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Abstract

In the game of hide-and-seek played between two players, a Hider

picks a hiding place and a Searcher tries to find him in the least possible

time. Since Isaacs had the idea of formulating this mathematically as a

zero-sum game almost fifty years ago in his book, Differential Games, the

theory of search games has been studied and developed extensively. In the

classic model of search games on networks, first formalised by Gal in 1979,

a Hider strategy is a point on the network and a Searcher strategy is a

constant speed path starting from a designated point of the network. The

Searcher wishes to minimise the time to find the Hider (the payoff), and

the Hider wishes to maximise it. Gal solved this game for certain classes

of networks: that is, he found optimal strategies and the payoff assuming

best play on both sides. Here we study new formulations of search games,

starting with a model proposed by Alpern where the speed of the Searcher

depends on which direction he is travelling. We give a solution of this game

on a class of networks called trees, generalising Gal’s work. We also show

how the game relates to another new model of search studied by Baston

and Kikuta, where the Searcher must pay extra search costs to search

the network’s nodes (or vertices). We go on to study another new model

of search called expanding search, which models coal mining. We solve

this game on trees and also study the related problem where the Hider’s

strategy is known to the Searcher. We extend the expanding search game

to consider what happens if there are several hidden objects and solve this

game for certain classes of networks. Finally we study a game in which a

squirrel hides nuts from a pilferer.
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1 Introduction

Since the conception of search games almost fifty years ago, the field has ex-

panded and developed in many different directions. In this thesis we focus in

on one particular theme: that of search games with a mobile Searcher and an

immobile Hider (or hidden objects). Games of this type may be described as

‘hide-and-seek’games. Traditionally, a Hider picks a point or points in some

search space and a Searcher moves around the space, trying to find all the points

in the least possible time. The Hider wishes to maximise the time and so the

problem is formulated as a zero-sum game. The main results in this field can

be found (in chronological order) in Gal’s book on search games [22], Garnaev’s

book [25], Alpern and Gal’s monograph [11], and Gal’s recent survey [24].

In this chapter we begin in Section 1.1 by discussing how Isaacs [28] first

introduced search games of this type, and how he described strategies for both

the Hider and the Searcher which would continue to be of fundamental impor-

tance in later work in the field. In Section 1.2 we then turn to the first rigorous

definition, given by Gal [21], of a search game with an immobile Hider and a

mobile Searcher who starts from a given point. We indicate how Gal solved his

game if the search space is a tree or if it is Eulerian (it has an Eulerian cycle),

showing that the value of the game in these cases is equal to half the time of

the shortest tour of the network.

We then show in Section 1.3 how Reijnierse and Potters [44] extended Gal’s

analysis to weakly cyclic networks, which have the structure of a tree with

some nodes replaced by cycles. We describe the solution of Gal’s game on
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these networks, and how Gal proved an analogous result for weakly Eulerian

networks, which have the structure of trees with some nodes replaced by Eulerian

cycles. Weakly cyclic and weakly Eulerian networks are defined more precisely

in Section 1.3.

1.1 The birth of search games

Search games were first introduced by Rufus Isaacs in his 1965 book, Differen-

tial Games [28]. The book was originally motivated by combat problems, and

indeed, many of the problems discussed in the book have a military focus to

them. Earlier chapters in the book are concerned with so called Pursuit Games,

in which a Pursuer (or Pursuers) aim to capture an Evader whose location is

known to him at all times during the game. Search games are introduced later

in the book in a chapter called ‘Toward a Theory with Incomplete Information’.

The model presented differs from Pursuit Games in that Pursuers now aim to

capture an Evader about whose position the Pursuers do not have complete

information. The terminology changes: the Evader becomes the Hider and the

Pursuers become the Searchers. This terminology has stuck and is now widely

used in the search games literature.

Isaacs begins by defining what he calls the simple search game. This could

be regarded as the simplest and most general possible search game, and is

described in informal terms. In an arbitrary region R, which may be a subset

of Euclidean space of any dimension, a Hider picks a hiding point (that is a

point in R). The Searcher then picks some sort of unit speed trajectory in the
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region. The payoff, now widely referred to as the search time, is the time taken

until the Searcher’s trajectory meets the Hider. There is an assumption that

the Searcher is able to find a tour of the whole region that is not wasteful, so

that it does not ‘double back’on itself. The solution of the game Isaacs gives is

simple: the Searcher picks one such tour S, then follows it with probability 1/2

and follows the reverse tour with probability 1/2. Supposing R has measure µ,

if S finds a point in R at time t, the reverse of S will find the same point at

time µ− t. Hence the expected time T to find any given point is given by

T = 1/2t+ 1/2(µ− t) = µ/2.

The value of the game is therefore at most µ/2. The Hider can ensure the

payoff is no more than µ/2 by hiding uniformly in R, so that the probability he

hides in any subset of R is proportional to its measure. By using this strategy,

the Hider ensures that the probability the Searcher finds him before time t is

no more than t/µ for 0 ≤ t ≤ µ, so the probability the search time is t or more

is at least 1− t/µ Hence the expected time T satisfies

T =

∫ ∞
0

Pr(search time is ≥ t)dt

≥
∫ µ

0

(1− t/µ) dt

= µ/2.

The value of the game is therefore at least µ/2, and combining the bounds

we have
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Theorem 1 (Isaacs) The value of the simple search game is µ/2.

These strategies given by Isaacs are important and direct a lot of the later

research on search games.

1.2 Search games on networks

A more precise formulation of Isaacs’game is given by Gal ([21] and [22]). Gal

focuses on the game played on a network Q, which is any connected finite set

of arcs of measure µ with a distinguished starting point O, called the root. We

refer to the points at either end of an arc as nodes. The Hider picks a point H

in Q, which is not limited to the nodes, and could be anywhere on the network;

the Searcher picks a unit speed path S starting from O. The payoff (or search

time) is the time taken for the path to reach H.

Gal shows that this game always has a value V , and uses Isaacs’ Hider

strategy to give a lower bound for V : by hiding uniformly in the network the

Hider can ensure that the search time is always at least µ/2. We call this

strategy u. However, the assumption made by Isaacs that the Searcher can find

a non-wasteful trajectory is not made, so the Searcher strategy given by Isaacs

in [28] is not always available and the value of the game may be greater than

µ/2. The Searcher is also restricted to picking a path which starts from O, so it

may not be possible for him to implement the “reverse”of a path. For instance,

if Q is a single arc with the root O at one end and a point A at the other, the

value of this game is clearly the length of the arc, µ > µ/2. The Hider simply

uses the pure strategy of hiding at A and the Searcher picks the path from O
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to A.

However, adapting Isaacs’strategy, Gal gives an upper bound for the value.

The Searcher may not be able to find a non-wasteful, reversible path in Q, but

he will always have some minimal time tour S of Q starting and ending at O

of length µ̄ ≥ µ. He can then use the mixed strategy where he picks S with

probability 1/2 and the reverse of S with probability 1/2, ensuring that he finds

every point in Q in expected time no more than µ̄/2. The Searcher’s minimal

tour S is later called a Chinese Postman Tour (CPT) in [23], and the randomised

strategy given here is called the Random Chinese Postman Tour (RCPT). The

RCPT gives an upper bound for the value V , and combining this with the lower

bound we have

µ/2 ≤ V ≤ µ̄/2 (1)

Gal examines when these two bounds are tight. Suppose Q is Eulerian, so

that it has a continuous closed path that visits each point of Q exactly once.

Then the Searcher’s CPT is one such Eulerian path starting at O. Since the

length µ̄ of this tour is µ, the bounds in (1) are tight and we have V = µ/2 = µ̄/2.

The uniform strategy u is optimal for the Hider. It is easy to see that Eulerian

networks are the only networks for which µ̄ = µ.

We can also consider the game played on a tree, that is a network without any

cycles. In a sense, a tree is the opposite of an Eulerian network since the CPT

of a tree has the maximum possible length, µ̄ = 2µ, as all arcs must be traversed

in both directions. The inequalities (1) therefore become µ/2 ≤ V ≤ µ. Clearly
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the uniform Hider strategy u is not optimal for the Hider, since every point H

of Q is dominated in strategies by a leaf node (a node of degree 1). Hence an

optimal Hider strategy must be some distribution on the leaf nodes. In [21]

Gal defines a Hider distribution later called the Equal Branch Density (EBD)

distribution in [23], and shows that it is optimal for the Hider, guaranteeing

him an expected search time of no less than µ = µ̄/2, which is the value of the

game. The RCPT is optimal for the Searcher.

The EBD distribution can be defined in terms of a concept called search

density, which extends to general search spaces Q that may not be networks.

Definition 2 For a connected subset A of a search space Q and a Hider hidden

on Q according to a fixed distribution, the search density ρ(A) is defined as the

probability the Hider is in A divided by the time taken for the Searcher to tour

A.

Consider a tree Q and a node x of Q that has degree at least 3. We call x

a branch node. The arcs meeting at x consist of one arc on the path from x to

O and some other arcs, which we call the outward arcs. For each outward arc

a, we define a branch Qa at x which consists of a together with all arcs above a

(that is, those whose unique path to O intersects a). The EBD distribution is

the unique Hider distribution on the leaf nodes of Q that ensures that at every

branch node of Q, all branches have equal search density. Summing up:

Definition 3 The Equal Branch Density (EBD) distribution is the unique dis-

tribution on a tree for which at every branch node, all branches have equal search
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density.

We illustrate the EBD distribution with an example. In Figure 1 nodes

are labelled by letters and arc lengths indicated by numbers. To calculate the

EBD distribution on this network, first note that there are two branches at O,

which must have equal search density. This can be achieved by assigning Hider

probability 3/9 = 1/3 to the branch consisting of the arc OC, and probability

2/3 to the other branch. The branch node D has two branches, and to ensure

these have equal search density, the Hider probability assigned to the arcs AD

and BD must be proportional to 2 and 3, respectively. Hence the probabilities

the Hider is at nodes A and B are 2/5 · 2/3 = 4/15 and 3/5 · 2/3 = 6/15

respectively. The probability the Hider is at C is 1/3.

2

3

1

3

O

A

B

C

D

Figure 1: A tree network.

In [21], Gal shows that if the Hider uses the EBD distribution, this ensures

that any depth-first search of Q, and in particular any CPT finds the Hider in

14



expected time exactly µ = µ̄/2, which must therefore be the value of the game.

In the case of the network in Figure 1, the value of the game is µ = 9.

Hence we have

Theorem 4 (Gal) If Q is an Eulerian network or a tree then the value of the

search game with an immobile Hider played on Q is µ̄/2.

However, Gal goes on to give a class of networks for which the value is not

µ̄/2. The class he describes is that of networks consisting of two nodes O and

A connected by a set of k disjoint unit length arcs, where k is an odd number.

Networks of this form are not Eulerian, and they are certainly not trees. Gal

gives a Searcher strategy that finds the Hider in expected time strictly less than

µ̄.

The exact solution of the game played on a network of this form was not

found for even k = 3 for another 14 years, when Pavlovic [40] gave the solution

for general k. The optimal strategies for both players are not straightforward.

For the ‘three-arc network’depicted in Figure 2 (that is, when k = 3 ), the Hider

chooses one arc equiprobably, and hides on this arc at a distance determined

by some probability density function. The Searcher has an equally complicated

optimal strategy involving doubling back.

1.3 Weakly cyclic and weakly Eulerian networks

Solutions of the game described in the previous section are not limited to trees

and Eulerian networks. In [44] Reijnierse and Potters solve the game for weakly

cyclic networks, showing that the RCPT is optimal for the Searcher, so that the
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Figure 2: The three-arc network.

value is µ̄/2. A weakly cyclic network can be thought of as a tree network for

which some of the nodes have been replaced with cycles. Alternatively, a weakly

cyclic network can be defined more precisely as a network for which there are at

most two disjoint paths between any two nodes. Weakly cyclic networks cannot

contain any subnetwork that is topologically homeomorphic to the three-arc

network depicted in Figure 2. A weakly cyclic network is depicted on the left

hand side of Figure 3; the cycles are indicated by the dotted lines.

Reijnierse and Potters give an algorithm to calculate the optimal Hider dis-

tribution, in which the Hider hides with some probability on leaf nodes and with

some probability hides uniformly on the cycles. Alpern and Gal [10] later give

an alternative version of the algorithm, in which every cycle in the network is

replaced with a leaf arc of half the length of the cycle, and the EBD distribution

is calculated on the new network. The network depicted on the right hand side

of Figure 3 is the modification of the weakly cycle network on the left. The

Hider probability that should be assigned to a cycle in the original network is

then the probability assigned to the end of the associated leaf arc in the new

network.
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Reijnierse [43] later showed that the equivalent result holds if we replace ‘weakly

Figure 3: A weakly cyclic network and its modification.

cyclic’with ‘weakly Eulerian’. A network is weakly Eulerian if it can be ob-

tained from a tree by replacing some nodes with Eulerian networks. Gal [23]

found a simple proof of this result, showing not only that the value V of the

game is µ̄/2 for weakly Eulerian networks, but these are the only networks for

which this is the value, and the RCPT is optimal. In summary:

Theorem 5 (Gal) The value of the search game with an immobile Hider played

on a network Q is µ̄/2 if and only if Q is weakly Eulerian.

Notice that the class of weakly Eulerian networks includes both trees and

Eulerian networks, so Theorem 5 generalises Theorem 4.

1.4 Layout of thesis

There have been other extensions of Gal’s classic search games model, for exam-

ple see Baston and Bostock [18], Kikuta and Ruckle [31] and Jotshi and Batta

[29]. In the bulk of this thesis we consider further extensions of Gal’s model.
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We begin in Chapter 2 by studying a model of search on a variable speed net-

work: that is, a network on which the speed of the Searcher depends on his

location and direction of travel. This model was introduced by Alpern [4], who

established that if the network is a tree it is optimal for the Hider to use a

generalisation of the Equal Branch Density distribution, and found the optimal

Searcher strategy in recursive form. Here we give the optimal Searcher strategy

in closed form and also give a closed form expression for the value of the game.

We then solve the game for some other networks that are equivalent to a circle,

topologically. This chapter is based upon parts of Alpern and Lidbetter [13].

In Chapter 3 we consider a model of search called expanding search. An

expanding search can be thought of as a sequence of unit speed paths on a

network Q, starting at O, each of which starts from a point already reached

by the Searcher. Another way to think of expanding search is as a family

of connected subsets of Q starting with O and expanding at unit speed. To

differentiate expanding search from the type of search used in Gal’s model, we

call the latter pathwise search. Expanding search provides a model of mining,

in which the time taken to recommence mining from a location already reached

is small compared to the time taken up by the mining itself. We give the

optimal (minimal expected search time) expanding search in the case that a

Hider is located on a tree according to a known distribution. In Chapter 4 we

then consider the expanding search game (where the Hider chooses a hiding

distribution) on a tree, and show that the solution of this game can be derived

from the solution of the search game on a variable speed network, as found in

18



Chapter 2. This chapter is based upon parts of Alpern and Lidbetter [14].

The remainder of the thesis considers search games with multiple hidden

objects. We begin in Chapter 4 by analysing a game in which the Searcher

wishes to find k balls hidden amongst n > k boxes. There is a known cost of

searching each box, and the Searcher seeks to minimise the total expected cost

of finding all the objects in the worst case. We show that it is optimal for the

Searcher to begin by searching a k-subset H of boxes with probability ν(H),

which is proportional to the product of the search costs of the boxes in H. The

Searcher should then search the n − k remaining boxes in a random order. A

worst case Hider distribution is the distribution ν. We distinguish between the

case of a smart Searcher who can change his search plan as he goes along and

a normal Searcher who has to set out his plan from the beginning. We show

that a smart Searcher has no advantage. We then show how the game can be

formulated in terms of an expanding search game for multiple objects, and in

Chapter 5 we go on to give upper and lower bounds for the value of the game on

an arbitrary network. For 2-arc connected networks (networks that cannot be

disconnected by the removal of fewer than 2 arcs), we solve the game for a smart

Searcher, and give an upper bound on the value for a normal Searcher. This

bound is tight if the network is a circle. This chapter is based upon Lidbetter

[35].

Finally, in Chapter 6 we examine a caching game in which a Squirrel hides

nuts from a Pilferer. The Squirrel wishes to bury m nuts amongst n discrete

locations, and has enough energy to dig a total depth of DS . A Pilferer, who has
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total digging resources DP then digs in these locations, attempting to locate the

nuts. If the Squirrel is left with at least k nuts he wins, otherwise the Pilferer

wins. We considering the cases of both a smart and normal Pilferer, and solve

the games for n = 2 and k = 1. We then solve the game in some special cases

(very large or very small DP ) for general n and k = 1. Finally we consider the

case of arbitrary k and give a bound on the value of the game in terms of a

game where k = 1. Parts of this chapter are based on Alpern et al [9].
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2 Search on Variable Speed Networks

This chapter analyses the search game played between an immobile Hider and

a mobile Searcher on a finite network Q with a distinguished root node O. The

Hider simply picks a point H in Q (the hiding place). The Searcher chooses a

path S = S (t) in Q which starts at O, covers Q, and satisfies a time constraint

d (S (t1) , S (t2)) ≤ t2 − t1, for t1 < t2,

where d (x, y) is a given quasimetric (satisfying all axioms for a metric except

possibly symmetry in x and y) denoting the minimum time required to go from

x to y. We denote the travel time within the subset W by dW (x, y). If d is

symmetric (d (x, y) = d (y, x)), and thus a metric, then we say the Q is time-

symmetric. The payoff of this zero-sum game (to the minimising Searcher) is

the capture time T given by

T (S,H) = min {t : S (t) = H} .

Although both players have infinite pure strategy sets, the value V of this

game Γ = Γ (Q,O, d) exists by the usual application of the minimax theorem

of Alpern and Gal [10], and we call this number V (Q) the search value of Q

(or of Q,O, d). In general, both players will require mixed strategies. In the

case where Q is a tree, studied in Section 2.3, there are only finitely many

undominated pure Hider strategies —namely the leaf nodes. So there the usual

minimax theorem for finite games would suffi ce. As long as there is a cycle in the

network, all points in the cycle are undominated, and so even the undominated
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Hider strategies are infinite. In some cases the probability distribution function

of the Hider’s optimal mixed strategy has infinite support, as in the ‘two-arc’

network whose solution is given in Theorem 19. In keeping with the original

notional convention of Gal, we use upper case S = S (t) andH for pure strategies

and lower case s and h for mixed strategies. A mixed strategy for the Hider

is simply a probability distribution over Q. We consider such a distribution

as a probability measure, as that notation is easier, with h (W ) denoting the

probability the the Hider is in the subsetW of Q. For mixed Searcher and Hider

strategies s and h we define T (s, h) as the expected search time

T (s, h) =

∫
T (S,H)d(s× h),

where s× h is the product measure.

The time-symmetry assumption has recently been dropped in Alpern’s arti-

cle [4] on trees, which gave a recursive method of determining the search value

of any tree. Here, we extend that work to general networks by determining an

explicit formula for the search value of a tree using the recursions in [4]. Much

of this chapter is taken from Alpern and Lidbetter [13], although whereas the

main results are derived here from Alpern’s recursions in [4], they are proved

independently in [13]. Our search value formula for trees is V = (1/2) (τ + ∆) ,

where τ (called the tour time) is the minimum time required to tour the tree and

∆ (called the incline of Q) is a measure of the asymmetry of the quasi-metric

d. We define the height δ (x) of a point x in Q as the time difference in getting

to and from x with respect to the root O, that is, δ (x) = d (O, x) − d (x,O) .

The incline ∆ is a weighted average of the heights of the leaf nodes of the tree.
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The terminology is based on the idea that going up takes more time than going

down.

Our methods also yield a new explicit formula for the value of the Kikuta

search game with node searching costs [30] and a simpler derivation of the

solution to the foraging (find-and-fetch) search problem of Alpern [5].

We first obtain a complete solution (Theorem 18) for the search game on the

circle with concave travel times in both directions. We then consider the more

complicated problem where the circle consists of two arcs from the root to its

antipode which have identical travel time functions. It turns out that when the

antipode is ‘downhill’from the root the solution is quite complicated, requiring

both players to use distributions over a continuum of pure strategies. In partic-

ular, the Searcher sometimes goes all the way around the circle but sometimes

reverses direction before completing the tour. This is in stark contrast to the

way Gal found that Eulerian networks are searched for symmetric (not variable

speed) networks.

The chapter is organised as follows. Section 2.1 gives our assumptions and

notations for travel times. Section 2.2 gives a general result about search den-

sities, Section 2.3 gives our derivation of the search value formula for a tree and

applications to special cases, including the Kikuta game. Section 2.4 analyses

the simplest non-tree, a network consisting of a single loop (a circle). This is the

only section where variations of travel times within an arc are of importance.

Section 2.5 looks at the circle as consisting of two identical arcs between two

points and shows that in certain cases the solution is very complicated, involving
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backtracking and a continuum of pure strategies.

2.1 Assumptions and notations for travel times

The most natural way to define travel times is by having a notion of arc length

and to specify two speed functions (one for each direction) along the arcs, piece-

wise continuously. However it turns out to be easier to work directly from the

quasimetric d (x, y) giving the travel time from x to y.

In most cases considered here (in particular, for trees), we will only need to

know the travel times from one end of an arc (a−) to the other (a+). To this

end, we define forward and reverse travel times on a, denoted Fa and Ra, by

Fa = da
(
a−, a+

)
, Ra = da

(
a+, a−

)
, and their difference by Da = Fa −Ra.

(We require the subscript in the form da because the shortest time between a−

and a+ might not be via the arc which connects them.) The orientation of arcs

involved in defining Fa and Ra is a matter of choice: for trees, we will always

orient arcs away from the root O. For general networks we often choose the

orientation so that Fa ≥ Ra.

2.2 Searching higher density regions first

In both Chapters 2 and 3 we will need to use an elementary result about search

densities. As already mentioned above in Definition 2, the search density, or just

density, of a region of Q is defined as the probability the Hider is in the region

divided by the time taken to search the region. We give a general analysis of the

well known principle of searching the higher density region first, as established
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in Proposition 3 of Alpern and Howard [12] and also used in this form in Alpern

[4].

We begin by fixing a network Q and a Hider distribution (mixed strategy)

h on Q. If S is a search strategy with cumulative capture distribution G (t) =

Pr (T (S,H) ≤ t) = h(S([0, t])), then the expected search time, T (S, h) is given

by T (S, h) =
∫∞
0
t dG (t) . Suppose that S searches disjoint regions A and B

of Q in time intervals [a, b] and [b, c], that is, S([a, b]) = A and S([b, c]) = B.

The following lemma considers the question of when the Searcher will do better

(reduce T ) by searching in the opposite order. The answer is given by the Search

Density Lemma.

Lemma 6 (Search Density) Fix a network Q and a Hider distribution h.

Suppose S (with cumulative capture distribution G) searches disjoint regions A

and B for the first time during time intervals [a, b] and [b, c] , while S′ searches

in the other order (B during [a, a+ (c− b)] and A during [a+ (c− b) , c]).

If
G (c)−G (b)

c− b ≥ G (b)−G (a)

b− a , then T (S, h) ≥ T (S′, h) .

In other words the search with higher search density should be carried out first. If

two searches have the same search density they can be carried out consecutively

in either order.
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Proof. The difference T (S, h)− T (S′, h) is given by[∫ b

a

t dG (t) +

∫ c

b

t dG (t)

]
−
[∫ b

a

(t+ (c− b)) dG (t) +

∫ c

b

(t− (b− a)) dG (t)

]

= −
∫ b

a

(c− b) dG (t) +

∫ c

b

(b− a) dG (t)

= − (c− b) (G (b)−G (a)) + (b− a) (G (c)−G (b))

= (b− a) (c− b)
(
G (c)−G (b)

c− b − G (b)−G (a)

b− a

)
≥ 0.

Notice that the Searcher Density Lemma is not particular to search on a

variable speed network, but any type of search for a Hider with cumulative

capture distribution G that searches disjoint regions A and B. We will also

use the Search Density Lemma later in Chapter 3 in the context of expanding

search.

2.3 The search value of a tree

In this section we take Q to be a rooted tree, and for simplicity, a binary tree

(one with at most two outward arcs at any node, degree at most three). Any

tree can be made into a binary tree by adding arbitrarily small additional arcs,

so this assumption is not critical. We assume that all arcs are oriented away

from O.

Alpern’s earlier paper [4] gave a recursive method for computing the search

value of a tree. Here we present an explicit formula for the search value, using

the notion of the height of a point x in Q as the difference between the time to

reach x from O and the time to return to O from x. That is, the height δ(x)
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of a point x (relative to O which has height 0) in Q is given by

δ(x) = d(O, x)− d(x,O), or more generally, (2)

δy(x) = d(y, x)− d(x, y) for the relative height of x above y.

It is clear that the Hider should only hide at leaf nodes, as all other points

of Q are dominated by these. We denote the set of leaf nodes by L. It was

already shown in [4] (and by Gal [21] for symmetric trees) that the optimal

hiding distribution over the leaf nodes is the Equal Branch Density distribution

e, as defined in Definition 3. We define the incline of Q, denoted ∆, as the mean

height of the leaf nodes, with respect to the distribution (notated as a measure)

e, that is

∆ =
∑
i∈L

e (i) · δ (i) .

The sign of ∆ determines the relative height of the leaf nodes compared to the

root: if∆ > 0, the (weighted) mean height of the leaf nodes is above the root and

if ∆ < 0, the mean height is below the root. For a tree, the tour time τ is simply

the sum of all the forward and reverse times of its arcs, τ =
∑

arcs a (Fa +Ra) .

The main result of this section is the value formula for trees:

V =
1

2
(τ + ∆) .

2.3.1 Subtrees and optimal strategies

This subsection shows how our notions of e and ∆ can be adapted to subtrees

and defines the optimal strategies for the players. By a subtree of a tree Q we
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mean a subset of Q which is itself a tree.

Definition 7 (subtrees σz, EBD distribution e) If z is a node or (closed)

arc of a rooted tree Q,O, let Qz denote the subtree consisting of all points of Q

whose unique path to O intersects with z. Define the tour time τz to be the

time taken to tour Qz (the sum of all the forward and reverse arcs of Qz). The

EBD distribution (measure) e is the unique one concentrated on the leaf nodes

that at every branch node x with out arcs a and b gives equal search density to

the two branches Qa and Qb. That is,

e (Qa)

τa
=
e (Qb)

τ b
, or simply

e(Qa)

e(Qx)
=
τa
τx

=
τa

τa + τ b
. (3)

Figure 4 illustrates the calculation of leaf node measure e and height δ on

the given tree, which are indicated above each of the four leaf nodes. We recall

the convention of putting the travel times Fa and Ra to the left and right of the

arc a. The right side is one fourth the tour time of the tree, so its EBD measure

e is 1/4, while the left side’s is 3/4. Similar ideas give the secondary division

of 1/4 into two weights of 1/8 and 3/4 into two weights of 1/2 and 1/4. The

leftmost δ is calculated as (4 + 7) − (5 + 2) = 4. The weighted average of the

leaf node heights δ (i) is

∆ =
1

2
(4) +

1

4
(0) +

1

8
(−1) +

1

8
(+1) = 2, so V =

1

2
(τ + ∆) = 17. (4)

For the moment, ignore the information about arcs a and b. Readers familiar

with the earlier paper [4] will note that there the value (of the full tree) could

not be calculated without first analysing the values of the subtrees, which is

not what we do here. This approach is forward looking whereas the earlier was
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backwards looking (using backwards recursion of the value). A similar difference

in approach to the Searcher branching pattern will be seen later on.

7    5       2      4                    1     2       2     1

4
2 1

1

e = 1/2,
N = 4

e = 1/4,
N = 0

e = 1/8,
N = ?1

e = 1/8,
N = +1

a       b

O

Aa = 8/3,KÝaÞ = 13
24

Ab = 0,KÝbÞ = 11
24

b = 32, A = 2, V = 17

Figure 4: Tree with solution method indicated.

Definition 8 For any arc or node z, let Lz = L ∩ Qz denote the set of leaf

nodes of Qz and let ez = e/e(Qz) denote the probability measure induced by e

on Qz. Define the incline ∆z of Qz by

∆z =
∑
i∈Lz

ez(i)δz(i).

Note that we may rewrite ∆z in terms of the arcs a in Qz as

∆z =
∑
i∈Lz

ez(i)δz(i) =
∑
i∈Lz

ez(i)
∑

{arcs a:z≤a<i}

Da

=
∑

arcs a∈Qz

Da

∑
i∈La

ez(i) (since i ∈ Lz and z ≤ a < i ⇐⇒ a ∈ Qz and i ∈ La)

=
∑

arcs a∈Qz

ez(Qa)Da (5)

We now need a technical result relating to the inclines.

Proposition 9 If a node x has outward arcs a and b, then

29



(i) ∆x = τa
τx
·∆a + τb

τx
·∆b, and

(ii) |∆a|+ |∆b| ≤ τx.

Proof. For (i) we calculate

∆x =
∑
i∈Lx

ex(i)δx(i) =
∑
i∈La

ex(i)δx(i) +
∑
i∈Lb

ex(i)δx(i)

=
∑
i∈La

ex(Qa)ea(i)δx(i) +
∑
i∈Lb

ex(Qb)eb(i)δx(i)

= ex(Qa) ∆a + ex(Qb) ∆b =
τa
τx
·∆a +

τ b
τx
·∆b by (3).

For (ii), we calculate

|∆a|+ |∆b| ≤
∑

arcs c∈Qa

|ea(Qc)| · |Dc|+
∑

arcs c∈Qb

|eb(Qc)| · |Dc| (by (5))

≤
∑

arcs c∈Qx

|Dc| =
∑

arcs c∈Qx

|Fc −Rc| ≤
∑

arcs c∈Qx

|Fc|+ |Rc| = τx.

We now introduce the optimal Searcher strategy β, which produces depth-

first searches through a branching process.

Definition 10 (Depth-first (DF) path) A depth-first (DF) path in a tree is

one that, whenever arriving at a node, always takes an unsearched outward arc,

if available; otherwise it takes the unique reverse arc.

We give an explicit definition of branching strategies, and define the branch-

ing strategy β that turns out to be optimal for the Searcher. A recursive defin-

ition of an optimal branching strategy was given in [4], and we show that these

definitions are equivalent, so that β is optimal.
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Definition 11 (Biased depth-first (BDF) strategy β) At every branch node

x with out arcs a and b, let q be a probability distribution over these arcs. We

interpret the branching strategy q as follows:

1. When arriving at a branch node for the first time, choose an outward arc

a with probability q (a) .

2. When arriving at a branch node the second time, choose the unique untra-

versed outward arc.

3. When arriving at a branch node the third time, choose the unique inward

arc.

We call the particular branching strategy β defined below the biased depth-

first (BDF) strategy:

β (a) =
1

2
+

1

2τx
(∆a −∆b). (6)

(Since Proposition 4 (ii) shows that |∆a|+|∆b| ≤ τx, this is indeed a probability.)

Note that branching strategies produce as sample paths only DF paths. For

the tree illustrated in Figure 4, we have ∆a = (2/3) (4) + (1/3) (0) = 8/3, and

∆b = (1/8) (−1) + (1/8) (1) = 0, so that β (a) = 1/2 + (8/3) /64 = 13/24.

Note in particular that we computed the optimal initial branching (at the root)

without working backwards (unlike our recursive approach in [4]).

2.3.2 A simple formula for the search value of a tree

We now use the recursive form of the search value of a tree found in [4] to derive

a simple formula for the value. In [4], the following recursive equations were
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defined for branch nodes x with outward arcs a and b and arcs c with forward

nodes y.

vx =
τava + τ bvb + τaτ b

τx
, vc = Fc + vy. (7)

r(a) =
τ b + va − vb

τx
(8)

Theorem 12 (Theorem 6 of [4]) For the search game Γ on a rooted tree

Q,O,

1. The EBD distribution is uniquely optimal for the Hider.

2. The branching strategy r defined recursively by (7) and (8) is optimal for

the Searcher. On a binary tree, this branching strategy is the only one that

is optimal for the Searcher.

3. The value V can be calculated recursively by (7). For a branch node or

arc z, the value of the search game played on Qz is equal to vz.

Our main theorem follows easily from this.

Theorem 13 The search value of a rooted tree Q,O is half the sum of its tour

time and its incline,

V =
1

2
(τ + ∆). (9)

The Equal Branch Density strategy e is uniquely optimal for the Hider and the

Biased Depth-first strategy β is optimal for the Searcher.

Proof. We prove (9) by induction on the number of arcs of Q. If Q has only

one arc a, then since it is optimal for the Hider to hide at the leaf node, the
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value is trivially Fa = 1
2 ((Fa +Ra) + (Fa −Ra)) = 1

2 (τ + ∆). Suppose (9) is

true for all trees with fewer arcs than Q. There are two cases: either O is a

branch node or it has only one outward arc.

In the first case, suppose O has outward arcs a and b. Then applying the

induction hypothesis to Qa and Qb and using Theorem 12,

V = vO =
τava + τ bvb + τaτ b

τx
(by (7))

=
τa(τa + ∆a) + τ b(τ b + ∆b) + 2τaτ b

2τx

=
1

2

(
(τa + τ b)

2

τx
+
τa
τx

∆a +
τ b
τx

∆b

)

=
1

2
(τ + ∆) (by Proposition 9 (i))

In the other case, if O has only one outward arc c with forward node y, then

applying the induction hypothesis to Qy and using Theorem 12,

V = vO = Fc + vy

= Fc +
1

2
(τy + ∆y)

=
1

2
((τy + Fc +Rc) + Σleaf nodes ie(i)(δy(i) + Fc −Rc))

=
1

2
(τ + ∆)

The fact that the EBD is uniquely optimal for the Hider was already established

in Theorem 12. The fact that the Biased Depth-first strategy β is optimal for

the Searcher follows from Theorem 12 and (8), since the branching strategy r

33



is optimal, and for a branch node x with outward arcs a and b,

r(a) =
τ b + va − vb

τx

=
1

τx

(
τ b +

1

2
(τa + ∆a)− 1

2
(τ b + ∆b)

)
(by (9))

=
1

τx

(
1

2
(τa + τ b) +

1

2
(∆a −∆b)

)
=

1

2
+

1

τx
(∆a −∆b)

= β(a).

2.3.3 Applications of the value formula to special trees

The first special case of our value formula (9) is Gal’s classic result [21] for

time-symmetric trees.

Corollary 14 If Q is a time-symmetric tree, its search value is half its tour

time, V = τ/2, which is simply the total length µ of the tree.

Proof. For time-symmetric trees, ∆ = 0.

We say a tree has constant leaf height if δ(i) = γ for all i ∈ L, that is, all

the leaf nodes have the same height. Gal’s [21] result on the optimality of the

Random Chinese Postman Tour remains true (taking γ = 0) for constant leaf

height trees. A Chinese Postman Tour (CPT) is closed path of minimal tour

time, and a Random Chinese Postman Tour (RCPT) is an equiprobable mixture

of a Chinese Postman tour and its reverse tour.

Corollary 15 Suppose Q has constant leaf height γ. Then
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1. V = 1
2 (τ + γ),

2. An optimal strategy for the Searcher is the RCPT, that is, an equiprobable

mixture of a CPT S1 of Q, and its reverse tour S2.

Proof. Part 1 follows immediately from (9) and the definition of constant

leaf height. For part 2, fix any leaf node i, and note that in the sum T (S1, i) +

T (S2, i), the arcs in the unique path P from O to i appear twice in their forward

direction, and all other arcs appear once in each direction. Hence twice the

capture time is given by

2 · T (RCPT, i) = T (S1, i) + T (S2, i)

= 2
∑
a∈P

Fa +
∑
a∈Pc

(Fa +Ra)

=
∑
a∈P

Fa +
∑
a∈P

Ra +
∑
a∈Pc

(Fa +Ra) +
∑
a∈P

Da

=
∑
a∈A

(Fa +Ra) +
∑
a∈P

Da,

= τ + γ, since
∑
a∈P

Da = δ (i) = γ by constant leaf height.

2.3.4 Application to the Kikuta game with search costs

We now consider the application of the theorem to the search game K =

K(Q,O) formulated by Kikuta [30] on a time-symmetric rooted tree Q,O.

Kikuta’s game is similar to Γ except that each node i is assigned a search

cost ci ≥ 0, with
∑
ci = C. When encountering a node, the Searcher can

either search it at cost (time loss) ci or bypass it (to search it later) without

incurring a cost. It has already been observed in [4] that K(Q,O) is equivalent
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to our game Γ on a time-asymmetric tree Q′. We obtain Q′ by replacing the

search costs with search arcs ai between each node i of Q and a new leaf node

i′ of Q′, with Fai = ci and Rai = 0, so that Dai = ci. We present here an

explicit formula for the value of Kikuta’s game, as a corollary of our formula for

the search value of a tree. Let τ be the tour time of the original network, not

including the search costs of the nodes.

Corollary 16 The value of Kikuta’s game K on a rooted time-symmetric tree

Q,O of total length µ and search costs ci totalling to C is given by

V = µ+
1

2

C +
∑

nodes i of Q

e (i′) · ci

 . (10)

where e is the EBD distribution on the associated Q′. If the costs at all n nodes

of Q are equal to c, then V = (1/2) (τ + (n+ 1) c) and the Random Chinese

Postman Tour (and searching every node when you come to it) is optimal.

Proof. Since V = V (K (Q,O)) = V (Q′, O) , and Q′ is a (time-asymmetric)

tree with no additional search costs, we have that the value V of Kikuta’s game

is equal to (1/2) (τ ′ + ∆′) , where τ ′ and ∆′ are the tour time and the incline of

Q′. Clearly

τ ′ = τ +
∑

nodes i of Q

(Fai +Rai) = τ + C = 2µ+ C

and ∆′ =
∑

nodes i of Q e (i′) · ci, establishing (10). If all the ci = c, then any

weighted average is c, so ∆′ = c and C = nc. In this case Q′ has constant leaf

node height c, so the optimality of the RCPT follows from the second part of

Corollary 16.
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The case of equal search costs (but not the general case) can also be tack-

led within the time-symmetric tree theory by adding time-symmetric rays with

travel times equal to c/2 at each node, observing that while this is not equiv-

alent to the Kikuta problem, it always finds the Hider at time c/2 earlier. See

Alpern and Gal [11]. This problem can also be attacked in the more diffi cult

context of an arbitrary Searcher starting point - see Baston and Kikuta [19].

2.3.5 Application to Alpern’s find-and-fetch game

Our methods can be similarly applied to the find-and-fetch game recently in-

troduced by Alpern [5]. This search game F = F (Q,O) is played on a rooted

time-symmetric network on which the Searcher not only wishes to find a Hider

but also wishes to return to the root O. This models common problems such

as search-and-rescue and foraging problems in which an animal must find food

and then return to its lair. As in Gal’s model, the Searcher follows a unit speed

path from O, but then upon reaching the Hider takes the shortest path back to

O at speed ρ. The payoff is the total time to find the Hider and return to O.

In the case of a bird being weighed down by food he is taking back to his nest

we might have ρ < 1, whilst ρ > 1 might be more appropriate for the case of

someone searching for a contact lens, where the return speed would be quicker.

Alpern finds that if Q is a tree, the optimal strategy for the Hider is still the

EBD distribution in this game. However, the RCPT is no longer optimal for

the Searcher. Instead, he randomises between all possible depth-first searches

using a type of strategy called a branching strategy. Upon reaching a node for
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the first time the Searcher chooses which outward branch to take according to

a certain probability. Alpern proves the following.

Theorem 17 (Alpern) The value V of the find-and-fetch game on a tree is

V = µ+D/ρ, (11)

where D = D(Q) is the mean distance from O to the leaf nodes of Q, weighted

according to the EBD distribution.

We show how this can be deduced from Theorem 13. It is clearly optimal

for the Hider to choose a leaf node x, and for any such choice of x at shortest

distance d(x,O) from O, the Searcher must travel for additional time d(x,O)/ρ

after finding the Hider. We therefore form a new network Q′ from Q by adding

an asymmetric arc from x to a new leaf node x+ with forward travel time (from

x to x+) of d(x,O)/ρ and backward travel time −d(x,O)/ρ. The variable speed

game played on Q′ is then equivalent to the find and fetch game played on Q:

travelling to x+ in Q′ is equivalent to travelling to x in the original network

and then back to O at speed ρ, and if the Hider is not at x the extra arc from

x to x+ makes no contribution to the search time. Hence the two models are

equivalent.

The total tour time τ of Q′ is equal to twice the length 2µ of Q, and in the

Q′ the leaf node x+ has height 2d(x,O)/ρ, so ∆ = ∆(Q′) is the mean value of

2d(x,O)/ρ, weighted with respect to the EBD distribution, which is equal to

2D(Q)/ρ. Hence by (9), the value is
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V = 1/2(2µ+ 2D/ρ)

= µ+D/ρ,

as in (11).

It must be noted that strictly speaking this approach is invalid, since it is

prohibited by the fact that our definition of variable speed networks required

the forward and backward travel times to be derived from a quasimetric, which

must necessarily take non-negative values. However, the fact that this method

produces a solution to the game that is consistent with that found in Alpern

[5] indicates that the results in this chapter may hold without the quasimetric

assumption. On the other hand, it is clear that if negative travel times are used

without restriction then the players’optimal strategies may not be well defined.

For example, for a tree consisting of two branches, one of which has a positive

tour time and the other a negative, the EBD distribution is meaningless. Further

work is required to establish criteria under which the results of this chapter hold

for negative travel times.

2.4 Circle with concave travel times

The simplest non-tree network is the circle, represented as a single loop arc a,

with its initial and terminal ends a− and a+ identified with the start node O.

For simplicity, we call the forward direction clockwise. Here we consider the

variable speed search game played on a circle. We restrict ourselves to cases in
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which we can parameterise the loop a (directed from end a− to a+) by 0 ≤ x ≤ 1

so that d (a+, x) is a decreasing linear function of x and f (x) = d (a−, x) is an

increasing continuous function. In this case we say that the arc a has constant

velocities if f is linear and has concave travel times if f is concave. Note that

the fact that an arc has concave travel times is independent of the orientation

choice for the arc. We define the in-midpoint m of a as the unique point for

which d(a−,m) = d(a+,m) = ρ, where ρ is called the in-radius of a.

In the time-symmetric case there is a simple solution: the value is half the

travel time along the loop, two optimal strategies for the Hider are hiding uni-

formly along the arc or hiding at the midpoint m, the optimal Searcher strategy

is to tour the loop equiprobably in either direction. The general solution for

arbitrary travel times is unknown. Even for simple travel times (as shown in the

next section when the circle is viewed as two identical arcs, with uniform veloci-

ties, from O to m) the solution can be very complicated, requiring backtracking

paths and mixtures over a continuum of pure strategies.

In this section we see when the solution for the time-symmetric circle has a

natural generalisation to hiding at the in-midpoint of the circle and searching

with unequal probabilities in the clockwise or anticlockwise directions. The travel

time assumption needed for this simplification is concave travel times, as defined

above.

Theorem 18 Let C be the network consisting of a single loop a at the start node

O, with concave travel times. Let ρ and m denote the in-radius and in-midpoint

of a. Then
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1. V ≡ V (C,O) = ρ

2. Hiding at m is optimal.

3. The mixed Searcher strategy s̄p of going around loop a clockwise (forwards)

with probability p = 1/ (1 + λ) and anticlockwise with probability 1− p, is

optimal for any λ ∈
[
f ′+(m)

Ra
,
f ′−(m)

Ra

]
, where f ′+ and f

′
− are respectively the

right and left derivatives of f .

4. In particular, if loop a has constant velocities, thenm = Ra/ (Fa +Ra) , V =

ρ = Fam and the unique optimal value of p is m.

Proof. If the Hider chooses the in-midpointm, then clearly the Searcher cannot

find him in time greater than ρ, so V ≥ ρ.

Since the forward time function f (x) = da (a−, x) is concave, it has left and

right derivatives f
′

−(x0) and f
′

+(x0) at any x0 in the interior of a such satisfying

f
′

−(x0) = inf
x<x0

f(xo)− f(x)

xo − x
≥ f

′

+(x0) = sup
x>x0

f(x)− f(x0)

x− x0
. (12)

Suppose that the Searcher adopts the strategy s̄p, p = 1/ (1 + λ) , for some

λ ∈
[
f+(m)
Ra

, f−(m)Ra

]
. If the Hider is anticlockwise of m, that is, at some point
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H = x ≤ m, then

T (s̄p, x)− ρ = p f (x) + (1− p) g (x)− ρ

= p f (x) + (1− p) Ra(1− x)− f(m)

=
f(x)

1 + λ
+
λRa(1− x)

1 + λ
− f(m)(1 + λ)

1 + λ

=
f(x) + λRa(1− x)− f(m)− λRa(1−m)

1 + λ

=
f(x)− f(m) + λRa(m− x)

1 + λ

≤
f(x)− f(m) + f ′−(m)(m− x)

1 + λ
(by definition of λ)

≤ m− x
1 + λ

(
f ′−(x)− f(m)− f(x)

m− x

)
(by 12)

≤ 0.

By an analogous argument, if the Hider hides at some x ≥ m the Searcher

will find him in expected time ≤ ρ. Hence V ≤ ρ, so that V = ρ. Points 2 and

3 follow easily.

If a has constant velocities, then the time taken for the Searcher to travel

from either a− or a+ to Ra/ (Fa +Ra) is FaRa/(Fa +Ra), so this must be the

in-midpoint, and point 4 follows.

2.5 Solution of two-arc networks

In the previous section we showed that the circle network has a simple solution

if it has concave travel times. In this section we show that the solution can

become quite complicated if concavity is lost, even for a very simple class of

circle networks U (b) depicted in Figure 5, consisting of two identical constant

velocity arcs from O to m (so labelled because it is the in-midpoint of U (b) if
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we view it as a single loop). That is, the two arcs have identical forward and

reverse travel times F and R.Without loss of generality we can take the forward

travel time F to be 1, and for notational simplicity denote R = b. Of course if

b ≤ 1 then the network can be viewed as a single arc (loop) with concave travel

times, so in this case V (U (b)) = ρ = 1. Optimally, the Hider goes to m and

the Searcher adopts strategy s̄p with p = 1/2 (in fact any p ∈
[

b
1+b ,

1
1+b

]
). As

we shall see, the case b > 1 (where the network goes ‘downhill’from the start

O) has a rather complicated solution, reminiscent of the solution of Gal’s search

game on three (time-symmetric) arcs given by Pavlovic [40]. We view each arc

from O to m as having unit length, parameterised by x going from 0 to 1, with

forward velocity 1 and reverse velocity 1/b.

1

O m

b

Figure 5: The network U(b).

Theorem 19 Consider the network U (b) consisting of two identical arcs from

O to m with forward travel time 1 and reverse time b ≥ 1. Then

1. The search value is V = V (U(b), O) = 1 + 1
2 (b− 1) ln 2.

2. An optimal strategy for the Hider is to pick x according to the density

function 4e−2x on the interval [0, ln 2/2] . Then he hides equiprobably on
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the two points at forward distance x from O.

3. An optimal strategy for the Searcher begins by choosing a number y from

[0, ln 2/2] according to the density function 2e2y. With probability p =

(b+ 3) / (2b+ 2) he tours the circle equiprobably in either direction. With

probability 1− p he goes around in an equiprobable direction until he is at

forward distance y from O; then reverses direction and goes around the

circle until he has reached all points.

Proof. Suppose the Hider follows the strategy described in the statement of

the proof. Then the expected discovery time if the Searcher goes all the way

around the circle is

1

2

∫ 1
2 ln 2

0

2x4e−2xdx+
1

2

∫ 1
2 ln 2

0

(1 + b(1− 2x))4e−2xdx = 1 +
1

2
(b− 1) ln 2.

If the Searcher backtracks at some point y ≤ 1
2 ln 2 then the expected discovery

time is

1

2

(∫ 1
2 ln 2

0

(2(1 + b)y + 2x).4e−2xdx

)
+

1

2

(∫ y

0

2x 4e−2xdx+

∫ 1
2 ln 2

y

(2(1 + b)y + 1 + b(1− 2x))4e−2xdx

)

= 1 +
1

2
(b− 1) ln 2.

If the Searcher backtracks a some point y > 1
2 ln 2, the expected search time

will be greater than if he backtracks at y = 1
2 ln 2.

Suppose the Searcher follows the strategy described in the statement of the

proof. Then, if the Hider is at a distance x > 1
2 ln 2 from O, the expected search
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time is

b+ 3

2b+ 2

(
1

2
2x+

1

2
(1 + b(1− 2x))

)
+

b− 1

2b+ 2

(
1

2

∫ 1
2 ln 2

0

(2(1 + b)y + 1 + b(1− 2x))2e2ydy +
1

2

∫ 1
2 ln 2

0

(2(1 + b)y + 2x)2e2ydy

)
= 1 + (b− 1) ln 2− (b− 1)x

≤ 1 + (b− 1) ln 2− (b− 1)
1

2
ln 2

= 1 +
1

2
(b− 1) ln 2

If the Hider is at a distance x ≤ 1
2 ln 2 then the expected search time is

b+ 3

2b+ 2

(
1

2
2x+

1

2
(1 + b(1− 2x))

)
+

(
b− 1

2b+ 2

)
·(

1

2

(∫ x

0

(2(1 + b)y + 1 + b(1− 2x)2e2ydy +

∫ 1
2 ln 2

x

2x2e2ydy +
1

2

∫ 1
2 ln 2

0

(2(1 + b)y + 2x)2e2ydy

))

= 1 +
1

2
(b− 1) ln 2

Hence the value is 1 + 1
2 (b− 1) ln 2.

The method for discovering these strategies is as follows. Suppose b = 2.

For the Hider distribution, we would like to find a density function h(x) where

x ∈ [0, z] such that the expected search time is the same whether the Searcher

backtracks after travelling some distance y ≤ z, or goes all the way around the

circle (which is effectively backtracking after travelling distance 0). That is,

1

2
6y +

∫ z

0

2xh(x)dx+

∫ y

0

2xh(x)dx+

∫ z

y

(6y + 3− 4x)h(x)dx = C.

where C is a constant, independent of y. Simplifying this and differentiating

with respect to y we obtain

4− h(y)− 2

∫ y

0

h(x)dx = 0.
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Putting H(y) =
∫ y
0
h(x)dx gives the differential equation

dH

dy
= 4− 2H.

Solving this gives h(x) = 4e−2x, and using
∫ z
0
h(x)dy = 1 we obtain z = 1

2 ln 2.

A similar method can be used to find the Searcher strategy.
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3 Expanding Search on a Tree

In Chapter 2 we generalised the usual model of search in which a Searcher moves

on a network at unit speed, by considering a model in which the speed of the

Searcher depends on his location and direction of travel. A Searcher strategy was

a path in the network starting at the root, so we will refer to this model of search

as pathwise search. This chapter discusses a new search paradigm, which we call

expanding search, where the Searcher may restart the search at any time from

any previously reached point. Such searches are routinely carried out in many

contexts, sometimes by a team of agents. Under such searches, the portion S (t)

of the search region that has been covered by time t expands in a continuous

way until the first time T (the search time) that it contains the target of the

search. Expanding search was introduced in Alpern and Lidbetter [14], and this

chapter is based upon parts of that paper. The work of Alpern and Howard

[12] considered a related problem of a single Searcher who alternates between

looking for a single Hider at two locations, which can now be seen as a special

case (on a star network) of expanding search. There is also a connection to

the two-Searcher coordinated search problem of Thomas [51] and Reyniers [45],

[46] described in the next section. Megiddo et al [37] considered minimising

the number of searchers, rather than the search time. Other interpretations of

expanding search, such as the optimal mining of coal, will be described later.

An immobile hidden object, target, terrorist, or simply Hider, is located at

an unknown point H of a known network Q, as usual. The network is endowed
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with an arc length measure λ (linear Lebesgue measure) so that λ (a) denotes the

length of an arc a and d (x, y) is the metric given by the length of the shortest

path between points x and y in Q (as in Chapter 2, except here symmetry

is satisfied so d is indeed a metric). We assume there are a finite number of

arcs, each of finite length, so that Q is compact. The distribution (probability

measure on Q) ν of H may be known or unknown. If it is known, we consider

the Bayesian Search Problem of minimising the expected search, or capture,

time. If it is unknown, we consider the zero-sum expanding search game where

the Hider chooses H to maximise T. Starting at a given point of Q, called the

root, a search team consisting of successively dividing groups spreads out over

the network until the first (capture) time T that one of its members encounters

the Hider. The agents are constrained to move with combined speeds of 1. This

means that λ (S (t)) = t, where λ (S (t)) is the measure of the portion of Q

covered by time t. When the Hider distribution ν is given on a tree, we solve

the Bayesian Problem by an algorithm that determines the expanding search

S (t) that minimises the expected value of T. We also solve the search game

when Q is a tree and later in Chapters 4 and 5 we will give solutions for an

extension of the search game in which there are several hidden objects various

different classes of networks.

In the important case where the Hider distribution ν is concentrated on the

nodes ofQ, an expanding search is simply a sequence of arcs S = (a1, a2, . . . , aN ),

oriented so that the tail of a1 is the root O of Q, the tail of every other arc ai is

the tip of a previous arc aj , j < i, and the N non-root nodes of Q coincide with
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the N tips of the arcs. If the Hider location H is the tip of arc ak, the capture

time T = T (S,H) is given by

T (S,H) = λ (a1) + · · ·+ λ (ak) . (13)

We show (Theorem 21) that when Q is a rooted tree and K is a subtree

of maximum search density for some known Hider distribution ν, there is an

optimal expanding search S̄ (t) that begins by exhaustively searching K, that is,

with S̄ (t) = K at time t = λ (K). The subtree K of maximum density can be

found by considering the density of all the subtrees (of which there are a finite

number) and picking the one with the largest density. While this optimality

condition does not also hold for arbitrary networks, we can however use it to

solve the Bayesian Search Problem on any network by considering its spanning

trees.

Using the solution of the search game for variable speed networks, we are

able to give a complete solution of the expanding search game for any rooted

tree Q. We show (Theorem 24) that value of this game is given by

V =
µ+D (Q)

2
,

where µ = λ (Q) is the total length of the tree Q and D (Q) is the mean distance

from the root node O of Q to its leaf nodes, with respect to the Equal Branch

Density (EBD) distribution e on the leaf nodes. We determine the optimal

Searcher mixed strategy as a branching function which specifies the probability

that each branch at a node should be searched first when reaching that node,

regardless of how the search has proceeded up to that point.
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To illustrate these ideas, consider the tree Q with root O depicted in Figure

6. We will use this network as an example at several points throughout this

chapter, not always assigning the same lengths to the arcs.

A

C1
C2 D2

B

D1

O

c1 d1
c2

b

d2

a
c2

C2

D2

B

D1

O

d1

b

d2

Q S2(Q)

Figure 6: A rooted tree Q and its contraction S2(Q).

An example of an expanding search on Q is S = (b, d1, a, d2, c2, c1). Consider

the network Q0 given by the following choice of arc lengths that is symmetric

in the ci and the di:

λ(a) = 1, λ(b) = 2, λ(c1) = λ(c2) = 1, λ(d1) = λ(d2) = 5 (14)

For the search S, the time taken to reach, say C2 is given by T (S,C2) = 2 +

5 + 1 + 5 + 1 = 14, using the notation T for the search time introduced in (13).

Note that the search S arrives at nodes A,B,C1, C2, D1 and D2 in respective

times 8, 2, 15, 7, 13 and 14. Hence if, for example, the Hider distribution ν takes

the value 2
7 on C1 and

1
7 on each of the other non-root nodes, then the expected

search time is T (S, ν) = 1
7 · 8 + 1

7 · 2 + 2
7 · 15 + 1

7 · 7 + 1
7 · 13 + 1

7 · 14 = 747 , using

the notation T (S, ν) formally defined later in (18). In the case of this Hider

distribution, there is a unique rooted subtreeM of maximum density, M = ac1,
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which has density ( 17 + 2
7 )/2 = 3

14 . As we will show later in Theorem 21, this

indicates that any optimal search must begin by searching M . After searching

a and c1 it is clear that an optimal search must continue by optimally searching

the tree depicted on the right of Figure 6. This tree, which is obtained by

contracting the first two arcs of Q traversed by this particular search S, shall

be referred to as S2(Q) in Section 3.2. We can therefore apply Theorem 21

again by seeking the rooted subtree of maximum density in this new network.

This is simply c2, which has density ( 17 )/1 = 1
7 . The only arc available to search

next is b, after which by symmetry d1 and d2 can be searched in either order.

Hence an optimal search of Q0 is Sopt = (a, c1, c2, b, d1, d2), which searches the

nodes a, b, c1, c2, d1, and d2 in respective times 1, 5, 2, 3, 10, and 15, and hence

has expected search time T (Sopt, ν) = 1
7 ·1+ 1

7 ·5+ 2
7 ·2+ 1

7 ·3+ 1
7 ·10+ 1

7 ·15 = 517 .

Turning now to the game played on Q0, we first note that any optimal Hider

strategy must be restricted to the leaf nodes, Ci and Di of Q0, since all other

points are dominated. Hence each player has a finite set of undominated pure

strategies, and the game can be reduced to a matrix game. We note further that

because of the symmetry in the network between the Ci and the Di, it is clear

that in the Hider’s optimal mixed strategy he must choose equiprobably between

the two nodes in each pair Ci and Di, and in the Searcher’s optimal strategy he

must choose equiprobably which order to search the arcs c1 and c2 and the arcs

d1 and d2. Hence we can simplify the matrix game by taking averages: for exam-

ple in the matrix below, the entry for (H,S) = (C, (b, d, a, c, c, d)) corresponds

to the average time taken to reach C1 and C2 by all four Searcher strategies
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(b, d1, a, c1, c2, d2), (b, d1, a, c2, c1, d2), (b, d2, a, c1, c2, d1), and (b, d2, a, c2, c1, d1),

that is 1
2 ((2 + 5 + 1 + 1) + (2 + 5 + 1 + 1 + 1)) = 9.5.

accbdd acbdcd acbddc bdaccd bdacdc bddacc

C 2.5 6 8.5 9.5 12 14.5

D 12.5 12 11.5 11 10.5 9.5

(15)

Solving this matrix game numerically, we find that the Hider’s optimal mixed

strategy is to choose C with probability 1
5 and D with probability 4

5 : that is C1

and C2 each with probability 1
10 and D1 and D2 each with probability 2

5 . This

is an example of the EBD distribution, as defined in Definition 3. Notice that

the branch {a, c1, c2} has density ( 110 + 1
10 )/3 = 1

15 , and the branch {b, d1, d2}

has equal density ( 25 + 2
5 )/12 = 1

15 . The Searcher’s optimal strategy is to use

the search (a, c, c, b, d, d) with probability 1
3 and (b, d, d, a, c, c) with probability

2
3 . The game has value V (Q0) = 10.5. As we shall see later in Theorem

21, this value is equal to half the sum of the total measure of the network, µ =

1+2+1+1+5+5 = 15 and the quantityD = D(Q0) = 1
10 ·2+ 1

10 ·2+ 2
5 ·7+ 2

5 ·7 = 6,

the mean distance of the root node to the leaf nodes with respect to the EBD

distribution. That is, V (Q0) = 1
2 (µ+D) = 1

2 (15 + 6) = 10.5.

3.1 Interpretation and applications of expanding search

The interpretation of an expanding search strategy in terms of a team of path-

wise search agents is as follows. In the case where H is a node of Q, assume

a group of m search agents starts at the root node. Then a large enough (for

52



later branching) subgroup takes initial arc a1, while the rest remain at the root.

Whenever a new arc ak is chosen, some Searchers move along it, while some

stay at its tail. An interesting problem which involves this group interpretation

is to determine the number of agents that are required; either for a particular

search strategy or for an optimal one. For trees, clearly the number of leaf

nodes is a suffi cient number of searchers. For example, the expanding search

(a, c1, b, d1, c2, d2) mentioned in the matrix (15) can be carried out by m = 4

agents, each adopting a pathwise search which includes waiting, as indicated

by the left table in (16), where for example the fourth search agent follows the

pathwise search a,w,w,w, c2 (where w indicates waiting time). If only m = 3

agents are available, at least one of these must go backwards on an arc (indicated

by the * in c∗1) as in the table on the right.

a c1 b d1 c2 d

1, 4 1 2, 3 2 4 3

a c1 b d1 c∗1 c2 d2

1 1 2, 3 2 1 1 3

(16)

If a bound were put on the number of searchers, the expected time would be

decreasing in the bound. When the bound is 1 (single agent), we get the usual

pathwise search value, where a single Searcher moves at unit speed along the

network. For suffi ciently large bounds, we get the value obtained here for ex-

panding search. For example, if the network is a line, with the root in the

interior, then m = 2 searchers are enough for expanding search, whereas a sin-

gle Searcher is faced with the well known linear search problem. A variation

on the two-agent problem on the line, known as coordinated search, has been

studied by Thomas [51] and Reyniers [45], [46], under the interpretation of ‘how
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to find your children when they are lost’. Here the quantity to be minimised is

the time when the two agents (parents) are back at the root (their car) after

one of them has found the Hider (child). If the Hider is mobile, the question

of how many searchers are needed to guarantee finding him is considered in the

classic paper of Megiddo et al [37].

Another interpretation, involving a single ‘Searcher’(actually researcher) is

that of tackling, say a mathematical problem for which one can map out in

advance which facts need to be checked (calculated) before going onto the next

step, perhaps seeking a proof or counterexample to a finite conjecture. Some

steps of this process must be completed before other steps should be carried

out, perhaps first checking the ‘obvious’counterexample or proof. We assume

here that after one branch of the research tree ends in failure, the researcher

can go without time loss back to a previous method of attack. In some contexts

the researcher here could be replaced by a computer program, so that we are

in fact seeking a program which minimises the expected time to resolve some

question.

The Bayesian problem for a tree, with a known distribution ν, has an inter-

pretation in terms of optimal mining of coal. Suppose that by seismic analysis

the density of coal along the tree network of its veins is known. We assume

that time or effort involved in moving mining equipment (or miners) along the

dug out regions (corresponding to what we called S (t)) of the mine is negligible

with respect to the digging effort. So expanding search consists of digging in an

area for a while, then moving the effort (miners or digging machines) to another
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area, starting from the last bit dug. The probability density function of the

capture time T when ν is the Hider distribution is the same as the extraction

rate of coal at time T. So an optimal expanding search strategy corresponds to

an extraction policy which minimises the mean time that the coal is ready for

sale. This would make sense in an environment where the discount rate, used

in calculating the net present value of coal mined over time, is linear. This is a

reasonable approximation in certain economic conditions. Our optimality con-

dition is to mine veins leading to the highest coal density, a semi-greedy policy.

If there are enough excavators, it would be possible to always leave one at the

last place mined along any vein. Our restriction on the rate of increase of the

covered portion might relate to the number of miners or a constraint on the

maximum electrical power available.

3.2 Known Hider distribution on nodes

We begin our analysis of expanding search in the simplest case where the Hider

distribution ν is concentrated on the nodes of a network Q. In this case we will

consider expanding arc sequences, sequences of arcs ordered and oriented so that

the tail of each arc is the tip of a previous one. In this section an expanding

search S, sometimes referred to as just a search, is simply an expanding arc

sequence (a1, . . . , aN ) where the tail of a1 is the root node and tips of the arcs

are the N non-root nodes of Q. We will refer to a search which is an expanding

arc sequence as a combinatorial search. If S is an expanding search of Q and

k = 0, . . . , N, we denote by Sk = Sk(Q) the rooted subnetwork (it is a tree)
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of Q formed by the first k arcs searched by S. In particular, every search

S of Q is associated with a spanning tree SN . Note that in the tree Sk, the

ordering of the arcs in S has been lost. We also let Sk = Sk(Q) be the rooted

network formed by shrinking Sk to O in Q. In Section 3.1 we saw S2(Q)

depicted in Figure 6. After the Searcher has chosen the first k arcs to search,

the problem that remains is how to search the remaining network Sk, so using

dynamic programming we observe that an optimal expanding search S must

be optimal for all of the subproblems (subnetworks) Sk. Given any expanding

search S = (a1, . . . , aN ) and any Hider location at the tip Ak of arc ak, the

search time T = T (S,H) is given, as in (13), by

T (S,H) = λ (a1) + · · ·+ λ (ak) , (17)

and the expected time for S to find a Hider hidden according to distribution

(measure) ν is denoted by

T (S, ν) =

N∑
k=1

ν (Ak) · T (S,Ak) . (18)

For a given Hider distribution ν, we say that S̄ is optimal (against ν) if it

minimises the expected search time T (S, ν) over all expanding searches S. (In

the context of this section, there are only finitely many expanding searches, so

the existence of optimal ones is not in question.)

The Search Density Lemma (Lemma 6) will be useful in our analysis, and

we make an additional observation here about densities. For disjoint subsets A

and B, the density of A ∪B is a weighted average of the densities of A and B,
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that is

ρ (A ∪B) =
ν (A) + ν (B)

λ (A) + λ (B)
=

λ (A)

λ (A) + λ (B)

ν (A)

λ (A)
+

λ (B)

λ (A) + λ (B)

ν (B)

λ (B)

= λ(A)
λ(A)+λ(B) ρ (A) + λ(B)

λ(A)+λ(B) ρ (B) .

Consequently if ρ (B) ≤ ρ (A) then

ρ (B) ≤ ρ (A ∪B) ≤ ρ (A) ,with strict inequalities if and only if ρ (B) < ρ (A) .

(19)

3.3 Known Hider distribution on nodes of a tree

We fix a Hider distribution ν and consider the densities of all subtrees of Q

rooted at O. We will be particularly concerned with those subtrees which have

maximum density r = r(Q). Generically, there will be a unique subtree of

maximum density r, and the main result of this section is that any optimal search

must begin with the arcs of this subtree (in some order). The complicating factor

is that it is possible there are multiple subtrees of maximum density, which is

why Theorem 21 has a more complicated statement.

The set of subtreesM of maximum density r in Q may be ordered under set

inclusion, in which case we call its minimal elements (those without any proper

subtree of density r) min-max subtrees. If we include the empty subtree of no

arcs, φ inM then it follows thatM is closed under intersection and union. To

see this, first note that if A,B ∈ M are disjoint (by which we mean they have

no arcs in common) or if one contains the other, the result is trivially true. If

A − B and B − A are both non-empty, then A ∩ B must have density r: it
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certainly has density no greater than r by definition of r, and if it had density

strictly less than r then by (19) we would have ρ(A−B) > r. But this cannot

be possible, since by (19) we would then have ρ(A∪B) = ρ((A−B)∪B) > r, a

contradiction. It follows that ρ(A−B) = r and ρ(B −A) = r so ρ(A ∪B) = r.

We call the unique maximal element of M (the union of all its elements) the

max-max subtree, denoted by M = M (Q, ν) . Generically, there is a unique

subtree of maximum density (namely M). But in general M may include more

than one root arc, in which case all the corresponding branches of M have a

unique min-max subtree, and these are all the min-max subtrees (one for each

arc of M at the root of Q).

Lemma 20 Let ν be a measure on the nodes of a tree Q.

(i) Distinct min-max subtrees are disjoint.

(ii) Every branch of a maximum density subtree A has density r.

(iii) Every branch of M = M(Q) contains a unique min-max subtree.

(iv) Every min-max subtree A of Q has only one branch.

Proof. To prove (i), suppose A,B ∈ M are distinct min-max subtrees with

intersection I, which must belong to M, since it is closed under intersection.

By the minimality of A and B, I cannot be a proper subset of either subtree,

and cannot be equal to either A or B. Hence I must be the empty subtree φ, so

that A and B are disjoint. Now suppose A is a maximum density subtree, and

by definition of r every branch of A must have density at most r. (19) implies
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that the density of each branch must be equal to r , which proves (ii). Part (iii)

follows immediately, since every branch of M has density r and must therefore

contain a minimum subtree of density r. If A is a min-max subtree, then by

(ii) every branch of A must have density r, and by the minimality of A must be

equal to A, giving (iv).

We say that a search S begins with the subtree B if some initial block of

arcs of S is some ordering of the arcs of B. Generically, there will be a unique

subtree of maximum density, and every optimal expanding search must begin

with its arcs. In the more general case, the result is as follows.

Theorem 21 Let ν be any Hider distribution on the nodes of a rooted tree Q.

Then

(i) Every optimal expanding search of Q begins with some min-max subtree of

Q.

(ii) Every optimal expanding search of Q begins with the max-max subtree M =

M(Q);

(iii) For any subtree A of maximum density r, there is an optimal expanding

search of Q that begins with the arcs of A.

Proof. (i) We prove the first part of the theorem by induction on the number

of arcs: it is trivially true for a network consisting of one arc. So assume that

(i) is true for all trees with at most N − 1 arcs, and let S = (a1, a2, ..., aN ) be

an optimal search of the tree Q having N arcs. Let k be the smallest integer

for which tree Sk (consisting of the first k arcs of S) contains some min-max
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subtree A. Let aj be the first arc of S contained in A, so that it must be a root

arc of A.

We first assume that j > 1, that S begins with arcs not in A. After searching

Sj−1 = (a1, . . . , aj−1), the induction hypothesis says S must continue by search-

ing some min-max subtree B of the remaining tree Sj−1. Since B contains the

root arc aj of Q, it must also be a min-max subtree of Q. But as both A and B

are min-max subtrees of Q starting with the same root arc aj , Lemma 20 (i) says

that B = A. Hence S can be written as S = Sj−1, A,X. If we had ρ (Sj−1) ≥ r,

then Sj−1 would be a tree of maximum density, contradicting the minimality

of k, so we must have that ρ (Sj−1) < r = ρ (A) . But this would contradict the

optimality of the expanding search S, as Lemma 6 shows that the alternative

expanding search S′ = A,Sj−1, X has a strictly lower expected search time. It

follows that our assumption j > 1 is false, and this case is impossible.

So the search S begins with a sequence of arcs Sl = (a1, . . . , al) belonging

to A. Suppose l is the largest integer for which Sl ⊂ A. If Sl = A, the proof

is complete. If not, by the induction hypothesis applied to the tree Sl, S must

continue by searching some min-max subtree B of Sl. Note that B must be

disjoint from A, by Lemma 20 (iv). By the maximality of r(Sl), we must have

ρ(B) = r(Sl) ≥ ρ(A − Sl), and by the minimality of A, ρ(A) > ρ(Sl) so that

ρ(A − Sl) > ρ(Sl), by 19. Hence ρ(B) > ρ(A), and ρ(B ∪ A) > ρ(A) = r,

contradicting the maximality of r.

(ii) By part (i), the first arc of S is certainly inM since S begins by searching

a min-max subtree, which must be contained in M . Suppose k is the largest
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integer for which Sk ⊂ M. If Sk = M , the proof is complete, so suppose

not. Note that by definition of r, we must have r(Sk) ≥ ρ(M − Sk), since

M − Sk is a rooted subtree of Sk. Also, since ρ(M) = r and ρ(Sk) ≤ r, by 19,

ρ(M − Sk) ≥ r. Putting these together gives r(Sk) ≥ r. By part (i), after

searching Sk, S must search a min-max subtree, A of Sk with ρ(A) = r(Sk) ≥ r.

The tree A must begin with an arc not in M , and hence be disjoint from M by

Lemma 20 (iv), so that ρ(A∪M) ≥ r, by (19), contradicting the maximality of

M .

(iii) Let εn be a positive sequence tending to 0. For each n, define the

measure νn on the nodes of Q such that vn (x) = (1 + εn) ν (x) for all nodes x

in M and vn (y) = (1− ωn) ν (y) for all nodes y not in M, where ωn is chosen

to make νn a probability measure. For each n, let Sn be an optimal expanding

search on Q with the Hider distribution νn. Since there are only a finite number

of expanding searches, one of them, call it S′, must appear infinitely often in

the sequence (Sn)
∞
n=1 , and hence also be optimal for the limiting distribution

ν. But for any of the measures νn, the tree A is the unique, and hence maximal,

subtree of maximum density, so by part (ii), any optimal expanding search must

start with A. Hence in particular the optimal expanding search S′ starts with

A.

We now have a simple algorithm for constructing an optimal expanding

search (indeed all such searches) on a tree when the Hider has a known distrib-

ution on the nodes. It is suffi cient, after the first k arcs of an optimal expanding

search S have been chosen, to determine which initial arcs of the remaining
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tree Sk lead to optimal expanding searches. The answer is that any arc of the

max-max subtree of Sk can be chosen, or equivalently the unique root arc of

any min-max subtree of Sk. Summarising, we have the following.

Corollary 22 Let ν be a Hider distribution on the nodes of a tree Q and let M

be the max-max subtree of Q. Then any arc a at the root of Q which belongs to

M can be taken as the first arc a1 of an optimal expanding search. Repeating

this for the subtree Q1 obtained by deleting a1 from Q and identifying its tip

with the root, gives all possibilities for a2, and so on.

We saw in Section 1 how this algorithm can be used to find the optimal search

of the network Q0 of Figure 6 with arc lengths given by (14). We now illustrate

how the algorithm can be applied to a network whose maximum density subtree

is not unique. Consider the network Q depicted in Figure 6, but this time

suppose all the arcs have length 1 and the nodes A,B,C1, C2, D1, and D2 have

respective measures 0.1, 0.2, 0.3, 0.1, 0.2, and 0.1. The first step of the algorithm

is to identify the max-max subtree, M(Q), which can easily be found to be

abc1d1. The next step is to choose one of the root arcs of M(Q) as the first arc

of the search. Depending on whether we choose a or b, we obtain a different

new network, Q1 in which we have shrunk a to the root, or Q′1, in which we

have shrunk b to the root, as depicted in Figure 7.

Suppose we choose to begin with b. Then we find the max-max subtree of

Q′1 is ac1d1, so that we can choose either a or d1. Suppose we choose d1 and

shrink this arc to the root. The max-max subtree of the resulting network is

ac1, and we continue by searching these two arcs next. Finally, shrinking these
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Figure 7: The contracted networks Q1 and Q′1.

arcs to the root we are left with the network consisting of only the arcs c2 and

d2. These arcs have equal density so the max-max subtree is the whole network,

and c2 and d2 can be searched in either order. The result is an optimal search

(b, d1, a, c1, c2, d2) with expected search time equal to 0.2(1) + 0.2(2) + 0.1(3) +

0.3(4)+0.1(5)+0.1(6) = 3.2. Had we made different choices when applying the

algorithm we may have produced any one of the alternative optimal strategies:

(b, d1, a, c1, d2, c2), (b, a, c1, d1, c2, d2), (b, a, c1, d1, d2, c2), (a, c1, b, d1, c2, d2) , or (a, c1, b, d1, d2, c2).

It is worth noting that the principle of searching the subtree of highest

density first does not hold in the analogous pathwise search problem, where a

Searcher must take a continuous path in a rooted network to minimise the time

taken to find a Hider located on the network according to some distribution. For

example, consider the network consisting of the closed interval [−2, 2] rooted at

0, where the Hider is located at −2,+1,+2 with respective probabilities 7
13 ,

4
13

and 2
13 . The unique maximum density subtree is [0, 1], but if a search begins

with a path from 0 to 1, the minimum possible expected search time is given by

the path which continues to −2 before going to +2. This has expected search
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time 48
13 , whereas a search which begins by going to −2 before going to 1 and

then 2 has a smaller expected search time of 4613 .

3.4 Expanding search game on trees

We now assume that the Hider distribution ν is not known to the Searcher.

In this case we consider the problem of finding the mixed Searcher strategy

(probability measure over expanding searches) which minimises the expected

search time in the worst case. An equivalent problem, which we prefer to adopt,

is the zero-sum expanding search game Λ = Λ (Q,O) . Here the maximising

Hider picks a location H in Q, the minimising Searcher picks an expanding

search S in S, and the payoff is the search (capture) time T (S,H). For trees

Q, it is clear that the Hider must pick a leaf node, as all other points in Q are

dominated. Hence Λ(Q,O) is a finite game: the Hider picks a leaf node and the

Searcher picks an ordering of the arcs of Q.

We can derive the solution of Λ(Q,O) for trees Q from the solution of the

variable speed game Γ(Q,O, d) for a particular choice of d. We will first show

that if the Hider follows the EBD distribution in Λ, then it is optimal or the

Searcher to perform a depth-first search.

Lemma 23 Suppose Q is a tree. Then in the game Λ(Q,O) if the Hider hides

according to the EBD distribution, then a best response for the Searcher must

be a depth-first search.

Proof. Suppose the Hider is hidden according to the EBD distribution and the

Searcher does not use a depth-first search. Then there must exist some node x
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such that after reaching x for the first time, the Searcher proceeds to search a

branch A of Qx before searching a non-empty region X which is disjoint from

Qx, and then the other branch B of Qx. Let a be the arc whose forward node is

x. Then this portion of the search may be notated as aAXB. Since the Hider

is using the EBD distribution, we must have ρ(A) = ρ(B). But by the Search

Density Lemma, ρ(A) ≥ ρ(X) ≥ ρ(B), so we must have ρ(X) = ρ(A) = ρ(B).

But in that case ρ(a ∪ A) < ρ(X), so using the Search Density Lemma again,

the Searcher could improve his search time by swapping the order of search of

a ∪ A and X, contradicting the optimality of the search. Hence the Searcher

must use a depth-first search.

So if the Hider uses the EBD distribution then the Searcher uses a depth-

first search, and in this case it is easy to see that an expanding search of Q is

equivalent to a pathwise search of Q endowed with the quasimetric d defined

such that all the reverse travel times Ra are equal to 0. (Strictly speaking,

d(x, y) should only take the value 0 when x = y, as d is a quasimetric, but this

problem can be resolved by setting the reverse travel times to be some small

ε > 0 and using a limiting argument.) Hence we can read off the solution of

this game from the solution to the pathwise search game on a variable speed

network. The incline, ∆ is now D, the mean distance from the root to the leaf

nodes, with respect to the EBD. The branching probability (6) for an arc a at

branch node x is now

β (a) =
1

2
+

1

2µx
(Da −Db), (20)

where µx is the length of the subtree Qx and Da and Db are the mean distances
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from x to the leaf nodes of Qa and Qb respectively. Hence we have the following:

Theorem 24 In the expanding search game Λ(Q,O) on a tree Q, the branching

strategy defined by the branching probabilities (20) is optimal for the Searcher;

the EBD is optimal for the Hider; the value V of the game is given by

V =
1

2
(µ+D).
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4 The expanding search game with multiple ob-

jects on a tree

In this chapter we extend the idea of the expanding search game on a network

introduced in Chapter 3, by allowing the Hider to hide k objects on the network

(where k is some fixed number), all of which the Searcher wishes to find. We

begin by considering this game played on a star network : that is a network

consisting of a set of arcs that meet at the root. As we will explain in more

detail in Section 4.4, this is equivalent to the following game where balls are

hidden in boxes. The Searcher who wishes to find a number of objects (or balls)

hidden by a Hider amongst a set of discrete locations (or boxes) each of which

has a designated search cost. The Searcher looks in the boxes one by one, paying

the search costs associated with the boxes he looks in, until he has found all

the balls. He wishes to minimise the total search cost of finding the balls, and

the Hider wishes to maximise it, so we view the problem as a zero-sum game

between the Searcher and the Hider. This is a natural problem to consider, and

one which we face on an everyday basis. For example, before leaving the house

in the morning we may wish to locate a certain essential items such as wallet,

phone and keys. There is a set of discrete locations around the house where

these objects may be hidden, each of which takes a particular amount of time to

search, and we wish to minimise the total time it takes to find all the items. The

problem provides a simple model for other practical search scenarios, such as a

search for a number of corrupted files which may be distributed amongst several
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folders, or a search for bombs hidden in several locations. The problem is also

relevant to studies such as Pravosudov and Clayton [41] which have examined

how scatter hoarders like squirrels search for food they have previously cached

over a number of sites.

After we have formally defined the game in Section 4.1, we will see in Section

4.2 that if both parties are allowed to use mixed strategies it is optimal for the

Searcher to begin his search with a subset of k boxes chosen with probability

proportional to the product of their search costs, and then search the remaining

boxes in a random order. It is optimal for the Hider to choose a subset of k

boxes with probability proportional to the product of their search costs. In

Section 4.3 we then distinguish between two versions of the game, the first of

which restricts the Searcher to setting out his search plan from the start, and

the second of which allows him to change his plan during the search, based on

information gathered. We call the second type of Searcher a smart Searcher to

distinguish from the first type which we call a normal Searcher. The idea of

a smart Searcher was introduced by Alpern et al [9], in the context of scatter

hoarders. A smart Searcher is clearly at an advantage over a normal Searcher,

and this formulation perhaps provides a more realistic model of an intelligent

Searcher. However, we will show that in this game a smart Searcher cannot do

any better than a normal Searcher against a Hider who is playing optimally.

In Section 4.4 we show how the game can be formulated in terms of an

expanding search game with several hidden objects. We go on to discuss the

game on the more general tree network, and show that in general, a smart
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Searcher has an advantage over a normal Searcher.

The box-searching game solved in this chapter is an original problem, in-

troduced by the author in [35], upon which this chapter and the next is based.

The problem of searching for a single object hidden according to a known dis-

tribution in boxes with search costs where there is an ‘overlook probability’

associated with each box is a known problem solved by Blackwell (reported in

[36]). An alternative solution to the problem is presented by Gittins et al [26]

using Gittins’well known index for multi-armed bandit processes. A study of

the zero-sum game version of the problem can be found in Bram [20] and Ruckle

[49]. In Neuts [39], the game is extended so that the boxes each have allocated

search costs. Interest in searching in boxes also extends to the field of economics,

for example in Weitzman [53] where a Searcher faces a problem of when to stop

searching a set of boxes with fixed search costs, and rewards assigned according

to a known probability distribution.

To date there has been little study in Search Theory of problems involving

multiple hidden objects. Alpern et al. [7] introduced a game in which a Searcher

with limited ‘digging’resources seeks several objects buried in a choice of loca-

tions. An extension of Blackwell’s problem in which a Searcher looks for one of

many hidden objects is examined in Assaf and Zamir [16] and Sharlin [50]. In

[38], two Searchers compete to find different objects before each other. Press

[42] considers a search problem in which a Searcher samples with replacement

to find ‘rare malfeasors’hidden according to a known distribution amongst a

population. This could be viewed as a search for balls distributed amongst sev-
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eral boxes according to a known distribution. In [8], a search game is considered

in which a Hider distributes a continuous amount of wealth amongst discrete

locations.

The related problem of multiple Searchers trying to locate an object has been

studied by Reyniers [45], [46] and Ruckle [49]. In these studies, two Searchers

coordinate to find a single Hider. In Weber [52] two agents aim to minimise

the time to find each other in a set of discrete locations. This problem lies in

the field of Rendezvous Search, a category of problems first posed informally in

Alpern [1] and later developed in work such as Alpern [2] and Anderson and

Weber [15].

4.1 Search for k balls in n boxes

A Searcher wishes to find k balls hidden in a set B = {1, ..., n} of n boxes. He

can search them in any order, but incurs a known cost ci when he searches box

i. If the balls are hidden (uniformly) randomly, then clearly the best search

strategy is to search the boxes in order of increasing cost. We wish to find the

randomised search strategy which minimises the expected total cost, in the worst

case. For any pure Searcher strategy - that is, any ordering (or permutation) of

the boxes B - the worst case occurs when the last (nth) box searched contains

a ball. So any pure search strategy is a pure minimax strategy, with total cost

equal to the sum of the search costs Σni=1ci, which we denote by C0.

So we are naturally led to consider mixed search strategies, and to seek a

distribution over orderings of B which minimises the expected total cost, in

70



the worst case. This problem is equivalent to finding optimal strategies in the

zero-sum game Θ = Θ(n, k; c1, ..., cn) against Nature, where a malevolent Hider

(Nature) chooses a k-subset H of B; the Searcher chooses an ordering (i1, ..., in)

of B; and the payoff (to the maximising Hider) is the total cost

C = C(i1, ..., in;H) = ci1 + ci2 + ...+ cij

if the last ball is found in the jth box to be searched. This is a finite game and

has a value which we denote by V = V (n, k; c1, ..., cn).

4.2 Optimal strategies

A Hider mixed strategy is a probability distribution over the set H = B(k) of

k-subsets (that is, subsets of size k) H ⊂ B. The optimal Hider distribution ν =

νB,k turns out to be the distribution which assigns to each H ∈ H a probability

proportional to π(H) := Πi∈Hci, the product of the costs of searching the k

boxes in H. That is,

ν(H) =
π(H)∑

A∈H
π(A)

.

The distribution is related to a Hider distribution on trees determined recur-

sively by Gal [21]. The main result of this section is the following.

Theorem 25 The Searcher strategy which minimises the expected total search

cost to find k balls amongst n boxes in the worst case is to first search a k-subset

of boxes in any order, chosen according to the distribution ν, and then to search
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the remaining n−k boxes in a (uniformly) random order. The order of searching

the first k boxes does not affect the payoff. A worst case Hider distribution is

the distribution ν.

To prove this theorem, we will first show that the Hider strategy ν ensures

the same expected search cost C against any strategy of the Searcher. This

puts a lower bound on the value of the game. We then restrict the Searcher to

a subset of his strategy set and show that even with this restriction he has a

mixed strategy that ensures the same expected search cost C against any Hider

strategy. This puts an upper bound on the value which when combined with

the lower bound provides the desired result.

We begin by defining a quantity Sj(H) for all subsets H ⊂ B and for all

j = 1, ..., |H|. Sj(H) is calculated by taking each j-subset A of H, multiplying

together the search costs of the boxes in A, and summing these products.

Definition 26 For H ⊂ B and j = 1, ..., |H|, let Sj(H) =
∑
A∈H(j) π(A). We

write simply Sj for Sj(B).

Note that this allows us to notate the Hider strategy ν more concisely: for

k-subsets H, we can write ν(H) = π(H)/Sk. We will show that ν makes the

Searcher indifferent between all his pure strategies, ensuring the same expected

cost for any ordering of the boxes. Following standard notation, we write [j] for

the set {1, ..., j}, so that B = [n].

Lemma 27 For any ordering (i1, ..., in) of the boxes, the expected total search
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cost if the balls are hidden according to ν is

C = C(i1, ..., in; ν) = C0 −
Sk+1
Sk

. (21)

Proof. By a relabelling argument we can assume that the Searcher chooses the

ordering 1, 2, ..., n. We calculate the expected cost of boxes not searched and

subtract this from the total cost of the boxes, C0. All the boxes 1, ..., k will

certainly be searched, and for i ≥ k+ 1, the probability box i is not searched is

the probability all k balls are in [i− 1], which is

Sk ([i− 1])

Sk
.

Thus the expected cost of boxes not searched is

1

Sk

n∑
i=k+1

ciSk ([i− 1]) .

This sum is clearly equal to Sk+1, so the expression above is Sk+1/Sk, and

subtracting this from C0 gives (21).

We will see that the Hider strategy ν set out at the beginning of the section

is optimal, and that the value of the game is given by (21). To this end, we now

define a restricted game Θ′ = Θ
′
(n, k; c1, ..., cn) in which the Searcher’s strategy

set is reduced, and we will show that in Θ′ the Searcher can attain expected

search time C0 − Sk+1/Sk against any Hider strategy.

Definition 28 Let Θ′ be the same as Θ except that after searching the first k

boxes the Searcher must search the remaining boxes in a (uniformly) random

order. Let V ′ = V ′(n, k; c1, ..., cn) be the value of this game. We must have

V ′ ≥ V .
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This reduces the number of pure strategies for the normal Searcher to
(
n
k

)
,

since a pure strategy can now be specified by some A ∈ B(k) which corresponds

to the first k boxes of his search. Hence the Hider and the Searcher have the

same strategy set, H = B(k). We now show that Θ′ is a symmetric game, in the

sense that its payoff matrix is symmetric.

Lemma 29 Let H,A ∈ H be strategies in Θ′ for the Hider and Searcher, re-

spectively. Then C(A,H) = C(H,A).

Proof. C(A,H) is the expected cost of a search that begins with A and searches

the rest of the boxes in a random order until all the balls in H are found. In such

a search all the boxes in A ∪H must be searched before the balls have all been

found, since the Searcher begins by searching all the boxes in A, and cannot

stop until he has searched all the boxes in H. As for the remaining boxes not in

A∪H, these are each searched with the same probability q after all the boxes in

A have been searched. Note that the value of q depends only two things. The

first is the number j = |A−H| of remaining balls to be found after the boxes

in A have been searched, and the second is the number m = n− k of remaining

unsearched boxes at this point. Hence

C(A,H) =
∑

i∈A∪H
ci + q

∑
i/∈A∪H

ci.

Notice that |A−H| = |H −A|, and so j, m and q are unchanged if the set A

and H are interchanged. Thus C(A,H) = C(H,A).

The solution of the game Θ′ follows immediately from this lemma, using

the well-known result below about finite zero-sum games with symmetric payoff
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matrices.

Lemma 30 For a 2-player, zero-sum game between Players I and II with n×n

symmetric payoff matrix M , if x∗ = (x∗1, ..., x
∗
n)T is a mixed strategy for Player

I that makes Player II indifferent between all his strategies, then the strategy

pair (x∗, x∗) forms an equilibrium.

Proof. Since x∗ makes Player II indifferent, there is some number U such that

U = (x∗)
T
My, for all strategies y of Player II. Equivalently,

UT = U =
(

(x∗)
T
My

)T
= yTMT

(
(x∗)

T
)T

= yTMx∗, since M is symmetric.

Since this holds for all y, Player II can make Player I indifferent between all his

strategies by playing x∗. Hence if both players play x∗ each player is playing a

best response to the other, and this is an equilibrium.

Corollary 31 The value of Θ′ is V
′

= C0 − Sk+1
Sk
. The strategy ν is optimal

for both the Hider and the Searcher.

Proof. If the Hider uses the strategy ν, by Lemma 27, the Searcher will be

indifferent and the expected cost will be C0 − Sk
Sk+1

. By Lemmas 29, Γ′ is

symmetric, so by Lemma 30, if the Searcher also uses the mixed strategy ν, this

forms an equilibrium and the value of the game is V
′

= C(ν, ν) = C0− Sk+1
Sk
.

Theorem 25 follows by combining our results.
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Proof of Theorem 25. By Lemma 27, the Hider can ensure expected search

cost no less than C0 − Sk+1
Sk

by using ν, so V ≥ C0 − Sk+1
Sk
. By Corollary 31,

the Searcher can ensure expected search cost no more than C0 − Sk+1
Sk

by using

the strategy ν, so V ≤ V ′ = C0 − Sk+1
Sk
. Hence we must have equality, and ν is

optimal for both players.

Note that the value of the game must be increasing in k since the Searcher’s

optimal strategy for the game Θ(n, k+ 1; c1, ..., cn) will find k hidden balls with

total search cost no greater than V (n, k+ 1; c1, ..., cn). Therefore we must have

C0 −
Sk+1
Sk

≥ C0 −
Sk
Sk−1

, so that

S2k ≥ Sk−1Sk+1, and

logSk ≥ logSk−1 + logSk+1
2

.

It follows that S1, S2, ... is a logarithmically concave sequence. We can also see

this in another way using the concept of logarithmically concave polynomials

(that is, polynomials whose sequence of coeffi cients is logarithmically concave).

It is well known that the product of logarithmically concave polynomials is

logarithmically concave [27]. That is, if A(x) = a0 + a1x + a2x
2 + ... and

B(x) = b0 + b1x + b2x
2 + ... are logarithmically concave, so that they satisfy

ak ≥ ak+1ak−1 and bk ≥ bk+1bk−1 for all k ≥ 1, then C(x) = A(x)B(x) is

logarithmically concave. Let S(x) be the polynomial whose coeffi cients are the

Sk, so

S(x) = 1 + S1x+ S2x
2 + ...+ Snx

n.
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Then we can factorise S(x) as

S(x) =

n∏
j=1

(1 + cjx) ,

and since the polynomial
(
1 + cjx+ 0x2 + 0x3 + ...

)
is logarithmically concave

for each j, S(x) is the product of logarithmically concave polynomials and must

be logarithmically concave itself.

4.3 Smart and normal strategies

So far we have assumed that the Searcher must set out his search plan at the

start of the search, but we now consider a variation of the game where the

Searcher is permitted to adapt his plan during the search using information

gathered. We call such a Searcher smart, as opposed to a normal Searcher who

is required to set out his search plan from the start. In the case of a single

hidden ball it is clear that a smart Searcher cannot do any better than a normal

Searcher. In Alpern et al. [9] the authors showed that for their model of scatter

hoarding behaviour it was advantageous for a Searcher to be smart. However,

we find the contrary here, that a smart Searcher has no advantage over a normal

Searcher.

We denote the box-searching game with a smart Searcher by Θ̃ = Θ̃(n, k; c1, ..., cn),

and let the value of the game be Ṽ = Ṽ (n, k; c1, ..., cn). Clearly the value of

this game is no greater than the value of the equivalent game with a normal

Searcher, since a smart Searcher can always use a normal strategy. We combine

this observation with Theorem 25 to give the lemma below.
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Lemma 32 Ṽ = Ṽ (n, k; c1, ..., cn) satisfies Ṽ ≤ C0 − Sk+1
Sk
.

To show that a smart Searcher cannot do better, we will need a technical

lemma about the function Sk, which is a straightforward calculation. For any

set H ⊂ B write Sij = Sj(B − i).

Lemma 33 For any i = 1, ..., n,

Sk = ciS
i
k−1 + Sik.

Proof. We split the sum Sk =
∑
A∈B(k) π(A) into the sum over subsets A which

include i and those that do not. Accordingly,

Sk =
∑

A∈(B−i)(k)
π(A) +

∑
A∈(B−i)(k−1)

cjπ(A)

= ciS
i
k−1 + Sik.

We use this lemma to give an inductive proof that a smart Searcher strategy

cannot do any better than a normal Searcher strategy against ν. The idea of

the proof is that the information gathered during a search is of no use to the

Searcher because ν has the property that at all points of a search, the remaining

balls to be found will be hidden according to the optimal Hider distribution on

the unsearched boxes. We formalise this in the next lemma.

Lemma 34 Suppose the k balls are hidden according to the optimal Hider dis-

tribution ν for the game Θ(n, k; c1, ..., cn), and let i ∈ B. Let ν′ = νB−i,k−1

be the optimal Hider distribution for k − 1 balls hidden in the boxes B − i and
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let ν′′ = νB−i,k be the optimal Hider distribution for k balls in the boxes B − i.

Then given that there is a ball in box i, the remaining k − 1 balls are hidden in

B − i according to ν′; given that there is no ball in box i, the k balls are hidden

in B − i according to ν′′.

Proof. The probability α that there is a ball in box i is given by α =
ciS

i
k−1
Sk

.

Hence, conditional on there being a ball in box i, the probability the remaining

k − 1 balls are hidden in some (k − 1)-set H ∈ (B − i)(k) is

ν(H ∪ i)
ciSik−1
Sk

=

π(H)ci
Sk

ciSik−1
Sk

=
π(H)

Sik−1
= ν′(H).

Similarly, the probability there is no ball in box i is 1 − α = 1 − ciS
i
k−1
Sk

=

Sk−ciSik−1
Sk

=
Sik
Sk
(by Lemma 33). Hence, conditional on there not being a ball in

box i, the probability the remaining k balls are hidden in some k-set H ⊂ B− i

is

ν(H)
Sik
Sk

=

π(H)
Sk
Sik
Sk

=
π(H)

Sik
= ν′′(H)

From this property of ν it follows that a smart Searcher cannot guarantee a

total search cost any smaller than a normal Searcher.

Theorem 35 The value of Θ̃ is Ṽ = C = C0− Sk+1
Sk
. The strategy ν is optimal

for both the Hider and the Searcher.

Proof. We prove by induction on n that if the balls are hidden according to

ν then the expected search cost of any smart search is C. This is clearly true

for n = 2, since every smart search is a normal search. Assume it is true for
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n − 1, and suppose without loss of generality that a smart Searcher begins by

searching box 1. Subsequent to searching this box, regardless of whether he

finds an object, Lemma 34 implies that the remaining objects will be hidden

optimally. Hence, by the induction hypothesis and Lemma 27 the expected

search cost of all smart searches of the remaining boxes is the same, including

the search which opens the boxes in the order 2, 3, ..., n. So the total expected

search cost is the same as that of the normal search 1, 2, ..., n, which by Lemma

27 is C, completing the induction. It follows that Ṽ ≥ C, and combining this

with Lemma 32 completes the proof.

We can also consider variations of the game in which the Hider is smart, so

that every time the Searcher opens a box, he can rearrange the remaining balls

that have not been found. This gives rise to two more games, one in which the

Searcher is also smart and one in which he is normal. The value of these games

is clearly greater than the values of the corresponding games in which the Hider

is normal, which we have seen are both equal to C = C0 − Sk+1
Sk
.

In the case where only the Hider is smart, the value is strictly greater than C

in general, though the game is non-trivial to analyse and there are no examples

for which the value is greater than C when n ≤ 3. We present here an example

for n = 4. Suppose the boxes (1, 2, 3, 4) have search costs (1, 10, 50, 50) and

there are 2 balls. We give a Hider strategy that ensures expected search cost

greater than C for any normal Searcher strategy. The Hider starts by hiding

the balls according to the optimal normal strategy ν. If the Searcher opens box

1 first and finds a ball, the Hider puts the remaining ball in box 2. If not, he
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hides the two remaining balls in boxes 3 and 4 with probability 197/245, and

otherwise hides them equiprobably in boxes 2 and 3 or boxes 2 and 4. If the

Searcher starts with box 2 and finds a ball, the Hider puts the remaining ball

in box 1 with probability 361/10201, and otherwise hides them equiprobably in

box 3 or 4. If not he puts the other two balls in boxes 3 and 4. If the Searcher

starts with box 3 or 4 and finds a ball, the Hider puts the remaining ball in boxes

1 and 2 with respective probabilities 361/18605 and 9122/55815 and otherwise

puts it in the other box of cost 50. If not he puts the two balls in box 2 and the

remaining box of cost 50. We leave it as an exercise to the reader to check that

against any normal Searcher strategy the expected cost is greater than C.

If both the Hider and the Searcher are smart, then it turns out the value

is C. To prove this, it is suffi cient to give a strategy for a smart Searcher that

makes the Hider indifferent between all his strategies, since we already know

that the Hider strategy ν ensures an expected search cost of C against any

smart search, by Theorem 35. To define a smart search we simply need to

specify the probability pi that the Searcher begins with some box i = 1, ..., n,

for given n and k. Let

pi =

(
Sik
Sik−1

−
Sik+1
Sik

) n∑
j=1

Sjk
Sjk−1

−
Sjk+1

Sjk

−1 .
Since Sik is a logarithmically concave sequence,

(
Sik/S

i
k−1 − Sik+1/Sik

)
≥ 0, so

pi is certainly a probability. We then prove by induction on n that when the

Searcher uses p, the expected search cost of boxes not searched is the same

whatever strategy the Hider uses, so that it must be equal to Sk+1/Sk. The
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base case n = 2 is easily verified. Assuming the induction hypothesis is true for

n− 1, the expected search cost against the Hider strategy H is

∑
i∈H

pi
Sik
Sik−1

−
∑
i/∈H

pi
Sik+1
Sik

. (22)

It is suffi cient to show that expected search cost is the same against any two

Hider strategies H and H ′ that differ only in that H contains i and H ′ contains

j. The difference in the quantity (22) for two such Hider strategies is

pi

(
Sik
Sik−1

−
Sik+1
Sik

)
− pj

(
Sjk
Sjk−1

−
Sjk+1

Sjk

)
,

which is 0, by our choice of p. Summing this up, we have the following.

Theorem 36 The value of the game with a smart Searcher and smart Hider

is C. The strategy ν is optimal for the Hider and the strategy p given above is

optimal for the Searcher.

4.4 Box search as an expanding search on trees

We can reformulate the games analysed in this chapter so far in terms of an

expanding search game. In this section we begin by describing how searching

in boxes can be thought of as a special case of expanding search on a network,

and we define precisely the expanding search game for multiple objects on a

network.

Consider the star network Qn consisting of n arcs a1, ..., an which meet at

the root O, as depicted in Figure 8.

For given costs c1, ..., cn, let arc ai have length ci. We can now define a

search game, Λk(Qn, O) in which a normal Searcher chooses an expanding search
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a1

O

.   .   .   .   .   .
a2 an

Figure 8: The network Qn.

starting at O and the Hider chooses k points on Qn. An expanding search on

Qn is essentially an ordering of the arcs a1, ..., an. We define the payoff of the

game as the first time all the points chosen by the Hider have been reached

by the search. It is optimal for the Hider to choose k distinct leaf nodes (that

is, the tips of the arcs), and so it is easy to see that Λ(Qn, k) is equivalent to

the box-searching game Θ(n, k; c1, ..., cn), which we have solved in Section 4.2.

Of course, for any network Q with root O we can define in the natural way

an associated expanding search game, Λk(Q,O) with k hidden objects, where a

Hider chooses k points on Q and a normal Searcher chooses an expanding search

of Q starting at O. Of course, when k = 1, Λk = Λ. We denote the value of the

game (if it exists) by Vk = Vk(Q,O).

For k = 1 the solution of the game Λk(Q,O) is given in Chapter 3 (Theorem

24) for general tree networks Q, and a the value is V = (µ + D)/2, where µ is

the total length of the network and D is an average of the distances of the root

to the leaf notes, weighted with respect to the EBD distribution. For a star,
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µ = C0 and D =
∑ ci

C0
ci = 1

C0

∑
c2i . Our formula from Theorem 25 gives:

V = C0 −
S2
S1

= C0 −
∑
i<j cicj

C0

=
C0
2

+
C20 − 2

∑
i<j cicj

2C0

=
C0
2

+

∑
c2i

2C0

=
1

2
(C0 +D).

This shows that the two formulas are equivalent for k = 1. The optimal Hider

strategy given in Theorem 24 is also the same, but the optimal Searcher strategy

is different. It mixes between 2n−1 pure strategies, whereas the optimal strategy

presented in Section 4.2 mixes between all n! pure strategies.

For the game Λk(Q,O) played on general trees Q, it is clear that it is optimal

for the Hider to place the objects at distinct (if possible) leaf nodes of the tree.

A Searcher pure strategy is a sequence of arcs of the tree, the base of each of

which touches one of the arcs already searched. Λk can therefore be reduced to

a finite game, and must have a value. In a small number of special cases, the

solution of the game on a tree can be deduced from the solution of the game on

a star. For example, consider the tree depicted on the left of Figure 9. For the

game with 2 hidden objects, it is clear that the arc a must be traversed by the

Searcher before he finds all the hidden objects, since there must be an object

at the leaf node of arc b or c. Hence this network has the same value as the

network depicted on the right of Figure 9, since the Searcher may as well begin

by traversing the arc a. The solution of the game on the network on the right
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follows easily from the solution of the game on a star network.

b
c

a

d

O

b
c

a

d

O

Figure 9: Two tree networks.

This principle can be extended to more general trees, but does not produce

strong results. If a tree is binary (each branch node has two outward arcs), then

the solution of the search game for k Hiders can be deduced from the solution

on a star only if there are no more than k + 1 leaf nodes.

We investigate the solution of the game for k = 2 on a particular tree Q,

depicted in Figure 10, with leaf nodes A,B,C,D. All arcs have unit length.

Up to symmetry, the Hider has only 2 pure strategies: hide on the same side

(choose nodes AB or CD) or hide on different sides (choose nodes AC, AD, BC

or BD). Similarly, the Searcher only has two pure strategies up to symmetry:

start with two nodes on the same side or start with two nodes on different

sides. Hence the game can be reduced to a 2 × 2 matrix game in which the

Hider chooses between the strategies ‘same’and ‘diff ’and the Searcher chooses
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A

O

DB C

Figure 10: The network Q.

between ‘SAME’and ‘DIFF’, the interpretation being that if, say the Hider

chooses same, he randomises between AB and AC. This gives the following

representation of the game in strategic form.

Hider/Searcher SAME DIFF

same 4.5 5.5

diff 5.5 5.25

Solving this gives a value of V = 5.3, with both players’unique optimal strate-

gies given by the probability vector (1/5, 4/5). Note that in general the game

played on a tree does not have a symmetric payoff matrix.

As before, we can also define the related game Λ̃k(Q,O) on a network Q

with root O, in which the Hider chooses k points on the network, and a smart

Searcher chooses an expanding search of Q starting at O, so that at any point

during the search the Searcher is permitted to change his search plan. We denote

the value of this game (if it exists) by Ṽk = Ṽk(Q,O), which can be no greater

than Vk. If Q is a tree, both a smart and normal Searcher have a finite strategy

set, so Vk and Ṽk both certainly exist.
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Theorems 25 and 35 show that if Q is a star network then Vk(Q,O) =

Ṽk(Q,O). We now show that this may not be true for general trees Q. Consider

the smart search game Λ̃2(Q,O) played on the tree Q in Figure 10 with k = 2,

and suppose a smart Searcher uses the following strategy. He searches the nodes

in the order ACDB if there is an object at A, and otherwise he searches them

in the order ABCD. If the Hider uses the strategy (1/5, 4/5) which is uniquely

optimal in the game Λ(Q, k), then the Searcher will find an object at A with

probability 1/2. If he does find an object here, then with probability 4/5 he finds

the remaining object at one of the nodes on the other side after total expected

time 4.5; with probability 1/5 he finds the remaining object only after searching

the whole network, at time 6. So if he finds an object at A the expected search

time is 4/5(4.5) + 1/5(6) = 4.8. Similarly, if he doesn’t find an object at A,

then with probability 4/5 he finds an object at B, and the remaining object

after expected time 5.5; with probability 1/5 he finds both objects on the other

side after time 6. So if he doesn’t find an object at A the expected search

time is 4/5(5.5) + 1/5(6) = 5.6. So on average the expected search time is

1/2(4.8) + 1/2(5.6) = 5.2 < V (Q, 2).

We have showed that against the Hider strategy (1/5, 4/5) there is a smart

search that guarantees expected search time strictly less than V2(Q,O). If the

Hider follows any other strategy then this must be sub-optimal in the normal

search game Λ2(Q,O), so there is a normal search (and hence a smart search)

which guarantees expected time strictly less than V2(Q,O). Hence by the mini-

max theorem for zero-sum games, the value Ṽ2(Q,O) of the smart search game
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Λ̃2(Q,O) satisfies Ṽ2(Q,O) < V2(Q,O).

It can be shown that up to symmetry a smart Searcher has 6 pure strategies

in the game Λ̃2(Q,O), and the value is Ṽ2 = 5.25. The optimal Hider strategy is

(1/4, 3/4) and the optimal Searcher strategy can be described as follows. Pick

a node at random to start with; if there is no object here, then search the other

node on the same side and the remaining two in a random order; if there is an

object here, with probability 1/2 search the other node on the same side and

the remaining two in a random order, and with probability 1/2 search the two

nodes on the other side first then the remaining node.
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5 Expanding Search forMultiple Objects on Gen-

eral Networks

In this chapter we begin in Section 5.1 by giving a general result about searching

for multiple objects before going on in Section 5.2 to define more precisely the

expanding search game with multiple hidden objects on a network and to prove

that the game always has a value. In Section 5.3 we define strategies for both a

normal and a smart Searcher which can be viewed as analogues of the Random

Chinese Postman Tour introduced by Gal [21]. These strategies give upper

bounds on the value of the game. Finally we examine the game played on 2-

arc-connected networks. A 2-arc connected network is a network that cannot

be disconnected by the removal of fewer than 2 arcs. We give the solution of

the game for a smart Searcher, and an upper bound for the value of the game

for a normal Searcher, showing that although this bound is not tight in general,

it is if the network is a circle.

5.1 A generalised uniform strategy for the Hider

In this section we define a particular mixed Hider strategy for the expanding

search game with multiple hidden objects which will give us a lower bound on the

expected search time against any Searcher strategy (including smart Searcher

strategies). The Hider strategy is a generalisation of the uniform strategy u

first introduced by Isaacs [28], and discussed in Chapter 1. The lower bound

on the expected search time generalises Isaacs’1969 result given in Theorem 1.
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In particular, we will generalise the version of this result given in [11], which

proves that the lower bound holds against any generalised search strategy (as

defined below) in an arbitrary search space Q (that is, some finite, measurable

subset of Euclidean space).

Definition 37 For a search space Q, a generalised search strategy is defined

by the sets X(t) ⊂ Q that have been ‘discovered’ by time t (t ≥ 0). The sets

X(t) must satisfy the conditions

X(t) ⊂ X(t′) for all t < t′, and λ(X(t)) ≤ t for all t > 0,

where λ is the Lebesgue measure of Q. The set of generalised search strategies

is denoted by S = S(Q).

In practice, from now on we will assume that λ(X(t)) = t for all t, so the

Searcher is searching as quickly as possible, and hence X(µ) = Q. Notice that

expanding search satisfies the conditions to be a generalised search strategy (see

Section 5.2).

The notion of a smart generalised search strategy is defined analogously to

that of a smart expanding search strategy as given in Chapter 4. In other words,

a smart generalised search strategy is a generalised search strategy that can be

changed by the Searcher whenever he finds one of the hidden objects. The set

of all smart search strategies is complicated to describe, so we limit ourselves

to this informal verbal description. As before we distinguish generalised search

strategies from smart generalised search strategies by calling the formal normal

generalised search strategies.
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We also describe formally a strategy for a Hider with k objects in a search

space Q.

Definition 38 A Hider strategy in a search space Q is an ordered set of k points

H = (H1, ...,Hk) in Q. The set of Hider strategies is denoted by Hk.

The order is irrelevant for the models presented here, but a Hider strategy

cannot be defined simply as a set because this would not allow the Hider to

place two objects in the same place. For a given Hider strategy H ∈ Hk and

generalised search strategy X, we define the search time T (X,H) as

T (X,H) = inf{t : Hi ∈ X(t) for all i = 1, ..., k}.

We think of T (X,H) as the first time t that X(t) contains all the points

H1, ...,Hk.

A mixed strategy always available to the Hider is the uniform strategy where

each of the k objects is independently hidden uniformly on Q, so that the

probability any given object is contained in some measurable subset of Q is

proportional to the measure of that subset. We denote this Hider strategy by

uk = uk(Q). We will show that against this Hider strategy any smart generalised

search strategy has the same expected search time.

Theorem 39 Suppose X is a smart generalised search strategy, and suppose

a Hider hides k objects on Q according to the uniform strategy uk. Then the

expected search time T (X,uk) is given by

T (X,uk) =

(
1− 1

k + 1

)
µ
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Proof. We prove the theorem by induction of k. For k = 1, smart search

strategies are the same as normal search strategies, and the result follows from

Theorem 3.3 of Alpern and Gal [11]. For completeness we give the proof here

as well. (It is also more or less identical to the proof of 1 given in Chapter 1.)

The probability the single hidden object is found after some time t is 1 − t/µ,

so the expected time to find the object is given by

T (X,u1) =

∫ µ

0

(1− t/µ)dt

=

[
t− t2

2µ

]µ
t=0

= µ/2.

Now suppose the result is true for all j < k with k ≥ 2, and suppose that k

hidden objects are hidden according to uk. Let T1 be the time taken for a smart

generalised search strategy X to find the first object, so that

T1 = inf{t : Hi ∈ X(t) for some i = 1, ..., k}.

The probability T1 is greater than some t is the probability that all the objects

are in a set of measure µ− t, which is (1− t/µ)k. Hence the probability that T1

is at most some t ≥ 0 is

Pr(T1 ≤ t) = 1− Pr(T1 > t) = 1− (1− t/µ)k.

So, differentiating, the probability density function f of T1 is

f(t) =
k

µ
(1− t/µ)

k−1 .

Given that the first object is found at time t, the remaining objects are clearly

hidden uniformly in Q′ = Q−X(t) according to uk−1(Q′), and from time t, the
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Searcher performs a smart generalised search for k− 1 objects on Q′, which has

measure µ− t. Hence, by induction the remaining expected search time T ′ is

T ′t = (1− 1/k) (µ− t) .

Putting this together, the expected search time of all k objects is

T (X,uk) =

∫ µ

t=0

(t+ T ′t ) f(t)dt

=

∫ µ

t=0

(t+ (1− 1/k) (µ− t)) k
µ

(1− t/µ)
k−1

dt

=

(
1− 1

k + 1

)
µ.

So by induction, the theorem is true for all k.

This theorem is a generalisation of Isaacs’1969 result from [28], noted in the

Introduction (Theorem 1).

5.2 Existence of value for expanding search game with

multiple hidden objects

We now turn back to the expanding search game with multiple hidden objects,

beginning with a more general definition of an expanding search S. The idea

behind the definition concerns the closed region S (t) of Q that it has searched

by time t. As t increases, its size (total length) cannot grow too fast and it

cannot jump to new points detached from those it has already searched. A

Hider at H is captured when H first belongs to the searched set S (t) . These

ideas are captured in the following definition.

Definition 40 An expanding search S on a network Q is a nested family of

connected closed sets S (t) , 0 ≤ t ≤ µ, which satisfy
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(i) S (0) = O (starts at the root of Q), S (µ) = Q (exhaustive search),

(ii) S (t′) ⊂ S (t) for t′ < t, and

(iii) λ (S (t)) ≤ t.

The set of all expanding searches is denoted by S.

Notice that apart from the restrictions that S(0) = O and that the sets S(t)

must be connected, the definition is identical to that of generalised search. In

particular, an expanding search is a generalised search strategy, so Theorem 39

holds for expanding search.

It follows from (ii) and (iii) that λ (S (t)− S (t′)) = t− t′ and consequently

by connectedness that dHaus (S (t) , S (t′)) ≤ t−t′, where dHaus is the Hausdorff

metric on Q. The set S is compact in the uniform Hausdorff metric

d∗ (S, S′) = max
0≤t≤µ

dHaus (S (t) , S′ (t)) . (23)

For S ∈ S and a Hider strategyH = (H1, ...,Hk) ∈ Hk, let T ∗ = inf {t : Hi ∈ S (t) for all i = 1, ..., k}.

Suppose some Hi /∈ S (T ∗) . Then for T ∗ < t < T ∗ + dHaus (S (t) , S (T ∗)) we

also have that H /∈ S (t) , contradicting the definition of T ∗. Consequently Hi ∈

S (T ∗) for all i. This shows that the infimum is a minimum, and leads to the

definition

T (S,H) = min {t : Hi ∈ S (t) for all i = 1, ..., k} .

This shows that the expanding search game Λk(Q,O) with k hidden objects is

well defined. This level of rigour was unnecessary in Chapter 4 as all the games

considered were finite.
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Next we show that for any fixedH ∈ Hk, T (S,H) is lower semicontinuous for

S ∈ S with respect to the uniform Hausdorff metric d∗. Suppose T (S,H) > t0.

Then Hi /∈ S (t0) for some i and furthermore if d∗ (S, S′) < d (Hi, S (t0)) it

follows that Hi /∈ S′ (t0) and so T (S′, H) > t0. Thus T (S,H) is lower semicon-

tinuous in S for fixed H and hence also T (S, h) =
∫
Q
T (S,H) dν (H) is lower

semicontinuous for any fixed Hider distribution ν on Q.

To summarise, we have shown that S is compact in the uniform Hausdorff

metric (23) and that T is lower semicontinuous in S for fixed H. So the Minimax

Theorem of Alpern and Gal [10] gives the following.

Theorem 41 For any network the expanding search game Λk (Q,O) has a value

V = Vk (Q,O) , the Searcher has an optimal mixed strategy and the Hider has

ε-optimal mixed strategies.

We do not give an existence proof for the value of the expanding search

game Λ̃k(Q,O) with a smart Searcher, but we will demonstrate that it exists for

certain networks by calculating the value and giving optimal strategies explicitly.

5.3 Pointwise search and upper bounds for value

For an expanding search it is not in general possible to say where the Searcher

is located at a particular time t, unlike for example in the pathwise paradigm in

Gal’s analysis of search games, where the Searcher simply follows a continuous

path in Q. Of course if S ([0, t])− S ([0, t)) is a single point P (t), this is where

the Searcher would be located at time t. In fact we can characterise functions

P (t) which arise in this manner as pointwise searches. Unlike pathwise searches,
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pointwise searches are not in general continuous. There are certain restart times

TS = {t : P (t) = P (t′) , some t′ < t} when the search returns to restart points

P (TP ) which it has visited earlier. In the special case of combinatorial searches

(expanding arc sequences) considered in Chapter 3, the restart points are those

nodes which are tails of two or more arcs involved in the search. The fact that

intervals (arc interiors) of zero density are searched without interruption (that

is, full arcs are searched) is obvious. This result also applies to arcs where the

distribution is uniform. This is a version of Lemma 6 - see Corollary 8 of [12].

Given a pointwise search P ∈ Sp and a hiding point H ∈ Q, the capture

time T = T (P,H) is given by

T (P,H) = min {t : P (t) = H} .

Furthermore the set Sp of pointwise searches is dense in S in the uniform Haus-

dorff topology given by (23). To see this, fix any search S ∈ S and for a positive

integer n let ti = iµ/n for i = 0, . . . , n. Let P ∈ Sp be a search such that

P ([0, ti]) = S (ti) , i = 0, . . . , n. Such a P is easily constructed, as the subarcs in

S (ti)− S (ti−1) can be traversed one at a time by P in the interval [ti−1, ti] . A

similar argument in a slightly simpler setting is worked out in detail in Lemma 2

of [12]. The significance of the fact that pointwise searches are dense is that we

can obtain ε−optimal expected search strategies using them against any Hider

distribution.

An example of a Q, ν where the minimum search time requires a general

expanding search rather than any pointwise search is the following.
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Example 42 Let Q be the interval [−1, 1] with its root O at the center 0. Let ν

be given by the density function h (x) = 1− |x| . The unique optimal expanding

search S (t) is given by S (t) = [−t/2, t/2] for 0 ≤ t ≤ 2 = µ. (A derivation of

this fact is given in [14]) Clearly the expanding search S is not induced by any

pointwise search P, as S ([0, t])− S ([0, t)) = {−t/2, t/2} is not a singleton set.

Every pointwise expanding search P has a length λ = min{t : P ([0, t]) = Q},

which is the first time the whole network has been searched. If P satisfies

P ([0, t]) = t for all t, then clearly it has length µ (the total length of the

network). For a pointwise expanding search of length λ we can define P−1, the

reverse of P by P−1(t) = P (λ− t) for 0 ≤ t ≤ λ and P−1(t) = O for t > λ. The

function P−1 may not be a pointwise expanding search at all, but if it is then

we say P is reversible. A reversible pointwise expanding search P of minimal

length is called a minimal reversible expanding search (or MRES ), and for a

given network Q we denote the length of an MRES of Q by µ̄ = µ̄(Q).

It may be the case that a network’s MRES ‘doubles back’on itself, as in the

network in Figure 11 in which all the arcs a, b, c and d have unit length. An

example of an MRES on this network can be described as: take the path along

arc a from O to A, then the path along b from O to A, then the path from A

to B and back again, then the path from A to O along c. Here the arc d is

necessarily traversed twice, so that the length µ̄ of the MRES is 5.

We use the concept of the MRES to define a mixed strategy for a smart

Searcher, called the smart k-uniform MRES.

Definition 43 Let P be an MRES on a network Q, and for each j = 0, 1, ..., k
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Figure 11: A network with an MRES that doubles back on itself.

let Pj be the smart search that follows P until j objects have been found, than

follows P−1 until the remaining k − j objects have been found. The smart k-

uniform MRES P∗ is defined as an equiprobable choice of the Pj.

Following P∗ gives an upper bound on the expected search time, as we now

show.

Theorem 44 If a smart Searcher follows a smart k-uniform MRES P∗, he

ensures an expected search time of no more than
(

1− 1
k+1

)
µ̄ against any Hider

strategy H in the game Λ̃k(Q,O).

Proof. Suppose the MRES P finds the k objects at times t1, t2, ..., tk, where

t1 ≤ t2 ≤ · · · ≤ tk, and let t0 = 0 and tk+1 = µ̄. Then for j = 0, 1, ..., k, the

expanding search Pj finds j objects after time tj , and after further time µ̄−tj+1

will have found all the remaining objects (in fact the remaining objects may be

found by an earlier point in time). So the total time taken for Pj to find all the

objects is no greater than tj + (µ̄− tj+1). Since P∗ is an equiprobable choice of
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the Pj , the total expected search time T (P∗, H) satisfies

T (P∗, H) ≤ 1

k + 1

k∑
j=0

tj + (µ̄− tj+1)

=
1

k + 1

(k + 1)µ̄−
k∑
j=0

(tj+1 − tj)


=

1

k + 1
((k + 1)µ̄− µ̄)

=

(
1− 1

k + 1

)
µ̄.

For the network in Figure 11, for k = 3, we have (1−1/(k+1))µ̄ = 5(3/4) =

3.75 and (1− 1/(k + 1))µ = 4(3/4) = 3, so Theorems 39 and 44 imply that the

value of the smart search game for 3 objects on this network is between 3 and

3.75.

We can also define a mixed strategy for a normal Searcher on any network,

giving us an upper bound for the expected search time in the normal game.

Definition 45 Let P be an MRES on a network Q, and let Ij be the portion

of this MRES that is traversed during the time interval
[
j−1
k µ̄, jk µ̄

)
, j = 1, ..., k.

There is an expanding search for which Ij is the last part of Q to be searched,

and it is searched in the backward direction: namely the search which starts

by following P until time j−1
k µ̄ and then follows P−1 for the remaining time.

Similarly there is a search for which Ij is the last part of Q to be searched, and

in the forward direction, which starts by following P−1 until time
(
1− j

k

)
µ̄ and

then follows P for the remaining time. The normal k-uniform MRES P ∗ is

defined as the search strategy which makes an equiprobable choice between all 2k
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expanding searches so described.

Theorem 46 If a normal Searcher follows a normal k-uniform MRES P ∗, he

ensures an expected search time of no more than
(
1− 1

2k

)
µ̄.

Proof. First note that if the MRES P doubles back on itself for any part of Q

then we can simply add some more nodes and arcs to Q to create a new network

which has the same µ̄ but in which the MRES never doubles back. To do this,

we simply add a new arc whenever P starts to retrace some part of Q that has

already been searched. It is clear that this is a disadvantage to the Searcher,

so it will only increase the expected search time. So without loss of generality

we can restrict the proof to Q for which the MRES traverses each arc of Q only

once, so that µ̄ = µ.

By rescaling we can assume µ̄ = 1 so each Ij has length 1/k. Supposing that

Ij is the last part of Q to be searched by P ∗, it is equally likely to be searched

in the forward direction (by P ) as it is in the reverse direction (by P−1). It

follows that if Ij contains just one object then the expected search time will be

1 − (1/2) (1/k). If Ij contains no objects then by the time Ij is searched all

the objects will have been found and the search time is no more than 1− 1/k.

If Ij contains more than one object, then the search time may be as great as

1. However, as the number of Ij containing two or more objects must be no

greater than the number of Ij containing no objects, the expected search time

is bounded by the average of 1− 1/k and 1, which is 1− (1/2) (1/k).

For the network in Figure 11, for k = 3, we have µ̄(1 − 1/(2k)) = 5(5/6) ≈

4.167 so Theorems 39 and 46 imply that the value of the normal search game
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for 3 objects on this network (if it exists) is between 3 and 4.167.

When k = 1, the two lower bounds given in Theorems 44 and 46 are both

equal to µ̄/2. This bound for the expanding search game with one hidden

object can be found in Alpern and Lidbetter [14], and our results therefore both

generalise this bound.

5.4 Search for k objects on a 2-arc-connected network

In this section, we start by examining when the two bounds given in Theorems

39 and 44 are equal. That is, when µ(Q) = µ̄(Q). For this equality to hold,

we must be able to find an MRES on Q which doesn’t ‘double back’on itself.

We will see that this is possible precisely for 2-arc connected networks, so that

the value Ṽk(Q,O) of the smart search game played on such networks is µ(1−

1/(k + 1)). Recall that a network is 2-arc-connected if and only if it cannot be

disconnected by the removal of fewer than 2 arcs. We also show that the bounds

given by Theorem 46 is tight if Q is a circle.

We will need the following characterisation of 2-arc-connected networks due

to Robbins [47] in terms of orientable networks, those for which the arcs can be

oriented in such a way so that there is a directed path from any point x to any

other point y in Q.

Theorem 47 The following are equivalent for a network Q :

(i) Q is 2-arc connected.

(ii) Q is orientable.
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(iii) There is an increasing sequence of subnetworks Q0, Q1, . . . , Qk = Q, such

that Q0 is a cycle and each Qi, i > 0, is obtained from Qi−1 by adding a

path between some two points xi and yi of Qi−1. (This sequence is called

an ear decomposition.)

In his elegant paper, Robbins explained his result in terms of one-way streets

and robustness in terms of repairs on a given street. It follows from his proof

that (iii) can be extended to say that Q0 can be chosen to contain any given

point, in our case the root of Q.

Our motivation for what follows is the proof of Gal [21] that V p = µ/2

for Eulerian networks. He simply takes any Eulerian tour of Q, equiprobably

with its reverse tour, as the Searcher mixed strategy. For expanding pointwise

searches P (t), unlike pathwise searches, the reverse function P (µ− t) may not

be a pointwise (expanding) search. In order to adapt Gal’s idea to the expanding

search context we need to assume that the pointwise search P : [0, µ] → Q is

reversible, by which we mean that P−1 (t) = P (µ− t) is a pointwise expanding

search (see Section 5.2). Note in particular that a reversible pointwise search

must end at P (µ) = P−1 (0) = O, the root.

Theorem 48 A network Q is 2-arc connected if and only if it has a reversible

combinatorial search.

Proof. First suppose Q has a reversible combinatorial search. Suppose an

arc a is traversed between times t1 and t2, that is, a = P ({t : t1 < t < t2}) .

Then Q−a = P ([0, t1))∪P−1 ([0, µ− t2)) is the union of connected sets with a
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common point O = P (0) = P−1 (0) so it must be connected. Hence Q is 2-arc

connected.

Now suppose Q is 2-arc connected. Then by Theorem 21 it has an ear

decomposition starting with a cycle, Q0, Q1, ..., Qk. We can assume that the

cycle, Q0 includes O. We construct reversible combinatorial searches Pi on Qi

inductively, where the Pi are sequences of arcs, with no arcs repeated. Let S0

be the cycle on Q0 starting at O. This is clearly a reversible combinatorial

search on Q0. Assume we have constructed Pi, a reversible pointwise search

on Qi, for 1 ≤ i < k. We have Qi+1 = Qi ∪ Ai, where Ai is a path from a

node x ∈ Qi to a node y ∈ Qi. We can assume that x occurs before y in Pi,

otherwise we can relabel the nodes. Let Pi+1 be the combinatorial search on

Qi+1 which follows Pi until reaching x, then follows the path Ai from x to y,

and finally follows the remainder of Pi from x to O. Then P−1i+1 consists of the

following three expanding arc sequences: firstly the path along P−1i from O to

x, next the path along A−1i from y to x, and finally the path along P−1 from

x to O. Each of these expanding arc sequences starts from a point that has

already been reached by P−1i+1, so P
−1
i+1 is a combinatorial expanding search, and

Pi+1 is reversible, as required.

We can now give the solution of the smart search game Λ̃k(Q,O) for 2-arc

connected networks, which generalises the analogous theorem for a single hidden

object given in [14].

Theorem 49 If Q is 2-arc-connected then the value of the smart search game

Λ̃k(Q,O) is Ṽk(Q,O) = µ
(

1− 1
k+1

)
. The k-uniform strategy uk is optimal for
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the Hider, and the smart k-uniform MRES, P∗ is optimal for the Searcher.

Proof. If the Hider follows uk, then by Theorem 39 he ensures an expected

search time of at least µ
(

1− 1
k+1

)
, so Ṽ ≥ µ

(
1− 1

k+1

)
. If the Searcher fol-

lows P∗, then by Theorem 44 he ensures an expected search time of at most

µ̄
(

1− 1
k+1

)
, so Ṽ ≤ µ̄

(
1− 1

k+1

)
. Since Q is 2-arc-connected, µ = µ̄, by

Theorem 48, so Ṽ ≤ µ
(

1− 1
k+1

)
, and we must have equality.

For a normal Searcher, Theorem 46 and Theorem 48 imply that if Q is 2-

arc-connected, the value of the game is no more than µ(1 − 1/(2k)). We sum

this up in the Theorem below.

Theorem 50 If Q is 2-arc connected, the value of the normal search game

Λk(Q,O) satisfies Vk(Q,O) ≤ µ
(
1− 1

2k

)
.

This bound is tight in the case that Q is a circle, as we now show. We denote

the circle C by the interval [0, µ], identifying the points 0 and µ, which is the

root.

Theorem 51 The value normal search game Λk(C,O) is Vk(C,O) = µ
(
1− 1

2k

)
.

The normal k-uniform MRES P ∗ is optimal for the Searcher. It is optimal for

the Hider to follow the strategy h in which he picks some x uniformly from the

interval [0, µ/k) and hides the objects at the points {x, x+µ/k, x+ 2µ/k, ..., x+

(k − 1)µ/k}.

Proof. By Theorem 50, V (C, k) ≤ µ
(
1− 1

2k

)
since C is 2-arc-connected, so

it remains to be shown that the Hider’s strategy h ensures an expected search
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O

Figure 12: The three-arc network.

time no greater than µ
(
1− 1

2k

)
. For any normal Searcher strategy S, k − 1 of

the objects will be found be S by time µ (1− 1/k), and the whole of C will have

been searched except for an interval I = [a, a+ µ/k), for some a ≤ µ (1− 1/k).

The remaining object that has not been found is located uniformly on I, so

any search will find it in additional time µ
2k . The total search time is therefore

µ
(
1− 1

k

)
+ µ

2k = µ
(
1− 1

2k

)
. This completes the proof.

The bound in Theorem 50 is not tight for general 2-arc-connected networks,

as demonstrated by the three-arc network Q depicted in Figure 12 which consists

of 3 arcs of length 1 (also discussed in the Introduction).

Consider the expanding search game Λ2(Q,O) with 2 hiders played on Q

with a normal Searcher. Theorem 50 gives the bound V (Q, 2) ≤ 3(1 − 1/4) =

9/4. However, the Searcher can improve on this bound. Consider the Searcher

strategy where he picks two arcs at random and uses his optimal strategy for

the circle with k = 2 on this subnetwork, then uses his strategy for k = 1 on

the remaining arc, which can now be regarded as a circle.

Suppose the Hider places his two objects on different arcs. If the Searcher

chooses these arcs first (probability 1/3), then by Theorem 51, the expected
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capture time will be 2(1− 1/4) = 3/2. If he chooses a different pair of arcs first

(probability 2/3), then again, by Theorem 51, the expected capture time will be

2+1(1−1/2) = 5/2. So the overall expected capture time is 1/3·3/2+2/3·5/2 =

13/6.

Now suppose the Hider places both objects on the same arc. If one of the

first two arcs the Searcher chooses is this one (probability 2/3), the expected

capture time is 2(1−1/4) = 3/2. If the Searcher chooses the two other arcs first

(probability 1/3), then the expected capture time is no greater than 3. So the

overall expected capture time is no greater than 2/3 · 3/2 + 1/3 · 3 = 2 < 13/6.

So V (Q, 2) ≤ 13/6 < 9/4.

It can be shown that V (Q, 2) = 13/6, as the Hider can ensure expected

capture time at least 13/6 by picking two arcs at random and using his optimal

strategy for the circle with k = 2 on this subnetwork. A detailed proof is

omitted, but it is suffi cient to show that the Searcher has a best response to this

Hider strategy which begins by searching only two of the arcs. If the Searcher

uses a strategy of this type, then given he finds the final object before time 2,

the expected capture time is 3/2; given he finds the final object after time 2,

the expected capture time is 5/2. Hence the overall expected capture time is

precisely 1/3 · 3/2 + 2/3 · 5/2 = 13/6.
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6 The nut caching game

In this final chapter we consider a caching game between a Squirrel and a Pilferer

that shares some similarities with the expanding search game for multiple hidden

objects. Suppose a squirrel has m nuts which he can bury at n possible caching

sites. He has enough energy to dig a given total depth, which we normalise to

1, so the sum of the depths reached at all the sites must be equal to 1. Thus a

Squirrel strategy specifies how he places his m nuts at various depths among the

n caching sites, subject to his energy (digging) constraint. He has the option of

placing nuts at different depths at the same site, although this may not at first

glance appear to be a good idea. The squirrel needs k < m of them to survive

the winter (‘win’), so he wishes to hide them in such a way as to maximise

the probability that k nuts remain after pilfering. We can think of a Squirrel

strategy as a set of m points on a star network with n arcs of length 1, subject

to the constraint that the sum of the distances of the furthest points on each

arc from the root is 1.

After the Squirrel places his nuts, the Pilferer arrives. He knows the location

of the n sites but not which ones have nuts or at what depths they are hidden.

He can dig to different depths at the sites, subject to his own energy constraint

that the total depth (summed over all sites) does not exceed some constant D.

He wishes to minimise the probability that k nuts remain after pilfering. We

can think of a Pilferer strategy as an expanding search terminating after time

D on a star network with n arcs of length 1. As in previous chapters, A smart

Pilferer can adapt his digging strategy as he goes along; a normal Pilferer can
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just choose the depths at each site. In this chapter we will analyse both cases.

An empirical question raised by this distinction is whether Pilferers switch sites

when they find a cache, or continue to look for a deeper cache at the same site.

We assume throughout that the Pilferer can only detect a nut visually, when

the earth above it has been removed.

The payoff of the game is 1 if the Squirrel survives and therefore wins (that

is, there are at least k undiscovered nuts) and 0 otherwise. We denote the

game with a normal Searcher by Φk(n,m,D) and with a smart Searcher by

Φ̃k(n,m,D), with the corresponding values denoted by V = Vk(n,m,D) and

Ṽ = Ṽk(n,m,D). Note that the values always satisfy V ≥ Ṽ . In [7] the existence

of the value is proved for the case of a normal Pilferer, but not for a smart

Pilferer. However, for the examples considered in this chapter, we will prove

the value exists by giving optimal strategies for the players.

This caching game is a modification of so called accumulation games, studied

in [32], [33], [34] and [17], and more generally of geometric games [48]. In gen-

eral, in accumulation games the Hider repeatedly adds material (corresponding

to our nuts) to the hiding sites as they are pilfered over time. However, unlike

in our model, depth of caching is not usually considered. This chapter uses

some material from [9]. Further results can be found in [7].
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6.1 Optimal strategies with smart Pilferers, m = n = 2,

k = 1

We begin by analysing the simple case where the squirrel has to hide two nuts

at two sites and survives (wins) if at least one nut remains after pilfering (so

the parameter values are m = n = 2 and k = 1). Here we assume the Pilferer is

smart, as defined above, in that he can alter his digging depending on what he

does or does not find up to a given time.

Note that if D < 1, the squirrel can always win (so V = 1) by hiding both

nuts together in one site at depth 1. If D ≥ 2, and the pilferer digs to depth 1

at both sites, any nuts placed by the squirrel will be lost. Thus there cannot

be any strategy for the squirrel giving him a positive probability of surviving,

and hence in this case V is 0. So to exclude these trivial cases we assume that

1 ≤ D < 2. The solution of this problem splits into two cases:

Proposition 52 If the pilferer’s digging depth constraint D satisfies 1 12 ≤ D <

2, then it is optimal for the squirrel to place both nuts at maximum depth 1 at

a random site. The value Ṽ of the game is 1/2.

Proof. Suppose the squirrel places both nuts at depth 1 at a site chosen ran-

domly. Then since D < 2 the pilferer cannot dig to depth 1 at both sites, and so

if he guesses wrongly (which has probability 1/2) he will dig at the wrong site

and the squirrel will survive. This squirrel strategy thus guarantees a survival

probability of 1/2, so that Ṽ ≥ 1/2.

The pilferer can guarantee the squirrel will win with probability no more than
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1/2 by digging to depth 1 at one site and to depth 1/2 at the other (choosing

equiprobably between the sites). It is then easy to verify that however the nuts

are buried, the pilferer will find them both at least 1/2 the time. To see this,

note that the squirrel can plant a nut at depth greater than 1/2 at only one

location, and if this is the location where the pilferer digs to depth 1 the squirrel

loses. Since this occurs with probability 1/2, we have established the claim that

Ṽ ≤ 1/2.

Combining the bounds on Ṽ demonstrated in the previous two paragraphs

shows that Ṽ = 1
2 , as claimed in the proposition.

The second case is as follows.

Proposition 53 If the pilferer’s digging depth constraint D satisfies 1 ≤ D <

1 12 , then it is optimal for the squirrel to hide his two nuts at depths 1/2 and 1

at a random location, with probability 2/3; and at depth 1/2 at both locations,

with probability 1/3. (The three equiprobable configurations are shown below in

Figure 13, where S1 and S2 denote the two sites.) In this case the value Ṽ of

the game is 2/3.

Proof. Suppose that the squirrel hides his two nuts at depths 1/2 or 1 in one of

the configurations shown in Figure 13, with equal probabilities of 1/3 for each.

It is easy to see that the pilferer’s digging constraint D < 1 12 prevents him from

finding both nuts in more than one of these three hiding configurations: if the

pilferer digs to depth 1 at one site, he will win in one of the configurations a)

or c) but in neither of the others; otherwise, he will only be able to win in
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a) c)b)S1 S1S1S2 S2S2

1

1/2

Figure 13: Three caching strategies of the squirrel.

configuration b). Consequently Ṽ ≥ 2/3.

Suppose that the pilferer adopts the following digging strategy: he guesses

equiprobably how the nuts are distributed between the three sites. In other

words, with equal probability he chooses (i, j) = (2, 0), (1, 1) or (0, 2). He then

digs in site S1 till he finds i nuts and digs in site S2 till he finds j nuts. If the

Pilferer guesses the correct way the nuts are distributed, he will be sure to find

both nuts, and since he guesses correctly with probability 1/3, this guarantees

Ṽ ≤ 2/3.

Combining the two bounds on Ṽ , we have Ṽ = 2/3.

The strategy drawn in Figure 13 for the squirrel has the unusual property

of nuts at different levels at the same site. Why can’t the squirrel improve (or

at least do as well) by changing the placement in cases a) and c) to putting

both nuts at the bottom? To see why this does not work, suppose that the

pilferer always uses the switch strategy. Then the squirrel loses always when he

adopts b) and loses half the time when he adopts a) or c). So if, as before, he
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adopts all three with probability 1/3, he wins (survives) with probability only

(1/2) · (2/3) = 1/3 which is worse than 2/3.

6.2 Optimal strategies with normal Pilferers, m = n = 2,

k = 1

Note that in the last proof, the pilferer’s strategy requires that he is smart, in

the sense we defined in the introduction. Suppose, on the other hand, that the

pilferer is normal, and adopts a simple strategy that picks two depths d1 and

d2 = D− d1 for the sites, which will be dug without reference to what is found.

It is clear that in this version every squirrel strategy is dominated by one which

places the nuts at the two sites with respective depths s1 and s2 = 1− s1, and

there is no point in placing nuts at different depths at the same site. For this

reason, it is also clear that the solution of the game played with m > 2 nuts is

the same as the solution for m = 2.

We now show that restricting the pilferer to simple strategies does not help

the squirrel when D ≥ 1 13 , but it does indeed help him when D < 1 13 . For

example, when D = 5/4, Ṽ = 2/3 but V = 3/4, as given by the result below.

Proposition 54 Let q be a positive integer and let the pilferer’s total digging

depth D satisfy 1 + 1
q+1 ≤ D < 1 + 1

q . Assume the pilferer is normal, as defined

above. Then the optimal squirrel strategy is to pick i randomly from the q + 1

values 0, 1, . . . , q and to bury his two nuts at respective depths i/q and (q − i) /q

at the two sites, in random order. The optimal strategy for the pilferer is to

pick d1 = j
q+1 with j = 1, 2, . . . , q + 1 chosen equiprobably among the q + 1

112



possibilities. The value of the game is V = 1 − 1
q+1 , as graphed in Figure 14

against D.
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Figure 14: The value V of the smart game for 1 ≤ D ≤ 2.

Proof. Consider the squirrel mixed strategy Sq which picks s1 = i
q with the q+1

values i = 0, . . . , q taken equiprobably. Suppose a pilferer strategy d = (d1, d2)

wins against more than one of the squirrel strategies. Then it is clear it wins

against two consecutive ones, say i and i+ 1. Then we must have

d1 ≥
i+ 1

q
and d2 ≥

q − i
q

, so D = d1 + d2 ≥ 1 +
1

q
,

which is larger than we are allowing. So all but one of the strategies i must win,

and hence V ≥ q
q+1 .

Next consider the pilferer simple mixed strategy of d1 = j
q+1 with j =

1, 2, . . . , q + 1 chosen equiprobably among the q + 1 possibilities. If a squirrel

strategy s1 wins against all of these, then for every j we have either

s1 >
j

q + 1
or 1− s1 > D − j

q + 1
.
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This means that for all j,

s1 is not in the interval Ij =

[
j

q + 1
+ (1−D),

j

q + 1

]
.

This is equivalent to saying that the intervals Ij cannot overlap, or that

D − 1 <
1

q + 1
, which is the same as D < 1 +

1

q + 1
,

contrary to our assumption. So at least one of the q + 1 strategies d1 = j
q+1

gets both nuts, and hence V ≤ q
q+1 = 1− 1

q+1 . The result follows by combining

the two estimates.

6.3 Some solutions for arbitrary n and k = 1

For n > 2 the game is hard to solve. Even for n = 3 it is non-trivial, and some

results in this case are presented in [7]. Here we give some results for arbitrary

n. The first two propositions cover the cases that D is very large or very small.

Proposition 55 Suppose D ≥ n−1/2. Then for k = 1 and any m, it is optimal

for the Squirrel to hide all the nuts at depth 1 at a randomly chosen site; it is

optimal for the Pilferer to dig a hole of depth 1/2 in a randomly chosen site and

holes of depth 1 in all other sites. The value of the game is 1/n. This holds

whether the Pilferer is smart or normal.

Proof. The Squirrel’s strategy clearly ensures that the value is at least 1/n

since the Pilferer can check n − 1 out of the n sites (whether he is smart or

normal), so will fail to find the nuts with probability 1/n. Suppose the Pilferer

uses the strategy described, and chooses some site Si at which to dig a hole of
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depth 1/2. The Pilferer fails to find all the nuts only if Si contains a nut at

depth greater than 1/2. But at most one site can have a nut buried at greater

depth than 1/2, so this happens with probability less than 1/n, so the value is

at most 1/n.

Hence the value is 1/n. Notice that the Pilferer strategy is normal, so this

is the value of the game whether the Pilferer is smart or normal.

We now consider the case that D is very small. In order to describe the

optimal strategies, we first define an allocation of the m nuts to the n sites as a

way of distributing the nuts amongst the sites. More precisely:

Definition 56 An allocation of m nuts to n sites is a vector of non-negative

integers (m1, ...,mn) with
∑n
i=1mi = m. The parameter mi is the number of

nuts in site i.

Every Squirrel strategy corresponds to an allocation, and for every allocation

we define a unique strategy for the Squirrel which we call his allocation strategy :

at site Si, hide mi nuts at depths 1/m, 2/m, ...,mi/m. Clearly the total depth

dug by the Squirrel is
∑n
i=1mi/m = 1. For every allocation we also define

a unique allocation strategy for a smart Pilferer: for each i, dig in site Si till

finding mi nuts. It is non-trivial to calculate the total number of allocations, as

we now demonstrate.

Lemma 57 The number of allocations is
(
n+m−1

m

)
.

Proof. For a given allocation (m1, ...,mn), we define a path on a (n− 1) ×m

lattice from the bottom left corner (0, 0) to the top right corner (n−1,m). The
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path begins by taking m1 steps up then one step right. This is followed by m2

steps up then another step right. The path continues in this fashion. We can

write this as the following algorithm:

1. Take m1 steps up. Set j = 2.

2. Take one step right then mj steps up.

3. Increase j by 1.

4. If j < n, go to step 2, otherwise stop.

Clearly every allocation corresponds to a unique path from (0, 0) to (n− 1,m)

and every such path corresponds to a unique allocation. Hence the number of

allocations is equal to the number of paths, and the number of paths is easily

seen to be
(
n+m−1

m

)
since there are n+m−1 steps in total and m of them must

be in the upwards direction.

The following Theorem is a consequence.

Theorem 58 If D < 1 + 1
m and k = 1 then it is optimal for the both the

Squirrel and the (smart) Pilferer to choose uniformly randomly between all their

allocation strategies. The value of the game is

1− 1(
n+m−1

m

)
Proof. If the Squirrel uses his allocation strategy then the Pilferer clearly does

not have enough digging resources to check more than one of the Squirrel’s

configurations of nuts. By Lemma 57 there are
(
n+m−1

m

)
such configurations, so
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the value is at least 1− 1/
(
n+m−1

m

)
. If the Pilferer uses his allocation strategy,

then with probability 1/
(
n+m−1

m

)
he guesses the correct allocation and thereby

finds all the nuts so the value is at most 1 − 1/
(
n+m−1

m

)
, and hence we have

equality.

6.4 Some results for arbitrary k

We now show that the value of the game Φk(n,m,D) for arbitrary k can be

bounded below by the value of Φ1(n,m
′, D), for some value of m′, and analo-

gously for the smart search game. We then show that this bound is tight for

one particular example.

We first define a Squirrel strategy where he hides the nuts in batches. More

precisely, for a given Squirrel pure strategy for the game Φ1(n,m
′, D), where

m = m′k+r, and r < k, we can define a corresponding Squirrel pure strategy for

the game Φk(n,m,D) where a nut hidden in site Si at depth x in Φ1(n,m
′, D)

corresponds to k nuts hidden at in site Si at depth x in Φk(n,m,D) . The

remaining r nuts are all added to one of the existing batches. The resulting

configuration is of m′− 1 batches of k nuts all in the same place, and one batch

of k+r nuts. For example, supposem = 20 and k = 3, so thatm′ = 6 and r = 2.

Then there will be 5 batches of size 3 and 1 batches of size 5. Corresponding

mixed strategies are defined in the natural way. In order to win, the Pilfer needs

to find all the batches. The following lemma is a consequence.

Lemma 59 The value Vk(n,m,D) of the game Φk(n,m,D) and the value Ṽk(n,m,D)
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of the game Φ̃k(n,m,D) satisfy

Vk(n,m,D) ≥ V1(n,m
′, D) and

Ṽk(n,m,D) ≥ Ṽ1(n,m
′, D),

where m = m′k + r and r < k.

We show that this bound is tight for n = 2 for at least one choice of para-

meters. As already noted, if the Pilferer is normal, then for n = 2 and m > 2

the game simply reduces to the analogous game where m = 2, so we consider

only the case of a smart Pilferer.

Theorem 60 If n = 2, m = m′k+ r, where r < k, and D < 1 + 1/m′, then the

value Ṽk(n,m,D) of the smart search game Φ̃k(n,m,D) is

Ṽk(n,m) = 1− 1(
n+m′−1

m′

) = 1− 1

1 +m′
.

It is optimal for the Squirrel to hide the nuts in batches of size k and k + r

according to his optimal strategy in Ṽk(n,m′). The optimal strategy for the

Pilferer is to choose a number j uniformly from the set {0, 1, ...,m′}, and search

for jk nuts in the first site before spending his remaining energy searching in

the second site.

Proof. By Lemma 59 and the paragraph preceding it, if the Squirrel uses his

optimal strategy for Φ̃k(n,m′) hiding the nuts in batches, then he ensures that

the value Ṽk(n,m) is at least Ṽk(n,m′) = 1− 1/ (m′ + 1).

Suppose the Pilferer uses the strategy described and there are t and m − t

nuts in the two sites S1 and S2, respectively, with t = qk + s, where s < k and
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0 ≤ q ≤ m. We will show that one of the Pilferer’s m′ + 1 equiprobable choices

of pure strategy wins the game, so that he wins with probability 1/ (m′ + 1).

The strategy he needs corresponds to picking j = q. In this case, the Pilferer

finds qk nuts in the first site all m− t nuts in the second site, making a total of

qk+ (m− t) = qk+m− qk− s = m− s > m− k nuts. Thus the Squirrel is left

with fewer than k nuts and loses the game. This shows that the value Ṽk(n,m)

is at most 1− 1/ (m′ + 1), and we must therefore have equality.

119



7 Conclusion

In this thesis we began in Chapter 2 by analysing a search game played between

a Hider and a Searcher on a variable speed network. We gave an explicit solution

for the game played on trees, improving over the recursive approach given by

Alpern [4] and generalising a classic result of Gal [21]. We then showed how the

solution could be applied to related games including Kikuta’s game with search

costs [30] and Alpern’s find-and-fetch game [5]. We also solved the game for some

simple networks that are not trees, but we note that even in Gal’s classic time-

symmetric model of network search, the general solution in unknown. Future

work could study how the analogous problem of rendezvous search (see [3],[6])

could be also be investigated on time-asymmetric networks.

In Chapter 3 we defined the notion of expanding search on a network, and

solved the problem of how to find the optimal expanding search for a Hider

located on the nodes of a tree according to a known probability distribution. We

then saw how the theory of search games on variable speed networks developed

in Chapter 2 could be applied to the expanding search game on a tree. The

expanding search game could also be reformulated and studied from the point

of view of rendezvous search.

We then extended the notion of the expanding search game in Chapter 4 to

allow the Hider to hide several objects on a network, first analysing the case

of a star network, and viewing this as a search game for k objects in n boxes.

We distinguished between the cases where the Searcher is smart and normal,

and solved both variations of the game. There are several simple extensions to
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the game which merit further study. For example, the Searcher may wish to

minimise the search cost incurred in finding some j < k of the objects, or he

may have a fixed budget, under which he wishes to maximise the number of

objects he can find.

We turned in Chapter 5 to the more general expanding search game with

multiple objects on a network, first giving a Hider strategy that generalises the

Hider strategy given by Isaacs’[28] in his original formulation of search games.

We then gave a solution (and upper bound) for the game played on 2-arc-

connected networks for a smart (and respectively, normal) Searcher, generalising

a result in [14]. There is scope for this game to be investigated on wider classes

of networks.

Finally, in Chapter 6 we examined a caching game which extends the Kikuta-

Ruckle accumulation games by adding a ‘depth’element to the caching strategy.

We solved the game when there are two caching sites, and gave some results

for a general number of sites, again separating the cases of a smart and normal

Searcher (or in this context, Pilferer). There are several ways in which this game

could be extended to make it more realistic as a model of caching in nature.

For example, imposing a spatial structure on the location of the caching sites or

allowing the Squirrel to add material to the caches whilst the pilfering is taking

place, as in the original formulation of accumulation games.
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