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Abstract

In this thesis, we study the portfolio selection problem with multiple risky assets,
linear transaction costs and a risk measure in a multi-period setting. In particular,
we formulate the multi-period portfolio selection problem as a dynamic program
and to solve it we construct approximate dynamic programming (ADP) algorithms,
where we include Conditional-Value-at-Risk (CVaR) as a measure of risk, for dif-
ferent separable functional approximations of the value functions. We begin with
the simple linear approximation which does not capture the nature of the portfolio
selection problem since it ignores risk and leads to portfolios of only one asset. To
improve it, we impose upper bound constraints on the holdings of the assets and we
notice that we have more diversified portfolios. Then, we implement a piecewise
linear approximation, for which we construct an update rule for the slopes of the ap-
proximate value functions that preserves concavity as well as the number of slopes.
Unlike the simple linear approximation, in the piecewise linear approximation we
notice that risk affects the composition of the selected portfolios. Further, unlike
the linear approximation with upper bounds, here wealth flows naturally from one
asset to another leading to diversified portfolios without us needing to impose any
additional constraints on how much we can hold in each asset. For comparison, we
consider existing portfolio selection methods, both myopic ones such as the equally-
weighted and a single-period portfolio models, and multi-period ones such as multi-
stage stochastic programming. We perform extensive simulations using real-world
equity data to evaluate the performance of all methods and compare all methods to
a market Index. Computational results show that the piecewise linear ADP algo-
rithm significantly outperforms the other methods as well as the market and runs in
reasonable computational times. Comparative results of all methods are provided
and some interesting conclusions are drawn especially when it comes to comparing
the piecewise linear ADP algorithms with multistage stochastic programming.
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i(t−1) in LADP-UB . . . . . . . . . . . . . . . 109

7.1 Upper and lower bounds for variables z−κ and z+
κ . . . . . . . . . . . 119

7.2 Upper and lower bounds for variables w−κ and w+
κ . . . . . . . . . . 120

7.3 Optimal decisions for the problem of Example 9.2 . . . . . . . . . . 131
7.4 Correspondence between the old variables and parameters and the

new ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Dates of in-sample and out-of-sample data . . . . . . . . . . . . . . 158
8.2 Average annual base rates and weekly interest rates in the four datasets159
8.3 Parameters and Values . . . . . . . . . . . . . . . . . . . . . . . . 160
8.4 Characteristics of selected portfolios for the equally-weighted, the

single-period and the multistage stochastic programming methods . 169
8.5 Characteristics of selected portfolios for the LADP methods . . . . . 170
8.6 Characteristics of selected portfolios for the PLADP methods . . . . 171
8.7 Out-of-sample terminal wealths . . . . . . . . . . . . . . . . . . . . 177
8.8 In how many instances out of the 24 a row method outperforms a

column method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.9 Average out-of-sample terminal wealth for the market Index, the

equally-weighted, the single-period and the multistage stochastic
programming methods . . . . . . . . . . . . . . . . . . . . . . . . 179

8.10 Average out-of-sample terminal wealth for the ADP methods . . . . 180

8



LIST OF TABLES 9

8.11 Average out-of-sample terminal wealths for different stepsize values 185
8.12 Computational times in seconds . . . . . . . . . . . . . . . . . . . 191
8.13 Up-Up, Up-Down: Expected Terminal Wealth of the Portfolio Poli-

cies of the PLADP methods and the equally-weighted strategies . . 192
8.14 Down-Up, Down-Down: Expected Terminal Wealth of the Portfolio

Policies of the PLADP methods and the equally-weighted strategies 193
8.15 Up-Up, Up-Down: CVaR of the Portfolio Policies of the PLADP

methods and the equally-weighted strategies . . . . . . . . . . . . . 193
8.16 Down-Up, Down-Down: CVaR of the Portfolio Policies of the PLADP

methods and the equally-weighted strategies . . . . . . . . . . . . . 194
8.17 Characteristics of selected portfolios for planning horizons of 13, 26

and 52 weeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.18 Up-Up, Up-Down: Out-of-sample wealths at times t = 0, 13, 26, 39

and 52 in the PLADP methods and the benchmarks for planning
horizons of 13, 26 and 52 weeks . . . . . . . . . . . . . . . . . . . 198

8.19 Down-Up, Down-Down: Out-of-sample wealths at times t = 0, 13, 26, 39

and 52 in the PLADP methods and the benchmarks for planning
horizons of 13, 26 and 52 weeks . . . . . . . . . . . . . . . . . . . 199

8.20 In how many instances out of the 8 a column PLADP method out-
performs a row method at times t = 13, 26, 39 and 52 and for plan-
ning horizons of 13, 26 and 52 weeks . . . . . . . . . . . . . . . . . 200

8.21 Average out-of-sample wealths at times t = 0, 13, 26, 39 and 52 in
the PLADP methods and the benchmarks for planning horizons of
13, 26 and 52 weeks . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.22 Average performance: In how many instances out of the 2 a column
PLADP method outperforms a row method at times t = 13, 26, 39

and 52 and for planning horizons of 13, 26 and 52 weeks . . . . . . 202
8.23 Up-Up and Up-Down datasets: Out-of-sample terminal wealths and

total transaction costs paid in the equally-weighted strategies for
θ = 0.2% and 0.5% . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.24 Down-Up and Down-Down datasets: Out-of-sample terminal wealths
and total transaction costs paid in the equally-weighted strategies for
θ = 0.2% and 0.5% . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.25 Percentage differences of the terminal wealths in the fixed-mix equally-
weighted strategy from the buy-and-hold one for θ = 0.2% and 0.5% 204



LIST OF TABLES 10

8.26 Characteristics of selected portfolios, terminal wealth values and
total transaction costs paid in PLADP methods for θ = 0.2%, 0.5% . 206

8.27 In how many instances out of the 8 the PLADP methods outperform
the equally-weighted strategies and the market . . . . . . . . . . . . 207

8.28 Average out-of-sample terminal wealths for θ = 0.2% and 0.5% . . 207

D.1 Scenario reduction parameters in the Up-Up dataset . . . . . . . . . 229
D.2 Scenario reduction parameters in the Up-Down dataset . . . . . . . 230
D.3 Scenario reduction parameters in the Down-Up dataset . . . . . . . 231
D.4 Scenario reduction parameters in the Down-Down dataset . . . . . . 232



List of Figures

1.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Timing of events for the portfolio selection problem . . . . . . . . . 27
2.2 An illustration of VaRβ and CVaRβ on a discrete loss distribution . . 31
2.3 A concave utility function . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Decision Epochs and Periods for a MDP . . . . . . . . . . . . . . . 39
3.2 Timing of events in the portfolio selection problem . . . . . . . . . 41
3.3 Modeling time horizon: states and value functions . . . . . . . . . . 43

4.1 Timing of events with pre- and post-decision state variables . . . . . 48

5.1 Sequence of events in a multistage stochastic program . . . . . . . . 65
5.2 Timing of events and stages in the single-period portfolio problem . 67
5.3 Timing of events and stages in the multi-period portfolio selection

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 A scenario tree with T + 1 stages, KT+1 nodes and KT+1 − KT

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 A distribution of 100 scenarios on the left and its approximation on

the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Linear approximate value function of asset i in period t+ 1 with an
upper bound on its holdings . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Categories of assets and conditions . . . . . . . . . . . . . . . . . . 86
6.3 Buying and selling slopes vs current holdings before allocation . . . 90
6.4 Step 1. Sell stock 3 and update cash . . . . . . . . . . . . . . . . . 91
6.5 Step 2. Buy stock 1 with cash . . . . . . . . . . . . . . . . . . . . . 91
6.6 Step 3. Sell stock 2 and buy stock 1 . . . . . . . . . . . . . . . . . . 92
6.7 Buying and selling slopes vs current holdings before allocation . . . 103

11



LIST OF FIGURES 12

6.8 Step 1. Sell stock 2 and stock 3 and update cash . . . . . . . . . . . 103
6.9 Step 2. Buy stock 1 with cash . . . . . . . . . . . . . . . . . . . . . 104
6.10 Step 3. Sell stock 2 and buy stock 1 . . . . . . . . . . . . . . . . . . 104

7.1 Piecewise linear approximate value function of risky asset i in pe-
riod t+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Equivalent representations of a piecewise linear function with 3 slopes113
7.3 A piecewise linear curve with 3 slopes . . . . . . . . . . . . . . . . 116
7.4 Maximizing the sum of two piecewise linear curves with 3 slopes

each and one linear curve . . . . . . . . . . . . . . . . . . . . . . . 118
7.5 Decision variables for a piecewise linear value function with 3 slopes 122
7.6 Transition from original slopes uκit to buying slopes kκit and selling

slopes lκit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.7 Buying and selling slopes vs current holdings before allocation . . . 137
7.8 Step 1. Sell stock 2 and update cash . . . . . . . . . . . . . . . . . 138
7.9 Step 2. Buy stock 1 with cash . . . . . . . . . . . . . . . . . . . . . 138
7.10 Step 3a. Sell stock 3 and buy stock 1 . . . . . . . . . . . . . . . . . 139
7.11 Step 3b. Sell stock 2 and buy stock 1 . . . . . . . . . . . . . . . . . 139
7.12 Update rule for problems with discrete state space and a violation

in the monotonicity of the slopes from the left . . . . . . . . . . . . 145
7.13 Update rule for problems with continuous state space and a violation

in the monotonicity of the slopes from the left . . . . . . . . . . . . 147
7.14 Correction rule for problems with continuous state space and a vio-

lation in the number of slopes . . . . . . . . . . . . . . . . . . . . . 148

8.1 FTSE100 price Index from 03/01/1995 until 03/01/2005 and the
four market periods . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2 Different rates of convergence for stepsize rule αs = b
(b−1)+s

. . . . 162
8.3 Slope versus iteration for asset i = 3 at time t = 30 and for γ = 0.8

in the Up-Up dataset in the LADP method . . . . . . . . . . . . . . 172
8.4 Slope versus iteration for asset i = 3 at time t = 30 and for γ = 0.8

in the Up-Up dataset in the LADP-UB method . . . . . . . . . . . . 172
8.5 Slopes versus iteration for asset i = 3 at time t = 30 and for γ = 0.8

in the Up-Up dataset in the PLADP method with m = 3 slopes . . . 173
8.6 Average out-of-sample cumulative wealth against time for γ = 0 . . 180
8.7 Average out-of-sample cumulative wealth against time for γ = 0.2 . 181
8.8 Average out-of-sample cumulative wealth against time for γ = 0.4 . 181



LIST OF FIGURES 13

8.9 Average out-of-sample cumulative wealth against time for γ = 0.6 . 182
8.10 Average out-of-sample cumulative wealth against time for γ = 0.8 . 182
8.11 Average out-of-sample cumulative wealth against time for γ = 1 . . 183
8.12 Average performance for different stepsizes: γ = 0 . . . . . . . . . 186
8.13 Average performance for different stepsizes: γ = 0.2 . . . . . . . . 186
8.14 Average performance for different stepsizes: γ = 0.4 . . . . . . . . 187
8.15 Average performance for different stepsizes: γ = 0.6 . . . . . . . . 187
8.16 Average performance for different stepsizes: γ = 0.8 . . . . . . . . 188
8.17 Average performance for different stepsizes: γ = 1 . . . . . . . . . 188
8.18 Average out-of-sample cumulative wealth for γ = 0.2 and planning

horizons of 13, 26 and 52 weeks . . . . . . . . . . . . . . . . . . . 202
8.19 Average out-of-sample cumulative wealth for γ = 0.6 and planning

horizons of 13, 26 and 52 weeks . . . . . . . . . . . . . . . . . . . 203
8.20 Average out-of-sample cumulative wealth for γ = 0.2 and θ = 0.2%

and 0.5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.21 Average out-of-sample cumulative wealth for γ = 0.6 and θ = 0.2%

and 0.5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

E.1 Out-of-sample cumulative wealth against time: Up-Up, γ = 0 . . . . 233
E.2 Out-of-sample cumulative wealth against time: Up-Up, γ = 0.2 . . . 234
E.3 Out-of-sample cumulative wealth against time: Up-Up, γ = 0.4 . . . 234
E.4 Out-of-sample cumulative wealth against time: Up-Up, γ = 0.6 . . . 235
E.5 Out-of-sample cumulative wealth against time: Up-Up, γ = 0.8 . . . 235
E.6 Out-of-sample cumulative wealth against time: Up-Up, γ = 1 . . . . 236
E.7 Out-of-sample cumulative wealth against time: Up-Down, γ = 0 . . 237
E.8 Out-of-sample cumulative wealth against time: Up-Down, γ = 0.2 . 237
E.9 Out-of-sample cumulative wealth against time: Up-Down, γ = 0.4 . 238
E.10 Out-of-sample cumulative wealth against time: Up-Down, γ = 0.6 . 238
E.11 Out-of-sample cumulative wealth against time: Up-Down, γ = 0.8 . 239
E.12 Out-of-sample cumulative wealth against time: Up-Down, γ = 1 . . 239
E.13 Out-of-sample cumulative wealth against time: Down-Up, γ = 0 . . 240
E.14 Out-of-sample cumulative wealth against time: Down-Up, γ = 0.2 . 240
E.15 Out-of-sample cumulative wealth against time: Down-Up, γ = 0.4 . 241
E.16 Out-of-sample cumulative wealth against time: Down-Up, γ = 0.6 . 241
E.17 Out-of-sample cumulative wealth against time: Down-Up, γ = 0.8 . 242
E.18 Out-of-sample cumulative wealth against time: Down-Up, γ = 1 . . 242



LIST OF FIGURES 14

E.19 Out-of-sample cumulative wealth against time: Down-Down, γ = 0 243
E.20 Out-of-sample cumulative wealth against time: Down-Down, γ = 0.2243
E.21 Out-of-sample cumulative wealth against time: Down-Down, γ = 0.4244
E.22 Out-of-sample cumulative wealth against time: Down-Down, γ = 0.6244
E.23 Out-of-sample cumulative wealth against time: Down-Down, γ = 0.8245
E.24 Out-of-sample cumulative wealth against time: Down-Down, γ = 1 245



List of Algorithms

4.1 General ADP Algorithm . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 Allocation Algorithm for Linear Approximation . . . . . . . . . . . 87
6.2 Allocation Algorithm for Linear Approximation with Strict Control

of Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.1 Allocation Algorithm for Piecewise Linear Approximation . . . . . 135
7.2 Slopes Update and Correction Routine . . . . . . . . . . . . . . . . 149

15



Nomenclature

N Set of risky assets
T Set of discrete points in time horizon
T End of time horizon
xit How much we buy from risky asset i at time t
xt Vector of buying variables at time t
yit How much we sell from risky asset i at time t
yt Vector of selling variables at time t
hit Pre-decision holdings of asset i at time t
ht Vector of pre-decision holdings at time t
h+
it Post-decision holdings of asset i at time t
h+
t Vector of post-decision holdings at time t

Rit Rate of return of risky asset i at time t
Rt Vector of rates of returns of risky assets at time t
Vit Value function of asset i at time t
uit Slope of asset i in value function Vit at time t
υT Total wealth at time T
γ Risk importance parameter
θ Proportional transaction costs per (monetary) unit of asset traded
s Scenario
n Node
pn Probability of node n
K Set of nodes on a scenario tree
Kt Set of nodes at stage t of a scenario tree
C(n) Set of children nodes of node n on a scenario tree
kn Predecessor node of node n on a scenario tree
VaR Value-at-Risk
CVaR Conditional-Value-at-Risk
SP Stochastic Programming

16



LIST OF ALGORITHMS 17

MSP Multistage Stochastic Programming
DP Dynamic Programming
ADP Approximate Dynamic Programming
O-GARCH Orthogonal Generalized Autoregressive Conditional Heteroskedasticity
GAMS General Algebraic Modeling System



Chapter 1

Introduction

The fundamental contribution of this thesis is the development of approximate dy-

namic programming (ADP) algorithms that solve the portfolio selection problem

over a long-term planning horizon. Conditional-Value-at-Risk (CVaR) is used as a
measure of risk and transaction costs are taken proportional to the trading amounts.

Specifically, in this study we formulate the portfolio selection problem as a
dynamic program, which due to the high-dimensional state, outcome and action

spaces becomes quickly computationally intractable. To solve it, we use approx-

imate dynamic programming methods, which provide a time decomposition and
approximation framework that breaks long-term horizon problems into a group of
smaller problems that can be solved using mathematical programming methods.

The contributions of this thesis can be summarized as follows:

1. To our knowledge, so far ADP methods have been applied mainly to one-
dimensional financial problems without risk. Here, we expand this by apply-
ing ADP methods to a multi-dimensional portfolio selection problem with a
widely used measure of risk and transaction costs.

2. We introduce a novel piecewise linear ADP scheme that can handle high-
dimensional problems. By controlling the number of slopes in the piecewise
linear value function approximations and allowing the value of the slopes and
the slope intervals to be adaptively estimated, we end up with a scheme that
runs in reasonable times and performs extremely well against the competing
methods.

3. We provide a novel comparative analysis between a large range of portfolio
selection methods, where we compare various ADP algorithms of increasing

18



CHAPTER 1. INTRODUCTION 19

complexity against:

(a) Myopic portfolio selection methods: A single-period and the equally-
weighted portfolio methods, where decisions on portfolio composition
at any point in time ignore their impact in the future.

(b) Multi-period portfolio selection methods: Multistage stochastic pro-
gramming (MSP), where the investor accounts for both the short-term
and the long-term effects of the investment strategies. In a discrete time
setting, this is achieved by considering an investment planning horizon,
where the investor has to take temporal decisions in order to achieve a
goal at some date in the future.

A comparison against a market Index is included.

4. In the ADP methods, we need to solve a large number of linear programs
the complexity of which varies depending on the assumed value function ap-
proximations and increases significantly for the piecewise linear approxima-
tions. Solving these linear programs with mathematical programming meth-
ods takes a long time. Here, we construct greedy algorithms for all approxi-
mation schemes that solve our linear programs much faster and we prove that
the solutions we get from these algorithms are optimal.

To evaluate the proposed approximate dynamic programming algorithms, we
use real-life equity data from the London Stock Exchange and we divide into the
following two parts: the in-sample data which we use to generate scenario paths
and the out-of-sample data which we use to test the methods. For robustness, we
have considered all combinations of the market going up or down in the in-sample
and out-of-sample data.

Figure 1.1 shows the system structure, which is a snapshot of the sequence of
events in evaluating and assessing the performance of the approximate dynamic
programming methods. The performance evaluation process evolves as follows:
Historical returns from a financial time series serve as an input for the scenario

path generator, which outputs scenario paths. The generated scenario paths have
a twofold use. On the one hand, they serve as an input for the approximate dy-
namic programming and the single-period portfolio methods. On the other hand,
they serve as an input for the scenario tree constructor, which outputs a scenario
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tree using scenario reduction and scenario tree construction methods. The gener-
ated scenario tree serves in turn as an input for the multistage stochastic program-
ming method. For each method we compute the out-of-sample terminal wealth (see
output part in figure 1.1) which is our performance measure and all methods are
compared in terms of performance and complexity.

: input 

: output 

SCENARIO PATH 

GENERATOR 

Financial time-series: 

Historical Returns 

Monte-Carlo 

Simulator 

Scenario 

paths 

Scenario 

paths 

Scenario Tree 

Construction Scenario Reduction  

Scenario tree SCENARIO TREE 

CONSTRUCTOR 

MSP ADP 

Out-of-sample terminal wealth, complexity 

Scenario tree Scenario paths 

Single- 

period 
Market 

Index 

OUTPUT 

Equally- 

weighted 

Figure 1.1: System Structure

1.1 Literature Review

In this section, we briefly describe the current state of the art in the era of portfolio
optimization. More literature regarding the methods used in this study is provided
in the respective chapters.

In the portfolio optimization literature, most portfolio optimization models have
been one-period models. The modern portfolio theory dates back to the 1950’s (see
[54] and [55]), when Markowitz first formulated the portfolio selection problem
in terms of the mean (expected) return and the variance of return of a portfolio of
assets. His analysis led to introducing the concept of the efficient frontier, which
is a hyperbola representing the boundary of the set of portfolios with the maxi-
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mum expected return for any given level of risk (variance). Following the work of
Markowitz, Tobin showed in 1958 (see [78]) that including a risk-free asset in the
portfolio of assets the efficient frontier changes from a hyperbola to a straight line,
which led to the so called CAPM model (see [75]).

Despite its theoretical reputation, researchers very early identified that with the
available mathematical tools back then the computational burden in solving the port-
folio model of Markowitz increased substantially with the number of assets since
constructing large-scale portfolios requires solving large-scale quadratic optimiza-
tion problems (due to variance) with dense covariance matrices. Researchers at-
tempted to alleviate this difficulty from the early years of the history of the modern
portfolio theory by introducing factors that drive the stock prices (see for example
the index models in [63] and [73]) or by introducing approximation schemes, where
linear programming plays a central role (see for example [74] and [76]). The im-
portance of linear programming in financial applications has grown further by the
need to include binary variables that help us model other realistic features, such as
transaction costs (see for example [39]). Interest in how transaction costs can af-
fect investors’ decisions on portfolio composition goes back to Samuelson [71] and
Constantinides [14].

Ever since Markowitz, there have been several attempts to formulate the single-
period portfolio optimization problem as a linear program. All these attempts have
focused on using risk measures, which for discrete approximations of the distri-
butions of returns lead to Linear Programming computable models. Yitzhaki [84]
used the Gini’s Mean Difference (GMD) as a measure of risk and proposed the so
called GMD model. Konno and Yamazaki [47] used the Mean Absolute Deviation
(MAD) as a measure of risk and proposed and analyzed the so called MAD model.
Another group of risk measures includes the so called downside risk measures. The
importance of downside risk measures lies in the behavior of rational investors, who
are more interested in the underperformance than the overperformance of portfolios.
Markowitz [55] recognized the importance of downside risk measures and proposed
the use of semivariance as a measure of risk. For a more comprehensive review of
the various risk measures and the single-period portfolio models that exist in the
literature, we refer the reader to [53] and references therein.

A significant shift in the era of risk management was made when JP Morgan
introduced in 1994 Value-at-Risk (VaR) in order to measure risk across the whole
institution. While previous risk measures focused on some theoretical models that
related risk to portfolio return, VaR has allowed quantification of risk in term of
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possible losses. However, VaR has received a lot of criticism due to lacking sub-
additivity, which means that the risk of a portfolio of assets may be greater than the
sum of the individual risks of the assets. This makes VaR a non-coherent risk mea-
sure in the Artzner et al. sense [3]. A modified version of VaR, called Conditional-
Value-at-Risk (CVaR), was introduced in 2000 by Rockafellar and Uryasev (see
[70]) and has recently become very popular in the era of financial optimization due
to its properties (for applications see for example [2], [38] and [48]). CVaR is a
coherent risk measure that accounts for losses which occur in the tails of the distri-
butions of returns and for discrete approximations of the distributions of returns it
can be approximated with a linear program, and thus can be easily incorporated in
optimization procedures.

Despite the large body of literature in single-period portfolio models, the latter
have received a lot of criticism mainly due to their inability to take advantage of (ex-
pected) future information when rebalancing the portfolios. Also, they have been
found to be inadequate in modeling correctly situations where long-term investors
face liabilities and goals at specific dates in the future. To circumvent these ineffi-
ciencies, several authors have attempted to model the portfolio selection problem in
a multi-period setting. In general, for long term investors multi-period models will
perform better than the single-period ones. For a discussion about the advantages of
using multi-period models versus single-period ones see [58]. Due to multi-period
models being more complex than the single-period ones, in the early years of the
modern portfolio theory some authors proposed solving the large-scale multi-period
portfolio selection problem as a sequence of single-period portfolio models (see for
example [30], [42], [56] and [57]).

Ever since, the rapid advances in computational methods (such as decompo-
sition methods) and technology (enormous improvement in computers’ speed and
memory) have turned researchers’ attention to stochastic programming methods and
have allowed solving large-scale problems in various fields, including financial op-
timization. Stochastic programming has been well studied since the 1950s, when
Dantzig [15] and others [13] proposed replacing a stochastic linear problem with a
deterministic one assuming a known probability distribution for the random param-
eters. For applications of stochastic programming methods in multi-period portfolio
optimization see, for example, [16], [59] and [86]. For a comprehensive survey of
the stochastic programming models used in the era of financial optimization, we
refer the reader to [85].
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1.2 Thesis Outline

The thesis is structured as follows:

• Part I: Introduction to the Portfolio Selection Problem. In this part, we
introduce the reader to the portfolio selection problem. Specifically, in chap-
ter 2 we provide the notation used throughout this study, derive the rela-
tionships between the variables in the portfolio selection problem, introduce
Conditional-Value-at-Risk as a measure of risk and describe how the multi-
variate process of random returns can be modeled using scenario generation
methods.

• Part II: Dynamic Programming Methods for the Portfolio Selection Prob-
lem. In this part, we formulate the portfolio selection problem as a dynamic
program without a measure of risk in chapter 3 and, due to the curses of
dimensionality, to solve it in chapter 4 we construct approximate dynamic
programming algorithms where we include Conditional-Value-at-Risk as a
measure of risk.

• Part III: Portfolio Selection Methods used as Benchmarks. In this part, we
describe the portfolio selection methods that we use as benchmarks in order to
compare with the approximate dynamic programming methods. Specifically,
in chapter 5 we use stochastic programming methods to formulate and solve
the single-period as well as the multi-period portfolio selection problems and
we provide the linear programming formulation of the naive equally-weighted
portfolio model.

• Part IV: Approximate Dynamic Programming Methods. In this part, we
discuss approximate dynamic programming methods. Specifically, we first
implement separable linear approximations for the unknown value functions
in the dynamic programming formulation of the portfolio selection problem in
chapter 6 and then we improve them by implementing a separable piecewise
linear approximation in chapter 7.

• Part V: Experimental Results, Conclusions and Future Research. In this
part, we present our experimental results, draw our conclusions and provide
future research directions. Specifically, in chapter 8 we discuss how we eval-
uate the performance of each method, set up the testing environment for our
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experiments, report the numerical results and comment on them. Then, based
on our experimental results, in chapter 9 we draw our conclusions and identify
possible directions for further research.



Part I

Introduction to the Portfolio
Selection Problem
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Chapter 2

Basic Concepts and Notation

In this chapter, we summarize the basic concepts in the portfolio selection problem
and the notation adopted throughout this study. Specifically, in section 2.1 we define
the variables in the portfolio selection problem and derive the relationships between
them. Then, in section 2.2 we introduce Conditional-Value-at-Risk as a measure
of risk and write it as an optimization problem. Next, in section 2.3 we discuss
the utility function of a risk-averse investor and present our objective. Finally, we
conclude this chapter with section 2.4, where we discuss how the uncertainty that is
introduced by the random returns can be modeled using scenario generation meth-
ods.

2.1 Timing of Events and Dynamics

Figure 2.1 shows how transactions evolve in time. Time is divided into equal length
sub-periods called slots, such that period t corresponds to the time slot between
time t− 1 and time t. We let the horizon be the set of all discrete points in time and
we denote as T = {0, 1, . . . , T}, where T is the end of the time horizon. Suppose
we have a portfolio that comprises of N risky assets, such that N is the set of risky
assets, i.e. N = {1, 2, . . . , N}, and a risk-free one. Without loss of generality, we
assume that asset 0 is the risk-free asset and is simply a bank account that pays a
known constant interest rate at the end of every time period. We denote the rate of
return of the risk-free asset in period t with R0t. For simplicity, from this point on
we will use term cash to refer to the risk-free asset.

Looking at Figure 2.1, in period t+1 events evolve in the following sequence: At
time t the decision maker, i.e. the investor, owns holdings ht = (h0t, h1t, . . . , hNt),

26
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where hit is the amount of wealth (in monetary units) in asset category i at time t,
and takes actions (xt,yt), wherext = (x1t, x2t, . . . , xNt) and yt = (y1t, y2t, . . . , yNt)

are respectively vectors of how much the investor buys and sells (in monetary units)
from every risky asset at the beginning of period t+1. Every buying/selling decision
xit/yit increases/decreases the amount of holdings in asset i at time t by the same
amount. That is, every pair of decisions (xit, yit) change the amount of holdings in
asset i to h+

it = hit + xit − yit.
Buying and selling cause transaction costs, which in this study are assumed to

be proportional to the trading amount, independent of the asset category and time,
and are denoted with θ. Specifically, buying one unit of asset i requires (1 + θ)

units of cash, while selling one unit of asset i increases cash by (1 − θ) units.
Therefore, decisions (xt,yt) change the amount of cash from h0t at time t to h+

0t =

h0t − (1 + θ)
∑N

i=1 xit + (1 − θ)
∑N

i=1 yit. Note that due to transaction costs it
is suboptimal to simultaneously buy and sell the same asset. We will see later on
that we need not make this assumption as it is directly inferred by the optimization
problems that we solve in every time period.

After taking decisions (xt,yt), which as explained above change the amount of
holdings to h+

t =
(
h+

0t, h
+
1t, . . . , h

+
Nt

)
, the random return vector Rt+1 gets realized,

where Rt+1 =
(
R1(t+1), R2(t+1), . . . , RN(t+1)

)
and Ri(t+1) is the rate of return of

risky asset i at the end of period t + 1. Due to the returns, holdings at time t +

1 become ht+1 =
(
h0(t+1), h1(t+1), . . . , hN(t+1)

)
, where hi(t+1) = Rith

+
it . In the

above modeling context, we assume that holdings h0 are known to the investor with
certainty.

time 

h0 

… 

h1 h2 
hT−1 hT 

(x0,y0) 

R1 R2 RT 

0 1 2 T−1 T 

h0 
+ h1 

+ hT−1 
+ 

period 1 

… 

period T period 2 

(x1,y1) (xT−1,yT−1) 

Figure 2.1: Timing of events for the portfolio selection problem

Looking at the timing of events in Figure 2.1, variables ht are sequenced right
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before decisions (xt,yt), are called the pre-decision holdings and, as we will see
in chapter 3, these become our state variables in the optimal dynamic programming
formulation of the portfolio selection problem. Variables h+

t are sequenced right
after decisions (xt,yt), are called the post-decision holdings and, as we will see in
chapter 4, these become our new state variables in approximate dynamic program-
ming. Further, variables h+

t are used in the two-stage stochastic programming for-
mulation of the single-period portfolio selection problem, the multistage stochastic
programming formulation of the multi-period portfolio selection problem and the
equally-weighted portfolio model in chapter 5.

We are now ready to write the relationships between the variables in the portfolio
selection problem.

Considering the above and looking at Figure 2.1, we obtain the relationships
between the pre-decision variables:

hi(t+1) = Ri(t+1) (hit + xit − yit) , i ∈ N

h0(t+1) = R0(t+1)

[
h0t − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit

]
 (2.1)

where note that first decisions are taken and then returns are realized, and the
post-decision variables:

h+
i0 = hi0 + xi0 − yi0, i ∈ N

h+
00 = h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0

h+
it = Rith

+
i(t−1) + xit − yit, i ∈ N , t = 1, . . . , T − 1

h+
0t = R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit, t = 1, . . . , T − 1


(2.2)

where note that first returns are realized and then decisions are taken.
Further, the pre- and the post-decision variables have the following relationship:

hit = Rith
+
i(t−1), i ∈ N ∪ {0}, t = 1, . . . , T (2.3)

If υT denotes the investor’s total wealth at the end of the time horizon, then we



CHAPTER 2. BASIC CONCEPTS AND NOTATION 29

have:

υT =
N∑
i=0

hiT =
N∑
i=0

RiTh
+
i(T−1)

(2.4)

In this study, we do not consider either shortselling of assets or borrowing of
cash. Instead, we assume non-negativity of the pre- and post-decision variables, as
well as of the amounts traded (either bought or sold) in every time period. Non-
negativity can be expressed by the following set of inequalities:

hit ≥ 0, i ∈ N ∪ {0}, t = 1, . . . , T

h+
it ≥ 0, i ∈ N ∪ {0}, t = 0, . . . , T − 1

xit ≥ 0, i ∈ N , t = 0, . . . , T − 1

yit ≥ 0, i ∈ N , t = 0, . . . , T − 1


(2.5)

where, as we will explain later on, due to transaction costs xit and yit are never
both positive.

2.2 Conditional-Value-at-Risk as a Measure of Risk

One essential aspect in portfolio optimization is risk measurement. In this study,
we use Conditional-Value-at-Risk (CVaR), also known as mean excess loss or mean

shortfall or tail-VaR, as a measure of risk. The reason why we selected in this study
CVaR as the risk measure is because of the properties it exhibits. Specifically, CVaR
is a coherent downside risk measure which accounts for possible extreme losses
that occur in the tails of loss distributions. Moreover, for a discrete set of scenarios
it can be approximated with a linear program, thus allowing us to incorporate it
easily in optimization procedures. In the discussion that follows, we briefly state
the definition of CVaR in line with [70], its properties and its representation as a
linear program for a discrete approximation of the random input.

Definition

Let f(X, Y ) be the loss associated with decision vector X ∈ X and random vector
Y ∈ Y . Also, let p (Y ) be the density function of the probability distribution of Y .
Then, the probability of loss f(X, Y ) being less than or equal to a threshold g0 is
given by:



CHAPTER 2. BASIC CONCEPTS AND NOTATION 30

Ψ(X, g0) =

∫
f(X,Y )≤g0

p (Y ) dY (2.6)

For a specified probability level β ∈ (0, 1) and the losses associated with de-
cision vector X , the values of Value-at-Risk (VaRβ) and Conditional-Value-at-Risk
(CVaRβ) are denoted respectively with φβ(X) and χβ(X). These are given by:

φβ(X) = min {g0 ∈ R : Ψ(X, g0) ≥ β} , (2.7)

χβ(X) =
1

1− β

∫
f(X,Y )≥φβ(X)

f(X, Y )p (Y ) dY (2.8)

The key to expressing CVaRβ as a linear minimization problem is the following
function:

Fβ(X, g0) = g0 +
1

1− β

∫
Y ∈Y

[f(X, Y )− g0]+ p (Y ) dY (2.9)

where [k]+ = k if k > 0 and [k]+ = 0 if k ≤ 0.
In optimization problems, we are interested in minimizing CVaRβ over all X ∈

X . According to theorem 2 in [70], minimizing χβ(X) over allX ∈ X is equivalent
to minimizing Fβ(X, g0) over all (X, g0) ∈ X × R, i.e. we have:

min
X∈X

χβ(X) = min
(X,g0)∈X×R

Fβ(X, g0), (2.10)

where the optimal value of problem (2.10) gives us CVaRβ and g?0 gives us VaRβ .
Figure 2.2 provides a graphical illustration of VaRβ and CVaRβ on a discrete

loss distribution, where note that CVaRβ accounts for losses beyond VaRβ or al-
ternatively VaRβ never exceeds CVaRβ . Specifically, VaRβ is the loss threshold
beyond which there is a probability 1 − β that higher losses occur, and CVaRβ is
the average of the losses that lie in the (1 − β)-area of the loss distribution. In this
thesis we are not examining the impact that different values of quantile β have on
estimating CVaRβ . Instead, in our experiments in chapter 8 we assume a fixed value
for parameter β so from this point on we will drop β from our notation.
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Figure 2.2: An illustration of VaRβ and CVaRβ on a discrete loss distribution

Properties of CVaR

With respect to loss function f(·), which is a random variable, CVaR satisfies the
following properties:

1. CVaR is translation-equivariant. That is,

CVaR (f + c) = CVaR (f) + c (2.11)

2. CVaR is positively-homogeneous. That is,

CVaR (cf) = c CVaR (f) , (2.12)

if c > 0.

3. CVaR is convex. That is, for two arbitrary random losses f1 and f2 and 0 <

λ < 1 we have:

CVaR (λf1 + (1− λ)f2) ≤ λCVaR (f1) + (1− λ)CVaR (f2) (2.13)

4. CVaR is monotone. That is, for any arbitrary random losses f1 and f2 if
f1 ≤ f2, then we have:

CVaR (f1) ≤ CVaR (f2) (2.14)
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For the proofs of the above properties, we refer the reader to [82]. In the Artzner,
Delbaen, Eber and Heath sense [3], a risk measure that exhibits properties (2.11)-
(2.14) is called coherent.

Polyhedral Representation of CVaR

We are now ready to derive the polyhedral representation of CVaR.
Suppose we sample S scenarios from the distribution of random variable Y . If

S is the set containing all scenarios, i.e. S = {1, 2, . . . , S}, and ps is the probability
associated with scenario s, then the integral in (2.9) can be approximated by:

F̃β(X, g0) = g0 +
1

1− β

S∑
s=1

ps [f(X, Ys)− g0]+ (2.15)

If we replace in (2.15) every [f(X, Ys)− g0]+ with auxiliary variable gs2, we can
approximate CVaR with the optimal value of the following linear program:

min
(X,g0,gs2)∈
X×R×R+

g0 +
1

(1− β)

S∑
s=1

psg
s
2

s.t. gs2 ≥ −g0 + f(X, Ys), s ∈ S

g0 free, gs2 ≥ 0, s ∈ S


(2.16)

Using problem (2.16), later on in chapter 4 we define CVaR for the multi-period
portfolio selection problem and we adapt it for each other method in the respective
chapters.

2.3 Investor’s Objective

The goal of the investor is usually expressed as the expected utility of some function
of terminal wealth:

maxE[U(υT )] (2.17)

where function U(υT ) describes the risk attitude of the investor. Specifically,
utility function U(υT ) is modeled as a concave function as in Figure 2.3. A concave
utility function means that we value every additional unit of wealth less and less thus
protecting ourselves from high losses on a sudden downward move of the returns.
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An investor with a concave utility function is said to be risk-averse. For a more
detailed discussion about utility theory and risk-aversion, we refer the reader to
chapter 9 of [52].

U 

υT 

Figure 2.3: A concave utility function

In this study, we consider a mean-risk objective function, according to which the
investor aims at co-optimizing a weighted average of the expected terminal wealth
and CVaR:

max γE
{
υT
}
− (1− γ)CVaR(υT ) (2.18)

where parameter γ measures how important is risk in the objective, takes values
in the range [0, 1], and will be called the risk importance parameter. In problems
with long horizons, in order to account for the time value of money, we usually see a
discount factor outside the expectation of objective (2.18). However, in the portfolio
selection problem the time value of money is accounted by the asset returns and thus
we disregard it.

Note that objective (2.18) is a concave function of υT due to CVaR being convex
with respect to υT (this follows from property 2.13, where the loss function is now
given by −υT plus a constant). To understand how the risk attitude of the investor
is affected by the value of parameter γ, we can form ratio 1−γ

γ
, which simply tells

us how important CVaR is as compared to expected terminal wealth, takes values in
the range [0,∞), and is usually called the risk aversion coefficient. If 1−γ

γ
= 0, then

the investor is infinitely risk-taking, while if 1−γ
γ
→∞ then the investor is infinitely

risk-averse.
In expression (2.18), varying parameter γ in the range [0, 1] we obtain the effi-
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cient frontier of terminal wealth, every point of which represents the best possible
expected terminal wealth for a given level of CVaR. The efficient frontier is a hy-
perbola, reflecting the investor’s risk-averse attitude (he expects to earn less and less
the more he is exposed to higher losses).

2.4 Modeling Uncertainty

The random returns of the risky assets in equations (2.1)-(2.4) introduce uncertainty
that can be described by the multivariate stochastic process of random returns and
is usually represented in stochastic optimization with probability spaces.

For the stochastic process of random returns we define probability space (Ω,F ,P),
where:

1. Ω is the continuous sample space consisting of all realizations ω, where ω =

(R1,R2, . . . ,RT ) is a particular instance of the complete set of returns and
is usually referred to as a scenario.

2. F is the σ-algebra on Ω, i.e. a non-empty collection of subsets of Ω that in-
cludes Ω. In chapter 5, we will needFt, which is the σ-algebra on (R1,R2, . . .

,Rt), i.e. Ft is a collection of all events determined by information available
up to time t. For set Ft, we have Ft ⊂ Ft+1 and is called a filtration. When
a policy depends on information available up to time t, then this policy is
called non-anticipative and for the respective decisions we say that they are
Ft-measurable.

3. P is a function that maps any subset of Ω into the unit interval [0, 1], such that
P(Ω) = 1.

For a further discussion on probability spaces and measures see [9] and [72].
When formulating stochastic problems, probability space (Ω,F ,P) is assumed

to be known. In order to obtain a finite and discrete probability space that results
in a tractable stochastic model, we need to generate a discrete approximation of the
probability space using scenario generation methods. In the literature, most sce-
nario generation methods have been developed for multistage stochastic program-
ming and are based upon:

1. the selection of a model that explains the behavior of the random variables
(such as econometric models for rates of returns, etc.) and is used in order to
forecast data trajectory paths.
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2. the construction of a scenario tree.

For a comprehensive survey of the different models that have been used in the
literature to generate data trajectory paths and the different scenario tree generation
methods see [24] (other examples can be found in [25] and [41]).

Among the different models that have been used to generate data trajectories,
econometric models have gained particular attention and have been used extensively
to model and forecast the conditional variance, else known as volatility. A typi-
cal feature of financial time series is volatility clustering, according to which large
volatilities tend to be followed by large volatilities, while small volatilities tend to
be followed by small volatilities. Any changes from large volatilities to small ones
and vice versa occur randomly without exhibiting any systematic pattern. Further,
plotting the sample autocorrelation function (ACF) of the squared returns, one no-
tices that squared returns exhibit strong positive autocorrelation, which provides
more evidence of volatility clustering. Observations of this type led to the intro-
duction of the so-called Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) models (see [11] and [28]).

Univariate GARCH models have been extended to a multivariate setting in order
to study the co-movements of the assets’ volatilities by modeling and forecasting a
positive definite conditional covariance matrix. The proposed models are known
as multivariate GARCH models (MGARCH) (see [4] for a comprehensive survey).
However, direct generalizations of the univariate GARCH models lead to intractable
models as the dimensionality of the stochastic process becomes larger and larger and
this is due to the large number of parameters that need to be estimated (this is often
referred to as the curse of dimensionality). This is the reason why these models have
not been used in multivariate time series of more than three or four dimensions.

To circumvent the curse of dimensionality and obtain tractable models, addi-
tional structures are imposed in order to reduce the dimensionality of the stochastic
processes. One, very popular for its simplicity, method suggests the generation of
the covariance matrix through an orthogonal factorization of the assets using prin-
cipal component analysis. This class of models are known as Orthogonal GARCH
(OGARCH) models (see [1]) and in comparative studies against other MGARCH
models they have exhibited exceptional forecasting ability (see for example [12]
and [29]).

In this study, we generate scenario paths assuming a constant conditional mean
and forecasting the covariance matrix using OGARCH models. For a further discus-
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sion about how we can generate scenario paths with OGARCH models, we refer the
reader to Appendix A. However, as we will explain in chapter 5, in the multistage
stochastic programming method we will need to approximate the input distribution
of scenario paths with another one that has less scenarios and is in the form of a sce-
nario tree using scenario reduction and scenario tree construction methods. Since
scenario trees are only used in the multistage stochastic programming method, a
discussion about them and how they can be constructed is included in the respective
chapter.



Part II

Dynamic Programming Methods for
the Portfolio Selection Problem
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Chapter 3

Dynamic Programming Formulation
for the Portfolio Selection Problem

In this chapter, we formulate the multi-period portfolio selection problem as a dy-

namic program (DP) without using a risk measure. As we will explain later in the
chapter, we cannot include a risk measure such as CVaR in the dynamic program-
ming formulation because then the problem does not decompose in time. Later on,
in chapter 4, we incorporate CVaR as a risk measure in our approximation algo-
rithms.

This chapter is structured as follows: In section 3.1, we define the basic elements
of the portfolio selection problem as a markov decision process (MDP), state the
objective function and derive the optimality equations. Then, in section 3.2, we
discuss the curses of dimensionality, where we explain why we cannot solve the
dynamic program defined in section 3.1 with the available dynamic programming
algorithms and as a result we resort to approximate dynamic programming. Finally,
we conclude with section 3.3 where we explain why we cannot include CVaR in the
optimal dynamic programming formulation.

More details regarding dynamic programming methods can be found in [7] and
[69].

3.1 Formulation

In line with [69], we begin with defining the five elements of a markov decision
process, i.e. decision epochs, states, actions, transition probabilities and rewards,
which are related as follows: At each decision epoch the system occupies a state.
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The decision maker observes the current state of the system and selects an action
from a set of allowable actions. As a result of choosing an action in the current state
of the system, the decision maker receives some reward and the system transits to
some other state determined by some probability distribution. Note that in some
cases the reward might also depend on the probability distribution. Given that we
currently occupy a certain state, any future state/decision/outcome is independent
of how we reached the current state, which is known as the markov property.

Decision Epochs and Periods

A decision epoch refers to a discrete point in time. We let the horizon be the set of
all the decision epochs and we denote it with T = {0, 1, . . . , T}. We divide time
into periods, such that period t corresponds to the time slot between decision epoch
t − 1 and decision epoch t. The end of the time horizon refers to the last decision
epoch, which we denote with T . Figure 3.1 shows decision epochs and periods for
a MDP.

time

Decision 
Epoch     

0

Decision 
Epoch     

1

Decision 
Epoch     

2

Decision 
Epoch     

T-1

Decision 
Epoch     

T

Period 1 Period 2 Period T
…

Figure 3.1: Decision Epochs and Periods for a MDP

The State of the System and the Stochastic Process

Suppose setsHi andRi are respectively subsets of R+ and R+ \ {0}.
We let the state of the system be described by vector ht = (h0t, h1t, . . . , hNt),

where ht ∈ H = H0×H1×· · ·HN , and hit is the amount of holdings (in monetary
units) of asset category i at time t and takes values inHi.

An important aspect of our problem is the arrival of exogenous information,
which, as explained in section 2.4, is described by the stochastic process of random
returns. A realization of the stochastic process at time t is described by vector
Rt = (R1t, R2t, . . . , RNt), whereRt ∈ R = R1×R2× · · ·RN , and Rit is the rate
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of return of asset i at time t and takes values in Ri. Recall that the returns of cash,
R0t, are assumed to be known with certainty for every t.

Policies and Decision Rules

The decisions associated with the portfolio selection problem are to determine how
much the decision maker, i.e. the investor, buys and sells from every asset in every
time period. Let xt = (x1t, x2t, . . . , xNt) and yt = (y1t, y2t, . . . , yNt) be respec-
tively the buying and selling decision vectors, with xit and yit representing respec-
tively how much the investor buys and sells from risky asset i at time t. We assume
that (xt,yt) ∈ At, where At is the set of constraints that determine all the feasible
decisions for all assets at time t.

We define a decision rule to be a function that takes as input the current state
variables and returns a vector of feasible decisions:

Dt(ht) = (xt,yt) (3.1)

We define a policy π to be a set of decision rules over all periods:

π =
(
Dπ

0 (h0), Dπ
1 (h1), . . . , Dπ

T−1(hT−1)
)
, π ∈ Π, (3.2)

where Π is the set of all feasible policies.
If we combine the equations in (2.1) with the non-negativity inequalities in (2.5),

we obtain action space At for every t = 0, 1, . . . , T − 1, which is the set of values
(xt,yt) that satisfy the following constraints:

− xit + yit ≤ hit, i ∈ N , (3.3)

(1 + θ)
N∑
i=1

xit − (1− θ)
N∑
i=1

yit ≤ h0t, (3.4)

xit, yit ≥ 0, i ∈ N , (3.5)

where constraint (3.3) ensures non-negativity of the holdings of the risky assets,
constraint (3.4) ensures non-negativity of cash and will be called the budget con-

straint, and finally constraint (3.5) ensures non-negativity of the buying and selling
decisions of the risky assets.

From the above, the action space can be expressed as the following set:
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At = {(xt,yt) : (3.3)− (3.5) hold} , t = 0, 1, . . . , T − 1 (3.6)

Information Process

Looking at Figure 3.2, we notice that in every time period the events of the multi-
period portfolio selection problem are disclosed in the following order: state vari-
ables (i.e. holdings) at the beginning of the period, decisions, random returns and
state variables (i.e. holdings) at the end of the period.

time 

… 
0 1 2 T-1 T 

period 1 

… 

period T period 2 

h0 h1 h2 hT−1 hT 

(x0,y0) 

R1 R2 RT 

(x1,y1) (xT−1,yT−1) 

Figure 3.2: Timing of events in the portfolio selection problem

Given the above modeling of the time horizon, for every period t we let the
history of the process, else known as the information process, consist of all the
information known to the system up to and including period t. The decisions and
the states of the system represent the endogenous information, while the random
returns represent the exogenous information. The history of the process for some
policy π ∈ Π up to time t can then be described as follows:

Ht =
(
h0, D

π
0 (h0),R1,h1, . . . ,ht−1, D

π
t−1(ht−1),Rt,ht

)
(3.7)

Transition Functions

Assuming that at time t − 1 the state of the system is ht−1 and we take decisions(
xt−1,yt−1

)
, we can compute the state of the system at time t using (2.1), according

to which:
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hit = Rit

[
hi(t−1) + xi(t−1) − yi(t−1)

]
, i ∈ N

h0t = R0t

[
h0(t−1) − (1 + θ)

N∑
i=1

xi(t−1) + (1− θ)
N∑
i=1

yi(t−1)

]
 (3.8)

The above equations show how we transit from a current state to the next feasible
state and are called the transition functions.

Rewards and Objective

The objective of the investor is to find the best policy that maximizes expected
terminal wealth which from (2.4) is a function of state variables hiT and is given by
υT =

∑N
i=0 hiT . We define the following function:

Cπ
t =

{
0, if t ∈ T \ {0, T}∑N

i=0 h
π
iT , if t = T

to be the reward achieved at time t given that we follow policy π, where hπiT is
the amount of terminal holdings in asset i when policy π is followed.

Given the above definition, the objective of the investor can now be expressed
as follows:

max
π∈Π

E

{
T∑
t=1

Cπ
t

}
(3.9)

Note that in optimization problem (3.9) we do not use a discount factor, since
the opportunity cost of cash held into assets is directly calculated by the returns of
the assets.

Optimality Equations

In most problems, optimization problem (3.9) is computationally intractable. To
reduce complexity, we formulate it as a dynamic program using recursive equations.
We introduce the value function Vt (ht), which represents the value of being in state
ht at time t, i.e. the value of owning holdings ht at time t. Therefore, with each
state ht we associate a value function Vt (ht) as shown in Figure 3.3.
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time 

h0 

… 

h1 h2 hT−1 hT 

(x0,y0) 

R1 R2 RT 

0 1 2 T−1 T 

V0(h0) V1(h1) V2(h2) VT−1(hT−1) VT(hT) 

(x1,y1) (xT−1,yT−1) 

Figure 3.3: Modeling time horizon: states and value functions

The quantity Vt (ht) gives us the total optimal reward from time t until the end
of the time horizon, given that at time t we are in state ht, and is given by:

Vt (ht) = max
(xt,yt)∈At

ERt+1 {Vt+1 (ht+1) | ht} , t = 0, 1, . . . , T − 1

VT (hT ) =
N∑
i=0

hiT

 (3.10)

The recursive equations in (3.10) give us the relationship between Vt (ht) and
Vt+1 (ht+1) for t = 0, 1, . . . , T − 1 and are known as the Bellman’s optimality

equations. Note that inside the expectation of the optimality equationsht is constant
but ht+1 is a function ofRt+1 which is a random variable.

Normally we would expect to see a reward function and a discount factor in
the optimality equations of (3.10). However, as explained earlier, here all the one-
period rewards are zero and the investor receives the total reward only once at the
end. Further, the time value of money is accounted by the returns and we do not
need to use a discount factor.

For a discrete approximation of the joint distribution of the random returns and
a discrete approximation of the states, we can replace the expectation in (3.10) with
transition probabilities and write the optimality equations as follows:

Vt(ht) = max
(xt,yt)∈At

∑
ht+1∈H

p (ht+1 | ht,xt,yt)Vt+1 (ht+1) , t = 0, 1, . . . , T − 1

VT (hT ) =
N∑
i=0

hiT


(3.11)

where p
(
ht | ht−1,xt−1,yt−1

)
denotes the probability that the system transits
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to state ht given that we choose action
(
xt−1,yt−1

)
when we are in state ht−1 at

time t− 1.

3.2 Dynamic Programming and the Curses of Dimen-
sionality

In classical dynamic programming, authors solve finite horizon problems, such as
the one under study, using backward dynamic programming (see [65] and [69])
which assumes that we have discrete action, outcome and state spaces. Solving a
dynamic program with backward dynamic programming is straightforward: At the
end of the time horizon, we compute for each terminal state the terminal value func-
tion. Then, we recursively step back one time period computing the value function
for all states using the optimality equations. In this manner, in the end we will have
computed the value function at time 0 which is the optimal value of problem (3.9).

In our problem, however, we have continuous action/outcome/state spaces. Even
if we discretize actions and states to the nearest pound and also discretize returns
the problem is still hard to solve due to the three curses of dimensionality (see [65]).
The first one comes from the state space which in our problem grows intractably
large because the state of the system is described by vector ht which has dimension
N + 1. The second one comes from the outcome space which does not allow us to
compute the expectation in the optimality equations of (3.10). This expectation is
due to the random return vector Rt which has dimension N . Finally, enumerating
all decisions from the action space to solve the optimization problem in each time
period would result in the third curse of dimensionality that comes from the action
space which has dimension 2N .

In chapter 4, we attempt to circumvent the three curses of dimensionality by
using approximate dynamic programming. In particular, by fitting value function
approximations for the unknown value functions we treat the complexity that comes
from the state space. By using Monte-Carlo sampling methods we treat the com-
plexity that comes from the outcome space. Finally, we introduce fast algorithms
to compute our decisions and this treats the complexity that comes from the action
space.
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3.3 CVaR and Dynamic Programming

From section 2.2, CVaR is the optimal value of the following minimization problem:

min
X∈X

1

1− β

∫
f(X,Y )≥VaRβ(X)

f(X, Y )p (Y ) dY,

which can also be written using conditional expectation as follows:

min
X∈X

1

1− β
EY {f(X, Y )|f(X, Y ) ≥ VaRβ(X)} , (3.12)

Thus, given decision vector X and random variable Y which result in losses
f(X, Y ), CVaR is a minimization problem that contains a conditional expectation
on losses f(X, Y ). The above occurs in a single-period setting.

In the multi-period portfolio selection problem, the losses are given by−
∑N

i=0 hiT

+
∑N

i=0 hi0, where
∑N

i=0 hi0 is a constant, and from transition equations (3.8) we
notice that in order to compute terminal wealth

∑N
i=0 hiT we need a mixture of deci-

sions and realizations of returns for the entire horizon. This implies that in order to
include CVaR in the optimal dynamic programming formulation we would need to
take an expectation over

∑N
i=0 hiT that depends on states/actions/realizations of the

entire horizon. However, given that in markov decision systems the state contains
all we need to know in order to take our decisions, decomposing such an expectation
in time would violate the markovian property. Thus, we cannot include CVaR in the
optimal dynamic programming formulation. In chapter 4, where we introduce ap-
proximate dynamic programming algorithms, CVaR can be easily incorporated and
adaptively estimated.



Chapter 4

Approximate Dynamic Programming

In chapter 3, we formulated the portfolio selection problem as a dynamic program
which becomes computationally intractable due to the curses of dimensionality.
This is where approximate dynamic programming (ADP) arises, providing us with
a powerful set of modeling and algorithmic strategies to solve large-scale dynamic
programs. Specifically, to deal with the complexity that comes from the large state
space, where we need to evaluate value function Vt(ht) for every state ht ∈ H, we
fit value function approximations for the unknown value functions. To deal with the
complexity that comes from the large outcome space, where we need to evaluate
the expectation in (3.10), we use Monte-Carlo sampling. Finally, to deal with the
complexity that comes from the large action space, we introduce fast algorithms
that compute our decisions.

This chapter is structured as follows: In section 4.1, we introduce in the dynamic
programming formulation the post-decision state variables and we write the new
optimality equations with respect to the new state variables. Then, in section 4.2, we
derive a formula that computes CVaR given a sample of losses. Next, in section 4.3,
we construct an iterative algorithm which uses the new state variables and solves
the portfolio selection problem by stepping forward through time in every iteration.
Finally, in section 4.4, we concentrate on update issues of the value functions in
every iteration of the proposed algorithm.

For a more detailed discussion about theory and applications of approximate
dynamic programming methods we refer the reader to [65] and references therein.
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4.1 Pre-decision and Post-decision State Variables

One of the biggest challenges in dynamic programming is computing the expecta-
tion within the max operator of the optimality equations of (3.10). In this section,
we consider an approximation of the value function using Monte-Carlo sampling.
As we will explain later on, to develop and implement our approximation methods
we need the concept of post-decision state variables, which allow us to compute the
suboptimal decisions using past information.

If ω = (R1,R2, . . . ,RT ) is a sample realization of the stochastic process, then
we propose the following approximation:

V̂t(ht(ω)) = max
(xt,yt)∈At

V̂t+1 (ht+1(ω)) , (4.1)

Recall from chapter 3 that equations (3.8) describe the transitions from one state
to another . Looking at these equations, we notice that state vector ht+1 is a function
of return vectorRt+1. That is, in order to compute the suboptimal decisions (xt,yt)

in the optimization problem of (4.1), we need to use future information from time
t+1. In order to correct this problem, we change the time at which state is measured
so that state at time t is measured just before the arrival of information Rt+1 and
right after decisions (xt,yt) are made.

Recall from section 3.1 that the information process up to time t is given by:

Ht =
(
h0, D

π
0 (h0),R1,h1, D

π
1 (h1),R2,h2, . . . ,ht−1, D

π
t−1(ht−1),Rt,ht

)
Measuring the state after decisions are made suggests the definition of new state

variables h+
t (recall that these were defined in section 2.1 and were called the post-

decision variables):

h+
it = hit + xit − yit, i ∈ N , t = 0, 1, . . . , T − 1

h+
0t = h0t − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit, t = 0, 1, . . . , T − 1

 (4.2)

In approximate dynamic programming, variables ht and h+
t are called respec-

tively pre-decision or complete state variables and post-decision or incomplete state

variables. Considering that the new state variables h+
t are measured before the re-
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alization of vectorRt+1, the information process becomes:

Ht =
(
h0, D

π
0 (h0),h+

0 ,R1,h1, . . . ,ht−1, D
π
t−1(ht−1),h+

t−1,Rt,ht
)
, (4.3)

where we can remove the old state variables ht and get:

Ht =
(
h0, D

π
0 (h0),h+

0 ,R1, D
π
1 (h+

0 ),h+
1 , . . . ,Rt−1, D

π
t−1(h+

t−2),h+
t−1,Rt

)
(4.4)

Therefore, our new state variables are: h0,h
+
0 ,h

+
1 , . . . ,h

+
T−1,hT , where states

h0 and hT are still used since they are essential to the portfolio selection problem.
Similarly to variables ht, with every state vector h+

t we associate a value function,
which we denote with V +

t . Figure 4.1 shows the timing of events with both types
of variables.

time 

h0 

… 

h1 h2 hT−1 hT 

(x0,y0) 

R1 R2 RT 

0 1 2 T−1 T 

V0(h0) V1(h1) V2(h2) VT−1(hT−1) VT(hT) 

(x1,y1) (xT−1,yT−1) 

h0 

V0 (h0) 
+ 

+ hT−1 

VT−1(hT−1) 
+ 

+ 

+ V1 (h1) 
+ + 

h1 
+ 

+ 

Figure 4.1: Timing of events with pre- and post-decision state variables

From (2.2) and using hit = Rith
+
i(t−1) from (2.3), the relationships between the

new state variables are given by:

h+
i0 = hi0 + xi0 − yi0, i ∈ N

h+
00 = h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0

h+
it = Rith

+
i(t−1) + xit − yit, i ∈ N , t = 1, . . . , T − 1

h+
0t = R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit, t = 1, . . . , T − 1

hiT = RiTh
+
i(T−1), i ∈ N



(4.5)
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and are the new transition equations. For simplicity of notation, to describe the
transitions in (4.5) we use functions f0 : H×A0 7→ H, f : H×R×At 7→ H and
fT : H×R 7→ H such that:

h+
0 = f0 (h0,x0,y0)

h+
t = f

(
h+
t−1,Rt,xt,yt

)
, t = 1, . . . , T − 1

hT = fT
(
h+
T−1,RT

)
 (4.6)

We are now ready to write the action space for the new state variables.
From (3.3)-(3.5), decisions (x0,y0) must satisfy the following constraints:

− xi0 + yi0 ≤ hi0, i ∈ N , (4.7)

(1 + θ)
N∑
i=1

xi0 − (1− θ)
N∑
i=1

yi0 ≤ h00, (4.8)

xi0, yi0 ≥ 0, i ∈ N , (4.9)

where (4.8) is the budget constraint, and action space A0 is given as before by:

A0 = {(x0,y0) : (4.7)− (4.9) hold} , (4.10)

Substituting hit = Rith
+
i(t−1) in (3.3)-(3.5), decisions (xt,yt) for t = 1, 2, . . . , T−

1 must satisfy the following constraints:

− xit + yit ≤ Rith
+
i(t−1), i ∈ N , (4.11)

(1 + θ)
N∑
i=1

xit − (1− θ)
N∑
i=1

yit ≤ R0th
+
0(t−1), (4.12)

xit, yit ≥ 0, i ∈ N , (4.13)

where (4.12) is the new budget constraint for t = 1, 2, . . . , T − 1 and the action
space At is given by:

At = {(xt,yt) : (4.11)− (4.13) hold} , t = 1, 2, . . . , T − 1 (4.14)
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What we are missing in order to complete the description of the dynamic pro-
gramming formulation of the portfolio selection problem around the new state vari-
ables are the new optimality equations. As explained above, every new state vector
is associated with a value function. To derive the new optimality equations, we
begin with defining function V +

t (h+
t ) as follows:

V +
t−1(h+

t−1) = ERt

{
Vt(Rt ◦ h+

t−1)|h+
t−1

}
, t = 1, 2, . . . , T (4.15)

where Rt ◦ h+
t−1 is the Hadamard product of vectors Rt and h+

t−1 (i.e. the ith

element of vectorRt ◦ h+
t−1 is Rith

+
i(t−1)).

Substituting ht = Rt ◦ h+
t−1 for t = 1, 2, . . . , T in the old optimality equations

of (3.10), we have:

Vt
(
Rt ◦ h+

t−1

)
= max

(xt,yt)∈At
ERt+1

{
Vt+1

(
Rt+1 ◦ h+

t

)
| Rt ◦ h+

t−1

}
(4.16)

If we substitute Rith
+
i(t−1) and R0th

+
0(t−1) respectively with Rith

+
i(t−1) + xit− yit

and R0th
+
0(t−1) − (1 + θ)

∑N
i=1 xit + (1− θ)

∑N
i=1 yit inside the max operator of

(4.16), thenRt ◦h+
t−1 can be replaced by h+

t in the right-hand side of (4.16) which
becomes:

Vt
(
Rt ◦ h+

t−1

)
= max

(xt,yt)∈At
ERt+1

{
Vt+1

(
Rt+1 ◦ h+

t

)
| h+

t

}
, (4.17)

Substituting now the expectation in (4.17) with V +
t (h+

t ) from (4.15), we have:

Vt
(
Rt ◦ h+

t−1

)
= max

(xt,yt)∈At
V +
t

(
h+
t

)
(4.18)

If we take now expectation on both sides of (4.18) with respect to Rt and con-
ditional on h+

t−1, (4.18) becomes:

ERt

{
Vt
(
Rt ◦ h+

t−1

)
| h+

t−1

}
= ERt

{
max

(xt,yt)∈At
V +
t

(
h+
t

)
| h+

t−1

}
(4.19)

From (4.15), the left-hand side of (4.19) is V +
t−1

(
h+
t−1

)
. Therefore, we have:
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V +
t−1

(
h+
t−1

)
= ERt

{
max

(xt,yt)∈At
V +
t

(
h+
t

)
| h+

t−1

}
(4.20)

Recursive equation (4.20) describes the relationship between the value functions
around the new state variables.

Note that from (4.15) we can compute the value function at state h+
T−1 using the

value function at state hT , while from (4.18) we can compute the value function at
state h0 using the value function at state h+

0 .
Considering the above, the old optimality equations, which in chapter 3 were

given by:

Vt (ht) = max
(xt,yt)∈At

ERt+1 {Vt+1 (ht+1) | ht} , t = 0, 1, . . . , T − 1

VT (hT ) =
N∑
i=0

hiT


are now replaced by:

V0 (h0) = max
(x0,y0)∈A0

V +
0

(
h+

0

)
V +
t−1

(
h+
t−1

)
= ERt

{
max

(xt,yt)∈At
V +
t

(
h+
t

)
| h+

t−1

}
, t = 1, 2, . . . , T − 1

V +
T−1(h+

T−1) = ERT

{
VT (hT )|h+

T−1

}
VT (hT ) =

N∑
i=0

hiT


(4.21)

The recursive equations of (4.21) are the new optimality equations. To simplify
notation, from this point on we will use in the thesis V −0 (h0) instead of V0 (h0) and
Vt
(
h+
t

)
instead of V +

t

(
h+
t

)
. Thus, instead of (4.21), from this point on we will be

referencing the following system of equations:
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V −0 (h0) = max
(x0,y0)∈A0

V0

(
h+

0

)
Vt−1

(
h+
t−1

)
= ERt

{
max

(xt,yt)∈At
Vt
(
h+
t

)
| h+

t−1

}
, t = 1, 2, . . . , T − 1

VT−1(h+
T−1) = ERT

{
VT (hT )|h+

T−1

}
VT (hT ) =

N∑
i=0

hiT


(4.22)

Note that when we perform maximization in (4.22) we compute decisions (xt,yt)

using past informationRt.

4.2 CVaR Estimation Given a Sample of Losses

We begin with reminding the reader of the polyhedral representation of CVaR from
section 2.2. Recall that for decision vector X and for a sample of S realizations of
random vector Y , where each realization Ys is associated with a probability ps and
incurs a loss f(X, Ys) for s ∈ S, where S = {1, 2, . . . , S}, CVaR is the optimal
value of the following minimization problem:

min
(X,g0,gs2)∈
X×R×R+

g0 +
1

(1− β)

S∑
s=1

psg
s
2

s.t. gs2 ≥ −g0 + f(X, Ys), s ∈ S

g0 free, gs2 ≥ 0, s ∈ S


(4.23)

Further, recall that the losses in the portfolio selection problem are given by
−
∑N

i=0 hiT +
∑N

i=0 hi0. Considering now problem (4.23) in a multi-period setting
and assuming that each scenario s is associated with fixed (given) losses−

∑N
i=0 h

s
iT+∑N

i=0 hi0 and equal probability ps = 1
S

for s ∈ S, CVaR is the optimal value of the
following minimization problem:
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min
((x,y),g0,gs2)
∈A×R×R+

g0 +
1

S(1− β)

S∑
s=1

gs2

s.t. gs2 + g0 ≥ −
N∑
i=0

hsiT (x,y,R) +
N∑
i=0

hi0, s ∈ S

g0 free, gs2 ≥ 0, s ∈ S


(4.24)

where hsiT (x,y,R) represents the amount of holdings in asset i at time T under
scenario s and is a function of the buying decisions x, the selling decisions y and
the outcome spaceR over the entire horizon.

In the discussion that follows, we solve problem (4.24) by looking at its dual and
derive an analytic formula for computing CVaR given that terminal wealth

∑N
i=0 h

s
iT

is fixed and known for all s ∈ S.
If we assign dual variables us with s ∈ S to the constraints of optimization

problem (4.24), then its dual is given by:

max
us

S∑
s=1

[
−

N∑
i=0

hsiT +
N∑
i=0

hi0
]
us

s.t. us ≤
1

S(1− β)
, s ∈ S

S∑
s=1

us = 1

us ≥ 0, s ∈ S


(4.25)

Before we proceed with the solution to problem (4.25), we first define function
ceil. If A is a matrix with elements in R, then function ceil(A) rounds up every
element of A to the nearest integer greater than or equal to it.

We are now ready to derive the solution to problem (4.25).
We begin by letting fs = −

∑N
i=0 h

s
iT +

∑N
i=0 hi0 in problem (4.25) which be-

comes:
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max
us

S∑
s=1

fsus

s.t. us ≤
1

S(1− β)
, s ∈ S

S∑
s=1

us = 1

us ≥ 0, s ∈ S


(4.26)

Problem (4.26) can be viewed as a continuous knapsack problem with upper
bounds on the variables (see [46] and references therein) and can be solved greedily
as follows: First, we sort losses fs in a decreasing order. Then, starting from the
scenario that incurs the highest losses, we increase the level of variable us until
upper bound 1

S(1−β)
is reached. After that, we move on to the second scenario in the

order and work in a similar manner. The allocation process ends at some scenario l,
where for the first time the following condition holds:

l∑
s=1

ps
1− β

≥ 1⇔
l∑

s=1

ps ≥ 1− β

Note that increasing variables us in a different order from the one used above
would be suboptimal.

Considering the above, it is straightforward to verify that the optimal solution
of problem (4.26) is as follows:

u∗1 =
1

S(1− β)
,

u∗2 =
1

S(1− β)
,

...

u∗l−1 =
1

S(1− β)
,

u∗l = 1− l − 1

S(1− β)
,

u∗s = 0, for s > l


The optimal value of problem (4.26) is CVaR and is given by:
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CVaR =
l∑

s=1

fsus =
l−1∑
s=1

fs
S(1− β)

+ fl −
(l − 1)fl
S(1− β)

= fl +
1

S(1− β)

l−1∑
s=1

(fs − fl),

(4.27)
where fl gives us VaR.
We will now provide a numerical example to illustrate how we can compute

VaR and CVaR using (4.27).

Example 4.1. Suppose we have 20 scenarios, each with probability 1
20

, and losses
(in £) as shown in Table 4.1.

s loss s loss s loss s loss
1 69912.77 6 72630.89 11 155215.83 16 71914.18
2 43558.97 7 118916.57 12 159649.55 17 147567.85
3 111911.30 8 195738.76 13 122867.99 18 150631.95
4 91463.27 9 169753.02 14 154131.76 19 177367.21
5 77645.87 10 190190.81 15 129466.14 20 135389.64

Table 4.1: Losses per scenario s

First, we sort scenarios in a decreasing order in terms of losses as in Table 4.2.
Then, assuming that β = 0.85, we use the first l = ceil(20 ∗ 0.15) = 3 scenarios
to compute VaR and CVaR. Specifically, VaR is given by the losses incurred by the
third scenario, i.e. VaR=£177367.21 and CVaR is equal to VaR plus the average
deviations of the losses incurred by the first two scenarios from the third one, i.e.
CVaR=177367.21 + (195738.76−177367.21)+(190190.81−177367.21)

3
= £187765.59.

s loss s loss s loss s loss
8 195738.76 11 155215.83 15 129466.14 5 77645.87

10 190190.81 14 154131.76 13 122867.99 6 72630.89
19 177367.21 18 150631.95 7 118916.57 16 71914.18
9 169753.02 17 147567.85 3 111911.30 1 69912.77

12 159649.55 20 135389.64 4 91463.27 2 43558.97

Table 4.2: Sorted losses

4.3 General ADP Algorithm

In this section, we construct an iterative approximate dynamic programming algo-
rithm to solve the multi-period portfolio selection problem.

As we will see later on, in each iteration of the algorithm, we sample one sce-
nario path of returns and we do a forward pass through time on it, where each time
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a return vector is revealed we compute new actions and transit to new states until
we reach the end of the horizon. In this manner, we transit to state hsT which gives
us losses −

∑N
i=0 h

s
iT +

∑N
i=0 hi0. Then, we store the losses of the current scenario

and we use them as an input for the next iterations. Using these losses along with
the losses of the previous iterations we compute CVaR at the current iteration using
formula (4.27).

Further, we avoid evaluating the expectations in the optimality equations of
(4.22) by using Monte-Carlo sampling as follows: We assume that we have S sce-
nario realizations of returns ωs = (Rs

1,R
s
2, ...,R

s
T ), where s = 1, 2, . . . , S is the

iteration counter. For each realization we perform one iteration of the algorithm,
which takes us forward through time.

We begin our discussion by introducing functional approximations for the value
functions in the sense that value at each state is estimated by a closed form function.

In line with the notation of [8], [18] and [19], for t = 0, 1, . . . , T − 1 a generic
structure for an approximation of Vt(h+

t ) is the following:

V̂t(h
+
t ) =

∑
j∈P

λjtφjt
(
h+
t

)
, (4.28)

where λjt are parameters and φjt
(
h+
t

)
are fixed basis functions that capture

important characteristics of state vector h+
t .

In this thesis, we consider separable functional approximations for the unknown
value functions of the assets and express them as follows:

V̂t
(
h+
t

)
=

N∑
i=0

V̂it
(
h+
it

)
(4.29)

In particular, in chapter 6 we replace every V̂it
(
h+
it

)
with a linear increasing

function and thus for each asset we estimate one slope, and in chapter 7 we replace
every V̂it

(
h+
it

)
with a piecewise linear concave function and thus for each asset we

estimate a small number of slopes. Note that (4.29) is simply a different represen-
tation of (4.28). To solve the optimization subproblems of the ADP methods in
chapters 6 and 7 we will need the following lemma which simply tells us that due
to transaction costs we should never consider simultaneously selling and buying the
same asset.

Lemma 4.3.1. Let V̂t
(
h+
t

)
be a sum of separable increasing functions of type

(4.29). If our objective is to maximize function V̂t
(
h+
t

)
, then it is suboptimal to

simultaneously sell and buy the same asset.
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Proof Suppose we sell δ units of risky asset j, where δ > 0, and using the resulting
cash we buy back the same asset. Due to the budget constraint, which is given by:

N∑
i=1

xit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

N∑
i=1

yit,

every incremental increase of a yit increases one of the xit’s by 1−θ
1+θ

units. There-
fore, if we sell δ units of risky asset j, then due to transaction costs, with the result-
ing wealth we can buy back 1−θ

1+θ
δ units of the same asset.

Considering the above, if we substitute yjt and xjt with yjt + δ and xjt + 1−θ
1+θ

δ

respectively, then the value function of cash in (4.29) becomes:

V̂0t

(
R0th

+
0(t−1) − (1 + θ)

(
N∑
i=1

xit +
1− θ
1 + θ

δ

)
+ (1− θ)

(
N∑
i=1

yit + δ

))
=

V̂0t

(
R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit

)
,

i.e. it remains the same, while the value function of asset j changes to:

V̂jt

(
Rjth

+
j(t−1) + xjt +

1− θ
1 + θ

δ − yjt − δ
)

=

V̂jt

(
Rjth

+
j(t−1) + xjt − yjt −

2θδ

1 + θ

)
Given that function V̂jt

(
h+
jt

)
is increasing, the objective function becomes smaller.

�

We are now ready to describe one iteration of our approximate dynamic pro-
gramming algorithm which is summarized by Algorithm 4.1.

Suppose that at iteration s−1 we estimated value function approximations V̂ s−1
t

for t = 0, 1, . . . , T of optimal value functions V0, V1, . . . , VT (note that we do not
estimate V −0 and the reason for this becomes apparent later). Using these estimates
along with the current realization ωs = (Rs

1,R
s
2, ...,R

s
T ), we move forward in time

at iteration s computing decisions and states in the order in which they appear in
history (4.4), which at iteration s and from time 0 up to time T is given by the
following sequence:

(
h0, (x

s
0,y

s
0) ,hs,+0 ,Rs

1, (x
s
1,y

s
1) ,hs,+1 , . . . ,hs,+T−1,R

s
T ,h

s
T

)
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Starting with known holdings h0, we compute decisions (xs0,y
s
0) by solving:

Ṽ s,−
0 (h0) = max

(xs0,ys0)
V̂ s−1

0 (f0 (h0,x
s
0,y

s
0)) (4.30)

Then, after taking decisions (xs0,y
s
0), we transit to state hs,+0 using:

hs,+0 = f0 (h0,x
s
0,y

s
0) (4.31)

For t = 1, 2, . . . , T − 1 let hs,+t−1 be the current state at time t− 1. Then, after we
observe returnsRs

t , we compute decisions (xst ,y
s
t) by solving:

Ṽ s
t−1

(
hs,+t−1

)
= max

(xst ,y
s
t )
V̂ s−1
t

(
f
(
hs,+t−1,R

s
t ,x

s
t ,y

s
t

))
, (4.32)

and after taking decisions (xst ,y
s
t) we transit to state hs,+t using:

hs,+t = f
(
hs,+t−1,R

s
t ,x

s
t ,y

s
t

)
(4.33)

Continuing in the above manner, at the end of the time horizon we will have
computed state hs,+T−1 and, after we observe returnsRs

T , we transit to state hsT using:

hsT = fT
(
hs,+T−1,R

s
T

)
, (4.34)

Using a risk importance parameter γ ∈ [0, 1], we define the terminal value
function V̂ s

T (·) as follows:

V̂ s
T (hsT ) = γ

N∑
i=0

hsiT − (1− γ) ˆCVaR
s (
h1
T , . . . ,h

s
T

)
, (4.35)

which resembles the mean-risk objective function (2.18) in the sense that they
are both weighted averages of a terminal wealth term and a CVaR term with weights
respectively γ and (1− γ).

To estimate ˆCVaR
s

in (4.35), we use the terminal holdings of all previous iter-
ations h1

T , . . . ,h
s
T . We use the losses incurred by the current scenario, which are

computed by−
∑N

i=0 h
s
iT +

∑N
i=0 hi0, together with the losses incurred by the previ-

ous iterations (note that these are taken as fixed and do not depend on the policy of
the current iteration) and compute ˆCVaR

s
as the average of the 100(1− β)% worst

losses using formula (4.27). We store the losses of the current iteration in order to
use them in a similar manner in the iterations to follow.

Further, we let:
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Ṽ s
T−1

(
hs,+T−1

)
= V̂ s

T

(
fT
(
hs,+T ,Rs

T

))
, (4.36)

Note that (4.30), (4.32), (4.35) and (4.36) resemble the optimality equations of
(4.22) without a risk measure.

Finally, at each time twe use gradient information and update function V̂ s
t using

the following update rule:

V̂ s
t = U

(
V̂ s−1
t ,∆Ṽ s

it

)
, t = 0, 1, . . . , T − 1, (4.37)

where U(·) is some update function that depends on the value function approxi-
mations of the current iteration (for smoothing) as well as on gradient information.
Note that function U(·) is specific to the type of approximation we use and in this
thesis we define two update functions, one for linear approximations (see chapter 6)
and one for a piecewise linear approximation (see chapter 7).

In Algorithm 4.1, we input holdings h0 and realizations ωs = (Rs
1,R

s
2, ...,R

s
T )

for s = 1, 2, . . . , S and in the last iteration we obtain the terminal estimates of the
approximate value functions V̂ S

t for t = 0, 1, . . . , T − 1.

Algorithm 4.1 General ADP Algorithm

Input: h0, ωs = (Rs
1,R

s
2, ...,R

s
T ) for s = 1, 2, . . . , S

Step 0. Set s := 1 and initialize V̂ 0
t (h+

t ) for t = 0, . . . , T − 1.

Step 1. Choose a sample realization ωs ∈ Ω and set t := 0.

Step 2. Compute decisions and next state:

Step 2a. If t = 0 compute (xs0,y
s
0) by solving:

Ṽ s,−
0 (h0) = max(xs0,ys0)

V̂ s−1
0 (f0 (h0,x

s
0,y

s
0)),

and transit to h+
0 by setting:

hs,+0 := f0 (h0,x
s
0,y

s
0)

Step 2b. If 0 < t ≤ T − 1 compute (xst ,y
s
t) by solving:

Ṽ s
t−1

(
hs,+t−1

)
= max(xst ,y

s
t )
V̂ s−1
t

(
f
(
hs,+t−1,R

s
t ,x

s
t ,y

s
t

))
(?1) ,

In Algorithm 4.1, for each realization ωs = (Rs
1,R

s
2, ...,R

s
T ), where s =
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and transit to h+
t by setting:

hs,+t := f
(
hs,+t−1,R

s
t ,x

s
t ,y

s
t

)
Step 2c. If t = T transit to state hsT by setting:

hsT := fT
(
hs,+T−1,R

s
T

)
,

compute ˆCVaR
s

using (4.27) and set:

V̂ s
T (hsT ) := γ

∑N
i=0 h

s
iT − (1− γ) ˆCVaR

s (
h1
T , . . . ,h

s
T

)
Ṽ s
T−1

(
hs,+T−1

)
:= V̂ s

T

(
fT
(
hs,+T−1,R

s
T

))
(?2)

Step 3. If 0 ≤ t ≤ T − 1, then compute gradient information ∆Ṽ s
it using (?1),

(?2) and update V̂t by setting:

V̂ s
t := U

(
V̂ s−1
t ,∆Ṽ s

it

)
Step 4. If t < T set t := t+1 and go to Step 2. If t = T and s < S set s := s+1
and go to Step 1. Else stop.

Output: V̂ S
t ∀t

1, 2, . . . , S, we do a forward pass in time solving T maximization problems. In
total, we need to solve S × T maximization problems and in each maximization
problem we have a total of 2N decision variables, N for buying and another N for
selling. As for the number of constraints in each maximization problem, this de-
pends on the functional approximation and any other additional assumptions made
(see how feasible region changes in chapters 6 and 7), but in general this is a polyno-
mial function of N . Finally, regarding the complexity that comes from computing

ˆCVaR, at each iteration s we have a time complexity of O(s log s) which comes
from sorting the losses of all previous iterations 1, 2, . . . , s.

Note that from this point on in the thesis we will call the maximization subprob-
lems in (4.30) and (4.32) that we solve in order to compute decisions (xst ,y

s
t) for

all t = 0, 1, . . . , T − 1 the subproblems of ADP.
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4.4 Gradient Information

In Step 3 of Algorithm 4.1, we update V̂ s
t using function U(·), which takes as

arguments value function estimates V̂ s−1
t and gradients ∆Ṽ s

it . In fact, for t =

0, 1, . . . , T − 2 gradients ∆Ṽ s
it are estimates at a particular state hs,+t and we use:

∆Ṽ s
it

(
hs,+t

)
= Ṽ s

t

(
hs,+t + ei

)
− Ṽ s

t

(
hs,+t

)
, i = 0, 1, . . . , N, (4.38)

where ei is the 1× (N + 1) unit vector with one at position i.
At time T−1 we use a different gradient for Ṽ s

T−1. The reason for this is because
Ṽ s
T−1 is a function of ˆCVaR

s
which uses not only the terminal holdings of the current

iteration but also the terminal holdings of the previous iterations.
If we substitute (4.35) in (4.36) we get:

Ṽ s
T−1

(
hs,+T−1

)
= γ

N∑
i=0

Rs
iTh

s,+
i(T−1) − (1− γ) ˆCVaR

s (
R1
T ◦ h

1,+
T−1, . . . ,R

s
T ◦ h

s,+
T−1

)
,

(4.39)
where we use hT = RT ◦ h+

T−1 (this is the Hadamard product of vectors RT

and h+
T−1).

Ṽ s
T−1 has two components and we define a gradient for each component. For the

first component, which is the terminal wealth, increasing hs,+i(T−1) by one unit will
give us an increase of γRs

iT . For the second component, we define the following
gradient:

∆ ˆCVaR
s

i

(
R1
T ◦ h

1,+
T−1, . . . ,R

s
T ◦ h

s,+
T−1

)
=

ˆCVaR
s

i

(
R1
T ◦
(
h1,+
T−1 + ei

)
, . . . ,Rs

T ◦
(
hs,+T−1 + ei

))
− ˆCVaR

s

i

(
R1
T ◦ h

1,+
T−1, . . . ,R

s
T ◦ h

s,+
T−1

)
,

(4.40)

where ∆ ˆCVaR
s

i is computed by subtracting the current estimate ˆCVaR
s

from
what this estimate would have been if we increased holdings h+

i(T−1) of the previous
iterations and the current one by the respective scenario return RiT .

Therefore, the gradient of Ṽ s
T−1 is given by:

∆Ṽ s
i(T−1)

(
hs,+T−1

)
= γRs

iT − (1− γ)∆ ˆCVaR
s

i

(
R1
T ◦ h

1,+
T−1, . . . ,R

s
T ◦ h

s,+
T−1

)
,

(4.41)
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Note that computing ∆ ˆCVaR
s

i in the above manner implies that ∆ ˆCVaR
s

i < 0,
which makes ∆Ṽ s

i(T−1) > 0, since smaller scenario losses mean smaller 100(1−β)%

worst losses and as a result a smaller estimate ˆCVaR
s
. This will be used later on in

chapters 6 and 7 to justify why the slopes in our approximate value functions are
positive everywhere, in all time periods of all iterations.
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Chapter 5

Stochastic Programming and the
Equally-weighted Portfolio

In this chapter, we briefly describe the portfolio selection methods which are used
as benchmarks to compare with the approximate dynamic programming methods.

This chapter is structured as follows: First, in section 5.1 we model the portfolio
selection problem with CVaR as a measure of risk and proportional transaction costs
as a Stochastic Program. In particular, in subsection 5.1.1 we formulate the myopic

single-period portfolio selection problem as a two-stage stochastic program and
in subsection 5.1.2 we formulate the multi-period portfolio selection problem as a
multistage stochastic program. Finally, in section 5.2 we consider the naive equally-

weighted portfolio model which due to transaction costs is expressed as a linear
program.

5.1 Stochastic Programming

Stochastic programming provides a modeling framework for optimization problems
that involve uncertainty. The key idea is that decisions are based on information
available at the time decisions are taken and not on future observations and the
main assumption is that the probability distributions of the random parameters are
known.

Figure (5.1) shows the sequence of events in a stochastic program. Here, we
need to construct decision rules in the beginning of the planning horizon for all the
stages at which decisions need to be taken. Assuming a planning horizon with T
stages, the first decision rule refers to a first stage where we take decisions with

64
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respect to some deterministic constraints. The first-stage decisions are taken before
the realization of any random event and are known as here-and-now or anticipative

decisions. Later on, after the realization of a random event, second-stage decisions
are taken. Then, after the realization of another random event, third-stage decisions
are made, and so on, until final stage T is reached. The decisions taken in the
second-stage and thereafter depend on some previous realization of a random event
and are known as wait-and-see, adaptive, non-anticipative or recourse decisions. A
decision process such as the one described above, where we cannot anticipate the
future, i.e. decisions made at each stage are not dependent either on future arrival
of stochastic information or on future decisions, is called non-anticipative.

Stage 1 

Random 

event 1 

… Stage 2 

Random 

event 2 

Stage 3 Stage T-1 

Random 

event T-1 

Stage T 

Here-and-now 

decisions  

Recourse 

decisions 1  

Recourse 

decisions 2  

Recourse 

decisions T-2  

Recourse 

decisions T-1  

Figure 5.1: Sequence of events in a multistage stochastic program

In the above modeling context, if T = 2 then we have a two-stage stochastic

program and if T > 2 then we have a multistage stochastic program. Further, if the
objective and the constraints of the stochastic program are linear in the decisions,
then the stochastic program belongs to the general class of Stochastic Linear Pro-

grams (SLP). For a general discussion about stochastic linear programs, we refer
the reader to [44] and [72].

In this section, we use CVaR as a measure of risk and assuming proportional
transaction costs we first formulate the single-period portfolio selection problem
as a two-stage stochastic program. For similar single-period portfolio optimiza-
tion models, we refer the reader to [38] and [48]. Then, assuming that we have a
planning horizon of T periods, we write the corresponding stochastic programming
formulation of the multi-period portfolio selection problem. For similar multistage
stochastic programming formulations of the portfolio selection problem, we refer
the reader to [16], [79] and [86].
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5.1.1 The Single-period Portfolio as a Two-stage Stochastic Pro-
gram

In this section, we formulate the single-period portfolio problem with CVaR as a
measure of risk and proportional transaction costs as a two-stage stochastic linear
program. Specifically, we write the two-stage stochastic programming formulation
of the single-period portfolio selection problem and to solve it we generate a discrete
approximation of the stochastic process of random returns.

Two-stage Stochastic Programming Formulation

Assuming a time horizon with two discrete points in time (i.e. one time period),
we start with known holdings h0 and in a first-stage we decide how much to buy
and sell from every risky asset. The first-stage decisions are denoted by vector
X0 =

(
h+

0 ,x0,y0

)
and from (2.2) they must satisfy the following constraints:

h+
i0 = hi0 + xi0 − yi0, i ∈ N , (5.1)

h+
00 = h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0, (5.2)

h+
i0 ≥ 0, i ∈ N ∪ {0}, (5.3)

xi0, yi0 ≥ 0, i ∈ N (5.4)

Constraints (5.1)-(5.4) define action space X0, i.e. we have:

X0 =
{(
h+

0 ,x0,y0

)
: (5.1)− (5.4) hold

}
(5.5)

Note that the constraints in set (5.5) are deterministic since they do not require
that we have a priori knowledge of the stochastic process of random returns. Then,
after the realization of the random return vector R1 = (R11, R21, . . . , RN1), we
measure terminal wealth, which from (2.4) is given by υ1 =

∑N
i=0Ri1h

+
i0, and

CVaR, which by definition (see section 2.2) is the optimal value of the following
minimization problem:
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min
((x0,y0),g0,g2)
∈X0×R×R+

g0 +
1

1− β
E {g2}

s.t. g2 ≥ −g0 −
N∑
i=0

Ri1 (hi0 + xi0 − yi0) +
N∑
i=0

hi0, a.s.

g0 free, g2 ≥ 0


(5.6)

In problem (5.6), a.s. is an abbreviation for almost surely, is used for constraints
that have random variables and means that the constraints with which it is associated
are satisfied with probability one. Note that in the above problem variables g0, g2,
as well as terminal wealth

∑N
i=0Ri1h

+
i0 need the realization of the random variable

R1 and are determined in a second stage.
Figure 5.2 shows the timing of events and the two stages in the single-period

portfolio problem.

time 
0 1 

Stage 1 Stage 2 

h0 

(x0,y0) 

h0 
+ 

R1 

h1 

(g0,g2) 

Figure 5.2: Timing of events and stages in the single-period portfolio problem

As for the objective, we consider a mean-risk objective of type (2.18), where we
use CVaR as a measure of risk and according to which we aim at co-optimizing the
following weighted average of expected terminal wealth and CVaR:

max γER1

{
N∑
i=0

Ri1h
+
i0

}
− (1− γ)CVaR (5.7)

where γ is the risk importance parameter and CVaR is given by (5.6) and con-
tains an expectation on losses −

∑N
i=0Ri1h

+
i0 (xi0, yi0) +

∑N
i=0 hi0.
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Combining action space (5.5) with CVaR problem (5.6) and objective (5.7), and
assuming a probability space (Ω,F ,P) for stochastic process R1, we can write
the two-stage stochastic programming formulation of the single-period portfolio
problem as follows:

max
(h+

0 ,x0,y0,g0,g2)
γER1

[
N∑
i=0

Ri1h
+
i0

]
− (1− γ)g0 −

1− γ
1− β

ER1 [g2]

s.t. h+
i0 = hi0 + xi0 − yi0, i ∈ N

h+
00 = h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0

g2 ≥ −g0 −
N∑
i=0

Ri1h
+
i0 +

N∑
i=0

hi0, a.s.

h+
i0 ≥ 0, i ∈ N ∪ {0}

xi0, yi0 ≥ 0, i ∈ N

g0 free, g2 ≥ 0



(5.8)

In the above formulation, we say that decisions (g0, g2) areF1-measurable. That
is, to compute decisions [g0, g2] we need first-stage decisions

(
h+

0 ,x0,y0

)
and re-

alizationR1.

Deterministic Equivalent Linear Program

In order to render model (5.8) tractable, we need to generate a finite number of
realizations of stochastic process R1. If S is a set with S realizations of vector R1

and ps is the probability associated with realization s such that
∑S

s=1 pn = 1, then
problem (5.8) can be approximated by the following linear program:
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max
(h+

0 ,x1,y1,g0,g
s
2)

γ

S∑
s=1

ps

[
N∑
i=0

Rs
i1h

+
i0

]
− (1− γ)g0 −

1− γ
1− β

S∑
s=1

psg
s
2

s.t. h+
i0 = hi0 + xi0 − yi0, i ∈ N

h+
00 = h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0

gs2 ≥ −g0 −
N∑
i=0

Rs
i1h

+
i0 +

N∑
i=0

hi0, s ∈ S

h+
i0 ≥ 0, i ∈ N ∪ {0}

xi0, yi0 ≥ 0, i ∈ N

g0 free, gs2 ≥ 0, s ∈ S



(5.9)

Problem (5.9) is often referred to as the deterministic equivalent linear program

or simply the deterministic equivalent. Note that in the linear program (5.9) we
have a total of 3N + S + 2 decision variables and N + S + 1 constraints. That is,
the size of problem (5.9) grows linearly with the number of assets and realizations.

In this study, we solve problem (5.9) using mathematical programming methods.
However, note that when the number of realizations becomes too large, problem
(5.9) becomes intractable. In such a case, to solve problem (5.9), we would need to
use decomposition methods. We refer the reader to [10] for a general discussion on
how Benders decomposition (this is due to Benders, see [5]) can be used to solve
two-stage stochastic linear programs. Specifically for those with CVaR in the objec-
tive, Benders decomposition has been implemented in [51] as the CVaRMin solver
where due to the CVaR constraints sharing the common variable g0, the optimal
value of which gives us VaR, this is determined in the first stage with decisions X0

through a constraint generation process.

5.1.2 The Multi-period Portfolio as a Multistage Stochastic Pro-
gram

In this section, we expand the one-period portfolio model of the previous section
by including multiple time periods. Assuming a planning horizon of T periods,
we write the multistage stochastic programming formulation of the multi-period
portfolio selection problem and to solve it we generate a finite approximation of the
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stochastic process of random returns which is in the form of a scenario tree.

Multistage Stochastic Programming Formulation

Assuming a time horizon with T + 1 discrete points in time (i.e. T time periods),
we start with known holdings h0 and in a first-stage we decide how much to buy
and sell from every risky asset. The first-stage decisions are denoted by vector
X0 =

(
h+

0 ,x0,y0

)
and as in the single-period portfolio problem of section 5.1.1

they must satisfy the deterministic constraints of action space X0 which includes
constraints (5.1)-(5.4).

The main difference from the single-period portfolio problem of section 5.1.1
is that here we measure terminal wealth and CVaR at the end of the time horizon
which is at time T , and every time a random return vector Rt is revealed we take
recourse decisions Xt =

(
h+
t ,xt,yt

)
, which from (2.2) and (2.5) must satisfy the

following constraints:

h+
it = Rith

+
i(t−1) + xit − yit, a.s., i ∈ N , (5.10)

h+
0t = R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit, (5.11)

h+
it ≥ 0, i ∈ N ∪ {0}, (5.12)

xit, yit ≥ 0, i ∈ N , (5.13)

where as explained earlier in this chapter a.s. is an abbreviation for almost

surely and means that the constraints with which it is associated are satisfied with
probability one.

Constraints (5.10)-(5.13) define action space Xt, i.e. for t = 1, 2, . . . , T − 1 we
have:

Xt (Xt−1,Rt) =
{(
h+
t ,xt,yt

)
: (5.10)− (5.13) hold

}
(5.14)

Note that constraints of type (5.10) depend on random variablesRt as well as on
decisions Xt−1 and they must be satisfied with probability one. Further, decisions
g0 and g2 as well as terminal wealth

∑N
i=0 RiTh

+
i(T−1) need decisions XT−1 and the

realizations of random variablesRT .
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Figure 5.3 shows the timing of events and the stages in the multi-period portfo-
lio problem. Note that for a T -period planning horizon, the multi-period portfolio
selection problem with CVaR as a measure of risk has T + 1 stages.

time 0 1 2 T-1 T 

Stage 1 

… 

Stage 2 Stage T Stage T+1 

… 

h0 h1 h2 

(x0,y0) 

R1 R2 

(x1,y1) 

h0 
+ h1 

+ hT−1 hT 

RT 

(xT−1,yT−1) 

hT−1 
+ 

(g0,g2) 

Figure 5.3: Timing of events and stages in the multi-period portfolio selection problem

We are now ready to write the multistage stochastic programming formulation
of the portfolio selection problem.

If we expand the two-stage stochastic programming formulation (5.8) to include
the decisions as well as the constraints of the additional time periods, then this
becomes:

max
(h+

t ,xt,yt
,g0,g2)

γE

{
N∑
i=0

RiTh
+
i(T−1)

}
− (1− γ)g0 −

1− γ
1− β

E {g2}

s.t. h+
i0 = hi0 + xi0 − yi0, i ∈ N

h+
00 = h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0

h+
it = Rith

+
i(t−1) + xit − yit, i ∈ N , t ∈ T \ {0, T}, a.s.

h+
0t = R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit, t ∈ T \ {0, T}

g2 ≥ −g0 −
N∑
i=0

RiTh
+
i(T−1) +

N∑
i=0

hi0, a.s.

h+
it ≥ 0, i ∈ N ∪ {0}, t ∈ T \ {T}

xit, yit ≥ 0, i ∈ N , t ∈ T \ {T}

g0 free, g2 ≥ 0


(5.15)
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which is the multistage stochastic programming formulation of the portfolio
selection problem. In the above formulation, we say that decisions Xt are Ft-
measurable.

Scenario Trees

In order to render problem (5.15) tractable, we need to discretize the stochastic
process of random returns and generate a finite number of sample paths called sce-

narios. However, even after a discretization of the underlying stochastic process, we
are often faced with a very large number of scenarios, which still makes it difficult
to solve problem (5.15).

To circumvent this inefficiency, it is very useful to approximate the initial dis-
tribution of scenario paths with another distribution that is close to the original one,
carries less information and exhibits a tree structure. The resulting approximate dis-
tribution is called a scenario tree and apart from less information it makes sense as
events unfold in time. If the scenario tree is sufficiently small, then we can proceed
with numerical calculations.

Figure 5.4 shows a scenario tree with T +1 stages, KT+1 nodes and KT+1−KT

scenarios.
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…
 

KT+1, 

p KT-1+1 

p 
KT 

Figure 5.4: A scenario tree with T + 1 stages, KT+1 nodes and KT+1 −KT scenarios
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A scenario tree, such as the one shown in Figure 5.4, has levels that relate to
stages as follows: At level 1, we have a unique root node that defines a first stage and
is associated with decisions taken before the arrival of any exogenous information.
Then, at level 2 (this is after the arrival of information R1), stage 2 is defined,
where the number of nodes is determined by the number of realizations of vector
R1. Every node of stage 2 is connected with the root node by an arc. Generally,
at level t, stage t is defined. Every node at level t corresponds to a realization of
vectorRt−1, has a unique predecessor node at stage t− 1, called the ancestor node,
and is also connected with nodes at stage t+ 1, called the children nodes.

We are now ready to construct a scenario tree that will allow us to render prob-
lem (5.15) tractable. As explained above, every node n is associated with a stage
t and a realization of the random return vector. We let K be the set of all nodes
on the scenario tree, and Kt the set of nodes in stage t, such that K1 = {1} and
Kt = {Kt−1 + 1, ..., Kt} for tn > 1. Every node n is connected with a unique
parent node, which we denote with kn, and a number of children nodes for which
we define set C(n). The last-stage nodes are called the leaf nodes.

Note that the tree structure defined above allows us to specify the conditional
distribution of Rt given history (R1,R2, . . . ,Rt−1). That is, if we are currently at
node n, then we denote the conditional probability of transiting from node n to one
of its children nodes, say node m ∈ C(n), with ρnm and we have: ρnm ≥ 0 and∑

m∈C(n) ρnm = 1. Using the conditional probabilities, we define the probability
of a node n at stage t to be the product of all the conditional probabilities that are
associated with the transitions required to move from the root node to node n of
stage t, and we denote this probability with pn.

In this study, we assume that the original distribution is a group of scenario
paths and we use scenario tree construction algorithms to approximate the original
distribution with a new one that has less nodes and is in the form of a scenario tree.
These algorithms, which have been implemented both in a forward and a backward
fashion, use in every stage scenario reduction to delete a subset of the initial sce-
narios, updating at the same time the probabilities of the preserved scenarios with
the probabilities of the deleted ones. The subset of the preserved scenarios has
a prescribed cardinality and is closest to the original set of scenarios in terms of
a probability metric out of the family of Wasserstein metrics. For other scenario
generation methods see [25], [41] and [45].

Figure 5.5a shows a distribution with 100 scenario paths and figure 5.5b shows
the approximate distribution after applying backward scenario tree construction.
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(a) Initial distribution with 100 scenario paths (b) Approximate distribution after scenario tree
construction

Figure 5.5: A distribution of 100 scenarios on the left and its approximation on the right.

In line with the notation in [37], in Appendix B we provide a brief description
of how scenario reduction can be used in constructing scenario trees. Different
variants of scenario tree construction algorithms can be found in [43].

Deterministic Equivalent Linear Program

To proceed with numerical calculations in (5.15), we replace the expectation in
(5.15) with the sum of the probabilities of the last-stage nodes of the scenario tree
of Figure 5.4 and approximate stochastic problem (5.15) with the following deter-
ministic problem:
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max
(h+

n ,xn,yn

,g0,gn2 )

γ

KT+1∑
n=KT+1

pn

N∑
i=0

Rinh
+
ikn
− (1− γ)g0 −

1− γ
1− β

KT+1∑
n=KT+1

png
n
2

s.t. h+
i1 = hi0 + xi1 − yi1, i ∈ N

h+
01 = h00 − (1 + θ)

N∑
i=1

xi1 + (1− θ)
N∑
i=1

yi1

h+
in = Rinh

+
ikn

+ xin − yin, i ∈ N , n = 2, . . . , KT

h+
0n = R0nh

+
0kn
− (1 + θ)

N∑
i=1

xin + (1− θ)
N∑
i=1

yin, n = 2, . . . , KT

gn2 ≥ −g0 −
N∑
i=0

Rinh
+
ikn

+
N∑
i=0

hi0, n = KT + 1, . . . , KT+1

h+
in ≥ 0, i ∈ N ∪ {0}, n = 1, . . . , KT

xin, yin ≥ 0, i ∈ N , n = 1, . . . , KT

g0 free, gn2 ≥ 0, n = KT + 1, . . . , KT+1


(5.16)

Note that in problem (5.16) non-anticipativity is imposed by the scenario tree in
an implicit form.

Problem (5.16) is often referred to as the deterministic equivalent linear pro-

gram or simply the deterministic equivalent. Note that the decisions taken at any
node n ∈ K \ {1} depend on the decisions taken at parent node kn, thus creat-
ing a staircase structure, through which information is carried forward in time.
In stochastic programming, this structure allows us to decompose the determinis-
tic equivalent in a sequence of smaller problems, one for each node of the tree,
and solve it using decomposition algorithmic methods (see for example [32] for an
implementation of Benders decomposition and [44] for other decomposition algo-
rithms). However, in our problem, due to the CVaR constraints sharing one common
variable g0 (this is the one that gives us VaR) we cannot decompose problem (5.16)
and use decomposition algorithms to solve it. Instead, we solve the big deterministic
problem (5.16) using mathematical programming methods.

We conclude this section by discussing complexity issues. In the linear program
(5.16), we have a total of (KT+1 + 3NKT + 1) decision variables, (3N + 1)KT

from the first KT nodes and (KT+1 −KT + 1) from the leaf nodes, and (KT+1+

NKT ) constraints, (N + 1)KT from the first KT nodes and KT+1 −KT from the
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leaf nodes. That is, the size of problem (5.16) depends on the number of nodes as
well as on the number of assets.

5.2 The Naive Equally-weighted Portfolio

In this section, we formulate the equally-weighted portfolio model, where we take
buying and selling decisions so that the post-decision total wealth is equally split
among the assets (including cash). The reason why we study this specific type
of portfolio models is that in a recently published paper (see [22]) the equally-
weighted portfolio has worked considerably well as compared to a wide range of
models across several datasets.

To have the same amount of holdings in all assets after taking decisions (xt,yt),
we require that the following condition holds:

h+
it =

1

N + 1

N∑
j=0

h+
jt, i ∈ N ∪ {0} (5.17)

Combining (5.17) with equations (2.2), in period t + 1 we want to find the
non-negative feasible decisions

(
h+
t ,xt,yt

)
that satisfy the following system of

equations and inequalities:

h+
it = Rith

+
i(t−1) + xit − yit, i ∈ N

h+
0t = R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit

h+
it =

1

N + 1

N∑
j=0

h+
jt, i ∈ N ∪ {0}


(5.18)

where Rith
+
i(t−1) is known when we take decisions xt and yt, and for t = 0 it is

replaced by hi0.
In (5.18), we have a total of 3N + 1 decision variables and 2N + 2 equations

which gives us infinitely many solutions. Among these solutions, there might be
some which involve buying and selling the same assets. To avoid these transactions
which incur unnecessary transaction costs, we impose an objective which requires
that we maximize total wealth after taking the buying and selling decisions. Thus,
the equally-weighted portfolio problem can be expressed as the following linear
program:
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max
(h+

t ,xt,yt)

N∑
i=0

h+
it

s.t. h+
it = Rith

+
i(t−1) + xit − yit, i ∈ N

h+
0t = R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit

h+
it =

1

N + 1

N∑
j=0

h+
jt, i ∈ N ∪ {0}

h+
it ≥ 0, i ∈ N ∪ {0}

xit, yit ≥ 0, i ∈ N



(5.19)

Note that in problem (5.19) if we substitute the first N + 1 equations in the ob-
jective, then this will become equal to−θ

(∑N
i=1 xit +

∑N
i=1 yit

)
+
∑N

i=0Rith
+
i(t−1).

That is, in problem (5.19) we want to decide how to allocate our wealth between
the assets so that we pay the minimum transaction costs.

In this study, we consider two types of investment strategies to evaluate the
equally-weighted portfolio. First, a buy-and-hold strategy where we solve problem
(5.19) only once at the beginning of the investment horizon and hold the selected
portfolio until the end of the investment horizon without doing any rebalancing.
Second, a fixed-mix strategy where we assume the following decision rule: In each
time period, the portfolio is rebalanced so that the total available wealth is equally
split among the assets. Assuming a planning horizon of T periods, in the fixed-mix
strategy problem (5.19) needs to be solved T times. For a discussion about the
different investment strategies considered, we refer the reader to [31] and [64].
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Chapter 6

Separable Linear Approximations

In this chapter, we implement separable linear functional approximations for the
unknown value functions of the assets in the dynamic programming formulation of
the portfolio selection problem. Figure 6.1 shows a plot of a linear approximate
value function for an asset i at time t.

Note that a linear function is not a good fit for the true value functions of the
assets (these are concave due to CVaR) because the distance between the approx-
imate and the true value function becomes too large after increasing our holdings
beyond a certain amount. Further, as we will explain later on, in a separable linear
approximation every additional unit of wealth in the assets is valued the same thus
ignoring risk and resulting in portfolios that comprise of only one asset per time
period.

To achieve a better fit for the true value functions we impose upper bound con-
straints on the holdings of the risky assets (we assume that risky assets are only
available up to a certain amount). Here, from each approximate value function we
crop the linear part that is too far from the true value function when the holdings of
the assets increase beyond a certain amount and we keep the linear part which corre-
sponds to smaller amounts of holdings since this is closer to the true value function.
Unlike the simple linear approximation which ignores risk and leads to portfolios
that comprise of only asset per time period, here, although we do not directly ac-
count for risk since our value functions are still linear, imposing upper bounds on
how much we can hold in each asset leads to diversified portfolios which indirectly
accounts for risk as diversification can protect us from high losses. However, de-
spite the improvement achieved in the composition of the selected portfolios, we do
not know the actual position of these bounds. Further, by imposing upper bound

79
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constraints we cut off states which might be good but we never get the chance to
visit.

Note that the linear approximation methods are quite naive but due to their sim-
plicity they have been extensively used and have many applications in various fields
(see for example [61] for an application in wireless mesh networks, [62] for an
application in the batch dispatch problem, [66] for an application in resource al-
location problems and [80] for an application in an inventory allocation problem).
In the portfolio selection problem, however, they do not capture the nature of the
problem. Their role is solely expository and help us introduce the reader to the ap-
proximate dynamic programming methods. Nevertheless, in chapter 7, where we
consider separable piecewise linear approximations for the unknown value func-
tions (these are more appropriate for the portfolio selection problem as they capture
the expected risk attitude of an investor), we will see that the optimization problem
that we need to solve in every time period to take our rebalancing decisions resem-
bles the respective optimization problem of the bounded linear approximation.

This chapter is structured as follows: In section 6.1, we write the optimality
equations for the assumed separable linear approximate value functions. In sec-
tions 6.2 and 6.3, we write the linear programming formulations of the subproblems
of ADP for the assumed separable linear approximations without and with upper
bounds on the holdings of the risky assets and solve them. Then, in section 6.4 we
provide a discussion about the linear approximate methods. Finally, in section 6.5
we compute the gradients for Step 3 of the General ADP Algorithm 4.1.

: 

: 

linear approximate 

value function 

: true value 

function 

distance from true  

value function 

: upper bound 

on holdings 

V it 

h it 
+ 

Figure 6.1: Linear approximate value function of asset i in period t + 1 with an upper bound on its
holdings
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6.1 Linear Approximations for the Value Functions

Recall from (4.30) and (4.32) that in order to compute decisions (xt,yt) for t =

0, 1, . . . , T − 1 we use the following optimality equations:

Ṽ −0 (h0) = max
(x0,y0)∈A0

V̂0

(
h+

0

)
Ṽt−1

(
h+
t−1

)
= max

(xt,yt)∈At
V̂t
(
h+
t

)
, t = 1, 2, . . . , T − 1

 (6.1)

where for simplicity of notation here we have removed iteration indexing.
In this section, we implement separable linear functional approximations for

the unknown value functions of the assets. Specifically, we replace each V̂t
(
h+
t

)
in

(6.1) with a separable approximation of the following type:

V̂t
(
h+
t

)
=

N∑
i=0

V̂it
(
h+
it

)
, (6.2)

where we assume that every function V̂it
(
h+
it

)
is given by:

V̂it
(
h+
it

)
= uith

+
it , i ∈ N ∪ {0}, (6.3)

where uit > 0. Every slope uit can be understood as the value of holding one
monetary unit of asset i from period t+ 1 until the end of the time horizon.

Substituting the above approximation in optimality equations (6.1) we get:

Ṽ −0 (h0) = max
(x0,y0)∈A0

N∑
i=0

ui0h
+
i0

Ṽt−1

(
h+
t−1

)
= max

(xt,yt)∈At

N∑
i=0

uith
+
it , t = 1, 2, . . . , T − 1


(6.4)

Further, if we substitute every h+
it in (6.4) using transition equations (4.5), then

optimality equations (6.4) take the following form:
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Ṽ −0 (h0) = max
(x0,y0)∈A0

N∑
i=1

[ui0 − (1 + θ)]xi0 +
N∑
i=1

[−ui0 + (1− θ)] yi0

+
N∑
i=0

hi0

Ṽt−1

(
h+
t−1

)
= max

(xt,yt)∈At

N∑
i=1

[uit − (1 + θ)]xit +
N∑
i=1

[−uit + (1− θ)] yit

+
N∑
i=0

Rith
+
i(t−1), t = 1, 2, . . . , T − 1


(6.5)

In this thesis we consider two linear approximate schemes. First, we impose
no restrictions on how much we can hold in each asset. In the thesis, we will call
the General ADP Algorithm 4.1 after we replace V̂t

(
h+
t

)
with a sum of separable

linear functional approximations of type (6.3) and without any restrictions on the
holdings of the assets the Linear Approximate Dynamic Programming Algorithm

(LADP). Second, we impose upper bounds on the holdings of the risky assets (note
that we allow the investor to hold as much cash as he wants). In the thesis, we
will call the LADP algorithm with the extra upper bounds on the holdings of each
risky asset the Linear Approximate Dynamic Programming Algorithm with Upper

Bounds (LADP-UB). What changes in the latter approximate scheme is the feasible
region of the maximization problems in (6.5) which is expanded to include the upper
bound constraints on the holdings of the risky assets.

For a given realization Rt and a given state h+
t−1 an instance of (6.5) without

and with upper bounds is called respectively the subproblem of LADP and the sub-

problem of LADP-UB. Note that the main difference between the first subproblem,
where we compute decisions (x0,y0), and the other subproblems, where we com-
pute decisions (xt,yt) for t = 1, 2, . . . , T − 1, is constant Rith

+
i(t−1) which in the

objective and the constraints of the first subproblem is replaced by constant hi0.
Since the two types of subproblems are similar, here we solve the subproblem of
LADP for t = 1, 2, . . . , T − 1 and state the analogous solution for t = 0.
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6.2 The Subproblem of LADP

The optimality equations in (6.5) consist of many maximization problems, each
one associated with the respective decision variables (xt,yt). These are called the
subproblems of LADP. In this section, we write the linear programming formulation
of every subproblem of LADP as a linear program and solve it.

Linear Programming Formulation of the Subproblem of LADP

Using action space (4.14), the optimization problem in (6.5) for t = 1, 2, . . . , T − 1

is given by:

max
(xt,yt)

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

s.t. − xit + yit ≤ Rith
+
i(t−1), i ∈ N

N∑
i=1

xit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

N∑
i=1

yit

xit, yit ≥ 0, i ∈ N


(6.6)

where kit = uit− (1 + θ)u0t and lit = −uit + (1− θ)u0t are the coefficients of
the buying and selling variables in the objective. Coefficient kit can be understood
as the value of buying one monetary unit of asset i in period t+ 1 with (1 + θ) units
of cash and will be referred to as the buying slope. Coefficient lit can be understood
as the value of selling one monetary unit of asset i in period t + 1, which increases
cash by (1− θ) units and will be referred to as the selling slope.

Buying and Selling Slopes

Before we proceed with solving problem (6.6), we will first derive the properties of
the buying and selling slopes and discuss what these mean to our problem. These
properties will be of great value in understanding and solving problem (6.6) and are
summarized in the following Lemma.

Lemma 6.2.1. Let kit and lit be respectively the buying and selling slopes of asset

i in period t+1. Then, the following statements hold:

1. If kit > 0, then lit < −2θu0t and |lit| > kit.

2. If lit > 0, then kit < −2θu0t and |kit| > lit.
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3. −2θu0t ≤ kit ≤ 0 if and only if −2θu0t ≤ lit ≤ 0.

Proof

1. Suppose kit > 0. Then,

kit = uit − (1 + θ)u0t > 0⇒ uit > (1 + θ)u0t

Using the above inequality we have:

lit = −uit + (1− θ)u0t < − (1 + θ)u0t + (1− θ)u0t = −2θu0t < 0

It is easy to verify that lit = −kit − 2θu0t, from which |lit| > kit follows
immediately.

2. Suppose lit > 0. Then,

lit = −uit + (1− θ)u0t > 0⇒ uit < (1− θ)u0t

Using the above inequality we have:

kit = uit − (1 + θ)u0t < (1− θ)u0t − (1 + θ)u0t = −2θu0t < 0

It is easy to verify that kit = −lit − 2θu0t, from which |kit| > lit follows
immediately.

3. Suppose −2θu0t ≤ kit ≤ 0. Then,

−2θu0t ≤ kit ≤ 0⇔

−2θu0t ≤ uit − (1 + θ)u0t ≤ 0⇔

(1− θ)u0t ≤ uit ≤ (1 + θ)u0t ⇔

−2θu0t ≤ −uit + (1− θ)u0t ≤ 0⇔

−2θu0t ≤ lit ≤ 0 �
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Remark 6.1. Due to the relationships between the slopes, it is easy to verify the
following:

1. kit = 0⇔ uit = (1 + θ)u0t

2. lit = 0⇔ uit = (1− θ)u0t

3. kit = lit = 0⇔ uit = u0t = 0

However, as we will explain later on, the values of the slopes uit depend on the
random returns, which are positive and differ both from one asset to another and
from one iteration to another. Therefore, it is unlikely that buying and selling slopes
will ever take the above values.

Considering now the relationships between kit and lit from Lemma 6.2.1, we
define the following categories (sets) of assets:

1. Buy-assets: Those assets for which kit > 0 and lit < 0. These assets are
candidates for buying. Later on, we will see that some of these assets may be
considered for selling in order to buy another asset of the same category.

2. Sell-assets: Those assets for which lit > 0 and kit < 0. Later on, we will see
that the Sell-assets with positive holdings are sold and converted to cash.

3. Neutral-assets: Those assets for which −2θu0t ≤ lit, kit ≤ 0. Later on, we
will see that these assets may be considered for selling in order to buy a Buy-
asset.

Let now j? be the Buy-asset with the highest buying slope, which is given by
j? = {arg maxi∈N kit : kit > 0} and is empty if set Buy-assets is empty. We in-
troduce a new category (set) which we call Sell-to-buy-assets and includes all Buy-
and Neutral-assets for which 1−θ

1+θ
kj?t + lit > 0 holds. The new set overlaps with

Neutral-assets and some of the Buy-assets and, as we will see later on, the Sell-to-
buy-assets with positive holdings will be sold in order to buy asset j?. From this
point on, we will call the transactions between Sell-to-buy-assets and asset j? the
sell-to-buy transactions.

Figure (6.2) illustrates the categories of the assets on a pie chart and summarizes
the conditions that the assets of each category satisfy.
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Sell-

assets 

Cash  Neutral-
assets 

Buy-

assets 

Categories of assets 

Category Conditions 

Buy-assets kit>0, lit<0 

Sell-assets kit<0, lit>0 

Neutral-assets −2θu0t≤ kit, lit ≤0 

candidates for  

Sell-to-buy-assets 
: 

Figure 6.2: Categories of assets and conditions

Solution to the Subproblem of LADP

We are now ready to solve problem (6.6). For this, we will need the following sets:

1. I = Sell-assets &
(
Rith

+
i(t−1) > 0

)
: All Sell-assets that have positive hold-

ings (these assets will be sold).

2. J = Sell-to-buy-assets &
(
Rith

+
i(t−1) > 0

)
: All Sell-to-buy-assets that have

positive holdings (these assets will be sold in order to buy asset j?).

We propose the following algorithm:
Begin with setting xit, yit := 0 for every asset i ∈ N , assign risky assets to one

of the non-overlapping categories of Figure 6.2, pick asset j? by setting:

j? :=

{
arg max

i∈N
kit : kit > 0

}
, (6.7)

and initialize sets I and J . This is Step 0.
If set I is non-empty, then take every asset i of this set, sell Rith

+
i(t−1) units and

update cash by setting:

yit := Rith
+
i(t−1), ∀i ∈ I

h0t := R0th
+
0(t−1) + (1− θ)

∑
i∈I

Rith
+
i(t−1)

(6.8)

This is Step 1.
Next, after Step 1, if there exist an asset j? and cash, then we use all cash to buy

1
1+θ

h0t units of asset j? by setting:
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xj?t :=
1

1 + θ
h0t

h0t := 0

(6.9)

This is Step 2.
Finally, if there exists an asset j? and set J is non-empty, then take every asset

i ∈ J , sell Rith
+
i(t−1) units and with the resulting cash buy 1−θ

1+θ

∑
i∈J Rith

+
i(t−1)

units of asset j? by setting:

yit := Rith
+
i(t−1), ∀i ∈ J

xj?t := xj?t +
1− θ
1 + θ

∑
i∈J

Rith
+
i(t−1)

(6.10)

This is Step 3.
Algorithm 6.1 summarizes the proposed algorithm to solve problem (6.6).

Algorithm 6.1 Allocation Algorithm for Linear Approximation

Input: kit, lit ∀i ∈ N , h0t, Rith
+
i(t−1) ∀i ∈ N ∪ {0}

Step 0. Initialization:
assign risky assets to one of the non-overlapping categories of Figure 6.2
set xit, yit := 0 ∀i ∈ N
set j? := {arg maxi∈N kit : kit > 0}
set I := Sell-assets &

(
Rith

+
i(t−1) > 0

)
set J := Sell-to-buy-assets &

(
Rith

+
i(t−1) > 0

)
Step 1. Sell Sell-assets and update cash:
if I 6= ∅ then

set yit := Rith
+
i(t−1) ∀i ∈ I

set h0t := h0t + (1− θ)
∑

i∈I Rith
+
i(t−1)

end

Step 2. Buy with cash:
if (j? 6= ∅) & (h0t > 0) then

set xj?t := 1
1+θ

h0t

set h0t := 0
end

Step 3. Perform sell-to-buy-transactions:
if (j? 6= ∅) & (J 6= ∅) then
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set yit := Rith
+
i(t−1) ∀i ∈ J

set xj?t := xj?t + 1−θ
1+θ

∑
i∈J Rith

+
i(t−1)

end

Output: xit, yit ∀i ∈ N

Theorem 6.2.2. Algorithm 6.1 solves problem (6.6) optimally.

Proof

We begin this proof by setting all variables to zero and examining the first N
constraints of problem (6.6) which for every asset i ∈ N give us:

− xit + yit ≤ Rith
+
i(t−1)

In Lemma 4.3.1, we showed that we will never simultaneously sell and buy the
same risky asset, i.e. we will have either x?it = 0 or y?it = 0, or x?it = y?it = 0.
Looking at (6.2), we notice that setting xit = 0 implies yit ≤ Rith

+
i(t−1), while the

latter two cases are redundant. Therefore, for every i ∈ N inequality −xit + yit ≤
Rith

+
i(t−1) can be replaced by yit ≤ Rith

+
i(t−1) and problem (6.6) becomes:

max
(xt,yt)

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

s.t. yit ≤ Rith
+
i(t−1), i ∈ N

N∑
i=1

xit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

N∑
i=1

yit

xit, yit ≥ 0, i ∈ N


(6.11)

In problem (6.11), every yit is constrained from above by Rith
+
i(t−1). Thus, for

every yit with lit > 0 as well as Rith
+
i(t−1) > 0 the optimal decision is to set it to

its upper bound. That is, for every i ∈ I the optimal decisions are x?it = 0 and
y?it = Rith

+
i(t−1). After we fix xit and yit for every i ∈ I, problem (6.11) becomes:
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max
(xt,yt)

∑
i∈N\I

kitxit +
∑
i∈N\I

lityit +
∑
i∈I

litRith
+
i(t−1) +

N∑
i=0

uitRith
+
i(t−1)

s.t. yit ≤ Rith
+
i(t−1), i ∈ N \ I∑

i∈N\I

xit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

∑
i∈I

Rith
+
i(t−1) +

1− θ
1 + θ

∑
i∈N\I

yit

xit, yit ≥ 0, i ∈ N


(6.12)

Looking now at the budget constraint of problem (6.12), we notice that xit’s are
constrained from above by constant 1

1+θ
R0th

+
0(t−1) + 1−θ

1+θ

∑
i∈I Rith

+
i(t−1) as well as

by yit’s, where every incremental increase in a yit increases the upper bound of the
sum of xit’s by 1−θ

1+θ
units.

Thus, a positive contribution in the objective can be achieved if we increase
xj?t, where j? is the asset with the highest positive buying slope, by the constant
amount of the budget constraint. That is, initially for asset j? the optimal decisions
are yj?t = 0 and xj?t = 1

1+θ
R0th

+
0(t−1) + 1−θ

1+θ

∑
i∈I Rith

+
i(t−1).

Further, a positive contribution in the objective can be achieved if we continue
simultaneously increasing xj?t and yit of any other asset i 6∈ I if Rith

+
i(t−1) > 0

and 1−θ
1+θ

kj?t + lit > 0. Thus, for every i ∈ J the optimal decision is to sell as
much as possible, i.e we will have x?it = 0 and y?it = Rith

+
i(t−1), and for asset j? the

optimal decision is to continue buying it until it becomes x?j?t = 1
1+θ

R0th
+
0(t−1) +

1−θ
1+θ

∑
i∈I∪J Rith

+
i(t−1). Note that if we do not consider simultaneously increasing

xj?t and yit’s, then we would end up with a suboptimal solution for problem (6.6).
For every other i ∈ N \ {I ∪ J } we will have y?it = 0, while for every other

i ∈ N \ {j?} we will have x?it = 0. Note that if all k′its are negative, then there
exists no asset j? and we will have x?it = 0 for every i ∈ N . �

Considering the above, for t = 1, 2, . . . , T − 1 the optimal decisions of problem
(6.6) are given by:

y?it =

Rith
+
i(t−1), if i ∈ I ∪ J

0, if i ∈ N \ (I ∪ J )
(6.13)

x?it =


R0th

+
0(t−1)

+(1−θ)
∑
i∈I∪J Rith

+
i(t−1)

1+θ
, if i = j?

0, if i 6= j?
(6.14)
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Note that if we replace Rith
+
i(t−1) with hi0 in (6.13) and (6.14) we will obtain

the optimal decisions for time t = 0.
We will now provide an example to illustrate how we perform buying and selling

in Algorithm 6.1.

Example 6.1. Suppose we have three stocks with buying slopes, selling slopes,
current holdings and cash as shown in Figure 6.3.

Figure 6.4 shows the updated wealth in all assets after applying Step 1 of Al-
gorithm 6.1, where, due to the positive selling slope of stock 3, we sell h3t units of
stock 3. This increases cash by (1− θ)h3t units.

Figure 6.5 shows the updated wealth in all assets after applying Step 2 of Al-
gorithm 6.1, where we use all cash to buy stock 1 (this is the asset with the highest
positive buying slope). This increases the holdings of stock 1 by h0t+(1−θ)h3t

1+θ
units.

Finally, figure 6.6 shows the updated wealth in all assets after applying Step 3

of Algorithm 6.1, where, assuming that k1t + 1−θ
1+θ

l2t > 0, we sell h2t units of stock
2 to buy 1−θ

1+θ
h2t units of stock 1.

stock 1: stock 2: 

k 1t 

0 

l 1t 

0 

k 2t 

0 

0 

k 3t 

0 

0 

stock 3: 

l 2t l 3t 

cash: h 1t h 2t h 3t 

h 1t h 2t h 3t 

h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
+ 

h 0t 

Figure 6.3: Buying and selling slopes vs current holdings before allocation
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stock 1: stock 2: 

k 1t 

0 

l 1t 

0 

k 2t 

0 

0 

k 3t 

0 

0 

stock 3: 

l 2t l 3t 

cash: h 1t h 2t 

h 1t h 2t 

h 0t + (1‒ )  h 3t 

h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
+ 

Figure 6.4: Step 1. Sell stock 3 and update cash

stock 1: stock 2: 

k 1t 

0 

l 1t 

0 

k 2t 

0 

0 

k 3t 

0 

0 

stock 3: 

l 2t l 3t 

cash: h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
+ 

h 2t 

h 2t 

(1+)  
h 1t +  

• 

• 

h 0t + (1‒ )  h 3t 

Figure 6.5: Step 2. Buy stock 1 with cash



CHAPTER 6. SEPARABLE LINEAR APPROXIMATION 92

stock 1: stock 2: 

k 1t 

0 

l 1t 

0 

k 2t 

0 

0 

k 3t 

0 

0 

stock 3: 

l 2t l 3t 

cash: h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
+ 

+ (1‒)  h 2t 

(1+)  
h 1t +  

• 

• 

h 0t + (1‒ )  h 3t 

Figure 6.6: Step 3. Sell stock 2 and buy stock 1

Complexity

The linear program (6.6), which we solve with Algorithm 6.1, has a total of 2N de-
cision variables and N + 1 constraints excluding the 2N non-negativity constraints.

In Algorithm 6.1, it takes us O(N) time to find the assets that have positive
selling slopes, O(N) time to find the best buying asset j? and O(N) time to detect
the Sell-to-buy-assets. This gives us a time complexity of O(N) for Algorithm 6.1.
For S T -period realizations of the stochastic process of random returns, the above
gives us a polynomial time complexity of S ·T ·O(N) +

∑S
s=1 slogs for the LADP

algorithm (see section 4.3 for a discussion on the complexity of the General ADP
algorithm).

6.3 The Subproblem of LADP-UB

As in section 6.2, in this section we write the linear programming formulation of
each subproblem of LADP-UB as a linear program and solve it.
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Linear Programming Formulation of the Subproblem of LADP-
UB

In each period t, we impose upper bounds on how much we can hold in each risky
asset by requiring that:

h+
it ≤ w0, i ∈ N (6.15)

where w0 = α
∑N

i=0 hi0 and simply tells us that in every risky asset we cannot
have more than a fraction α of the total initial wealth and parameter α takes values
in [0,∞). Note that for very high values of parameter α, constraints of type (6.15)
would be of no use as they would allow us to have in each risky asset as much
wealth as we want. Further, note that for very low values of parameter α, we would
end up keeping most of our wealth, if not all, tied up in cash. To avoid the above
two extremes, in our experiments in chapter 8 we select values in range (0, 1) that
are neither too high nor too low.

Regarding cash, we leave it free assuming that we can have as much cash as we
want.

If we substitute in (6.15) h+
it = Rith

+
i(t−1) + xit − yit from (4.5), then (6.15)

becomes:

xit − yit ≤ w0 −Rith
+
i(t−1), i ∈ N (6.16)

We will see later on that constraint (6.16) forces us to sell those assets for
which we hold more than the upper bound w0, i.e. those assets for which we have
Rith

+
i(t−1) > w0, and allows us to buy those assets for which we hold less than the

upper bound w0, i.e. those assets for which we have hit = Rith
+
i(t−1) < w0.

After introducing constraints (6.16), what changes in the dynamic programming
formulation is action space (4.14), which is now expanded to include the new con-
straints and is given by:

At = {(xt,yt) : (4.11)− (4.13), (6.16) hold} (6.17)

Using action space (6.17), the subproblem of LADP-UB is given by:
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max
(xt,yt)

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

s.t. − xit + yit ≤ Rith
+
i(t−1), i ∈ N

xit − yit ≤ w0 −Rith
+
i(t−1), i ∈ N

N∑
i=1

xit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

N∑
i=1

yit

xit, yit ≥ 0, i ∈ N



(6.18)

where kit = uit − (1 + θ)u0t and lit = −uit + (1− θ)u0t were called in chapter
6 respectively the buying and selling slopes.

Buying and Selling Slopes

Slopes kit and lit satisfy the properties of Theorem 6.2.1 and as in section 6.2 above,
the relationships between the buying and selling slopes allow the classification of
the assets into one of the categories (sets) of Figure 6.2 which are the Buy-assets, the
Sell-assets, the Neutral-assets and Cash. Further, as in section 6.2, we will denote
the best buying asset with j? and will be given by j? = {arg maxi∈N kit : (kit > 0)

& (hit < w0)}. The main difference from the best buying asset j? of the simple
linear approximation is that here we need to change to a new asset j? whenever its
holdings become equal to upper bound w0.

Solution to the Subproblem of LADP-UB

We are now ready to solve problem (6.18).
Using hit = Rith

+
i(t−1), we will need the following sets:

• I = Sell-assets & (hit > 0): As in chapter 6, this set contains all Sell-assets
that have positive holdings (these assets will be sold).

• F = (Buy-assets ∪ Neutral-assets) & (hit > w0): All Buy- and Neutral-assets
whose current holdings exceed upper bound w0. As we will see, these assets
are sold in order to satisfy the new constraints (6.16) and will be called the
Forced-to-sell-assets. Note that after fixing the holdings of these assets, some
of them may become Sell-to-buy-assets so we might need to continue selling
them.
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We propose the following algorithm:
Begin with setting xit, yit := 0 for every asset i ∈ N , assign risky assets to one

of the non-overlapping categories of Figure 6.2, initialize sets I and F and pick
asset j? by setting:

j? :=

{
arg max

i∈N
kit : (kit > 0) & (hit < w0)

}
(6.19)

This is Step 0.
If sets I and F are non-empty, then take all assets in sets I and F , sell respec-

tively hit and hit − w0 units and update cash by setting:

yit := hit, ∀i ∈ I

yit := hit − w0, ∀i ∈ F

h0t := h0t + (1− θ)
∑
i∈I

hit + (1− θ)
∑
i∈F

(hit − w0)

(6.20)

This is Step 1.
Next, after Step 1, if there exist an asset j? and cash, then use cash to buy

min
(

1
1+θ

h0t, w0 − hj?t
)

units of asset j? and update cash by setting:

xj?t := min

(
1

1 + θ
h0t, w0 − hj?t

)
h0t := h0t − (1 + θ) min

(
1

1 + θ
h0t, w0 − hj?t

) (6.21)

Every time asset j? is filled up, i.e. whenever min
(

1
1+θ

h0t, w0 − hj?t
)

= w0−hj?t,
pick another asset j? using (6.19) and continue buying the new asset j?, if any.

This is Step 2 and it terminates either when there exists no other asset j? or when
we run out of cash.

Then, after Step 2 and given that there exists an asset j?, if there exist Buy- or
Neutral-assets with positive holdings such that amount 1−θ

1+θ
kj?t+ lit is positive, then

among these assets pick the one that maximizes this amount by setting:

i? :=

{
arg max

i∈N
lit : (lit ≤ 0) & (hit > 0) &

(
1− θ
1 + θ

kj?t + lit > 0

)}
,

(6.22)
and simultaneously increase assets i? and j? by setting:
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yi?t := min

(
hi?t,

1 + θ

1− θ
(w0 − hj?t)

)
,

xj?t := xj?t +
1− θ
1 + θ

min

(
hi?t,

1 + θ

1− θ
(w0 − hj?t)

)
,

hi?t := hi?t − xi?t,

hj?t := hj?t + yj?t

(6.23)

If the minimization in (6.23) is given by the first term (this is when we run out of
holdings in asset i?), then pick another asset i? using (6.22) and continue simultane-
ously selling the new asset i? and buying asset j? using (6.23). If the minimization
in (6.23) is given by the second term (this is when asset j? is filled up), then pick an-
other asset j? using (6.19) and continue simultaneously selling asset i? and buying
the new asset j? using (6.23).

This is Step 3 and it terminates when there exists no other asset i? or j?.
Algorithm 6.2 summarizes the proposed algorithm to solve problem (6.18).

Algorithm 6.2 Allocation Algorithm for Linear Approximation with Strict Control
of Flows

Input: w0, kit, lit ∀i ∈ N , hit ∀i ∈ N ∪ {0}

Step 0. Initialization:
assign risky assets to one of the non-overlapping categories of Figure 6.2
set xit, yit := 0 ∀i ∈ N
set I := Sell-assets & (hit > 0)
set F := (Buy-assets ∪ Neutral-assets) & (hit > w0)
set j? := {arg maxi∈N kit : (kit > 0) & (hit < w0)}

Step 1. Sell Sell-assets and Forced-to-sell-assets and update cash:
if (I 6= ∅) ∨ (J 6= ∅) then

set yit := hit ∀i ∈ I
set yit := hit − w0 ∀i ∈ F
set h0t := h0t + (1− θ)

∑
i∈I hit + (1− θ)

∑
i∈F hit

end

Step 2. Buy with cash:
while (j? 6= ∅) & (h0t > 0) do

set xj?t := min
(

1
1+θ

h0t, w0 − hj?t
)

set h0t := h0t − (1 + θ) min
(

1
1+θ

h0t, w0 − hj?t
)

if min
(

1
1+θ

h0t, w0 − hj?t
)

= w0 − hj?t then
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set j? := {arg maxi∈N kit : (kit > 0) & (hit < w0)}
set hj?t := w0

else
set hj?t := hj?t + 1

1+θ
h0t

set h0t := 0
end

end

Step 3. Perform sell-to-buy-transactions:
set i? :=

{
arg maxi∈N lit : (lit ≤ 0) & (hit > 0) &

(
1−θ
1+θ

kj?t + lit > 0
)}

while (j? 6= ∅) & (i? 6= ∅) do
set yi?t := yi?t + min

(
hi?t,

1+θ
1−θ (w0 − hj?t)

)
set xj?t := xj?t + 1−θ

1+θ
min

(
hi?t,

1+θ
1−θ (w0 − hj?t)

)
set hi?t := hi?t − yi?t
set hj?t := hj?t + xj?t
if min

(
hi?t,

1+θ
1−θ (w0 − hj?t)

)
= hi?t then

set i? :=
{

arg maxi∈N lit : (lit ≤ 0) & (hit > 0) &
(

1−θ
1+θ

kj?t + lit > 0
)}

else
set j? := {arg maxi∈N kit : (kit > 0) & (hit < w0)}

end
end

Output: xit, yit ∀i ∈ N

Theorem 6.3.1. Algorithm 6.2 solves problem (6.18) optimally.

Proof

As in the proof of Theorem 6.2.2, we begin with setting all variables to zero and
replacing −xit + yit ≤ hit with yit ≤ hit for every i ∈ N , where hit = Rith

+
i(t−1).

Further, recall that for every i ∈ I (these are the Sell-assets with positive holdings)
the optimal decisions are y?it = hit and x?it = 0.

Looking now at the new constraints: xit − yit ≤ w0 − hit, we examine the
following cases:

1. w0 < hit: Setting xit = 0 gives us yit ≥ hit − w0, while cases yit = 0 and
xit = yit = 0 lead to contradictions. That is, for each asset i whose current
holdings exceed w0 we must sell at least hit − w0 units. Therefore, for every
asset i ∈ F inequality xit − yit ≤ w0 − hit can be replaced by xit = 0 and
yit ≥ hit − w0.
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2. w0 ≥ hit: Setting yit = 0 gives us xit ≤ w0 − hit, while cases xit = 0 and
xit = yit = 0 are redundant. That is, when current holdings are less than w0

we can buy at most w0 − hit. Therefore, for every i ∈ N \ F , inequality
xit − yit ≤ w0 − hit can be replaced by xit ≤ w0 − hit.

Considering the above and after fixing xit and yit for every i ∈ I ∪ F , problem
(6.18) becomes:

max
(xt,yt)

∑
i∈N\(I∪F)

kitxit +
∑
i∈N\I

lityit +
∑
i∈I

lithit +
N∑
i=0

uithit

s.t.
∑

i∈N\(I∪F)

xit ≤
1

1 + θ
h0t +

1− θ
1 + θ

∑
i∈I

hit +
1− θ
1 + θ

∑
i∈N\I

yit

hit − w0 ≤ yit ≤ hit, i ∈ F

0 ≤ yit ≤ hit, i ∈ N \ (I ∪ F)

0 ≤ xit ≤ w0 − hit, i ∈ N \ (I ∪ F)


(6.24)

In problem (6.24), for every i ∈ F we replace variable yit with a new variable
ȳit so that the left bound of the new variable becomes zero, i.e. we set yit = ȳit +

hit − w0, and rewrite problem (6.24) as follows:

max
(xt,yt)

∑
i∈N\(I∪F)

kitxit +
∑

i∈N\(I∪F)

lityit +
∑
i∈F

litȳit +
∑
i∈I

lithit

+
∑
i∈F

lit (hit − w0) +
N∑
i=0

uithit

s.t.
∑

i∈N\(I∪F)

xit ≤
1

1 + θ
h0t +

1− θ
1 + θ

(∑
i∈I

hit +
∑
i∈F

(hit − w0)

)

+
1− θ
1 + θ

∑
i∈N\(I∪F)

yit +
1− θ
1 + θ

∑
i∈F

ȳit

0 ≤ ȳit ≤ w0, i ∈ F

0 ≤ yit ≤ hit, i ∈ N \ (I ∪ F)

0 ≤ xit ≤ w0 − hit, i ∈ N \ (I ∪ F)



(6.25)

Looking now at the budget constraint of problem (6.25), we notice that xit’s are
constrained from above by constant 1

1+θ
h0t +

1−θ
1+θ

(∑
i∈I hit +

∑
i∈F (hit − w0)

)
as
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well as by yit’s and ȳit’s, where every incremental increase in a yit or ȳit increases
the upper bound of the sum of xit’s by 1−θ

1+θ
units.

Thus, a positive contribution in the objective can be achieved if we increase
xj?t, where j? is the asset with the highest positive buying slope, by the constant
amount of the budget constraint. However, due to xj?t ≤ w0 − hj?t, initially for as-
set j? the optimal decisions are yj?t = 0 and xj?t = min

(
1

1+θ
h0t + 1−θ

1+θ

(∑
i∈I hit

+
∑

i∈F (hit − w0)
)
, w0 − hj?t

)
. If the minimum buying amount comes from asset

j? and there exists another asset j?, then the optimal decision is to continue buying
the new asset j? in the above manner as this will further increase the objective. Buy-
ing terminates either when we have used up the resources of the budget constraint
or when there exists no other asset j?.

Further, a positive contribution in the objective can be achieved if we continue
simultaneously increasing xj?t and a yi?t (or a ȳi?t), where i? is the asset i ∈ N \ I
with the highest selling slope and positive holdings, if kj?t + 1−θ

1+θ
li?t > 0. However,

due to xj?t ≤ w0 − hj?t, initially the optimal decision for asset i? is to increase
yi?t (or ȳi?t) by min

(
hi?t,

1+θ
1−θ (w0 − hj?t)

)
, while for asset j? initially the optimal

decision is to increase xj?t by 1−θ
1+θ

min
(
hi?t,

1+θ
1−θ (w0 − hj?t)

)
(note that asset j?

might have been used previously to buy with cash). If the minimum selling amount
comes from asset i? and there exists another asset i?, then the optimal decision is
to continue selling the new asset i? and buying asset j? in the above manner as this
will further increase the objective. If the minimum selling amount comes from asset
j? and there exists another asset j?, then the optimal decision is to continue selling
asset i? and buying the new asset j? in the above manner as this will further increase
the objective. Note that if we do not consider simultaneously increasing xj?t and
yi?t’s (or ỹi?t’s), then we would end up with a suboptimal solution for problem
(6.25).

Note that if all k′its are negative, then there exists no asset j? and we will have
x?it = 0 for every i ∈ N . Further, note that for every i ∈ F we will have y?it =

ỹ?it + hit − w0. �

Considering the above, after solving problem (6.18), the following new sets
arise:

1. C: All assets j? that were used for buying. We assume that all assets in this
set are sequenced in the order in which they were used, i.e. in a decreasing
order in terms of their buying slopes, and asset c is the last asset in the set.
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2. D: All assets i? that were sold in order to buy assets j? and here will be
simply called the Sell-to-buy-assets. We assume that all assets in this set are
sequenced in the order in which they were used, i.e. in a decreasing order in
terms of their selling slopes, and asset d is the last asset in the set. Note that
this set may contain assets that were previously Forced-to-sell-assets.

3. F̄ : All Forced-to-sell-assets from which we sold exactly hit−w0 units. Note
that D ∩ F̄ = ∅.

Given the above sets, we will now provide a sketch of the optimal solution of
problem (6.18) which, after solving problem (6.18), breaks down into one of the
following cases:

1. Case 1: No buying occurred, i.e. C = ∅, either because there was no as-
set j? or because we had no cash resources (including cash that comes from
Sell-assets and Forced-to-sell-assets) and no Sell-to-buy-assets. The optimal
decisions are given by:

y?it =


hit, if i ∈ I

hit − w0, if i ∈ F̄

0, if i 6∈ I ∪ F̄

(6.26)

x?it = 0, ∀i ∈ N (6.27)

Note that if buying did not occur because we had no cash resources, then sets
I and F̄ are empty.

2. Case 2: Buying occurred, i.e. C 6= ∅, but we stopped buying because:

(a) Sub-case 2.1: we filled up all Buy-assets in set C either only with cash
resources (including cash that comes from Sell-assets and Forced-to-
sell-assets) or with cash resources and Sell-to-buy-assets. The optimal
decisions are given by:



CHAPTER 6. SEPARABLE LINEAR APPROXIMATION 101

y?it =



hit, if i ∈ (I ∪ D) \ {d}

hit − w0, if i ∈ F̄
1+θ
1−θ
∑

i∈C (w0 − hit)− 1
1−θh0t

−
∑

i∈(I∪D)\{d} hit −
∑

i∈F̄ (hit − w0) , if i = d

0, if i 6∈ I ∪ F̄ ∪ D
(6.28)

x?it =

w0 − hit, if i ∈ C

0, if i 6∈ C
(6.29)

Variable y?dt in (6.28) is given by how much we bought in total using the
Buy-assets of set C minus the cash resources that we used for buying and
which come from cash, Sell-assets, Forced-to-sell-assets as well as from
the other Sell-to-buy-assets of set D (where note that the total buying
amount and cash are projected to asset d using respectively projection
coefficients 1+θ

1−θ and 1
1−θ of Table 6.2). Further, note that set D is empty

and asset d does not exist if the Buy-assets of set C were filled up without
using any Sell-to-buy-assets.

(b) Sub-case 2.2: we run out of resources which are either only cash (in-
cluding cash that comes from Sell-assets and Forced-to-sell-assets) or
cash and Sell-to-buy-assets. The optimal decisions are given by:

y?it =


hit, if i ∈ I ∪ D

hit − w0, if i ∈ F̄

0, if i 6∈ I ∪ F̄ ∪ D

(6.30)

x?it =



w0 − hit, if i ∈ C \ {c}
1

1+θ
h0t + 1−θ

1+θ

∑
i∈I∪D hit + 1−θ

1+θ

∑
i∈F̄

(hit − w0)−
∑

i∈C\{c} (w0 − hit) , if i = c

0, if i 6∈ C

(6.31)

Variable x?ct in (6.31) is given by the cash resources that we used for
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buying and which come from cash, Sell-assets, Forced-to-sell-assets as
well as from Sell-to-buy-assets minus how much we bought from the
other Buy-assets of set C (where note that cash and the other resources
are transformed to asset c using respectively transformation coefficients

1
1+θ

and 1−θ
1+θ

of Table 6.1). Further, note that setD is empty if we stopped
buying without using any Sell-to-buy-assets.

We will now provide an example to illustrate how we perform selling and buying
using Algorithm 6.2.

Example 6.2. Suppose we have three stocks with buying slopes, selling slopes,
holdings and cash as shown in figure 6.7, where we assume that in every stock we
cannot have more than b units of wealth.

Figure 6.8 shows the updated holdings of the assets after applying Step 1 of
Algorithm 6.2, where we sell Sell-asset stock 3 and Forced-to-sell-asset stock 2.
This increases cash by (1− θ)h3t + (1− θ) (h2t − b) (monetary) units.

Figure 6.9 shows the updated holdings of the assets after applying Step 2 of
Algorithm 6.2, where we use all cash to buy stock 1 since this is the only Buy-asset
that we can buy. This increases the holdings of stock 1 by h0t+(1−θ)h3t+(1−θ)(h2t−b)

1+θ

(monetary) units.
Lastly, figure 6.10 shows the updated holdings of the assets after applying Step

3 of Algorithm 6.2, where, assuming that k1t + 1−θ
1+θ

l2t > 0, we sell stock 2 until we
fill up stock 1. This brings up the holdings of stock 1 to level b and decreases the
holdings of stock 2 by 1+θ

1−θ

(
b− h1t − h0t+(1−θ)h3t+(1−θ)(h2t−b)

1+θ

)
(monetary) units.
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Complexity

The linear program (6.18), which we solve with Algorithm 6.2, has a total of 2N

decision variables and a total of 2N+1 constraints excluding the 2N non-negativity
constraints.

In Algorithm 6.2, it takes us O(N) time to find the assets that have positive
selling slopes,O(N) time to divert cash and the wealth in Sell-assets and Forced-to-
sell-assets to the Buy-assets and O(N logN) time to sort the assets in a decreasing
order with respect to their buying slopes (note that we sort the assets only once and
we take the best buying asset j? from the top of the list and the best selling asset
i? from the bottom of the list). This gives us a time complexity of O(N logN)

for Algorithm 6.2. For S T -period realizations of the stochastic process of random
returns, the above gives us a polynomial time complexity of S · T · O(N logN) +∑S

s=1 slogs for the LADP-UB algorithm (see section 4.3 for a discussion on the
complexity of the General ADP algorithm).

6.4 Discussion

Note the following:

1. In Algorithms 6.1 and 6.2, none of the steps requires that we first visit the
previous steps. For example, it might be the case that while solving problem
(6.18) with Algorithm 6.2 there exist neither Sell-assets with positive holdings
nor Forced-to-sell-assets but we have cash which we use for buying in Step
2. Also, it might be the case that there exist neither Sell-assets with positive
holdings nor Forced-to-sell-assets and we have no cash, but there exist assets
i? and j? between which we perform sell-to-buy transactions in Step 3.

2. In order to transform a risky asset into cash, we need to multiply its holdings
with (1− θ), while the reverse transformation requires that we multiply cash
with 1

1+θ
. Further, to transform one risky asset into another one, we need to

multiply the holdings of the first with 1−θ
1+θ

. These are called the transformation

coefficients and are summarized in Table 6.1.

Type of asset risky cash
risky 1−θ

1+θ
(1− θ)

cash 1
1+θ

-

Table 6.1: Transformation coefficients
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3. In order to have one additional unit of a risky asset, we either need to sell 1+θ
1−θ

units of another risky asset or use 1+θ units of cash. Further, in order to have
one more unit of cash we need to sell 1

1−θ units of a risky asset. These are
called the projection coefficients and are summarized in Table 6.2. Note that
the projection coefficients are the inverse of the transformation coefficients.

Type of asset risky cash
risky 1+θ

1−θ
1

1−θ
cash 1 + θ -

Table 6.2: Projection coefficients

4. While solving problems (6.6) and (6.18) using respectively Algorithms 6.1
and 6.2, if there exist more than one Buy-assets that have simultaneously the
highest buying slope and thus can become the best buying asset j?, then we
have multiple optimal allocations. For the sake of diversification, we resolve
this tie by requiring that wealth is equally split among all the assets that have
the same highest positive buying slope. However, due to the random returns, it
is unlikely that the buying slopes of any assets will ever take the same values.

5. While solving problem (6.6) with Algorithm 6.1, we have at most one best
buying asset j? which results in the selected portfolios comprising of only
one asset. While solving problem (6.18) with Algorithm 6.2, due to the upper
bound constraints on the holdings of the assets, the selected portfolios com-
prise of more than one asset. The number of assets in the selected portfolios
depends on the value of parameter α. The smaller the value of parameter α
the more the assets in the selected portfolios.

6. Changing the order of buying in Algorithm 6.1 would make no difference
to the optimal solution since we buy only one asset. Changing the order of
buying in Algorithm 6.2 could result in suboptimal allocations.

6.5 Gradient Information

In sections 6.2 and 6.3, we solved respectively the subproblem of LADP and the
subproblem of LADP-UB, where the optimal value of each of the subproblems
gives us Ṽt−1. Further, recall that we have removed iteration indexing to simplify
notation.
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As explained in section 4.4, V̂ s−1
t−1 and Ṽ s

t−1 are used to estimate value function
approximations V̂ s

t−1 through an update function U
(
V̂ s−1
t−1 ,∆Ṽ

s
i(t−1)

)
. Here, due to

the simplicity of the assumed separable linear value function approximations, where
the only parameters that need to be estimated are the slopes of the assets, our update
function U

(
V̂ s−1
t−1 ,∆Ṽ

s
i(t−1)

)
takes the following form of simply smoothing on the

previous slope estimate ûs−1
i(t−1):

ûsi(t−1) =
(
1− αsi(t−1)

)
ûs−1
i(t−1) + αsi(t−1)∆Ṽ

s
i(t−1), (6.32)

where ûs−1
i(t−1), ∆Ṽ s

i(t−1) and ûsi(t−1) are respectively the old slope, the observed

slope and the new slope, and term αsi(t−1) is a quantity between 0 and 1 known
as the stepsize. For convergence, a stepsize sequence {αsit}s=1,2,... must satisfy the
following conditions:

αsit ≥ 0, s = 1, 2, ..., inf

inf∑
s=1

αsit = inf

inf∑
s=1

(αsit)
2 < inf


(6.33)

The first condition requires that stepsizes are non-negative. The second con-
dition requires that the algorithm does not stop prematurely. The third condition
requires that stepsizes converge. For a review of the stepsize rules that exist in the
literature we refer the reader to [33] and chapter 6 of [65].

Computing the observed slope ∆Ṽ s
i(t−1) of asset i for t < T is straightforward

and can be done via substituting the optimal solutions of the subproblems of LADP
and LADP-UB in their objectives. For a derivation of the gradients in the linear
approximate methods, we refer the reader to Appendix C. Here, we only provide
a summary of the observed slopes for the different types of assets. To compute
observed slopes ∆Ṽ s

i(T−1) we use (4.41).
Tables 6.3 and 6.4 summarize the observed slopes ∆Ṽ s

i(t−1) for the different
types of assets in LADP and LADP-UB respectively.
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Type of asset i Buy-assets = ∅ Buy-assets 6= ∅
Sell-asset (1− θ) ûs−1

0t Rs
it

1−θ
1+θ

ûs−1
j?t R

s
it

Sell-to-buy-asset - 1−θ
1+θ

ûs−1
j?t R

s
it

Cash ûs−1
0t Rs

0t
1

1+θ
ûs−1
j?t R

s
it

other asset ûs−1
it Rs

it

Table 6.3: Observed slopes ∆Ṽ si(t−1) in LADP

Remark 6.2. Note the following:

• Through the observed slopes of Tables 6.3 and 6.4, the returns of the assets
are passed from the current time period of the current iteration to the previous
time period of the next iteration in a multiplicative manner, which means that
it takes T iterations for the LADP algorithms to pass the information from the
last time period back to the first one.

• As we have previously explained in section 4.4, the gradients that we obtain
from the terminal value function using (4.41) are positive. Due to this and the
way returns are communicated to previous time periods through the observed
slopes of Tables 6.3 and 6.4, if we start with positive initial slope estimates
then it easy to verify by induction that all slope estimates will take positive
values in all iterations of the LADP algorithms.
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û
s−

1
d
t
R
s it

û
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û
s−

1
d
t
R
s it

1
−
θ

1
+
θ
û
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Chapter 7

Separable Piecewise Linear
Approximation

In chapter 6, we considered separable linear approximations for the unknown value
functions in the dynamic programming formulation of the portfolio selection prob-
lem.

As explained in chapter 6, the simple linear approximation does not provide a
good fit for the true value functions since when the holdings of the assets increase
beyond a certain amount their distance from the linear approximate value functions
becomes too large. Further, in this approximation every additional unit of wealth in
a risky asset is valued the same which results in selecting portfolios that comprise
of only one asset per time period. To improve the simple linear approximation we
imposed upper bounds on the holdings of the risky assets. In this manner, we ex-
cluded points from the approximate linear value functions of the risky assets that
were far from the true value functions and we had more diversified portfolios per
time period. However, as explained in chapter 6, excluding points from the approx-
imate value functions entails excluding states which might be good but we never
visit.

In this chapter, we consider separable piecewise linear concave approximations
for the unknown value functions of the risky assets. These approximate functions
are closer to the true value functions (see Figure 7.1) and as a result they capture
the expected attitude of the investor towards risk (the investor becomes risk-averse).
The piecewise linear approximate functions allow wealth to flow naturally from
one asset to another without us needing to impose diversification by using upper
bound constraints. As far as cash is concerned, we assume that the respective value

110
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functions follow the simple linear approximation.

: 

: 

linear approximate 

value function 

: true value 

function 

distance from true  

value function 

: 
piecewise linear 

approximate value 

function 

V it 

h it 
+ 

Figure 7.1: Piecewise linear approximate value function of risky asset i in period t+ 1

In the literature, there exist several separable piecewise linear approximate dy-
namic programming algorithms for problems with either continuous state spaces
(see for example [34] and [35] for applications in fleet management, [36] for ap-
plications in inventory and distribution problems and [60] for an application in the
mutual fund cash problem), or discrete state spaces (see tutorial [67] for a theoretical
discussion and references therein for applications). What all these approximations
differ in is the update rule of the value functions, which is nevertheless defined so
that the monotonicity of the slopes in the approximate functions is preserved in all
iterations.

To our knowledge, the problems considered in the existing applications of ap-
proximate dynamic programming with piecewise linear value functions are low-
dimensional. However, in large-scale problems with continuous state spaces, the
number of dimensions together with the number of slopes in each dimension in-
crease significantly the size of the underlying subproblem of ADP and as a result
the computational effort to solve it. To circumvent this difficulty, in this study, we
propose an update rule that allows us to keep control over the number of slopes in
the piecewise linear value functions at every iteration of the dynamic programming
algorithm.

This chapter is structured as follows: In section 7.1, we provide representations
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of the approximate piecewise linear value functions. Then, in section 7.2 we for-
mulate the subproblem of ADP as a linear program and solve it. After solving the
subproblem of ADP, in section 7.3, we propose an update rule for the piecewise
linear value functions that preserves the monotonicity of the slopes (for piecewise
linear concave functions this requires that slopes are monotone decreasing with re-
spect to state) and maintains the number of slopes below a specified threshold in
every approximate piecewise linear value function.

7.1 Piecewise Linear Approximations for the Value
Functions

In this section, we implement separable piecewise linear concave functional approx-
imations for the unknown value functions. Specifically, after removing iteration in-
dexing to simplify notation, we replace every V̂t

(
h+
t

)
in optimality equations (4.30)

and (4.32) with a separable approximation of the following type:

V̂t
(
h+
t

)
=

N∑
i=0

V̂it
(
h+
it

)
(7.1)

where for every risky asset i function V̂it
(
h+
it

)
is a piecewise linear concave

function of m slopes. Every piecewise linear function V̂it
(
h+
it

)
can be represented

by a finite set of ordered breakpoints {〈uκit, aκit〉 : κ ∈M}, where:

• M = {1, 2, . . . ,m} is the index set of slopes.

• uκit is the κth slope of the piecewise linear function and due to the concavity
assumption we have u1

it ≥ u2
it ≥ . . . ≥ umit > 0.

• aκit is the breakpoint where slope changes from uκ−1
it to uκit. That is, the slope

in segment
[
aκit, a

κ+1
it

)
is uκit. We assume that a1

it ≡ 0 and am+1
it ≡ ∞ and that

the breakpoints are ordered in such a way so that 0 ≡ a1
it < a2

it < . . . < amit <

am+1
it .

Regarding cash, we assume that V̂0t

(
h+

0t

)
= u0th

+
0t, where u0t > 0.

In the discussion that follows, we use Figure 7.2 as a guide to our notation.



CHAPTER 7. SEPARABLE PIECEWISE LINEAR APPROXIMATION 113

h it 
+ h it 

+ 

V it 
^ 

u it 

u it 
1 

a  =0 it 
1 a  =0 it 

1 a it 
2 a it 

3 

u it 
2 

u it 
3 

a it 
2 a it 

3 

u it 
1 

u it 
2 

u it 
3 

a 

• 

V  (  ) it 
^ 

a 

a 
• • 

u it 
1 

(     -     )  u it 
2 a it 

2 

u it 
2 

(     -     )  u it 
3 a it 

3 

u it 
3 a 

V  (  ) it 
^ 

a = u it 
3 a + + 

d it 
3 

d  =0 it 
1 

• 

d it 
2 
• 

d it 
3 • 

d it 
2 

• • • • 

u it 
1 

(     -     )  u it 
2 a it 

2 
u it 

2 
(     -     )  u it 

3 a it 
3 

Figure 7.2: Equivalent representations of a piecewise linear function with 3 slopes

In line with [17], we express every piecewise continuous linear function V̂it
(
h+
it

)
in the following form:

V̂it
(
h+
it

)
= uκith

+
it + dκit, for aκit ≤ h+

it ≤ aκ+1
it , κ ∈M (7.2)

where dκit is a constant, its value is given by dκit = V̂it (0) and d1
it ≡ 0. Note

that due to the concavity assumption we have dκit ≤ dκ+1
it for all κ ∈ M. Further,

for κ > 1 from the continuity assumption at h+
it = aκit we have uκ−1

it aκit + dκ−1
it =

uκita
κ
it + dκit and constants dκit can be computed by the following recursion:

dκit = aκit
(
uκ−1
it − uκit

)
+ dκ−1

it , κ > 1

d1
it = 0

}
(7.3)

where from backward substitution we get:

dκit =
κ∑
j=2

(
uj−1
it − u

j
it

)
ajit, k > 1 (7.4)

If we now substitute (7.4) in (7.2), then the latter becomes:
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V̂it
(
h+
it

)
= uκith

+
it +

κ∑
j=2

(
uj−1
it − u

j
it

)
ajit, for aκit ≤ h+

it ≤ aκ+1
it , κ ∈M, (7.5)

Note that (7.5) gives us the cumulative area under the slopes-holdings plots.
In Figure 7.2, we provide an example of a piecewise linear continuous function
V̂it
(
h+
it

)
with 3 slopes (left plot) and its equivalent representation as the cumulative

area in the slopes-holdings plot (right plot), assuming that h+
it = a where a > a3

it.
Note that constant d3

it is equal to the sum of the areas of the rectangles that are above
the rectangle with area u3

ita.
Substituting separable approximation (7.2) in optimality equations (4.30) and

(4.32) using transition equations (4.5), we can write the optimality equations in the
following form:

Ṽ −0 (h0) = max
(x0,y0)∈A0

N∑
i=1

V̂i0 (hi0 + xi0 − yi0)

+ V̂00

(
h00 − (1 + θ)

N∑
i=1

xi0 + (1− θ)
N∑
i=1

yi0

)

Ṽt−1

(
h+
t−1

)
= max

(xt,yt)∈At

N∑
i=1

V̂it

(
Rith

+
i(t−1) + xit − yit

)
+ V̂0t

(
R0th

+
0(t−1) − (1 + θ)

N∑
i=1

xit + (1− θ)
N∑
i=1

yit

)



(7.6)

In (7.6), V̂it
(
h+
it

)
is of type (7.5) for every i ∈ N and V̂0t

(
h+

0t

)
= u0th

+
0t.

From this point on, we will call in the thesis the General ADP Algorithm 4.1 af-
ter we replace V̂t

(
h+
t

)
with separable piecewise linear functional approximations

of type (7.5) the Piecewise Linear Approximate Dynamic Programming Algorithm

(PLADP).
Further, as in chapter 6, the maximization problems in (7.6) for t = 0 and

t > 0 in (7.6) are similar and differ only in the current holdings which are given by
constant hi0 if t = 0 and constant Rith

+
i(t−1) if t > 0.



CHAPTER 7. SEPARABLE PIECEWISE LINEAR APPROXIMATION 115

7.2 The Subproblem of PLADP

The optimality equations of (7.6) consist of many maximization problems, each
one associated with the respective decision variables (xt,yt). These are called the
subproblems of PLADP. In this section, we show that each subproblem of PLADP
can be written as a linear program. Specifically, in subsection 7.2.1, we discuss how
we can represent piecewise linear curves in linear programs with upper and lower
bounds on the variables. Then, in subsection 7.2.2, we write the linear programming
formulation of the subproblem of PLADP and finally we solve it in subsection 7.2.3.

7.2.1 Representing Piecewise Linear Functions in Optimization
Problems

In this section, we consider two examples to show how piecewise linear curves can
be represented in optimization problems. In Example 9.1, we represent a piecewise
linear curve using integer variables and explain why these can be avoided when
we have diseconomies of scale. In Example 9.2, we consider two risky assets with
piecewise linear concave value functions and cash with a linear value function, and,
using the representation of Example 9.1, we explain how the sum of the three func-
tions can be represented.

Example 7.1. Suppose we have the piecewise linear curve of Figure 7.3.
To model the non-linear function of Figure 7.3, we express variable x as the sum

of three new variables x1, x2 and x3, each associated with a marginal cost/reward,
which in Figure 7.3 is given by the respective slope. The new variables are such
that:

x = x1 + x2 + x3,

where:

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 5,

0 ≤ x3 ≤ 2

and the total cost/reward is given by:

f(x) = 5x1 + 2x2 + 4x3
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Figure 7.3: A piecewise linear curve with 3 slopes

For the new variables we require that x1 = 2 whenever x2 > 0 and x2 = 5

whenever x3 > 0. To model these conditional statements, we introduce binary
variables δ1 and δ2 and define them as follows:

δ1 =

{
1, if x1 at its upper bound
0, otherwise

δ2 =

{
1, if x2 at its upper bound
0, otherwise

Using binary variables δ1 and δ2, the upper and lower bounds of variables x1, x2

and x3 change as follows:

2δ1 ≤ x1 ≤ 2,

5δ2 ≤ x2 ≤ 5δ1,

0 ≤ x3 ≤ 2δ2

In the special case when we have diseconomies of scale, where the slopes are in-
creasing/decreasing for a minimization/maximization problem, the binary variables
can be ignored. Consider, for example, a maximization problem where the slopes
of Figure 7.3 are 5, 4 and 3, which makes the objective:
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f(x) = 5x1 + 4x2 + 3x3

Due to the decreasing slopes and maximization, we first fill up x1 before we start
increasing x2, and we first fill up x2 before we start increasing x3. Thus, x2 > 0

only if x1 is at its upper bound so δ1 is not needed and x3 > 0 only if x2 is at its
upper bound so δ2 is not needed. An analogous reasoning applies for minimization
problems, where the slopes are monotone increasing.

Example 7.2. Suppose we have the two piecewise linear curves and the linear curve
of Figure 7.4 and let:

• f(z + 5) be the value function of risky asset 1, where constant 5 gives us
the current holdings of the asset, z gives us the change in the holdings of the
asset after the transactions and z + 5 gives us the holdings of the asset after
the transactions, for which we require that z + 5 ≥ 0.

• h(w + 11) be the value function of risky asset 2, where constant 11 gives us
the current holdings in the asset, w gives us the change in the holdings of the
asset after the transactions and w + 11 gives us the holdings of the asset after
the transactions, for which we require that w + 11 ≥ 0.

• d(u + 1) be the value function of cash, where constant 1 gives us the current
cash, u gives us the change in cash after the transactions and u + 1 gives us
the cash after the transactions, for which we require that u + 1 ≥ 0. We
assume that an increase/decrease in the current holdings of the risky assets
decreases/increases cash by the same amount, i.e. u = −(z + w).
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Figure 7.4: Maximizing the sum of two piecewise linear curves with 3 slopes each and one linear
curve

Suppose now that we want to maximize the sum of the three functions, which is
denoted with g(z, w, u) and is given by:

g(z, w, u) = f(z + 5) + h(w + 11) + d(u+ 1)

Following example 9.1, where we describe how a piecewise linear curve can be
represented, for variable z we introduce three new variables z1, z2 and z3, one for
each slope, such that zκ gives us by how much holdings of asset 1 change after the
transaction in slope segment κ and z + 5 = z1 + z2 + z3 + 5. Thus, if we buy, for
example, 3 units of asset 1, i.e. z = 3 > 0, then there will be no change in slope
segment 1, an increase of 2 units in slope segment 2 and an increase of 1 unit in
slope segment 3. That is, z1 = 0, z2 = 2 and z3 = 1. Similarly, if we sell 3 units
of asset 1, i.e. z = −3 < 0, then there will be no change in slope segment 3, a
decrease of 1 unit in slope segment 2 and a decrease of 2 units in slope segment 1.
That is, z1 = −2, z2 = −1 and z3 = 0.

Further, we decompose each zκ into its positive and negative part as follows:

z+
κ = (zκ)

+ ,

z−κ = (zκ)
− ,
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where z+
κ and z−κ give us respectively the increase and the decrease in slope

segment κ and zκ = z+
κ − z−κ . Following the above example, an increase of 3 units

in asset 1 will give us z+
1 = z−1 = 0, z+

2 = 2, z−2 = 0, and z+
3 = 1, z−3 = 0.

Similarly, a decrease of 3 units in asset 1 will give us z+
1 = 0, z−1 = 2, z+

2 = 0,
z−2 = 1, and z+

3 = z−3 = 0.
Considering the above, in Table 7.1 we summarize the lower and upper bounds

for the new variables z+
κ and z−κ for κ = 1, 2, 3. Note that we always have z+

1 = 0

since slope segment 1 will still be filled up after an increase and z−3 = 0 since
slope segment 3 will still be empty after a decrease. Also, note that slope segment
2 is neither filled up nor empty and as a result both z+

2 and z−2 have positive upper
bounds.

z
z+ z−

z+1 = 0 0 ≤ z−1 ≤ 4

0 ≤ z+2 ≤ 2 0 ≤ z−2 ≤ 1

z+3 ≥ 0 z−3 = 0

Table 7.1: Upper and lower bounds for variables z−κ and z+κ

In a similar manner, we repeat the above analysis for asset 2. Thus, for variable
w we introduce three new variables w1, w2 and w3, such that wκ gives us by how
much holdings of asset 2 change after the transaction in slope segment κ and w +

11 = w1 + w2 + w3 + 11. If we decompose each wκ into its positive and negative
part as follows:

w+
κ = (wκ)

+ ,

w−κ = (wκ)
− ,

where w+
κ and w−κ give us respectively the increase and the decrease in slope

segment κ and wκ = w+
κ −w−κ , then Table 7.2 gives us the lower and upper bounds

for the new variables w−κ and w+
κ . Note that we always have w+

1 = w+
2 = 0 since

slope segments 1 and 2 will still be filled up after an increase. Also, note that due to
the current holdings of asset 2 expanding to all three slopes, all w−s have positive
upper bounds.
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w
w+ w−

w+
1 = 0 0 ≤ w−

1 ≤ 6

w+
2 = 0 0 ≤ w−

2 ≤ 3

w+
3 ≥ 0 0 ≤ w−

3 ≤ 2

Table 7.2: Upper and lower bounds for variables w−
κ and w+

κ

Note that in Tables 7.1 and 7.2 the sum of the upper bounds of the negative parts
of the new variables give us the respective constant terms and this ensures that z+5

and w + 11 are non-negative.
Further, to ensure that cash is always positive we need to have u+ 1 ≥ 0. Given

that u = −(z + w), we get:

z+
1 + z+

2 + z+
3 + w+

1 + w+
2 + w+

3 ≤ 1 + z−1 + z−2 + z−3 + w−1 + w−2 + w−3 ,

(7.7)
which is the budget constraint.
We are now ready to express the objective, which is given by function g(z, w, u),

in terms of z+
κ ’s, z−κ ’s, w+

κ ’s and w−κ ’s.
Note the following:

f(z + 5) = f(z1 + z2 + z3 + 5) = 10z1 + 5z2 + 3z3 + f(5)

= 10z+
1 + 5z+

2 + 3z+
3 − 10z−1 − 5z−2 − 3z−3 + f(5),

h(w + 11) = h(w1 + w2 + w3 + 11) = 9w1 + 6w2 + 2w3 + h(11)

= 9w+
1 + 6w+

2 + 2w+
3 − 9w−1 − 6w−2 − 2w−3 + h(11),

where f(z + 5), for example, is given by the value of f(·) at constant 5 plus the
terms that give us the changes in each slope segment. Note that f(5) and h(11) can
be computed by f(5) = 4× 10 + 5 = 45 and h(11) = 6× 9 + 3× 6 + 2× 2 = 76

since f(·) and h(·) are piecewise linear functions with given slopes.
Further, considering that u = −(z + w), d(u+ 1) is given by

d(u+ 1) = u+ d(1) = −z − w + d(1)

= −z1 − z2 − z3 − w1 − w2 − w3 + d(1)

= −z+
1 − z+

2 − z+
3 + z−1 + z−2 + z−3

− w+
1 − w+

2 − w+
3 + w−1 + w−2 + w−3 + d(1),
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where d(1) = 1× 1 = 1.
Considering the above, objective g(z, w, u) is given by:

g(z, w, u) = f(z + 5) + h(w + 11) + d(u+ 1)

= 9z+
1 + 4z+

2 + 2z+
3 + 8w+

1 + 5w+
2 + w+

3

− 9z−1 − 4z−2 − 2z−3 − 8w−1 − 5w−2 − w−3 + 122

(7.8)

7.2.2 Linear Programming Formulation of the Subproblem of
PLADP

In this section, we formulate the subproblem of PLADP as a linear program. Specif-
ically, we begin with writing the linear programming formulation of the problem of
Example 9.2, where we had 2 risky assets and cash. Then, in an analogous man-
ner, we expand this problem to include N risky assets and cash, where we define
the decision variables, write the constraints and the objective and finally state the
analogous linear programming formulation.

Example 9.2. (Continued) Combining objective (7.8) with the upper and lower
bounds from Tables (7.1) and (7.2), as well as with inequality (7.7), the linear pro-
gramming formulation of the problem described in Example 9.2 above is as follows:

max
(z+κ ,w

+
κ )

4z+
2 + 2z+

3 + w+
3 − 9z−1 − 4z−2 − 8w−1 − 5w−2 − w−3 + 122

s.t. z+
2 + z+

3 + w+
3 ≤ 1 + z−1 + z−2 + w−1 + w−2 + w−3

0 ≤ z−1 ≤ 4

0 ≤ z+
2 ≤ 2

0 ≤ z−2 ≤ 1

0 ≤ w−1 ≤ 6

0 ≤ w−2 ≤ 3

0 ≤ w−3 ≤ 2

z+
3 , w

+
3 ≥ 0



(7.9)

where note that we fixed the zero variables z+
1 , z−3 , w+

1 and w+
2 .

Figure 7.5 shows a piecewise linear value function with 3 slopes as well as the
decisions associated with each slope and is used as a guide to the discussion that
follows.
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Figure 7.5: Decision variables for a piecewise linear value function with 3 slopes

Decision Variables

In each maximization problem of (7.6), we want to maximize the sum of N sep-
arable piecewise linear functions V̂it

(
Rith

+
i(t−1) + xit − yit

)
and linear function

V̂0t

(
R0th

+
0(t−1) − (1 + θ)

∑N
i=1 xit +(1− θ)

∑N
i=1 yit

)
. Considering Lemma 4.3.1,

according to which when one of xit and yit is positive then the other one is zero,
and thatRith

+
i(t−1) is a constant when we solve each maximization problem of (7.6),

every variable xit can be replaced by m new variables xκit, one for each slope, such
that:

xit =
m∑
κ=1

xκit, (7.10)

where variables xκit are analogous to the positive parts of the variables in Exam-
ple 9.2.

Similarly, every variable yit can be replaced bym new variables yκit, one for each
slope, such that:
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yit =
m∑
κ=1

yκit (7.11)

where variables yκit are analogous to the negative parts of the variables in Exam-
ple 9.2.

Note that the main difference between the above and Example 9.2 is the lin-
ear function V̂0t

(
R0th

+
0(t−1) − (1 + θ)

∑N
i=1 xit + (1− θ)

∑N
i=1 yit

)
of cash. Here

the input is constant R0th
+
0(t−1) plus a linear combination of the decision variables,

where the coefficients involve transaction cost parameter θ.
From the above, our decision variables can be summarized as follows:

• xκit, i ∈ N , κ ∈ M: the increase, i.e. how much we buy, in slope segment κ
of risky asset i in period t+ 1

• yκit, i ∈ N , κ ∈ M: the decrease, i.e. how much we sell, in slope segment κ
of risky asset i in period t+ 1

Constraints

Recall that the lower and the upper bounds of the variables in Example 9.2 depend
on the current holdings of the assets. In an analogous manner, to derive the upper
and lower bounds for xκit and yκit we will use slopes π(i,+) and π(i,−), which give
us the positions of the right and left slope at current holdings Rith

+
i(t−1), are called

respectively the active right and left slope of asset i and are defined as follows:

π(i,+) =
{
κ+ 1 ∈M : aκ+1

it ≤ Rith
+
i(t−1) < aκ+2

it , i ∈ N
}
, (7.12)

π(i,−) =
{
κ ∈M : aκit < Rith

+
i(t−1) ≤ aκ+1

it , i ∈ N
}
, (7.13)

where we assume that π(i,−) = 0 if Rith
+
i(t−1) = 0. As for the relationship

between π(i,+) and π(i,−), note that when holdings Rith
+
i(t−1) lie between break-

points, i.e. when aκit < Rith
+
i(t−1) < aκ+1

it , then π(i,+) = π(i,−), otherwise
π(i,+) = π(i,−) + 1. For example, in Figure 7.5 we have a2

it < Rith
+
i(t−1) < a3

it

and π(i,+) = π(i,−) = 2.
We are now ready to write the upper and lower bounds of our decision variables.
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Recall that in Example 9.2 the positive parts of the variables were only mean-
ingful at the right of the constants, while the negative parts were only meaningful
at the left of the constants. In a similar manner, here xκit’s are only meaningful for
slopes that lie at the right of holdings Rith

+
i(t−1), i.e. for κ ≥ π(i,+), and satisfy the

following constraints:

xκit = 0, for κ ≤ π(i,+)− 1 (7.14)

0 ≤ xκit ≤ aκ+1
it −Rith

+
i(t−1), for κ = π(i,+) (7.15)

0 ≤ xκit ≤ aκ+1
it − aκit, for κ ≥ π(i,+) + 1 (7.16)

Further, yκit’s are only meaningful for slopes that lie at the left of holdings
Rith

+
i(t−1), i.e. for κ ≤ π(i,−), and satisfy the following constraints:

0 ≤ yκit ≤ aκ+1
it − aκit, for κ ≤ π(i,−)− 1 (7.17)

0 ≤ yκit ≤ Rith
+
i(t−1) − a

κ
it, for κ = π(i,−) (7.18)

yκit = 0, for κ ≥ π(i,−) + 1 (7.19)

Constraints (7.14)-(7.19) simply tell us that at the left of holdings Rith
+
i(t−1)

we only sell and at the right of holdings Rith
+
i(t−1) we only buy (see Figure 7.5).

Also, note that, as in Example 9.2, when a slope is neither filled up nor empty the
respective upper bounds of xκit and yκit are both positive. In Figure 7.5, for example,
this is true for the decisions of the 2nd slope. Further, as in Example 9.2, it is easy to
verify that the sum of the upper bounds of constraints (7.17)-(7.19) give us current
holdingsRith

+
i(t−1), which means that for every risky asset we cannot sell more than

what we currently have and this ensures non-negativity of holdings h+
it .

We are now ready to write the action space At, which in the piecewise linear
approximation contains the upper and lower bounds of the variables that are due to
the piecewise linear functions as well as the inequalities in the setAt of section 4.1,
which are as follows:

− xit + yit ≤ Rith
+
i(t−1), i ∈ N , (7.20)



CHAPTER 7. SEPARABLE PIECEWISE LINEAR APPROXIMATION 125

(1 + θ)
N∑
i=1

xit − (1− θ)
N∑
i=1

yit ≤ R0th
+
0(t−1), (7.21)

xit, yit ≥ 0, i ∈ N , (7.22)

If we plug (7.10) and (7.11) in (7.20), then from (7.17)-(7.19) and due to xκit ≥ 0

for all κ we have:

− xit + yit ≤
m∑
κ=1

yκit ≤ Rith
+
i(t−1),

i.e. inequality (7.20) is always true given the upper bounds of the variables in
(7.14)-(7.19) and thus is not needed.

Further, it is easy to verify that given the lower bounds of the variables in (7.14)-
(7.19) the non-negativity inequalities in (7.22) are always true and thus are also not
needed.

Regarding the budget constraint, after substituting (7.10) and (7.11) in (7.21),
the latter becomes:

N∑
i=1

m∑
κ=1

xκit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

N∑
i=1

m∑
κ=1

yκit, (7.23)

Thus, as in Example 9.2, where the sum of the positive parts of the variables is
constrained by the sum of the negative parts from above, in a similar manner here
the sum of xκit’s is constrained by the sum of yκit’s from above. The only difference
is the transaction costs.

From the above, xκit’s and yκit’s are feasible when they satisfy (7.14)-(7.19) and
(7.23) and thus the action space At in the piecewise linear approximation is given
by:

At = {(xκit, yκit) : (7.14)− (7.19) and (7.23) hold, i ∈ N , κ ∈M} (7.24)

Objective

Similarly to Example 9.2, using xit =
∑m

κ=1 x
κ
it and yit =

∑m
κ=1 y

κ
it each piecewise

linear function V̂it
(
Rith

+
i(t−1) + xit − yit

)
in (7.6) can be written as the sum of the

following terms:
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• V̂it
(
Rith

+
i(t−1)

)
: This is the value of the function at current holdingsRith

+
i(t−1),

which as explained earlier is treated as a constant, and can be computed by the
respective cumulative area in the slopes-holdings plot (see figure 7.5) using:

V̂it

(
Rith

+
i(t−1)

)
=

π(i,−)−1∑
κ=1

uκit
(
aκ+1
it − aκit

)
+ u

π(i,−)
it

(
Rith

+
i(t−1) − a

π(i,−)
it

)
(7.25)

• V̂it (
∑m

κ=1 x
κ
it −

∑m
κ=1 y

κ
it): This is the change in value V̂it

(
Rith

+
i(t−1)

)
after

we take decisions xκit and yκit and can be computed by the respective areas in
the slopes-holdings plot using:

V̂it

(
m∑
κ=1

xκit −
m∑
κ=1

yκit

)
=

m∑
κ=1

(uκitx
κ
it − uκityκit) (7.26)

If we now expand the first N terms of the objective in (7.6) using (7.25) and
(7.26), and substitute the value function of cash with:

u0t

(
R0th

+
0(t−1) − (1 + θ)

N∑
i=1

m∑
κ=1

xκit + (1− θ)
N∑
i=1

m∑
κ=1

yκit

)
,

then the objective in (7.6) becomes:

N∑
i=1

m∑
κ=1

uκit (uκitx
κ
it − uκityκit) +

N∑
i=1

π(i,−)−1∑
κ=1

(
aκ+1
it − aκit

)
+

N∑
i=1

u
π(i,−)
it

(
Rith

+
i(t−1)

−aπ(i,−)
it

)
+ u0t

(
R0th

+
0(t−1) − (1 + θ)

N∑
i=1

m∑
κ=1

xκit + (1− θ)
N∑
i=1

m∑
κ=1

yκit

)
(7.27)

After some algebra, objective (7.27) takes the following form:

N∑
i=1

m∑
κ=1

uκit (kκitx
κ
it + lκity

κ
it) +

N∑
i=1

π(i,−)−1∑
κ=1

(
aκ+1
it − aκit

)
+

N∑
i=1

u
π(i,−)
it

(
Rith

+
i(t−1) − a

π(i,−)
it

)
+ u0tR0th

+
0(t−1),

(7.28)

where kκit = uκit − (1 + θ)u0t and lκit = −uκit + (1 − θ)u0t are respectively the
κth buying and selling slopes of asset i in period t + 1. For the active right and left
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slopes uπ(i,+)
it and uπ(i,−)

it , slopes kπ(i,+)
it and lπ(i,−)

it are the analogous active buying
and selling slopes.

Buying and Selling Slopes

Similarly to the linear approximations in chapter 6, every original slope defines two
new slopes, one buying slope and one selling slope, which satisfy the properties of
theorem 6.2.1. Due to u1

it ≥ u2
it ≥ . . . ≥ umit , the associated buying slopes are

monotonically decreasing, i.e. k1
it ≥ k2

it ≥ . . . ≥ kmit and the associated selling
slopes are monotonically increasing, i.e. l1it ≤ l2it ≤ . . . ≤ lmit .

Figure 7.6 shows the transition from the original slopes-holdings plot, where we
have assumed that we have 3 slopes, to the buying and selling slopes-holdings plots
for risky asset i in period t+ 1.
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Figure 7.6: Transition from original slopes uκit to buying slopes kκit and selling slopes lκit
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Formulation

We are now ready to write the linear programming formulation of the subproblem
of PLADP for period t+ 1.

Combining objective (7.28) with the constraints in (7.24), the subproblem of
ADP can be expressed in the following form:

max
(xκit,y

κ
it)

N∑
i=1

m∑
κ=1

(kκitx
κ
it + lκity

κ
it) +

N∑
i=1

π(i,−)−1∑
κ=1

uκit
(
aκ+1
it − aκit

)
+

N∑
i=1

u
π(i,−)
it

(
Rith

+
i(t−1) − a

π(i,−)
it

)
+ u0tR0th

+
0(t−1)

s.t.
N∑
i=1

m∑
κ=1

xκit ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

N∑
i=1

m∑
κ=1

yκit

yκit ≤ aκ+1
it − aκit, κ ≤ π(i,−)− 1, κ ∈M, i ∈ N

yκit ≤ Rith
+
i(t−1) − a

r(i)
it , κ = π(i,−), κ ∈M, i ∈ N

yκit = 0, κ ≥ π(i,−) + 1, κ ∈M, i ∈ N

xκit = 0, κ ≤ π(i,+)− 1, κ ∈M, i ∈ N

xκit ≤ a
r(i)+1
it −Rith

+
i(t−1), κ = π(i,+), κ ∈M, i ∈ N

xκit ≤ aκ+1
it − aκit, κ ≥ π(i,+) + 1, κ ∈M, i ∈ N

xκit, y
κ
it ≥ 0, κ ∈M, i ∈ N



(7.29)

Note that problem (7.9) of Example 9.2 is an instance of problem (7.29) for
N = 2, m = 3, θ = 0, the breakpoints of Figure 7.4 and buying and selling slopes
the objective coefficients of z+

κ ’s, w+
κ ’s and z−κ ’s, w−κ ’s respectively.

After solving problem (7.29), we can compute optimal decisions x?it’s and y?it’s
by plugging optimal decisions xκ,?it ’s and yκ,?it ’s into (7.10) and (7.11) respectively.

7.2.3 Solution to the Subproblem of PLADP

As explained in section 7.2.2, problem (7.9) of Example 9.2 is a particular instance
of problem (7.29) without transaction costs. In this section, we first solve problem
(7.9) of Example 9.2 and then, in an analogous manner, we solve the subproblem of
PLADP.

Example 9.2. (Continued) We begin with reminding the reader of problem (7.9):
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max
(z+κ ,w

+
κ )

4z+
2 + 2z+

3 + w+
3 − 9z−1 − 4z−2 − 8w−1 − 5w−2 − w−3 + 122

s.t. z+
2 + z+

3 + w+
3 ≤ 1 + z−1 + z−2 + w−1 + w−2 + w−3

0 ≤ z−1 ≤ 4

0 ≤ z+
2 ≤ 2

0 ≤ z−2 ≤ 1

0 ≤ w−1 ≤ 6

0 ≤ w−2 ≤ 3

0 ≤ w−3 ≤ 2

z+
3 , w

+
3 ≥ 0



(7.30)

Initially, we set all variables to zero.
The constraints in problem (7.30) give us fixed lower and upper bounds for the

variables and the relationship between them through the budget constraint.
Looking now at the budget constraint, we notice that z+

κ ’s and w+
κ ’s are con-

strained from above by current cash, which is 1 unit, as well as by z−κ ’s and w−κ ’s.
Since the coefficients of z−κ ’s and w−κ ’s in the objective of (7.30) are all negative,

we will maximize z+
κ ’s and w+

κ ’s that have positive coefficients.
Thus, we will first increase variable z+

2 , which has the highest positive coeffi-
cient in the objective, up to the level of current cash, which is 1 unit. This will
reduce the upper bound of variable z+

2 by 1 unit and will increase the objective by
4 units.

After we exhaust the resources in the budget constraint, however, we will not
stop. Instead, we will check if we can achieve a positive contribution in the objective
function by simultaneously increasing one of z−κ ’s and w−κ ’s and one of z+

κ ’s and
w+
κ ’s. Note that if there exists such a combination of variables, then stopping after

exhausting current cash would lead to a suboptimal solution.
Considering the above, we will simultaneously increase variables z+

2 and w−3 as
the contribution of this simultaneous increase in the objective is 4 − 1 = 3 units
and this is the highest contribution that can be achieved. The amount by which we
increase these variables is given by the minimum of their upper bounds, which is
1 unit. After this, we can no longer increase variable z+

2 , so we fix it and problem
(7.30) becomes:
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max
(z+κ ,w

+
κ )

2z+
3 + w+

3 − 9z−1 − 4z−2 − 8w−1 − 5w−2 − w−3 + 129

s.t. z+
3 + w+

3 ≤ z−1 + z−2 + w−1 + w−2 + w−3

0 ≤ z−1 ≤ 4

0 ≤ z−2 ≤ 1

0 ≤ w−1 ≤ 6

0 ≤ w−2 ≤ 3

0 ≤ w−3 ≤ 1

z+
3 , w

+
3 ≥ 0



(7.31)

Note that in (7.31) the constant term in the objective has increased by 7 units,
from 122 to 129, where the first 4 units are due to increasing z+

2 by the amount of
current cash and the remaining 3 units are due to simultaneously increasing z+

2 and
w−3 .

Looking now at problem (7.31), we notice that a simultaneous increase of vari-
ables z+

3 and w−3 , which are now the variables with the highest positive and negative
coefficients in the objective respectively, by 1 unit will increase the objective by 1

unit. After this, variable w−3 can no longer be increased and after fixing it problem
(7.31) becomes:

max
(z+κ ,w

+
κ )

2z+
3 + w+

3 − 9z−1 − 4z−2 − 8w−1 − 5w−2 + 130

s.t. z+
3 + w+

3 ≤ z−1 + z−2 + w−1 + w+
2

0 ≤ z−1 ≤ 4

0 ≤ z−2 ≤ 1

0 ≤ w−1 ≤ 6

0 ≤ w−2 ≤ 3

z+
3 , w

+
3 ≥ 0



(7.32)

In problem (7.32), note that, considering the allowable increases in the variables
and the respective coefficients in the objective, any other simultaneous increase
between the variables will lead to a smaller objective and thus we stop here by
leaving all other variables equal to zero.

From the above, the optimal value of problem (7.30) is 130 units and the optimal
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values of the decision variables are the ones summarized in Table (7.3).

z+,? z−,? w+,? w−,?

z+,?1 = 0 z−,?1 = 0 w+,?
1 = 0 w−,?

1 = 0

z+,?2 = 2 z−,?2 = 0 w+,?
2 = 0 w−,?

2 = 0

z+,?3 = 1 z−,?3 = 0 w+,?
3 = 0 w−,?

3 = 2
z? = z+,? − z−,? = 3 w? = w+,? − w−,? = −2

Table 7.3: Optimal decisions for the problem of Example 9.2

Improved Formulation of the Subproblem of PLADP

Recall that in Example 9.2 we had 2 risky assets with 3 slopes each and for each
slope κ, where κ = 1, 2, 3, we had two variables, one for buying and one for selling.
Thus, for asset 1 and slope 2, for example, we had variables z+

2 and z−2 , where the
first one was for buying and the latter one was for selling. For slope segments that
were filled up the optimal decisions were to set the respective z+

κ ’s and w+
κ ’s to

zero, while for slope segments that were empty the optimal decisions were to set
the respective z−κ ’s and w−κ to zero.

Further, taking a closer look at the objective, we notice that the objective coef-
ficients of z+

κ ’s (w+
κ ’s), which are the buying slopes, are monotone increasing with

respect to κ, while the slopes of z−κ ’s (w−κ ), which are the selling slopes, are mono-
tone decreasing with respect to κ. Thus, before we start increasing, for example,
variable z+

2 we must first have variable z+
1 at its upper bound and before we start

increasing variable z+
3 we must first have variable z+

2 at its upper bound. Similarly,
before we start increasing variable z−1 we must first have variable z−2 at its upper
bound and before we start increasing variable z−2 we must first have variable z−3 at
its upper bound.

Considering the above, every risky asset of Example 9.2 can be replaced by
three new risky assets, one for each slope segment. After introducing the new risky
assets, the problem becomes similar to the subproblem of LADP-UB which is given
by (6.18). The main difference is that the upper bounds on the holdings of the assets
are not the same for all assets as in (6.18) but they are given by the distances between
the breakpoints. For example, the new asset defined by the 2nd slope segment of
asset 1 (this is the 2nd new risky asset) has an upper bound on its holdings of 3 units,
the new asset defined by the 1st slope segment of asset 2 (this is the 4th new risky
asset) has an upper bound of 6 units and the new assets defined by the 3rd slope
segments of the two assets (these are respectively the 3rd and 6th new risky assets)
are not restricted from above.
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In an analogous manner, in our problem for every risky asset i we define m new
assets, one for each slope segment. We let j = (i, κ) be the new asset defined by the
κth slope segment of asset i and Ñ be the set that contains the new assets, i.e. we
have Ñ = {j : j = (i, κ), i ∈ N , κ ∈M}. The cardinality of set Ñ is |Ñ | = Nm,
i.e. set Ñ contains Nm assets. The current holdings of every asset j ∈ Ñ , which
we denote with h̃jt, are given by:

h̃jt =


aκ+1
it − aκit, if κ ≤ π(i,−)− 1, j = (i, κ)

Rith
+
i(t−1) − aκit, if κ = π(i,−), j = (i, κ)

0, if κ ≥ π(i,−) + 1, j = (i, κ)

(7.33)

and its upper bound, which we denote with w̃jt, is given by:

w̃jt = aκ+1
it − aκit, j = (i, κ) (7.34)

Table 7.4 summarizes the correspondence between the old variables and param-
eters and the new ones for every i ∈ N and κ ∈M.

Variables
xκit x̃jt, j = (i, κ)
yκit ỹjt, j = (i, κ)

Parameters
uκit ũjt, j = (i, κ)

kκit k̃jt, j = (i, κ)

lκit l̃jt, j = (i, κ)

Table 7.4: Correspondence between the old variables and parameters and the new ones

Considering the above, problem (7.29) can be now simplified as follows:

max
(x̃it,ỹit)

∑
i∈Ñ

k̃itx̃it +
∑
i∈Ñ

l̃itỹit +
∑
i∈Ñ

ũith̃it + u0tR0th
+
0(t−1)

s.t.
∑
i∈Ñ

x̃it ≤
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

∑
i∈Ñ

ỹit

ỹit ≤ h̃it, i ∈ Ñ

x̃it ≤ w̃it − h̃it, i ∈ Ñ

x̃it, ỹit ≥ 0, i ∈ Ñ


(7.35)

Note that as in chapter 6, the buying and the selling slopes of the assets in set
Ñ allow the classification of the new assets into one of the categories (sets) of
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Figure (6.2), which are the Buy-assets, the Sell-assets, the Neutral-assets and Cash.
Further, we have the transformation and projection coefficients of Tables 6.1 and
6.2.

Solution

To solve problem (7.9) of Example 9.2, which as explained above is an instance of
problem (7.35) without transaction costs, we began with noting that z+

κ ’s and w+
κ ’s

are constrained by z−κ ’s and w−κ ’s from above and we proceeded as follows:

• First, we set all variables equal to zero.

• Second, we checked the coefficients of z−κ ’s and w−κ ’s in the objective and
since these were all negative initially we did not increase any of them.

• Third, we checked the coefficients of z+
κ ’s and w+

κ ’s and increased the one
with the highest positive coefficient in the objective by the amount of current
cash since this was within the variable’s upper bound.

• Fourth, after we exhausted current cash, we considered simultaneous increases
of one of z−κ ’s andw−κ ’s and one of z+

κ ’s andw+
κ ’s and every time we increased

the pair of variables that had the highest positive contribution in the objective.

• Finally, we stopped when there was no other pair of variables that could
achieve a positive contribution in the objective.

In a similar manner, we will now solve problem (7.35). For this, we will need
the following set:

• I = Sell-assets &
(
h̃it > 0

)
: This set contains the Sell-assets with positive

holdings (these assets will be sold).

We propose the following algorithm:
Begin with setting x̃it, ỹit := 0 for every asset i ∈ Ñ , assign risky assets to one

of the non-overlapping categories of Figure 6.2, initialize set I and pick asset j? by
setting:

j? :=

{
arg max

i∈Ñ
k̃it :

(
k̃it > 0

)
&
(
h̃it < w̃it

)}
(7.36)

This is Step 0.
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If set I is non-empty, then take every asset i of this set, sell h̃it units and update
cash by setting:

ỹit := h̃it ∀i ∈ I

h0t := h0t + (1− θ)
∑
i∈I

h̃it
(7.37)

This is Step 1.
Next, after Step 1, if there exist an asset j? and cash, then buy min

(
1

1+θ
h0t, w̃j?t − h̃j?t

)
units of asset j? and update cash by setting:

x̃j?t := min

(
1

1 + θ
h0t, w̃j?t − h̃j?t

)
,

h0t := h0t − (1 + θ) min

(
1

1 + θ
h0t, w̃j?t − h̃j?t

) (7.38)

Every time asset j? is filled up, i.e. whenever min
(

1
1+θ

h0t, w̃j?t − h̃j?t
)

= w̃j?t −
h̃j?t, pick another asset j? using (7.36) and continue buying using the new asset j?,
if any.

This is Step 2 and it terminates either when there exists no other asset j? or when
we run out of cash.

Then, after Step 2 and given that there exists an asset j?, if there exist Buy- or
Neutral-assets with positive holdings such that amount 1−θ

1+θ
k̃j?t+ l̃it is positive, then

among these assets select the one that maximizes this amount by setting:

i? :=

{
arg max

i∈Ñ
l̃it :

(
l̃it ≤ 0

)
&
(
h̃it > 0

)
&

(
1− θ
1 + θ

k̃j?t + l̃it > 0

)}
,

(7.39)
and simultaneously increase assets i? and j? by setting:

ỹi?t := ỹi?t + min

(
h̃i?t,

1 + θ

1− θ

(
w̃j?t − h̃j?t

))
,

x̃j?t := x̃j?t +
1− θ
1 + θ

min

(
h̃i?t,

1 + θ

1− θ

(
w̃j?t − h̃j?t

))
,

h̃i?t := h̃i?t − ỹi?t,

h̃j?t := h̃j?t + x̃j?t

(7.40)

If the minimization in (7.40) is given by the first term (this is when we run out of
wealth in asset i?), then pick another asset i? using (7.39) and continue simultane-
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ously selling the new asset i? and buying asset j? using (7.40). If the minimization
in (7.40) is given by the second term (this is when asset j? is filled up), then pick an-
other asset j? using (7.36) and continue simultaneously selling asset i? and buying
the new asset j? using (7.40).

This is Step 3 and it terminates when there exists no other asset i? or j?.
Note that we can return to the original buying and selling variables xit and yit

using:

xit =
∑

j:j=(i,κ)∈Ñ

x̃jt, i ∈ N , κ ∈M

yit =
∑

j:j=(i,κ)∈Ñ

ỹjt, i ∈ N , κ ∈M
(7.41)

Algorithm 7.1 summarizes the proposed algorithm to solve problem (7.35).

Algorithm 7.1 Allocation Algorithm for Piecewise Linear Approximation

Input: h0t, k̃it, l̃it,h̃it,w̃it ∀i ∈ Ñ

Step 0. Initialization:
set x̃it, ỹit := 0 ∀i ∈ Ñ
set I := Sell-assets &

(
h̃it > 0

)
set j? :=

{
arg maxi∈Ñ k̃it :

(
k̃it > 0

)
&
(
h̃it < w̃it

)}
Step 1. Sell assets and update cash:
while I 6= ∅ then

set ỹit := h̃it ∀i ∈ I
set h0t := h0t + (1− θ)

∑
i∈I h̃it

end

Step 2. Buy with cash:
while (j 6= ∅) & (h0t > 0) do

set x̃j?t := min
(

1
1+θ

h0t, w̃j?t − h̃j?t
)

set h0t := h0t − (1 + θ) min
(

1
1+θ

h0t, w̃j?t − h̃j?t
)

if min
(

1
1+θ

h0t, w̃j?t − h̃j?t
)

= w̃j?t − h̃j?t then

set j? :=
{

arg maxi∈Ñ k̃it :
(
k̃it > 0

)
&
(
h̃it < w̃it

)}
set h̃j?t := w̃j?t

else
set h0t := 0

end
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end

Step 3. Perform sell-to-buy-transactions:
set i? :=

{
arg maxi∈Ñ l̃it :

(
l̃it ≤ 0

)
&
(
h̃it > 0

)
&
(

1−θ
1+θ

k̃j?t + l̃it > 0
)}

while (i? 6= ∅) & (j? 6= ∅) do
set ỹi?t := ỹi?t + min

(
h̃i?t,

1+θ
1−θ

(
w̃it − h̃j?t

))
set x̃j?t := x̃j?t + 1−θ

1+θ
min

(
h̃i?t,

1+θ
1−θ

(
w̃it − h̃j?t

))
set h̃i?t := h̃i?t − yi?t
set h̃j?t := h̃j?t + xj?t

if min
(
h̃i?t,

1+θ
1−θ

(
w̃it − h̃j?t

))
= h̃i?t then

set i? :=
{

arg maxi∈Ñ l̃it :
(
l̃it ≤ 0

)
&
(
h̃it > 0

)
&
(

1−θ
1+θ

k̃j?t + l̃it > 0
)}

else
set j? :=

{
arg maxi∈Ñ k̃it :

(
k̃it > 0

)
&
(
h̃it < w̃it

)}
end

end

Output: x̃it, ỹit ∀i ∈ Ñ

Theorem 7.2.1. Algorithm 7.1 solves problem (7.29) optimally.

Proof

The proof is analogous to the proof of theorem 6.3.1 of chapter 6. The main
difference here is that we do not have Forced-to-sell-assets since the holdings of the
assets never exceed their upper bounds, which now differ from one asset to another
and are determined by the breakpoints. �

Considering the above, every subproblem of PLADP with N risky assets is sim-
ilar to every subproblem of LADP-UB with Nm risky assets. Thus, depending on
the transactions performed by Algorithm 7.1, we will have one of the cases of the
sketch of the optimal solution provided in chapter 6 for the subproblem of LADP-
UB, where the selling and buying decisions for each new risky asset will be given
respectively by (6.26) and (6.27) if no buying occurred, (6.28) and (6.29) if buying
occurred but we had to stop because all Buy-assets were filled up, and (6.30) and
(6.31) if buying occurred but we had to stop because we had no more resources.
Note that here set F̄ is empty since we do not have Forced-to-sell-assets.
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We will now provide an example to illustrate how we perform selling and buying
using Algorithm 7.1.

Example 7.3. Suppose we have three stocks with buying slopes, selling slopes,
holdings and cash as shown in Figure 7.7.

Figure 7.8 shows the updated wealth in all assets after applying Step 1 of Al-
gorithm 7.1, where, due to the second and third selling slopes of stock 2 being
positive, we sell h2t − a2

2t (monetary) units of stock 2. This increases cash by
(1− θ) (h2t − a2

2t) (monetary) units.
Figure 7.9 shows the updated wealth in all assets after applying Step 2 of Algo-

rithm 7.1, where we use all cash to buy stock 1. This increases the holdings of stock

1 by
h0t+(1−θ)(h2t−a22t)

1+θ
(monetary) units.

Finally, Figures 7.10 and 7.11 show how the wealth in assets changes after ap-
plying Step 3 of Algorithm 7.1, where, assuming that l33t > l12t, k

3
1t +

1−θ
1+θ

l33t > 0 and
k3

1t + 1−θ
1+θ

l12t > 0, we first sell h3t − a2
3t (monetary) units of stock 3 and then we sell

a2
2t (monetary) units of stock 2 to buy stock 1. This increases the holdings of stock

1 by 1−θ
1+θ

(h3t − a2
3t) + 1−θ

1+θ
a2

2t (monetary) units.

stock 1: stock 2: 

• 

• 

• 

• 

k 1t 

h 1t 
+ a 1t 

2 a 1t 
3 0 

l 1t 

a 1t 
2 a 1t 

3 0 

k 2t 

h 2t 
+ a 2t 

2 a 2t 
3 0 

h 2t 

a 2t 
2 a 2t 

3 0 
h 2t 

h 0t 

k 3t 

h 3t 
+ a 3t 

2 a 3t 
3 0 

h 3t 

a 3t 
2 a 3t 

3 0 

h 3t 

stock 3: 

l 2t l 3t 

cash: 

h it 
+ h 1t 

+ h 3t 
+ 

Figure 7.7: Buying and selling slopes vs current holdings before allocation
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• 

• 

stock 1: stock 2: stock 3: 

k 1t 

a 1t 
2 a 1t 

3 0 

k 2t 

a 2t 
2 a 2t 

3 0 

k 3t 

a 3t 
2 a 3t 

3 0 

l 1t 

a 1t 
2 a 1t 

3 0 a 2t 
2 a 2t 

3 0 a 3t 
2 a 3t 

3 0 

l 2t l 3t 

cash: 

h 3t 

h 3t 

h 0t + (1‒ )  h 2t (     -     )  a 2t 
2 

h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
+ 

Figure 7.8: Step 1. Sell stock 2 and update cash

• 

• 

• 

• 

stock 1: stock 2: stock 3: 

k 1t 

a 1t 
2 a 1t 

3 0 

k 2t 

a 2t 
2 a 2t 

3 0 

k 3t 

a 3t 
2 a 3t 

3 0 

l 1t 

a 1t 
2 a 1t 

3 0 a 2t 
2 a 2t 

3 0 a 3t 
2 a 3t 

3 0 

l 2t l 3t 

cash: 

h 3t 

h 3t 

h 0t + (1‒)  h 2t (     -     )  a 2t 
2 

(1+)  

h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
+ 

Figure 7.9: Step 2. Buy stock 1 with cash
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• 

• 

stock 1: stock 2: stock 3: 

k 1t 

a 1t 
2 a 1t 

3 0 

k 2t 

a 2t 
2 a 2t 

3 0 

k 3t 

a 3t 
2 a 3t 

3 0 

l 1t 

a 1t 
2 a 1t 

3 0 a 2t 
2 a 2t 

3 0 a 3t 
2 a 3t 

3 0 

l 2t l 3t 

cash: 

h 0t + (1‒ )  h 2t (     -     )  a 2t 
2 

(1+)  
+ 

1‒  

1+ 
h 3t (     -     )  a 3t 

2 

h 1t 
+ h 2t 

+ h 3t 
+ 

h it 
+ h 1t 

+ h 3t 
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Figure 7.10: Step 3a. Sell stock 3 and buy stock 1
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Figure 7.11: Step 3b. Sell stock 2 and buy stock 1
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Complexity

The linear program (7.35), which we solve with Algorithm 7.1, has 2Nm non-
negative decision variables, one fixed upper bound for each variable and the budget
constraint which gives us the relationship between all variables.

Algorithm 7.1 which solves the subproblem of PLADP (7.35) differs from Al-
gorithm 6.2 which solves the subproblem of LADP-UB (6.18) in Step 1 where
in the latter we additionally sell the Forced-to-sell-assets. Therefore, as in Algo-
rithm 6.2, where we have a time complexity of O(N logN) which comes from
sorting N assets, in Algorithm 7.1 we have a time complexity of O(Nm log(Nm))

which comes from sorting Nm assets. For S T -period realizations of the stochas-
tic process of random returns, the above gives us a polynomial time complexity of
S · T · O(Nm log(Nm)) +

∑S
s=1 slogs for the PLADP algorithm (see section 4.3

for a discussion on the complexity of the General ADP algorithm).

Discussion

Note the following:

1. Similarly to the linear approximation with upper bounds in chapter 6:

(a) In Algorithm 7.1, none of the steps requires that we first visit the previ-
ous steps.

(b) We have the transformation and projection coefficients of Tables 6.1 and
6.2.

(c) While solving problem (6.18) using Algorithm 6.2, if we have multiple
optimal allocations we resolve this tie by requiring that wealth is equally
split among all the assets that have the same highest positive buying
slope. However, as explained in chapter 6, due to the random returns we
will never be faced with assets that have the same buying slopes.

(d) Changing the order of buying in Algorithm 7.1 could result in a subop-
timal allocation.

2. Unlike the linear approximation with upper bounds of chapter 6, where we
had upper bound constraints on the holdings of the assets which forced us to
sell the assets with holdings exceeding the respective upper bounds, here the
upper bounds on the holdings of the assets are determined naturally by the
breakpoints.
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3. The observed slope of each original asset i is given by the observed slope
of the new asset that is defined by its active right slope and we compute it
using the gradients of Table 6.4. To compute observed slopes ∆Ṽ s

i(T−1) we
use (4.41).

7.3 Update Rule for Value Functions

In this section, we propose an update rule for the piecewise linear value functions
to use in Step 3 of the General ADP algorithm (see Algorithm 4.1).

In the literature, there exist value function update rules that seem to work consid-
erably well in practice. For problems with continuous state spaces, see for example
the update rules in CAVE [34] [35] and SPAR-Mutual [60] algorithms. For prob-
lems with discrete state spaces, see for example the update rules in [50], [68], [81]
and for an overview of them see tutorial [67].

In applications that use the above update rules, the authors start in the first it-
eration of the approximate dynamic programming algorithms either with discrete
monotone decreasing initial slope estimates with fixed breakpoints or with flat ini-
tial slope estimates and they let the algorithm decide the number of slopes and
breakpoints. Regarding the slopes, in both cases these are updated using gradient
information and ensuring that the monotonicity of the slopes (i.e. concavity) is pre-
served. Regarding the breakpoints, in the first case we already have them from the
first iteration, while in the latter case these are defined by the states visited in every
iteration of the approximate dynamic programming algorithm. Thus, updating the
piecewise linear value functions in every iteration of an approximate dynamic pro-
gramming algorithm involves updating both the slopes and the breakpoints of the
respective approximate value functions.

However, note that the above updates of slopes and breakpoints mean that in
the first case, where we have discrete monotone decreasing initial slope estimates
with fixed breakpoints, we will start in the first iteration with a large number of
slopes and breakpoints, while in the latter case, where we have flat initial slope esti-
mates, the number of slopes and breakpoints will increase quickly with the number
of iterations and as a result the size of the subproblems of PLADP will grow sig-
nificantly from the very early iterations. Due to this, the subproblems of PLADP,
which are given by (7.35), grow considerably in size and can become computation-
ally intractable. To circumvent this, we propose an update rule for Step 3 of the
General ADP algorithm, where we require that the number of slopes in the approx-
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imate value functions remains below a specified threshold at every iteration, thus
maintaining problem (7.35) tractable.

For the above update methods, in problems with discrete state spaces there exist
convergence results but in very limited settings where it is being assumed that the
planning horizon consists of only two time periods and the state vector has only one
dimension. In these problems, authors prove convergence by showing that if every
state is visited infinitely many times, then the slope of the last iteration converges to
its optimal value. For multi-dimensional (continuous) problems the above update
rules are only approximate methods that seem to work well in practical applications.

In this study, at every iteration of the approximate dynamic programming algo-
rithm we use the update rule of [68] (described below) to preserve monotonicity of
the slopes and we propose the use of a correction rule to maintain the number of
slopes below a specified threshold. In the discussion that follows, we begin with a
short description of the update rule in [68] for problems with discrete state spaces.
We discuss how this rule can be used in problems with continuous state spaces,
such as the problem under study, and the we describe the correction rule. Finally,
we conclude with the slopes update and correction routine, where we put together
the update and correction rules.

Update Rule for Dynamic Programs with Discrete State Space

Here, we briefly discuss the update rule of [68], which was initially developed for
problems with discrete state space, where the points of non-differentiability in the
approximate value functions are subsets of non-negative integers. In the discussion
that follows, we assume that currently we are at iteration s, we have visited state
hs,+it which is a discrete variable and we want to estimate the κth slope of function
V̂ s
it which we denote with ûs,κit and will be used at iteration s+ 1.

In line with [68], function V̂ s
it can be represented by the sequence of slopes

{ûs,κit : κ = 1, 2, . . . ,m}, which are given by:

ûs,qit =

(1− αsit) û
s−1,κ
it + αsit∆Ṽ

s
it , if κ = hs,+it + 1

ûs−1,κ
it , if κ ∈

{
1, . . . , hs,+it , h

s,+
it + 2, . . . ,m

} (7.42)

where as explained in chapter 6 ∆Ṽ s
it is the observed slope which we obtain

using gradient information. Note that in (7.42) we update the slope that corresponds
to state hs,+it + 1 (this is the first slope to the right of current state hs,+it ) using the
observed slope and leave the remaining slopes the same.
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However, note that updating only slope ûs−1,κ
it for κ = hs,+it + 1 might lead to

a violation of concavity if either ûs,κ−1
it < ûs,κit or ûs,κit < ûs,κ+1

it . To correct mono-
tonicity, it is proposed in [68] (see [50] and [81] for other methods) that the sequence
of slopes {ûs,qit : κ = 1, 2, . . . ,m} is chosen by applying a projection operation that
involves solving the following non-linear minimization problem:

min
zκ

m∑
κ=1

[zκ − ûs,κit ]2

s.t. zκ − zκ+1 ≥ 0, κ ∈ {1, 2, . . . ,m}

 (7.43)

In (7.43), we replace the sequence of slopes {ûs,κit : κ = 1, 2, . . . ,m} with a
new sequence of slopes, which we denote with {zκ : κ = 1, 2, . . . ,m} and so that
the sum of the squared vertical distances of the new slopes from the old ones is min-
imized. Using the Karush-Kuhn-Tucker (KKT) conditions, we can come up with
an optimal sequence of slopes {zκ : κ = 1, 2, . . . ,m} for the projection described
in (7.43). For the derivation of the optimal sequence of slopes, we refer the reader
to [68]. Here, we only provide a sketch of the optimal solution which breaks down
in the following three cases:

• Case 1: After the update in (7.42), monotonicity is satisfied, i.e. ûs,1it ≥
ûs,2it ≥ . . . ≥ ûs,mit . In this case, the slopes remain the same, i.e. we have:

zκ = ûs,κit , ∀κ ∈ {1, 2, . . . ,m} (7.44)

• Case 2: After the update in (7.42) and for κ = hs,+it + 1, monotonicity is
violated due to ûs,κ−1

it < ûs,κit . In this case, all slopes that lie at the right of
slope ûs,κit remain the same, while for the remaining slopes we have: Starting
from slope ûs,κit , we move to the left replacing as we go the respective slopes
with the average of the slopes until monotonicity with previous slope is satis-
fied (for an example of correcting monotonicity in this case see Example 9.4
below). If slope κ? is the last slope to the left that has been replaced by this
average, then the new slopes {zκ : κ = 1, 2, . . . ,m} are given by:

zκ =


1

hs,+it −κ?+2

∑hs,+it +1
κ=κ? ûs,κit , if κ ∈

{
κ?, . . . , hs,+it + 1

}
ûs,κit , if κ 6∈

{
κ?, . . . , hs,+it + 1

} (7.45)

where κ? < h+
it + 1.
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• Case 3: After the update in (7.42) and for κ = hs,+it + 1, monotonicity is
violated due to ûs,κit < ûs,κ+1

it . In this case, all slopes that lie at the left of
slope ûs,κit remain the same, while for the remaining slopes we have: Starting
from slope ûs,κit , we move to the right replacing as we go the respective slopes
with the average of the slopes until monotonicity with next slope is satisfied.
If slope κ? is the last slope to the right that has been replaced by this average,
then the new slopes {zκ : κ = 1, 2, . . . ,m} are given by:

zκ =


1

κ?−hs,+it

∑κ?

κ=hs,+it +1 û
s,κ
it , if κ ∈

{
hs,+it + 1, . . . , κ?

}
ûs,κit , if κ 6∈

{
hs,+it + 1, . . . , κ?

} (7.46)

where κ? > h+
it + 1.

In the following example, we illustrate how projection operation is performed
in problems with discrete state space when monotonicity is violated from the left
(see case 2 above).

Example 7.4. Suppose that after updating the slopes according to (7.42), we have
m = 6 slopes and us,4it < us,5it (see top part of Figure 7.12 below).

Here, we need to correct the slopes that lie at the left of slope us,5it including slope
us,5it . These are slopes {us,qit : q = 1, 2, 3, 4, 5}. Assuming that us,2it >

us,3it +us,4it +us,5it
3

(i.e. the second slope satisfies monotonicity with the average of the next three slope)
and us,3it <

us,4it +us,5it
2

(i.e. the third slope violates monotonicity with the average of
the next two slopes), in the bottom part of Figure 7.12 we have replaced every slope
of us,3it , u

s,4
it and us,5it with the average of the three.
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Figure 7.12: Update rule for problems with discrete state space and a violation in the monotonicity
of the slopes from the left

Update Rule for Dynamic Programs with Continuous State Space

We are now ready to state the analogous projection operation rule for problems
with continuous action spaces, where the points of non-differentiability in func-
tion V̂ s

it are a subset of positive real numbers. Function V̂ s
it is now represented

by the sequence of slopes {ûs,κit : κ = 1, 2, . . . ,m}, where slope ûs,κit is defined by
breakpoints as,κit and as,κ+1

it . Given that state variable hs,+it is known when we update
slopes ûs−1

it , if κ+ denotes the part of the slope segment that corresponds to holdings
hs,+it and lies at the right of holdings hs,+it , then update rule (7.42) can be expressed
as follows:

ûs,κit =

(1− αsit) û
s−1,κ
it + αsit∆Ṽ

s
it , if κ = κ+

ûs−1,q
it , if κ 6= κ+

(7.47)
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Note that if holdings hs,+it do not coincide with one of the breakpoints of function
V̂ s−1
it , then update rule (7.47) leads to one additional new slope for function V̂ s

it . To
account for this, we denote the number of slopes after applying update rule (7.47)
with Q, where:

Q =

m+ 1, if hs,+it is between breakpoints

m, otherwise
(7.48)

The analogous solution to the projection operation described by problem (7.43)
can now be stated as follows:

• Case 1: After the update in (7.47), monotonicity is satisfied, i.e. ûs,1it ≥
ûs,2it ≥ . . . ≥ ûs,mit , and all slopes remain the same:

zκ = ûs,κit , ∀κ ∈ {1, 2, . . . ,m} (7.49)

• Case 2: After the update in (7.47), monotonicity is violated due to ûs,κ
+−1

it <

ûs,κ
+

it (for an example of correcting monotonicity in this case see Example 9.5
below), and the new slopes {zκ : κ = 1, 2, . . . , Q} are given by:

zκ =

 1
κ+−κ?+1

∑κ+

κ=κ? û
s,κ
it , if κ ∈ {κ?, . . . , κ+}

ûs,κit , if κ 6∈ {κ?, . . . , κ+}
(7.50)

where κ? < κ+.

• After the update in (7.47), monotonicity is violated due to ûs,κ
+

it < ûs,κ
++1

it ,
and the new slopes {zκ : κ = 1, 2, . . . , Q} are given by:

zκ =

 1
κ?−κ++1

∑κ?

κ=κ+ û
s,κ
it , if κ ∈ {κ+, . . . , κ?}

ûs,κit , if κ 6∈ {κ+, . . . , κ?}
(7.51)

where κ? > κ+.

In the following example, we illustrate how projection operation is performed in
problems with continuous state space when monotonicity is violated from the left
(see case 2 above).
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Example 7.5. In the top part of Figure 7.13, we have the creation of a new break
point due to visiting state hs,+it (see top left plot) and the update of the part of the
slope segment that corresponds to state hs,+it and lies at the right of the new state
hs,+it (see top right plot). Note that due to hs,+it lying between breakpoints, after the
update of the slopes we end up with one more slope so now we have 6 instead of 5

slopes.
Assuming that after the creation of the new slope we have a violation in the

monotonicity due to ûs,4it < ûs,5it , in the bottom part of Figure 7.13 we correct this
by replacing slopes ûs,3it , ûs,4it and ûs,5it with the average of the three.
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Figure 7.13: Update rule for problems with continuous state space and a violation in the monotonic-
ity of the slopes from the left

Correction Rule for Dynamic Programs with Continuous State
Space

If the number of slopes after the projection operation exceeds a specified threshold
δ, then we amend the slopes by replacing the ones that are closest in value with
their average. Thus, if |Q| > δ and κ̂ = arg minκ∈{1,...,Q−1} (zκ − zκ+1), then we
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replace the sequence of slopes {zκ : κ = 1, 2, . . . , Q} with a new sequence, which
we denote with {z?κ : κ = 1, 2, . . . , Q}, such that:

z?κ =


zκ̂+zκ̂+1

2
, if κ = κ̂, κ̂+ 1

zκ, if κ 6= κ̂, κ̂+ 1
(7.52)

Note that in every iteration we can have up to only one additional new slope and
as a result the above replacement needs to be applied only once. Also, note that
this operation does not distort the monotonicity of the slopes. An example for this
operation follows.

Example 7.6. Suppose that the maximum number of slopes is set to δ = 5.
In the top part of Figure 7.13, we notice that after the update of the slopes

monotonicity is not violated but the number of slopes has gone up to 6.
Assuming that slopes us,5it and us,6it are the ones that are closest in value, in the

bottom part of Figure 7.14 we have replaced slopes us,5it and us,6it with their average.
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Figure 7.14: Correction rule for problems with continuous state space and a violation in the number
of slopes
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Slopes Update and Correction Routine for Dynamic Programs
with Continuous Action Spaces

Algorithm 7.2 summarizes the slopes update and correction routine for separable
piecewise linear and continuous value functions.

In Step 0, we use state hs,+it of iteration s to create a new break point if hs,+it lies
between break points.

In Step 1, we update the part of the slope segment that corresponds to holdings
hs,+it and lies at the right of holdings hs,+it using (7.47).

After updating the slopes, if there is a violation in the monotonicity, then in Step
2 we correct it by using projection operation (7.43).

Finally, in Step 3 and after correcting monotonicity, if the number of slopes
exceeds threshold δ, then we correct the number of slopes using (7.52).

Algorithm 7.2 Slopes Update and Correction Routine

Input:
{
us−1,κ
it : κ = 1, 2, . . . ,m

}
, δ

Step 0. Initialization:
insert a new break point at hs,+it
determine k+

Step 1. Update slopes:

set ûs,κit :=

{
(1− αsit) û

s−1,κ
it + αsit∆Ṽ

s
it , if κ = κ+

ûs−1,κ
it , if κ 6= κ+

Step 2. Correct monotonicity:
if ûs,κ

+−1
it < ûs,κ

+

it then

set zκ :=

{
1

κ+−κ?+1

∑κ+

κ=κ? û
s,κ
it , if κ ∈ {κ?, . . . , κ+}

ûs,κit , if κ 6∈ {κ?, . . . , κ+}

elseif ûs,κ
+

it < ûs,κ
++1

it then

set zκ :=

{
1

κ?−κ++1

∑κ?

κ=κ+ û
s,κ
it if κ ∈ {κ+, . . . , κ?}

ûs,κit if κ 6∈ {κ+, . . . , κ?}

else
set zκ := ûs,κit ∀κ ∈ {1, 2, . . . ,m}

end
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Step 3. Correct the number of slopes:
if |Q| > δ then

set κ̂ := arg minκ∈{1,...,Q−1} (zκ − zκ+1)

set z?κ :=

{
zκ̂+zκ̂+1

2
, if κ = κ̂, κ̂+ 1

zκ, if κ 6= κ̂, κ̂+ 1

else
set z?κ := zκ ∀κ ∈ {1, 2, . . . , Q}

end
STOP

Output: {z?κ : κ = 1, 2, . . . , Q}
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Chapter 8

Experimental Results

In this chapter, we present and analyze experimental results using real-world equity
data from FTSE100 Index. Specifically, in section 8.1, we discuss how we evaluate
the performance of the different portfolio selection methods and specify the output
parameters to be reported for every method. Then, in section 8.2, we describe the
testing environment, where we specify the data, the stepsize rules and the initial
slope values used in the ADP methods, as well as the software. Finally, in section
8.3, we report the numerical results from our simulations.

8.1 Performance Evaluation Design

In this section, we begin with discussing how we evaluate the ADP methods and
stating the analogous evaluation process for the other methods. Then, in subsection
8.1.1, we define the parameters that describe the composition of the selected port-
folios and which will be reported for each method in the numerical results. Finally,
in subsection 8.1.2 we provide our performance measures.

In approximate dynamic programming, we have two types of experiments: train-
ing and testing. Training iterations are used in order to estimate the value function
approximations for all time periods, where, due to the assumed functional approxi-
mations, these are given by their slope estimates computed in Step 3 of the last itera-
tion of the General ADP Algorithm 4.1 and are called the terminal slope estimates.
Testing is used to evaluate for every ADP method the extracted policy, which is
given by the sequence of the terminal slope estimates from time 0 up to time T − 1.
Training and testing are designed as follows:

First, we divide our data into the following two parts:

152
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• the in-sample data, which is used to generate scenarios of T -period return
vectors that we use in the training iterations (as we will see later on, in our
experiments we use four datasets with in-sample horizon 104 weeks each),
and

• the out-of-sample data, which consists of actual T -period return vectors that
are used to test the actual performance of the extracted policies (as we will see
later on, in our experiments we use four datasets with out-of-sample horizon
52 weeks each).

Then, using the in-sample data we generate scenario paths. As explained in sec-
tion 2.4 and Appendix A, to generate scenarios of returns we forecast the variance-
covariance matrix of the returns of the assets using the O-GARCH models.

After generating the scenario paths, we run the training iterations. In each train-
ing iteration we do a forward pass through time on one of the generated scenario
paths using the General ADP Algorithm 4.1. Recall from section (4.3) that in ev-
ery iteration of the General ADP Algorithm we compute buying/selling decision
trajectories based on the slope estimates of the previous iteration and using these
we update the slope estimates of the current iteration. In this manner, in the last
iteration of the General ADP Algorithm we obtain the terminal slope estimates.

After obtaining the terminal slope estimates, we use them to perform testing,
which involves performing one more iteration of the General ADP Algorithm 4.1
using the terminal slope estimates and the trajectory of the actual returns. Thus,
starting at time t = 0 with known holdings h0, every time we solve the associated
subproblem of ADP, which is given by (6.6) for the linear approximation, (6.18) for
the linear approximation with strict control of flows and (7.29) for the piecewise lin-
ear approximation, and compute the respective buying and selling decisions. These
are then plugged into transition equations (4.5), which now depend on the actual
returns, and give us the post-decision holdings that are used to solve the subprob-
lem of the next time period. While doing the forward pass through time on the
scenario of the actual returns, we compute and store pre-decision holdings hit for
every t = 1, 2, . . . , T using Rith

+
i(t−1). In the above manner, at the end of the out-

of-sample horizon we will have computed holdings hT . Note that in the testing
iteration we skip Step 3 of the General ADP Algorithm 4.1, which involves up-
dating the slopes of the current iteration, since we already have the terminal slope
estimates.

In order to evaluate the performance of the other methods and compare them
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against the performance of the ADP methods, the generated scenario paths that
were used in the training iterations of the ADP methods are also used as an input
for the other methods (except for the equally-weighted method) since in the end we
want to evaluate all methods on the same input information.

In the equally-weighted method, as explained in section 5.2 we consider two
investment strategies. First, the buy-and-hold strategy where we solve problem
(5.19) only once in the beginning of the investment horizon and then we hold the
portfolio until the end of the horizon. Second, the fixed-mix strategy where in every
time period the portfolio is rebalanced to equal target proportions. We evaluate
the fixed-mix strategy as follows: We start at time t = 0 with known holdings h0

and solve problem (5.19), which gives us holdings h+
0 . Then, these holdings are

multiplied with the actual returns of the first period and give us holdings h1. In a
similar manner, we move forward in time solving problem (5.19) for the consequent
time periods until we reach the last time period, where we compute holdings hT .
Note that problem (5.19) does not depend on the scenario returns and decisions are
taken without us needing to use the generated scenario paths.

In the single-period method, we start at time t = 0 with known holdings h0 and
solve problem (5.9) using the first-period returns of the generated scenario paths.
After solving problem (5.9), we obtain post-decision holdings h+

0 , which is then
multiplied with the actual returns of the first period and give us pre-decision hold-
ings h1. Given now the holdings of the assets at time t = 1, we move forward one
time period, solve problem (5.9) using the second-period returns from the scenario
paths, where now the current holdings of the assets are given by h1, and obtain
post-decision holdings h+

1 . These are then multiplied with the actual returns of the
second period and give us pre-decision holdings h2. In a similar manner, we move
forward in time solving problem (5.9) for the consecutive time periods until we
reach the last time period, where we compute holdings hT .

In the multistage stochastic programming method, we solve repeatedly multi-
stage stochastic programs with smaller horizons, where every time, considering the
already achieved state of the system, we solve the associated multistage stochastic
program and store the first-stage decisions (see for example [6]). Thus, we start at
time t = 0 with constructing a scenario tree for the original T -period scenario paths
and then, using the generated scenario tree, we solve the deterministic equivalent of
the associated (T + 1)-stage stochastic program, which is given by (5.16). In line
with the notation of chapter 5, after solving the first multistage stochastic program,
we obtain first-stage decisions X0 =

(
h+

0 ,x0,y0

)
, and then as in the single-period
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method we multiply post-decision holdingsh+
0 with the actual returns of the first pe-

riod and compute holdings h1. After the first period returns are revealed, we move
forward one time period as follows: We crop the returns of the first period from the
original scenario paths, and using the new scenario paths which now have length
T − 1 periods each we construct a new scenario tree with T stages. Then, using
the new T -stage scenario tree we solve the subsequent T -stage stochastic program,
which now gives us decisions X1 =

(
h+

1 ,x1,y1

)
, and using the actual returns of

the second period we compute holdings h2. The above process is repeated until we
reach the last time period, where we solve a 2-stage stochastic program and compute
holdings hT . The scenario trees are constructed using the scenario tree construction
methods of Appendix B.

Note that the above methods are also compared against a market Index, which
we evaluate as follows: First, using the prices of the Index in the out-of-sample data,
we compute the respective total returns of the Index. Then, using these returns and
starting with known wealth at time 0, every time we multiply the current total wealth
with the realized market portfolio return. In this manner, we obtain cumulative
wealth estimates for the market portfolio at every point in time and as a result at
time T .

We divide our analysis into the following two parts:

• the characteristics of the selected portfolios and convergence of slopes, where
for every method we report parameters related to the composition of the se-
lected portfolios and show how slopes converge in the ADP methods, and

• the performance evaluation, where for every method we report the respective
out-of-sample terminal wealth, which is the cumulative wealth achieved by
the selected portfolios at the end of the out-of-sample horizon. As we will
explain later on, the out-of-sample terminal wealth is our criterion as to how
each method performs.

8.1.1 Characteristic of Selected Portfolios and Convergence of
Slopes

Regarding the characteristics of the selected portfolios, for each portfolio selection
method we report the following parameters:

1. a range for the number of assets per out-of-sample period (label: “NAt”) in
the selected portfolios: If St denotes the set of assets used at time t with
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cardinality |St|, then this parameter reports a range of values µ − ν, where
µ = mint=0,...,T−1 |St| and ν = maxt=0,...,T−1 |St|,

2. the number of different assets (label: “NA”) used throughout the out-of-sample
horizon,

3. a 0 − 1 variable (label: Cash) that shows whether cash is part of the selected
portfolios (“Cash= 1”) or not (“Cash= 0”), and

4. a range for the normalized Herfindahl Index per out-of-sample period (label:
“HI?”) to show the degree of diversification in the selected portfolios.

The Herfindahl Index is defined as the sum of the squared weights of the
assets in the portfolio (see for example [83]). With cash being one of the
assets in the portfolio, if wit is the weight of asset i in the portfolio at time t,
then the Herfindahl Index at time t is defined as follows:

HIt =
N∑
i=0

w2
it, (8.1)

where the weights of the assets are given by wit = hit∑N
i=0 hit

.

Given now that the maximum number of assets that we can have in every
portfolio is N + 1, the Herfindahl Index takes values in the range

[
1

N+1
, 1
]
.

To obtain a range [0, 1], where 0 and 1 indicate respectively perfect and no
diversification, we normalize the Herfindahl Index by subtracting from it 1

N+1

and dividing the resulting figure with 1 − 1
N+1

. We denote the normalized
figure with HI?t and compute it using:

HI?t =
HIt − 1

N+1

1− 1
N+1

(8.2)

Given the above definition, if HI?t is the normalized Herfindahl Index at time
t, then here we report a range of values φ − χ, where φ = mint=0,...,T−1 HI?t
and χ = mint=0,...,T−1 HI?t .

Additionally, for the ADP methods we provide plots that show how slopes con-
verge with the number of iterations.
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8.1.2 Performance Evaluation

Regarding performance evaluation, in the single-period portfolio optimization lit-
erature authors assess the performance of the selected portfolios by comparing the
cumulative portfolio returns at all points in time during the out-of-sample horizon
against the corresponding cumulative returns of the market Index (see for example
[38] and [40]). In this study, however, we concentrate on multi-period portfolio se-
lection methods and use the myopic ones for comparison reasons only. Considering
that in multi-period portfolio selection methods we might need to underperform in
the early periods in order to outperform in the end, we use the out-of-sample termi-
nal wealth as our criterion to assess how well every method is performing and we
report the following parameters:

1. the out-of-sample terminal wealth which we compute using υT =
∑N

i=0 hiT ,

2. the number of times the out-of-sample terminal wealth of each method (in-
cluding the market Index) exceeds the corresponding terminal wealths of the
other methods (including the market Index), and

3. the computational time it takes us to evaluate each method.

Plots of cumulative wealth against time are also provided.

8.2 Experimental Data and Design

In this section, we first describe the data that we used in our simulations and specify
the values of the parameters. Then, we provide a brief overview of the different
stepsize rules that we used in the training iterations of the ADP methods and specify
the ones that we selected to report in the numerical results. Finally, we discuss the
issue of selecting initial slope values for the ADP methods and we conclude by
reporting the software used for our experiments.

Data and Parameters

We use data from the FTSE100 Index to test the performance of the different port-
folio selection methods. Guastaroba, Mansini and Speranza [39] have constructed
four datasets of weekly rates of returns (these were computed using closing stock
prices adjusted for dividents) of FTSE100 Index and have divided each dataset into
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two parts: the in-sample data that have a horizon of 104 weeks and the out-of-
sample data that have a horizon of 52 weeks.

The four datasets differ in the trend of the market behavior in the in-sample and
out-of-sample data. The trend of the Index is increasing in both the in-sample and
the out-of-sample data in the first dataset (label: “Up-Up”), increasing in the in-
sample data but decreasing in the out-of-sample data in the second dataset (label:
“Up-Down”), decreasing in the in-sample data but increasing in the out-of-sample
data in the third dataset (label: “Down-Up”) and decreasing in both the in-sample
and the out-of-sample data in the last dataset (label: “Down-Down”).

Table 8.1 summarizes the dates of the in-sample and out-of-sample data of each
dataset.

Dataset in-sample data out-of-sample data
Up-Up 17/04/1995− 14/04/1997 14/04/1997− 13/04/1998

Up-Down 05/01/1998− 03/01/2000 03/01/2000− 01/01/2001
Down-Up 12/03/2001− 10/03/2003 10/03/2003− 08/03/2004

Down-Down 04/01/2000− 01/01/2002 01/01/2002− 31/12/2002

Table 8.1: Dates of in-sample and out-of-sample data

Figure 8.1 shows the price Index and the four market periods considered.
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Figure 8.1: FTSE100 price Index from 03/01/1995 until 03/01/2005 and the four market periods
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Regarding parameters, our first parameter was the weekly return of cash which
in this study is assumed to be known. To compute the risk-free interest rate for each
dataset we used the average annual base rates of the Bank of England during the
out-of-sample horizon of each dataset. If rav and rweek are respectively the aver-
age annual base rate for the 52 weeks out-of-sample and the corresponding weekly
interest rate, then for each dataset we computed the weekly rate of return using
rweek = (1 + rav)

1
52 − 1. Table 8.2 summarizes the average annual base rates and the

respective weekly interest rates for each dataset.

Dataset Average annual base rate (rav) Weekly interest rate (rweek)
Up-Up 6.92% 0.129%

Up-Down 5.98% 0.112%
Down-Up 3.67% 0.069%

Down-Down 4% 0.075%

Table 8.2: Average annual base rates and weekly interest rates in the four datasets

Using the returns of the in-sample data of every dataset, we generated 4000

scenarios of returns, each scenario consisting of 52 weeks, using the OGARCH
models (see section 2.4 and Appendix A). Note that these scenarios were generated
for every dataset only once, the reason being that in the end we want to compare
the different portfolio selection methods and thus we evaluate them on the same
input information. The average computational time to generate an instance of 4000

scenario paths for every dataset was 226.66 seconds.
As explained above, in our experiments we used datasets from FTSE 100 Index

which consists of the N = 100 companies in the London Stock Exchange with the
highest market capitalization and for each of these datasets we evaluated all methods
on out-of-sample horizons of T = 52 weeks each assuming an initial portfolio value
of h00 = £100000 cash and zero holdings hi0 = 0 for i = 1, 2, . . . , 100. Further, in
our simulations we used a quantile parameter β = 0.95 and as in [39] we assumed
proportional transaction costs equal to θ = 0.2% for all assets. Using the generated
scenarios of returns, we conducted several sets of simulations varying the level of
the risk importance parameter γ from 0, where the investor is infinitely risk-averse,
to 1, where the investor is infinitely risk-taking, with step 0.2.

Regarding the multistage stochastic programming method, in Appendix D we
provide the scenario reduction parameters of the scenario trees that we used to eval-
uate this method. The scenario trees were generated in a backward fashion using
the scenario tree construction methods of Appendix B. The amount by which the
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original 4000 scenario paths were reduced in order to generate the scenario trees
was selected in such a way so that each scenario tree preserves the maximum possi-
ble amount of the information contained in the original 4000 scenario paths and at
the same time the corresponding deterministic equivalent remains computationally
tractable. Note that to achieve this in many of our scenario trees we had to cut a sig-
nificant amount of information. In the initial 53-stages scenario trees, for example,
where each scenario path contained the forecasted returns of all 52 out-of-sample
periods, for the sake of computational tractability we had to reduce the information
contained in the 4000 scenario paths by 90%!

As for the ADP parameters, note that for the LADP-UB method we have con-
sidered two cases, one where we require that in each asset we cannot have more
than one third of the total initial wealth of £100000 cash and one where we re-
quire that in each asset we cannot have more than one fifth of the total initial wealth
of £100000. In line with the notation of chapter 6, the first case corresponds to
α = 1/3 and the second one corresponds to α = 1/5. Further, note that for the
PLADP methods we have considered two cases, one where the maximum number
of slopes is m = 3 and one where the maximum number of slopes is m = 5.

Table 8.3 summarizes the values of the parameters used in our experiments.

Parameter Value
N 100
T 52 weeks
h00 £100000
hi0 £0, i=1,2,. . . , 100
β 0.95
θ 0.2%
γ 0, 0.2, 0.4, 0.6, 0.8, 1
α 1/3, 1/5
m 3, 5

Table 8.3: Parameters and Values

Stepsize rules for ADP methods

In the literature (see [33]), there exist several stepsize rules that satisfy convergence
conditions (6.33) and are grouped into the following two categories:

1. The deterministic stepsize rules, which depend on the iteration number as
well as on adjustable parameters that control the rate of convergence. One
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such stepsize rule is, for example, αs = b
(b−1)+s

, where s is the iteration
counter and b is a constant parameter to be specified. Figure 8.2 shows the
different convergence rates for different values of parameter b. Note that the
higher the value of parameter b the slower the rate of convergence.

2. The stochastic stepsize rules, where we take into account the prediction error
which at iteration s is defined as follows: ε̃s = Φ̃s − Φ̂s−1, where Φ̃s are the
observed estimates of the current iteration and the Φ̂s−1 are mean estimates
of the previous iteration. One such stepsize rule is, for example, Kesten’s rule

which is defined as follows:

αs = α0 α

β +Ks
, s = 1, 2, . . . , (8.3)

In (8.3), α0 and α are constant parameters to be specified andKs is computed
recursively by the following equation:

Ks =

s, if s = 1, 2

Ks−1 + 1{ε̃sε̃s−1<0}, if s > 2
(8.4)

where 1{X} is the indicator function that gives one if condition X holds.

The idea in Kesten’s rule is to decrease the stepsize and thus speed up conver-
gence of the value function estimates if the successive prediction errors have
opposite sign.
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Figure 8.2: Different rates of convergence for stepsize rule αs = b
(b−1)+s

In this study, we would like to overcome the problem of deterministic stepsize
rules where different dimensions have different convergence rates in the sense that
the number of states explored differs from one dimension to another so we use a
modified version of deterministic stepsize rule αs = b

(b−1)+s
, where instead of an

iteration counter s we use a counter nst that measures the number of “states” visited
so far at time t and iteration s (see for example [60]). Since we have continuous
state variables, in order to count the number of “states” we use binary holdings
vectors where 0 and 1 indicate respectively zero and positive holdings in an asset.
We define these binary “states” as follows:

• In the linear approximation, we let our “state” be described by a 1× (N + 1)

vector of 0 − 1 variables with one at position i if the holdings of asset i are
positive. This gives us a total of 101 states for the simple LADP method since
only one asset is selected per time period. In the LADP-UB method, the
number of states that we can visit grows significantly since here, depending
on how tight our upper bounds are, the selected portfolios comprise of more
than one asset. For α = 1/3, for example, we will see in the numerical results
that in each time period we select between 2 and 5 assets which makes our
“state” space much larger.
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• In the piecewise linear approximation, we let our “state” be described by the
following two vectors: a 1 × (N + 1) vector where the first N + 1 positions
are as in the linear approximation 0− 1 variables with one at position i if the
holdings of asset i are positive and a 1×N vector of integers where position i
denotes the active slope of asset i (i.e. the slope used for the current holdings).
The main difference with the linear approximation is that here for each asset
we can explore different slopes which increases significantly the size of our
“state” space.

Therefore, we use the following stepsize rule:

αsit =
b

(b− 1) + nst
, s = 1, 2, ..., (8.5)

where b is a constant parameter to be specified. The advantage of using rule
(8.5) is twofold: On the one hand, the slopes of the assets of every time period
have the same rate of convergence since in each iteration these are updated with the
same stepsize value. On the other hand, using the number of states visited instead
of the iteration number in the denominator of (8.5) gives us the chance to explore
more states before our slopes converge by assigning more weight to the observed
slopes of the current iteration and less weight to the slope estimates of the previous
iteration.

Note that before we resorted to stepsize rule (8.5) we had conducted several
experiments trying a number of different deterministic and stochastic stepsize rules
which achieved the desired convergence for the mean slope estimates but were re-
jected because they explored very few “states”. In particular, from the deterministic
stepsize rules we tried the generalized harmonic stepsizes as well as the McClain’s

formula and from the stochastic stepsize rules we tried Kesten’s rule as well as
Kalman’s filter.

For our numerical results, we have selected to use stepsize 1
nst

for the simple
LADP method and 25

24+nst
for the LADP-UB and the PLADP methods as these step-

sizes provide a good compromise between visiting a sufficiently high number of
“states” and achieving convergence for our slopes. In the end, we will also provide
results for other values of parameter b.
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Initial Slope Estimates for the ADP Methods

In approximate dynamic programming, ideally we would want to encourage explo-
ration of actions/states before the value function estimates converge. In the Re-
inforcement Learning community, this is achieved by using a method known as
optimistic initial values where we start with optimistic initial values for the value
function estimates in the sense that these values are too high/low if we are maxi-
mizing/minimizing (see [77]).

The benefit of using optimistic initial values is that whatever the decisions taken
initially, the achieved reward is always less than the initial value function estimates
if we are maximizing. Due to this, the learner gets “disappointed” with the achieved
reward and switches to other decisions trying to gain back his original value function
estimates, thus visiting a fair amount of states before the value function estimates
converge. The problem here is that if the initial value function estimates are too
optimistic, i.e. too high if we are maximizing, then they might take a long time to
come down to normal levels and this may affect convergence (not that they will not
converge but they might converge to worse values).

For our simulations, we have constructed optimistic initial values for the slope
estimates using the returns of the assets from the generated scenario paths. The
catch here is that through the observed slopes (see Tables 6.3 and 6.4) the returns
of the scenario paths are passed to previous time periods in a multiplicative manner.
Thus, the slope of each asset at time t is a cumulative return that gives us the value
of holding £1 of the asset from time t until the end of the time horizon. Considering
this, we computed our initial slope estimates as follows: Starting at time T = 52, for
each asset we computed its maximum return on the generated scenario paths. Then,
we computed the average of these maximum returns and we set initial slopes û0

i(T−1)

equal to this average for all i = 1, 2, . . . , N + 1. After computing the initial slope
estimates of the last period, we stepped back to period 51 and, as in the last period,
we computed the average of the maximum returns of the assets on the scenario paths
at period 51. The new average return at period 51 was then multiplied with one of
û0
i(T−1) to give us slopes û0

i(T−2) for all i = 1, 2, . . . , N + 1. In a similar manner, we
stepped back to previous time periods computing as we go optimistic estimates for
the initial slopes of the assets in all time periods.

Note the following:

1. Each time we step back one time period to estimate the new optimistic initial
slopes of the assets, we do an averaging of the maximum returns of the assets
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instead of using again a max operator. The reason for this is that in the latter
case the slopes of the assets in the early periods of the out-of-sample horizon
explode, thus resulting in too optimistic initial slope estimates.

2. All assets including cash are assigned the same initial slopes at every time
period which results in us moving forward through time in the first iteration
of each ADP algorithm only with cash (this is because the buying slopes of
the assets become all negative in all time periods). The reason for doing
this is that, considering the importance of the initial slope values in obtaining
“good” value function estimates in the end, we want to avoid any initial bias
coming from a “pre-defined” preference over some assets. Instead, we let the
ADP algorithms decide which assets are “good” based on the returns of the
assets in the scenario paths.

Software

All experiments were conducted on PCs with Intel(R) Core(TM) i7-2600S pro-
cessors and 8GB RAM memory and all algorithms were implemented in Version
7.12 (R2011a) MATLAB. To solve the multistage stochastic programs, we used the
General Algebraic Modeling System (GAMS), where we used the embedded solver
Scenred2 to reduce the number of scenarios and construct scenario trees as well as
the embedded optimizer IBM CPLEX 12 to solve the resulting deterministic equiv-
alent problems. All other optimization problems were solved in MATLAB with
IBM CPLEX 12.

8.3 Numerical Results

In this section, we present the numerical results from our simulations. In particu-
lar, we first report in subsection 8.3.1 the characteristics of the selected portfolios
and provide plots that show how slopes converge in the ADP methods. Then, in
subsection 8.3.2, we proceed with the performance evaluation where we report the
performance measures and the computational times, and we provide performance
tracking plots for all methods. Finally, in subsections 8.3.3, 8.3.4 and 8.3.5 we per-
form robustness checks by examining respectively the expected terminal wealth and
the CVaR of the different portfolio policies, the impact of the length of the planning
horizon and the impact of transaction costs.
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8.3.1 Characteristics of Selected Portfolios and Convergence of
Slopes

In this section, we report the characteristics of the selected portfolios described
in section 8.1.1 above. In particular, for each method under the column labeled
“NAt” we report a range that gives the minimum and the maximum number of
assets selected per out-of-sample period, under the column labeled “NA” we report
the number of different assets used throughout the out-of-sample horizon, under
the column labeled “Cash” we report 0 − 1 if cash is used in some of the selected
portfolios, 1 if we only use cash and 0 if we never use cash, and finally under the
column labeled “HI?” we report a range that gives the minimum and the maximum
normalized Herfindahl Index per out-of-sample period. Further, we provide plots
that show how slopes converge in the ADP methods.

Characteristics of Selected Portfolios

Table 8.4, summarizes the characteristics of the selected portfolios for the equally-
weighted, the single-period and the multistage stochastic programming methods.

In the equally-weighted method, the buy-and-hold and and the fixed-mix strate-
gies are labeled respectively as “EW-BH” and “EW-FM” and in both strategies
all assets including cash are used in all time periods out-of-sample. As explained
above, the difference between the two strategies is that unlike the buy-and-hold
strategy, where the portfolio is rebalanced to fixed equal target proportions only in
the first time period, in the fixed-mix strategy the portfolio is rebalanced to equal
proportions in all assets in all time periods.

In the single-period method labeled as “SP”, the number of assets in the selected
portfolios as well as the degree of diversification depend on the market expectations
and the risk importance parameter γ. Thus, when we expect the market to go up
out-of-sample (this is in the Up-Up and Up-Down datasets) we neglect cash and
go for risky assets hoping to earn something better than the risk-free interest rate.
On the contrary, when we expect the market to go down out-of-sample (this is in
the Down-Up and Down-Down datasets) either we prefer to go for the safer risk-
free interest rate or we select a few risky assets. Regarding the risk importance
parameter, note that the higher the value of γ (this corresponds to more risk) the
less the number of assets and the less the degree of diversification in the selected
portfolios. In particular, for γ = 1 we are infinitely risk taking and a single risky
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asset is selected everywhere.
In the multistage stochastic programming method labeled as “MSP”, we observe

a similar behavior as in the single-period method. The main difference here is that
we have less diversified portfolios per time period. Overall, however, note that the
number of different assets used out-of-sample is considerably higher in this method
as compared to the single-period one.

Table 8.5 summarizes the characteristics of the selected portfolios for the LADP
methods.

In the simple linear approximate dynamic programming method without upper
bounds on the holdings of the risky assets labeled as “LADP”, the risk importance
parameter γ has no effect in the composition of the selected portfolios which com-
prise of only one asset per time period. As explained in chapter 6, this is due to
the assumed linear approximations of the value functions which ignore the effect
of CVaR and this leads to a similar behavior to the MSP method for γ = 1. In
particular, in the simulation results we noticed that for γ = 1 the same asset was
selected by both methods in most out-of-sample periods.

In the linear approximate dynamic programming method with upper bounds on
the holdings of the risky assets labeled as “LADP-UB”, the effect of CVaR is still
ignored since the functional type of the approximate value functions remains linear.
What changes from the simple LADP method without upper bounds is diversifica-
tion. Recall from chapter 6 that the reason why we considered adding these upper
bound constraints is that for low values of the state variables this becomes a “good”
approximation (see Figure 6.1). Specifically, here the additional upper bound con-
straints on the holdings of the risky assets force us to include at least 2 assets in the
selected portfolios. Any variation in the number of assets between different time
periods is because the actual returns change the amount of the total wealth that can
be allocated to assets in every time period. In the simulation results, we noticed
that, as expected, when α = 1/5 we have slightly more diversified portfolios as
compared to when α = 1/3 since α = 1/5 gives us tighter upper bounds regarding
how much we can have in each asset. Note that after adding the new constraints the
number of different assets used out-of-sample is higher.

Table 8.6 summarizes the characteristics of the selected portfolios for the PLADP
methods.

In the piecewise linear approximate dynamic programming methods labeled as
“PLADP”, the use of piecewise linear concave value functions results in well di-
versified portfolios since we estimate concave functions for the assets assuming



CHAPTER 8. EXPERIMENTAL RESULTS 168

that the value of an extra unit of an asset deteriorates as the holdings of the asset
grow and takes into account the effect of CVaR (this is communicated to previous
time periods through the observed slopes). Note that for m = 5 slopes we have,
as expected, more diversified portfolios as compared to m = 3 slopes since with
more slopes we have more jumps between the slopes and as a result between the
assets. Further, note that in most cases for m = 5 the number of different assets
used throughout the out-of-sample horizon is higher than for m = 3 but in both
approximations we use overall fewer assets than in multistage stochastic program-
ming. This could be improved by adding more slopes in the approximate piecewise
linear value functions.
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Dataset γ
PLADP (m = 3) PLADP (m = 5)

NAt NA Cash HI? NAt NA Cash HI?

Up-Up

0 2-29 37

0

0.21-0.83 3-26 31

0

0.16-0.84
0.2 3-33 33 0.18-0.83 3-22 31 0.18-0.86
0.4 4-28 35 0.23-0.83 3-23 31 0.20-0.83
0.6 3-25 38 0.18-0.84 4-29 34 0.21-0.83
0.8 4-32 36 0.22-0.83 4-30 36 0.19-0.86
1 3-30 31 0.22-0.83 4-34 40 0.17-0.86

Up-Down

0 2-21 31

0

0.20-0.82 1-33 40

0

0.21-1
0.2 3-18 34 0.11-0.80 3-34 41 0.13-0.80
0.4 3-23 35 0.15-0.81 3-34 40 0.19-0.79
0.6 3-20 31 0.18-0.84 3-25 36 0.14-0.79
0.8 2-21 33 0.14-0.93 2-27 33 0.13-0.78
1 2-21 34 0.12-0.91 3-31 40 0.10-0.76

Down-Up

0 1-43 50 0 0.13-1 2-35 48

0

0.12-0.97
0.2 2-19 33 0-1 0.20-0.97 2-27 45 0.12-0.95
0.4 2-22 42 0-1 0.16-0.93 2-33 50 0.09-0.92
0.6 2-21 39 0 0.21-0.88 3-30 45 0.14-0.85
0.8 2-27 43 0-1 0.12-0.85 3-30 45 0.12-0.78
1 2-25 40 0 0.16-0.92 2-29 43 0.09-0.80

Down-Down

0 4-20 37

0

0.15-0.63 3-34 47

0

0.16-0.65
0.2 4-16 33 0.19-0.64 3-34 51 0.15-0.66
0.4 3-16 35 0.20-0.66 3-42 52 0.13-0.66
0.6 5-23 38 0.16-0.63 3-34 47 0.14-0.66
0.8 5-20 36 0.14-0.64 4-39 52 0.14-0.63
1 5-17 31 0.18-0.64 3-31 47 0.17-0.66

Table 8.6: Characteristics of selected portfolios for the PLADP methods

Convergence of Slopes

For the selected stepsizes (see section 8.2 above), Figures 8.3-8.5 show how slopes
converge in the ADP methods for asset i = 3, time t = 30 and risk importance
parameter γ = 0.8 in the Up-Up dataset, where the decrease in the mean slope
values is due to visiting new “states” which increases parameter nst in the stepsize
formula b

(b−1)+nst
and any noise in the slope values is due to the noise in the data.

In the simple LADP method (see Figure 8.3), we notice that the mean slope
initially decreases slowly but converges very quickly after approximately 500 iter-
ations. The reason for this is that, as explained earlier, with this method we can
explore only 101 states, one for visiting each asset.

In the LADP-UB method (see Figure 8.4), we observe a slightly different pat-
tern. Here, the mean slope initially decreases fast but it requires approximately 2000

iterations before it converges. The reason for this is that, as explained earlier, with
this method due to diversification we can explore many more states.

In the PLADP method (see Figure 8.5 for an example with m = 3 slopes), the
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mean slopes behave as in the LADP-UB methods but overall require many more
iterations before they converge (for the given example we need approximately 3000

iterations). The reason for this is that with the PLADP method we do not explore
only the assets but also the slopes of the assets which makes the state space even
larger. Further, note that in the PLADP methods the earlier slopes of the assets
converge faster as they are the first to explore when visiting the assets. In Figure
8.5, for example, we notice that slope 1 converges to its mean value only after
approximately 100 iterations.

0

1

2

3

4

5

6

7

8

1

9
9

1
9
7

2
9
5

3
9
3

4
9
1

5
8
9

6
8
7

7
8
5

8
8
3

9
8
1

1
0
7
9

1
1
7
7

1
2
7
5

1
3
7
3

1
4
7
1

1
5
6
9

1
6
6
7

1
7
6
5

1
8
6
3

1
9
6
1

2
0
5
9

2
1
5
7

2
2
5
5

2
3
5
3

2
4
5
1

2
5
4
9

2
6
4
7

2
7
4
5

2
8
4
3

2
9
4
1

3
0
3
9

3
1
3
7

3
2
3
5

3
3
3
3

3
4
3
1

3
5
2
9

3
6
2
7

3
7
2
5

3
8
2
3

3
9
2
1

sl
op

e 
va

lu
e

iteration

LADP
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Figure 8.5: Slopes versus iteration for asset i = 3 at time t = 30 and for γ = 0.8 in the Up-Up
dataset in the PLADP method with m = 3 slopes
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8.3.2 Performance Evaluation

As explained earlier, the out-of-sample terminal wealth is our performance mea-
sure. In this section, we compare the portfolio selection methods with respect to
their out-of-sample terminal wealths. Specifically, we first report the performance
measures for each method and then based on them we compare all methods. Then,
for each method and for each value of the risk importance parameter γ we com-
pute the respective average out-of-sample terminal wealth across the four datasets
(Up-Up, Up-Down, Down-Up, Down-Down) and use it as a measure of the average
performance of each method. Particularly for the ADP methods, we provide addi-
tional results for their average performance for more stepsizes. Finally, we conclude
with computational times.

Performance of Portfolio Selection methods

Here, we report the out-of-sample terminal wealths for each method, where note
that as explained earlier in section 8.2 for the simple LADP method we use stepsize
1
nst

and for the other ADP methods we use stepsize 25
24+nst

, and comment on them
using as a reference the market. Table (8.7) summarizes the out-of-sample terminal
wealths for all methods, all datasets and the different values of the risk importance
parameter γ. Note that in total for each method we have 24 instances (4 datasets ×
6 levels of γ).

The equally-weighted buy-and-hold and fixed-mix strategies labeled respec-
tively as “EW-BH” and “EW-FM” consistently outperform the market in all datasets
except for the Up-Up dataset, where, although we are below the market, our initial
portfolio value grows in both methods by approximately 30%. Note that, although
the discrepancies in the terminal wealth values in the two strategies are negligible,
the equally-weighted buy-and-hold strategy is doing slightly better than the fixed-
mix one in all datasets except for the Up-Down dataset, where the buy-and-hold
strategy is slightly below the fixed-mix one.

The single-period portfolio method labeled as “SP” performs very poorly as in
most instances its out-of-sample terminal wealth is significantly less than the market
except for γ = 0.6 and 0.8 in the Down-Up dataset and everywhere in the Down-
Down dataset where it is doing better.

The multistage stochastic programming method labeled as “MSP” is doing con-
sistently worse than the market except for γ ≥ 0.4 in the Down-Down dataset where
it beats the market. Further, note that in most instances of this method our terminal
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portfolio value falls bellow £100000.
The simple linear approximate dynamic programming method labeled as “LADP”

ignores risk and as a result we have only one terminal wealth value for each dataset.
Although in this method we are doing better than the market in two out of the four
datasets, the Down-Up and Down-Down ones, by selecting only one asset per time
period we risk experiencing dramatic losses (see for example the Up-Down dataset
where our initial portfolio value drops by approximately 64%).

The linear approximate dynamic programming method with upper bound con-
straints on the holdings of the risky assets labeled as “LADP-UB” gives us in each
dataset very similar terminal wealth values, in some instances identical, no matter
what the value of the risk importance parameter γ is. The reason for this is that in
this approximation we still have one slope for each slope which results in ignoring
CVaR. Here, although we do not see a clear pattern as to whether the higher de-
gree of diversification which is caused by the tighter upper bound constraints on the
holdings of the risky assets for α = 1/5 improves the performance, dirversification
seems to protect us from experiencing high losses. Thus, when the market goes
down out-of-sample, i.e. in the Up-Down and Down-Down datasets, we are clearly
better off the market and above our initial portfolio value of £100000. When the
market goes up out-of-sample, i.e. in the Up-Up and Down-Up datasets, although
we are below the market, our initial portfolio grows above £100000 in value in all
instances.

Unlike other methods that perform badly, the piecewise linear approximate dy-
namic programming method labeled as “PLADP” consistently outperforms the mar-
ket in all datasets for both m = 3 slopes and m = 5 slopes except for the Up-Up
dataset where, although our initial portfolio value grows significantly in most in-
stances (note that especially for low values of γ including γ = 0 we are doing
pretty good), the Index does better than every other method. Specifically for m = 5

slopes the performance measures look in general way better than for m = 3 slopes.
Further, note that this method is doing well in datasets that other methods perform
badly.

In Appendix E, we provide cumulative wealth plots that show how cumulative
wealth changes out-of-sample with time for the different values of the risk impor-
tance parameter γ in all four datasets.

To compare now the different portfolio selection methods and the market Index,
we compute in Table 8.8 in how many instances out of the 24 each method and the
market Index outperform the other methods and the market Index with respect to
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our performance measure.
Clearly the best performing methods are the PLADP method withm = 5 slopes,

the PLADP method with m = 3 slopes and the equally-weighted methods since
they outperform the other methods and the market in at least half of the instances.
Among the four, the best performing is the PLADP method with m = 5 slopes
which beats the PLADP method withm = 3 slopes and the equally-weighted meth-
ods in 16 out of the 24 instances, followed by the the PLADP method with m = 3

slopes which beats the buy-and-hold and the fixed-mix equally-weighted methods
in 15 and 14 out of the 24 instances respectively.
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Average Performance

Assuming an investor who enters the market with £100000 cash at the beginning of
each out-of-sample horizon with equal probability 0.25, Tables 8.9 and 8.10 sum-
marize the average out-of-sample terminal wealth values for each method across the
four datasets and for each value of the risk importance parameter γ.

Looking at the average performance measures of Tables 8.9 and 8.10 and start-
ing from the best performing method, our simulation results suggest the following
ordering for the methods in terms of their average performance:

1. PLADP with m = 5 slopes

2. PLADP with m = 3 slopes

3. Equally-weighted strategies

4. LADP-UB with α = 1/3, 1/5

5. Single-period method

6. LADP

7. Multistage stochastic programming

Note that for the LADP-UB methods we do not have a clear picture as to which
of the two α = 1/3 or α = 1/5 performs better since their average performance
values are very similar. Further, note that in the PLADP, the single-period and the
multistage stochastic programming methods performance seems to improve signif-
icantly either when we are infinitely risk averse for γ = 0 or when we accept a
reasonable amount of risk for γ = 0.8.

γ FTSE EW-BH EW-FM SP MSP
0

110361.44 118990.89 118764.70

98944.19 82354.42
0.2 98640.00 77562.03
0.4 97749.13 82114.20
0.6 99381.73 83455.50
0.8 97867.91 85419.37
1 81222.03 84282.32

Table 8.9: Average out-of-sample terminal wealth for the market Index, the equally-weighted, the
single-period and the multistage stochastic programming methods
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γ LADP LADP-UB PLADP
α = 1/3 α = 1/5 m = 3 m = 5

0

97677.58

111506.25 111059.76 129448.92 141396.12
0.2 110152.69 111004.17 134648.93 142759.34
0.4 110270.02 111423.87 125079.49 133919.02
0.6 110781.51 111090.99 128391.16 134367.69
0.8 110329.08 110299.59 126324.84 142098.75
1 109772.42 110987.24 130068.14 128291.21

Table 8.10: Average out-of-sample terminal wealth for the ADP methods

Figures 8.6-8.11 show how the average cumulative wealth changes with time for
each method and for each level of risk and one can clearly see the above distinction
between the methods with respect to their average performance. Note that the four
best performers with respect to average performance, i.e. the two PLADP methods
and the two equally-weighted strategies, tend to track the market Index.
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Figure 8.7: Average out-of-sample cumulative wealth against time for γ = 0.2
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Figure 8.8: Average out-of-sample cumulative wealth against time for γ = 0.4
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Figure 8.9: Average out-of-sample cumulative wealth against time for γ = 0.6
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Figure 8.11: Average out-of-sample cumulative wealth against time for γ = 1

Average Performance of ADP Methods for Other Stepsizes

In our experiments, we used stepsize rule b
(b−1)+nst

and the numerical results given
above are for b = 1 for the simple LADP method and b = 25 for all other ADP
methods. The reason for selecting these stepsizes, as explained earlier in section
8.2, is that they provide a good compromise between exploring a sufficiently high
number of “states” and achieving convergence of the slopes in the value function
approximations. Here, we provide average performance numerical results to ex-
amine the impact of stepsize rule b

(b−1)+nst
on our results for other values of pa-

rameter b. In particular, we examine how ADP methods perform on average for
b = 1, 5, 10, 15, 20, 25, 30 and 35. For any other b > 35, we have observed that the
number of the new “states” explored is insignificant thus making the price we have
to pay for convergence unnecessarily high. In the discussion that follows, we use
the buy-and-hold equally-weighted strategy as a reference for our comparisons with
the ADP methods since in the numerical results provided above, disregarding the
ADP methods, the buy-and-hold equally-weighted strategy is the best performing
among all other methods.

Table 8.11 summarizes the average terminal wealth values across the four datasets
for the different values of the risk importance parameter γ. To make it easier for
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the reader to follow up the numerical results provided in Table 8.11, in Figures
8.12-8.17 we provide bar charts, where the height of each bar gives us the average
out-of-sample terminal wealth value for each method and each value of parameter
b.

Observing Figures 8.12-8.17, we notice that for the above values of parameter
b the results are very similar to the ones given above for the selected values b = 1

for the LADP method and b = 25 for the other ADP methods. In particular, we
observe the following: Overall, the best performing method is PLADP, followed by
the equally-weighted buy-and-hold strategy, then the LADP-UB method and finally
the simple LADP method. In particular for the PLADP methods, for γ = 0 and 0.2

PLADP with m = 3 slopes performs better than PLADP with m = 5 slopes for 5

out of the 8 values of parameter b. On the contrary, for γ = 0.4, 0.6 and 0.8 PLADP
with m = 5 slopes performs better than PLADP with m = 3 slopes respectively
for 6, 5 and 6 out of the 8 values of parameter b. For γ = 1, the two methods
seem to be equally good since they outperform each other for half of the values
of parameter b. Further, both PLADP methods consistently beat the buy-and-hold
equally-weighted strategy for all values of parameter b except for b = 1, where
the buy-and-hold equally-weighted strategy has a slightly better performance, and
b = 5 where all three methods seem to do equally good. For b > 5, the average
performance of the two PLADP methods improves significantly and is far better
than that of the fixed-mix equally-weighted method. The reason for this is that for
very low values of parameter b our slope estimates converge faster. As a result of
this, we visit less “states” and our slope estimates converge to “worse” values.
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γ b EW-BH LADP LADP-UB PLADP
α = 1/3 α = 1/5 m = 3 m = 5

0

1

118990.89

97677.58 124329.27 123452.92 115676.82 115060.35
5 85161.48 129878.92 117490.06 128090.62 119149.41

10 83700.95 124895.97 117983.96 147781.35 138615.84
15 87366.16 115201.09 111912.06 138601.14 139220.05
20 89907.79 112657.08 111837.09 150468.13 123450.00
25 90020.17 111506.25 111059.76 129448.92 141396.12
30 91492.12 113536.83 104583.86 151870.38 125036.98
35 93918.46 112044.79 110433.66 117644.99 127290.65

0.2

1

118990.89

97677.58 125656.57 123432.49 117056.24 114625.46
5 82046.22 129535.82 117588.84 136101.68 121579.68

10 83419.76 124764.33 117598.54 139666.37 131253.66
15 88987.50 116202.59 111816.45 132072.57 125216.45
20 91144.26 112970.61 111977.47 130630.59 131331.30
25 90020.17 110152.69 111004.17 134648.93 142759.34
30 91305.12 114835.04 105093.90 131100.20 137638.19
35 91979.05 113057.56 110546.57 123300.46 122042.57

0.4

1

118990.89

97677.58 125395.25 122840.94 116150.1 117617.03
5 82120.23 127474.43 117493.61 114750.68 118573.97

10 83844.35 124292.55 118772.07 149518.75 140356.30
15 88619.42 114620.32 111939.92 150024.88 163949.59
20 91144.26 112974.15 112411.10 128770.35 140549.06
25 91303.38 110270.02 111423.87 125079.49 133919.02
30 92425.47 114979.58 104955.19 129906.90 118109.13
35 93188.74 112928.85 110818.12 133300.58 136357.03

0.6

1

118990.89

97677.58 126265.14 122922.44 114547.70 115007.16
5 82120.23 127182.76 117839.47 124821.56 122104.38

10 83932.10 124390.89 118421.69 152324.95 135376.70
15 88541.34 114867.35 112080.19 133811.54 145197.91
20 91233.91 112633.06 112157.41 151360.19 122047.96
25 91393.69 110781.51 111090.99 128391.16 134367.69
30 92433.69 114312.65 104654.74 126393.84 137792.02
35 93273.26 112073.14 110046.72 128706.49 138486.76

0.8

1

118990.89

97677.58 126168.94 123499.66 114776.5 112861.97
5 85475.23 129256.13 118155.02 118571.21 123120.25

10 83932.10 124932.73 118422.68 154956.01 129919.49
15 88800.76 116518.57 111960.75 134682.55 136186.98
20 92018.98 112639.27 111708.79 125226.04 136675.16
25 91587.02 110329.08 110299.59 126324.84 142098.74
30 93356.40 114235.29 104634.69 125506.67 132401.24
35 93485.68 111902.74 110030.08 113744.19 131756.82

1

1

118990.89

97677.58 125070.89 123842.56 114376.49 116159.09
5 84038.03 128931.01 118021.1 122800.22 120195.96

10 84696.90 125469.21 118141.91 133013.20 129371.67
15 89736.41 117108.47 111835.02 142023.96 131575.58
20 92977.68 111945.69 111593.2 127664.65 133721.34
25 93136.80 109772.42 110987.24 130068.14 128291.21
30 94315.62 112345.93 104634.69 125831.91 127059.91
35 95091.91 110943.20 110290.35 126413.42 135914.21

Table 8.11: Average out-of-sample terminal wealths for different stepsize values
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Figure 8.12: Average performance for different stepsizes: γ = 0
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Figure 8.13: Average performance for different stepsizes: γ = 0.2
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Figure 8.14: Average performance for different stepsizes: γ = 0.4
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Figure 8.15: Average performance for different stepsizes: γ = 0.6
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Figure 8.16: Average performance for different stepsizes: γ = 0.8
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Figure 8.17: Average performance for different stepsizes: γ = 1
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Computational Times

Table 8.12 summarizes the computational times (in seconds) to evaluate each method
for each level of the risk importance parameter γ and for each dataset. Note that
these times include the times to construct the trees in the multistage stochastic pro-
gramming method, which are also given separately in Appendix D, as well as the
times to perform training iterations in the ADP methods.

Looking at Table 8.12, we notice that the fastest methods, as expected, are the
equally-weighted buy-and-hold and fixed-mix strategies, which take us respectively
between only 0.0089 seconds and 0.0144 and between only 1.24 and 1.41 seconds
to evaluate since they involve solving small linear programs that do not use the
scenario returns. In all other methods, however, where we use the scenario returns,
time increases significantly. In particular, we notice the following:

1. The second fastest method is the single-period method, where having the
CVaR in our objective makes it more difficult for CPLEX to find the optimal
solutions for the underlying linear programs and thus requires more compu-
tational time. In the Up-Up dataset, for example, removing CVaR from our
objective for γ = 1 takes us only 1.20 seconds to evaluate the single-period
method which is approximately 328 times faster than when we have only
CVaR in the objective for γ = 0 which takes us 329.27 seconds.

2. The third fastest method is the simple LADP method where each instance
takes us between 529 and 608 seconds.

3. The third fastest method is LADP-UB method, where, due to the additional
upper bound constraints on the holdings of the risky assets, it takes us more
time to solve than the simple LADP method. In particular, for this method
each instance takes us between 649 and 727 seconds.

4. The fourth fastest method is the PLADP method, where computational time
increases significantly with the number of slopes. Specifically, for the PLADP
method with m = 3 slopes each instance takes us between 2467 and 2815

seconds to evaluate, which is approximately 4 times more as compared to an
instance of the LADP-UB methods, and for the PLADP method with m = 5

slopes each instance takes us between 3631 and 3944 seconds to evaluate,
which is approximately 6 times slower than an instance of the LADP-UB
methods and approximately 1.5 times slower than an instance of the PLADP
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method with m = 3 slopes. Note that we have attempted to implement the
PLADP methods by including more slopes but for m ≥ 7 slopes MATLAB
would run out of memory.

5. Finally, the less efficient method with respect to computational time is mul-
tistage stochastic programming, where in each time period we need to spend
time to first construct a scenario tree and then solve a linear program whose
size becomes explosive since it combines all scenario returns. For this method,
it takes us between 105000 and 111000 seconds to evaluate each instance for
γ > 0 and between 260000 and 315000 seconds to evaluate each instance
for γ = 0. Thus, having only CVaR in the objective makes it much more
difficult for CPLEX to converge to an optimal solution. Comparing the times
in this method with the times in the PLADP methods, note that the PLADP
method with m = 3 slopes is approximately 105 times faster than multistage
stochastic programming for γ = 0 and 35 times faster for γ > 0, and the
PLADP method with 5 slopes is approximately 75 times faster than multi-
stage stochastic programming for γ = 0 and 25 times faster for γ > 0. Thus,
in the multistage stochastic programming method, except for the price we
have to pay in our performance due to cutting a significant amount of the in-
put information, we have to pay an additional price which is the time to solve
the resulting big linear program.

Note that especially when it comes to comparing the computational times in
multistage stochastic programming with the times in the PLADP method with m =

5 slopes, it took us cumulatively around 10 days! to evaluate all six instances of
multistage stochastic programming in each dataset, while for the PLADP method
with m = 5 methods we spent only around 6.5 hours per dataset. The reason for
this big difference in the computational times is that in the multistage stochastic
programming method we rebalance our portfolio every 1 week in order to extract a
policy (recall that in this method we use only the first-stage decisions from the sce-
nario trees) as opposed to the PLADP methods which by construction extract a full
policy in only one (testing) iteration and as a result take only a few hours. The big
discrepancy in the computational times between the two methods makes multistage
stochastic programming not affordable and the PLADP method very attractive.
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8.3.3 Expected Terminal Wealth and CVaR of the Different Port-
folio Policies

In this section, we report the expected terminal wealths and the CVaR values of the
different portfolio policies of the best performers, which are the PLADP methods
and the equally-weighted strategies (note that for the PLADP methods we have used
the stepsize rule 25

24+nst
).

Tables 8.13-8.14 and 8.15-8.16 summarize respectively the expected terminal
wealths and the CVaR values of the PLADP methods and the equally-weighted
strategies on the generated 4000 scenarios of returns.

Looking at the expected terminal wealth and the CVaR of the different portfolio
policies, we notice that the PLADP methods lead to significantly higher expected
terminal wealths but, due to the smaller degree of diversification, they incur higher
losses in the 5% worst-case scenarios as compared to the equally-weighted strate-
gies. Further, note that due to the higher transaction costs that we pay in the fixed-
mix equally-weighted strategy, the respective expected terminal wealth and CVaR
values are worse than the buy-and-hold strategy.

Dataset γ EW-BH EW-FM PLADP
m = 3 m = 5

Up-Up

0

119005.47 117161.17

132983.17 131262.03
0.2 132349.23 130842.71
0.4 132804.22 131961.14
0.6 131695.56 130753.56
0.8 132567.43 131405.03
1 132689.37 129765.05

Up-Down

0

119823.17 115148.13

158495.65 165818.62
0.2 155706.30 162665.25
0.4 163145.04 159096.29
0.6 164007.56 165025.98
0.8 156068.73 159832.23
1 159698.48 158932.90

Table 8.13: Up-Up, Up-Down: Expected Terminal Wealth of the Portfolio Policies of the PLADP
methods and the equally-weighted strategies
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Dataset γ EW-BH EW-FM PLADP
m = 3 m = 5

Down-Up

0

101221.81 99061.62

134990.65 135270.90
0.2 141748.42 129411.99
0.4 129029.84 129368.49
0.6 135736.07 128660.85
0.8 126261.31 130354.19
1 130215.79 121872.74

Down-Down

0

112499.12 110113.66

119328.85 119838.63
0.2 121271.35 120468.17
0.4 123511.77 119412.43
0.6 122165.97 118282.86
0.8 119843.24 119613.20
1 120408.37 119395.37

Table 8.14: Down-Up, Down-Down: Expected Terminal Wealth of the Portfolio Policies of the
PLADP methods and the equally-weighted strategies

Dataset γ EW-BH EW-FM PLADP
m = 3 m = 5

Up-Up

0

-8859.14 -6616.67

41058.52 41480.06
0.2 41597.09 43812.41
0.4 40561.71 43637.90
0.6 41043.99 43062.41
0.8 41319.77 40784.81
1 39928.16 44600.45

Up-Down

0

-3113.01 2613.12

73361.44 75822.65
0.2 71262.05 75999.20
0.4 70818.42 74714.54
0.6 70362.70 75282.91
0.8 72419.80 74853.72
1 73376.45 74591.04

Table 8.15: Up-Up, Up-Down: CVaR of the Portfolio Policies of the PLADP methods and the
equally-weighted strategies
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Dataset γ EW-BH EW-FM PLADP
m = 3 m = 5

Down-Up

0

10928.62 15820.76

84661.59 83872.02
0.2 84820.16 88178.69
0.4 86405.69 85436.95
0.6 83940.87 86748.97
0.8 84614.91 87495.89
1 86380.63 86991.23

Down-Down

0

-168.37 3045.65

57406.71 60794.52
0.2 56807.80 60202.18
0.4 58382.93 60285.34
0.6 56010.31 61657.34
0.8 58029.84 60284.24
1 59366.05 60682.45

Table 8.16: Down-Up, Down-Down: CVaR of the Portfolio Policies of the PLADP methods and the
equally-weighted strategies

8.3.4 Impact of Length of Planning Horizon

In this section, we study the impact of the length of the planning horizon and the
number of periods considered. Recall that in the simulation results presented above
we used in-sample data of 104 weeks to generate 4000 out-of-sample scenarios of
returns, each scenario with length 52 weeks. The generated scenarios of returns
were then used to extract the portfolio policies of the approximate dynamic pro-
gramming methods and the other portfolio selection methods used as benchmarks,
which were then evaluated and compared in terms of the achieved out-of-sample
wealth at the end of the out-of-sample horizon.

Here, we examine the impact of the length of the planning horizon by consider-
ing smaller out-of-sample horizons and running “rolling-horizon” simulations (see
for example [20], [21], [23], [79] and [86]). In particular, assuming that the in-
sample data consist of the most recent 104 weeks, as above, we generate 4000 out-
of-sample scenarios of returns and extract the associated portfolio policies which
now consist of fewer time periods. After evaluating the extracted policies using
the corresponding out-of-sample actual returns (see section 8.1 for a discussion on
how we evaluate the extracted portfolio policies), we update the in-sample data to
include the actual returns that have been revealed (note that these are the actual re-
turns of the previous planning horizon), we generate a new set of 4000 scenarios of
returns for the new planning horizon and we use them to extract the new associated
portfolio policies, and so on.

In the “rolling-horizon” simulation results presented below, we considered plan-
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ning horizons of 13 and 26 weeks and we rolled forward respectively 4 and 2 times
(in this manner in the end we will have reached the 52nd out-of-sample week) up-
dating as we go the in-sample data respectively with the actual returns of the new
13 and 26 weeks that were revealed each time. Note that the impact of the length of
the planning horizon is examined for two levels of the risk importance parameter γ,
which are γ = 0.2 and 0.6, and the composition of the selected portfolios as well
as the achieved wealths at the end of each out-of-sample horizon are recorded. As
benchmarks to compare with the approximate dynamic programming methods we
used the equally-weighted strategies and the market.

Table 8.17 summarizes the composition of the selected portfolios during the 52

out-of-sample weeks (see section 8.1 for an explanation of the reported measures),
where we notice that for longer look-ahead horizons the PLADP methods invest in
more risky assets and select more diversified portfolios. One possible explanation
for this could be that in longer horizons the investor is faced with a longer uncer-
tain future (i.e. there is more uncertainty ahead) when taking his decisions and is
trying to compensate for future losses in risky assets by selecting more diversified
portfolios. Further, as expected, for all planning horizons in the PLADP method
with m = 5 slopes we have more diversified portfolios and we use more assets
out-of-sample as compared to the PLADP method with m = 3 slopes.
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13 weeks

γ Dataset m = 3 m = 5
NAt NA Cash HI? NAt NA Cash HI?

0.2

Up-Up 3-12 25 0 0.21-0.89 3-12 27 0 0.21-0.77
Up-Down 2-8 23 0 0.25-0.95 2-9 19 0 0.29-0.83
Down-Up 1-7 18 0 0.25-1 2-5 12 0 0.22-0.85

Down-Down 2-9 26 0 0.23-0.90 2-9 24 0 0.21-0.76

0.6

Up-Up 4-11 25 0 0.21-0.79 4-13 25 0 0.24-0.75
Up-Down 2-8 20 0 0.18-0.94 2-14 19 0 0.25-0.70
Down-Up 1-6 13 0-1 0.29-1 2-6 15 0 0.25-0.78

Down-Down 2-9 22 0 0.23-0.89 2-13 25 0 0.20-0.83
26 weeks

γ Dataset m = 3 m = 5
NAt NA Cash HI? NAt NA Cash HI?

0.2

Up-Up 3-19 29 0 0.22-0.89 2-19 32 0 0.22-0.99
Up-Down 1-11 18 0 0.17-1 2-20 30 0 0.13-0.88
Down-Up 2-5 17 0 0.25-0.98 2-7 24 0 0.23-0.95

Down-Down 2-9 24 0 0.23-0.76 2-11 23 0 0.15-0.99

0.6

Up-Up 4-13 23 0 0.15-0.85 4-12 25 0 0.20-0.84
Up-Down 2-11 22 0 0.21-0.99 3-26 34 0 0.14-0.68
Down-Up 2-5 18 0 0.25-0.91 2-9 24 0 0.24-0.92

Down-Down 1-10 24 0 0.26-1 1-12 27 0 0.20-1
52 weeks

γ Dataset m = 3 m = 5
NAt NA Cash HI? NAt NA Cash HI?

0.2

Up-Up 3-33 33 0 0.18-0.83 3-22 31 0 0.18-0.86
Up-Down 3-18 34 0 0.11-0.80 3-34 41 0 0.13-0.80
Down-Up 2-19 33 0-1 0.20-0.97 2-27 45 0 0.12-0.95

Down-Down 4-16 33 0 0.19-0.64 3-34 51 0 0.15-0.66

0.6

Up-Up 3-25 38 0 0.18-0.84 4-29 34 0 0.21-0.83
Up-Down 3-20 31 0 0.18-0.84 3-25 36 0 0.14-0.79
Down-Up 2-21 39 0 0.21-0.88 3-30 45 0 0.14-0.85

Down-Down 5-23 38 0 0.16-0.63 3-34 47 0 0.14-0.66

Table 8.17: Characteristics of selected portfolios for planning horizons of 13, 26 and 52 weeks

Tables 8.18 and 8.19 summarize the out-of-sample wealths at times t = 0, 13, 26,

39 and 52 in the PLADP methods and the benchmarks for the considered planning
horizons of 13, 26 and 52 weeks. In terms of the achieved out-of-sample wealths at
the different points in time, note the following:

• In the Up-Up dataset, for a planning horizon of 13 weeks the PLADP meth-
ods outperform the benchmarks only at times t = 39 and 52, for a planning
horizon of 26 weeks the PLADP methods outperform the benchmarks at most
points in time and for a planning horizon of 52 weeks the PLADP methods
perform better than the benchmarks only at times t = 26 and 39.

• In the Up-Down dataset, for a planning horizon of 13 weeks the PLADP
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methods are doing worse than the benchmarks at most points in time (except
for the market which is below the PLADP methods at most points in time
except for t = 52), while for planning horizons of 26 (except for γ = 0.2 and
m = 3) and 52 weeks the PLADP methods perform better than the bench-
marks at most points in time.

• In the Down-Up dataset, for a planning horizon of 13 weeks the PLADP meth-
ods perform worse than the benchmarks at most points in time (except for the
market which is below the PLADP methods at most points in time), while for
planning horizons of 26 and 52 weeks the PLADP methods outperform the
benchmarks at most points in time.

• In the Down-Down dataset, the higher degree of diversification in the selected
portfolios of the 52-week planning horizon leads to a better performance than
the benchmarks at most points in time, while for planning horizons of 13 and
26 weeks at most points in time we are doing worse than the benchmarks and
experience significant losses.

Table 8.20 summarizes the number of instances out of the 8 (2 levels of risk
× 4 datasets) each PLADP method outperforms each benchmark. Looking at Table
8.20, we notice that for a planning horizon of 13 weeks the PLADP methods outper-
form the benchmarks in less than half of the instances at most points in time, while
for planning horizons of 26 and 52 weeks the PLADP methods perform better than
the benchmarks in more than half of the instances at most points in time. Thus, the
higher degree of diversification in the selected portfolios for planning horizons of
26 and 52 weeks seem to help PLADP methods perform way better than when we
have a planning horizon of 13 weeks. Further, note that for all three planning hori-
zons the PLADP method with m = 5 slopes performs better than the benchmarks
in more instances than the PLADP method with m = 3 slopes.
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# of instances = 8 t
PLADP

13 weeks 26 weeks 52 weeks
m = 3 m = 5 m = 3 m = 5 m = 3 m = 5

FTSE

13 4 4 4 8 4 5
26 3 4 8 8 8 7
39 4 4 6 7 8 8
52 2 5 6 6 6 6

EW-BH

13 4 3 5 7 6 7
26 3 0 6 7 8 8
39 2 2 6 4 7 8
52 2 2 5 6 5 5

EW-FM

13 4 3 5 7 6 7
26 2 1 6 7 7 7
39 2 2 6 4 7 8
52 2 2 5 6 4 5

Table 8.20: In how many instances out of the 8 a column PLADP method outperforms a row method
at times t = 13, 26, 39 and 52 and for planning horizons of 13, 26 and 52 weeks

For planning horizons of 13, 26 and 52 weeks, Tables 8.21 and 8.22 summarize
respectively the average out-of-sample wealths at times t = 13, 26, 39 and 52 across
the four datasets and the number of instances out of the 2 (2 levels of risk) a column
PLADP method outperforms a row method. Looking at Table 8.21, we notice that in
the PLADP method with m = 5 slopes the average terminal wealths are higher than
in the PLADP method with m = 3 slopes at most points in time. Further, note that
as compared to the benchmarks (see Table 8.22), the average performance improves
for longer planning horizons. In particular, for a planning horizon of 13 weeks the
PLADP methods underperform the benchmarks in at least half of the instances at
most points in time. For a planning horizon of 26 weeks, the PLADP method with
m = 3 slopes performs better than the benchmarks in all instances at most points
in time, while the PLADP method with m = 5 slopes outperforms the benchmarks
in all instances at all points in time. Finally, for a planning horizon of 52 weeks the
average performance of the PLADP methods is better than the average performance
of the benchmarks everywhere.
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# of instances = 2 t
PLADP

13 weeks 26 weeks 52 weeks
m = 3 m = 5 m = 3 m = 5 m = 3 m = 5

FTSE

13 1 1 1 2 2 2
26 1 0 2 2 2 2
39 1 1 2 2 2 2
52 0 2 2 2 2 2

EW-BH, EW-FM

13 1 0 1 2 2 2
26 0 0 2 2 2 2
39 0 0 2 2 2 2
52 0 0 1 2 2 2

Table 8.22: Average performance: In how many instances out of the 2 a column PLADP method
outperforms a row method at times t = 13, 26, 39 and 52 and for planning horizons of 13, 26 and 52
weeks

Finally, Figures 8.18-8.19 show how the average cumulative wealth changes
with time for each method for the selected levels of risk and one can clearly see that
the PLADP methods work better on average in longer horizons.
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Figure 8.18: Average out-of-sample cumulative wealth for γ = 0.2 and planning horizons of 13, 26
and 52 weeks
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Figure 8.19: Average out-of-sample cumulative wealth for γ = 0.6 and planning horizons of 13, 26
and 52 weeks

8.3.5 Impact of Transaction Costs

In this section, we examine the impact of transaction costs in the composition of
the selected portfolios and the performance of the best performers, which are the
PLADP methods and the equally-weighted strategies, by increasing the value of the
transaction costs parameter θ from 0.2% to 0.5%.

Tables 8.23-8.24 summarize the out-of-sample terminal wealths and the total
transaction costs paid in the equally-weighted strategies for θ = 0.2% and 0.5%,
where we notice that in the presence of higher transaction costs the terminal wealth
values deteriorate in both strategies. Further, note that, although the discrepancies in
the terminal wealth values in the two strategies are negligible, the equally-weighted
buy-and-hold strategy is doing slightly better than the fixed-mix one in all datasets
except for the Up-Down dataset, where the buy-and-hold strategy is slightly below
the fixed-mix one.

Table 8.25 summarizes the percentage differences of the out-of-sample termi-
nal wealth values of the equally-weighted buy-and-hold strategy from the fixed-mix
one for θ = 0.2% and 0.5%, where we notice that in the presence of higher trans-
action costs, that is after increasing the transaction costs parameter θ from 0.2%
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to 0.5%, the relative performance of the equally-weighted buy-and-hold strategy as
compared to the fixed-mix one improves further.

Strategy
Up-Up

θ = 0.2% θ = 0.5%
Terminal wealth Transaction costs Terminal wealth Transaction costs

EW-BH 130011.93 192.70 129621.25 492.61
EW-FM 128821.15 495.32 127898.67 1264.56

Strategy
Up-Down

θ = 0.2% θ = 0.5%
Terminal wealth Transaction costs Terminal wealth Transaction costs

EW-BH 105262.25 192.70 104945.94 492.61
EW-FM 106652.30 622.00 105619.58 1586.31

Table 8.23: Up-Up and Up-Down datasets: Out-of-sample terminal wealths and total transaction
costs paid in the equally-weighted strategies for θ = 0.2% and 0.5%

Strategy
Down-Up

θ = 0.2% θ = 0.5%
Terminal wealth Transaction costs Terminal wealth Transaction costs

EW-BH 156160.11 192.70 155690.86 492.61
EW-FM 155357.50 527.40 154274.59 1346.27

Strategy
Down-Down

θ = 0.2% θ = 0.5%
Terminal wealth Transaction costs Terminal wealth Transaction costs

EW-BH 84259.28 192.70 84275.27 492.61
EW-FM 84227.81 484.58 83563.58 1237.05

Table 8.24: Down-Up and Down-Down datasets: Out-of-sample terminal wealths and total transac-
tion costs paid in the equally-weighted strategies for θ = 0.2% and 0.5%

Transaction costs Up-Up Up-Down Down-Up Down-Down
θ = 0.2% 0.92% -1.30 % 0.52 % 0.36 %
θ = 0.5% 1.35 % -0.64 % 0.92 % 0.85%

Table 8.25: Percentage differences of the terminal wealths in the fixed-mix equally-weighted strategy
from the buy-and-hold one for θ = 0.2% and 0.5%

To examine the impact of the transaction costs in the PLADP methods (note
that as above we use stepsize rule 25

24+nst
), we have considered two levels of the risk

importance parameter γ, which are γ = 0.2 and 0.6, and we have recorded the
composition of the selected portfolios as well as the terminal wealth values when
transaction costs parameter θ changes from 0.2% to 0.5%.

Table 8.26 summarizes the composition of the selected portfolios, the terminal
wealth values as well as the total transaction costs paid in the PLADP methods for
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the selected levels of the risk importance parameter γ. Further, Table 8.27 sum-
marizes the number of instances out of the 8 (2 levels of risk × 4 datasets) the
PLADP methods outperform the benchmarks (note that we use as benchmarks the
equally-weighted strategies and the market). Regarding the composition of the se-
lected portfolios, we notice that for θ = 0.5% the investor is trying to trade off
the higher trading costs by trading less frequently (this involves holding the same
portfolio for longer periods and using less risky assets in some of the instances)
throughout the out-of-sample horizon and selecting more diversified portfolios in
most of the instances (this involves paying higher transaction costs) as compared to
θ = 0.2%. In terms of the actual performance, although we have to pay a higher
price due to transaction costs which is reflected in the significantly lower terminal
wealth values in most instances, the PLADP methods are still doing better than the
equally-weighted strategies and the market in at least half of the 8 instances.

Further, in terms of the average performance, Table 8.28 summarizes the average
terminal wealths in the PLADP methods and the benchmarks for two levels of the
transaction costs parameter θ, where we notice that, although the average terminal
wealths in the PLADP methods deteriorate in the presence of higher transaction
costs, they are still doing better than the benchmarks.
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# of instances = 8 PLADP

Strategy m = 3 m = 5
θ = 0.2% θ = 0.5% θ = 0.2% θ = 0.5%

FTSE 6 5 6 4
EW-BH 5 4 5 4
EW-FM 4 4 5 4

Table 8.27: In how many instances out of the 8 the PLADP methods outperform the equally-
weighted strategies and the market

γ FTSE EW-BH EW-FM
PLADP

m = 3 m = 5
θ = 0.2% θ = 0.5% θ = 0.2% θ = 0.5%

0.2 110361.44 118990.89 118764.69 134648.93 127697.36 142759.34 122811.11
0.6 128391.16 121098.13 134367.69 120004.60

Table 8.28: Average out-of-sample terminal wealths for θ = 0.2% and 0.5%

Finally, Figures 8.20-8.21 show how the average cumulative wealth changes
with time for the selected levels of risk and for θ = 0.2% and 0.5%, where one
can clearly see that the impact of increasing transaction costs parameter θ is more
significant in the PLADP method with m = 5 slopes than in the PLADP method
with m = 3 slopes. The reason for this is that, as explained above, when we have
more slopes the PLADP method trades more frequently in the sense that it selects
more diversified portfolios which results in us paying higher trading costs.
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Chapter 9

Conclusions and Future Research

In this chapter, considering our simulation results from chapter 8, we provide our
concluding remarks and discuss directions for future research.

9.1 Conclusions

In the literature, ADP methods have many applications and they have proved to
work considerably well. To our knowledge, however, these methods have not been
tested in the portfolio selection problem and in this thesis we attempted to fill ex-
actly this gap by constructing ADP algorithms for the multi-period portfolio se-
lection problem, where we used CVaR as a measure of risk and we assumed that
transactions costs are proportional to the trading amounts.

To evaluate the extracted policies from our ADP algorithms, we performed ex-
tensive simulations where we compared them out-of-sample against other portfolio
selection methods, both myopic and multi-period, as well as against the market
portfolio. In particular, for our comparisons we formulated a multi-period portfo-
lio model as a multistage stochastic program and solved it by approximating the
stochastic process of random returns with a scenario tree. Further, we formulated
and solved the equally-weighted and a single-period portfolio models.

In our simulations, we concentrated on how our ADP algorithms perform not
only when the market conditions are stable but also when they change. For this
reason, we applied and compared all methods using four datasets from the FTSE
100 Index that had the same and opposite market trends in the in-sample and out-
of-sample data.

Observing the numerical results from our simulations in chapter 8, we feel that

209
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we can draw the following conclusions:

1. Due to the assumed linear functional approximations in the LADP methods,
where in each asset every additional unit of wealth is valued the same, these
ignore risk and exhibit a similar behavior to the multistage stochastic pro-
gramming method without risk. As far as the simple LADP method is con-
cerned, this can have a serious impact on our portfolio value and can lead to
catastrophic losses in highly volatile market conditions. And this is where the
importance of imposing restrictions on how much we can have in each asset
lies. Our simulation results suggest that, despite ignoring risk, we can prevent
high losses and improve our performance by adding constraints that allow for
more diversified portfolios as in the LADP-UB methods.

2. Due to the assumed piecewise linear functional approximations in the PLADP
methods, which track better the utility function of a risk-averse investor, we
have natural upper bounds on how much we can hold in each asset. These
allow us to hold more diversified portfolios by jumping from one asset to an-
other if we think that increasing our wealth in an asset has less value than
start using another one. In our simulations, there is evidence that we can
benefit from using more slopes in the approximate value functions in terms
of our performance, but we have to pay a price in computational time which
increases significantly even for a few more slopes. For our data, the PLADP
methods outperform significantly all other methods including the perfectly di-
versified equally-weighted method which seems to be the next best performer
and which was the most difficult to beat.

3. When it comes to comparing multistage stochastic programming with dy-
namic programming, the two methods are similar in the sense that from the
multistage stochastic programming formulation we can derive the optimality
equations of the dynamic programming formulation of the same stochastic
problem. What these two methods differ in are the solution approaches. On
the one hand, to solve a multistage stochastic program we first need to re-
duce the input distribution of the underlying stochastic process and represent
it as a scenario tree, and then on the generated tree we write the determinis-
tic equivalent problem and solve it optimally using optimization software. On
the other hand, for dynamic programming, if we can’t use traditional dynamic
programming algorithms to solve it due to the explosive state space, we resort
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to approximate dynamic programming methods. Unlike multistage stochastic
programming where we reduce the input information and solve a big problem
optimally, in approximate dynamic programming we use all the generated
scenario paths and our problem decomposes in time in smaller problems but
is solved suboptimally. Considering this trade-off between optimality and the
amount of information that we use in each of the two methods, our simula-
tion results suggest that the price we have to pay in terms of performance and
computational time in multistage stochastic programming is too high and thus
it is not worth it going for it just for the sake of “optimality”.

4. Diversification is very important in achieving our long-term financial goals as
it can reduce the risk of experiencing high losses due to the uncertainty in the
returns of the assets (this type of risk is also known as the “specific risk” or
the “unsystematic risk” or the “diversifiable risk”) and boost our performance.
This is particularly true for the stock markets which are very volatile. Thus,
the simple LADP method which uses only one asset per time period is more
sensitive to big changes in the returns of the assets, while on the contrary the
single-period, the LADP-UB, the PLADP and the equally-weighted meth-
ods that use more assets per time period exhibit a more stable out-of-sample
behavior. Note that although multistage stochastic programming gives us di-
versified portfolios it performs very badly in our data since to use it we had
to cut a significant amount of the input information.

5. Multi-period portfolio methods, except for multistage stochastic program-
ming where to use it we had to reduce considerably the input information,
perform better than the myopic single-period method. This is in line with
many simulation studies which suggest that looking ahead in the future we
are much better off in the decisions that we take now.

6. To our knowledge, in the literature piecewise linear approximate dynamic
programming has been applied to “easy” problems in the sense that they have
very few dimensions and discrete action/state/outcome space. This study
proposes a simple update rule that keeps control over the number of the
slopes in the piecewise linear value functions and we believe that this is of
great general value as it opens the way to find “good” approximate solutions
to other large-scale problems with multiple dimensions and continuous ac-
tion/state/outcome space.
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Overall, we believe that dynamic programming provides a good formulation for
the portfolio selection problem and piecewise linear approximate dynamic program-
ming is a good compromise.

9.2 Future Research

In this study, our main contribution has been to formulate the portfolio selection
problem as a dynamic program and solve it using approximate dynamic program-
ming methods. To evaluate these methods, we compared them in terms of their out-
of-sample performance and computational effort against a number of other portfolio
selection methods, myopic and multiperiod.

In the multistage stochastic programming method, when we wrote the deter-
ministic equivalent problem in section 5.1.2 we explained that the way information
is represented in multistage stochastic programs creates a staircase structure which
allows us to decompose the original problem in a group of smaller problems, one
for each node. In the literature, for multistage stochastic programs with staircase
structures there exist decomposition algorithms that solve them optimally and they
have the advantage of using much more information as opposed to the big linear
deterministic problem. Among these algorithms, the most famous one is the Nested

Benders Decomposition Algorithm (see for example [32] and [44]) which involves
doing forward and backward passes on the scenario tree and solving the smaller
subproblems of the nodes adding feasibility and optimality cuts if necessary. The
advantage of using decomposition algorithms is that instead of solving one big prob-
lem which many times requires a significant reduction in the amount of the input
information and takes a long time to solve, we solve a group of much smaller prob-
lems and this allows us to use more information. In our problem, we have not been
able to implement Benders decomposition due to the CVaR constraints sharing a
common variable, the one that gives us VaR, which does not allow us to decompose
them on the nodes. To our knowledge, this problem has been solved using Ben-
ders decompositions only for two-stage stochastic programs and, as explained in
section 5.1.1, it has been implemented in as the CVaRMin solver. The catch in this
algorithm is that CVaR is decomposed into two stages and the common variable of
VaR is treated as a first-stage decision. Given that CVaR is a very popular measure
of risk not only in financial applications but also in other fields (see for example
[27] for an application in electricity portfolio management), we believe that some-
thing similar can be done for multistage problems. We are currently working on
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a modified version of Nested Benders Decomposition, where within the multistage
framework we solve a two-stage problem that iteratively estimates CVaR in the end
and the initial results for small-size trees look very promising.

Recent advances in the field of stochastic programming suggest, instead of using
the traditional stochastic programming methods which are based on approximating
the distribution of the uncertain parameters with scenario trees and are very time
consuming, the use of a new class of tractable approximation techniques which pre-
serve the input information but impose a linear structure on the recourse decisions
of the multistage stochastic programs (see for example [49]). It would be interest-
ing to apply these methods in our problem and compare with approximate dynamic
programming methods.

Further, since we had to use an approximation for CVaR in the approximate
dynamic programming methods, we feel that it would be very interesting to con-
sider other types of utility functions in the objective such as for example a power
utility function. This would allow us to indirectly include risk in the optimal dy-
namic programming formulation and thus would make the approximate dynamic
programming methods more tractable.

Finally, it would be very interesting to see how the piecewise linear approximate
dynamic programming methods presented in this study work in other large-scale
problems with continuous action/state/outcome space.
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Appendix A

OGARCH in Scenario Generation

Let Rt be the 1 × N time series vector of rates of returns of N securities at time t.
According to the MGARCH method, the returns of the securities evolve as follows:

Rt = µt + εt (A.1)

where µt is the conditional mean vector and εt is the 1 × N vector of residuals
which are computed by:

εt = νtH
1
2
t

(A.2)

In (A.2), H
1
2
t is the lower triangular matrix obtained by the cholesky factoriza-

tion of the N × N covariance matrix H t and νt is a 1 × N vector of Gaussian
white noise. Every variable in vector νt is an independent, identically distributed
sequence that follows a normal distribution with zero mean and unit variance.

To implement the OGARCH method, we assume a constant conditional mean
which we compute by taking averages of the historical rates of returns and compute
the time varying covariance matrix H t by applying principal component analysis
to the normalized matrix of the historical returns.

Suppose that after applying the principal component analysis we extractm com-
ponents, where m ≤ N . If V is the matrix with elements Uijσi, where Uj is the
eigenvector of the j th component and σi is the standard deviation of the ith asset, and
Λt is the diagonal matrix of the conditional variances of the components, then ac-
cording to [1] the time varying conditional matrixH t can be computed as follows:

H t = V ΛtV
T (A.3)
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The time varying conditional variance of every component is modeled as a uni-
variate GARCH(1,1) process (see [11]) as follows:

σ2
t = c+ φσ2

t−1 + χε2t−1

εt = σtξt

}
(A.4)

where σ2
t is the variance of the component at time t, σ2

t−1 is the lagged variance
at time t− 1, ε2t−1 is the lagged squared residual at time t− 1, ξt is an independent,
identically distributed sequence that follows a normal distribution with zero mean
and unit variance, and parameters c, φ and χ are parameters estimated by maximum

likelihood.
Note that in (A.3) the time varying covariance matrix H t must be strictly posi-

tive definite, otherwise we might end up having a zero or negative portfolio variance.
However, matrix H t may not be strictly positive definite if the number of compo-
nents is less than N . To avoid this, in this study we extract all N components.

To use the OGARCH method in scenario generation, we forecast the variance of
each component using (A.4), where a random number generator is used to compute
the residuals. Then, using the forecasted variances of the components we form
the diagonal matrix Λt and compute the covariance matrix H t using (A.3). After
computing the covariances in H t, we use a random number generator and sample
N values from the standard normal distribution to compute the residuals of (A.2).
Finally, we generate a realization of vector Rt using (A.1). In the above manner, we
can recursively generate as many realizations as we want, where each realization
depends on the realized variances of the components of the previous realization. A
collection of T realizations form one scenario path with length T periods and the
above process is repeated many times until we obtain the desired number of scenario
paths.



Appendix B

Scenario Reduction and Scenario
Tree Construction

Let Ξ and Z be continuous distributions of two N -dimensional stochastic processes
on a time horizon of t periods. Suppose distributions Ξ and Z are approximated
respectively by S scenarios ξi = {ξiτ}tτ=1 with probabilities pi, such that

∑S
i=1 pi =

1, and S̃ scenarios ζj = {ζjτ}tτ=1 with probabilities qj , such that
∑S̃

j=1 qj = 1.
The distance between the two distributions Ξ and Z, which we denote with

DK(Ξ, Z), in the Kantorovich sense is the optimal value of a linear transportation
problem, where every scenario ξi can be understood as a ”supply” node with supply
pi and every scenario ζj can be understood as a ”demand” node with demand qj . If
ρij is the probability mass ”transferred” from node i to node j, then the problem of
finding the distance between the two distributions Ξ and Z involves determining the
minimum cost solution to satisfy supply and demand and is expressed as follows:

DK(Ξ, Z) = min
ρij

S∑
i=1

S̃∑
j=1

ρijct(ξ
i, ζj)

s.t.
S̃∑
j=1

ρij = pi, ∀i

S∑
i=1

ρij = qj, ∀j

ρij ≥ 0, ∀i, j



(B.1)

where ct(ξi, ζj) =
∑t

τ=1 |ξiτ − ζjτ | with |.| denoting some norm on RN . The
optimal value of problem (B.1) can be understood as the minimal cost we have to
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pay in order to transform one distribution into the other.
Now suppose Z is the reduced distribution of Ξ, i.e. the set of scenarios in Z is

a subset of the set of scenarios in Ξ. If D denotes some index set that contains the
deleted scenarios, then from Theorem 2 in [26] the minimal distance between the
two distributions can be computed explicitly using the following formula:

DK(Ξ, Z) =
∑
i∈D

pi min
j 6∈D

ct(ξ
i, ξj), (B.2)

and the probabilities of the preserved scenarios are given by the following rule:

qj = pj +
∑
i∈D(j)

pi (B.3)

where D(j) = {i ∈ D : j = j(i)} with j(i) ∈ arg minj 6∈D ct(ξ
i, ζj) ∀i ∈ D

and is known as the optimal redistribution rule. That is, the probability of every
preserved scenario in the reduced distribution Z is updated with the probabilities
of those deleted scenarios from distribution Ξ that are closest to it with respect to
distance ct.

Considering the above, to construct a scenario tree with T stages from a group
of scenario paths, in every stage t for t = 2, ..., T we apply the following maximal

reduction strategy: We determine the optimal index setD, such that the Kantorovich
distance (B.2) between the initial and the reduced distribution does not exceed a
certain level of accuracy εt, i.e.

∑
i∈D pi minj 6∈D ct(ξi, ξj) ≤ εt. The probabilities

of the preserved scenarios in the reduced distribution are given by (B.3).
In the literature, there exist algorithms that apply the above reduction rule to

construct scenario trees from an input of scenario paths in either a forward or a
backward fashion in polynomial times (see for example the algorithms in [43]). The
key idea in these algorithms is that at each stage t we crop from the scenario paths
the information related to later stages and merge those current-stage nodes for which
their respective t-stage scenario paths have minimal distance (B.2) updating at the
same time the probability of the new node according to (B.3) and connecting with
arcs the new node with all the children nodes of the merged nodes. In this manner,
branching is created and a scenario tree comes out from the original distribution
of scenario paths. To control the amount of information maintained in the reduced
distribution, a relative tolerance indicator is defined as follows:

εrel =
ε

εmax
(B.4)
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where εmax is the best possible Kantorovich distance between the distribution of
the initial set of scenarios and the distribution of one of the scenarios with unit mass
(i.e. with probability 1), ε is an upper bound on the cumulative relative tolerance∑T

t=2 εt, i.e. we have
∑T

t=2 εt ≤ ε, and for some q ∈ (0, 1) is split among individual
tolerances εt according to the following recursive exponential rule:

εt =

ε(1− q), t = T

qεt+1, t = T − 1, . . . , 2
(B.5)

Numerical experience in [43] shows that a value closer to 1 would be more
desirable as it leads to a higher number of leaf nodes (i.e. scenarios) and branching
points.

The relative tolerance indicator can be understood as the proportion of the infor-
mation we want to delete from the original distribution and takes values in [0, 1]. If
εrel = 0 the tree will not be reduced, while if εrel = 1 the reduction will be maximal
and only one scenario will be maintained.



Appendix C

Derivation of Gradients for the
LADP Methods

Here, we derive the gradients for the LADP methods by substituting the optimal
solutions of the corresponding subproblems of ADP in their objectives.

Gradients for LADP

After solving problem (6.6), we will have one of the following outcomes:

1. Case 1: Set Buy-assets is empty. The objective of (6.6) is given by:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

=
∑
i∈I

litRith
+
i(t−1) +

N∑
i=0

uitRith
+
i(t−1),

and the gradients are as follows:

(a) For every asset i ∈ I:

∆Ṽi(t−1) = (lit + uit)Rit = (1− θ)u0tRit

(b) For every other asset i including cash:
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∆Ṽi(t−1) = uitRit

Note that any additional wealth in Sell-assets is converted to cash using trans-
formation coefficient 1 − θ of Table 6.2, while for all other assets including
cash any additional wealth remains with the asset.

2. Case 2: Set Buy-assets is non-empty, i.e. there exists an asset j?. The objec-
tive of (6.6) is given by:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

= kj?t

(
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

∑
i∈I∪J

Rith
+
i(t−1)

)

+
∑
i∈I∪J

litRith
+
i(t−1) +

N∑
i=0

uitRith
+
i(t−1),

and the gradients are as follows:

(a) For every asset i ∈ I ∪ J :

∆Ṽi(t−1) =

(
1− θ
1 + θ

kj?t + lit + uit

)
Rit =

1− θ
1 + θ

uj?tRit

(b) For cash:

∆Ṽ0(t−1) =

(
1

1 + θ
kj?t + u0t

)
R0t =

1

1 + θ
uj?tR0t

(c) For every other asset i:

∆Ṽi(t−1) = uitRit

Note that any additional wealth in Sell-assets and Sell-to-buy-assets is di-
verted to asset j? using transformation coefficient 1−θ

1+θ
of Table 6.2, while for

all other assets any additional wealth remains with the asset.

Note that the gradients of the assets of sets I and J are also used to compute
the observed slopes of those Sell-assets and Sell-to-buy-assets that previously had
zero holdings and thus were not used in the solution of problem (6.6).
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Gradients for LADP-UB

After solving problem (6.18) with Algorithm 6.2 in section 6.3, we provided a
sketch of the optimal solution, which is given by (6.26) and (6.27) for Case 1, (6.28)
and (6.29) for Sub-case 2.1 and (6.30) and (6.31) for Sub-case 2.2. Note that in the
gradients that we compute below we further divide Case 1 into two new Sub-cases,
one where buying did not occur because there were no Buy-assets with holdings
less than w0 (Sub-case 1.1) and one where buying did not occur because we had no
resources (Sub-case 1.2). Substituting (6.26) and (6.27) in the objective of (6.18)
gives us the gradients only for Sub-case 1.1. We will see later on that the gradients
of the assets change if we start using a Buy-asset j? after an incremental increase
in our resources. Further, we divide Sub-case 2.1 into two new Sub-cases, one
where we filled up all Buy-assets with cash resources and when we stopped buying
we had no Sell-to-buy-assets (Sub-case 2.1.1) and one where we filled up all Buy-
assets with cash resources and when we stopped buying we had Sell-to-buy-assets
(Sub-case 2.1.2). Substituting (6.28) and (6.29) in the objective of (6.18) gives us
the gradients only for Sub-case 2.1.2. We will see later on that the gradients of the
assets change if we did not have a Sell-to-buy-asset d when we stopped buying.

Therefore, after solving problem (6.18) with Algorithm 6.2 and using hit =

Rith
+
i(t−1) we will have one of the following cases:

1. Case 1: No buying occurred, i.e. C = ∅, because:

(a) Sub-case 1.1: there were no Buy-assets with holdings less thanw0. Sub-
stituting (6.26) and (6.27) in the objective of (6.18), we get:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

=
∑
i∈I

litRith
+
i(t−1) +

∑
i∈F̄

lit(Rith
+
i(t−1) − w0)

+
N∑
i=0

uitRith
+
i(t−1),

and the gradients are as follows:

i. For every asset i ∈ I ∪ F̄ :
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∆Ṽi(t−1) = (lit + uit)Rit = (1− θ)u0tRit

ii. For every other asset i including cash:

∆Ṽi(t−1) = uitRit

Note that any additional wealth in Sell-assets and Forced-to-sell-assets
is converted to cash using transformation coefficient 1− θ of Table 6.1.
For all other assets, including cash, any additional wealth remains with
the asset.

(b) Sub-case 1.2: there were no resources available. Note that in this case
there exists a Buy-asset j?, which is the last Buy-asset c of set C and
which we may use after increasing the holdings of the assets that were
not previously in the optimal solution because they had zero holdings.
Thus, using Buy-asset c in the objective of (6.18) by setting xct =

1
1+θ

R0th
+
0(t−1) + 1−θ

1+θ

∑
i∈I∪F̄∪D Rith

+
i(t−1) along with (6.26) and (6.27),

we get:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

= kct

(
1

1 + θ
R0th

+
0(t−1) +

1− θ
1 + θ

∑
i∈I∪F̄∪D

Rith
+
i(t−1)

)
+

∑
i∈I∪D

litRith
+
i(t−1) +

∑
i∈F̄

(
litRith

+
i(t−1) − w0

)
+

N∑
i=0

uitRith
+
i(t−1)

and the gradients are as follows:

i. For every asset i ∈ I ∪ F̄ ∪ D:

∆Ṽi(t−1) =

(
1− θ
1 + θ

kct + lit + uit

)
Rit =

1− θ
1 + θ

uctRit

ii. For cash:

∆Ṽ0(t−1) =

(
1

1 + θ
kct + u0t

)
R0t =

1

1 + θ
uctR0t
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iii. For every other asset i:

∆Ṽi(t−1) = uitRit

Note that any additional wealth in cash and other assets that we liquidate
(i.e. Sell-assets, Forced-to-sell-assets and Sell-to-buy-assets) is diverted
to asset j? using respectively transformation coefficients 1

1+θ
and 1−θ

1+θ
of

Table 6.1, while in all other assets any additional wealth remains with
the asset.

2. Case 2: Buying occurred, i.e. C 6= ∅, but we stopped buying because:

(a) Sub-case 2.1: we filled up all Buy-assets in set C to level w0 with cash
resources and when we stopped buying:

i. Sub-case 2.1.1: we had no Sell-to-buy-assets. Substituting (6.28)
and (6.29) in the objective of (6.18) with D = ∅, we get:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

=
∑
i∈C

kit

(
w0 −Rith

+
i(t−1)

)
+
∑
i∈I

litRith
+
i(t−1)

+
∑
i∈F̄

lit(Rith
+
i(t−1) − w0) +

N∑
i=0

uitRith
+
i(t−1)

and the gradients are as follows:

A. For every asset i ∈ I ∪ F̄ :

∆Ṽi(t−1) = (lit + uit)Rit = (1− θ)u0tRit

B. For every asset i ∈ C:

∆Ṽi(t−1) = (−kit + uit)Rit = (1 + θ)u0tRit

C. For every other asset i including cash:

∆Ṽi(t−1) = uitRit
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Note that any additional wealth in Sell-assets or Forced-to-sell-
assets is converted to cash using transformation coefficient 1 − θ

of Table 6.1, while any additional wealth in one of the Buy-assets
of set C decreases the amount of cash used for buying through pro-
jection coefficient 1 + θ of Table 6.2. For all other assets, including
cash, any additional wealth remains with the asset.

ii. Sub-case 2.1.2: we had Sell-to-buy-assets. Note that in this case we
would continue selling the last Sell-to-buy-asset, which is asset d,
if there existed another Buy-asset j?. Substituting (6.28) and (6.29)
in the objective of (6.18), we get:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

=
∑
i∈C

kit

(
w0 −Rith

+
i(t−1)

)
+

∑
i∈(I∪D)\{d}

litRith
+
i(t−1)

+ ldt

[1 + θ

1− θ
∑
i∈C

(
w0 −Rith

+
i(t−1)

)
− 1

1− θ
R0th

+
0(t−1)

−
∑

i∈(I∪D)\{d}

Rith
+
i(t−1) −

∑
i∈F̄

(Rith
+
i(t−1) − w0)

]

+
∑
i∈F̄

lit(Rith
+
i(t−1) − w0) +

N∑
i=0

uitRith
+
i(t−1)

and the gradients are as follows:

A. For every asset i ∈
(
I ∪ F̄ ∪ D

)
\ {d}:

∆Ṽi(t−1) = (lit − ldt + uit)Rit = udtRit

B. For every asset i ∈ C:

∆Ṽi(t−1) =

(
−kit −

1 + θ

1− θ
ldt + uit

)
Rit =

1 + θ

1− θ
udtRit

C. For cash:

∆Ṽ0(t−1) =

(
− 1

1− θ
ldt + u0t

)
R0t =

1

1− θ
udtR0t
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D. For every other asset i including asset d:

∆Ṽi(t−1) = uitRit

Note that any additional wealth in Sell-assets, Forced-to-sell-assets
and Sell-to-buy-assets, except for asset d, decrease the wealth of
asset d sold by the same amount since these assets will be sold
before asset d. Further, any additional wealth in one of the Buy-
assets of set C or any additional wealth in cash decreases the amount
of the last Sell-to-buy-asset d sold through projection coefficients
1+θ
1−θ and 1

1−θ of Table 6.2 respectively. In all other assets, including
asset d, any additional wealth remains with the asset.

(b) Sub-case 2.2: we run out of resources. Note that in this case we would
continue buying the last Buy-asset c of set C if we had more resources.
Substituting (6.30) and (6.31) in the objective of (6.18), we get:

Ṽt−1

(
h+
t−1

)
=

N∑
i=1

kitxit +
N∑
i=1

lityit +
N∑
i=0

uitRith
+
i(t−1)

=
∑

i∈C\{c}

kit

(
w0 −Rith

+
i(t−1)

)
+ kct

[ 1

1 + θ
R0th

+
0(t−1)

+
1− θ
1 + θ

∑
i∈I∪D

Rith
+
i(t−1) +

1− θ
1 + θ

∑
i∈F̄

(
Rith

+
i(t−1) − w0

)
−

∑
i∈C\{c}

(
w0 −Rith

+
i(t−1)

) ]
+
∑
i∈I∪D

litRith
+
i(t−1)

+
∑
i∈F̄

lit

(
Rith

+
i(t−1) − w0

)
+

N∑
i=0

uitRith
+
i(t−1)

and the gradients are as follows:

i. For every asset i ∈ I ∪ F̄ ∪ D:

∆Ṽi(t−1) =

(
1− θ
1 + θ

kct + lit + uit

)
Rit =

1− θ
1 + θ

uctRit

ii. For every asset i ∈ C \ {c}:

∆Ṽi(t−1) = (−kit + kct + uit)Rit = uctRit
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iii. For cash:

∆Ṽ0(t−1) =

(
1

1 + θ
kct + u0t

)
R0t =

1

1 + θ
uctR0t

iv. For every other asset i including asset c:

∆Ṽi(t−1) = uitRit

Note that any additional wealth in cash and other assets that we liquidate
(i.e. Sell-assets, Forced-to-sell-assets, or Sell-to-buy-assets) is diverted
to the last Buy-asset c of set C using respectively transformation coeffi-
cients 1

1+θ
and 1−θ

1+θ
of Table 6.1, while in all other assets any additional

wealth remains with the asset.



Appendix D

Experimental Results: Scenario
Reduction Parameters

Solver Scenred2 of GAMS requires the creation of an input file that contains the
initial scenario paths as well as a number of scalar parameters that control both
scenario reduction and scenario tree construction (a user manual for solver Scenred2
can be downloaded from http://www.gams.com/solvers/).

For our simulations, we constructed scenario trees in a backward fashion, i.e.
starting each time from the end and moving backward reducing the information
as we go, using a recursive exponential rule with q = 0.85 (see Appendix B for a
definition of the exponential rule) and relative tolerances (this is the amount of infor-
mation deleted from the initial distribution and is denoted with εrel) as summarized
in Tables D.1-D.4, where:

• “# stages” denotes the number of stages,

• “# scenarios” denotes the number of scenarios,

• “# nodes” denotes the number of nodes,

• “εrel” denotes the relative tolerance, and

• “reduction time (in sec)” denotes the reduction time in seconds.

Note that the relative tolerances were selected in such a way so that on the one
hand the reduced distribution contains as many nodes as possible, but on the other
hand the deterministic equivalent of the associated multistage stochastic program
remains computationally tractable.
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# stages εrel
Initial distribution Reduced distribution reduction time (in sec)

# scenarios # nodes # scenarios # nodes
53 0.90 4000 208001 3339 20406 1469
52 0.89 4000 204001 3346 20406 1469
51 0.88 4000 200001 3353 21364 1444
50 0.88 4000 196001 3354 21149 1494
49 0.88 4000 192001 3354 20915 1581
48 0.88 4000 188001 3353 20677 1409
47 0.87 4000 184001 3361 20886 1287
46 0.87 4000 180001 3360 20535 1206
45 0.87 4000 176001 3359 20333 1170
44 0.86 4000 172001 3367 20625 1261
43 0.86 4000 168001 3367 20482 1140
42 0.85 4000 164001 3374 20564 1164
41 0.84 4000 160001 3381 21287 916
40 0.82 4000 156001 3394 22284 898
39 0.82 4000 152001 3393 22006 849
38 0.82 4000 148001 3392 21593 861
37 0.82 4000 144001 3391 21387 731
36 0.82 4000 140001 3389 20864 708
35 0.82 4000 136001 3390 20438 660
34 0.81 4000 132001 3394 20556 672
33 0.80 4000 128001 3400 20736 746
32 0.79 4000 124001 3405 20889 683
31 0.78 4000 120001 3411 20699 653
30 0.77 4000 116001 3418 21116 651
29 0.77 4000 112001 3418 20544 629
28 0.76 4000 108001 3425 21051 629
27 0.76 4000 104001 3421 20270 552
26 0.75 4000 100001 3426 20097 536
25 0.73 4000 96001 3441 20686 509
24 0.71 4000 92001 3452 20990 444
23 0.69 4000 88001 3463 21000 430
22 0.67 4000 84001 3475 21380 406
21 0.65 4000 80001 3486 21470 400
20 0.64 4000 76001 3490 21090 371
19 0.63 4000 72001 3492 20764 349
18 0.62 4000 68001 3493 20286 344
17 0.60 4000 64001 3504 20083 332
16 0.56 4000 60001 3528 20687 311
15 0.51 4000 56001 3561 21638 284
14 0.46 4000 52001 3593 22332 266
13 0.42 4000 48001 3619 22536 215
12 0.41 4000 44001 3615 21095 194
11 0.37 4000 40001 3637 20716 199
10 0.32 4000 36001 3669 20571 184
9 0.26 4000 32001 3713 20464 164
8 0.18 4000 28001 3786 20867 155
7 0.08 4000 24001 3895 21184 124
6 0 4000 20001 4000 20001 0
5 0 4000 16001 4000 16001 0
4 0 4000 12001 4000 12001 0
3 0 4000 8001 4000 8001 0
2 0 4000 4001 4000 4001 0

Table D.1: Scenario reduction parameters in the Up-Up dataset
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# stages εrel
Initial distribution Reduced distribution reduction time (in sec)

# scenarios # nodes # scenarios # nodes
53 0.90 4000 208001 3339 20881 1767
52 0.89 4000 204001 3345 21043 1684
51 0.88 4000 200001 3353 21445 1653
50 0.88 4000 196001 3353 20999 1690
49 0.88 4000 192001 3353 20888 2163
48 0.88 4000 188001 3352 20746 1565
47 0.87 4000 184001 3359 20779 1525
46 0.87 4000 180001 3359 20460 1500
45 0.87 4000 176001 3358 20621 1445
44 0.86 4000 172001 3365 20766 1702
43 0.86 4000 168001 3363 20425 1379
42 0.85 4000 164001 3371 20659 1337
41 0.84 4000 160001 3380 21169 1076
40 0.82 4000 156001 3394 22241 1022
39 0.82 4000 152001 3393 21704 1017
38 0.82 4000 148001 3392 21528 1014
37 0.82 4000 144001 3392 21229 862
36 0.82 4000 140001 3391 20733 827
35 0.82 4000 136001 3389 20233 791
34 0.81 4000 132001 3395 20420 812
33 0.80 4000 128001 3401 20809 985
32 0.79 4000 124001 3408 20865 844
31 0.78 4000 120001 3415 20859 814
30 0.77 4000 116001 3423 21157 788
29 0.77 4000 112001 3420 20612 761
28 0.76 4000 108001 3425 20261 731
27 0.75 4000 104001 3430 20332 694
26 0.74 4000 100001 3435 20283 667
25 0.72 4000 96001 3449 20587 623
24 0.70 4000 92001 3461 21246 606
23 0.68 4000 88001 3474 21312 565
22 0.66 4000 84001 3486 21708 548
21 0.64 4000 80001 3501 22185 518
20 0.63 4000 76001 3505 21864 492
19 0.63 4000 72001 3497 20826 462
18 0.62 4000 68001 3500 20355 440
17 0.60 4000 64001 3506 20103 393
16 0.56 4000 60001 3530 20851 357
15 0.51 4000 56001 3564 21721 338
14 0.46 4000 52001 3596 22462 290
13 0.44 4000 48001 3605 21903 261
12 0.43 4000 44001 3600 21456 251
11 0.39 4000 40001 3624 20225 213
10 0.32 4000 36001 3674 20778 190
9 0.26 4000 32001 3717 20621 176
8 0.18 4000 28001 3787 20881 162
7 0.08 4000 24001 3896 21212 125
6 0 4000 20001 4000 20001 0
5 0 4000 16001 4000 16001 0
4 0 4000 12001 4000 12001 0
3 0 4000 8001 4000 8001 0
2 0 4000 4001 4000 4001 0

Table D.2: Scenario reduction parameters in the Up-Down dataset
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# stages εrel
Initial distribution Reduced distribution reduction time (in sec)

# scenarios # nodes # scenarios # nodes
53 0.88 4000 208001 3351 20585 1762
52 0.87 4000 204001 3358 20789 1660
51 0.86 4000 200001 3366 21227 1640
50 0.86 4000 196001 3366 20973 1692
49 0.86 4000 192001 3365 21176 2178
48 0.86 4000 188001 3364 20948 1570
47 0.85 4000 184001 3370 21254 1517
46 0.85 4000 180001 3368 20988 1489
45 0.85 4000 176001 3367 20684 1435
44 0.84 4000 172001 3375 21397 1427
43 0.84 4000 168001 3374 21068 1065
42 0.83 4000 164001 3381 21476 1031
41 0.82 4000 160001 3388 21681 1056
40 0.82 4000 156001 3389 21778 1025
39 0.82 4000 152001 3387 21216 1018
38 0.82 4000 148001 3387 20937 991
37 0.82 4000 144001 3386 20938 865
36 0.81 4000 140001 3392 21052 816
35 0.81 4000 136001 3392 20960 784
34 0.79 4000 132001 3405 21499 798
33 0.78 4000 128001 3412 21537 880
32 0.77 4000 124001 3419 21659 886
31 0.76 4000 120001 3426 22005 815
30 0.76 4000 116001 3429 21944 783
29 0.76 4000 112001 3427 21465 759
28 0.75 4000 108001 3433 21112 743
27 0.74 4000 104001 3437 21143 698
26 0.73 4000 100001 3442 21244 667
25 0.71 4000 96001 3454 21810 622
24 0.70 4000 92001 3458 21538 610
23 0.70 4000 88001 3456 21083 569
22 0.69 4000 84001 3459 20588 547
21 0.67 4000 80001 3471 20900 516
20 0.66 4000 76001 3476 20685 499
19 0.64 4000 72001 3484 20441 461
18 0.61 4000 68001 3502 20793 429
17 0.59 4000 64001 3510 20572 392
16 0.55 4000 60001 3534 21104 355
15 0.50 4000 56001 3567 21960 322
14 0.47 4000 52001 3583 21810 286
13 0.45 4000 48001 3589 21076 264
12 0.42 4000 44001 3603 20632 229
11 0.38 4000 40001 3626 20289 213
10 0.31 4000 36001 3679 20932 191
9 0.25 4000 32001 3722 20780 178
8 0.17 4000 28001 3795 21119 161
7 0.07 4000 24001 3906 21460 124
6 0 4000 20001 4000 20001 0
5 0 4000 16001 4000 16001 0
4 0 4000 12001 4000 12001 0
3 0 4000 8001 4000 8001 0
2 0 4000 4001 4000 4001 0

Table D.3: Scenario reduction parameters in the Down-Up dataset
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# stages εrel
Initial distribution Reduced distribution reduction time (in sec)

# scenarios # nodes # scenarios # nodes
53 0.90 4000 208001 3339 21297 1762
52 0.89 4000 204001 3346 21407 1664
51 0.88 4000 200001 3353 21287 1650
50 0.88 4000 196001 3353 21065 1897
49 0.88 4000 192001 3353 21287 1810
48 0.88 4000 188001 3353 20920 1581
47 0.87 4000 184001 3360 21521 1529
46 0.87 4000 180001 3359 21167 1472
45 0.87 4000 176001 3358 20772 1793
44 0.86 4000 172001 3365 21118 1489
43 0.86 4000 168001 3365 20843 1377
42 0.85 4000 164001 3371 20979 1344
41 0.84 4000 160001 3378 21339 1074
40 0.82 4000 156001 3392 22177 1023
39 0.82 4000 152001 3392 22158 1054
38 0.82 4000 148001 3391 21573 1007
37 0.82 4000 144001 3390 21497 875
36 0.82 4000 140001 3390 20861 841
35 0.82 4000 136001 3389 20675 797
34 0.81 4000 132001 3395 20787 952
33 0.80 4000 128001 3401 20890 1042
32 0.79 4000 124001 3408 21194 927
31 0.78 4000 120001 3415 21206 941
30 0.77 4000 116001 3420 21077 936
29 0.77 4000 112001 3419 20731 914
28 0.76 4000 108001 3426 20882 729
27 0.75 4000 104001 3431 20702 697
26 0.74 4000 100001 3436 20572 670
25 0.72 4000 96001 3450 21011 624
24 0.70 4000 92001 3462 21413 612
23 0.68 4000 88001 3475 21639 572
22 0.66 4000 84001 3487 21885 545
21 0.64 4000 80001 3499 22135 516
20 0.64 4000 76001 3494 21368 495
19 0.64 4000 72001 3489 20507 462
18 0.63 4000 68001 3492 20042 429
17 0.60 4000 64001 3509 20451 393
16 0.56 4000 60001 3533 20960 358
15 0.51 4000 56001 3565 21848 327
14 0.48 4000 52001 3581 21713 288
13 0.46 4000 48001 3586 20914 265
12 0.42 4000 44001 3610 20893 239
11 0.38 4000 40001 3632 20525 221
10 0.31 4000 36001 3686 21219 192
9 0.25 4000 32001 3730 21150 176
8 0.17 4000 28001 3801 21378 162
7 0.07 4000 24001 3896 21237 127
6 0 4000 20001 4000 20001 0
5 0 4000 16001 4000 16001 0
4 0 4000 12001 4000 12001 0
3 0 4000 8001 4000 8001 0
2 0 4000 4001 4000 4001 0

Table D.4: Scenario reduction parameters in the Down-Down dataset
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Experimental Results: Cumulative
Wealth Plots
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Figure E.1: Out-of-sample cumulative wealth against time: Up-Up, γ = 0
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Figure E.2: Out-of-sample cumulative wealth against time: Up-Up, γ = 0.2
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Figure E.3: Out-of-sample cumulative wealth against time: Up-Up, γ = 0.4
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Figure E.4: Out-of-sample cumulative wealth against time: Up-Up, γ = 0.6
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Figure E.5: Out-of-sample cumulative wealth against time: Up-Up, γ = 0.8



APPENDIX E. CUMULATIVE WEALTH PLOTS 236

0

20000

40000

60000

80000

100000

120000

140000

160000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

cu
m

ul
at

iv
e 

w
ea

lt
h 

(i
n 

£s
)

time (in weeks)

Up-Up: γ=1

EW-BH

FTSE

EW-FM

SP

MSP

LADP

LADP-UB(α=1/3)

LADP-UB(α=1/5)

PLADP(m=3)

PLADP(m=5)

Figure E.6: Out-of-sample cumulative wealth against time: Up-Up, γ = 1
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Up-Down Plots
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Figure E.7: Out-of-sample cumulative wealth against time: Up-Down, γ = 0
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Figure E.8: Out-of-sample cumulative wealth against time: Up-Down, γ = 0.2
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Figure E.9: Out-of-sample cumulative wealth against time: Up-Down, γ = 0.4
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Figure E.10: Out-of-sample cumulative wealth against time: Up-Down, γ = 0.6
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Figure E.11: Out-of-sample cumulative wealth against time: Up-Down, γ = 0.8
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Figure E.12: Out-of-sample cumulative wealth against time: Up-Down, γ = 1
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Down-Up Plots
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Figure E.13: Out-of-sample cumulative wealth against time: Down-Up, γ = 0
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Figure E.14: Out-of-sample cumulative wealth against time: Down-Up, γ = 0.2
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Figure E.15: Out-of-sample cumulative wealth against time: Down-Up, γ = 0.4
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Figure E.16: Out-of-sample cumulative wealth against time: Down-Up, γ = 0.6



APPENDIX E. CUMULATIVE WEALTH PLOTS 242

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

cu
m

ul
at

iv
e 

w
ea

lt
h 

(i
n 

£s
)

time (in weeks)

Down-Up: γ=0.8

FTSE

EW-BH

EW-FM

SP

MSP

LADP

LADP-UB(α=1/3)

LADP-UB(α=1/5)

PLADP(m=3)

PLADP(m=5)

Figure E.17: Out-of-sample cumulative wealth against time: Down-Up, γ = 0.8
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Figure E.18: Out-of-sample cumulative wealth against time: Down-Up, γ = 1
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Down-Down Plots
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Figure E.19: Out-of-sample cumulative wealth against time: Down-Down, γ = 0
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Figure E.20: Out-of-sample cumulative wealth against time: Down-Down, γ = 0.2
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Figure E.21: Out-of-sample cumulative wealth against time: Down-Down, γ = 0.4
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Figure E.22: Out-of-sample cumulative wealth against time: Down-Down, γ = 0.6
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Figure E.23: Out-of-sample cumulative wealth against time: Down-Down, γ = 0.8
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Figure E.24: Out-of-sample cumulative wealth against time: Down-Down, γ = 1
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