than Interval Dominance.

However, there are some problems. E Wald and E Hurwicz suffer from the same

problems, essentially and Bandyopadhyay’s rule has the same flaws. Any decision

rule that is sensitive to only the set of expected values looks like it will lead to

problematic results.

Domination

Consider the following situation.

It might be said that given the slightly sophisticated account of the P that they give, my criticisms

of E Wald don’t apply to these authors. I will leave off further discussion of their particular

theory until later.
For the examples in this chapter, unless otherwise specified, I assume that your representor is

maximally uncertain. That is, I will assume P pXq “ r0,1s.
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Example  There is a coin of unknown bias. you are offered the choice

between these two bets:

f Win £1 if the next toss lands heads

g Win £1 if the next ten tosses all land heads

The first of these is clearly better. However, the set of expected values for each

is r0,1s so a choice rule that only pays attention to the set of expectations will not

be able to discriminate between these bets. Call an act b “dominated” if there is
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Figure ..: Graphs of Example 

another act a such that, for every member of the representor, a has at least as great

an expectation as b.

Definition .. b is (weakly) dominated by a if, for all pr P P we have Eprpbq ď

Eprpaq. Call b strongly dominated if the inequality is always strict.

It seems reasonable that in this circumstance we should prefer a to b and in fact

that we can safely ignore b when making our final decision.

For a fixed pr P P , consider the relation �Epr
defined by a �Epr

b iff Eprpaq ě

Eprpbq. Each pr defines such a relation. If you like, �Epr
is the relation that the

function Epr represents. Consider �Dom“
⋂

P �Epr
. Relations are often thought

of as ordered pairs, so the set theoretic operation makes perfect sense. That is,

the relation that holds between two acts only when every pr P P agrees about the

It is normal to add the clause “and sometimes strictly greater” to this definition. This is to stop a

being dominated by itself. Because of how I define �Dom in a moment, I don’t do this.
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direction of the inequality in their expectations. This is clearly exactly the relation

of weak dominance. This motivates another important desideratum for imprecise

choice.

Non-domination C satisfies �Dom

Note that this condition entails Interval Dominance. That is, when a interval

dominates b, a dominates b. Put another way, �DomĚ�ID .

The Sure Thing Principle

E Wald and friends violate another property, known as the Sure Thing Principle

(STP). Depending on what framework you work in, STP will be framed in a variety

of ways.

The sure thing principle is often said to be violated by people’s actual choices in

games like those of the Ellsberg paradox. The property does, however, have some

intuitive appeal, so it is worth discussing with a view to perhaps limiting if not

eradicating violations of it. Luce and Raiffa’s Axiom  corresponds to the “sure

thing principle”. Or, as Luce and Raiffa put it:

Consider a probability mixture of two decision problems with the same

actions and states. If the payoffs in the second problem do not depend

on the act chosen, then the optimal set in the mixed problem is the

same as in the first problem. Luce and Raiffa (, p. )

As we saw in section .., Savage’s version of STP (P) talks only in terms of his

“preference given X”. This makes sense, since Savage doesn’t, at this stage, have

access to a probability function he can mix acts with. Broome () characterises

STP in terms of what he calls Separability. The idea is that how good sub-parts

of the decision problem are can be evaluated in isolation. It guarantees that the

evaluation of the acts will, in a certain sense, be an aggregation of the evaluations

of the sub-parts. In the standard case that aggregation is done by probability-

weighted sums.

Perhaps the best way to understand STP is with an example.

Example  I am going to ask you to choose a or b. Then I am going to flip a

fair coin. If the coin lands heads, you gain £6 if  X, nothing otherwise. If it

lands tails, a and b pay out as set out here:
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a Gain £ if X, nothing otherwise

b Gain £ if X, £ otherwise

X  X

a 10 0

b 2 8

The idea is that since what you choose – a or b – doesn’t make a difference if the

coin lands heads, then you should choose in order to get the better of the options

when it matters (in the tails branch of the game).

E Wald chooses b over a in the tails branch. But when you mix with the heads

branch, a ends up looking better. Given the intuitive force of the above reasoning

behind STP, this violation does seem to speak against rules that violate it, like

E Wald.

Buchak (ms.) argues that violating STP is reasonable. Buchak’s focus is on

decision theories sensitive to risk – I made the simplifying assumption that you

are risk neutral – but her argument is interesting nonetheless. She argues that

the intuitive appeal of STP is actually intuitive appeal for only a weaker property:

State-wise dominance. The claim is that STP is piggy-backing on the plausibility of

this strictly weaker principle, and that in general STP is not plausible. State-wise

dominance is the principle that “If apXq � bpXq for all X and that preference is

strict at least once, then a � b”. STP entails SWD but not vice versa. The argument

is that the intuitive cases of STP are also cases of SWD, and that cases of STP that

aren’t also cases of SWD are not as intuitive. This undermines the claim that STP

is intuitive. However, the above example is not a case of SWD but it is a case of

STP. It seems that there is something intuitive about the principle even in this

non-SWD case. So I don’t see the force of Buchak’s argument. I appreciate that

this is just trading on intuitions and so isn’t a very strong argument.

Everything I say to criticise these sorts of simple E Wald type rules applies

also to decision theory built up from some other kinds of representation of un-

certainty. For example, there is some literature in economics on maximising

Choquet-expected utility (Eichenberger and Kelsey ). In this sort of work –

typically in the behaviourist/representationalist paradigm I have criticised else-

where – the ultimate conclusion is that maximising Choquet expected utility is

rational. Recall a Choquet capacity is analogous to a lower probability function in

that it represents a lower bound on estimates of the probability. This framework

is less expressive than sets of probabilities: it lacks the resources to express the

That is, the payouts of a and b for the “mixed” decision problem are “5 if X, 3 otherwise” and “1

if X, 4 otherwise” respectively.
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structural constraints on beliefs like “betting on one head is always at least as

good as betting on ten heads”. Ignoring this dominance reasoning is the flaw both

with Choquet-expected utility and E Wald in the current setting.

... Minimising regret

What about an E Savage rule? For example, we could define an imprecise analogue

of “regret” as follows:

Definition .. E Regpbq “maxprPP
{
maxa{Eprpaq}´Eprpbq

}
For an act b, we look at how far b is from the act that performs best for that

probability function. We do this for all probabilities, and take the maximum

of these “probabilistic regrets”. We then try to minimise this. That is, for each

probability in your representor, subtract the expectation of act b from the “top

act” for that probability.

Definition .. E Savagepaq “ argminaPA{E Regpaq}

The maximum of those values over all probabilities in your representor is your

maximum regret for act b. you should act to minimise that.

This at least gets it right for Example . The single heads bet has regret 0

everywhere, while the ten heads bet has positive regret everywhere except prpHq “

0 and prpHq “ 1. This rule is sensitive to important aspects of the structure of the

belief representor that get lost when thinking about E and E only.

Unfortunately, E Savage violates STP, as well as some even more important

properties. Consider the following scenario. You go to a restaurant and see that

the menu consists of Fish, Steak or Chicken. You decide on Chicken. The waiter

comes to take your order and tells you there is no more Fish. So you decide to

have the Steak. This story seems a little odd. Why should the availability of an

option you don’t choose cause a switch in choice like the one exhibited in the move

from Chicken to Steak? It seems like a reasonable choice rule should be somewhat

consistent under various kinds of expansion or contraction of the option set.

See also the partition-sensitivity worry I mentioned in section ...
For example, in Example , both acts have the same regret in the tails branch, but a has lower

regret in the mixed game. So a minor modification of this game would demonstrate a proper

violation.
Imagine you are at a sushi restaurant. You prefer salmon over tuna, but find that salmon needs

to be prepared by a good chef in order to be tasty. So you take the safe option and go for

tuna. Now you notice that the restaurant offers fugu – pufferfish – which is poisonous unless
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There are many different properties of varying strengths in this domain. Arrow

had “Independence of Irrelevant Alternatives” which, among other things, entails

a form of expansion and contraction consistency. Sen has his alpha and beta (etc.)

properties, which we will see in due course. Luce and Raiffa have their axioms

 and  and its strengthenings. Milnor had “row adjunction” and “special row

adjunction”. All of these will be fitted into this framework.

Consider contraction of the option set first.

Contraction Consistency CpAYBq Ď C pAqYCpBq

This rule is more normally seen in one of these equivalent forms:

If a P C pAq,BĎ A,a P B then a P C pBq (.)

If a R C pBq,BĎ A,a P B then a R C pAq (.)

Think about moving from A to B. The idea is that if it was good enough in A,

and it’s still an option, it should still be good enough in B. This property is also

known as Sen’s alpha condition (Sen , ). I am following Gaertner ()

in calling it “contraction consistency”, but it also somewhat restricts expansion of

the option set also. Luce and Raiffa have a version of (.) as their Axiom .

E Savage violates this property. Given that the assessment of each act depends

on maxima over the set of acts, it shouldn’t be surprising that adding or removing

acts can affect how the acts are evaluated.

Example  Consider the following acts, and consider choosing when h is an

option, and when it isn’t.

f Gain  if X, nothing otherwise

g Gain  if X,  otherwise

h Gain  if X,  otherwise

X  X

f 10 0

g 8 1

h 4 3

Now, in a choice between f and g, f wins, since it is at most 1 from the best act

(when prpXq “ 0) while g drops to 2 less than the top act (when prpXq “ 1). All

this changes when h becomes an option. Now, when prpXq “ 0, f is 3 from the top

prepared properly. You change your order to salmon. This seems like a failure of Contraction

Consistency, but it isn’t really. Learning that the restaurant offers fugu gives you evidence that

they have a good chef. This changes each of the acts on offer, so the change isn’t just a simple

addition of a new act. Thus the axiom doesn’t apply. Thanks to Nick Baigent for this example.
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act while g’s maximum distance from the top stays at 2. So the addition of h has

switched the evaluation of the two acts round! In short, E Savagep{f ,g,h}q “ {g}
but E Savagep{f ,g}q “ {f }. This violates Contraction Consistency.

We have seen that adding acts to the choice set should not be able to make a

non-choiceworthy act into a choiceworthy one, at least not without giving you

extra information about the choice problem. What about the other way? When

should a choiceworthy act be made no longer choiceworthy by the addition of new

acts?

Let’s consider an example of an expansion where turning a choiceworthy act

non-choiceworthy seems reasonable. A new act can make some old choiceworthy

act no longer choiceworthy. That is, if I add b to a decision problem where a

used to be the best, and b is better than a, then a is no longer choiceworthy. So

perhaps we should demand that the new act’s being choiceworthy is a necessary

condition for the old act changing from optimal to non-optimal. Let’s call this

“strong expansion consistency”. This is Luce and Raiffa’s first strengthening of

Axiom . They call it Axiom 1.

StEC If a P C pAq but a R C pAY Bq then there is some b P B such that b P

C pAYBq

E Savage also violates this stronger property.
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... Equivocating

What about the fourth kind of decision under ignorance rule? Is there any impre-

cise analogue of Laplace? What we need to do in the ignorance case is construct

a probability function that makes each state equally likely and maximise expec-

tation with that. What we need to do in this case is pick out some particular

probability function depending on your representor, and use this to maximise

expectation.

I’ve already criticised the Objective Bayesian norm of Equivocation, which is

effectively a method for picking out a probability to use.

Another approach with some of these characteristics is the “Transferable Belief

Model”. Smets and Kennes () argue that you should maintain a set of proba-

bilities in a “credal set” but that when called on to make a decision, you should

collapse this into a “pignistic probability” and maximise expectation with respect

to that.

In what follows I have less to say about this sort of approach. It seems there

are epistemological problems with deciding how to “average” your probability

judgements, but once that is achieved, the decision theory is wholly orthodox. I

have argued that representing the level of your uncertainty is important, so to

then have your decision theory “average away” all the severe uncertainty would

be counterproductive. So I focus my attention on properly imprecise decision

theories.

However, it might be that E⇓P pf q – the expected value of f by the lights of the

maximally equivocal probability – is a component in a more complex choice rule.

I will discuss one such rule later.

.. Ruling out acts

All of the above rules basically work the same way: they determine some quantity

that measures how good an act is, and then they recommend trying to pick acts

that maximise that quantity. So they output strong choice sets, in the sense that all

the acts in the choice set come out the same on the measure of choiceworthiness.

They try to find some quantity that determines a sufficient condition for an act’s

being reasonable. But this seems a little strong. Given the kind of ambiguity we

are dealing with, Who’s to say that there is some metric that always delivers the

optimal act?

Perhaps it is safer to take a different tack to constructing decision rules. Let’s
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look at restricting the space of reasonable acts. Instead of considering which acts

are the “best” in some sense, I want to focus on which acts you can justifiably

rule out. I want to look at the necessary conditions on an act’s being good. This

gives us a choice set that only admits of a weaker interpretation. That is, all we

can say of the acts in the choice set is that they are all better than those that have

been excluded. But we cannot say that the acts remaining in the choice set are

necessarily all choiceworthy (or comparable).

... Non-domination

Recall that in Example  we criticised rules that focus only on the set of expec-

tations for not taking into account that one act is always better than the other

whatever the chance of heads. This suggested our Non-domination condition. So

we want our choice function to satisfy this dominance relation. Let’s explore the

rule that satisfies this property, but is otherwise undiscriminating. That is, choose

only among acts that have no act that is always better.

Definition .. U pAq “M �Dom
pAq

This rule satisfies Non-domination, obviously, but also Contraction Consistency

and STP.

Non-domination is, arguably, too weak a requirement however: many intuitively

unreasonable acts are nevertheless undominated. U is not discriminating enough.

Non-domination also has a couple of minor problems.

All-or-nothing expansion consistency

First, let’s look at an unproblematic violation of a property found in the literature.

I shall call it “all-or-nothing expansion consistency”. It is called 2 by Luce and

Raiffa and “beta” by Sen. This says that if an old choiceworthy act is made non-

choiceworthy, then all old choiceworthy acts are made non-choiceworthy. As Luce

and Raiffa show, this “all-or-nothing” character of 72 makes sense only when you

are evaluating the acts on a single scale.

All-or nothing If a P C pAq but a R C pAYBq then, for all b P C pAq, we have

b R C pAYBq

Here is an example of how U fails all-or-nothing expansion consistency.

Example  Consider the choice between f and g, and the choice between

f ,g and h.
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f Gain £ if X, nothing otherwise

g Gain nothing if X, £ otherwise

h Gain £ if X, £ otherwise

h dominates f , so in the expanded decision problem, f is not optimal. However, g

is still undominated, so this violates all-or-nothing.

Imagine you are picking your team for the school gymnastic competition. You

need the best long jumper and the best high jumper in class A. So you have a

choice function that picks out Laura as the best long jumper and Horatio as the

best high jumper. That is, the choice function “best athletes” chooses these two

students. Now imagine that we expand the set of available students to be the

whole year group not just the class. As it happens, Herbert, in class B is a better

high jumper than Horatio. But Laura is the best long jumper in the year. So the

choice rule now picks out Laura and Herbert for the team. This rule violates

the above all-or-nothing rule, because different members of the choice set are

included based on different kinds of evaluations. The choice function for each

sport will satisfy this condition, but the overall “best athletes” function does

not. Such a choice function can’t be given a strong interpretation. I claim that

imprecise decision can be a little like this, and thus that all-or-nothing should not

be required. So it’s no flaw in U that it violates this property.

Sugden () discusses a similar example where one race car is faster and

another is more manoeuvrable: the first will win in a head to head race, but

the second will win if there are other cars on the track. Thus the “race winning

function”, if you like, does not satisfy this property.

Continuity

First consider a minor modification on an example we saw earlier (Example ).

Example  There is a coin of unknown bias. You are offered the choice

between these bets:

f Win £1 if the next toss lands heads

g Win £1` ε if the next ten tosses all land heads win £ε otherwise

Now g is no longer dominated, but it is still, intuitively, a bad deal. Unless the

probability of heads is pretty extreme, you’re better off with f . One might phrase

the intuition this way: g is only ε away from being dominated. The smaller ε

gets, the less reasonable this act seems. One might consider it a flaw in a decision
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Figure ..: A graph of Example 

function that it allows an act to be in the choice set no matter how close it gets to

some limit, but still make the “limit act” impermissible.

This motivates a property termed continuity. Continuity is about sequences of

decision problems. A sequence of decision problems is defined by a collection

of sequences of outcomes. I borrow Ken Binmore’s gloss on Milnor’s “continuity”

axiom here:

Consider a sequence of decision problems with the same acts and

states, in all of which aj � ai . If the sequence of matrices of outcomes

converges, then its limiting value defines a new decision problem in

which aj � ai . Binmore (, p. )

Continuity says that if we keep changing the payoffs slightly and the preference

remains stable, then in the limit of our fiddling, the preference will still be stable.

The change from “�” to “�” is to allow this to be consistent with a case where

act aj tends to ai . Or rather, each consequence of aj tends to the corresponding

consequence of ai . In the limit, they are equal, so there cannot be strict preference

between them. Or in terms of optimal acts, if we keep changing the payoffs slightly

and the set of optimal acts remains stable, then in the limit, the set of optimal acts

is stable.

Note that the slightly less discriminating choice rule “choose only among the

non-strongly-dominated acts” does satisfy continuity. That is, a sequence of un-

dominated acts can have a weakly dominated limit, but not a strongly dominated
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one.

Convexity

I don’t really have an intuition for the following property, but it appears in a

number of places, so it is worth discussing briefly.

Convexity says that “if a1, a2 P C pAq then xa1` p1´ xqa2 P C pAq for x P r0,1s”.

This is Luce and Raiffa’s Axiom . Milnor has a version of this that says that

mixtures of acts are weakly preferred. That is, it says “if a1 „ a2 then xa1`p1´

xqa2 � a1, a2 for x P r0,1s.” Of course, this only makes sense if these “mixtures” are

in A.

A mixture of undominated acts can be dominated (See Table .). Now each of

a1 and a2 are undominated. But the mixture is dominated by a3. So convexity is

not true for U .

s1 s2

a1 2 ´2

a2 ´2 2

a3 1 1

0.5a1` 0.5a2 “ a4 0 0

Table ..: A mixture of undominated acts can be dominated

Would it be possible to construct a rule that never picks an act whose mixtures

with other acts can be dominated? Would it be desirable?

I find myself untroubled by violations of convexity. So why might we consider

it a condition of rational decision? There is an idea that a mixture is at least as

good as the worst part of the mixture, and at most as good as the best part. This is

related to what Bradley () calls the “Averaging Slogan”. In particular, if both

parts of the mixture are good enough to make it into C pAq, then so should the

mixture be. But this seems to be trading on the same “single-criterion” intuition

as the above “All-or-nothing expansion consistency”. Say Horatio is a terrible

long-jumper and Laura a terrible high-jumper. Someone who was a “mixture”

between these people – call him/her Lauratio – would not be as good as them.

If Lauratio is an average high-jumper and an average long-jumper, then she/he

doesn’t deserve a place on the athletics team.
The ten heads plus epsilon act in Example  is not ruled out by this less discriminating rule

either.
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... E-admissibility

Another restriction of the act set – “E-admissibility” – is due to Isaac Levi (Levi

, ). An act is E-admissible if there is some probability in your representor

such that that act maximises expectation with respect to that probability function.

In picture terms an act is E-admissible if it is “on top” for some probability value

in the representor. Levi argues that you should only choose among E-admissible

acts.

Definition .. LpAq “
⋃

pr M �Epr
pAq

This might be more perspicuously rephrased as:

LpAq “ {a P A : Dpr P P ,@b P A,Eprpaq ě Eprpbq} (.)

As it stands, the definition of E-admissible isn’t quite good enough. Recall

Example  where we had the choice between a bet on heads and a bet on ten heads

in a row. The latter maximises expectation for prpHq “ 0 and prpHq “ 1 so it is

E-admissible. This act is, however, weakly dominated. I expect that Levi would

want to rule out choosing weakly dominated acts, even if they maximise for some

pr. We could do two things here. We could either weaken our definition of U
so that only strongly dominated acts are thrown out, or we could give Levi the

benefit of the doubt and say that what he was really interested in was LpU pAqq.
We shall call this LpAq.

We know that LpAq Ď U pAq. There are undominated acts that are not E-

admissible, for example n in Example . So we in fact know that LpAq Ă U pAq for

some A. So L is more discriminating that U .

One motivation that might be offered for preferring L to U is that undominated

acts can be dominated by mixtures of other acts, but E-admissible acts can’t

be dominated by mixed acts. For example, n in Example  is undominated but

dominated by a :mixture of f and g. No E-admissible act can be so dominated.

This seems like a strange argument. If the mixed acts are available acts, then n

won’t be undominated. If the mixed acts aren’t in the set of available acts, then it’s

irrelevant that there is something that dominates it. A second point against this is

that not all undominated acts can be dominated in this way. In a moment, we will

see such an undominated act that can’t be dominated by mixtures. The “Same” act

in Example  is one such act.

More carefully, fix a set of acts A. Only some undominated acts in A are dominated by mixtures

of acts in A. We could still have that the act is undominated in some larger set of acts A1 such

that it is dominated by mixtures of acts in A1.
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Given that E-admissibility is more discriminating and given that non-domination

is arguably too permissive (not discriminating enough), one might think that E-

admissibility is obviously the better rule. But L seems to “get things wrong” in

certain cases, where U gets it right. That is, L rules out some intuitively reasonable

acts as we shall see shortly. L doesn’t help solve any of the problems with U . That

is, L also violates continuity and convexity as well as sanctioning betting on ten

heads in Example .

Union consistency

L violates the following reasonable seeming property.

Union consistency C pAqXC pBq Ď C pAYBq

This is Sen’s gamma condition. It is sometimes seen in this equivalent form:

If a P C pAq, a P C pBq then a P C pAYBq (.)

The motivation here is that if you would choose Steak out of Steak or Fish, and

you’d choose Steak out of Steak or Chicken, then you should choose Steak when

all three options are on the menu. L violates this property, as can be seen from

considering Example . Lp{f ,n}q “ {f ,n} and Lp{g,n}q “ {g,n}, but Lp{f ,g,n}q “
{f ,g}.

As I mentioned earlier, Kyburg () suggests his Principle III, which is es-

sentially what we called Interval Dominance. In the commentary on Kyburg’s

paper, Teddy Seidenfeld suggested two improvements on Principle III which are

effectively U and L. Seidenfeld notes that L violates Union consistency (although

he mistakenly refers to it as Sen’s beta condition). Ultimately, Seidenfeld suggests

that despite this failure L is the better improvement on Principle III (Kyburg ,

pp. –). In Kyburg’s response (p. ) he concedes that Interval Dominance

should be improved on, but finds the violation of the above property to be unde-

sirable, and thus opts for U . Seidenfeld () points out that L violates Union

consistency and also All-or nothing.

Intuition failure

E-admissibility also just seems to get it wrong in certain intuitive cases.

Example  You are betting on a coin of unknown bias. It will be tossed

twice. The following bets are available to you.
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Figure ..: The decision problem of Example 

Same Win £1´ ε if the coin lands the same way twice, lose ε otherwise

Different Win £1 ` ε if the coin lands on different sides each time, win ε

otherwise

Heads Win £1 if the first toss lands heads, 0 otherwise

Tails Win £1 if the first toss lands tails, 0 otherwise

HH HT TH T T

S 1´ ε ´ε ´ε 1´ ε

D ε 1` ε 1` ε ε

H 1 1 0 0

T 0 0 1 1

The intuition here is that whatever value pr takes, S does almost as well as the

better of H,T , and normally better than D as well. However, S is not E-admissible.

It’s always close to whatever act maximises – something not true of any of the other

acts – but it never actually maximises for any pr.

Despite being more discriminating, E-admissibility does not seem like an im-

provement on non-domination. It seems to get things wrong in some intuitive

cases, and it violates additional plausible properties for choice rules.
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.. Improving on non-domination?

Can we improve on U? That is, U typically contains the reasonable acts, but

sometimes contains unreasonable acts too. Can we do better than this? This

section considers some attempts to find more discriminating choice functions that

still always choose undominated acts. I think, ultimately, we aren’t going to be

able to do much better than U as our choice function. This at least rules out the

obviously bad acts. There are two ways the following proposals might be read.

First we could take them as being on a par with the proposals we have seen so far:

that is, as suggestions for how fully rational decisions should be made. I think

each will be found wanting on this interpretation. We might instead consider

each of these proposals as somewhat rational – semi-rational? – ways to determine

choice when U is not discriminating enough. On this understanding, the following

proposals’ failures are less damning: we have accepted now that fully rational

decision making isn’t always sufficiently discriminating. We now want to know

how to make a choice that isn’t rationally determined, and we want to do so while

maintaining as much rationality as possible.

I am introducing, here, a sort of hierarchy of choice rules. When the fully rational

choice rule – U – fails to be discriminating enough then perhaps other more

discriminating but less rational choice rules take over and help narrow down

the choice. There is a trade-off between rationally determined decision and fully

discriminating decision.

... Savage again

Note that the E Savage rule never picks a dominated act. It does, however, violate

a lot of plausible conditions on reasonable choice. But there is something going

right in this rule. It seems to get the right answers, even in the cases of Examples 

and . It also satisfies continuity. So it seems to have some advantages over

U . And it seems like it is a bad thing to choose an act if it can only do slightly

better than some other, and could be a lot worse. That is, the motivation behind

E Savage seems to point in the right direction.

Let’s try and find a restriction on choice that is in the spirit of E Savage, but

that doesn’t have all its bad consequences. Consider the following relation:

Definition .. a �PWR b iff maxpr{Eprpaq´Eprpbq}ěmaxpr{Eprpbq´Eprpaq}

This is basically the relation that holds between a and b when a’s regret is less

than b’s when the two are compared pairwise. Because the comparison is done
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a b c

Epr1
10 1 8

Epr2
1 9 1

Epr3
1 2 4

Table ..: Cyclic Pairwise Regret

just over pairs of acts, it won’t violate the various kinds of contraction consistency

properties in the same way that E Savage does. We will see later that it does still

violate there properties.

Can we demand that C satisfy this relation? Unfortunately not, since the relation

isn’t in general acyclic. For example consider acts that satisfy the properties in

Table .. This means that �PWR would impose inconsistent demands on C . In

short, M �PWR
can be empty.

We can see some analogy here between this rule and the decision rule that

Mark Colyvan suggests in Colyvan (). His decision rule is also a pairwise

comparison of acts that relies on differences in their outcomes. However, he is

working in a precise framework, so he takes probability weighted differences of

utilities over the states. His rule has more or less the same problems as this rule

does.

Despite its failings, there is a feeling that this rule is getting something right.

Satisfying this relation in Example  – betting on whether two tosses of a coin

will be the same or different – gets you the right choice of act (S). In example

Example  (where E Savage failed), pairwise regret points to a consistent choice:

whether or not h is included, f is the most preferred act. This is, of course, some

way short of showing that a rule based on this relation would satisfy the various

expansion and contraction consistency properties that counted against E Savage.

Given that M �PWR
can be empty, it’s not immediately clear how to build a decision

rule out of this relation. Perhaps we should demand only that when the maximal

set is non-empty, that set should be the choice set. In the same way that we want

C pAq “ IDpAq whenever IDpAq ‰H, we want C pAq “M �PWR
pAq whenever this is

nonempty.

Consider the following choice rule.

Given how similar this table looks to tables of Condorcet cycles in social choice, I conjecture

that some sort of single-peakedness property suffices to have the pairwise regret relation to be

acyclic.
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Definition ..

S pAq “

M �PWR
pAq if M �PWR

pAq ‰H⋃
xPA{S pAz{x}q} otherwise

The maximal set is never empty for two element sets of acts since you can’t have

cycles on pairs. This guarantees that this recursive definition never yields an

empty set. What it effectively says is “if there is no maximal element, try all the

ways of removing one act and look for maximal elements there.” Since it is cycles

that cause there to be no maximal elements, this procedure will look at all the

ways you could remove an element from the cycle, and thus induce there to be a

maximal element. Every element of a cycle will end up in the choice set.

Theorem .. S pAq ‰H for all finite A.

Proof Let |A| mean the size of the set A. If |A| “ 2 then M �PWR
pAq ‰ H. This is

just because you can’t get the sort of “cycle” behaviour on sets that small. For

induction, assume S pAq ‰ H for |A| “ n. Now let |B| “ n` 1. The only difficult

case is if M �PWR
pBq “H. Thus S pBq “

⋃
xPB{S pBz{x}q}. But |Bz{x}|“ n for all x P B.

Thus by our assumption, S pBz{x}q ‰H. The union of nonempty sets is nonempty,

so S pBq ‰H. �

I have been a little conservative in only aiming to prove the finite case here. I think

the proof holds much more generally, and I hope it is clear how one would extend

the proof. There may be some awkwardness caused by infinitely long cycles that

may require something a little more sophisticated than S to get the proof through.

The idea, at least, should be clear: make a rule where, if you hit a cycle, take the

union of the ways you might break the cycle by dropping an element (or possibly

a set of elements).

What properties does this rule satisfy? It is a subset of U . To show this, I first

need two short lemmas.

Lemma .. If a �Dom d then a �PWR d.

Proof Since a �Dom d we have that Eprpaq ´Eprpdq ě 0 for all pr P P . Therefore

Eprpdq´Eprpaq ď 0. From this it follows that a �PWR d. �

This shows that the �PWR relation is more discriminating than the �Dom relation.

Next we need to show we have a sort of transitivity.

Lemma .. If c �PWR a and a �Dom d then c �PWR d.
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Proof a �Dom d so Eprpaq ě Eprpdq for all pr P P . Therefore:

max{Eprpcq´Eprpdq}ěmax{Eprpcq´Eprpaq}

ěmax{Eprpaq´Eprpcq}

ěmax{Eprpdq´Eprpcq}

Therefore c �PWR d. �

From the above lemmas, we can show the following.

Theorem .. S pAq Ď U pAq for all AĎA.

Proof We need to prove that if d is dominated, then d R S pAq. Say that d is

dominated by a. If M �PWR
pAq ‰H then, since a �PWR d by Lemma .., d cannot

be in M �PWR
pAq.

We now need to show that if M �PWR
pAq “ H we still have d R S pAq. The only

place we need to check is S pAz{a}q since in all other subsets the above result

guarantees that d is not in S pAq. If M �PWR
pAq “H that means, in particular, that

there exists some c such that c �PWR a. If no such c existed, a would have been

in M �PWR
pAq. c is in Az{a} and c �PWR d by Lemma ... Therefore, d is not

maximal in Az{a}. �

Unfortunately, this rule violates Contraction Consistency. Consider a cycle

a �PWR b �PWR c �PWR a. Now consider S p{a}q and S p{b,c}q. The first of these is {a}
and the second is {b}. However, S p{a}Y {b,c}q “ {a,b,c}. Despite not being chosen

in either smaller set, c is among those chosen in the larger set. This is because the

larger set contains a cycle and thus the whole cycle is part of the choice set. In the

smaller sets, there are no cycles and so only the maximal elements make it into

the choice set.

If all the acts available are “linear in prpXq” for some X, then M �PWR
is non-

empty and the rule satisfies Contraction Consistency. By “linear in prpXq” I

mean Eprpf q “ uprpXq `w. If the graph of expectation against probability is a

straight line. This holds of bets on X. Note that this doesn’t hold when we take

more complex bets. For example in Example , you were betting on a coin’s

landing the same way twice in a row. This is not linear in prpHq. It is linear in

prpHH _ T T q, but the other acts on offer are not linear in this proposition. There

may be a more general set of cases where M �PWR
is guaranteed to be non-empty,

perhaps something similar to the idea of “single-peakedness” from social choice

theory (see Gaertner , pp. –). In the simplified circumstances of choosing
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between a set of well behaved bets that are all simple bets on the same proposition,

then S is a good choice rule since it is more discriminating than U but satisfies

many of the same properties. In the more general case however, the possibility of

cycles means that the rule does not do so well. Despite this, it does seem to get the

right answers in most of the example decision problems I have discussed in this

chapter.

This is obviously much less than a cast-iron argument that some choice function

in this vicinity is the best. Indeed, I have only made gestures towards even showing

that this sort of rule is any good at all. It doesn’t show much that it looks like it

gets things roughly correct in the examples I have discussed.

There is another practical problem with this rule. Given that it relies on pairwise

comparisons between the acts, and each pairwise comparison requires comparing

maxima ranging over probability values, it is quite computationally intensive.

... Levi’s rule

Isaac Levi champions LWald as the best imprecise decision rule. That is, he argues

that you should maximise minimum expectation among acts that can maximise

expectation. This rule is E WaldpLpAqq. He argues that only those acts that have

some chance of being the best are worthy of consideration. He argues for the

“maximise minimum expectation” part by analogy to what happens in precise

cases of equal expectation.

He considers a bet like the following: I offer you a bet where you win £1 if heads

comes up, but you lose £1 if tails lands up. Should you accept this bet, or refuse it?

Both acts (accept, refuse) have the same expectation – £0 – so how do you choose

between them? Levi suggests that in this situation you should maximise minimum

expectation. He says that the reason to refuse the bet is:

not that refusal is better in the sense that it has higher expected utility

than accepting the gamble. The options come out equal on this kind of

appraisal. Refusing the gamble is “better” however, with respect to the

security against loss it furnishes. Levi (, p. )

He suggests the same reasoning works in the imprecise case. We should use

“security” as a tiebreaker.

I have already criticised L and LWald inherits many of its problems, while

adding some new problems of its own. LWald violates Contraction Consistency,

for example, as Seidenfeld () points out.
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Example  Consider the choice between f ,g and the choice between f ,g,h.

f £ if X, nothing otherwise

g £ if X, £ otherwise

h £´1 if X, £ otherwise

£

prpXq

´5

0

5

10

1

f

g

h

Figure ..: Graph of Example 

In a choice between f and g, it is g that does best by LWald. However, adding h

means that g is no longer E-admissible and of f and h, f does better. For large

values of ρ, LHurwicz inherits all the same problems.

The trick that causes LHurwicz to violate these properties is as follows: some

act g is E-admissible in virtue of maximising for some value of prpXq. And it also

maximises minimum expectation at some other value of pr1pXq for which g does

not maximise expectation. So you can make it fail E-admissibility while still having

it maximise minimum expectation. Since you have this independence of the two

parts of this “lexicographic” rule, you get all the strange behaviour associated

with lexicographic orderings.

Now, for ρ small enough – take the case of ρ “ 0: maximax – you can no longer

do this: the places where it wins the Hurwicz criterion test are also the places

where it is E-admissible. So the trick that works for ρ “ 1 is harder to pull off,

and in the limit, impossible. I don’t know of anyone who argues in favour of

maximax-expectation as a choice rule. It rarely accords with intuition in the



. Imprecise decisions 

kinds of examples we have been discussing: typically a modicum of ambiguity

aversion seems rational, but maximax is maximally ambiguity-loving. If there is

any possible chance that some act might be the best, then maximax prefers that

act.

What we saw in Example  is that g maximises minimum expectation but

an act that performs worse on this metric can still make it not E-admissible and

therefore not optimal. This means that some other previously non-optimal act

must become optimal.

Recall Example : where a coin will be tossed twice. LWald gets things wrong

here. Not only does E-admissibility rule out what seems like the best act (S), but

then maximising minimum expectation picks out D, which seems like the worst

act of the four. Likewise in Example  – one head versus ten heads plus ε – LWald

results in betting on  heads being uniquely rational, for all ε ą 0.

I don’t think LWald is a good rule at all. If you are going to violate Contraction

Consistency, it seems like E Savage gets the intuitive examples right while LWald

gets them seriously wrong. If you are committed to Contraction Consistency,

then I’m not sure that any simple decision rule can improve on the relatively

permissive U .

... Spread-sensitive equivocation

Recall that the objective Bayesian framework endorses three norms, the third

of which was Equivocation. I was sympathetic to the spirit of this norm, but I

criticised the form it took in Williamson’s formulation of the position. Call ⇓P
the probability function that is maximally equivocal in P . The details need not

concern us here. ⇓P is the probability function in your representor that is the

least informative.

We could take maximising expectation with respect to ⇓P to be a decision rule.

Obviously, we restrict ourselves to choosing among the nondominated acts, but

among those we choose the act that maximises expectation for the maximally

equivocal member of your representor. Call this the Equivocal Expectation.

Definition .. EEpAq “ argmaxU pAq{E⇓P pf q}

This rule is more discriminating than U , but does it get things right in the examples

we have been considering? It gets things right in the “one head versus ten heads

plus ε” case (Example ). However, EE doesn’t always satisfy continuity. In fact,

we have already seen a case where maximising equivocal expectation seems wrong
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and this is a case that shows that the rule violates continuity. Recall Example 

from page . In that example you were offered a choice between a sure £0.5 or a

bet that wins £1`ε if a coin of unknown bias lands on different sides in two tosses.

The intuitively correct answer is to take the sure money: the expectation of the bet

is only better when the chance of heads is very close to 0.5, or rather, the bet looks

best only when your credence is very close to a half. But since equivocating means

you have credence of exactly 0.5 the bet comes out looking like the best option.

Well, you might argue, what we need to do is make the equivocal expectation

sensitive to the spread of possible expectations over the whole representor.

Definition .. SPP pf q “EP pf q´EP pf q

Using this spread penalty we can define the spread-sensitive equivocal expectation

as follows:

Definition .. SSEEσ pAq “ argmaxU pAq{E⇓P pf q´ σSP pf q}

The σ reflects your opinion about how much weight to give to the “spread penalty”

SP pf q.

Unfortunately, this rule also has its problems. Consider Example  on page 

again. This is a similar set-up with bets on coins landing the same way or different

ways on two tosses. The spread-sensitive equivocal expectation again chooses the

worst act in this example. The problem is that there is another act that does better

than it apart from very near 0.5, and this act has the same spread.

The spread-sensitive equivocal expectation induces a complete order on the acts,

and the assessment of an act depends only on properties of the act. so it satisfies

all the expansion and contraction consistency properties. So in some ways, this

choice rule seems better than LWald, but it is not without its problems.

One might want to extend this idea to a very customisable choice rule: one that

has three parameters and that covers the current rule and also E Hurwicz.

C rα,β,γspAq “ argmax
U pAq
{αEpf q` βEpf q`γ E⇓P pf q}

Gärdenfors and Sahlin () interpret Hodges and Lehman () as doing

something like this, with γ proportional to the reliability of ⇓P , β “ 0,α “ 1´γ .

Recall that their model attached a reliability score to each of the probabilities in P .

This requires strictly less than what those rules discussed in the next section do.

We can recover E Hurwicz by taking γ “ 0,β “ 1´α. We can recover SSEEσ by

taking γ “ 1,α “ σ,β “´σ . For judicious choices of the parameters, this rule can
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be made to work for most of the examples we have seen so far. This rule induces a

complete order on the acts which means that it satisfies most of the properties we

have seen too.

This rule is perhaps too general. With so many adjustable parameters, it can

probably be made to rationalise most kinds of choice. For various parameter

choices it will fail to satisfy various properties. Consider setting the parameters

such that it mimics UWald: it will now inherit the problems with that rule.

... Second-order probabilities to the rescue

Let’s return again to the “one heads versus ten heads plus ε” case (Example ). U
fails to discriminate between the acts in this case, despite the intuitive judgement

that there is some reason to prefer the bet on one head. The intuition goes

something like this: “Most of your representor thinks that the one head bet is best.

Only a small minority think that the ten heads bet is better.” This is appealing

to some sort of second-order probability: some measure on the representor. This

reasoning is unfounded for the same reason that the unwarranted probabilistic

assumption in the decision under ignorance case is. You can’t really say that “more”

of your representor prefer the one head bet. There’s no justification for saying that

there is more of your representor here or there. The graphs I have shown make it

look that way because they suggest that the size of a subset of your representor P 1

should be measured by the size of the interval P 1pHq. Strictly speaking, this isn’t

allowed. And even if it were, the size of a subrepresentor would be sensitive to

the choice of event to measure it with.

With all that said, there is some intuitive appeal to the idea of measuring the

size of the subrepresentor that prefers a over b and using these size comparisons

as input into choice. Think of it as the faction within the credal committee that

prefer a. Some particular choice of how to measure a representor determines,

effectively, a second-order distribution over the representor. One way we might

use this to inform decision is to take large finite samples from the distribution and

then make the sample credal committee “vote” on which act they like best. This

leads to as many decision rules as there are voting procedures and this isn’t the

place to go into that huge literature. Staying on the intuitive level, we can see

that a large majority will vote for one head over ten heads. So this gets things right

here. What about the same/different case in Example  on page ? This in

fact illustrates an important difference between different voting rules. A majority

But see Gaertner ().
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prefer Same to Different. But Same is first choice for no committee members (this

is just to say that it is not E-admissible). So if the voting rule takes account of first

choices only, Same won’t be in the running. So if you want to salvage the intuition

that Same is the right act, then you need some sort of run-off voting, maybe.

E Hurwicz, the EE rule and the current large finite sample from a second-

order distribution voting rule all seem to be ways of averaging the opinions of

the credal committee members. E Hurwicz averages the committee members’

expectations; EE averages the committee members’ views on the chances; and the

current proposal averages their preferences. Each is distinct in its outcomes.

The current proposal is, I think, the best of the three; in that it seems it has the

potential to get the right answer more often. There are two comments to make

on this sort of approach. First, impossibility theorems; second, impossibility of

measuring representors.

Impossibility theorems are a big part of the literature on voting. They have

the form “No voting procedure can jointly satisfy all of the constraints in C”,

where C is some collection of intuitively plausible properties we would like

voting rules to have. Will impossibility theorems like this undermine this large

finite sample voting method for imprecise decisions? On the current view, not

necessarily. One of the critical conditions in Arrow’s impossibility theorem – the

granddaddy of impossibility theorems – is that the individual preferences that

are the input to the preference aggregating procedure are purely ordinal. That

is, you cannot use information about how much more one committee member

prefers a to b in determining the group preference. This seems reasonable in

real voting: are there facts of the matter about interpersonal comparisons of

strength of preference? Even if there were, eliciting them would be nigh on

impossible. However in the current context, we have been assuming that all the

credal committee members share the same utility function, so inter-committee

member comparisons of strength of preference should be possible. This fact

undermines Arrow’s impossibility theorem. Having all committee members have

the same utility function was an idealisation that I made, however. It is plausible

that we should allow imprecise utility as well. This doesn’t however negate the

above undermining of Arrow’s result. Even if utility is allowed to be imprecise,

Each procedure satisfies something like the properties Ellis () ascribes to averaging func-

tions. They don’t exactly satisfy the conditions, but they are close enough that talk of them all

being kinds of averaging to be reasonable.
Weatherson (ms.) mentions voting in the context of imprecise decisions, though his remarks are

not fully developed.
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all the committee members are facets of one person: precisifications of the same

person’s beliefs and desires. As such, even if the utility functions are different

they should be such that the inter-committee member comparisons of utility are

possible. Even if different members value things differently, their values are all

calibrated to the same yardstick.

The second problem I mentioned above was the impossibility of measuring

sets of probabilities. There are some technical problems with measuring sets of

probabilities that I have already touched on. One method you might suggest for

measuring representors is to measure the interval the representor assigns to some

event. The measure will be sensitive to choice of “measuring event”. For instance

consider P that consists of all the probability functions that assign prpXq “ 0.5.

Y is independent of X and P is maximally uncertain about Y . Measuring with

respect to Y gives P a size of 1, while measuring with respect to X gives P size 0.

Unless some method can be determined for deciding what is the “right” event to

measure the subrepresentors for a given decision, any such method is doomed.

Another method you might consider for measuring sets of probability functions

is to consider each function to be a point in an N -dimensional vector space where

N is the number of atoms of the algebra. That is, every probability function can be

identified with an N -dimensional vector ~pr where the coordinates sum to 1. For

some ordering of the atoms, this vector just lists the values this function assigns to

each one. A probability function is determined by its action on the atoms, so every

point in the simplex corresponds to exactly one probability function. The set of

vectors whose components sum to 1 defines an N ´ 1-dimensional simplex. For

example, if N “ 3, the set of coordinates that sum to 1 is a triangle with vertices at

p0,0,1q,p0,1,0q,p1,0,0q. Now treat this simplex as a set of points in a vector space

and use your standard measure on such spaces to determine the size of sets of

probability functions. That is, the space of all probability functions on N atoms

is isomorphic to r0,1sN´1 and we can use the standard Lebesgue measure on this

space to measure the size of representors. This method seems not to have the same

sensitivity as the other did, but it will only work for finite algebras, and I can’t see

how you could justify the choice of measure except to say that it is the standard

one. Viewed as just a semi-rational tie-breaker, the arbitrariness of the measure

doesn’t undermine the method. This method does, however, suffer from language

relativity problems. One might replace some atom t but atoms t1 and t2 where

t ” t1_ t2. This would change the measure of representors.

This is just a sketch of a procedure of this sort, but it is up to fans of this sort of
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approach to fill in the details. I think the strongest thing to say against this sort

of approach is that it is monstrously complicated, and for real-world decisions,

determining the atoms of the algebra isn’t easy.

.. The worst rule, apart from all the others?

This brings us back to U . This rule can feel overly permissive, but perhaps this is

as far as rationality can get us. When we restrict ourselves to nondominated acts,

we have at least ruled out at least some of the unambiguously bad acts.

Echoing Winston Churchill’s famous quip about democracy, I think that U is

the worst decision rule, apart from all the others. I suggest that rational decision

making can only go so far in cases of severe uncertainty. As I said when discussing

decision under ignorance, what gives us the right to expect a determinate answer to

all these decision problems? I’d argue that the “half-answer” that nondomination

gives us is about as good as it gets as far as rationality determining choice goes in

these cases.

If most of the tiebreakers discussed in the previous section end up opting for

the same act, then perhaps that suggests that that act is good in a number of ways.

Perhaps we could value a certain “robustness to choice methodology”. But this

will only determine an answer in some situations.

So we return to the other question I started this chapter with. How ought we

make decisions? Rationality has only got us halfway; what is going to get us the

rest of the way? Perhaps there is a hierarchy of choice rules. At the top we have

nondomination. If nondomination is not discriminating enough, we have to move

down a level to some sort of tiebreaker rule. This move would have to involve

acknowledging that the choice the tiebreaker determines isn’t fully rational: I

have argued that full rationality doesn’t always determine choice, so some element

of arationality must creep in. Not all arational tiebreakers are created equal and

perhaps the desirable properties of choice rules that we have seen above offer some

methods to determine which tiebreakers are less bad. I would argue that such

an analysis would put the maximin tiebreaker in Levi’s LWald rule some way

from the top. I think there will be a contextual component to which tiebreakers

to use, and the last chapter of this dissertation will offer one analysis of kinds of

tiebreaker that might be applicable to climate decisions.
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The trouble with weather

forecasting is that it’s right

too often for us to ignore it

and wrong too often for us to

rely on it.

(Patrick Young)

Up until now the discussion of uncertainty has been operating at a fairly high

level of abstraction. This chapter and the next focus in on a particular example of

uncertainty and decision making. The aim is to show that uncertainty in science is,

indeed, multifaceted and diverse; and thus that imprecise probability models are

needed since precise probabilities don’t do justice to the nature of the scientific

uncertainty. The next chapter discusses decision making in this context.

We have already seen some of the ways people have tried to characterise different

kinds of uncertainty in section .. What I aim to do differently with this chapter

is discuss kinds of uncertainty with a view to what coping strategies we adopt

to deal with them. Lo and Mueller go some way towards this, but they treat

statistical techniques only. My own perspective will be broader both in the kinds of

uncertainty I countenance and in the uncertainty mitigation techniques I consider.

This chapter and the next are more focused, less abstract than the rest of the

dissertation up until now. I won’t be directly discussing imprecise probabilities all

that much any more. But some of the same general lessons and principles carry

over from the previous discussion. I take my weaker understanding of rationality

to be important in this context: we shouldn’t expect the scientific evidence to

always determine some precise degree of rational belief. What we believe on the

basis of the scientific evidence should be sensitive to the quality and amount of the

evidence, and to the kinds of uncertainties that evidence is subject to. My main

aim here is not to advocate the adoption of imprecise probabilities for representing

climate evidence, but what motivates my advocating imprecise probabilities in

Although, I am in favour of this, too.
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the abstract case also motivates what I have to say about climate evidence: be

sensitive to the nature of the uncertainties. As I said in the introduction, this

chapter and the one following it are motivated by the same concerns that led me

to my preferred formal theory of belief and decision: severe uncertainty precludes

the satisfaction of the strong standard of rationality that requires determinate

answers to all decision theoretic questions; severe uncertainty shows that there is

a need to represent the nature and quality of the evidence in some way that makes

that relevant to the decision maker.

.. Two motivating quotes

How do error and uncertainty enter science? What can we do about it? This

chapter explores these questions in the context of scientific modelling, specifically

climate modelling. While my main interest is in models of the climate, I think a

lot of what I say will translate into other disciplines. I want to start this chapter

with two quotes that highlight two aspects of the modelling process.

... Laplace’s demon: ideal scientist

In trying to characterise what determinism was, Laplace described his famous

“demon” who was a kind of ideal scientist.

We may regard the present state of the universe as the effect of its past

and the cause of its future. An intellect which at a certain moment

would know all forces that set nature in motion, and all positions of

all items of which nature is composed, if this intellect were also vast

enough to submit these data to analysis, it would embrace in a single

formula the movements of the greatest bodies of the universe and those

of the tiniest atom; for such an intellect nothing would be uncertain

and the future just like the past would be present before its eyes. The

perfection that the human mind has been able to give to astronomy

affords but a feeble outline of such an intelligence. Discoveries in

mechanics and geometry, coupled with those in universal gravitation,

have brought the mind within reach of comprehending in the same an-

alytical formula the past and the future state of the system of the world.

All of the mind’s efforts in the search for truth tend to approximate

A version of this chapter appears as Bradley ().
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the intelligence we have just imagined, although it will forever remain

infinitely remote from such an intelligence. Laplace ( [])

This demon knows everything there is to know: for him, there is no uncertainty.

We of course fall far short of Laplace’s ideal scientist, and our actual science is full

of uncertainties of various kinds. My aim here is to characterise what kinds of

uncertainty arise in science, and point out some of the ways we cope with them.

Laplace attributed three important capacities to his demon. First it must know

“all the forces that set nature in motion”: it must be using the same equations as

Nature is. Second, it must have perfect knowledge of the initial conditions: “all

positions of which nature is composed”. Laplace makes reference only to positions,

but let’s grant that he was aware his demon would need to know various other

particulars of the initial conditions – momentum, charge, spin – let’s pretend

Laplace was talking about position in state space. The third capacity that Laplace

grants his demon is that it be “vast enough to submit these data to analysis”. This

translates roughly as infinite computational power. I will have less to say about

this third capacity, at least directly.

Laplace was operating in a purely Newtonian world, without quantum effects,

without relativistic worries. In this chapter, I will do the same. On the whole,

climate scientists make the assumption that it is safe to model the climate system

as a Newtonian, deterministic system. Even in this environment there are many

kinds of uncertainty.

... On Exactitude in Science

My second motivating quote is pulling in the opposite direction. Laplace is

thinking about the ultimate in accurate prediction, this story from Jorge Luis

Borges points to the limits inherent in modelling.

. . . In that Empire, the Art of Cartography attained such Perfection

that the map of a single Province occupied the entirety of a City, and

the map of the Empire, the entirety of a Province. In time, those Un-

conscionable Maps no longer satisfied, and the Cartographers Guilds

struck a Map of the Empire whose size was that of the Empire, and

which coincided point for point with it. The following Generations,

This is actually a slightly different translation to the one cited, given in Smith ().
 Smith () characterises Laplace’s demon in this way, and I follow his exposition.
The following quote is the story in its entirety.
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who were not so fond of the Study of Cartography as their Forebears

had been, saw that that vast Map was Useless, and not without some

Pitilessness was it, that they delivered it up to the Inclemencies of Sun

and Winters. In the Deserts of the West, still today, there are Tattered

Ruins of that Map, inhabited by Animals and Beggars; in all the Land

there is no other Relic of the Disciplines of Geography.

Borges (, p. )

The map here is serving as a metaphor for the modelling process. A map

that is too big is like a model that is too slow. And the point I want to make

is that modelling is inherently, inescapably a process of abstraction, idealisation,

ignoring of detail. In a way, at the very heart of the whole project of modelling

a phenomenon is the need to introduce error: an exact replica (a :map) of the

phenomenon of interest wouldn’t tell you anything. This isn’t strictly true. If we

had a perfect : replica of the climate we could run various different scenarios on

it and explore the system more in the way of a lab experiment. Simulation as a

kind of experiment is an idea explored by Petersen () in the context of climate

models. Given the time taken to actually run that sort of model, it would not be a

useful predictive tool. The actual world is an excellent model of itself, and to know

how it will evolve, we only need to wait until it has done so. This is not helpful

for many of the purposes we would like to use models for. So what follows isn’t a

criticism of scientific modelling, but rather marvelling at how much we can throw

away and still have informative useful models.

The question we always have to ask ourselves when looking at complex models

is: “what is the value added by incorporating these extra processes?” Does the

extra insight gained from adding in these extra feedbacks balance out making the

model slower and more complex? Does the extra detail justify making the map

bigger?

I’m not making any claims that what I say is specific to computer simulation. I

more or less agree with Frigg and Reiss () that simulation brings out no new

philosophical issues over and above those of other kinds of modelling. Simulation

does however emphasise different elements of the issues. The use of computers

also introduces interesting new possibilities for error which are worth discussing.

I believe it is up to someone who thinks there is a relevant difference to fill in exactly how this

distinction – between simulation and non-computational modelling – can be made.
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... Outline

This chapter explores the topic of scientific uncertainty. The motivation is to show

that we shouldn’t be satisfied with glib, easy answers to the question “What should

we believe about the climate based on this evidence?”

My examples and much of the discussion will be motivated by climate modelling.

However, I will keep things on a fairly “conceptual” and idealised level: much of

the detail will not reflect actual practices of working scientists. What I am aiming

for is to explore the basic sources of errors and the basic processes for mitigating

them. So my conclusions will apply to any model-based, predictive, quantitative

science.

We are nowhere near Laplace’s demon in our capacities. The next two sections

explore ways in which we fail to live up to Laplace’s dream. First I look at

uncertainty in our measurements of initial conditions (section .). Second I look

at uncertainty in our models (section .). Then I turn to looking at the coping

strategies we have developed to deal with uncertainty (section .), bearing in

mind the cautions of Borges’ story. In section . I discuss some more philosophical

topics raised by the foregoing sections. Finally, in section . I look at when

probabilistic prediction is reasonable.

.. Data gathering

Scientists gather a lot of information about the phenomena under study. These

data are uncertain in a number of ways. For example, the data we collect are

finite strings of integers, whereas the quantities we measure can presumably be

arbitrarily precise (..). Our measurement instruments might cause the data

to be inaccurate (..). Or worse, we might not be measuring the quantities we

thought we were (..).

... Truncated data: imprecision

Let’s say we’re measuring temperature at a weather station. The thermometer gives

a reading of, say 13.45 ˝C, but in fact the temperature is more like 13.452934 ˝C.

Our data of the system’s current state is truncated. This is one type of uncertainty.

It is a fairly mild form of uncertainty: the number is right as far as it goes.

One might complain that temperature is a derived concept, and it doesn’t

really make sense once you start trying to measure the temperature on smaller
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and smaller scales. I treat this issue at more length in section ... But even

granting that, our temperature data is still less precise than it could be. There are

meaningful significant figures that are not captured in the reading.

What are the reasons for truncated data? Often, the differences in value are not

important: for most purposes, all of the temperatures that round to 13.45 ˝C are

indistinguishable, so the truncation doesn’t matter. However, if we have reason to

believe the system of interest behaves chaotically, then even these tiny differences

can have an effect. This will be important later. The indistinguishability of

different temperatures that round off to the same number is context relative. If

you’re interested in whether or not to wear a jumper, then all temperatures around

13 ˝C are dealt with the same way. So in this context they are indistinguishable. If

you are interested in the temperature for the purposes of long term predictions of

some quantity that depends nonlinearly on temperature, then the temperatures

might not be indistinguishable in this context.

Second, our measuring devices have only a limited accuracy, so maybe even

where the differences do matter, we might not be able to detect them. Our capacity

to store data is also limited, so even if we could actually make arbitrarily fine

measurements, we wouldn’t be able to store all that data.

Third, the longer the strings of data we collect and feed into our models, the

longer the calculations take. So given our limited computational capabilities, even

if we could collect more fine-grained data, maybe we would truncate it before

feeding it into the computer, in the interests of computational tractability. If

predicting Thursday’s weather takes until Friday, the forecast is useless. There is a

trade-off between precision of the data fed into the model (and the precision of

the model itself) and how long that model takes to run. This is Borges’ argument

again. This also should remind us of this quote from Keynes that bears repeating:

The long run is a misleading guide to current affairs. In the long run

we are all dead. Economists set themselves too easy, too useless a task

if in tempestuous seasons they can only tell us that when the storm is

past the ocean is flat again. Keynes (, p. )

This awkward locution is necessary, since it is effectively unknowable whether some physical

system is mathematically chaotic or not. Indeed, a physical system’s being chaotic isn’t even

well defined: chaos is a property of mathematical equations.
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... Noisy data: inaccuracy

Sometimes our measurements are not perfect. To stick with the weather example,

imagine that the thermometer registered 13.47 ˝C rather than 13.45 ˝C. This isn’t

just a case of truncation: this is an error. This isn’t imprecision: this is inaccuracy.

This is to assume, of course, that there is a fact of the matter about what the value

should have been that is different from what it was. I defer a discussion of the

metaphysical assumptions underlying my project until section ...

There are many reasons why this sort of error might creep in. For example,

the equipment might be faulty, or slightly miscalibrated. The more accurate we

attempt to make our predictions, the more significant figures we try to determine,

the more danger there is that noise – random fluctuations in the system – might

overwhelm the signal. For most purposes these errors will be small. But again, if

we’re worried about non-linear systems, then these small differences can lead to

big differences somewhere down the line.

... Deeper errors

Measuring physical quantities is a tricky business. It is not a straightforward pre-

scientific enterprise that is, somehow, a precursor to scientific enquiry. Working

out how to measure certain quantities is a long, involved process that makes use

of theory and evolves in tandem with it. Chang () charts the fraught history

of thermometry, for instance. This suggests another way our measuring of the

initial conditions can go wrong.

Imagine if we did not know that there is a connection between temperature

and atmospheric pressure. We would not then be controlling for differences in

atmospheric pressure, and this would cause our measurements of temperature to

be faulty. We would falsely attribute changes in measurement reading to changes

in temperature, where actually the change is due to change in pressure. That is,

we would be implicitly making an assumption about our thermometer readings

not being sensitive to air pressure. If this implicit assumption turns out to be

important (and importantly false) then our readings would not be readings of

temperature, but readings of some combination of temperature and pressure. To

put it another way, we wouldn’t be measuring what we thought we were. There is

nothing wrong with the measurement per se, but with our understanding of what

See also Ellis (, Chapter )
If the air pressure where we are measuring doesn’t change, then this assumption – strictly

speaking still false – would not cause misleading results.
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we are getting from the measurement.

Given the indirect way we make a lot of measurements in climate science, this

is a live issue. What exactly studies of ice cores and tree rings show us about

the paleoclimate is a contested issue, so this is another example of where our

measurement techniques are not unequivocal (see Schiermeier ). How one

calibrates size of tree rings with estimates of the temperature at the time that ring

was growing involves theory, and a great deal of knowledge of different areas of

science. For example, if we made faulty assumptions about what constituted good

growing conditions for trees in the past, the size of tree rings wouldn’t be telling

us what we took them to be telling us.

Indeed, we don’t have as many actual measurements of data as we would like.

We mostly only have readings for surface-level land values. We don’t have as good

information about what’s going on out at sea or up in the atmosphere (Parker

, p. ). A technique known as “assimilation” is used to “generate missing

data” using a particular type of climate model (Talagrand ). Errors in these

models will lead to faulty “data” being used. This is another way that gathering

data can be indirect. Note also that in this way, even our data can be subject to

worries about model error (which we shall meet in the next section).

To summarise, even at the level of simple data gathering, we must take the data

with a pinch of salt. That’s not to say that we should be sceptical of all data: there

is certainly much information to be gleaned. The point is merely to stress that we

can’t take an uncritical, naïve view of measurement. Our measurement techniques

might not be measuring what we thought they were. This could be due to some

physical relationship among the quantities that we are not modelling, or perhaps

due to some artefact of the measuring process.

.. Model building

Now that we have gathered our data, what do we do with it? How do we turn our

data into predictions? We will typically have data in the form of time series. A

time series is a series of measurements of a quantity (for example temperature)

indexed by when the measurement was taken. We will have time series of several

quantities – temperature, pressure, precipitation, wind speed – from a variety

of locations. This gives us a rough summary of the climactic conditions at those

Other kinds of data aren’t all that different. I focus on time series since talking about “evolution

in time” is easy and intuitive.
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times, in those locations.

Using a variety of statistical tools – regression analysis, radial basis functions,

autocorrelation functions and so on – we can explore how these variables change

in time, and in response to changes in each other. We can also use our knowledge

of the basic physics to inform how we think the relationships among the variables

should behave. For example, using the Navier-Stokes equation, the basic equation

of fluid mechanics, we can guess at how wind speed in adjacent cells – in nearby

locations – should evolve in response to each other over time. Lloyd () claims

that this sort of support from basic science gives us confidence in our models. I

return to this point later.

There are a variety of simplifying assumptions that need to be made here, and

none of the techniques used is infallible, so the model building process adds its

own sources of error. I outline these sources of error now. I will first list the

sources of error, then in section . discuss how we deal with these errors.

What I should make clear before beginning is that I am interested in systems

that will often be chaotic or non-linear. This means that even small errors can

quickly becoming worrisome. For a more detailed discussion of the particular

issues with nonlinear dynamics and predictability, see Smith (, ); Smith

(). The upshot of a focus on these kinds of models is that even errors that are

very small can have important consequences.

As Figure . shows, the climate system is tremendously complex. In philosoph-

ical discussions of modelling, it is common to consider simple models of simple

systems, like a mass on a spring, or a point mass in orbit around another in an

otherwise empty space. It is important to stress that these models are extremely

simple. There doesn’t seem to be any need to wonder about the process of building

the model: it’s obvious that it should represent the target system in the relevant

ways. In the case of the climate system, finding the appropriate model is hard

work.

That said, our understanding of the Navier-Stokes equation is not perfect: indeed, we can’t even

be assured of the existence and uniqueness of solutions (Fefferman n.d.)
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Figure ..: The climate system is tremendously complex

... A toy example

To make the discussion more vivid, consider the following toy example. La-

place’s demon is trying to predict the evolution of the fish population in my pond.

That is, evolution in the sense of “change in population through time”; not as in

“evolution by natural selection”. He has observed the past evolution of the system

and has arrived at a model of the system. He knows that the population density of

fish in my pond in a week’s time Nt`1 depends on the current population density

Nt. These numbers are normalised such that the absolute maximum population of

fish possible is given by 1. He also knows that the future population is adversely

affected by how crowded the pond is (captured by the 1´Nt factor). The fish

population dynamics are given by:

Nt`1 “ 4Ntp1´Ntq (Log)

This is the famous “logistic map”, probably the simplest dynamics that produce

chaotic behaviour. May () discusses this model in detail. Figure . shows

how nearby initial conditions diverge radically after a few time steps. This is a

figure of  initial conditions very close together. The solid line represents the

“actual” evolution of the fish population, while the dotted lines represent what the

The example discussed here is due to Lenny Smith and Reason Machete. The “fish population”

gloss was suggested by Roman Frigg. The model is discussed in more detail in Frigg et al.

(b).
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Figure ..: Diverging time series. The blue line is the “actual” initial conditions.

The eight dotted lines are nearby initial conditions.

model would predict had you got the initial condition slightly wrong in one of 

distinct ways. As you can see, after about  timesteps, you could be very wrong

indeed. This is a characteristic feature of chaotic systems: sensitive dependence on

initial conditions. While there is some controversy on exactly how to define what

chaos is (Werndl ), for my purposes, this won’t be important. Many parts of

the climate system exhibit this kind of chaotic behaviour. There are many ways

in which the logistic map is not a good toy model of the climate, obviously, but

they do seem to share this feature that they exhibit sensitive dependence on initial

conditions. This sensitive dependence means that sources of very small errors

cannot be discounted. This means all the sources of error must be considered and

discussed.

... Curve fitting

Let’s start with an easy problem. We have a one-dimensional time series of data.

These might represent daily temperature readings from a particular weather

station, or volume of internet traffic through a particular router, or cases of a

disease at a particular hospital, or weekly estimates of the population of fish in

my garden pond. The question is: given the data, what kind of process could

generate that time series? What sort of equation describes the dynamics of how

I have generated a time series of the word count for my thesis for example. The trend is broadly

upwards, but all too slowly!
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the system evolves?

For any finite data set, any number of different graphs pass through all the

points. This is a well known problem with fitting curves to data. If there are n

data points, then there is a polynomial of degree n´ 1 that will go through all of

these points exactly. And in fact, there are infinitely many polynomials of higher

degree that go through each of these points. On what grounds can you say that

the process generating the data is represented by this rather than that function?

Choosing on the grounds of simplicity might be (at least pragmatically) appeal-

ing, but there are problems. First, what counts as a simple equation? For example,

consider the following equation:

α sinpβxq (Fit)

For any finite data set, there are values of α and β such that the graph of (Fit)

passes arbitrarily close to all the points. This equation is, arguably extremely

simple: it has only two parameters. On another measure, however, it’s a rather

complicated equation, since the graphs it gives rise to are normally “unnecessarily

wiggly” given the amount of data it needs to fit. That is, one feels like the curve

should bend only if it is bending towards a data point it would otherwise miss. A

second worry is the following: what guarantee do we have that simplicity is an

indicator of truth of a functional relationship? This is a very general worry about

science: how do we know that our theory is getting things right about the world?

... Structure error

The standard practice when trying to fit a curve to some data is to start with a

parametrised family of functions. We can then work out which member of this

family most closely fits the data: we can work out which parameters fit the data

best. But who’s to know that that first step – picking a family of functions – is

valid? What assumptions can underwrite that sort of choice? Sometimes we have

basic physics evidence that suggests the functional form is, say linear. But other

times, we don’t have this kind of information. When considering the climate

system, for example, there are any number of feedbacks all of them interacting

with each other; so we don’t really know what model structure is appropriate.

What interpretation can we give to this process? Fitting a curve from a family

of functions would make sense if we knew that that data had been generated by

The only case where this is not possible is if two points took the same x value, which is impossible

in a time series.
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some process that shares that functional form. That is, if we knew that data were

generated by some function in that parametrised family, then this would be the

obvious way to approach that problem. But it is almost never the case that we are

justified in making that kind of assumption. So what does the choice of family

mean? What justifies it?

This sort of worry about structure error arises from trying to solve the above

uncertainty (..). I discuss this concern at more length once I have outlined

what strategies are employed to overcome those worries.

... Missing physics

There are processes in the climate that we know we aren’t modelling. We have

improved greatly (for example, see Figure .) but there are still many aspects of

the climate system left out of our models. In the early s, we weren’t modelling

ocean currents: convection in the ocean wasn’t in the model. So we in fact don’t

want our models to fit too closely to the data, because they aren’t modelling all

the things that are going on in the world.

There are still processes that aren’t making it into our models. Some of these

processes will have a negligible effect on the climate, but we can’t be sure which.

Given the nonlinear character of our models, tiny differences due to apparently

negligible processes could cause the models to differ significantly from the target

system on the sort of timescales we are interested in. Here is a cautionary episode

from recent climate science that illustrates this point. At the time of the last IPCC

report (Solomon et al. ), there was broad agreement among models that there

is a poleward shift in storm tracks for extratropical cyclones in both hemispheres

(Section ...). However adding more model resolution to the upper atmosphere

led to the model predicting an equatorward shift instead (Scaife et al. ). Until

recently, scientists had expected the stratosphere and the mesosphere to have little

impact on the climate dynamics of the troposphere: there simply isn’t enough

mass of air up there to have much of an effect down here (or so they thought!).

This story illustrates that elements of reality that don’t make it into the model –

even if you expect them to be insignificant – can have an important impact on the

model predictions.

Thanks to Erica Thompson for pointing me to this story.
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Figure ..: How climate models have improved
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... Overfitting

As well as structure error, we can be uncertain of the parameters we fix. If there

is noise or inaccuracy in the data, then there is a danger of “overfitting”. Using

Lagrange interpolation to find the polynomial of degree n´ 1 that fits your n

points exactly is obviously a crazy idea if you know that some of those points are

inaccurate! All that you could be doing here is “fitting the noise” which clearly

leads to a functional relationship that has very little relation to the underlying

process. This is discussed in Hitchcock and Sober (). In their own words:

The data D are bound to contain a certain amount of noise in addi-

tion to the information they carry about the underlying relationship

between [the variables]. By constructing a relatively complex curve

that exactly fits [all the data, the scientist] is bound to overfit the data.

That is, she is bound to propose a theory which is too sensitive to

idiosyncrasies in the data set D that are unlikely to recur in further

samples drawn from the same underlying distribution.

Hitchcock and Sober (, p. )

So the question that needs to be asked whenever there is a choice between a

complex, better fitted model and a simpler model with less good fit, is: does the

extra model complexity really afford an increase in predictive accuracy, rather

than just an increase in capacity to accommodate past data? This is the question

implicit in the Borges story. One might want to split this question up into two

parts. Is the complex model better at interpolating unseen data?; is the complex

model better at extrapolating? The first of these asks is the complex model better

at predicting where unseen data points will fall in the time series interval covered

by the training data? The second asks is the complex model better at predicting

where data outside the time frame of the training set will fall? What is the value

added of the more complex model? Answering this question depends on how good

the models are at prediction, but we don’t really have that information for climate

modelling. Or rather, we can test how well the model does at interpolation, but

we are really more interested in extrapolation: prediction of future data.

This is a problem that worries climate scientists. Obviously, they want to build

the best models they can: they want to build models based on the best, richest

data available. They want the models to fit the data: if the models didn’t fit the

data, they wouldn’t be very good models! But this data will inevitably contain

noise. So how do they avoid the problem of overfitting? I defer answering this
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question until section ...

... Discretisation

Another issue is that most of the parameters and quantities we are interested in

in atmospheric science are more or less continuous. However, the data we have

are discrete: hourly values of particular measurements at particular locations, for

example. Quantities of interest vary continuously in time and space. We only have

particular measurements from particular places. The computer implementations

of our simulations are also discrete: computers are finite state machines, they can’t

really “do” continuity. So we have spatial and temporal discretisation problems.

This problem leads to “rounding errors”. Normally, these aren’t all that prob-

lematic, but for iterated procedures, chaotic dynamics and the like, these small

errors can compound themselves and quickly become serious.

This raises issues about how to go about accurately representing the continuous

system discretely, and how to evolve a discrete system so as to track the evolution

of the continuous target system.

In fact, there is a deeper problem here. Continuous and discrete systems of

roughly the same dynamics can have very different overall properties. The

logistic map (which I discussed in section ..) is chaotic, but the logistic equation,

the “continuous version” is non-chaotic, and in fact fairly tame. This “continuous

version” is given by the differential equation d
dtxptq “ 4xptqp1´xptqq. The similarity

should be clear. Figure . demonstrates the quite different behaviour of the

logistic equation – sometimes called the logistic function – as compared to the

discrete logistic map discussed earlier.

Indeed, this must be the case, since one dimensional continuous flow cannot

be “chaotic” in any sense, and the logistic equation is one-dimensional. This is

a consequence of the Poincaré–Bendixon theorem (Smith , p. ). Discrete

dynamics, however, can exhibit chaos in one dimension, as the logistic map

demonstrates.

... Model resolution

There is some minimum resolution to the simulation: the world is split into grid

squares 100 km on a side, say. See Figure . for a taste of what Europe looks like

“More or less” because of the concerns about temperature and the like being derived quantities

built up out of discrete entities, but see section ..
Thanks to Charlotte Werndl for pointing me to this issue.
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Figure ..: Graphs of the logistic equation: all initial conditions tend to 1.

at this resolution. Processes that happen at smaller scales aren’t in the model.

For example, clouds are an important factor in climate models. However, typical

climate models will have too low a resolution to “resolve” clouds properly, so the

effects of clouds have to be put in “by hand”. How this is done will be discussed

later. Discretisation and model resolution are obviously linked. A particular

discretisation method brings with it a particular scale, a particular resolution.

... Implementation

Computer programs – which is what simulations are, after all – will inevitably

contain bugs. Typical General Circulation Models (GCM) run to hundreds of

thousands of lines of code. It would be surprising if there were no mistakes at all

in all that code. For example, perhaps a particular function takes “temperature”

as a variable, but it wants a relative temperature. If it’s used in some module

where it is fed an absolute temperature, then this will lead to problems. That

is, there are two equally valid ways one might write a function to work out the

temperature of a cell at time t2 given various details of t1. One approach would

have the function output the temperature at time t2 (an absolute temperature); the

other approach would have the function output the temperature change between

t1 and t2 (a relative temperature change). Each is perfectly valid, but it should

be obvious that things will go seriously wrong if some process were expecting to

receive an absolute temperature and got a relative one or vice versa. The process

would just receive a number, and would manipulate it as normal, but the mistake
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Figure ..: Europe as viewed by the models in IPCC AR ()

would propagate through subsequent processes and invalidate the results.

At an even lower level, hardware can be faulty or buggy (Muldoon ). For

example, the Pentium FDIV floating point unit bug caused some calculations to

go wrong by as much as  parts in a million. Hardly a big deal in general, but if

you are dealing with potentially chaotic systems, these things can cause noticeable

errors (after a few iterations). Recall Figure .: nearby initial conditions diverge.

Different chip architectures implement arithmetic differently, so running the

exact same program on different chips can lead to different results, even without

hardware faults. Even different compilers, compiling the same code on the same

chipset can lead to differences in output. So this is an extra source of problems.

On the other hand, computers are finite state machines. They can’t really

“do” chaos, since there is a limit to the accuracy with which they can represent

numerical values. As Smith () points out, if you run a computer simulation

of a chaotic system for long enough, it will settle into a cycle. This is related to the

inability of digital computers to properly represent continuity.

Lenny Smith in conversation
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.. Coping with uncertainty

This has so far seemed to be a fairly negative discussion. However in this section,

I want to outline why things aren’t as bad as they might be. I want to highlight

some ways we have of maintaining confidence in our models in spite of all the

above sources of error.

Before starting I want to point out that these ways of maintaining confidence

come in two varieties. One variety are the methodological ways of maintaining

confidence. These are methods we can use to cope with uncertainty. For example,

derivation from theory (section ..) and ensemble forecasting (section ..) are

such methods.

The other category is harder to name. These aren’t methods we can follow, but

rather, aspects of the output that give us confidence. Robustness (section ..)

and past success (section ..) are of this sort. These properties of output aren’t

really things we can aim for, but they are things that warrant confidence if they

turn out to hold.

... Make better measurements!

An obvious response to at least some of the issues raised above is that we need

to make better measurements. This is a reasonable point and there are certainly

cases where better measurements could help, but it certainly won’t solve all

our problems. While better measurements might mitigate against some of the

problems, it won’t really solve any of them. Better measurements would give us

more significant figures in our data, but wouldn’t really stop it being the case that

the data are truncated.

While mitigation of error is obviously still a good thing – and it’s normally all

we can do – I want to point out that it doesn’t solve the problems. For practical

purposes, good mitigation is as good as solving the problem. How good the

mitigation has to be depends on the practical purpose in question. How many

significant figures are needed such that the remaining error in initial conditions

doesn’t lead to an unacceptable level of error in the output depends on what

counts as “acceptable” error in the output. Parker () discusses the notion of

“adequacy for purpose”. The point is that it is important to be clear what you want

out of your model, since this affects what you can put in it and still be confident

of the results.

There’s a question of whether better measurements are a cost-effective way of
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increasing adequacy. For example, we could put thousands and thousands of

buoys in the seas to get more detailed readings of temperature and so on across

the ocean. Would this extra data (gathered at considerable cost) lead to better

models? Would other uses of that money have led to even better models?

The idea of making better measurements relates to Karl Popper’s idea of “ac-

countable” predictions (Popper ). John Earman discusses “Popper’s demon” as

a weakening of Laplace’s demon who is limited to only use finitely precise initial

conditions (Earman ). This demon can, however, calculate how accurate its

predictions are given the initial data. The idea is, for any given desired precision

of output, the demon knows how accurate its initial conditions would need to be.

So, given the model the demon has, it knows how quickly nearby initial conditions

diverge. From this, it can work out how accurate its initial data have to be in

order for the predictions to be adequately precise. Given the complexity of climate

models, even this ideal is unachievable for us mere mortals. That is, in order for

the trajectories to have not spread out too much yet we would need data orders of

magnitude better than our current data. And of course, model error – which we

shall discuss later – undermines the adequacy of the prediction even if we could

collect that data. This idea is related to those discussed in section ...

It’s important to be clear that for our purposes, we can be confident that making

better and better measurements would be uneconomical, even if it were possible.

Other sources of confidence in model output must be sought.

... Derivation from theory

One thing that helps with confidence is to know that our models and our parametri-

sations have a sound basis in basic physics. This is something Lloyd () men-

tions as a source of “confirmation” for climate models. If a model bases its heat

transport processes on basic thermal physics principles, then that is good reason

to think it will predict well. It’s clearly not sufficient to guarantee good predictions

that a model be based on theory, but it is a good start!

Here is an example of how a simple model of the climate can be derived from

some basic physics. McGuffie and Henderson-Sellers (, p.  ff) derive a

simple 0-dimensional “energy balance model” (EBM) from basic physics with the

Actually working out the precision of the data required is a non-trivial task, computationally

speaking. But we are operating on a conceptual level, so we won’t worry about this.
It seems Lloyd is using “confirmation” in a non-standard way: to mean something like “giving

us confidence”.
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Figure ..: Basic energy balance of the Earth

help of some geometry. The basic processes involved in these simple models are

summarised in Figure ..

Imagine a lump of matter subjected to a constant source of heat energy. If the

lump did not emit any energy, its heat must increase without bound. Now imagine

that the lump – which we will call a planet – emits radiation (loses energy) at a rate

that increases with temperature. The temperature of the planet will increase until

the outgoing radiation balances with the incoming radiation (Houghton ;

Pierrehumbert ).

From thermodynamics we know that on average, the energy input and the

energy output of the Earth must balance. The Sun provides effectively the only

external source of energy. How much sunlight the Earth’s surface reflects (its

albedo) will be an important factor in this process, as will how much of the energy

radiated from the Earth gets through the atmosphere. The “solar constant” S is a

measure of the amount of energy per unit area that the Sun provides. The amount

of energy received by the Earth is πR2S where R is the radius of the earth. That

is, the energy received is the energy per unit area provided by the Sun times the

area of the Earth “visible” to the sun at a time. This will be a circle of radius R.

A certain amount of this energy is reflected back by the surface and atmosphere.

In reality, given the uptake of heat by the deep ocean and similar processes, there is a gen-

uine question about whether this claim is true for any given timescale (Dave Stainforth in

conversation). This is, however, the basic assumption that underlies this derivation.
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The albedo (α) is a measure of the fraction of energy reflected back in this manner.

So the energy absorbed by the Earth is:

p1´αqπR2S (.)

Imagine a “black body” that absorbs all incident radiation and whose only outlet

for energy is emission of radiation. The spectrum of wavelengths and amount of

radiation emitted depends only on the heat of the body. The Stefan–Boltzmann

law states that the energy emitted per unit area is proportional to T 4, where T is

the temperature of the body. The Earth emits heat over its whole surface of 4πR2.

So we can calculate the energy emitted by the Earth’s surface per unit time to be:

4πR2σT 4 (.)

Where σ is the Stefan-Boltzmann constant and T is the temperature of the Earth.

The energy input and output must balance. Putting these terms equal to each

other and cancelling some terms we get:

p1´αqS{4“ σT 4 (Temp)

Using S « 1370W m´2 and α « 0.3 and solving for T gives you a value of about

255 K which is about ´18 ˝C. If there were no atmosphere, this temperature –

the effective temperature – would be the surface temperature. This “effective

temperature” in fact differs from the surface temperature due to the effect of

greenhouse gases (GHGs), which act to insulate the surface.

The surface temperature and the effective temperature will differ depending on

how efficiently the atmosphere absorbs the radiation emitted from the Earth. From

(Temp) and an estimate of this efficiency, we can calculate what the temperature of

the Earth is, and how it would change if the atmosphere changes.

Greenhouse gases act like a “one way mirror” for radiation: they let in solar ra-

diation (mostly UV and visible spectrum wave lengths) but they absorb and reflect

some of the outgoing radiation from the Earth (mostly infrared spectrum). That

energy is absorbed back into the Earth and thus drives up the surface temperature.

The surface temperature and the effective temperature will differ depending on

how efficiently the atmosphere absorbs and reflects the radiation emitted from

the Earth. This “greenhouse increment” – the effect on surface temperature due to

energy absorption by the atmosphere – is about 33 K at present. Plugging these

numbers in gives us a surface temperature of 288 K, or almost 15 ˝C. Increasing

GHGs in the atmosphere will increase the amount of radiation absorbed and thus

will increase the surface temperature.
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From some well confirmed physics we have derived a simple model of the

climate system. More complex models require more work, but the same general

pattern can be seen in them as well. The next stage would be to build a 1-

dimensional climate model that captures the fact that more solar radiation falls

on the equator than falls on the poles. We would then need to model how heat

flows from hotter regions to colder regions. This model-building process would

be informed by the well-understood basic physics of heat transfer (McGuffie and

Henderson-Sellers , pp. –).

Knowing that the model we have built rests on these physical theories gives

support to the model. The model could still be wrong: some of the abstractions,

idealisations or approximations might be inapplicable given our purposes. But

on the whole, at a suitable level of abstraction we can take confidence from this

model building process. Note that this source of confidence relies on taking

the basic physics for granted. If we were being so sceptical as to question the

fundamental theories we appealed to, then no such confidence would accrue from

this procedure. Or rather, only conditional confidence would accrue: if the basic

physics is correct then the model is on solid foundations.

... Interval predictions

Returning to our fish population model; if the demon knows the exact initial

conditions – current population – he can predict the future population of fish with

perfect accuracy. But consider a different level of description. The demon is now

trying to predict the future population based, not on an exact initial condition,

but on some set of initial conditions, some “patch” of the initial state space. This

might correspond to some measurement of initial conditions with finite precision

(truncated data). In the logistic map example this would be making predictions

given some small interval of initial conditions. Recall Popper’s demon.

Obviously the demon cannot give pinpoint predictions for this sort of initial

condition, since different initial points in the initial condition patch end up at

different places once subjected to the dynamics. The demon can, however tell you

exactly what the patch of the final phase space is that houses all and only those

initial conditions that started in that initial patch.

The problem with this “patch prediction” is that for something like the logistic

map, it quickly becomes uninformative (see Figure .). Because of the chaotic

Recall this demon has unlimited computational capacity: it can complete the supertask of

putting every point in the uncountable set through the dynamics
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nature of the logistic map, the initial error grows rather quickly, so after a few

iterations the interval you predict is rather big, and it soon covers the whole

interval. This is obviously not a very helpful prediction. But it is interesting

as a measure of the predictability. That is, if the interval blows up quickly, this

indicates that the system is hard to predict. This relates to the discussion of

accountability above. For more on accountability and its relation to interval

forecasting and ensemble forecasting see Smith ().
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Figure ..: Graph of interval predictions. The interval covered at each lead time

(after each number of iterations).

Patch prediction can help against imprecision (section ..) but not much else.

This “exploring the uncertainty” is an important idea in climate science. While

not directly useful in improving the precision of our predictions, this is a good

way of learning about our models. We learn what interactions lead to big changes

by seeing which small differences in parameters have big effects.

This is all taking place at a fairly abstract level. How the comments in this

section (and those following it) relate to actual practice is complicated. But my

claim is that something roughly like these procedures underlies the (much more

complex) practices of working scientists. What scientists actually do will be far

more sophisticated (and in some ways more constricted), but the basic idea of

exploring the uncertainty through ensembles is the same.

Strictly speaking it will become dense over the whole interval.



. Scientific uncertainty 

... Ensemble forecasting

Say instead of a patch of initial conditions, we give the demon some probability

distribution over the possible initial conditions. For example, a “noise distribution”

peaked around an observed value. The demon could evolve this distribution

through the dynamics and tell you what the distribution of final conditions looks

like. Now, what if the demon weren’t quite vast enough to submit all these data to

analysis? There are, after all, uncountably many initial conditions in any patch or

distribution, to subject to the dynamics. And each initial condition is of infinite

precision. So that’s an awful lot of computation to do. So, how would a demon

of unreasonably large, but still finite computational resources fare? What the

demon might do is sample from the noise distribution, say  initial conditions

of finite precision. That is, he would take his measured initial conditions, and take

some probability distribution centred on the measured values. This distribution

accounts for his understanding that the measured initial conditions could be

slightly wrong. He then samples from this distribution to give him his ensemble

of initial conditions. He could then subject each of these initial conditions to

the dynamics, and take the distribution of model outcomes as representing the

distribution of possible system outcomes. What the demon does is pick out a

set of possible initial conditions – sets of possible values for current temperature,

precipitation, wind speed and so on – and put each of these possible descriptions

of the current climate through the model dynamics. The demon can then explore

what future evolutions of the system are possible in the model. Figure . shows

an example of an ensemble forecast of the logistic map at various lead times. As

you can see, the error spreads out fairly quickly.

Why is ensemble forecasting better than “best-guess” forecasting? Before en-

sembles, the standard practice in weather modelling was to take the best available

data and the best available model and to run one simulation in as much detail

as possible. Now, we sample from a noise distribution and run each ensemble

member through some model. If there are  ensemble members, then this

takes  times as much computing time as one model run, so we need to use a

simpler model than if we just had the one member. So how does this lead to better

outcomes? What is the value added by the more complex ensembles approach?

A common practice is to take some ensemble of initial conditions and adopt a uniform prior

probability over them. This is more or less the same as the sort of procedure I have been

describing.
These graphs are generated by the same data as the previous figure.
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Figure ..: An ensemble of outputs at various lead times for the fish popula-

tion. The distribution of ensemble outputs after various numbers of

iterations.
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The problem with “best-guess” forecasting is that initial conditions very close to

the best guess end up looking very different (recall Figure .). Loosely speaking,

the weather exhibits some kind of chaotic behaviour: sensitive dependence on

initial conditions. So the ensemble method shows you what possibilities there are.

Smith () discusses how ensemble forecasting predicted a serious storm that

hit England in  which would have been missed by best-guess forecasting (see

pp. –,–).

The “patch prediction” I discussed above also has this feature of highlighting

the space of possible evolutions, but ensemble forecasting goes beyond this in

“quantifying the uncertainty” by means of the output ensemble. In this way,

ensembles can help quantify our knowledge of noise, and so it can deal with

inaccuracy (section ..), as well as imprecision.

One can make an ensemble of initial conditions but it is also possible to sample

from a distribution on a parameter value: this “uncertainty distribution” accounts

for possible errors in parameter values in the same way the noise distribution

does for initial conditions. In this way ensemble modelling can help to deal with

some worries about model error, as well as initial condition uncertainty. However,

we are still working within a parametrised family of functions so similar worries

apply as have been already voiced in section ... What guarantees do we have

that we are getting the model structure right? Initial Condition Ensembles – ICEs –

and Perturbed Physics Ensembles – PPEs – are often used together to try to sample

as much of the uncertainty of the model structure as possible. We can take the

brute statistics of the ensemble members, or we can use sophisticated methods of

weighting the ensemble members by how good they are (Tebaldi and Knutti ).

One method is to score models on how well the can predict twentieth century

climate. This folds in aspects of the next method I will discuss. ICEs and PPEs

are joined by a third kind of ensemble: Multi Model Ensembles – MMEs – are

formed by taking the outputs of several different research groups, using different

model structures, and looking at the statistics of these grand ensembles. This

does something to mitigate the worries about being tied to a particular model

structure, but not much. There are only a handful of groups running large scale

genuinely distinct GCMs. So we are not really properly sampling the space of

possible models. Indeed, models share structure and code, so even the small

sample we have isn’t really a good sample (Tebaldi and Knutti , pp.–).

It is an “ensemble of opportunity”.

PPEs and ICEs investigate uncertainty about numerical values, while
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MMEs investigate uncertainty about model structure. For the former,

it is relatively straightforward to conceptualize, and then sample sys-

tematically within, the space of plausible alternatives; for the latter it

is not. Parker (b, p. )

Even when we are sampling a parameter value, there is a worry that accidental

features of the set-up may lead to bias. Different ways of describing what is ulti-

mately the same parametrisation can lead to a uniform sampling of this quantity

being different. Stainforth et al. (a, p. ) give the example of “ice residence

time in clouds” versus “ice fall rate in clouds”. These are not linearly related so

uniformly sampling one leads to a non-uniform sampling of the other. This is

a nice real-world case of language relativity. They are obviously describing the

same physical thing, but the choice of one over the other leads to differences in

sampling.

Given that ensembles don’t deal with all the kinds of error, it is a mistake to take

ensemble distributions as being probabilities of events in the world. But there is

certainly decision-relevant information to be gleaned from these ensembles, and

more information than just the possible spread of outcomes; but probably less

information than a full probability distribution function over possible outcomes.

How much information, and exactly what information there is in ensemble outputs

is a question still under discussion (Frigg et al. a,b; Parker a,b; Stainforth

et al. a; Tebaldi and Knutti ).

The frequency distributions across the ensemble of models may be

valuable information for model development, but there is no reason

to expect these distributions to relate to the probability of real-world

behaviour. One might. . . argue for such a relation if the models were

empirically adequate, but given nonlinear models with large systematic

errors under current conditions, no connection has been even remotely

established for relating the distribution of model states under altered

conditions to decision-relevant probability distributions.

Stainforth et al. (a, p. )

Questions remain about what interpretation can be given to this ensemble.

The world has some particular initial condition, and there is some determinate

outcome that will happen, so what sort of probability is the ensemble distribution?

This is not a new problem: a similar issue has been extensively discussed in

philosophical literature about statistical mechanics (Frigg a; Uffink ).
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There are however differences between interpreting statistical mechanical prob-

abilities and climate projection probabilities. It is standard to interpret ensembles

of simulation outputs as probabilistic evidence. That is, we interpret the ensemble

of outputs as giving us information about the probability distribution function

(PDF) of possible future events in the target system. Recall that the ensemble is

discrete, while the PDF in the target system is presumably continuous. So do we

treat the output ensemble “as if” it is a representative sample from the system

PDF and infer things about the system PDF from it? Since the model PDF doesn’t

account for all the sources of error we have discussed, this seems unwarranted:

how do we know that model distribution is not importantly different from the

“system distribution”? It seems a more subtle approach to model output is needed.

Stainforth et al. (a) criticise ensemble PDFs for not being adequate for de-

cision support. Frigg et al. (a,b) demonstrate how such an approach can go

wrong.

... Training and evaluation

As we’ve already seen (in section ..), some processes that happen at scales

smaller than the grid scale are important. How are they dealt with? Let’s take

the example of clouds. Clouds affect the albedo of the Earth. Clouds also have

an insulating effect like greenhouse gases do. These two effects act against one

another: increasing albedo cools the earth below the cloud layer, insulation warms

it. Which of these factors wins out – the direction of the net effect – depends on

a number of factors related to the make-up of the cloud. The intensity of these

effects differs for different kinds of cloud.

Clouds can’t be put directly into the model, because they are smaller than the

size of the grid square. So we have to add correcting factors to the albedo and

insulation parameters for the square. The exact values of these parameters will

depend on other variables that affect clouds – e.g. humidity, temperature – and

will vary as these vary.

We aren’t really simulating clouds, merely simulating their effects. We aren’t

calculating what particular values of humidity and so on will generate what shape

clouds, but rather directly what effects these clouds would have on albedo and the

like.

How do we work out what values these parameters should have? Derivation

from theory is more or less impossible, since these aren’t parameters that appear
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in basic physics theories. We do this by “training” the model on some data. So

for example we see what values the parameters should have in order to correctly

predict climate data from  to . We then test these parameter values

by seeing whether the model can successfully predict climate data from 

to . If this is successful, that gives us confidence that the parameter values

are successfully compensating for the unsimulated cloud effects. This kind of

statistical inference is a fairly widespread practice. Hitchcock and Sober ()

discuss why it is a good practice: in short, it is a good balance between having the

model fit the data and avoiding overfitting.

This helps us mitigate against worries about curve fitting (section ..) and

overfitting (section ..). And to some extent, training gives us confidence that

we’ve avoided structure error (section ..). That is, if the model predicts “unseen”

observations, then that seems to suggest it is getting something right about the

structure of the world.

There is something strange about this process, however. We take some parametrised

family of models and we use a statistical technique to find a model with good fit.

The statistical technique is “blind” to the physical interpretation of the model.

That is, we’re trying to parametrise clouds, but the statistical technique doesn’t

“care” about whether the parameter value it spits out is at all physically meaningful.

One would have thought that a reasoned process that took account of the physical

meaning of the parameters (and their interaction) would easily outperform such

blind fitting. So how do we get predictive models out of this process? And what

does this mean for our attitude to the models? Can we interpret the parameter

value as telling us something about the world?

As Hitchcock and Sober point out, the motivation for the training and evaluation

methodology is “purely instrumental in character.” They continue: “Even if we

know that the true curve is a polynomial of degree r, it may well be that the curve

of degree r that best fits the noisy data one has at hand will fare worse in future

predictions than a curve of lower degree.” (Hitchcock and Sober , p. ).

Petersen () criticises this blind statistical procedure, calling it “bad empiri-

cism”, in contrast to “good empiricism” which involves having your parametrisa-

tions be informed by basic science. Petersen wants us to derive our “cloudiness”

parameter from out understanding of the basic physics of cloud dynamics. This is

That said, we can get some information about the possible form they might take from theory.
The actual practice is significantly more complicated than this, but the basic idea is the same: fit

parameters with some data, validate it on other data.
Katie Steele pointed out how odd this process is.
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an admirable aim, but is it a practicable one?

One might argue that Petersen is right that in the limit, we should try and

have all parts of our model be physically motivated. But we need projections of

the future evolution of the climate today so we had better make them with our

current best physics. Our current best knowledge doesn’t include a capacity to

have physically meaningful parametrisations for all processes we need to model,

so if we want to model those processes, we had better be bad empiricists. Bad

empiricism is better than no empiricism. Is failing to model a particular process

better than modelling it in an ad hoc way? Covey () thinks not and I agree.

If the choice is between not modelling clouds (implicitly assuming they have no

overall effect on the climate) and modelling clouds in an ad hoc “bad empiricist”

way, then bad empiricism seems the better choice. But is this a false dichotomy?

Would it be better to somehow learn to live with only getting the kinds of predic-

tions we can justifiably secure with good empiricism alone? Going down this line

of reasoning might leave us with rather few predictions. This “theoretical limit”

would involve resolving clouds and all other currently parametrised processes,

and looks rather like if we were to follow this line to its end, we would be falling

into the trap that Borges outlined. So it’s not even clear that bad empiricism is

bad in the limit. That said, there is certainly something to the intuition that the

more we derive from well confirmed physical theories, the better we will do. So it

seems that “avoid ad hoc parametrisations” does serve as some sort of regulative

ideal. As Parker () discusses, there is a commitment to model the physical

processes in “the right way” as much as possible. Ad hoc fudges that just “save

the phenomena” are a last resort: physically meaningful, realistic solutions are

much preferred. So it seems there is a sense in which we do take ourselves to be

trying to “get at” the equations Nature uses.

What about the worries I raised earlier about simplicity being no guide to the

truth of a functional relationship? In fact, Akaike () shows that a measure

of predictive accuracy explicitly includes a “simplicity measure” in terms of the

number of adjustable parameters. Akaike defines a measure of predictive accuracy

that can be broken down into two components: one that measures the function’s

success so far (how close it is to fitting the training data); and another component

that is effectively the number of free parameters (a crude measure of simplicity).

Hitchcock and Sober (, section ) discuss this surprising result in the context

of model-building.

See also Sober ().
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There is a worry that future climate data won’t be like past climate data in the

way we would want it to be for this source of confidence to work. We are training

models on their ability to model the climate when GHG levels are at or below

current levels. GHG concentrations are rising, so the future climate system will

be unlike the past in having these higher levels of these gases.

Statements about future climate relate to a never before experienced

state of the system; thus, it is impossible to either calibrate the model

for the forecast regime of interest or confirm the usefulness of the

forecasting process. Stainforth et al. (a, p. )

This goes some way to undermining the use of training and validation. There is

still some confidence to be gleaned from these procedures since we might think

that models that do well at predicting past data will also be better at predicting

future data, just as long as the difference in GHG concentrations isn’t too large.

Another use that past data is put to is it is used to weight the different ensemble

members when producing ensemble statistics. That is, the predictions of those

models that better predict past data count for more in generating a PDF based on

the ensemble. For the reasons just discussed, ability to predict the past needn’t

entail ability to predict the future.

A further worry is that different parameter settings can be equally good.

[M]ultiple locations in parameter space can be identified which yield

simulations of present climate of comparable quality to the stan-

dard. . . while predicting a range of transient climate responses.

Murphy et al. (, p. )

If we take successful prediction to be confidence-warranting because it suggests

we have got something right about the parameter values, then this underdetermi-

nation is worrisome. If different settings of the parameters can lead to equally

good prediction, then which parameter setting truly reflects the physical target

system? Different errors may cancel out (Oreskes, Shrader-Frechette, and Belitz

). The next section turns this worry on its head and suggests that it may in

fact be a good thing.

... Robustness

We don’t just have the one model: different research groups have different models,

built using different data sets and techniques, for different purposes, at different
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resolutions, incorporating different mechanisms. Agreement between these dis-

parate models is an important source of confidence in their predictions (Lloyd

; Parker , ). Even a single model can exhibit a kind of robustness if

the same predictions come up for different settings of the parameters.

My usage of the word robustness is fairly broad and covers concepts that others

might want to distinguish: for example agreement among models and insensitivity

to changes in parameter values. I believe there is enough in common between

these various concepts that they can be discussed together, and I choose to use

the word “robustness” to refer to them. In short, I allow “robustness” to refer to

agreement across ICEs, PPEs and MMEs.

Let’s first consider parameter robustness. This might also be called “insensi-

tivity”. The idea is that if some particular prediction is insensitive to the value

of a particular parameter, then this prediction is robust in this sense. There are

some caveats to this characterisation of parameter robustness. If a result is robust

across the range r7,10s for some parameter x, and we believe the actual value

of x to be near 1, then this robustness is not confidence-warranting. This might

seem like a trivial point, but it’s not one I’ve seen discussed anywhere. Or again,

even if we have a robust prediction for parameter values p1,5s but pathologically

weird behaviour below that, then we still don’t have that much confidence in the

prediction.

The idea is that robustness is confidence-warranting if we have robustness for

a range of values around the physically expected value of the parameter. And this

important caveat also points to the reason behind the confidence: if we have that

robustness, then wherever the actual parameter value is in that expected range,

the prediction of the outcome variable will hold.

Imagine we knew we had the right model, but we were missing a parameter

value. Here, robustness of a result around the possible values of the parameter

does warrant confidence. Wherever the parameter is in the possible range, the

outcome is the same, so since we’ve got the model structure right, we know the

outcome is assured. To put it the other way, if a result is not robust across different

values of an unknown parameter, then we have no reason to be confident in our

prediction of that effect based on some estimate of the unknown parameter.

I take this to be the kind of thing people have in mind when thinking about

robustness of simple models. We have a simple model motivated by basic physics

and an unknown parameter. Say we’re investigating heat flow in some liquid

for which we don’t have a good estimate of thermal conductivity. Some effect
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that is robust across different values of this unknown parameter is likely to be

correct. We think that our model is getting something right about the structure of

the world. So robustness in the model suggests that, counterfactually, whatever

nearby value Nature could have picked for the parameter, the result would be

the same. So this gives us confidence that the result will hold in the actual world.

This is similar to the sort of “robustness analysis” that Weisberg () discusses.

The details of this line of thought will depend on what position one takes on the

theory-world relation.

Introducing model error into this discussion adds another level of complexity.

Now consider robustness of a result across different climate models. There are

elements of the model that we know to be unphysical. There are parts of the

simulation that we know aren’t mapping onto structure of the world (or are

mapping onto system-structure only very indirectly). So how is robustness of the

model evidence that the result is assured in reality?

If different models with different idealisations make the same prediction, that

suggests that the prediction is not an artefact of this or that idealisation (Muldoon

). What we have here is evidence that the prediction is due to the shared

structure of the models which we hope is structure they also share with the world.

This is defeasible evidence, obviously, but evidence nonetheless. What we have

is evidence that there are no troublesome systematic errors in our models. We

can think of running different models of the climate as exploring a part of model

space. Let’s imagine there is some model which is a perfect model of the actual

world. We can now put our intuitions about robustness like this: as long as we are

exploring the part of model space that contains the perfect model, then we can be

confident that robustness warrants confidence. However, we can’t always be sure

of achieving robust predictions. What to do with “discordant evidence” – when

our predictions disagree – is an open question (Stegenga ).

The missing stratosphere/extra-tropical storm tracks story I mentioned earlier

might give you pause for thought here. In , the IPCC authors felt that

there was enough consensus to mention model agreement in their report. They

did mention a dissenting opinion, but there was nevertheless something of a

consensus (Solomon et al. , Section ...). This consensus has now been

overthrown. This is an interesting case because the shared error of the earlier

models can’t be straightforwardly attributed to some shared modelling artefact.

There are, however, almost certainly some systematic errors that have not yet become trouble-

some. . .
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What the models “shared” was a lack of stratospheric resolution. I can’t see how

failure to model some physical process could cause the sort of spurious agreement

that this episode illustrates. One might worry that agreement with previously

existing models is being used as a criterion for adequacy of a model. This sort

of sociological interdependence undermines the confidence that robustness can

otherwise warrant.

... Past success

For something like weather forecasting, we have plenty of evidence that our

models are doing pretty well at predicting short term weather. This gives us

confidence that the model is accurately representing some aspect of the weather

system. Parker (a) discusses this issue. Past success at predicting a particular

weather phenomenon, together with the assumption that the causal structure

hasn’t changed overmuch does allow a sort of inductive argument to the future

success of that model in predicting that phenomenon. Past success suggests that

problems with implementation, hardware, and missing physics are not causing

the models to go wrong. If these things were causing the model to go wrong, we

wouldn’t have had the past success we did, in fact, have.

Climate modellers do not have access to this source of confidence. First, they

don’t have the same wealth of past successes: they are predicting things that

are still in the future, so they don’t know if they’ve predicted accurately yet!

Climate models have only so far managed to retrodict already existing data (see

section ..). Weather forecasters are predicting days in advance and they have

years of data on their performance. Climate modellers are trying to predict years,

decades into the future and only have a couple of decades worth of data on how

climate models have done. And even this data isn’t very helpful: how useful is

it to know how a particular climate model from the s did at predicting the

s? We now have much more sophisticated models, but these models have not

yet demonstrated any predictive success.

Climate predictions are conditional on particular CO emission scenarios, as

well. So we can’t even be sure that the causal structure isn’t changing in ways that

could undermine our ability to predict. Also, if the world is warming, past data

and data from the warmer future will not be similar in all the ways they need to

This point has come up in discussion periods at the Bristol Philosophical Issues in Climate

Change Workshop (May  ) and the European Philosophy of Science Association confer-

ence in Athens (October  ). Thanks to the participants at those events.
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be to underpin the material induction. We can’t be sure of the “stable background”

we need to ground our induction (Norton ). So, even if we had past success,

we couldn’t be sure that the conditions hadn’t changed so as to invalidate any

confidence this success gave us.

... Summary

Table . summarises how each of the coping strategies discussed fares in relation

to each of the sources of error. Imprecision and inaccuracy can be mitigated

against by making better measurements and running ensemble forecasts rather

than “best-guess” forecasts. Deeper worries about measurement might be offset

by agreement among models which suggest that the quantities we are measuring

are the right ones. Basic physics might also give us confidence we are on the right

track as far as getting the relevant quantities right goes.

Some physical parameters can be measured independently of the climate mod-

elling so better measurements can sometimes help with worries about parameter

error. For example, the thermal conductivity of air, or the viscosity of water can

be determined independently of the role they play in climate models. Robustness

of a prediction across an ensemble of parameter values mitigates against worries

about parameter values, even in the absence of such direct techniques. We can

also train models on past data to determine unknown parameters.

Error in the structure is somewhat harder to deal with. Finding parameter

values through training on past data involves starting with some parametrised

family of functions, so we can’t train our models to account for error in picking the

model class. If basic physics suggests that the structure ought to be roughly this

way, then that warrants some confidence that we aren’t subject to structure error

there. If a prediction is robust across different models with different structures,

this gives us confidence that the differences in structure do not contribute to

making this prediction go wrong. Likewise, past success suggests we have got the

model structure roughly right. For similar reasons, past success and robustness

give us some confidence that the physics missed out of our models is not leading

our models to be seriously wrong. Missing physics can also be accommodated by

“training” unphysical parameters that correct for the processes we are leaving out.

That a model trained on some past data can still retrodict unseen data partially

mitigates worries about overfitting. Past success can be seen as warranting extra

confidence of the same kind. If the model isn’t too sensitive to changes in its

parameters, this also suggests that the model is not over fitted.
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Worries about discretisation and resolution effects can be somewhat allayed by

results not being sensitive to changes in resolution, and by past success at mod-

elling the system at that level of resolution. Deep worries about implementation

can be dealt with in the same way.

I have outlined a variety of sources of error in scientific modelling. I have also

explained some ways we have of maintaining confidence in our predictions despite

these errors. I tried to diagnose how these methods allowed us to remain confident

in the face of error.

.. Philosophical reflections

In various places in the above discussion of uncertainty I glossed over some

important philosophical topics. I return to a couple of them now.

... A digression on the meaningfulness of derived quantities

Temperature is a shorthand for “mean kinetic energy”. So “temperature at a

point” is meaningless. Temperature is a quantity defined for some volume, and is

defined by the average energy of the particles in that volume. Imagine shrinking

the volume of interest until it is of a size with the atoms. Now imagine that at

a particular time, that volume is empty. But say at some later time, a particle

whizzes through the volume. The mean kinetic energy of the box would suddenly

jump from 0 to k where k is the kinetic energy of that particle, and then it would

jump instantaneously back to 0 when the particle leaves the volume. On this scale,

it should be obvious that temperature is not a useful quantity. In short mean

kinetic energy is just not a stable, meaningful, useful concept on scales of the

order of the mean free path of the atoms.

A similar meaninglessness is apparent if we consider the millionth decimal

place of a temperature in a “normal sized” volume. The millionth decimal place

might well change radically as particles enter and leave the volume. So at this

resolution, again, the quantity is useless: it is pure noise.

But the above discussion does not undermine temperature as a meaningful,

useful quantity on the appropriate scales. Of course, at some level, at some degree

of precision, the whole concept of temperature breaks down; but we are not near

that limit in practice. Even if the thousandth decimal place of a temperature

Let’s pretend we’ve never heard of vacuum energy: we are being good Newtonians. . .
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reading might well be meaningless, there are meaningful significant figures that

we aren’t measuring. It does not mean that striving for more accuracy is wasted

effort: it simply means that there is a limit.

The limit isn’t an absolute limit on what science is capable of: if we were

working on the tiny volume scale, we simply wouldn’t be using quantities like

temperature. We would be using the resources of quantum mechanics, rather than

classical statistical mechanics and thermodynamics. So while arbitrarily precise

temperature readings don’t make sense as the ultimate goal of better measurement,

it is still the case that there are meaningful significant figures we aren’t capturing

(again assuming there is a fact of the matter). Those significant figures that are

meaningful that we aren’t measuring could well be worth knowing about.

... Realism and the “True” model of the world

I want to highlight a couple of points about the above discussion that have a

bearing on our attitude towards the model. I mean by this the attitude we ought

to take vis-à-vis whether the model is adequately representing the target system.

Throughout this chapter I have been talking as if there really is some set of

equations that “Nature” uses to evolve the real world system. Our aim is to get

our model as close to these equations as possible. Is this true? Does it even make

sense? Whatever the answer to those questions, it is certainly the case that it is

unreasonable to assume that the “True” equations of the world are in the class of

models we are currently exploring. We know there are myriad ways our model

class must fail to contain the True equations if they exist.

So how ought we talk about the practice of modelling? It seems it can only be a

verbal shortcut to talk of our getting at the True model: a metaphorical flourish.

Indeed, the model and the system are just very different kinds of things. I’ve pointed

to some of these differences above, but let’s make them clear again. First, the

target system – the physical world – is a physical thing. The model is. . . what? A

computer program? A mathematical construct? Some combination of the above?

So it’s not even clear what it means to say that the model “gets things right” about

the world. What does it mean for a model to be “like” its target system?

One might want to retreat to a kind of instrumentalism here and say that the

model is “like” the target system in that the things in the model that represent

the observables – temperature, wind speed and the like – are “like” those things

in the world. That is, one might take the view that the model and the system

agree on the level of the observables: on the level of the temperature data and
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precipitation data; one could then refrain from making any claim about whether

the way the simulation manipulates the data bears any resemblance to the physical

processes. So temperature data in the model is like temperature in the world. But

there is still a concern that these are quite different kinds of things. That this

particular part of computer memory registers a value interpreted as “13.45 ˝C”

doesn’t straightforwardly translate into a fact about the world. Is comparing

data measured in the world with data generated by a model comparing apples to

oranges? Perhaps we would like to say that all we are really trying to do when we

are modelling is to summarise the actual data as best we can. But then why run

simulations into the future?

First, there is a certain sense in which we really do take the models as telling

us something about the world. These models are supposed to be predictive: they

are supposed to tell us how the actual climate will actually vary. So there are

certain parts of the model that it seems we really have to be realist about. And

this isn’t an idle philosophers’ realism: decisions costing billions of pounds are

made on the basis of these predictions’ correctness. How’s that for ontological

commitment? Recall also the commitment to model processes in “the right way”

that Parker () mentions.

However, there are still parts of the model that we know are unphysical: all

the sub-gridscale parametrisations are simply ad-hoc ways of keeping predictive

accuracy. There’s no attempt to model the phenomena, we are merely trying to

accommodate the measurements. So taking this “trying to get at the True Model”

line too seriously is misleading. We have a commitment to accurate predictions

too and sometimes this leads us to approaching things in unphysical ways. This

line might bolster my earlier response to Petersen () on “bad empiricism”.

.. When to take probabilistic predictions seriously

In this section I aim to outline what needs to be the case in order for a probabilistic

prediction based on statistical or model evidence to be a reasonable guide to

decision. When, in short, are the worries about severe uncertainty of the previous

chapters not applicable?

Norton () attempts to ground inductive inference in local facts, as opposed

to giving a global, formal theory of induction. When various local facts about

These projections are conditional on a particular emission scenario, but they are still supposed

to be saying something conditional about the actual world.
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there being some stable background for the induction hold, inductive inference

can go ahead. As a theory of induction this just pushes the problem back a level:

what could possibly ground the local facts about the background remaining stable

in the future? But Norton’s theory is helpful in that it emphasises what we must

take for granted in order to warrant induction.

Let’s take a specific case of statistical inference and see where the assumptions

enter. The plan is to start with a discussion of an idealised case, and then pro-

gressively remove idealisations to see which results survive which idealisations.

We are tossing a coin of unknown bias. After N tosses it has landed heads HN
times and tails TN times (obviously, HN ` TN “N ). As N increases HN

N becomes a

better and better estimate of the objective chance of heads, with probability one.

This is so because of the Law of Large Numbers (LLN). What assumptions are we

making in the above inference? What properties of the set-up does LLN rely on?

The LLN holds for independent and identically distributed (iid) samples. What this

means is that each coin toss has the same chance whatever the previous outcomes

were, and each toss has the same chance of heads as the previous tosses. For coin

tosses we can take these properties for granted. If we are sampling from a large

population, we need to be careful to control for various sorts of statistical bias

before we can make this sort of assumption. If you were making decisions that

depended on the next coin toss, the value HN
N is appropriate for use as a decision

weight, provided N is large enough. If N “ 1 then the above fraction will be 0 or

1, and it won’t provide good enough evidence to be useful for decision.

Let’s move now to the less simple case of weather forecasting. We have several

decades of daily weather data, and in some cases we have records stretching back

a hundred years or more. Using this data we can estimate the average temperature

or rainfall. This isn’t, however, a particularly useful calculation. In temperate

climes, the effect of the seasons means that the mean temperature isn’t a useful

piece of information. If you were interested in tomorrow’s rainfall in a region that

has a monsoon season and a dry season, total annual rainfall divided by  is

unhelpful. Maybe we have just got the reference class wrong here. If it is July

and you are interested in tomorrow’s temperature, what you want is the average

temperature of past Julys. But even this will typically be too coarse-grained a

statistic to be useful. Weather forecasting goes beyond these crude statistics by

I am going to help myself to objective chance talk here. I don’t think anything fundamentally

different happens when you don’t allow yourself this kind of talk, but things get slightly more

complicated. See Kreps (, Chapter ) for a treatment of statistical inference in purely

subjectivist terms.
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measuring weather patterns and using physics-based models to run simulations

of future weather. We know roughly how areas of low pressure affect wind speed

and direction, we know how areas of cloud will move so we can predict where they

will drop their rain. In these ways, we can do better than the brute statistics in

predicting weather outcomes. The models that centres like the UK Meteorological

Office run are ensemble models (see section ..). Thus they give probabilistic

predictions of future weather. These predictions seem formally similar to those

offered in the climate case. I was critical of the possibility of such forecasts for

climate, so it will be instructive to see what the distinction is that means that the

weather probabilities can be legitimate. Indeed, we have already seen all the parts

of the difference: there are certain sources of error that climate models are subject

to that weather models aren’t, and there are certain sources of confidence that

apply to weather models but not to climate models.

Short range weather forecasts – one to five days ahead – don’t suffer from the

problems with lead times that climate models do. That is, the small errors don’t

have time to blow up on the timescales that weather forecasters deal with. Weather

forecasters can afford to build models with higher spatial and temporal resolution,

since they don’t have to be run so far into the future. The state of the art in  –

when the last IPCC Assessment Report was published – had climate models with a

resolution of around 100 km, while the Met Office’s Numerical Weather Prediction

(NWP) model boasts a resolution of 1.5 km over the UK.

As well as these advantages, weather forecasts benefit from some extra sources

of confidence. As well as copious weather data, we have copious data on how well

our weather models predicted. This information has helped improve the model

and also gives us confidence that the model is generating useful, decision relevant

information. We can be confident that weather models are adequate for purpose,

to use the phrase from Parker (). Given that we have only really had big

GCMs for a couple of decades, and that the prediction lead times of interest are

thirty, forty, fifty years in the future, we don’t have the same kind of confidence

that the information generated by the current generation of climate models is

http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation

Retrieved  July .
In this respect long range and seasonal weather forecasts are a little more like climate than

short-range weather. To make the distinctions clear, I will focus on short range forecasts, but

there is a spectrum of forecasts between weather and climate.
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/

weather-forecasting Retrieved  July .

http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/weather-forecasting
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/weather-forecasting
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accurate or decision relevant. Ultimately, the same basic physical processes – heat

transfer, fluid flows – are responsible for climate processes and weather processes.

However, the proximate causes are different and the weather-processes are better

understood than the climate processes. For example, we don’t know how much

heat the deep ocean can absorb. Our better knowledge of the weather processes is

due to the wealth of information we have about the weather’s behaviour and the

timescales involved. To take up the deep ocean again, we don’t know its capacity

for absorbing heat energy because we don’t have enough data on how the deep

ocean responded to previous increases in temperature.

On the sort of timescales that weather models deal with, we can take for granted

that we have the stable background that we need to ground the right sort of

inductions. For climate, the situation is rather different. We have no historical

data on how the climate responds to the high levels of CO currently in the

atmosphere. We don’t know that the response will be similar to the responses that

our models predict. For the reasons given above, we have some confidence that the

model response adequately captures the important features of the system response,

but as we saw, climate models haven’t passed the same stringent confirmation

tests that weather models have. The models are based on the data we do have,

and we know that those data are relevantly different from the actual situation.

On some more basic level – at the level of the thermodynamics – we know what

the effect of the CO should be. At this level, we do have the stable background.

But this isn’t enough to scale up our predictions to the climate system, with all

its unknown feedbacks and nonlinear dependencies. The situation is, in some

ways, like the following: I roll a green die several times and record the outcomes.

I then give you this information. You use this information to make predictions

about what will happen when I roll a blue die. There’s a sense in which the data

I have given you shouldn’t be taken to be decision relevant, given the important

differences between the data generating regime (green) and the current decision

regime (blue).

I take the above discussion to show what it takes to be confident of your models’

probabilistic predictions, and also to show how we don’t have that confidence

in the climate case. We can of course make probabilistic predictions for climate

events: many people do. But the aim of the above discussion was to show how these

predictions should not be used as a basis for decisions. The kind of epistemological

warrant for taking the probabilistic predictions seriously just isn’t there in the

climate case. We are in a state of severe uncertainty and that should affect how
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Figure ..: A caution against overstretching your inference: a blue die (l) and a

green die (r)

decision making proceeds. Thus the pessimistic decision theoretic conclusions of

the previous chapter hold. What climate models can give us already is a “non-

discountable climate change envelope”: a set of possible futures that we cannot

rule out (Stainforth et al. b). Can imprecise probabilities help here? Perhaps

we could take each ICE or PPE as providing a “non-discountable PDF”, and then

we take the set of them as representing the current state of knowledge. This

contrasts with the actual current methodology of model-averaging in a number of

sophisticated ways to generate a single probability distribution function (Murphy

et al. ; Tebaldi and Knutti ). So instead of using sophisticated model-

averaging techniques, we just take each member of the multi-model ensemble

as providing a probability in your representor. Decisions would then be made

on the basis of this representor. This would focus attention on those parts of the

evidence where the models disagree, and on those parts of the evidence where

there is a agreement. I take the important point of such an exercise to be the focus

on which conclusions are robust, and on which conclusions are not: such a focus

is important, and the model averaging techniques are in danger of sweeping such

important information under the carpet. Note however that robustness may be

due to incomplete or biased sampling of the “model space” rather than due to

some feature of the world. So this imprecise probability approach is not a panacea

for all model-error worries.
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If we take this non-discountable PDF approach, we will be stuck with the prob-

lem that we ended the last chapter with: there will be circumstances when the

imprecise decision rules fail to discriminate among different acts. The evidence

will not be good enough to give us advice. The next chapter will discuss what to

do when we end up in such a situation.
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All models are wrong, but

some are useful.

(George Box)

In the last chapter we saw that climate science has many sources of uncertainty.

In previous chapters we have seen that decision making in the presence of such

uncertainty can be very difficult. This short chapter will look at what we can do

when faced with climate decisions.

The main aim is to argue that only the weaker standard of rationality is applica-

ble given the uncertainties present, and to show what this means. The aim is not

to argue directly for the use of imprecise probabilities in climate decisions. I will

argue that just because we don’t have a decision relevant probability that we can

use to find the optimal decisions, that does not mean that there is no advice that

the climate evidence can give to decision makers.

.. Uncertainty and decision making

We have seen that there are a variety of sources of uncertainty in climate modelling,

and we have seen that the myriad ways of dealing with these uncertainties are

often indirect and fraught with possible errors as well. There is no question on the

basic science: increase in greenhouse gases will increase the temperature of the

planet. This conclusion only requires some basic physics. The uncertainties are

all in what this conclusion means for local climate. Modern climate simulations

are tremendously complex beasts: they have a horizontal spatial resolution of

about 100 km which means the surface of the Earth is represented by about fifty

thousand grid points. They have a vertical resolution varies much more, but

thirty vertical levels is a reasonable headline figure. Temporal resolution is also

quite variable, but it is of the order of about half an hour. The models track

Recall the basic Energy-Balance Model we constructed in section ...
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something like a million variables, and involve about  adjustable parameters.

All of these components are interacting in myriad sophisticated ways (McGuffie

and Henderson-Sellers ). What modern GCMs are not doing is working out

whether climate change is a real phenomenon: It has been uncontroversial for

a long while that increasing concentrations of greenhouse gases will cause an

increase in global mean temperature. As far back as  scientists were studying

the effect CO on temperature (Fleming ; Weart ).

If these conclusions are well-established, what are modern climate models

doing? Knowing that annual global mean temperature will rise over the next

fifty years doesn’t tell us very much about what will happen to the climate on

smaller scales: what will the weather be like in the Norwegian fjords, or in

subsaharan Africa in this eventuality? How will temperature increase affect large

scale atmospheric or oceanic phenomena like El Niño, the Gulf Stream or the

hurricane season? How will rising temperatures affect number of rainy days in

central London? Will climate change increase the risk of flooding in Oxford? These

are the questions that climate models are now aiming to answer. Climate models

are now part of the process of predicting finer-grained climate outcomes which

are of more decision relevance to local and regional decision making bodies. The

detailed climate evidence is used as input into more detailed models of regional

climate and this in turn feeds in to assessments of the impacts of climate change.

Each link in this chain of inferences has its own sources of uncertainties.

Let’s say you are a policy maker who needs to decide some details of policy. The

success of the policy will depend on the future evolution of the climate in some

way. Let’s say you are in charge of flood defences and you need to decide how high

to build them. You can look at past data on maximum river height. This gives

you some evidence about what appropriate defence heights should be. However,

it would be naïve to stop there. Given the reality of global warming, you know

that the climate state that will produce future floods is relevantly different from the

state that produced the past data.

So you must turn now to projections of the future climate. Given the evidence

of some corpus of climate models – say the crop of models discussed in the latest

IPCC assessment report – what should you believe about the climate? As we have

said, the basic physics is not in dispute and this alone sanctions general claims

about increasing global mean temperature. We are interested in local effects. Let’s

These figures come from email conversations with Lenny Smith, Dave Stainforth and Erica

Thompson.
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say we are using something like the UK Climate Impacts Programme (UKCIP)

data.

The UKCIP offers maps like Figure . for very fine grained predictions of pre-

cipitation seventy years into the future. A range scenarios (and their likelihoods)

is offered (Jenkins et al. , p. ).

Figure ..: UKCIP Projections for precipitation in 

For example, UKCP say this:

The development of new techniques, together with increased comput-

ing power enabling them to be exploited, has allowed us to quantify

the spread of future projections consistent with major known sources

of uncertainty. . . Uncertainty in this case is dealt with by presenting

projections which are probabilistic in nature. This sort of presentation

is more informative than the single projection (for a given emissions

scenario) in UKCIP, or even a range of different projections from

different climate models. . . but is also necessarily more complex. It

gives the user the relative probability of different outcomes, based

on the strength of evidence, and more openly reflects the state of the

science. This is why probabilistic projections were adopted by IPCC

for the first time in their most recent science assessment. The UKCP

Projections respond to demands from a wide range of users for this
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level of detail. Jenkins et al. (, p. )

This probability then forms the basis of decisions that depend on the future

evolution of the climate. That is, it is with respect to this ensemble probability

that expected value is calculated, and decisions are taken that maximise this

expectation. For example, perhaps the ensemble distribution is peaked around a

small value for future precipitation in Oxford. On the basis of this prediction, flood

insurance premiums in Oxfordshire are set relatively low, since the probability

tells you that floods are unlikely. The worry about this sort of procedure is

that the probabilistic projection doesn’t account for all the possible sources of

error discussed above. And this worry leads to scepticism in the use of these

probabilities in decision support.

UKCIP’s costings case studies, for example, use explicit probability numbers

in their analysis: The “Heritage building in Lewes” example depends on the

following claim:

By the s, under the UKCIP medium-high emissions scenario,

% of years will experience a wet “- type” winter.

Taylor, Metroeconomica Ltd. And University of Bath (n.d. p. )

This probability forms the basis of a system of decision weights that is used to

decide how much to spend adapting to these increased flood risks. So UKCIP

really are selling these projections as giving you the probabilities of future climate

outcomes. Buried in UKCIP’s “Risk, Uncertainty and Decision-making” hand-

book, there are some caveats and warnings, but they seem to get lost in what gets

sold to policy makers. For instance

The ability of mathematical risk models to handle a large number of

complex interrelated issues is well tested. However, problems may

be so large and complex that they cannot be resolved through the use

of sophisticated models, although such models can still be of help in

understanding the problem. Willows and Connell (, p. )

I claim that standard probability theory doesn’t allow us to represent the kind

of severe uncertainty we see in the case discussed here. The evidence we can glean

from climate models is genuine evidence – so we are not in a state of ignorance

http://www.ukcip.org.uk/costings/case-studies/ retrieved  October 
UKCIP don’t make it clear how the ensemble output is dealt with in the process of producing

the probabilistic projections. But as Frigg et al. (b) argue, probabilistic forecasts seem to

have inherent problems.

http://www.ukcip.org.uk/costings/case-studies/
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– but it falls short of characterising an appropriate decision relevant probability

function. So there is a question about what exactly we should believe on the basis

of this evidence.

The last few chapters offered a formal theory of severe uncertainty and decision

making. This theory is applicable in the climate case. This claim is backed up by,

for example, the findings of Frigg et al. (b): probabilistic forecasters seem to

be pragmatically worse off in a quite striking way.

.. More trouble for climate decisions

It gets worse before it gets better. As we have seen, climate science suffers from

a number of difficult sources of error. But climate decisions also involve taking

into account the difficulties of the economics of climate change. Weitzman ()

points out some of these problems. First, given the long time that CO stays in the

atmosphere, it is very difficult to control the amount of it in the air. This inertia

limits the options we have available. There is no reasonable method available to

us that would even keep CO levels constant.

Our evidence of the likelihood of the extreme events – the extreme costs we

would like to avoid like catastrophic warming – are the events we have less

evidence about. It is harder to learn about the tails of a distribution than it is

to learn about those values around the mean that come up more often. It is the

extremes of, for example, precipitation or temperature that will lead to the large

costs that we want to avoid.

These are uncertainties at the global level. Then we have the unknown local

responses to certain levels of global mean temperature change. These are the sorts

of things that climate models are now trying to pin down.

Even if we had a good understanding of these facts about the future climate,

there are uncertainties associated with how exactly these contingencies should be

valued. What is the cost associated with this much extra flooding in Oxfordshire;

with this sort of change in where storms make landfall on the Eastern seaboard of

the United States? And that’s just for the economic costs attached to certain kinds

of possible climate contingencies. What about the unquantifiable human costs

of hundreds of millions, possibly billions of people being displaced by climate

induced extreme weather events and concomitant human problems; famines, wars

and so on? I have in previous chapters just assumed that we can take precise utility

functions for granted, but this is obviously a gross simplification. One problem
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with climate change and what the human response to it should be is that climate

change happens on longer timescales than humans are used to dealing with. This

typically means that the possible sacrifices we could make now will improve the

lives of future generations. There are deep questions about how exactly we should

value future generations.

Indeed, there are problems at an even deeper level. It isn’t obvious that we have

a good grasp of what acts are available to us in our climate decision problem. We

don’t know how effective the various policies on the table will be if implemented.

We don’t know how effective a particular carbon tax scheme will be at limiting

emissions. We don’t know how effective various technological solutions will be if

funded. To put things in terms of a Savage-style decision problem, we don’t know

which functions from states to outcomes our policies match up with.

All of these things taken together prompt me to echo Weitzman’s point that:

such numbers and specifications must be imprecise and. . . this is a sig-

nificant part of the climate-change economic-analysis problem, whose

strong implications have thus far been ignored.

Weitzman (, p. , Weitzman’s emphasis)

And again:

Perhaps in the end the climate-change economist can help most by not

presenting a cost-benefit estimate for what is inherently [uncertain] as

if it is accurate and objective. . . but instead by stressing somewhat more

openly the fact that such an estimate might conceivably be arbitrarily

inaccurate depending upon what is subjectively assumed about [the

loss function]. Even just acknowledging more openly the incredible

magnitude of the deep structural uncertainties that are involved in

climate-change analysis – and explaining better to policy makers that

the artificial crispness conveyed by conventional IAM-based CBAs

here is especially and unusually misleading compared with more-

ordinary non-climate-change CBA situations – might elevate the level

of public discourse concerning what to do about global warming.

Weitzman (, p. , Weitzman’s emphasis)

Given these worries, we should be sceptical of strategies that focus too much

on optimising: we don’t know enough to properly determine what actions would

 Integrated Assessment Model-based Cost-Benefit Analyses.
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be optimal. Imprecise probabilism refocuses attention on what we can do with

respect to making choices: ruling out the bad acts. It may be that for certain

kinds of climate decision, even this is too much to ask. There may be so much

uncertainty surrounding a certain decision relevant question that only trivially

worse acts are ruled out given the current state of evidence. I would argue that

being stuck with such intractable decisions is better than optimising on the basis of

too-sharp ensemble probability estimates. In the next section I discuss some kinds

of strategy for dealing with even these apparently intractable decision problems.

If the evidence really is that bad, then we are just stuck. What I would like to

point out is that there could be cases where the evidence does not determine a

decision relevant probability, but where it still provides enough guidance that

some acts can be ruled out using some decision rule weaker than “optimise with

respect to the decision relevant pr”.

There are further problems with climate decisions, since there isn’t just one

agent in these scenarios. There is a strategic element to climate decisions: it doesn’t

matter if Britain commits to cutting CO output by % if other countries don’t

agree to do the same. There is something of a “tragedy of the commons” about

certain climate decisions. All countries want to emit CO since industry, which

generates wealth, emits CO. And let’s say all countries know that we overall

need to cut down on carbon output. But for each country, it would be better if

the sacrifices came from other countries. Various international mechanisms for

enforcing caps on emissions have proven to be fairly toothless, and unilateral

action doesn’t look appealing if the sacrifice isn’t enough to mitigate the bad effects

of climate change.

So climate decisions are difficult. I take one of the important things about the

imprecise probabilities model I favour to be that it makes decision making difficult

when decision making should be difficult, instead of seeming to make distinctions

it shouldn’t. Once it is emphasised that the cost-benefit analysis model seems to

struggle to make appropriate discriminations, and thus fails to determine which

acts are best given imprecise information, this leaves open the possibility for other

kinds of concerns to help determine which acts will be the best ones. It is to these

extra concerns that I turn in the next section.

One way we might go forward is to abandon the whole probabilistic framework

and look at something different, like the “case-based decision theory” of Gilboa

and Schmeidler (). The basic idea of this theory is instead of trying to con-

struct a belief model of the current situation, one can solve a decision problem by
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looking at how successful your past actions have been in similar problems. Gilboa

and Schmeidler offer a fairly complex mathematical theory of “problems” and the

similarity relation between them. I have my doubts about the usefulness of this

approach. First it relies on there being a history of similar problems that you or

people you know have found themselves faced with. In the case of climate change,

no such similar decisions have ever been faced. Never in the course of human

history have we ever encountered a problem on this scale. One might be able to

draw some analogies between climate change and smaller scale ecological policy,

or with regulating nuclear power, or with phasing out CFCs. Despite certain simi-

larities, none of these previous decisions is similar to the climate change problem

in the way I think Gilboa and Schmeidler need. As an aside, I think that in cases

where you do have similar cases, then you have enough previous information to

get a moderately discriminating probabilistic model off the ground.

The imprecise probability model at least allows you to make some discrimi-

nations. It allows you to make choices only where the evidence sanctions the

goodness of the choice. Consider deciding whether to offer tax breaks to green

energy companies. There are many contingencies in play in this decision, but lets

just focus on the possibility for green technology to slow global warming. The

tax break is obviously a costly measure for the government but the new green

technology might stop severe warming and all the disastrous effects it would cause.

The cost of the tax break is minuscule compared to the possible economic damage

the unmitigated warming would cause. This looks like a case where the tax break

option “almost dominates” the no tax break option, since the revenue from the

extra taxes is basically irrelevant in the case of a global disaster.

This is not just a re-articulation of the famous precautionary principle, (Hansson

; Sandin et al. ; Steele ). I am not just saying that it is best to avoid

actions (or omissions) that might cause massive harm. I am saying that some of

the options available to us are so cheap compared to the harms that they might

stop that they can be effected even based on the limited knowledge we now have.

This sort of concern won’t justify the large scale changes that have been advocated

by, for example, the Stern Review (Stern ), but some beneficial actions can

be justified in this way. But these large scale decisions aren’t really my focus. On

a global scale we know to some degree what will happen to the climate. I am

Seen as an investment in a growth industry, it needn’t even be viewed as a cost, but that is beside

the point in the current context. Lord Stern has argued that the best way to make progress

on climate change is to make green investments seem economically advantageous as well as

ecologically.
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interested more in the local-scale decisions like how high to build flood defences,

how to modify building codes in areas at risk from tropical storms, how to set

insurance premiums and so on. So what can we use to help with those sorts of

decisions?

Before we move on, I should say something about whose utility function we are

using in these decisions. Let’s say you are deciding whether or not to implement

a carbon tax. If you are CEO of a heavy industry company, then a carbon tax is

going to be a significant cost, and the benefits of a carbon tax for yourself will

be small. From an impersonal perspective, however, the economic damage of a

carbon tax is offset by the huge benefits that will accrue to future generations who

live in a significantly better world than the one they would have lived in had the

tax not been implemented. So of course the value of an action depends on the

utility function. The CEO’s utility might be such that he prefers no tax, while

the impersonal benevolent utilitarian’s utility will likely favour the tax. In what

follows, I am going to sweep all of the deep and interesting problems of the utility

function under the carpet. My aim is to look at how uncertainty and evidence affect

decision making. I think the important and difficult questions of what values we

should be using when making these decisions – how to value future persons; how

to spread the cost of mitigation – are orthogonal to the current project. One might

want to use a similar “set of functions” approach to representing the multiplicity

of values, and some of what I have said above will carry over straightforwardly.

This is a worthwhile project, but not one I pursue here. Let’s assume from now on

that we are looking from the perspective of this impersonal benevolent utilitarian.

.. A more robust decision framework

We have seen how severe uncertainty both in the chances of climate contingencies,

and in the value attached to those contingencies, makes orthodox decision making

difficult or possibly inapplicable. We are faced then with a number of possible

alternatives and no good way to choose between them. Let’s say that we have at

least ruled out the uncontroversially bad options with some sort of dominance

reasoning. I ended chapter  with the claim that this is, essentially, as far as

rationality can get you. This is an important point. Cost-benefit analysis based on

spuriously precise probability estimates is not a better way to make decisions. I

think this negative point is possibly more important than what little I have to offer

by way of positive suggestions. The point is to emphasise that just because we can
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generate precise numbers doesn’t mean that we can be confident of decisions made

with them. And recognising this point – that decision making should be difficult

– opens the way to an appropriate acknowledgement of the following sorts of

concerns. My claim that severe uncertainty only allows for a weak standard of

rationality – a standard that needn’t determine which option to choose – is only

half the story. There are cases where we need to make decisions, even though the

evidence doesn’t give us enough guidance. What criteria ought we adopt in these

circumstances?

Stainforth et al. (b) offer a framework for using climate evidence to inform

decision making. One of the important steps is working out whether the scientific

evidence can usefully tell us about the variables of interest in the decision. At the

level of the ensemble distribution, the ensemble is equally informative about all

variables: it provides a marginal distribution for any variable it describes. So this

step of deciding whether the evidence can tell us about the variables of relevance

requires more than just looking at the ensemble distribution: it requires reflecting

on which distributional features of the ensemble evidence can reasonably be taken

to tell us something about the future evolution of the climate. Note the parallel

with the earlier discussion of evidence and decision in the abstract: it is important

that we allow our decision support mechanisms to fail to determine a best option

when the evidence fails to support choosing one over the other. A naïve attitude

to IAMs and ensemble evidence doesn’t do this.

The severity of model inadequacy suggests a more qualitative inter-

pretation than one might wish. In particular, it is not at all clear that

weighted combinations of results from today’s complex climate models

based on their ability to reproduce a set of observations can provide

decision-relevant probabilities. Furthermore, they are liable to be mis-

leading because the conclusions, usually in the form of PDFs, imply

much greater confidence than the underlying assumptions justify.

Stainforth et al. (a, p. )

So what do we have left to help us decide what set of policies is best to pursue?

I want to suggest a few values we might want to take into account: robustness,

reversibility, adaptability. These are properties of acts that could be seen as sui

generis good-making-features of those acts. This isn’t to suggest that these are

properties that cannot be folded into some sort of complicated expected utility

calculation. They are features that are intuitively valuable, and recognisable
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as such outside of expected utility calculations. Given that we’ve seen that EU

calculation becomes difficult if not impossible in cases of severe uncertainty,

folding these features into an EU calculation would be a step backwards.

Lempert et al. () offer an alternative framework which also seeks to build

in a concern for the sorts of factors I discuss below. They contrast the standard

predict-then-act approach with their favoured assess-risk-of-policy approach. The

former is the standard procedure of optimising with respect to some probability.

They characterise their alternative approach as follows:

[T]he assess-risk-of-policy framework envisions a process that generates

policy options whose satisfactory performance is maximally insensi-

tive to uncertainties and outputs a small number of probabilities to

characterize the residual risks of choosing such a policy.

Lempert et al. (, p. )

They emphasise the value of insensitivity to uncertainties in the evidence: this

relates to what I will call “robustness” below. They also emphasise the possible

bad consequences of optimising with a possibly faulty probability.

How does the formal discussion of decision making in chapter  relate to the

qualitative discussion of the current one? First both share a concern to represent

uncertainty adequately; and this commitment entails allowing the decision making

machinery to fail to deliver unambiguous answers. We might also see the concerns

discussed below as being a particular instance of a set of tie-breaking heuristics

that come into play in a particular context. Other sets of heuristics might come

into play in other contexts.

... Making decisions now

As more information comes in, as climate science improves, we will be able to

make better decisions. Thus, we should make decisions now so as to facilitate the

better decisions we will be able to make in the future. However, many decisions

have to be made now. One thing we do know about the future of the climate is that

the changes that will happen will be irreversible. Various inertias in the system

(like how long CO stays in the atmosphere) mean that it is already too late to stop

some change, and the longer we wait to do the things we can to slow the change,

the more change will be inevitable. The “wait and see” strategy of carrying on

as normal until we have enough evidence to act decisively may lead to our being

unable to change the course of the evolution of the climate. Better to cut emissions
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now, and then relax the constraints later as we learn more about what a reasonable

“safe” level of emissions is; rather than leave emissions unchecked and run the risk

of having to deal with GHGs with long residence times in the atmosphere.

The decisions we make now obviously can only rely on the evidence we currently

have. We don’t know enough to select some optimal strategy for possible future

climates. What other criteria might we fall back on instead?

... Robustness

There is some intuitive value to an act that leads to good outcomes a lot of the

time. Take the example of building a bridge over a river. The changing climate

might make the river more liable to flooding, or perhaps sea-level rise might cause

the river level to be higher in the future. It seems like in this sort of circumstance,

it is worthwhile to build bridges higher so that they would be above the level of

the river even if the river level were to rise. This is related to the idea that acts

that “nearly dominate” or are “ε away from dominating” seem like good acts.

Lots of possible actions – perhaps most actions – aren’t sensitive to small changes

in probability. In many cases, maximising with respect to some “middling” proba-

bility will produce an act that does pretty well in most cases. Consider the decision

of whether to make building codes more stringent in an area that might be at

increased risk of tropical storms due to climate change. In some scenarios, the area

is at increased risk to storms, and the decision to tighten up building codes saves

a great deal of money. In some scenarios, the storm risk stays the same or reduces,

the costs associated with conforming to the more stringent building codes are

smaller than the damages that would accrue in the previous scenarios. So as long

as the probability of increased storm risk is at least x, the decision to tighten up

the building regulations will be better than not doing so. This is a robust decision

in the sense that the choice isn’t sensitive to details of the probability distribution,

as long as probability of increased risk is at least x. The value of x will depend

on the values of the damages avoided and the costs accrued as discussed above.

This is an example of a decision that can be taken without knowing the full PDF

of possible futures. All that needs to be known is that the probability is at least

this much. This is a criterion for decision making that relies on a weaker kind of

evidence than optimising does. We don’t need to know a full PDF, all we need

is a lower bound on the probability. Recall the hierarchy of uncertainties from

Kandlikar, Risbey, and Dessai () that I mentioned in the introduction.
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... Reversibility

This virtue of possible strategies is often understood in the negative: we disvalue

acts that are irreversible. One argument against many of the more extreme geo-

engineering possibilities that have been mooted is that they are not reversible; or

consider the debate on genetically modified (GM) crops. One argument against

their use is that there’s a danger that they could spread beyond the fields where

they are being trialled. If we later learn of some bad side effect from having used

these crops, we have no way of reining in their spread. This sort of irreversibility

tends to be disvalued.

It is a virtue of some act that if it turns out that it isn’t effective, we can undo

any adverse effects it might have. Let’s say we learn that we are in a situation

where some strategy has some bad side-effect which outweighs its benefits. We

would prefer to return to the way things were before we effected this strategy:

and therefore, to a situation where we don’t have the bad side effect. Drastic

measures will seem more palatable if we know that we can “rewind” things so

that they are as they were before we started meddling. What reversibility of an

action guarantees is that the “worst case scenario” for the action is only a little bit

worse than the status quo. Being only a little worse than the status quo in the

worst case is a kind of “almost dominating” property.

... Adaptability

Let’s say you are in charge of flood defences. It seems a sensible strategy to build

defences such that, if it turns out that larger defences are needed, the existing

defences can easily be upgraded. This might involve making sure that people

don’t build too close to the defences, designing the foundations such that they can

support bigger defences than are originally built on them, and so on.

This virtue, like the last, puts value on the possibility of “mid-course correction”;

of being able to change tack in the light of new information. As our information

improves, we hope to be able to make more targeted interventions. We should act

now so as to allow our future decisions to be as effective as possible. Stainforth

et al. (b) suggest this sort of thing when they say that even showing that the

evidence doesn’t support any particular option can be helpful:

I am not endorsing this argument, merely using it as an example. As I understand it, GM crops

are designed such that they cannot spread in the way this scenario imagines.
It is the status quo, minus whatever costs are associated with reversing the effects of the previous

action.
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Even this information can be useful to the decision maker in terms of

focusing attention not on a particular response but on options which

allow flexibility for adjustments in the future. (p.)

.. Conclusion

When evidence is incomplete, uncertain or error prone in the way that evidence

from climate models is, we need an appropriately subtle and permissive represen-

tation of that uncertainty. This allows us to avoid spurious accuracy and spurious

determinacy of choice. This leaves open the question of what choices should be

made, among those options that cannot be ruled out on purely rational grounds. I

have suggested a number of aspects of an option that might be considered valuable

and that could feed into decision theory. This was done informally, because I think

that the important conclusions of a previous chapter were that such decision

making cannot be done purely formally.



Synopsis

I have argued that the multidimensional nature of uncertainty undermines the

claim that standard probability theory is always the right formal model of belief

and uncertainty. I have discussed several arguments for the claim that probability

theory is the right model of belief and found flaws in each. Probabilism still serves

as a regulative ideal, and the alternative framework I suggest is a conservative

extension of it. I have discussed decision making with imprecise probabilities,

although more work still needs to be done on this topic. There is no generally

acceptable decisive imprecise decision rule: there are cases when rationality does

not determine a choice. I concluded with a case study of uncertainty and decision

making in climate science.



A. A proof of Joyce’s theorem

A.. Preliminary results

We are going to split the proof of the main theorem into several smaller parts.

Joyce lists, without proof, six facts that allow him to prove his main theorem. I

aim to provide the short proofs Joyce leaves out. First Joyce defines something

like a notion of distance between belief functions.

Definition A.. Dpb,cq “ Ipv`pb´cq,vq

I list these lemmas in order, so my Lemma A.. corresponds to Joyce’s Fact I

and so on.

Lemma A.. Dp‚,cq is continuous for each c P B

Proof If we fix some c, it follows from Structure, that Dpb,cq “ Ipv`pb´cq,vq

is continuous for any b. �

There are two places in the proof where continuity of D is important. One of them

is just a use of the intermediate value theorem. For this, he doesn’t really need

continuity across the whole space, just continuity on lines and this follows from

allowing the λ parameter to range over the reals. There is still the question of

fundamentally relying on Euclidean distance, but that is unavoidable it seems.

The other use of D’s continuity is an application of the extreme value theorem.

This relies on V` being closed and bounded as well. This result needs more

topological baggage.

Lemma A.. D’s value does not depend on the choice of v PV.

Proof For all X P SL and v,v1 PV with b,c P B:

|vpXq´ pvpXq` pbpXq´ cpXqqq| “ |bpXq´ cpXq|

“ |v1pXq´ pv1pXq` pbpXq´ cpXqqq|

So, by Normality it follows that Ipv`b´c,vq “ Ipv1`b´c,v1q. So D does not

depend on the choice of v. �
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Joyce has this fact following from Structure but Maher is right in pointing out

that it actually follows from Normality .

Lemma A.. Dpb,cq goes to infinity as bpXq goes to infinity for any X P SL.

Proof Ipv`pb´cq,vq goes to infinity as bpXq goes to infinity for any X, by Struc-

ture. �

This is intuitive since bpXq tending to infinity is like moving away from the

origin parallel to some axis. So the distance between b and some fixed c is going

to increase in an unbounded way.

To prove the next result, we need something stronger than Dominance. Dom-

inance says that if b and b1 differ only at X, then which one is more accurate

depends on which gets closer to the truth at X. What we need is: if b and b1 differ

only on some collection, X1,X2, . . .Xn, and one function is universally closer to the

truth on those Xi , then that function is less inaccurate. What we really need is:

Strong Dominance If bpY q “ b1pY q for all Y R Φ Ď SL and if |vpXq ´

bpXq| ě |vpXq´b1pXq| for all X P Φ , then Ipb,vq ě Ipb1,vq.

This condition follows from Dominance by induction on the size of Φ . So we

don’t really need a stronger axiom, but it’s worth pointing out this intermediate

step in the proof.

Lemma A.. Dpb,cq ěDpb1,c1q if |bpXq´ cpXq| ě |b1pXq´ c1pXq| holds for all X P

SL and the former equality is strict if the latter is strict for some X.

Proof If |bpXq ´ cpXq| ě |b1pXq ´ c1pXq| then |pvpXq ´ vpXqq ` bpXq ´ cpXq| ě

|pvpXq´vpXqq`b1pXq´c1pXq|. From this it follows by Dominance that Ipv`b´c,vq ě

Ipv`b1´c1,vq. So Dpb,cq ěDpb1,c1q. �

This lemma is saying that if b and c disagree more about everything than b1 and c1

do, then there is more distance between b and c than there is between b1 and c1.

Lemma A.. If c lies on bb1, and if c‰ b then Dpb,b1q ąDpc,b1q.

Proof c“ λb`p1´λqb1, for some λ P r0,1q. For all X:

|cpXq´b1pXq| “ |λbpXq` p1´λqb1pXq´b1pXq|

“ |λbpXq´λb1pXq|

“ λ|bpXq´b1pXq|

ă |bpXq´b1pXq|

So, by Lemma A.., we know Dpb,b1q ąDpc,b1q. �
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Lemma A.. Dpb,cq “ Dpb1,cq if and only if Dp‚,cq has a unique minimum along

bb1 at its midpoint m“ 1{2b`1{2b1.

Proof First, the “only if” part: Dpb,cq “Dpb1,cq. So Ipv`b´c,vq “ Ipv`b1´c,vq.

From Symmetry it follows that for any λ P r0,1s:

Ipλrv`b´cs ` p1´λqrv`b1´cs,vq

“ Ipp1´λqrv`b´cs `λrv`b1´cs,vq

By Weak Convexity, it follows that this quantity is always greater than Ipm,vq

with equality only when λ“ 1{2 (that is: the minimum is unique). �

As yet, I’ve found no proof of the “if” direction of this claim that Joyce makes.

This direction is needed in the proof as Joyce sets it out, so this is a flaw in my

presentation at the moment. That is, I currently have no proof that if Dp‚,cq has a

unique minimum on bb1 at m then Dpb,cq “Dpb1,cq.

There are three more quick facts that Joyce uses, but does not state explicitly.

For the sake of completeness, I offer them here.

Lemma A.. D is a symmetric function in its two arguments. That is, Dpb,cq “

Dpc,bq for all b,c.

Proof |bpXq ´ cpXq| “ |cpXq ´ bpXq| for all X so by Lemma A.. we have that

Dpb,cq “Dpc,bq. �

Lemma A.. Ipc,vq “Dpc,vq for all v PV and c P B.

Proof Follows from the definiton of D �

Lemma A.. Dpb,bq is the unique minimum of Dp‚,bq on any region containing b.

Proof |bpXq ´ bpXq| “ 0 for all X. So for any b1 ‰ b, there is some X such that

b1pXq ‰ bpXq. From this it follows that |bpXq´bpXq| ă |bpXq´b1pXq| for that X.

So by Lemma A.., Dpb,b1q ąDpb,bq. �

A.. Proving the “main theorem”

To reiterate, the theorem we are trying to prove is the following:

(Main Theorem) If gradational inaccuracy is measured by a function

I that satifies Structure, Extensionality, Dominance, Normality,

Weak Convexity and Symmetry, then for each c P BzV` there is a

c1 P V` such that Ipc,vq ą Ipc1,vq for every v P V. (Joyce , pp.

–)
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So we are considering some agent with credences c R V`. We break down the

proof of the main theorem into three parts. The first part shows that there’s a c1 that

uniquely minimises Dp‚,cq on V`. The second part shows that there’s an m such

that for arbitrary v, Ipm,vq ě Ipc1,vq. And finally we show that Ipc,vq ą Ipm,vq.

So, for every c RV`, there’s some c1 PV` that accuracy-dominates c.

Theorem A.. There is a point c1 P V` such that the function Dp‚,cq attains its

unique minimum on V` at c1.

Proof V` is a closed and bounded set by definition of being a convex hull. Dp‚,cq

is a continuous (Lemma A..) real-valued function (by definition). By a classic

result from topology we know that a continuous real-valued function on a closed

bounded region attains a minimum on that region. So Dp‚,cq attains a minimum

on V`. Call this minimum c1.

We now need to show that c1 is unique. Assume there were another minimum,

b1 PV`. Dpc1,cq “Dpb1,cq. So by Lemma A.., Dp‚,cq attains a unique minimum

on c1b1 at 1{2c1`1{2b1. V` is convex and contains both c1 and b1, so it contains

this mixture of them. That is c1b1 ĂV`, so since c1 is the unique minimum on V`

it must be the unique minimum on c1b1. So c1 and 1{2c1`1{2b1 are both unique

minima on c1b1. This is only possible if b1 “ c1. So c1 must be a unique minimum.�

We have found our probability measure that will accuracy dominate c. We need

to now show that c1 is indeed always more accurate than c. There are two parts to

this. First we construct an m which is less accurate than c1. Then we show that

this m is still more accurate than c.

If c1 “ v, then it follows trivially from the strong version of Dominance that

Ipc,vq ą Ipc1,vq. Fix some arbitrary v ‰ c1. We need to show the same inequality

still holds.

Definition A.. Let L “ {λc1`p1´λqv : λ P R}. Let Lλ be the particular member

of L with that value of λ. Let R be L restricted to λě 1.

L0 “ v and L1 “ c1. R is the ray of L beginning at c1 not containing v. The

idea of the proof is to find some m that we can compare easily with both c and

c1. We start by defining a line through c1 and our arbitrary v. Now, any m on the

“c1 side” of this line (that is, with λ ě 1) will be less accurate than c1. So all we

need to do is find some such m that is easily comparable with c (See Figure A.).

This is probably best understood geometrically. Joyce can’t help himself to all the

ideas of geometry suggested by the pictures, but he can do some things. He can
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help himself to all of the “betweenness” notions of geometry on lines defined by

mixtures (for example Hilbert’s “Axioms of Order” Hilbert ()). The idea is

that some point on the line between v and k must minimise the distance from c on

that line. Geometrically, this is obvious since one can just “drop a perpendicular”

from c onto the line. Joyce can’t really assume enough geometrical structure to

make this obvious, so he has to proceed in a round about way.

k

m v

c

c1

V`R
L

Figure A..: The geometry of Theorem A..

Theorem A.. There is a point m P R such that (a) m uniquely minimises Dp‚,cq on

R, (b) c1 Pmv and (c) Ipm,vq ě Ipc1,vq.

Proof There is an X P SL such that vpXq “ 0 and c1pXq ‰ 0 (c1 P V` so if c1

and v agree on all zeroes, they agree on all ones too: they are identical). So

LλpXq “ λc1pXq, which tends to infinity as λ does. By Lemma A.. we have that

DpLλ,cq goes to infinity as λ does.

Dpc1,cq ăDpv,cq, since c1 minimises Dp‚,cq on V`. As a function of λ for λě 1,

DpLλ,cq ranges over at least the interval rDpc1,cq,8q and is continuous. So, by the

intermediate value theorem, we know there is a λ such that DpLλ,cq “Dpv,cq. For

this value of λ, let Lλ “ k.

Let m“ 1{2k`1{2v. By Lemma A.. this m uniquely minimises Dp‚,cq on kv.

This proves (a).

m cannot be strictly between c1 and v, because it would then be in V`, and this

would contradict c1 being the unique minimum of Dp‚,cq in V`. That is, we know

that Dpm,cq ăDpc1,cq, since c1 P kv. Note that all of c1v is in V`. So if m P c1v, m

would be in V`. But c1 is the unique minimum of Dp‚,cq in V`, so m can’t be in

there. So (b) c1 Pmv.

By Lemma A.. and (b) we know that Dpm,vq ą Dpc1,vq. So Ipv`m´v,vq ą

Ipv`c1´v,vq, and thus (c) Ipm,vq ą Ipc1,vq. �

 This way of speaking about the proof is due to Williams (b)
 Say c is strictly between b and b1 if c P bb1 but c‰ b and c‰ b1.
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The next theorem can be understood by use of a similar diagram to before, but

augmented to include some extra points. See Figure A..

k

m v

c

2c´k

1{2pv´kq` c

c1

V`R
L

Figure A..: The geometry of Theorem A..

Theorem A.. Ipc,vq ą Ipm,vq

Proof By construction of m and k we know that Dpk,cq “ Dpv,cq. Now, con-

sider the line from k to 2c´k. The midpoint of this line is c and Dp‚,cq at-

tains a unique minimum at c (by Lemma A..). So by the “if” direction of

Lemma A.., Dpk,cq “ Dp2c´k,cq. These two equalities together give us:

Dpv,cq “Dp2c´k,cq.

The other direction of Lemma A.. (that is, the “only if” direction) then

says that Dp‚,cq attains a minimum at the midpoint of v and 2c´k, namely at

1{2pv´kq`c. By this result and Lemma A..we get that: Dpc,vq ąDpc,1{2pv´kq`

cq.

Ipc,vq “Dpc,vq By Lemma A..

ąDpc,1{2pv´kq` cq by the above inequality

“ Ipv`rc´1{2pv´kq` cs,vq By Definition A..

“ Ip1{2v`1{2k,vq

“ Ipm,vq By definition of m

So, Ipc,vq ą Ipm,vq. This concludes the proof. �

The three theorems together show that, if c P BzV` then whatever I you use,

there is some c1 PV` such that, for all v PV, Ipc,vq ą Ipc1,vq.
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