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Abstract

This thesis investigates problems in a number of different areas of graph theory. These

problems are related in the sense that they mostly concern the colouring or structure of

the underlying graph.

The first problem we consider is in Ramsey Theory, a branch of graph theory stemming

from the eponymous theorem which, in its simplest form, states that any sufficiently

large graph will contain a clique or anti-clique of a specified size. The problem of finding

the minimum size of underlying graph which will guarantee such a clique or anti-clique

is an interesting problem in its own right, which has received much interest over the

last eighty years but which is notoriously intractable. We consider a generalisation of

this problem. Rather than edges being present or not present in the underlying graph,

each is assigned one of three possible colours and, rather than considering cliques, we

consider cycles. Combining regularity and stability methods, we prove an exact result

for a triple of long cycles.

We then move on to consider removal lemmas. The classic Removal Lemma states

that, for n sufficiently large, any graph on n vertices containing o(n3) triangles can

be made triangle-free by the removal of o(n2) edges. Utilising a coloured hypergraph

generalisation of this result, we prove removal lemmas for two classes of multinomials.

Next, we consider a problem in fractional colouring. Since finding the chromatic number

of a given graph can be viewed as a integer programming problem, it is natural to

consider the solution to the corresponding linear programming problem. The solution to

this LP-relaxation is called the fractional chromatic number. By a probabilistic method,

we improve on the best previously known bound for the fractional chromatic number of

a triangle-free graph with maximum degree at most three.

Finally, we prove a weak version of Vizing’s Theorem for hypergraphs. We prove that,

if H is an intersecting 3-uniform hypergraph with maximum degree ∆ and maximum

multiplicity µ, then H has at most 2∆+µ edges. Furthermore, we prove that the unique

structure achieving this maximum is µ copies of the Fano Plane.
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Chapter 1

Introduction

This thesis considers a number of problems in graph theory. A graph is an abstract

mathematical structure formed by a set of vertices and edges joining pairs of those

vertices. Graphs can be used to model the connections between objects; for instance, a

computer network can be modelled as a graph with each server represented by a vertex

and the connections between those servers represented by edges.

Many problems in graph theory involve some sort of colouring, that is, assignment of

labels or ‘colours’ to the edges or vertices of a graph. Such problems fall broadly into

two categories: The first type of problem concerns the possibility of assigning colours to

a graph while respecting some set of rules; the second concerns the existence of coloured

structures in a graph whose colouring we do not control.

The field of graph colouring traces its origins to 1852, when Francis Guthrie observed

that a map of the counties of England can be coloured using four colours in such a way

that adjacent counties receive different colours. The question of whether this is the case

for any such map became known as the Four Colour Problem and is, without doubt, the

most well-known problem from the first category above. This problem received much

attention over the following century (see, for instance, [Wil03]) before, finally, being

answered in the affirmative by Appel and Haken [AH77, AHK77] in 1976.

The archetypal problem of the second type can also be phrased in a non-abstract form

as follows: Suppose you were to invite multiple guests to a dinner-party and that those

guests have not necessarily met each other previously. How many guests would you need

to invite in order to guarantee that there will be three mutual acquaintances or three

mutual strangers at the dinner table? Upon first reading, it is less than obvious that
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such a question should have a finite answer — perhaps, for any size of party, there is a

possible list of acquaintances and strangers without such a triad. In fact, it can easily

be shown that the answer is six and, as we will see later, that no matter how large a

collection of mutual acquaintances or collection of mutual strangers we require, there is

a finite size of gathering that will guarantee the existence of one or the other. However,

finding the exact answer to this general problem is notoriously difficult.

An interesting feature of many problems in Graph Theory (including the two problems

above) is the contrast between the ease with which they may be stated and the appar-

ent difficulty of their solution. This contrast is also apparent in most of the problems

considered in this thesis.

Before formally introducing the main themes and problems considered in this thesis, we

must give a few key definitions:

1.1 Definitions and notation

The notation used in this thesis is mostly standard and can be found, for instance,

in [Bol98], [BM08] and [Die05]. In this section, we give definitions of the objects and

concepts we will use most frequently.

Abstractly, a graph is defined by its vertices (which we assume form a finite set) and

its edges (each of which joins a pair of distinct vertices). In this thesis we sometimes

allow multiple edges between the same pair of vertices. We refer to a graph without such

multi-edges as a simple graph (but usually omit the prefix) and refer to the analogous

object in which multi-edges are allowed as a multigraph.

For a given graph G, we use V (G) to denote its vertex set and E(G) to denote its edge

set. When it is clear from context which graph is being discussed, we will refer to these

sets as simply V and E respectively.

As is standard, we use Kn to denote the complete graph on n vertices, that is, the graph

on n vertices including all possible edges, and use Cn to refer to the cycle on n vertices.

Additionally, we use Pn to denote the path on n vertices but will refer to such a path

as having length n− 1, that is, the length of a path P , denoted |P |, will be equal to the

number of its edges.

We say that a graph G = (V,E) is Hamiltonian if it has, as a subgraph, a cycle which
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visits every vertex and call such a cycle a Hamiltonian cycle. Analogously, we call a

path which visits every vertex a Hamiltonian path.

Given X, a subset of the vertex set of a graph G, we denote by G[X] the graph with

vertex set X and edge set {e ∈ E(G) : e ⊆ X}. Similarly, given a pair of disjoint

subsets X, Y of the vertex set of a graph G, we use G[X,Y ] to denote the subgraph

of G whose edges have one end in X and one end in Y .

For a multigraph G, we refer to edges joining the same pair of vertices as copies of each

other. Then, given an edge e, we define the multiplicity of that edge µ(e) to be the

number of copies of e present in G.

For a (multi)graph G, given a vertex v, we define the degree of that vertex d(v) to be

the number of edges (including copies) incident at v. We write δ(G) for the minimum

degree, that is, the minimum of d(v) over the vertices of G. Similarly, we write ∆(G) for

the maximum degree and d(G) for the average degree. We use e(G) to denote |E(G)|
and e(X,Y ) to denote |e(G[X,Y ])|. We write d(X,Y ) for the density of the pair (X,Y ),

that is, e(X,Y )/|X||Y |.

For a given graph G, we say a set of vertices X ⊆ V (G) is independent if G[X] contains

no edges. Similarly, we define a matching to be a set of independent edges, that is, a

collection of pairwise vertex-disjoint edges. Equivalently, for a given graph, a matching

is a subgraph in which every vertex has degree one. For a matching M including an

edge uv, we refer to v (resp. u) as the M -mate of u (resp. v).

For a given graph G, a perfect matching or 1-factor is a matching which spans all the

vertices of G or, equivalently, a spanning subgraph in which every vertex has degree one.

Analogously, for a given graph, a k-factor is a spanning subgraph in which every vertex

has degree k.

We also consider hypergraphs, that is, structures analogous to graphs in which the edges

are permitted to span any number of vertices. Most often, when doing so, we, in fact,

consider r-uniform hypergraphs, that is, hypergraphs in which every edge spans exactly

r vertices. Most of the definitions given above carry over from graphs to hypergraphs.

In particular, we define d(v), δ(H), ∆(H) in the same way.

Note that further definitions appear in each of the sections and chapters that follow.
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1.2 Graph colouring

In the chapters which follow, we will make use of various notions of colourings of graphs

(and hypergraphs). We now define some of these notions and discuss some fundamental

results in (proper) graph colouring.

By a colouring of a graph, we mean an assignment of a colour (that is, a label from

some list) to either each vertex (a vertex-colouring) or each edge (an edge-colouring). A

vertex-colouring is called proper if no two adjacent vertices are assigned the same colour.

An edge-colouring is called proper if no two edges of the same colour meet at a vertex.

A (proper) k-colouring is a (proper) colouring using at most k colours. A multicolouring

is a colouring where multiple colours may be assigned to each edge or vertex. Where

context permits, we will omit these prefixes so that, for instance, we may refer to a

proper k-edge-multicolouring simply as a colouring.

Note that, when a small number of colours are being used, it is usual to give them

names. In this thesis, the first three colours will always be refered to as red, blue and

green (in that order). When a larger number of colours are used, they will be referred

to as c1, c2, . . . ck or 1, 2, . . . k.

In Chapters 2 and 3 we will make use of colourings without requiring them to be proper.

However, it is quite usual for references to graph (and hypergraph) colourings to be taken

to refer to proper colourings and indeed we will make use of this notion of colouring in

Chapters 4 and 5 and, also, in the remainder of this section.

When colouring a graph, one may ask,

“What is the minimum number of colours required to properly colour a given graph G?”

For vertex-colouring, this minimum is called the chromatic number χ(G) of G and, for

edge-colouring, the chromatic index χ′(G) of G.

At this point, it is worth noting some alternative but equivalent definitions in terms of

independent sets. For vertex-colouring, defining a colour class to be the set of vertices

assigned a particular colour, we can see that each colour class forms an independent set

of vertices and that a proper k-vertex-colouring is a partition of the vertices of a graph

into k independent sets. Thus, we could define χ(G) to be the minimum k such that

there exists a partition of the vertices of G into k independent sets. Similarly, defining a

colour class for an edge-colouring to be the set of edges assigned a particular colour, we
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can see that each colour class forms a matching. Thus, we may view an edge-colouring

as a partition and define χ′(G) to be the minimum k such that there exists a partition

of the edges of G into k matchings.

For vertex-colouring, Brooks’ Theorem [Bro41] tells us that we can colour any graph G

using at most ∆(G) + 1 colours and that, for most graphs, ∆(G) colours suffice. More

precisely, it tells us that, if G is a connected graph with maximum degree ∆, then

χ(G) ≤ ∆, unless G is an odd cycle or a complete graph, in which case χ(G) = ∆ + 1.

Given a graph G = (V,E), we define its line graph L(G) to be the graph with vertex

set E whose edges are the pairs {e1, e2} ⊆ E which intersect at a vertex in G. Then,

considering the line graph L(G) and applying Brooks’ Theorem gives us the following

upper bound for the chromatic index:

χ′(G) ≤ 2∆− 1.

However, this upper bound is, in general, not best possible.

Before proceeding, let us note that, when vertex-colouring, the addition of extra copies

of any given edge does not alter the possibility or impossibility of colouring a given

graph using a given number of colours, since any colouring that is proper for a graph

will remain proper if edges are removed or if extra copies of an existing edge are added.

However, the same is not true of edge-colourings, since multiple copies of an edge will

each require a different colour. Therefore, when discussing edge-colourings, we must

specify carefully whether or not to allow multiple copies of a given edge.

Shannon [Sha49] proved the following bound for multigraphs:

χ′(G) ≤ 3
2∆.

Shannon’s bound is the best possible bound of this form, as demonstrated by the Shannon

multigraphs shown in Figure 1.1.

Defining µ(G) to be the maximum multiplicity of the edges of G, using a re-colouring

argument, Vizing [Viz64] proved the following bound:

χ′(G) ≤ ∆(G) + µ(G),
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Figure 1.1: Shannon multigraph with χ′(G) = 3
2∆.

which, for simple graphs, reduces to

χ′(G) ≤ ∆(G) + 1,

both of which are best possible.

Perhaps the best known, example of a simple graph which cannot be properly edge-

coloured using only ∆(G) colours is the Petersen Graph shown in Figure 1.2, which has

∆(G) = 3 but χ′(G) = 4.

Figure 1.2: The Petersen Graph.

Note that, while Vizing tells us that any simple graph G has chromatic index ∆(G) or

∆(G) + 1, the general problem of determining χ′(G) is NP-complete.

In Chapter 5, we prove a partial generalisation of Vizing’s Theorem to hypergraphs.
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1.3 Fractional colouring

When considering the chromatic number of certain graphs, one may notice colourings

which are best possible (in that they use as few colours as possible) but which are in

some sense wasteful. For instance, an odd cycle cannot be properly coloured with two

colours but can be coloured using three colours in such a way that the third colour is used

only once. Indeed, if C7 has vertices v1, v2, v3, . . . , v7, then we can colour v1, v3, v5 red,

v2, v4, v6 blue and v7 green.

If, however, our aim is instead to assign multiple colours to each vertex such that adjacent

vertices receive disjoint lists of colours, then we could double-colour C7 using five (rather

than six) colours and triple-colour it using seven (rather than nine) colours in such a

way that each colour is used exactly three times. Indeed, we could colour vi with colours

3i, 3i+ 1, 3i+ 2 (mod 7). Thus, asking for the minimum of the ratio of colours required

to the number of colours assigned to each vertex gives us a natural generalisation of the

chromatic number.

Alternatively, for a graph G = (V,E) we can consider a function w assigning to each

independent set of vertices I a real number w(I) ∈ [0, 1]. We call such a function a

weighting. The weight w[v] of a vertex v ∈ V with respect to w is then defined to be

the sum of w(I) over all independent sets containing v. A weighting w is a fractional

colouring of G if, for each v ∈ V , w[v] ≥ 1. The size |w| of a fractional colouring is the

sum of w(I) over all independent sets I. The fractional chromatic number χf (G) is then

defined to be the infimum of |w| over all possible fractional colourings.

Thus, given a graph G, the problem of finding χf (G) can be viewed as the LP-relaxation

of the problem of finding χ(G). Defining I(G) to be the set of independent sets of G,

finding χ(G) is equivalent to solving the following:

minimise
∑

I∈I
w(I),

subject to
∑

I3v
w(I) ≥ 1 for each v ∈ V (G),

w(I) ∈ {0, 1} for each I ∈ I(G),

and finding χf (G) is equivalent to solving the same problem but with the second con-

straint replaced by w(I) ∈ [0, 1] for each I ∈ I(G).
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Thus, we can see that, for any graph G, we have

χf (G) ≤ χ(G).

Also, since χf (G) can be found by solving a linear programming problem with integer

coefficients, for any graph G, we know that χf (G) ∈ Q and that there exists a colouring w

with |w| = χf (G) such that w(I) ∈ Q ∩ [0, 1] for every I ∈ I. That is, for every

graph G, the infimum in the definition of the fractional chromatic number is attained

by a colouring with rational weights.

It can easily be shown that the above two definitions of the fractional chromatic number

are equivalent to each other and to a third, probabilistic, definition. It is this third

definition which we will make most use of in Chapter 4:

Lemma 1.3.1. Let G be a graph and q a positive rational number. The following are

equivalent:

(i) χf (G) ≤ q;

(ii) there exists an integer N and a multi-set W of at most qN independent sets in G

such that each vertex is contained in exactly N sets from W;

(iii) there exists a probability distribution π on the independent sets of G such that, for

each vertex v, the probability that v is contained in a random independent set (with

respect to π) is at least 1/q.

Proof.

(i)⇒(ii): Suppose that χf (G) ≤ q for some q ∈ Q. Then, there exists a weighting

w : I → [0, 1]

such that
∑

I3v w(I) ≥ 1 for every v ∈ V (G) and
∑

I∈I w(I) ≤ q. As remarked above,

we may assume that w(I) ∈ Q ∩ [0, 1] for every I ∈ I.

Then, there exists an integer N such that Nw(I) ∈ N for every I ∈ I. We define W to

include Nw(I) copies of each independent set. Thus, W includes N
∑

I∈I w(I) ≤ Nq

independent sets with each vertex belonging to at least N of these sets. To complete the

proof, we arbitrarily remove any vertex v belonging to too many of the members of W
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from sufficiently many of those independent sets so as to have every vertex belong to

exactly N sets from W.

(ii)⇒(iii): Suppose there exists an integer N and a multiset W of at most qN inde-

pendent sets from I(G) such that each vertex belongs to exactly N of the sets from W.

Then, define a probability distribution π : I → [0, 1] by

π(I) =

{
1/qN if I ∈ W,

0 otherwise.

Then, since every vertex v ∈ V (G) belongs to exactly N members of W,

∑

I3v
π(I) = 1/q, and

∑

I∈I
π(I) = 1,

as required.

(iii)⇒(i): Suppose there exists a probability distribution π : I → [0, 1] such that
∑

I3v π(I) ≥ 1/q and
∑

I∈I π(I) = 1. Then, define a weighting w : I → [0, 1] by

w(I) = min{qπ(I), 1}.

Then ∑

I3v
w(I) ≥ 1

for every v ∈ V (G) and

∑

I∈I
w(I) =

∑

I∈I
min{qπ(I), 1} ≤

∑

I∈I
qπ(I) = q

so χf (G) ≤ q. 2

In Chapter 4, we consider the problem of bounding the fractional chromatic number

of a graph with maximum degree at most three which contains no triangles. Brooks’

Theorem asserts that such graphs have chromatic number at most three and, thus,

have fractional chromatic number at most three. On the other hand, there exist such

graphs with fractional chromatic number equal to 2.8. The main result of Chapter 4 is

a probabilistic proof that triangle-free graphs with maximum degree at most three have

fractional chromatic number at most 32/11 ≈ 2.909.
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We refer the interested reader to the book of Scheinerman and Ullman [SU97] for more

information on fractional colouring.

1.4 Ramsey Theory

Consider the complete graph on N vertices. Suppose we were to colour each of its

edges either red or blue and to ask whether this can be done in such a way as to avoid

structure in the monochromatic subgraphs induced by the edges of each colour. It is

tempting to think that this is possible and that we could find such a colouring which,

upon interrogation, would appear to lack structure.

However, this is not the case. For instance, any such red-blue colouring of the complete

graph on six or more vertices will result in either a red or blue triangle (that is, three

vertices, say, u, v, w such that uv, vw, uw are coloured identically). Indeed, consider any

vertex v in such a coloured graph along with five of its neighbours, u1, u2, . . . u5. By

the pigeonhole principle, at least three of the edges connecting v to its neighbours, say,

vu1,vu2 and vu3 must have the same colour as each other, say, red. Then, consider u1u2,

u2u3 and u1u3. Either one of these three edges is red (giving a red triangle of the form

vuiuj), or they are all blue (giving a blue triangle u1u2u3).

Ramsey’s Theorem [Ram30], essentially tells us that, no matter what structure we re-

quire a coloured graph to have in one of its colours, we can guarantee that it will have

that structure provided the graph has sufficiently many vertices. We begin by looking

at the two-coloured version of the result:

Theorem 1.4.1 ([Ram30]). Given integers n and m, there exists an integer Nr(n,m)

such that, for every integer N ≥ Nr(n,m), every red-blue colouring of the complete graph

on N vertices results in the coloured graph containing either a red Kn or a blue Km.

We call the minimum such integer the Ramsey Number of (n,m), written R(n,m).

Notice that our earlier discussion provides a proof that R(3, 3) ≤ 6 and that the red-blue

colouring of K5 shown in Figure 1.3 below shows that R(3, 3) > 5, thus completing a

proof that R(3, 3) = 6. Similarly, noting that K2 consists of a single edge, we can see

that R(2, k) = k for all k.

In 1935, Erdős and Szekeres [ES35] rediscovered Ramsey’s Theorem and, by considering

the red and blue neighbourhoods of a given vertex, gave a new inductive proof and an
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Figure 1.3: A red-blue colouring of K5 containing no monochromatic triangles.

improved bound for R(n,m). The key argument shows that

R(n,m) ≤ R(n− 1,m) +R(n,m− 1)

and proceeds as follows: Let G be a graph on at least R(n−1,m)+R(n,m−1) vertices.

Consider a given vertex v and R(n − 1,m) + R(n,m − 1) − 1 of its neighbours. Then,

either there is a set U of at least R(n − 1,m) neighbours of v with vu coloured red for

every u ∈ U or there is a set W of at least R(n,m−1) neighbours of v with vw coloured

blue for every w ∈ W . Without loss of generality, assume the latter. Since W contains

at least R(n,m−1) vertices, it contains either a red Kn or a blue Km−1 which, together

with v, forms a blue Km.

Combined with induction and the fact that R(2, k) = k, this gives an upper bound of

R(n,m) ≤
(
n+m− 2

n− 1

)
≤ 2n+m−2.

For small values of n andm, the problem of finding the exact value ofR(n,m) is tractable.

However, for larger values, things become increasingly more difficult with exact re-

sults only known for (n,m) = (2, k), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 4)

and (4, 5) [Rad94].

Indeed, Joel Spencer [Spe94] recounts some advice given by Erdős:

“...Imagine an alien force, vastly more powerful than us, landing on Earth and

demanding the value of R(5, 5) [then] we should marshal all our computers

and all our mathematicians and attempt to find the value. But suppose, in-

stead, that they ask for R(6, 6) [then] we should [instead] attempt to destroy
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the aliens...”

Given the difficulty of finding the exact value of R(n,m), results tend to fall into one

of two categories: partial results for small values of n,m and asymptotic results. For a

comprehensive overview of results of the first type, see [Rad94].

In terms of asymptotic results, the best known upper bound is due to Conlon [Con09],

who proved that there exists a constant C > 0 such that

R(n+ 1, n+ 1) ≤ n−C
log n

log log n

(
2n

n

)
,

whereas the best known lower bound is due to Spencer [Spe75], who, improving upon a

probabilistic argument of Erdős [Erd47], proved that

R(n, n) ≥ n
√

2
e 2n/2.

Theorem 1.4.1 can be generalised in a number of ways but we will restrict our attention

to those extensions which are considered in Chapter 2 of this thesis.

The multicolour Ramsey number R(n1, n2, . . . , nr) is defined to be the minimum N such

that every r-edge-colouring of the complete graph on at least N vertices results in the

graph having, as a subgraph, a copy of Kni coloured with colour i, for some i.

Theorem 1.4.2. For every n1, n2, ..., nr, R(n1, n2, . . . , nr) is finite. Moreover,

R(n1, n2, . . . , nr) ≤ R (R(n1, n2), n3, . . . nr) .

Proof. Consider the complete graph on R (R(n1, n2), n3, . . . nr) whose vertices are col-

oured with colours 1, 2, . . . r. Now, temporarily, cease to distinguish between colours 1

and 2 so that we have an r−1 coloured graph on R (R(n1, n2), n3, . . . nr), which contains

either a complete graph on ni vertices coloured with colour i for some 3 ≤ i ≤ r or con-

tains a copy of the complete graph on R(n1, n2) vertices coloured with colours 1 and 2,

which (distinguishing again between colours 1 and 2) contains either a Kn1 coloured

with colour 1 or a Kn2 coloured with colour 2. 2

We may also generalise from complete graphs to general graphs as follows: For graphs

G1, G2, . . . , Gr, the Ramsey number R(G1, G2, . . . , Gr) is the smallest integer such that
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every edge-colouring of KN , the complete graph on N vertices, with up to r colours,

results in the graph having, as a subgraph, a copy of Gi coloured with colour i, for

some i.

Suppose each Gi has ni vertices. Then, since Gi is a subgraph of Kni , R(G1, G2, ..., Gr)

is well defined and

R(G1, G2, . . . , Gr) ≤ R(n1, n2, . . . , nr).

One of the first results in this direction was due to Gerencsér and Gyárfás [GG67] who

considered the problem of finding the Ramsey number of a pair of paths and proved

that, for n ≤ m,

R(Pn, Pm) = m+
⌊

1
2n
⌋
− 1.

The survey of Radziszowski [Rad94] lists a wealth of results in this direction but we will

only mention those which relate directly to the topic of Chapter 2, namely, the Ramsey

number of cycles.

The problem of finding the Ramsey number of a pair of cycles was considered in the

early 1970s by Bondy and Erdős [BE73], Rosta [Ros73] and Faudree and Schelp [FS74]

with the second and third sets of authors independently proving the following exact

result:

R(Cn, Cm) =





6 (n,m) = (3, 3), (4, 4),

2n− 1 n ≥ m ≥ 3, m odd (n 6= 3),

n+ 1
2m− 1 n ≥ m ≥ 4, n,m even (n 6= 4),

max{n+ 1
2m− 1, 2m− 1} n ≥ m ≥ 4, n odd, m even.

Bondy and Erdős noted the difficulty in finding multicolour Ramsey numbers in general,

whilst suggesting that, for cycles, the problem should be tractable. They noted that

they were

“not able to evaluate R(G1, G2, . . . , Gr) for k > 2 even in the case of cycles.”

They did, however, give the following bounds for the r-colour Ramsey number in the

case when n is odd:

2r−1(n− 1) + 1 ≤ R(Cn, Cn, . . . , Cn) ≤ (r + 2)!n
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and conjectured (see, for instance, [Erd81]) that this lower-bound gives the true value

of the Ramsey number.

Recently, there has been renewed interest in these problems. Károlyi and Rosta [KR01]

and Nikiforov and Schelp [NS08] provided new proofs for the two-coloured case. The

latter pair utilised stability with the idea being, essentially, to consider the complete

graph on slightly fewer than R(Cn, Cm) vertices, to assume that this has a red-blue

colouring with no red Cn or blue Cm and to show that this forces a particular structure

which can then be exploited to give a cycle in the larger graph. This idea of a stability

proof will be of great use to us in Chapter 2, where we will look at the analogous result

for three colours.

1.5 Szemerédi’s Regularity Lemma and its applications

Szemerédi’s Regularity Lemma tells us essentially that any sufficiently large graph can

be approximated by the union of a bounded number of random-like bipartite graphs.

The earliest version of the result appeared in 1975 in [Sze75] where it was used as a tool in

the proof a conjecture of Erdős and Turán that, for any d > 0 and any integer k, any set

of dN integers from {0, 1, . . . , N} contains a k-term arithmetic progression, provided N

is sufficiently large. The most well known version of the Regularity Lemma for general

graphs was later proved in [Sze78].

Recalling the definition of the density of a pair of sets of vertices, that is,

d(X,Y ) =
e(X,Y )

|X||Y | ,

we define the concept of a regular pair:

Definition 1.5.1. A pair of disjoint subsets (A,B) of the vertex set of a graph G is

(ε,G)-regular for some ε > 0 if, for every pair (A′, B′) with A′ ⊆ A, |A′| ≥ ε|A|,
B′ ⊆ B, |B′| ≥ ε|B|, we have

∣∣d(A′, B′)− d(A,B)
∣∣ < ε.

Note that, when clear from context, we will use ε-regular or even just regular to mean

(ε,G)-regular. The ‘classic’ version of the Regularity Lemma given below states that,
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given any graph on sufficiently many vertices, we can partition the vertices into a

bounded number of clusters such that most pairs of clusters are regular.

Theorem 1.5.2 (Szemerédi’s Regularity Lemma [Sze78]). Given ε > 0 and k0 a positive

integer, there exists N1.5.2 = N1.5.2(ε, k0) such that the following holds: For all graphs G

with |V (G)| ≥ N1.5.2, there exists a partition Π = (V0, V1, . . . , VK) of V such that

(i) k0 ≤ K ≤ N1.5.2;

(ii) |V0| ≤ ε|V |;

(iii) |V1| = |V2| = · · · = |VK |; and

(iv) all but at most ε
(
K
2

)
of the pairs (Vi, Vj) are (ε,G)-regular.

Note that, for for a given graph G and a value of ε, we call a partition (V1, V2, . . . , VK)

satisfying (ii)–(iv) above an (ε,G)-regular partition.

In Chapter 2 , we make use of a coloured version of the Regularity Lemma to define, for

a given graph, its reduced graph whose vertices correspond to the clusters arising from

the Regularity Lemma and whose edges correspond to the regular pairs. We also make

use of a related blow-up lemma, which tells us that an edge in the reduced graph can be

‘blown up’ to a long path in the original graph.

In Chapter 3, we will look at Removal Lemmas, the first and most famous of which is

the Triangle Removal Lemma of Ruzsa and Szemerédi [RS78], which states that a graph

on n vertices containing o(n3) triangles can be made triangle-free by the removal of o(n2)

edges (where we say graph G contains k copies of graph H if G has, as subgraphs, k

graphs isomorphic to H).

A more precise formulation of this result, which was one of the earliest applications of

the Regularity Lemma, follows. We also include its proof in full, since the counting

required parallels that found in many places in Chapter 2.

Theorem 1.5.3 (The Triangle Removal Lemma [RS78]). For every ε > 0, there exists

N1.5.3 = N1.5.3(ε) and δ = δ1.5.3(ε) such that, if G is a graph on n ≥ N vertices with

at most δn3 triangles, then one can remove from G at most εn2 edges to obtain a graph

that contains no triangles.
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Proof. Given ε > 0, we set k0 = 4/ε. By the Regularity Lemma there exists N =

N1.5.2(ε/4, 4ε−1) such that, given a graph G on n ≥ N vertices (with fewer than δn3

triangles), there exists a partition Π of V (G) into K+1 clusters V0, V1, . . . , VK such that

(i) 4/ε ≤ K ≤ N ;

(ii) |V0| ≤ 1
4ε|V |;

(iii) |V1| = |V2| = · · · = |VK |; and

(iv) all but at most 1
4ε
(
K
2

)
of the pairs (Vi, Vj) are (1

4ε,G)-regular.

We then remove from G any edges (x, y) ∈ Xi×Xj such that at least one of the following

conditions hold:

(i) (Xi, Xj) is not 1
4ε-regular;

(ii) e(Xi, Xj) <
1
2ε|Xi||Xj |;

(iii) x ∈ X0;

(iv) Xi = Xj .

Observe that there are at most 1
2(1

4ε)K
2 non-regular pairs, giving at most

1
8εK

2|V1|2 ≤ 1
8εn

2

edges of the first type. By definition, there are at most 1
2εn

2 edges of the second type

and at most 1
4εn

2 edges of the third type. Finally, there are at most

K

(|V1|
2

)
≤ 1

2K
( n
K

)2
=

n2

2K

edges of the fourth type. Thus, since K ≥ k0 ≥ 4/ε, we have deleted at most εn2 vertices

in total.

Now, suppose that there remains a triangle in G. Since we have removed all edges

from within each cluster and all edges intersecting V0, the three vertices of the triangle

must belong to distinct clusters X,Y, Z from {V1, V2, . . . , VK}. Also, since we have

removed all edges from non-regular pairs and from pairs of low density, we know that

(X,Y ), (Y,Z), (X,Z) are each 1
4ε-regular with density at least 1

2ε.
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We claim that at most 1
4ε|X| of the vertices in X have fewer than 1

4ε|Y | neighbours in Y .

Indeed, if this were not the case, these vertices would define X ′ ⊆ X with |X ′| ≥ 1
4ε|X|

and e(X ′, Y ) < 1
4ε|X ′||Y |. However, we know that e(X,Y ) ≥ 1

2ε|X||Y | and by the

definition of a regular pair have

∣∣d(X ′, Y )− d(X,Y )
∣∣ ≤ 1

4ε,

giving a contradiction. Similarly, we may assume that there are at most 1
4ε|X| vertices

in X with fewer than 1
4ε|Z| neighbours in Z.

Thus, there are at least (1− 1
2ε)|X| vertices in X with at least 1

4ε|Y | neighbours in Y and

at least 1
4ε|Z| neighbours in Z. Given such a vertex, we consider the edges in G[Y,Z]

between N(x) ∩ Y and N(x) ∩ Z. There are at least

( ε
2
− ε

4

)( ε
4

)( ε
4

)
|Y ||Z|

such edges. Since there are at least (1− 1
2ε)|X| such vertices in X, these give rise to at

least (
1− ε

2

)( ε
4

)3
|X||Y ||Z| ≥

(
1− ε

2

)( ε
4

)3
(

(1− ε)n
K

)3

triangles, giving rise to a contradiction provided

(
1− ε

2

)( ε
4

)3
(

(1− ε)n
K

)3

> δ.

If ε > 1
2 , the result is trivial. Hence, we may assume that ε ≤ 1

2 , in which case

(
1− ε

2

)( ε
4

)3
(

(1− ε)n
K

)3

≥ 3

4

( ε
4

)3 1

23

( n
K

)3
≥ 1

210

ε3

K3
.

Thus, we may set

δ1.5.3(ε) =

(
1

210

)
ε3

K3

in order to complete the proof. 2

The above result generalises in a number of ways, for instance, from triangles to general

graphs (see [EFR86]) and to hypergraphs (see for instance [AT10], [Ish09]). We will

return to the topic of removal lemmas in Chapter 3, where we consider analogues for

equations over finite fields.

24



1.6 Thesis outline

In Chapter 2, combining regularity and stability methods we prove an exact result in

Ramsey Theory. For a triple of long cycles of particular parities, we provide an exact

answer to the question of how large an underlying three-coloured graph must be in order

to guarantee a monochromatic cycle of specified length.

We then move on, in Chapter 3, to consider removal lemmas for equations over finite

fields. Utilising a coloured hypergraph generalisation of the Graph Removal Lemma,

we prove a removal lemma for two specific classes of multinomials. Specifically, for

X1, X2, . . . Xm subsets of a finite field of of order q, we prove that, if a multinomial of

order m of a particular form has o(qm−1) solutions (x1, x2, x3, . . . , xm) with xi ∈ Xi,

then we can delete o(q) elements from each Xi so that no solutions remain.

Next, in Chapter 4, we consider a problem in fractional colouring. By a probabilistic

method, we prove that, if G is a triangle-free graph with maximum degree at most three,

then the fractional chromatic number of G is at most 32/11 ≈ 2.909, improving on the

best previously known bound. Note that the proof includes a long case analysis which

is postponed to the Appendix of this Thesis.

Finally, in Chapter 5, we prove a weak version of Vizing’s Theorem for hypergraphs. We

prove that, if H is an intersecting 3-uniform hypergraph with maximum degree ∆ and

maximum multiplicity µ, then, H has at most 2∆ + µ edges. Furthermore, we prove

that the unique structure achieving this maximum is µ copies of the Fano Plane.
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Chapter 2

The Ramsey number of cycles

Recall that, for graphs G1, G2, G3, the Ramsey number R(G1, G2, G3) is the smallest

integer N such that every edge-colouring of the complete graph on N vertices with up

to three colours, results in the graph having, as a subgraph, a copy of Gi coloured with

colour i for some i. In this chapter, we will consider the case when G1, G2 and G3

are cycles.

In 1973, Bondy and Erdős [BE73] conjectured that, if n > 3 is odd, then

R(Cn, Cn, Cn) = 4n− 3.

Later,  Luczak [ Luc99] proved, that for n odd, R(Cn, Cn, Cn) = 4n + o(n) as n → ∞.

Kohayakawa, Simonovits and Skokan [KSS09a], expanding upon the work of  Luczak,

confirmed the Bondy-Erdős conjecture for sufficiently large odd values of n by proving

that there exists a positive integer n0 such that, for all odd n,m, ` > n0,

R(Cn, Cm, C`) = 4 max{n,m, `} − 3.

In the case when all three cycles are of even length, Figaj and  Luczak [F L07a] proved

the following asymptotic. Defining 〈〈x〉〉 to be the largest even integer not greater than x,

they proved that, for all α1, α2, α3 > 0,

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈〈α3n〉〉) = 1
2

(
α1 + α2 + α3 + max{α1, α2, α3}

)
n+ o(n),

as n→∞.
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Thus, in particular, for even n,

R(Cn, Cn, Cn) = 2n+ o(n), as n→∞.

Independently, Gyárfás, Ruszinkó, Sárközy and Szeméredi [GRSS07] proved a similar,

but more precise, result for paths, namely that there exists a positive integer n1 such

that, for n > n1,

R(Pn, Pn, Pn) =





2n− 1, n odd,

2n− 2, n even.

More recently, Benevides and Skokan [BS09] proved that there exists n2 such that, for

even n > n2,

R(Cn, Cn, Cn) = 2n.

In this chapter, we look at the mixed-parity case, for which, defining 〈x〉 to be the

largest odd number not greater than x, Figaj and  Luczak [F L07b] proved that, for all

α1, α2, α3 > 0,

(i) R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) = max{2α1 + α2, α1 + 2α2,
1
2α1 + 1

2α2 + α3}n+ o(n),

(ii) R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) = max{4α1, α1 + 2α2, α1 + 2α3}n+ o(n),

as n→∞.

Improving on their result, in the case when exactly one of the cycles is of odd length,

we prove the following, which is the main result of this chapter:

Theorem A. For every α1, α2, α3 > 0 such that α1 ≥ α2, there exists a positive integer

nA = nA(α1, α2, α3) such that, for n > nA,

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) = max{2〈〈α1n〉〉+〈〈α2n〉〉− 3, 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+〈α3n〉− 2}.

Additionally, in Section 2.13, we give an outline of the proof of the corresponding result

for the case when one of the cycles is of even length and the other two are of odd length.

Theorem C. For every α1, α2, α3 > 0 such that α2 ≥ α3, there exists a positive integer

nC = nC(α1, α2, α3) such that, for n > nC ,

R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) = max{4〈〈α1n〉〉 − 3, 〈〈α1n〉〉+ 2〈α2n〉 − 3}.

27



2.1 Lower bounds

Our first step in proving Theorem A is to exhibit three-edge-colourings of the complete

graph on

max
{

2〈〈α1n〉〉+ 〈〈α2n〉〉 − 4, 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+ 〈α3n〉 − 3
}

vertices which do not contain any of the relevant coloured cycles, thus proving that

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) ≥ max{2〈〈α1n〉〉+〈〈α2n〉〉− 3, 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+〈α3n〉− 2}.

For this purpose, the well-known colourings shown in Figures 2.1 and 2.2 suffice.

The graph shown in Figure 2.1 has 2〈〈α1n〉〉+〈〈α2n〉〉−4 vertices divided into four classes

V1, V2, V3 and V4, with

|V1| = |V2| = 〈〈α1n〉〉 − 1, |V3| = |V4| = 1
2〈〈α2n〉〉 − 1,

such that all edges inG[V1] andG[V2] are coloured red; all edges inG[V1, V3] andG[V2, V4]

are coloured blue; all edges in G[V1 ∪ V3, V2 ∪ V4] are coloured green; and all edges in

G[V3] and G[V4] are coloured red or blue.

V1
 V3


V2
 V4


Figure 2.1: First extremal colouring for Theorem A.

Since there are no red edges between the vertex classes and each class contains fewer

than 〈〈α1n〉〉 vertices, the graph has no red cycles of length 〈〈α1n〉〉. Also, since there are

are no blue edges in G[V1] ∪ G[V2] ∪ G[V1 ∪ V3, V2 ∪ V4], any blue cycle must belong to
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either G[V1, V3]∪G[V3] (and, thus, have at least half its vertices in V3) or G[V2, V4]∪G[V4]

(and, thus, have at least half its vertices in V4). Thus, since |V3|, |V4| = 1
2〈〈α2n〉〉− 1, the

graph has no blue cycles of length 〈〈α2n〉〉. Finally, since the only green edges belong to

G[V1 ∪ V3, V2 ∪ V4], all green cycles in the graph are of even length. Thus, the graph has

no green cycles of odd length and, in particular, no green cycles of length 〈α3n〉.

The graph shown in Figure 2.2 has 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+ 〈α3n〉− 3 vertices, divided into

three classes V1, V2 and V3, with

|V1| = 1
2〈〈α1n〉〉 − 1, |V2| = 1

2〈〈α2n〉〉 − 1, |V3| = 〈α3n〉 − 1.

such that all edges in G[V1] ∪ G[V1, V3] are coloured red; all edges in G[V2] ∪ G[V2, V3]

are coloured blue; and all edges in G[V1, V2] ∪G[V3] are coloured green.

V1


V2


V3


Figure 2.2: Second extremal colouring for Theorem A.

Similarly, this graph has no red cycles of length 〈〈α1n〉〉, no blue cycles of length 〈〈α2n〉〉
and no green cycles of length 〈α3n〉.

Thus, it remains to prove the corresponding upper-bound. To do so, we combine reg-

ularity (as used in [ Luc99], [F L07a], [F L07b]) with stability methods using a simillar

approach to [GRSS07], [BS09], [KSS09a], [KSS09b].

Note that all references to colouring in the remainder of this chapter should be under-

stood as referring to edge-colouring and, where appropriate, to edge-multicolouring.
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2.2 Key steps in the proof

In order to complete the proof of Theorem A, we must show that, for n sufficiently large,

any three-colouring of G, the complete graph on

N = max
{

2〈〈α1n〉〉+ 〈〈α2n〉〉 − 3, 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+ 〈α3n〉 − 2
}

vertices, will result in either a red cycle on 〈〈α1n〉〉 vertices, a blue cycle on 〈〈α2n〉〉 or a

green cycle on 〈α3n〉 vertices.

The main steps of the proof are as follows: Firstly, we apply a version of the Regularity

Lemma (Theorem 2.3.1) to give a partition V0 ∪ V1 ∪ · · · ∪ VK of the vertices which is

simultaneously regular for the red, blue and green spanning subgraphs of G. Given this

partition, we define the three-multicoloured reduced-graph G on vertex set V1, V2, . . . VK

whose edges correspond to the regular pairs. We colour the edges of the reduced-graph

with all those colours for which the corresponding pair has density above some threshold.

 Luczak [ Luc99] showed that, if the threshold is chosen properly, then the existence of

a matching in a monochromatic connected-component of the reduced-graph implies the

existence of a monochromatic cycle of the corresponding length in the original graph.

Thus, the key step in the proof of Theorem A will be to prove a Ramsey-type stability

result for so-called connected-matchings (Theorem B). Defining a connected-matching to

be a matching with all its edges belonging to the same component, this result essentially

says that, for every α1, α2, α3 > 0 such that α1 ≥ α2 and every sufficiently large k, every

three-multicolouring of a graph G on slightly fewer than K = max{2α1 + α2,
1
2α1 +

1
2α2 +α3}k vertices with sufficiently large minimum degree results in either a connected-

matching on at least α1k vertices in the red subgraph of G, a connected-matching on

at least α2k vertices in the blue subgraph of G, a connected-matching on at least α3k

vertices in a non-bipartite component of the green subgraph of G or one of a list of

particular structures which will be defined later.

In the case that G contains a suitably large connected-matching in one of its coloured

subgraphs, a blow-up result of Figaj and  Luczak (see Theorem 2.3.4) can be used to

give a monochromatic cycle of the same colour in G. If G does not contain such a

connected-matching, then the stability result gives us information about the structure

of G. We then show that G has essentially the same structure which we exploit to force

the existence of a monochromatic cycle.

30



In the next section, given a three-colouring of the complete graph on N vertices, we will

define its three-multicoloured reduced-graph. We will also state and prove a version of

the blow-up lemma of Figaj and  Luczak, which motivates our whole approach.

In Section 2.4, we will deal with some notational formalities before proceeding in Sec-

tion 2.5 to define the structures we need and to give a precise formulation of the

connected-matching stability result which we shall call Theorem B.

In Section 2.6, we give a number of technical lemmas needed for the proofs of Theorem A

and Theorem B. Among these is a decomposition result of Figaj and  Luczak which

provides insight into the structure of the reduced-graph.

The hard work is done in Sections 2.7–2.8, where we prove Theorem B, and in Sec-

tions 2.9–2.12, where we translate this result for connected-matchings into one for cycles,

thus completing the proof of Theorem A.

The proof of Theorem B is divided into two parts according to the relative sizes of α1

and α3. Section 2.7 deals with the case when α1 ≥ α3, that is, the case when the

longest cycle has even length. In that case, a combination of the decomposition lemma

of Figai and  Luczak and some careful counting of edges allows for a reasonably short

proof. Section 2.8 deals with the opposite case, which requires a longer proof utilising

an alternative decomposition and extensive case analysis.

The final part of the proof of Theorem A is divided into four sub-parts, one dealing with

the general setup and three further sections, each dealing with one of the structures that

can occur.

Note that Sections 2.3–2.7, 2.9 and 2.10 together give a complete proof for the case

where the longest cycle is of even length, allowing the reader to omit sections 2.8, 2.11

and 2.12, while still getting a good flavour of the method of proof.

2.3 Cycles, Matchings and the Regularity Lemma

Recall that Szemerédi’s Regularity Lemma [Sze78] asserts that any sufficiently large

graph can be approximated by the union of a bounded number of random-like bipartite

graphs. Recall also that, given a pair (A,B) of disjoint subsets of the vertex set of a

graph G, we write d(A,B) for the density of the pair, that is, d(A,B) = e(A,B)/|A||B|.
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Finally, recall that we say such a pair is (ε,G)-regular for some ε > 0 if, for every pair

(A′, B′) with A′ ⊆ A, |A′| ≥ ε|A|, B′ ⊆ B, |B′| ≥ ε|B|, we have |d(A′, B′)− d(A,B)| < ε.

In this chapter, we will make use of a generalised version of Szemerédi’s Regular-

ity Lemma in order to move from considering monochromatic cycles to considering

monochromatic connected-matchings, the version below being a slight modification of

one found, for instance, in [KS96]:

Theorem 2.3.1. For every ε > 0 and every positive integer k0, there exists K2.3.1 =

K2.3.1(ε, k0) such that the following holds: For all graphs G1, G2, G3 with V (G1) =

V (G2) = V (G3) = V and |V | ≥ K2.3.1, there exists a partition Π = (V0, V1, . . . , VK)

of V such that

(i) k0 ≤ K ≤ K2.3.1;

(ii) |V0| ≤ ε|V |;

(iii) |V1| = |V2| = · · · = |VK |; and

(iv) for each i, all but at most εK of the pairs (Vi, Vj), 1 ≤ i < j ≤ K, are simultane-

ously (ε,Gr)-regular for r = 1, 2, 3.

Note that, given ε > 0 and graphs G1, G2 and G3 on the same vertex set V , we call a

partition Π = (V0, V1, . . . , VK) satisfying (ii)–(iv) (ε,G1, G2, G3)-regular.

In what follows, given a three-coloured graph G, we will use G1, G2, G3 to refer to its

monochromatic spanning subgraphs. That is G1 (resp. G2, G3) has the same vertex set

as G and includes, as an edge, any edge which in G is coloured red (resp. blue, green).

Then, given a three-coloured graph G, we can use Theorem 2.3.1 to define a partition

which is simultaneously regular for G1, G2, G3 and then define the three-multicoloured

reduced-graph G as follows:

Definition 2.3.2. Given ε > 0, ξ > 0, a three-coloured graph G = (V,E) and an

(ε,G1, G2, G3)-regular partition Π = (V0, V1, . . . , VK), we define the three-multicoloured

(ε, ξ,Π)-reduced-graph G = (V, E) by:

V = {V1, V2, . . . , VK},
E = {ViVj : (Vi, Vj) is simultaneously (ε,Gr)-regular for r = 1, 2, 3},

where ViVj is coloured with all colours r such that dGr(Vi, Vj) ≥ ξ.
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One well known fact about regular pairs is that they contain long paths. This is sum-

marised in the following lemma, which is a slight modification of one found in [ Luc99]:

Lemma 2.3.3. For every ε such that 0 ≤ ε < 1/600 and every k ≥ 1/ε, the following

holds: Let G be a bipartite graph with bipartition V (G) = V1∪V2 such that |V1|, |V2| ≥ k,

the pair (V1, V2) is ε-regular and e(V1, V2) ≥ ε1/2|V1||V2|. Then, for every integer ` such

that 1 ≤ ` ≤ k − 2ε1/2k and every v′ ∈ V1, v′′ ∈ V2 such that d(v′), d(v′′) ≥ 2
3ε

1/2k, G

contains a path of length 2`+ 1 between v′ and v′′.

Proof. We begin by considering the case when 1 ≤ ` ≤ 1
2ε

1/2k.

Suppose there exists U1 ⊆ V1 of size at least εk such that d(u) ≤ 2
3ε

1/2k for every u ∈ U1.

By regularity, d(U1, V2) is within ε of d(V1, V2).

But

d(V1, V2) ≥ ε1/2 and d(U1, V2) < 2
3ε

1/2,

which, since ε < 1/600, gives a contradiction.

Thus, we can discard at most εk vertices from each of V1, V2 to obtain V̂1, V̂2 such that

|V̂1|, |V̂2| ≥ (1 − ε)k and the subgraph H induced in G by V̂1 ∪ V̂2 has minimum degree

at least 2
3ε

1/2k − εk ≥ 1
2ε

1/2k + εk + 1 (provided k ≥ 1/ε). We can then greedily

construct a path P = v0v1 . . . v2`−2 of length 2`− 2 from v0 = v′ ∈ V̂1 to v2`−2 ∈ V̂1 such

that v′′ /∈ P . Then, defining W1 ⊆ V1 to be the set of neighbours of v′′ in V̂1\P and

W2 ⊆ V2 to be the set of neighbours of v2`−2 in V̂2\P , we have |W1|, |W2| ≥ εk. Then,

by regularity, d(W1,W2) ≥ d(V1, V2)− ε ≥ ε1/2− ε > 0. Thus, there exists an edge w1w2

between W1 and W2 which can be used along with v2`−2w1 and w2v
′′ to extend the path

to length 2`+ 1.

Now, suppose that 1
2ε

1/2k ≤ ` ≤ k − 2ε1/2k and that we have constructed a path

P = v0v1v2 . . . v2`−1 from v0 = v′ ∈ V̂1 to v2`−1 = v′′ ∈ V̂2. Consider V1 ∩ P , V2 ∩ P and

suppose we have W1 ⊆ V1 ∩ P such that |W1| ≥ εk and every w ∈W1 has fewer than εk

neighbours in V2\P .

Then, by regularity,

|d(V1 ∩ P, V2\P )− d(W1, V2\P )| ≤ |d(V1 ∩ P, V2\P )− d(V1, V2)|
+ |d(W1, V2\P )− d(V1, V2)| ≤ 2ε
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and

d(V1 ∩ P, V2\P ) > d(V1, V2)− ε = (ε1/2 − ε),

but

d(W1, V2\P ) =
e(W1, V2\P )

|W1||V2\P |
≤ εk|W1|
|W1||V2\P |

≤ εk

|V2\P |
≤ 1

2ε
1/2,

which, since ε ≤ 1/600, gives rise to a contradiction.

So, all but at most εk vertices in V1 ∩ P have at least εk neighbours in V2\P and,

similarly, all but at most εk vertices in V2∩P have at least εk neighbours in V1\P . Since

|V1 ∪ P |, |V2 ∪ P | ≥ 1
2ε

1/2k ≥ 2εk, there exists i such that vi ∈ V1 ∩ P has at least εk

neighbours in V2\P (call the set of these neighbours X) and vi+1 ∈ V2∩P has at least εk

neighbours in V1\P (call the set of these neighbours Y ). The density of (X,Y ) is within ε

of the density of (V1, V2) and so is non-zero. Therefore, there exists an edge xy such

that x ∈ X and y ∈ Y , which can be used to give a path v0v1 . . . vixyvi+1 . . . v2`−1 of

length 2`+ 1. 2

Recall that we call a matching with all its vertices in the same component of G a

connected-matching and note that we say a connected-matching is odd if the component

containing the matching also contains an odd cycle.

The following theorem makes use of the Lemma above to blow up large connected-

matchings in the reduced-graph to cycles (of appropriate length and parity) in the orig-

inal. This facilitates our approach to proving Theorem A in that it allows us to shift

our attention away from cycles to connected-matchings, which turn out to be somewhat

easier to find.

Figaj and  Luczak [F L07b, Lemma 3] proved a more general version of this theorem in a

slightly different context (they considered any number of colours and any combination

of parities and used a different threshold for colouring the reduced-graph):

Theorem 2.3.4. For all c1, c2, c3, d, η > 0 such that 0 < η < min{0.01, (64c1 + 64c2 +

64c3)−1}, there exists n2.3.4 = n2.3.4(c1, c2, c3, d, η) such that, for n > n2.3.4, the following

holds:

Given α1, α2, α3 such that 0 < α1, α2, α3 ≤ 2, and ξ such that η ≤ ξ ≤ 1
3 , a complete

three-coloured graph G = (V,E) on

N = c1〈〈α1n〉〉+ c2〈〈α2n〉〉+ c3〈α3n〉 − d
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vertices and an (η4, G1, G2, G3)-regular partition Π = (V0, V1, . . . , VK) for some K >

8(c1 + c2 + c3)2/η, letting G = (V, E) be the three-multicoloured (η4, ξ,Π)- reduced-graph

of G on K vertices, and letting k be an integer such that

c1α1k + c2α2k + c3α3k − ηk ≤ K ≤ c1α1k + c2α2k + c3α3k − 1
2ηk,

(i) if G contains a red connected-matching on at least α1k vertices, then G contains a

red cycle on 〈〈α1n〉〉 vertices;

(ii) if G contains a blue connected-matching on at least α2k vertices, then G contains

a blue cycle on 〈〈α2n〉〉 vertices;

(iii) if G contains a green odd connected-matching on at least α3k vertices, then G

contains a green cycle on 〈α3n〉 vertices.

Proof. Consider G = (V, E), the (η4, ξ,Π)- reduced-graph of G on K vertices. By the

definition of a regular partition, we have |V0| ≤ η4N . Thus, letting c = c1 + c2 + c3, we

have

|V1 ∪ V2 ∪ · · · ∪ VK | ≥ c1〈〈α1n〉〉+ c2〈〈α2n〉〉+ c3〈α3n〉 − d− 2cη4n

≥ (c1α1 + c2α2 + c3α3 − 2cη4)n− d− 2c.

Then, since η ≤ (1/16c)1/3, provided n ≥ 8(2c + d)/η, we have at least (c1α1 + c2α2 +

c3α3 − 1
4η)n vertices in V1 ∪ V2 ∪ · · · ∪ VK . So, recalling that α1, α2, α3 ≤ 2 and letting

w = |V1| = |V2| = · · · = |VK |, we have

w ≥ (c1α1 + c2α2 + c3α3 − 1
4η)n

(c1α1 + c2α2 + c3α3 − 1
2η)k

=
n

k
+

1
4ηn

(c1α1 + c2α2 + c3α3 − 1
2η)k

≥
(
1 + 1

8cη
) n
k
.

Suppose this three-multicolouring of G results in a green odd connected-matching on at

least α3k vertices. Then, G contains a connected green component F , which contains a

matching M = {e1, e2, . . . , eq} for some q such that α3k ≤ 2q ≤ α3k + 2, and also an

odd cycle D.

Notice that the minimum connected subgraph of F containing M and a vertex from D
is a tree T . There is a cyclic-walk with an even number of edges, which traverses each

edge of this tree exactly twice. This can be extended using the edges of D to give a
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cyclic-walk C in F with an odd number of edges including every edge of M. Label the

vertices of this cyclic-walk V̂1, V̂2, V̂3, . . . , V̂p and observe that p ≤ 3K.

Consider the green graph G3 and recall that each pair (V̂i, V̂i+1) is (η4, G3)-regular and

that, by the definition of the colouring of G, d(V̂i, V̂i+1) ≥ ξ. Now, suppose that, for

some i, there exists Xi ⊆ V̂i with |Xi| ≥ η4|V̂i| such that every vertex in Xi has degree

at most 4
5ξw in G3[V̂i, V̂i+1]. In that case, we have d(Xi, V̂i+1) ≤ 4

5ξ but, as noted above,

we have d(V̂i, V̂i+1) ≥ ξ and |d(Xi, V̂i+1) − d(V̂i, V̂i+1)| ≤ η4, which, since η ≤ 0.01 and

ξ ≥ η, gives rise to a contradiction.

Similarly, for each i, there can be at most η4|V̂i| vertices in V̂i with degree less than

4
5ξw in G3[V̂i−1, V̂i]. Thus, for each i, there exists Ui ⊆ V̂i such that |Ui| ≥ (1− 2η4)|V̂i|
and every vertex in Ui has degree at least 4

5ξw in G3[V̂i, V̂i+1] and in G3[V̂i−1, V̂i]. Note,

then, that every vertex in Ui has degree at least 4
5ξw− 2η4w ≥ 1

2ξw in G3[Ui, Ui+1] and

in G3[Ui−1, Ui].

Thus, we can then greedily construct a path v1, v2, . . . , vp−2 such that vi ∈ Ui. Notice

that vp−2 has at least 1
2ξw neighbours in Up−1 (call the set of these neighbours X) and

v1 has at least 1
2ξw neighbours in Up (call the set of these neighbours Y ). Then, since

|X|, |Y | ≥ 1
2ξw ≥ η4w, by regularity, the density of the pair (X,Y ) is within η4 of the

density of (V̂p−1, V̂p) and so is non-zero. Therefore, there exists an edge vp−1vp such that

vp−1 ∈ X ⊆ Up−1 ⊆ V̂p−1 and vp ∈ X ⊆ Up ⊆ V̂p. This edge can then be used to extend

the path to an odd cycle C = v1v2, . . . , vp such that, for each i, vi ∈ Ui. Observe, also,

that |V (C)| = p ≤ 3K.

Let I be the set of i such that V̂iV̂i+1 corresponds to the first time the cyclic-walk visits

a given edge of M. Then, for each i ∈ I, we may use Lemma 2.3.3 to replace vivi+1 by

a suitably long path not containing any other vertices of C.

Indeed, for each i ∈ I, define Wi = (V̂i\C)∪ {vi} and Wi+1 = (V̂i+1\C)∪ {vi+1}. Then,

since |V (C)| ≤ 3K, we have

|Wi|, |Wi+1| ≥ |V̂1| − |C| ≥
(
1 + 1

8cη
) n
k
− 3K ≥

(
1 + 1

16cη
) n
k
≥ 1

2η4
,

provided that n ≥ max{3K2/8cη,K/2η4}. Observe also that the pairs (Wi,Wi+1) are

each 2η4-regular. Now, since each vi has degree at least 4
5ξw in each of G[V̂i, V̂i+1] and

G[V̂i−1, V̂i], provided n ≥ 5K2/η, each vi has at degree at least 2
3(2η4)1/2w in each of

G[Wi,Wi+1] and G[Wi−1,Wi] and so, since η ≤ 0.01, we may use Lemma 2.3.3 to replace
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the edge vivi+1 with a path of length ` from vi to vi+1 for any ` such that

3 ≤ ` ≤ (1− 2η2) (2 min {|Wi|, |Wi+1|}) + 1.

Replacing each such edge with a path in this way, we can extend C to any length up to

|C|+ 2(1− 2η2)

(∑

i∈I
min{|Wi|, |Wi+1|}

)
≥ |C|+ 2

(
1− 2η2

) (
1 + 1

16cη
) (

n
k

)
q

≥ |C|+ (1− 2η2)
(
1 + 1

16cη
)
α3n.

Thus, since η ≤ 1/64c, we can obtain a green cycle on exactly 〈α3n〉 vertices.

If the three-multicolouring of G results in a red (resp. blue) connected-matching on α1k

(resp. α2k) vertices, then G contains a red (resp. blue) cycle on 〈〈α1n〉〉 (resp. 〈〈α2n〉〉)
vertices with the proof being simpler in that the cyclic-walk does not need to be extended

to become odd. 2

2.4 Definitions and notation

Recall that, given a three-coloured graph G, we use G1, G2, G3 to refer to its monochro-

matic spanning subgraphs. That is, G1 (resp. G2, G3) has the same vertex set as G

and includes, as an edge, any edge which (in G) is coloured red (resp. blue, green).

If G1 contains the edge uv, we say that u and v are red neighbours of each other in G.

Similarly, if uv ∈ E(G2), we say that u and v are blue neighbours and, if uv ∈ E(G3),

we say that that u and v are green neighbours.

Given a graph G, we say u, v ∈ V (G) are connected (in G) if there exists a path in G

between u and v. The graph itself is said to be connected if any pair of vertices are

connected. By extension, given a subgraph H of G, we say H is connected if, given

any pair u, v ∈ V (H), there exists a path in H between u and v and say that H is

effectively-connected if, given any pair u, v ∈ V (H), there exists a path in G between u

and v.

A connected-component of a graphG is a maximal connected subgraph. A subgraph ofH,

a subgraph of G, is an effectively-connected-component or effective-component of H if it

is a maximal effectively-connected subgraph of H. Thus the effective-components of H

are restrictions of the components of G to H.

37



Given a multicoloured graph G, we say that two vertices u and v belong to the same

monochromatic component of G if they belong to the same component of Gi for some i.

Given a subgraph H of a multicoloured graph G, we say that two vertices u and v

belong to the same monochromatic effective-component of H if they belong to the same

effective-component of Gi for some i. We can thus talk about, for instance, the red

components of a graph G or the red effective-components of a subgraph H of G.

We say that a graph G = (V,E) on N vertices is a-almost-complete for 0 ≤ a ≤ N − 1 if

its minimum degree δ(G) is at least (N −1)−a. Observe that, if G is a-almost-complete

and X ⊆ V , then G[X] is also a-almost-complete.

We say that a graph G on N vertices is (1− c)-complete for 0 ≤ c ≤ 1 if it is c(N − 1)-

almost-complete, that is, if δ(G) ≥ (1 − c)(N − 1). Observe that, for c ≤ 1
2 , any

(1− c)-complete graph is connected.

We say that a bipartite graph G = G[U,W ] is a-almost-complete if every u ∈ U has

degree at least |W | − a and every w ∈ W has degree at least |U | − a. Notice that,

if G[U,W ] is a-almost-complete and U1 ⊆ U,W1 ⊆ W , then G[U1,W1] is a-almost-

complete.

We say that a bipartite graph G = G[U,W ] is (1 − c)-complete if every u ∈ U has

degree at least (1− c)|W | and every w ∈W has degree at least (1− c)|U |. Again, notice

that, for c < 1
2 , any (1 − c)-complete bipartite graph G[U,W ] is connected, provided

that U,W 6= ∅.

We say that a graph G on N vertices is c-sparse for 0 < c < 1 if its maximum degree is

at most c(N − 1). We say a bipartite graph G = G[U,W ] is c-sparse if every u ∈ U has

degree at most c|W | and every vertex w ∈W has degree at most c|U |.

For vertices u and v in a graph G, we will say that the edge uv is missing if uv /∈ E(G).

Recall that, given a graph G = (V,E), we define a matching in that graph to be a

collection of edges such that no two edges are incident at the same vertex. We will

sometimes abuse terminology and, where appropriate, refer to a matching by its vertex

set rather than its edge set. Recall also that we call a matching with all its vertices in

the same component of G a connected-matching and that a connected-matching is called

odd if the component containing the matching also contains an odd cycle. Note that we

call a connected-matching with all its edges contained in a monochromatic component

of G a monochromatic connected-matching.
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2.5 Connected-matching stability result

Before proceeding to state Theorem B, we define the coloured structures we will need.

Definition 2.5.1. For x1, x2, c1, c2 positive, γ1, γ2 colours, let H(x1, x2, c1, c2, γ1, γ2) be

the class of edge-multicoloured graphs defined as follows:

A given two-multicoloured graph H = (V,E) belongs to H if its vertex set can be parti-

tioned into X1 ∪X2 such that

(i) |X1| ≥ x1, |X2| ≥ x2;

(ii) H is c1-almost-complete; and

(iii) defining H1 to be the spanning subgraph induced by the colour γ1 and H2 to be the

subgraph induced by the colour γ2,

(a) H1[X1] is (1− c2)-complete and H2[X1] is c2-sparse,

(b) H2[X1, X2] is (1− c2)-complete and H1[X1, X2] is c2-sparse.

X1
 X2
WX


Figure 2.3: H ∈ H(x1, x2, c1, c2, red, blue).

Definition 2.5.2. For x1, x2, x3, c positive, let K(x1, x2, x3, c) be the class of edge-

multicoloured graphs defined as follows:

A given three-multicoloured graph H = (V,E) belongs to K if its vertex set can be parti-

tioned into X1 ∪X2 ∪X3 such that

(i) |X1| ≥ x1, |X2| ≥ x2, |X3| ≥ x3;

(ii) H is c-almost-complete;

(iii) (a) all edges present in H[X1, X3] are red,

(b) all edges present in H[X2, X3] are blue,

(c) all edges present in H[X3] are green.
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X1


X2


X3


Figure 2.4: H ∈ K(x1, x2, x3, c).

Definition 2.5.3. For x1, x2, y1, y2, z, c positive, let K∗(x1, x2, y1, y2, z, c) be the class of

edge-multicoloured graphs defined as follows:

A given three-multicoloured graph H = (V,E) belongs to K∗, if its vertex set can be

partitioned into X1 ∪X2 ∪ Y1 ∪ Y2 such that

(i) |X1| ≥ x1, |X2| ≥ x2, |Y1| ≥ y2, |Y2| ≥ y2, |Y1|+ |Y2| ≥ z;

(ii) H is c-almost-complete;

(iii) (a) all edges present in H[X1, Y1] and H[X2, Y2] are red,

(b) all edges present in H[X1, Y2] and H[X2, Y1] are blue,

(c) all edges present in H[X1, X2] and H[Y1, Y2] are green.

Y1
 X1


Y2
 X2


Figure 2.5: H ∈ K∗(x1, x2, y1, y2, c).

Having defined the coloured structures, we are in a position to state the main technical

result of this chapter, that is, the connected-matching stability result. The proof of this

result, which follows in Sections 2.7–2.8, takes up the majority of this chapter.
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Theorem B. For every α1, α2, α3 > 0 such that α1 ≥ α2, letting

c = max{2α1 + α2,
1
2α1 + 1

2α2 + α3},

there exists ηB = ηB(α1, α2, α3) and kB = kB(α1, α2, α3, η) such that, for every k > kB

and every η such that 0 < η < ηB, every three-multicolouring of G, a (1− η4)-complete

graph on

(c− η)k ≤ K ≤ (c− 1
2η)k

vertices, results in the graph containing at least one of the following:

(i) a red connected-matching on at least α1k vertices;

(ii) a blue connected-matching on at least α2k vertices;

(iii) a green odd connected-matching on at least α3k vertices;

(iv) two disjoint subgraphs H1, H2 from H1 ∪H2, where

H1 =H
(

(α1 − 2η1/16)k, (1
2α2 − 2η1/16)k, 3η4k, η1/16, red, blue

)
,

H2 =H
(

(α2 − 2η1/16)k, (1
2α1 − 2η1/16)k, 3η4k, η1/16, blue, red

)
;

(v) a subgraph from

K
(

(1
2α1 − 14000η1/2)k, (1

2α2 − 14000η1/2)k, (α3 − 68000η1/2)k, 4η4k
)

;

(vi) a subgraph from K∗1 ∪ K∗2, where

K∗1 = K∗
(
(1

2α1 − 97η1/2)k, (1
2α1 − 97η1/2)k, (1

2α1 + 102η1/2)k,

(1
2α1 + 102η1/2)k, (α3 − 10η1/2)k, 4η4k

)
,

K∗2 = K∗
(
(1

2α1 − 97η1/2)k, (1
2α2 − 97η1/2)k, (3

4α3 − 140η1/2)k,

100η1/2k, (α3 − 10η1/2)k, 4η4k
)
.

Furthermore,

(iv) occurs only if α3 ≤ 3
2α1 + 1

2α2 + 14η1/2 with H1, H2 ∈ H1 unless α2 ≥ α1 − η1/8;

(v) and (vi) occur only if α3 ≥ 3
2α1 + 1

2α2 − 10η1/2.
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This result forms a partially strengthened analogue of the main technical result of the

paper of Figaj and  Luczak [F L07b]. In that paper, Figaj and  Luczak considered a similar

graph but on slightly more than max{2α1 + α2,
1
2α1 + 1

2α2 + α3}k vertices and proved

the existence of a connected-matching, whereas we consider a graph on slightly fewer

vertices and prove the existence of either a monochromatic connected-matching or a

particular structure.

2.6 Tools

In this section, we summarise results that we shall use later in our proofs beginning with

some results on Hamiltonicity including Dirac’s Theorem, which gives us a minimum-

degree condition for Hamiltonicity:

Theorem 2.6.1 (Dirac’s Theorem [Dir52]). If G is a graph on n ≥ 3 vertices such that

every vertex has degree at least 1
2n, then G is Hamiltonian.

Observe then that, by Dirac’s Theorem, any c-almost-complete graph on n vertices is

Hamiltonian, provided that c ≤ 1
2n− 1. Then, since almost-completeness is a hereditary

property, we may prove the following corollary:

Corollary 2.6.2. If G is a c-almost-complete graph on n vertices, then, for any inte-

ger m such that 2c+ 2 ≤ m ≤ n, G contains a cycle of length m.

Proof. Given G, a c-almost-complete graph on n vertices, let X ⊆ V (G) be such that

|X| = m ≥ 2c + 2. Then, G[X] is a c-almost-complete graph on |X| vertices so every

vertex in G[X] has degree at least |X|−1−c = 1
2 |X|+(1

2 |X|−1−c) ≥ 1
2 |X|. Thus, G[X]

satisfies the conditions in Dirac’s Theorem and therefore contains a cycle on |X| = m

vertices. 2

Dirac’s Theorem may be used to assert the existence of Hamiltonian paths in a given

graph as follows:

Corollary 2.6.3. If G = (V,E) is a simple graph on n ≥ 4 vertices such that every

vertex has degree at least 1
2n+1, then any two vertices of G are joined by a Hamiltonian

path.
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Proof. Given any two vertices x1, x2 ∈ V , let W = V \{x1, x2}. Then, G[W ] has

n − 2 vertices and has minimum degree at least 1
2(n − 2) and so has a Hamiltonian

cycle H. Since x1, x2 each have degree at least 1
2n to W , we can find u, v in W such

that ux1, vx2 ∈ E and u, v are consecutive vertices in H. Thus, we can construct a

Hamiltonian path in G from x1 to x2. 2

For balanced bipartite graphs, we make use of the following result of Moon and Moser:

Theorem 2.6.4 ([MM63]). If G = G[X,Y ] is a simple bipartite graph on n vertices

such that |X| = |Y | = 1
2n and d(x) + d(y) ≥ 1

2n + 1 for every xy /∈ E(G), then G is

Hamiltonian.

Observe that, by the above, any c-almost-complete balanced bipartite graph on n ver-

tices is Hamiltonian, provided that c ≤ 1
4n − 1

2 . Then, since almost-completeness is a

hereditary property, we may prove the following corollary:

Corollary 2.6.5. If G = G[X,Y ] is c-almost-complete bipartite graph, then, for any

even integer m such that 4c + 2 ≤ m ≤ 2 min{|X|, |Y |}, G contains a cycle on m

vertices.

Proof. Given G = G[X,Y ], a c-almost-complete bipartite graph, let U ⊆ X, V ⊆ Y be

such that |U | = |V | = 1
2m ≥ 2c+1. Then, G[U, V ] is a c-almost-complete bipartite graph

so, for any u ∈ U and v ∈ V , we have d(x) + d(y) ≥ |U | + |V | − 2c ≥ 1
2(|U | + |V |) + 1.

Thus, G[U, V ] satisfies the conditions for Theorem 2.6.4 and therefore contains a cycle

on |U |+ |V | = m vertices. 2

For bipartite graphs which are not balanced, we make use of the Lemma below:

Lemma 2.6.6. If G = G[X1, X2] is a simple bipartite graph on n ≥ 4 vertices such that

|X1| > |X2|+ 1 and every vertex in X2 has degree at least 1
2n+ 1, then any two vertices

x1, x2 in X1 such that d(x2) ≥ 2 are joined by a path which visits every vertex of X2.

Proof. Observe that 1
2n+ 1 = 1

2 |X1|+ 1
2 |X2|+ 1 = |X1|− (1

2 |X1|− 1
2 |X2|−1) so any pair

of vertices in X2 have at least |X1| − (|X1| − |X2| − 2) common neighbours and, thus, at

least |X1| − (|X1| − |X2|) ≥ |X2| common neighbours distinct from x1, x2.

Then, ordering the vertices of X2 such that the first vertex is a neighbour of x1 and the

last is a neighbour of x2, greedily construct the required path from x1 to x2. 2
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For graphs with a few vertices of small degree, we make use of the following result of

Chvátal:

Theorem 2.6.7 ([Chv72]). If G is a simple graph on n ≥ 3 vertices with degree sequence

d1 ≤ d2 ≤ · · · ≤ dn such that

dk ≤ k ≤
n

2
=⇒ dn−k ≥ n− k,

then G is Hamiltonian.

We also make extensive use of the theorem of Erdős and Gallai:

Theorem 2.6.8 ([EG59]). Any graph on K vertices with at least 1
2(m− 1)(K − 1) + 1

edges, where 3 ≤ m ≤ K, contains a cycle of length at least m.

Observing that a cycle on m vertices contains a connected-matching on at least m − 1

vertices, the following is an immediate consequence of the above.

Corollary 2.6.9. For any graph G on K vertices and any m such that 3 ≤ m ≤ K,

if the average degree d(G) is at least m, then G contains a connected-matching on at

least m vertices.

The following decomposition lemma of Figaj and  Luczak [F L07b] also follows from the

theorem of Erdős and Gallai and is crucial in establishing the structure of a graph not

containing large connected-matchings of the appropriate parities:

Lemma 2.6.10 ([F L07b, Lemma 9]). For any graph G on K vertices and any m such

that 3 ≤ m ≤ K, if no odd component of G contains a matching on at least m vertices,

then there exists a partition V = V ′ ∪ V ′′ such that

(i) G[V ′] is bipartite;

(ii) every component of G′′ = G[V ′′] is odd;

(iii) G[V ′′] has at most 1
2m|V (G′′)| edges; and

(iv) there are no edges in G[V ′, V ′′].

We recall two more results of Figaj and  Luczak. The first, is the main technical result

from [F L07a]. The second from [F L07b], allows us to deal with graphs with a hole, that

is, a subset W ⊆ V (G) such that no edge of G lies inside W . Note that both of these

results can be immediately extended to multicoloured graphs:
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Theorem 2.6.11 ([F L07a, Lemma 8]). For every α1, α2, α3 > 0 and η such that 0 < η <

0.002 min{α2
1, α

2
2, α

2
3}, there exists k2.6.11 = k2.6.11(α1, α2, α3, η) such that the following

holds:

For every k > k2.6.11 and every (1− η4)-complete graph G on

K ≥ 1
2

(
α1 + α2 + α3 + max{α1, α2, α3}+ 18η1/2

)
k

vertices, for every three-colouring of the edges of G, there exists a colour i ∈ {1, 2, 3}
such that Gi contains a connected-matching on at least (αi + η)k vertices.

Lemma 2.6.12 ([F L07b, Lemma 12]). For every α, β > 0, v ≥ 0 and η such that

0 < η < 0.01 min{α, β}, there exists k2.6.12 = k2.6.12(α, β, v, η) such that, for every

k > k2.6.12, the following holds:

Let G = (V,E) be a graph obtained from a (1− η4)-complete graph on

K ≥ 1
2

(
α+ β + max{2v, α, β}+ 6η1/2

)
k

vertices by removing all edges contained within a subset W ⊆ V of size at most vk. Then,

every two-multicolouring of the edges of G results in either a red connected-matching on

at least (α+ η)k vertices or a blue connected-matching on at least (β + η)k vertices.

The following pair of lemmas allow us to find large connected-matchings in almost com-

plete bipartite graphs:

Lemma 2.6.13 ([F L07b, Lemma 10]). Let G = G[V1, V2] be a bipartite graph with

bipartition (V1, V2), where |V1| ≥ |V2|, which has at least (1− ε)|V1||V2| edges for some ε

such that 0 < ε < 0.01. Then, G contains a connected-matching on at least 2(1− 3ε)|V2|
vertices.

Notice that, if G is a (1− ε)-complete bipartite graph with bipartition (V1, V2), then we

may immediately apply the above to find a large connected-matching in G.

Lemma 2.6.14. Let G = G[V1, V2] be a bipartite graph with bipartition (V1, V2). If ` is

a positive integer such that |V1| ≥ |V2| ≥ ` and G is a-almost-complete for some a such

that 0 < a/` < 0.5, then G contains a connected-matching on at least 2|V2|−2a vertices.

Proof. Observe that G is (1−a/`)-complete. Therefore, since a/` < 0.5, G is connected.

Thus, it suffices to find a matching of the required size. Suppose that we have found
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a matching with vertex set M such that |M | = 2k for some k < |V2| − a and consider

a vertex v2 ∈ V2\M . Since G is a-almost-complete, v2 has at least |V1| − a neighbours

in |V1| and thus at least one neighbour in v1 ∈ V1\M . Then, the edge v1v2 can be added

to the matching and thus, by induction, we may obtain a matching on 2|V2|−2a vertices.

2

We also make use of the following Lemma from [KSS09b], which is an extension of the

two-colour Ramsey result for even cycles and which allows us to find, in any almost-

complete two-multicoloured graph on K vertices, either a large matching or a particular

structure.

Lemma 2.6.15 ([KSS09b]). For every η such that 0 < η < 10−20, there exists k2.6.15 =

k2.6.15(η) such that, for every k > k2.6.15 and every α, β > 0 such that α ≥ β ≥ 100η1/2α,

if K > (α + 1
2β − η1/2β)k and G = (V,E) is a two-multcoloured βη2k-almost-complete

graph on K vertices, then at least one of the following occurs:

(i) G contains a red connected-matching on at least (1 + η1/2)αk vertices;

(ii) G contains a blue connected-matching on at least (1 + η1/2)βk vertices;

(iii) the vertices of G can be partitioned into three sets W , V ′, V ′′ such that

(a) |V ′| < (1 + η1/2)αk, |V ′′| ≤ 1
2(1 + η1/2)βk, |W | ≤ η1/16k,

(b) G1[V ′] is (1− η1/16)-complete and G2[V ′] is η1/16-sparse,

(c) G2[V ′, V ′′] is (1− η1/16)-complete and G1[V ′, V ′′] is η1/16-sparse;

(iv) we have β > (1− η1/8)α and the vertices of G can be partitioned into sets W , V ′

and V ′′ such that

(a) |V ′| < (1 + η1/2)βk, |V ′′| ≤ 1
2(1 + η1/8)αk, |W | ≤ η1/16k,

(b) G2[V ′] is (1− η1/16)-complete and G1[V ′] is η1/16-sparse,

(c) G1[V ′, V ′′] is (1− η1/16)-complete and G2[V ′, V ′′] is η1/16-sparse.

Furthermore, if α+ 1
2β ≥ 2(1 + η1/2)β, then we can replace (i) with

(i’) G contains a red odd connected-matching on (1 + η1/2)αk vertices.

We also make use of the following corollary of Lemma 2.6.15:
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Corollary 2.6.16. For every 0 < ε < 10−12, there exists k2.6.16 = k2.6.16(ε) such that,

for every k ≥ k2.6.16, if K > (1 − ε)k and G = (V,E) is a two-multicoloured 27
8 ε

4k-

almost-complete graph, then G contains at least one of the following:

(i) a red connected-matching on (2
3 − 7ε1/8)k vertices;

(ii) a blue connected-matching on (2
3 − 7ε1/8)k vertices.

Proof. Setting η = (3
2ε)

2, α = β = 2/3, provided k ≥ k2.6.15(η), we may apply

Lemma 2.6.15, which results in at least one of the following occurring:

(i) G contains a red connected-matching on at least (2
3 + ε)k vertices;

(ii) G contains a blue connected-matching on at least (2
3 + ε)k vertices;

(iii) the vertices of G can be partitioned into three sets W , V ′, V ′′ such that

(a) |V ′| < (2
3 + ε)k, |V ′′| ≤ (1

3 + 1
2ε)k, |W | ≤ (3

2ε)
1/8k,

(b) G1[V ′] is (1− (3
2ε)

1/8)-complete and G2[V ′] is (3
2ε)

1/8-sparse,

(c) G2[V ′, V ′′] is (1− (3
2ε)

1/8)-complete and G1[V ′, V ′′] is (3
2ε)

1/8-sparse;

(iv) the vertices of G can be partitioned into three sets W , V ′, V ′′ such that

(a) |V ′| < (2
3 + ε)k, |V ′′| ≤ (1

3 + 1
2ε)k, |W | ≤ (3

2ε)
1/8k,

(b) G2[V ′] is (1− (3
2ε)

1/8)-complete and G1[V ′] is (3
2ε)

1/8-sparse,

(c) G1[V ′, V ′′] is (1− (3
2ε)

1/8)-complete and G2[V ′, V ′′] is (3
2ε)

1/8-sparse.

In the first two cases, the result is immediate.

In the third case, recalling that K = |V ′|+ |V ′′|+ |W |, simple algebra yields |V ′| ≥ (2
3 −

2ε1/8) and |V ′′| ≥ (1
3 − 2ε1/8). Then, since G2[V ′, V ′′] is (1− (3

2ε)
1/8)-complete, there are

at least (1−(3
2ε)

1/8)(1
3−2ε1/8)(2

3−2ε1/8)k2 edges in G2[V ′, V ′′]. Thus, by Lemma 2.6.13,

G[V ′, V ′′] contains a blue connected-matching on at least 2(1− 3(3
2ε)

1/8)(1
3 − 2ε1/8)k ≥

(2
3 − 7ε1/8)k vertices.

In the fourth case, exchanging the roles of red and blue, an identical argument yields a

red connected-matching on (2
3 − 7ε1/8)k vertices. 2
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It is a well-known fact that either a graph is connected or its complement is. We now

prove three simple extensions of this fact for two-coloured almost complete graphs, all

of which can be immediately extended to two-multicoloured almost-complete graphs.

Lemma 2.6.17. For every η such that 0 < η < 1/3 and every K ≥ 1/η, if G = (V,E) is

a two-coloured (1− η)-complete graph on K vertices and F is its largest monochromatic

component, then |F | ≥ (1− 3η)K.

Proof. If the largest monochromatic (say, red) component in G has at least (1 − 3η)K

vertices, then we are done. Otherwise, we may partition the vertices of G into sets A

and B such that |A|, |B| ≥ 3ηK ≥ 2 such that there are no red edges between A and B.

Since G is (1− η)-complete, any two vertices in A have a common neighbour in B, and

any two vertices in B have a common neighbour in A. Thus, A ∪B forms a single blue

component. 2

The following lemmas form analogues of the above, the first concerns the structure of

two-coloured almost complete graphs with one hole and the second concerns the structure

of two-coloured almost complete graphs with two holes, that is, bipartite graphs.

Lemma 2.6.18. For every η such that 0 < η < 1/20 and every K ≥ 1/η, the following

holds. For W , any subset of V such that |W |, |V \W | ≥ 4η1/2K, let GW = (V,E)

be a two-coloured graph obtained from G, a (1 − η)-complete graph on K vertices with

vertex set V by removing all edges contained entirely within W . Let F be the largest

monochromatic component of GW and define the following two sets:

Wr = {w ∈W : w has red edges to all but at most 3η1/2K vertices in V \W};
Wb = {w ∈W : w has blue edges to all but at most 3η1/2K vertices in V \W}.

Then, at least one of the following holds:

(i) |F | ≥ (1− 2η1/2)K;

(ii) |Wr|, |Wb| > 0.

Proof. Consider G[V \W ]. Since G is (1− η)-complete, |V \W | ≥ 4η1/2K and η < 1/20,

we see that every vertex in G[V \W ] has degree at least |V \W | − η(K − 1) ≥ (1 −
1
4η

1/2)(|V \W | − 1), that is, G[V \W ] is (1− 1
4η

1/2)-complete. Thus, provided 4η1/2K ≥
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1/(1
4η

1/2), that is, provided K ≥ 1/η, we can apply Lemma 2.6.17, which tells us that the

largest monochromatic component in G[V \W ] contains at least |V \W |−η1/2K vertices.

We assume, without loss of generality, that this large component is red and call it R.

Now, G is (1 − η)-complete so either every vertex in W has a red edge to R (giving a

monochromatic component of the required size) or there is a vertex w ∈W with at least

|R|−2ηK blue neighbours in R, that is, a vertex w ∈Wb. Denote by B the set of u ∈ R
such that uw is blue. Then, |B| ≥ |V \W | − 2η1/2K and either every point in W has

a blue edge to B, giving a blue component of size at least |B ∪W | > (1 − 2η1/2)K, or

there is a vertex w1 ∈Wr. 2

Lemma 2.6.19. For every η such that 0 < η < 0.1 and K ≥ 2/η, the following holds:

Suppose G = (V,E) is a two-multicoloured graph obtained from an (1 − η)-complete

graph on K vertices with V = A∪B and |A|, |B| ≥ 6ηK by removing all edges contained

completely within A and all edges contained completely within B. Let F be the largest

monochromatic component of G and define the following sets:

Ar = {a ∈ A : a has red edges to all but at most 4ηK vertices in B};
Ab = {a ∈ A : a has blue edges to all but at most 4ηK vertices in B};
Br = {b ∈ B : b has red edges to all but at most 4ηK vertices in A};
Bb = {b ∈ B : b has blue edges to all but at most 4ηK vertices in A}.

Then, at least one of the following occurs:

(i) |F | ≥ (1− 7η)K;

(ii) A,B can be partitioned into A1 ∪A2, B1 ∪B2 such that |A1|, |A2|, |B1|, |B2| ≥ 3ηK

and all edges present between Ai and Bj are red for i = j, blue for i 6= j;

(iii) |Ar|, |Ab| > 0;

(iv) |Br|, |Bb| > 0.

Proof. Suppose |F | < (1− 7η)K. Then, without loss of generality, A can be partitioned

into A1∪A2, with |A1|, |A2| ≥ 3ηK, such that A1 and A2 are in different red components.

Then, there exists no triple (a1, b, a2) with a1 ∈ A1, b ∈ B, a2 ∈ A2 and both a1b and ba2

coloured red. Thus, we may partition B into B1 ∪ B2 such that there are no red edges

present in G[A1, B1] or G[A2, B2].
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Since G is (1 − η)-complete, given any subsets A′ ⊆ A,B′ ⊆ B every vertex in A′ has

degree at least |B′|−ηK in G[A′, B′] and every vertex in B′ has degree at least |A′|−ηK
in G[A′, B′]. Thus, if |B1|, |B2| ≥ 3ηK, G[A1, B1] and G[A2, B2] each have a single blue

component. Therefore, there can be no blue edges present in G[A1, B2] or G[A2, B1],

giving rise to case (ii).

Thus, without loss of generality, we may assume that |B1| < 3ηK. Then, every vertex

in A2 is a vertex of Ab, in which case either every vertex a ∈ A1 has a blue edge to B,

leading to case (i), or there exists some a ∈ A1 such that a ∈ Ar, giving rise to case (iii),

thus completing the proof.

Note that exchanging the roles of A and B above leads to case (iv) in place of case (iii).

2

2.7 Proof of the stability result – Part I

We begin with the case when α1 ≥ α2, α3 and wish to prove that any three-multicoloured

graph on slightly fewer than (2α1 +α2)k vertices with sufficiently large minimum degree

will contain a red connected-matching on at least α1k vertices, a blue connected-matching

on at least α2k vertices or a green odd connected-matching on at least α3k vertices, or

will have a particular structure.

Thus, given α1, α2, α3 such that α1 ≥ α2, α3, we choose

η < ηB1 = min

{
α2

1020
,

(
α2

120

)8

,

(
α2

800α1

)2

,
α3

104

}

and consider G = (V,E), a (1− η4)-complete graph on K ≥ 72/η vertices, where

(2α1 + α2 − η)k ≤ K ≤ (2α1 + α2 − 1
2η)k

for some integer k > kB1, where kB1 = kB1(α1, α2, α3, η) will be defined implicitly

during the course of this section, in that, on a finite number of occasions, we will need

to bound k below in order to apply results from Section 2.6.

Note that, since α1 ≥ α2, α3, the largest forbidden connected-matching is red and need

not be odd. Note that, by scaling, we may assume that α1 ≤ 1. Notice, then, that G is

3η4k-almost-complete and, thus, for any X ⊂ V , G[X] is also 3η4k-almost-complete.
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In this section, we seek to prove that G contains at least one of the following:

(i) a red connected-matching on at least α1k vertices;

(ii) a blue connected-matching on at least α2k vertices;

(iii) a green odd connected-matching on at least α3k vertices;

(iv) two disjoint subgraphs H1, H2 from H1 ∪H2, where

H1 =
(

(α1 − 2η1/16)k, (1
2α2 − 2η1/16)k, 3η4k, η1/16, red,blue

)
,

H2 =
(

(α2 − 2η1/16)k, (1
2α1 − 2η1/16)k, 3η4k, η1/16,blue, red

)
.

We begin by noting that, if G has a green odd connected-matching on at least α3k ver-

tices, then we are done. Thus, provided that α3k ≥ 3, since α3 ≤ α1, by Lemma 2.6.10,

we may partition the vertices of G into W,X and Y such that

(i) X and Y contain only red and blue edges;

(ii) W has at most 1
2α3k|W | ≤ 1

2α1k|W | green edges; and

(iii) there are no green edges between W and X ∪ Y .

X


W


Y


Figure 2.6: Decomposition of the green graph.

By this decomposition, writing w for |W |/k and noticing that e(G[X,Y ]) is maximised

when X and Y are equal in size, we have

e(G3) = e(G3[W ]) + e(G3[X,Y ]) ≤ 1
2α1wk

2 + 1
4(2α1 + α2 − w)2k2. (2.1)
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Now, consider the average degree of the green graph d(G3). Note that, since K ≤ 3k,

η4K ≤ ηk. Thus, the average number of missing edges at each vertex is at most ηk.

Thus, if d(G3) ≤ (α1− 2η)k, then either d(G1) ≥ α1k or d(G2) ≥ α2k. If d(G1) ≥ α1k,

then, by Corollary 2.6.9, G contains a red connected-matching on at least α1k vertices.

Similarly, if d(G2) ≥ α2k, then G contains a blue connected-matching on at least α2k

vertices. Thus, we may assume that d(G3) > (α1 − 2η)k, in which case

e(G3) > 1
2(α1 − 2η)(2α1 + α2 − η)k2. (2.2)

Comparing (2.1) and (2.2), we obtain

0 < w2 + w(−2α1 − 2α2) + 2α1α2 + α2
2 + η(10α1 + 4α2).

Since 1 ≥ α1 ≥ α2 and η < α1/100, this results in two cases:

(A) w > α1 + α2 +
√
α1

2 − (10α1 + 4α2)η > 2α1 + α2 − 10η;

(B) w < α1 + α2 −
√
α1

2 − (10α1 + 4α2)η < α2 + 10η.

Case A: w > 2α1 + α2 − 10η.

In this case, almost all the vertices of G are contained in the odd green component.

Since η < ηB1, we have 2α1 + α2 − 10η > α1 + 1
2α2 + 1

2α3 + 9η1/2 and may apply

Theorem 2.6.11 to obtain a connected-matching on (αi + η)k vertices, provided that

k > k2.6.11(α1, α2, α3, η). Furthermore, the nature of the decomposition means that, if

the connected-matching is green, then it is odd, thus completing the case.

Case B: w < α2 + 10η.

We assume that |X| ≥ |Y | and consider the subgraph G1[X ∪W ] ∪G2[X ∪W ], that is,

the subgraph of G on X ∪W induced by the red and blue edges.

Since η ≤ ηB1, provided that k > k2.6.12(α1, α2, w, η), by Lemma 2.6.12 (regarding W as

the hole), if

|X|+ |W | ≥ 1
2

(
α1 + α2 + max {2w,α1}+ 6η1/2

)
k,
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then we can obtain a red connected-matching on at least (α1 + η)k vertices or a blue

connected-matching on at least (α2 + η)k vertices.

We may therefore assume that

|X|+ |W | < 1
2

(
α1 + α2 + max {2w,α1}+ 6η1/2

)
k. (2.3)

Since K = |X|+ |Y |+ |W | and |X| ≥ |Y |,

|X|+ |W | ≥ K − |W |
2

+ |W | = (2α1 + α2 − η)k + wk

2
=
(
α1 +

α2

2
− η

2
+
w

2

)
k. (2.4)

Now, suppose that w ≤ 1
2α1, in which case, by (2.3) and (2.4), we have

(α1 + 1
2α2 − 1

2η + 1
2w)k ≤ |W |+ |X| < (α1 + 1

2α2 + 3η1/2)k,

which results in a contradiction, unless w < 6η1/2 + η, in which case almost all the

vertices of G belong to X ∪ Y .

Eliminating |W |, we find that

(α1 + 1
2α2 − 4η1/2)k ≤ |X| < (α1 + 1

2α2 + 3η1/2)k.

Since η ≤ ηB1, provided k > k2.6.15(16η), we may apply Lemma 2.6.15 (with α = α1, β =

α2) to find that G[X] contains either a red connected-matching on at least α1k vertices,

a blue connected-matching on at least α2k vertices or a subgraph H1 from H1 ∪ H2,

where

H1 =H
(

(α1 − 2η1/16)k, (1
2α2 − 2η1/16)k, 3η4k, η1/16, red,blue

)
,

H2 =H
(

(α2 − 2η1/16)k, (1
2α1 − 2η1/16)k, 3η4k, η1/16, blue, red

)
.

Furthermore, unless α2 ≥ α1 − η1/8, H1 ∈ H1.

Now, consider Y . Since |G| = |X|+ |Y |+ |W | and |X| ≥ |Y |, we obtain

(α1 + 1
2α2 − 10η1/2)k ≤ |Y | < (α1 + 1

2α2 + 3η1/2)k.

Then, provided k ≥ k2.6.15(100η), we may apply Lemma 2.6.15 to G[Y ] to find that G[Y ]
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contains either a red connected-matching on at least α1k vertices, a blue connected-

matching on at least α2k vertices or a two-coloured subgraph H2 belonging to H1 ∪H2.

Furthermore, unless α2 ≥ α1 − η1/8, H2 ∈ H1 which would be sufficient to complete the

proof in this case.

We may, therefore, assume that 1
2α1 < w < α2 +10η, in which case, from (2.3) and (2.4),

we have

(
α1 + 1

2α2 + 1
2w − 1

2η
)
k ≤ |W |+ |X| <

(
1
2α1 + 1

2α2 + w + 3η1/2
)
k.

Since α2 > w − 10η, we obtain |W |+ |X| ≥ (α1 + w − 6η)k.

Then, since K = |X|+ |Y |+ |W | and |X| ≥ |Y |, it follows that

(α1 − η1/2)k ≤ |X| <
(

1
2α1 + 1

2α2 + 3η1/2
)
k,

(α1 − 4η1/2)k < |Y | <
(

1
2α1 + 1

2α2 + 3η1/2
)
k,

(α1 − 8η1/2)k ≤ |W | <
(

1
2α1 + 1

2α2 + 10η1/2
)
k.





(2.5)

The bounds for |X| in (2.5) lead to a contradiction unless α1−α2 ≤ 8η1/2. Therefore, we

may only concern ourselves with the case where α2 ≤ α1 ≤ α2+8η1/2 and, therefore,X,Y

and W each contain about a third of the vertices of G.

Recall that there are no green edges contained within X or Y . Then, since G is 3η4k-

almost-complete, provided k > k2.6.16(η), we may apply Corollary 2.6.16 toG[X], G[Y ] to

find that each contains a monochromatic connected-matching on at least (2
3α1− 8η1/8)k

vertices. Thus, provided η < (α1/120)8, we may assume that each of X and Y contain

a monochromatic connected-matching on at least 3
5α1k vertices. Referring to these

matchings as M1 ⊆ G[X] and M2 ⊆ G[Y ], we consider three subcases:

Case B.i: M1 and M2 are both red.

Suppose that there exists r ∈ M1, w ∈ W and s ∈ M2 such that rw and ws are red.

This would give a red connected-matching on at least 6
5α1k vertices. Therefore, we may

assume that every w ∈ W has either rw blue or missing for all r ∈ M1, or ws blue or

missing for all s ∈M2.
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s  
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X
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M1
 M1  


W  


M2

M2  


w  


Figure 2.7: Red Matchings M1 and M2 and red edges rw and ws.

Thus, we may partition W into W1 ∪W2, where W1,W2 are defined as follows:

W1 = {w ∈W such that w has no red edges to M1};
W2 = {w ∈W such that w has no red edges to M2}.

X


Y


M1  


W1  
 W2  


M2  


M1


M2


Figure 2.8: Partition of W into W1 ∪W2.

Suppose that |W1| ≥ (1
2α2 + 6η4)k. Then, since G is 3η4k-almost-complete, so is

G[W,M1]. Since η < (α2/100)2 ≤ (α2/60)1/4, |M1| ≥ 3
5α1k ≥ α2

2 k+6η4k and we may ap-

ply Lemma 2.6.14 with ` = (1
2α2+6η4)k and a = 3η4k to give a blue connected-matching

on at least α2k vertices. The result is the same in the event that |W2| ≥ (1
2α2 + 6η4)k.

Therefore, we may assume that |W1|, |W2| ≤ (1
2α2 + 6η4)k. In that case, we have

|W1| = |W | − |W2| ≥ (α1
2 − 9η1/2)k and, likewise, |W2| ≥ (α1

2 − 9η1/2)k. Thus, since

η < (α1/100)2, Lemma 2.6.14 gives a blue connected-matching on at least (α2−20η1/2)k
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vertices in each of G[M1,W1] and G[M2,W2].

Then, suppose there exists a blue edge rw for r ∈M1, w ∈W2. This would connect these

two blue connected-matchings, giving one on at least (2α1 − 40η1/2)k ≥ α2k vertices.

Thus, all edges present inG[M1,W2] are coloured exclusively red. By the same argument,

so are all edges present in G[M2,W1].

X


Y


W1  
 W2  


M1


M2


Figure 2.9: Colouring of the edges of G[M1,W2] ∪G[M2,W1].

Now, choose any set R1 of 10η1/2k of the edges from the matching M1, let M ′1 = M\R1

and consider G[V (M ′1),W2]. Since η < (α1/100)2, we have |V (M ′1)| ≥ (1
2α1−9η1/2)k and

thus may apply Lemma 2.6.14 to G[V (M ′1),W2] to obtain a collection R2 of edges from

G[V (M ′1),W2] which form a red connected-matching on at least (α1− 20η1/2)k vertices.

Since R1 and R2 do not share any vertices but do belong to the same red-component

of G, the collection of edges R1 ∪ R2 forms a red connected-matching on at least α1k

vertices, completing this case.

Case B.ii: M1 and M2 are both blue.

Exchanging the roles of red and blue (and where necessary α1 and α2), the proof follows

the same steps as in Case B.i above.

Case B.iii: M1 and M2 are different colours.

Without loss of generality, consider the case where M1 is red and M2 is blue. Since

η < (α1/100)2, by (2.5), we have |X|+ |W |, |Y |+ |W | ≥ 1
2K, so G[X ∪W ] and G[Y ∪W ]
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are each (1 − 2η4)-complete. Additionally, |W |, |V \W | ≥ 4(2η4)1/2|X ∪ W |. Thus,

provided that 1
2K ≥ 1/2η4, we may apply Lemma 2.6.18 separately to G[X ∪W ] and

G[Y ∪W ] (regarding W as the hole in each case) with the result being that at least one

of the following occurs:

(a) X ∪W has a connected red component F on at least |X ∪W | − ηk vertices;

(b) X ∪W has a connected blue component F on at least |X ∪W | − ηk vertices;

(c) Y ∪W has a connected red component F on at least |Y ∪W | − ηk vertices;

(d) Y ∪W has a connected blue component F on at least |Y ∪W | − ηk vertices;

(e) there exist points w1, w2, w3, w4 ∈W such that the following hold:

(i) w1 has red edges to all but at most ηk vertices in X,

(ii) w2 has blue edges to all but at most ηk vertices in X,

(iii) w3 has red edges to all but at most ηk vertices in Y ,

(iv) w4 has blue edges to all but at most ηk vertices in Y .

In case (a), we discard from W the, at most ηk, vertices not contained in F and consider

G[W,Y ]. Either there are at least 1
5α1k mutually independent red edges present in

G[W,Y ] (which can be used to augment M1) or we may obtain W ′ ⊂ W , Y ′ ⊂ Y with

|W ′|, |Y ′| ≥ (4
5α1 − 10η1/2)k such that all the edges present in G[W ′, Y ′] are coloured

exclusively blue. Notice that, since G is 3η4k-almost-complete, so is G2[W ′, Y ′] and,

since η < (α1/100)2, we may apply Lemma 2.6.14 (with a = 3η4k and ` = 3
5α1k) to

obtain a blue connected-matching on at least α1k ≥ α2k vertices.

In case (b), suppose there exists a blue edge in G[M2, F ]. Then, at least |M2 ∪W | − ηk
of the vertices of M2 ∪W would belong to the same blue component in G. We could

then consider G[W,X] and, by the same argument used in case (a) (with the roles

of the colours reversed), find either a red connected-matching on at least α1k vertices

or a blue connected-matching on at least α2k vertices. Thus, we may instead, after

discarding at most ηk vertices from W , assume that all edges present in G[M2,W ] are

coloured exclusively red and apply Lemma 2.6.14 to obtain a red connected-matching

on at least α1k vertices.

In case (c), the same argument as given in case (b) gives either a red connected-matching

on at least α1k vertices or a blue connected-matching on at least α2k vertices.
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In case (d), the same argument as given in case (a) gives gives either a red connected-

matching on at least α1k vertices or a blue connected-matching on at least α2k vertices.

In case (e), there exist points w1, w2, w3, w4 ∈ W such that w1 has red edges to all but

at most ηk vertices in X, w2 has blue edges to all but at most ηk vertices in X, w3 has

red edges to all but at most ηk vertices in Y , and w4 has blue edges to all but at most

ηk vertices in Y .

X


Y


W  


M2 

w1  
 w2  

w3  
 w4  


M1


Figure 2.10: Vertices w1, w2, w3 and w4 in case (e).

Thus, defining

XS = {x ∈ X such that xw1 is red and xw2 is blue},
YS = {y ∈ Y such that yw3 is red and yw4 is blue},

by (2.5), we have |XS |, |YS | ≥ (α1−5η1/2)k. Suppose there exists x ∈ XS , w ∈W , y ∈ YS
such that xw and wy are red. In that case, XS ∪ YS belong to the same red component

of G. Recall that M1 contains a red matching on 3
5α1k vertices and consider G[W,YS ].

Either we can find 1
5α1k mutually independent red edges in G[W,YS ] (which together

with M1 give a red connected-matching on at least α1k vertices) or we may obtain

W ′ ⊂ W , Y ′ ⊂ YS with |W ′|, |Y ′| ≥ (4
5α1 − 10η1/2)k such that all the edges present in

G[W ′, Y ′] are coloured exclusively blue. Then, as in case (a), we may apply Lemma 2.6.14

to obtain a blue connected-matching on at least α1k ≥ α2k vertices.

Thus, we assume no such triple exists and, similarly, we may assume there exists no triple

x ∈ XS , w ∈W , y ∈ YS such that xw and wy are blue. Thus, we may partition W into

W1∪W2 such that all edges present in G[W1, XS ] and G[W2, YS ] are coloured exclusively

red and all edges present in G[W1, YS ] and G[W2, XS ] are coloured exclusively blue.
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Thus, we may assume that |W1|, |W2| ≤ (1
2α1 + η1/2)k (else Lemma 2.6.14 could be

used to give a red connected-matching on at least α1k vertices) and therefore also that

|W1|, |W2| ≥ (1
2α1 − 9η1/2)k, in which case, the same argument as in the last paragraph

of case (a) gives a red connected-matching on α1k vertices.

This concludes Case B and, thus, Part I of the proof of Theorem B.

Note that the preceding section together with Section 2.9 and Section 2.10 forms a

complete proof of Theorem A in the case that α1 ≥ α2, α3. Therefore, a reader wishing

to get a flavour of the overall proof method may like to skip over Section 2.8 and read

Section 2.9 next.

2.8 Proof of the stability result – Part II

We now consider the case when α3 ≥ α1 ≥ α2. We wish to prove that any three-

multicoloured (1 − η4)-complete graph on slightly fewer than max{2α1 + α2,
1
2α1 +

1
2α2 + α3}k vertices will have a red connected-matching on at least α1k vertices, a

blue connected-matching on at least α2k vertices, a green odd connected-matching on

at least α3k vertices or will have a particular coloured structure.

Thus, given α1, α2, α3 such that α3 ≥ α1 ≥ α2, we set

c = max{2α1 + α2,
1
2α1 + 1

2α2 + α3},

choose

η < ηB2 = min

{
1

105
,
α2

1024
,

(
α2

100

)8

,

(
α2

1200α1

)2
}

and consider G = (V,E), a (1− η4)-complete graph on K ≥ 72/η vertices, where

(c− η)k ≤ K ≤ (c− η
2 )k

for some integer k > kB2, where kB2 = kB2(α1, α2, α3, η) will be defined implicitly during

the course of the proof, in that, on a finite number of occasions, we will need to bound k

below in order to apply results from Section 2.6.

Note that, since α3 ≥ α1 ≥ α2, the largest forbidden connected-matching is green and

odd. By scaling, we may assume that 2 ≥ α3 ≥ 1 ≥ α1 ≥ α2. Thus, G is 3η4k-almost-

complete, as is G[X], for any X ⊂ V .
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We begin by noting that we can use Theorem 2.6.11 to obtain either a red connected-

matching on α1k vertices, a blue connected-matching on α2k vertices or a green connected-

matching of almost the required size. Note, however, that this green connected-matching

need not be odd. Indeed, the graph has

|V | = vk ≥ (c− η)k = (1
2α1 + 1

2α2 + (v − 1
2α1 − 1

2α2 − 9η1/2) + 9η1/2)k

vertices and, since α1 ≥ α2 and η ≤ (α2
20 )2, we have

(v − 1
2α1 − 1

2α2 − 9η1/2) ≥ (c− η − 1
2α1 − 1

2α2 − 9η1/2)

≥ max{2α1 + α2,
1
2α1 + 1

2α2 + α3} − 1
2α1 − 1

2α2 − 10η1/2

≥ max{3
2α1 + 1

2α2, α3} − 10η1/2 ≥ α1 ≥ α2.

Thus, since η ≤ 0.002 min{α2
1, α

2
2, α

2
3}, by Theorem 2.6.11, provided k ≥ k2.6.11(α1, α2, v−

1
2α1 + 1

2α2 − 9η1/2, η), G contains either a red connected-matching on at least α1k ver-

tices, a blue connected-matching on at least α2k vertices or a green connected-matching

on at least

|V | − (1
2α1 + 1

2α2 + 9η1/2)k ≥ (max{3
2α1 + 1

2α2, α3} − 10η1/2)k (2.6)

vertices.

Lemma 2.6.10 gives a decomposition of the green-graph G3 into its bipartite and non-

bipartite parts and in doing so gives a decomposition of the vertices of G into X∪Y ∪W
such that there are no green edges between X ∪ Y and W or within X or Y . Choosing

such a decomposition which maximises |X ∪ Y |, results in G3[X ∪ Y ] being the union

of the bipartite green components of G and G3[W ] being the union of the non-bipartite

green components of G. In what follows, we consider the vertices of G to have been thus

partitioned. We will also assume that |X| ≥ |Y | and will write V̂ for X ∪W and w for

|W |/k. By (2.6), we may assume that the largest green connected-matching in G spans

at least (max{3
2α1 + 1

2α2, α3} − 10η1/2)k vertices and distinguish three cases:

(C) the largest green connected-matching F is not odd and w ≥ 7η1/2;

(D) the largest green connected-matching F is not odd and w ≤ 7η1/2;

(E) the largest green connected-matching F is odd.
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Within each case, we will, when necessary, distinguish between the two possible forms

taken by c, that is, between c = 2α1 + α2 and c = 1
2α1 + 1

2α2 + α3:

(II†) The first possibility arises only when α3 ≤ 3
2α1+ 1

2α2, in which case we may assume

that F spans at least (3
2α1 + 1

2α2 − 10η1/2)k vertices.

(II‡) The second possibility arises only when α3 ≥ 3
2α1 + 1

2α2, in which case we may

assume that that F spans at least (α3 − 10η1/2)k vertices.

Case C: Largest green connected-matching is not odd and w ≥ 7η1/2.

Suppose that we have c = 2α1 + α2. Then F spans at least (3
2α1 + 1

2α2 − 10η1/2)k

vertices and is assumed to not be contained in an odd component of G. Thus, by the

decomposition, we have

|X| ≥ |Y | ≥ (3
4α1 + 1

4α2 − 5η1/2)k, (2.7a)

|X| ≥ K − |W |
2

≥ (α1 + 1
2α2 − 1

2η − 1
2w)k, (2.7b)

|W | = K − |X| − |Y | ≤ (1
2α1 + 1

2α2 + 10η1/2)k. (2.7c)

From (2.7a) and (2.7b) we obtain

|V̂ | = |X|+ |W | ≥ (3
4α1 + 1

4α2 + w − 5η1/2)k (2.8a)

and

|V̂ | = |X|+ |W | ≥ (α1 + 1
2α2 + 1

2w − 1
2η)k. (2.8b)

Now, suppose that |V̂ | ≥ 1
2(α1 + α2 + max{2w,α1, α2} + 6η1/2)k. In that case, since

η ≤ 0.01α2, provided k > k2.6.12(α1, α2, w, η), we may apply Lemma 2.6.12 to obtain

either a red connected-matching on α1k vertices or a blue connected-matching on α2k

vertices. Therefore, we may assume that

|V̂ | ≤ 1
2

(
α1 + α2 + max{2w,α1, α2}+ 6η1/2

)
k. (2.8c)

If w ≤ 1
2α1, then together (2.8b) and (2.8c) contradict our assumption that w ≥ 7η1/2.
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Thus, we may assume that w ≥ 1
2α1. In that case, (2.8a) and (2.8c) give

(3
4α1 + 1

4α2 + w − 5η1/2)k ≤ |V̂ | ≤ (1
2α1 + 1

2α2 + w + 3η1/2)k,

which together with (2.7a) and (2.7c) gives

(3
4α1 + 1

4α2 − 5η1/2)k ≤ |X| ≤ (1
2α1 + 1

2α2 + 3η1/2)k,

(3
4α1 + 1

4α2 − 5η1/2)k ≤ |Y | ≤ (1
2α1 + 1

2α2 + 3η1/2)k,

(α1 − 7η1/2)k ≤ |W | ≤ (1
2α1 + 1

2α2 + 10η1/2)k.

The condition for |X| above gives a contradiction unless α1 ≤ α2 + 32η1/2. So, recalling

that α2 ≤ α1, we may obtain

(α1 − 13η1/2)k ≤ |X| ≤ (α1 + 3η1/2)k,

(α1 − 13η1/2)k ≤ |Y | ≤ (α1 + 3η1/2)k,

(α1 − 7η1/2)k ≤ |W | ≤ (α1 + 10η1/2)k.





(2.9)

Suppose instead that α3 ≥ 3
2α1 + 1

2α2. Then, by (2.6), F spans at least (α3 − 10η1/2)k

vertices. Recall that we assume that F is not contained in an odd component of G, thus,

by the decomposition, we have

|X| ≥ |Y | ≥ (1
2α3 − 5η1/2)k, (2.10a)

|X| ≥ K − |W |
2

≥ (α1 + 1
2α2 − 1

2η − 1
2w)k, (2.10b)

|W | ≤ (1
2α1 + 1

2α2 + 10η1/2)k. (2.10c)

From (2.10a) and (2.10b), we obtain

|V̂ | = |X|+ |W | ≥ (1
2α3 + w − 5η1/2)k (2.11a)

and

|V̂ | = |X|+ |W | ≥ (α1 + 1
2α2 + 1

2w − 1
2η)k. (2.11b)

Again, we may assume that

|V̂ | ≤ 1
2

(
α1 + 1

2α2 + max{2w,α1, α2}+ 6η1/2
)
k (2.11c)
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since, otherwise, we may apply Lemma 2.6.12 to obtain either a red connected-matching

on α1k vertices or a blue connected-matching on α2k vertices. Again, we may assume

that w ≥ 1
2α1 since, otherwise, together (2.11b) and (2.11c) contradict our assumption

that w ≥ 7η1/2k. Then, (2.11a) and (2.11c) give

(1
2α3 + w − 5η1/2)k ≤ |V̂ | ≤ (1

2α1 + 1
2α2 + w + 3η1/2)k,

which, together with (2.10a) and (2.10c) gives

(1
2α3 − 5η1/2)k ≤ |X| ≤ (1

2α1 + 1
2α2 + 3η1/2)k,

(1
2α3 − 5η1/2)k ≤ |Y | ≤ (1

2α1 + 1
2α2 + 3η1/2)k,

(α3 − 1
2α1 − 1

2α2 − 7η1/2)k ≤ |W | ≤ (1
2α1 + 1

2α2 + 10η1/2)k.

Then, recalling that α3 ≥ 3
2α1 + 1

2α2 and that α2 ≤ α1, in order to avoid a contradiction,

we have α1 ≤ α2 + 32η1/2 and obtain

(α1 − 13η1/2)k ≤ |X| ≤ (α1 + 3η1/2)k,

(α1 − 13η1/2)k ≤ |Y | ≤ (α1 + 3η1/2)k,

(α1 − 7η1/2)k ≤ |W | ≤ (α1 + 10η1/2)k.





(2.12)

Considering (2.9) and (2.12), we see that we have obtained the same set of bounds

irrespective of the form taken by c. Thus, in what follows, we consider both possibilities

together.

Recall that, under the decomposition, there are no green edges contained within X or Y .

Then, since G is 3η4k-almost-complete, provided k > k2.6.16(η), we may apply Corol-

lary 2.6.16 to each of G[X] and G[Y ], thus finding that each contains a monochromatic

connected-matching on at least (2
3α1 − 8η1/8)k vertices. Thus, provided η < (α1/120)8,

we may assume that each of X and Y contain a monochromatic connected-matching on

at least 3
5α1k vertices. Referring to these matchings as M1 ⊆ G[X] and M2 ⊆ G[Y ], we

consider three subcases:

(i) M1 and M2 are both red;

(ii) M1 and M2 are both blue;

(iii) M1 and M2 are different colours.

63



The proof in the first subcase is identical to that of Case B.i, the proof in the second

subcase is identical to that of Case B.ii and the proof in the third subcase is identical to

that of Case B.iii with the overall result being that G contains either a red connected-

matching on α1k vertices or a blue connected-matching on α2k vertices.

Case D: Largest green connected-matching is not odd and w ≤ 7η1/2.

Suppose that c = 2α2 + α2. Then, since η ≤ ηB2, provided k ≥ k2.6.12(α1, α2, w, η), we

obtain bounds on the sizes of X and Y as follows:

(α1 + 1
2α2 − 4η1/2)k ≤ |X| ≤ (α1 + 1

2α2 + 3η1/2)k,

(α1 + 1
2α2 − 12η1/2)k ≤ |Y | ≤ (α1 + 1

2α2 + 3η1/2)k.

Suppose instead that c = 1
2α1 + 1

2α2 + α3. Then, since η ≤ ηB2, provided k ≥
k2.6.12(α1, α2, w, η), we obtain bounds on the sizes of X and Y as follows:

(1
4α1 + 1

4α2 + 1
2α3 − 4η1/2)k ≤ |X| ≤ (α1 + 1

2α2 + 3η1/2)k, (2.13a)

(α3 − 1
2α1 − 12η1/2)k ≤ |Y | ≤ (α1 + 1

2α2 + 3η1/2)k. (2.13b)

Note that the inequalities in (2.13a) give a contradiction unless α3 ≤ 3
2α1 + 1

2α2 +14η1/2.

Since α3 ≥ 3
2α1 + 1

2α2, we obtain

(α1 + 1
2α2 − 4η1/2)k ≤ |X| ≤ (α1 + 1

2α2 + 3η1/2)k,

(α1 + 1
2α2 − 12η1/2)k ≤ |Y | ≤ (α1 + 1

2α2 + 3η1/2)k.

Then, in either case, since η ≤ ηB2, provided k > k2.6.15(144η), we may apply Lemma 2.6.15

(with α = α1, β = α2) to each of X and Y to find that each contains a red connected-

matching on at least α1k vertices or a blue connected-matching on at least α2k vertices

or has a structure belonging to one of the following classes as a subgraph:

H1 =H
(

(α1 − 2η1/16)k, (1
2α2 − 2η1/16)k, 3η4k, η1/16, red,blue

)
;

H2 =H
(

(α2 − 2η1/16)k, (1
2α1 − 2η1/16)k, 3η4k, η1/16, blue, red

)
,

with the latter case occurring only if α2 ≥ α1 − η1/8.
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Case E: Largest green connected-matching is odd.

Recall, from (2.6), that F , the largest green connected-matching in G, spans at least

(max{3
2α1 + 1

2α2, α3}−10η1/2)k vertices. We now consider the case when this connected-

matching is contained in an odd component of G.

Thus far, we have made extensive use of the decomposition of Figaj and  Luczak described

in Lemma 2.6.10. However, in this case, it is necessary to consider an alternative (and

somewhat more complicated) decomposition:

We begin by partitioning the vertices of G into L ∪ P ∪ Q as follows. We let L be the

vertex set of F . Then, for each v ∈ V \L, if there exists a green edge between v and L,

we assign v to P ; otherwise, we assign v to Q.

Suppose there exists a green edge mn in F and distinct vertices p1, p2 ∈ P such that

mp1 and np2 are both coloured green. Then, we can replace mn with mp1 and np2,

contradicting the maximality of F . Thus, after discarding at most one edge from G[L,P ]

for each edge of F , we may assume that given an edge uv in the matching, at most one

of u or v has a green edge to P . We may therefore partition L into M ∪ N such that

each edge of the matching belongs to G[M,N ] and there are no green edges in G[N,P ].

Observe also that, by maximality of F , there can be no green edges within G[P ] or

G[P,Q].

In summary, we have a partition M ∪N ∪ P ∪Q such that

(E1) M ∪N is the vertex set of F and every edge of F belongs to G[M,N ];

(E2) every vertex in P has a green edge to M ;

(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ].

Note that, since G was assumed to be (1− η4)-complete and also 3η4k-almost-complete,

having discarded the green edges described above, provided k ≥ 1/η4, we may now

assume that the (new) graph is (1 − 3
2η

4)-complete and also 4η4k-almost-complete. In

what follows, on a number of occasions, we will discard vertices from M ∪N ∪P ∪Q but

will continue to refer the parts of the partition as M,N,P and Q. The discarded vertices

remain in the graph and will be considered later. We need to take care to account of

this when considering the sizes of V (G),M,N, P,Q, etc.

65



M

N


Q


P


Figure 2.11: Decomposition into M ∪N ∪ P ∪Q.

Recalling (II†), in the case that c = 2α1 + α2, we have α3 ≤ 3
2α1 + 1

2α2. Then, since

V (F ) = M ∪N and |M |+ |N |+ |P |+ |Q| = K, we have

(3
4α1 + 1

4α2 − 5η1/2)k ≤ |M | , |N | ≤ 1
2α3k, (2.14a)

(2α1 + α2 − α3 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (2.14b)

The inequalities in (2.14a) give a contradiction unless α3 ≥ 3
2α1 + 1

2α2 − 10η1/2. Then,

since α3 ≤ 3
2α1 + 1

2α2, we may re-write (2.14b) as

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (2.14b′)

Recalling (II‡), in the case that c = 1
2α1 + 1

2α2 + α3, we have α3 ≥ 3
2α1 + 1

2α2. Then,

since V (F ) = M ∪N and |M |+ |N |+ |P |+ |Q| = K, we have

(1
2α3 − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k, (2.15a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (2.15b)

We will proceed considering the two possible situations together, assuming that

α3 ≥ 3
2α1 + 1

2α2 − 10η1/2. (2.16)

Comparing (2.14a) to (2.15a) and (2.14b′) to (2.15b), we will assume that

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k, (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)
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and distinguish between three possibilities:

(i) |P | ≤ 95η1/2k;

(ii) |Q| ≤ 95η1/2k;

(iii) |P |, |Q| ≥ 95η1/2k.

Case E.i: |P | ≤ 95η1/2k.

In this case, we disregard P , and, recalling that L = M ∪ N , consider G[L ∪ Q].

From (E4a) and (E4b), we have

(max{3
2α1 + 1

2α2, α3} − 10η1/2)k ≤ |L| ≤ α3k, (E4a′)

(1
2α1 + 1

2α2 − 96η1/2)k ≤ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b′)

By (E3), we know that all edges in G[L,Q] are coloured red or blue.

M

N


Q


Figure 2.12: Decomposition in Case E.i.

Observe that, provided η < (1/200)2, we have

|L|+ |Q| ≥
(

max{2α1 + α2,
1
2α1 + 1

2α2 + α3} − 106η1/2
)
k ≥ 3

4K.

Thus, since G is (1 − 3
2η

4)-complete, G[L ∪ Q] is (1 − 2η4)-complete. Also, provided

η < 10−5, we have |L|, |Q| ≥ 18η1/2 (|L|+ |Q|). Thus, since 2η4 ≤ 3η1/2, provided

K ≥ 2/η1/2, we may apply Lemma 2.6.19, giving rise to four cases:
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(a) G[L,Q] contains a monochromatic component on at least (1 − 21η1/2)|L ∪ Q| ≥
|L ∪Q| − 63η1/2k vertices;

(b) L,Q can be partitioned into L1 ∪ L2, Q1 ∪ Q2 such that |L1|, |L2|, |Q1|, |Q2| ≥
9η1/2|L ∪Q| ≥ 9η1/2k and all edges present between Li and Qj are red for i = j,

blue for i 6= j;

(c) there exist vertices vr, vb ∈ L such that vr has red edges to all but 12η1/2|L∪Q| ≤
36η1/2k vertices in Q and vb has blue edges to all but 12η1/2|L ∪ Q| ≤ 36η1/2k

vertices in Q;

(d) there exist vertices vr, vb ∈ Q such that vr has red edges to all but 12η1/2|L∪Q| ≤
36η1/2k vertices in L and vb has blue edges to all but 12η1/2|L ∪ Q| ≤ 36η1/2k

vertices in L.

Case E.i.a: G[L ∪Q] has a large monochromatic component.

Recall that we assume that F , the largest green connected-matching in G, spans at least

(max{3
2α1 + 1

2α2, α3} − 10η1/2)k vertices and is contained in an odd component of G.

We have a partition of V (G) into L ∪ P ∪Q such that |P | ≤ 95η1/2k,

(max{3
2α1 + 1

2α2, α3} − 10η1/2)k ≤ |L| ≤ α3k, (E4a′)

(1
2α1 + 1

2α2 − 96η1/2)k ≤ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b′)

Recalling that L = M ∪N , by (E3), all edges present in G[L,Q] are coloured red or blue.

Additionally, in this case, we assume that G[L,Q] contains a monochromatic component

on at least |L ∪Q| − 63η1/2k vertices. Suppose this large monochromatic component is

red, then

(E5) G[L,Q] has a red component on at least |L ∪Q| − 63η1/2k vertices.

We consider the largest red matching R in G[L,Q] and, thus, partition L into L1 ∪ L2

and Q into Q1 ∪Q2 where L1 = L∩V (R), L2 = L\L1, Q1 = Q∩V (R) and Q2 = Q\Q1.

By maximality of R, all edges present in G[L2, Q2] are coloured exclusively blue. Notice

that, since η ≤ (α1/100)2, we have, by (E4a′) and (E4b′), |L| ≥ |Q|. Thus, since
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|L1| = |Q1|, we have |L2| ≥ |Q2| and, so, in order to avoid having a blue connected-

matching on at least α2k vertices, by Lemma 2.6.14, we have |Q2| ≤ (1
2α2 + η1/2)k and

therefore, also, |L1| = |Q1| = |Q| − |Q2| ≥ (1
2α1 − 97η1/2)k.

L1


L2


Q1


Q2


Figure 2.13: Decomposition into L1 ∪ L2 ∪Q1 ∪Q2 in Case E.i.a.

Also, by (E5), in order to avoid having a red connected-matching on at least α1k vertices,

we may assume that |L1| = |Q1| ≤ (1
2α1 +64η1/2)k. Finally, we have |Q2| = |Q|− |Q1| ≥

(1
2α2 − 160η1/2)k.

In summary, we have |L1| = |Q1|,

(1
2α2 − 97η1/2)k ≤ |Q1| ≤ (1

2α1 + 64η1/2)k, (2.20a)

(1
2α2 − 160η1/2)k ≤ |Q2| ≤ (1

2α2 + η1/2)k. (2.20b)

Note that, since η ≤ (α1/10000)2, by (E4a′), (E4b′), we have |L| ≥ |Q|+ 3000η1/2k and

thus, since |Q1| = |L1|, also have

|L2| ≥ |Q2|+ 3000η1/2k. (2.20c)

Recalling that |L2| = |L| − |L1| = |L| − |Q1|, since η ≤ (α1/10000)2, considering (E4a′)

and (2.20a), we also have

|L2| ≥ |Q1|+ 3000η1/2k. (2.20d)

Equations (2.20c) and (2.20d) are crucial to the argument that follows since they provide

us with the spare vertices we will need in order to establish the coloured structure of G.

In what follows, we will show that after possibly discarding some vertices from each
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of L1, L2, Q1 and Q2, we may assume that all edges present in G[L,Q1] are coloured

exclusively red and that all edges present in G[L,Q2] are coloured exclusively blue.

This is done in three steps, the first dealing with G[L2, Q1], the second dealing with

G[L1, Q2] and the third dealing with G[L1, Q1]. Similar arguments will appear many

times throughout the remainder of the proof of Theorem B. Note that, in what follows,

we mostly omit floors and ceilings for the sake of clarity of presentation, we may do this

since we are free to increase k where necessary.

Claim 2.8.1. We may discard at most 842η1/2k vertices from each of L1 and Q1, at

most 161η1/2k vertices from L2 and at most 260η1/2k vertices from Q2 such that all

remaining in G[L,Q1] are coloured exclusively red and all edges present in G[L,Q2] are

coloured exclusively blue.

Proof. We begin by considering the blue graph. Observing that G[L2, Q2] contains a

blue connected-matching of size close to α2k and that there are ‘spare’ vertices in L2.

Thus, we note that there can only be few blue edges in G[L2, Q1]. Indeed, suppose there

exists a blue matching BS on at least 322η1/2k vertices in G[L2, Q1].

L1


L2


Q1


Q2


Figure 2.14: The blue matching BS .

Then, by (2.20d), letting L̃ = L2\V (BS), we have |L̃| ≥ |Q2| ≥ (1
2α2− 160η1/2)k. Thus,

by Lemma 2.6.14, there exists a blue connected-matching BL on at least (α2−322η1/2)k

vertices in G[L̃, Q2] which shares no vertices with BS . Notice that, since G2[L2, Q2] is

4η4k-almost-complete, L2 ∪Q2 forms a single blue component in G and, thus, BS ∪BL
forms a blue connected-matching on α2k vertices. Therefore, no such matching as BS

can exist. So, after discarding at most 161η1/2k vertices from each of Q1 and L2, we

may assume that all edges present in G[L2, Q1] are coloured exclusively red.
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L1


L2


Q1


Q2


Figure 2.15: Resulting colouring of the edges of G[L2, Q1].

In order to retain the equality |L1| = |Q1| and the property that every vertex in L1

belongs to an edge of R, we discard from L1 each vertex whose R-mate in Q1 has

already been discarded. Recalling (2.20a)–(2.20d), we now have

|L2| ≥ |Q1|+ 2800η1/2k, |L1| = |Q1| ≥ (1
2α1 − 258η1/2)k,

|L2| ≥ |Q2|+ 2800η1/2k, |Q2| ≥ (1
2α2 − 160η1/2)k.

We now consider the red graph. Since all edges in G[L2, Q1] are coloured exclusively red,

any two vertices in Q1 have a common red neighbour in L2. Thus, since every vertex

in L1 has a red neighbour in Q1, we know that G[L1 ∪ Q1] has a single effective red

component. Suppose, then, that there exists a red matching RS on at least 520η1/2k

vertices in G[L1, Q2]. Then, recalling that the matching R spans all the vertices of

G[L1, Q1], we may construct a red connected-matching on at least α1k vertices as follows.

L1


L2


Q1


Q2


Figure 2.16: The red matching RS .
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Observe that there exists a set R− of 260η1/2k edges belonging to R such that L1 ∩
V (RS) = L1 ∩ V (R−). Define R∗ = R\R− and Q̃ = Q1 ∩ V (R−) and consider G[L2, Q̃].

Since |L2|, |Q̃| ≥ 260η1/2k and G[L2, Q̃] is 4η4k-almost-complete, by Lemma 2.6.14, there

exists a red connected-matching RT on at least 518η1/2k vertices in G[L2, Q̃]. Then,

R∗ ∪ RS ∪ RT is a red-connected-matching in G[L1, Q1] ∪ G[L1, Q2] ∪ G[L2, Q1] on at

least 2(|Q1| − 261η1/2k) + 520η1/2k + 518η1/2k ≥ α1k vertices.

RS


R*


Q
~
RT


L1


L2


Q1


Q2


Figure 2.17: Construction of a red connected-matching on α1k vertices.

Therefore, a matching such as RS cannot exist. Thus, after discarding at most 260η1/2k

vertices from each of L1 and Q2, we may assume that all edges present in G[L1, Q2] are

coloured exclusively blue.

L1


L2


Q1


Q2


Figure 2.18: Resulting colouring of G[L1, Q2].

Note that, in order to retain the equality |L1| = |Q1|, we also discard from Q1 each

vertex whose R-mate in L1 has already been discarded. After discarding vertices, we
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have

|L1| = |Q1| ≥ (1
2α1 − 518η1/2), |Q2| ≥ (1

2α2 − 420η1/2).

To complete the claim, we return to the blue graph. Since all edges present in G[L,Q2]

are coloured exclusively blue and G is 4η4k-almost-complete, L∪Q2 forms a single blue

component. Also, since |L2|, |Q2| ≥ (1
2α2 − 420η1/2)k, by Lemma 2.6.14, there exists a

blue connected-matching B2 on at least (α2 − 842η1/2)k vertices in G[L2, Q2]. Thus, if

there existed a blue matching B1 on at least 842η1/2k vertices in G[L1, Q1], then B1∪B2

would form a blue connected-matching on at least α2k vertices. Thus, after discarding

at most 421η1/2k vertices from each of L1, Q1, we may assume that all edges present in

G[L1, Q1] are coloured exclusively red. Thus completing the proof of the claim. 2

In summary, having proved Claim 2.8.1, we know that all edges present in G[L,Q1] are

coloured exclusively red and that all edges present in G[L,Q2] are coloured exclusively

blue. Additionally, we have

|L2| ≥ |Q1|+ 2800η1/2k, |L1| = |Q1| ≥ (1
2α1 − 939η1/2)k,

|L2| ≥ |Q2|+ 2800η1/2k, |Q2| ≥ (1
2α2 − 420η1/2)k.



 (2.21)

L1


L2


Q1


Q2


Figure 2.19: Colouring of G[L,Q] after Claim 2.8.1.

Now, suppose that there exists a red matching R+ on 1880η1/2k vertices in L. Then,

by (2.21), we have |L\V (R+)| ≥ |Q1| ≥ (1
2α1 − 939η1/2)k. So, by Lemma 2.6.14, there

exists a red connected-matching on at least (α1−1880η1/2)k vertices in G[L\V (R+), Q1],

which can be augmented with edges from R+ to give a red connected-matching on at
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least α1k vertices. Thus, after discarding at most 1880η1/2k vertices from L, we may

assume that there are no red edges present in G[L] and that we then have

|L| ≥ |Q1|+ 900η1/2k, |L| ≥ |Q2|+ 900η1/2k.

Finally, suppose that there exists a blue connected-matching B+ on 842η1/2k vertices

in L. Then, |L\V (B+)| ≥ |Q2| ≥ (1
2α2 − 420η1/2)k, so, by Lemma 2.6.14, there exists

a blue connected-matching on at least (α2 − 842η1/2)k vertices in G[L\V (B+), Q2],

which can be augmented with edges from B+ to give a blue connected-matching on at

least α2k vertices.

Thus, after discarding at most a further 842η1/2 vertices from L, we may assume that

all edges present in G[L] are coloured exclusively green.

L1


L2


Q1


Q2


Figure 2.20: Final colouring in Case E.i.a.

In summary, having discarded at most 4828η1/2k vertices, we have

|Q1| ≥ (1
2α1 − 939η1/2)k, |Q2| ≥ (1

2α1 − 420η1/2)k, |L| ≥ (1
2α3 − 3750η1/2)k,

and know that all edges present in G[Q1, L] are coloured exclusively red, all edges present

in G[Q2, L] are coloured exclusively blue and all edges present in G[L] are coloured

exclusively green.

Thus, we have found, as a subgraph of G, a graph belonging to

K
(

(1
2α1 − 1000η1/2)k, (1

2α2 − 1000η1/2)k, (α3 − 4000η1/2)k, 4η4k
)
.

At the beginning of Case E.i.a, we assumed that the largest monochromatic component
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in G[L,Q] was red. If, instead, that monochromatic component is blue, then the proof

proceeds exactly as above, following the same steps with the roles of red and blue

exchanged and with α1 and α2 exchanged. The result is identical.

Case E.i.b: L ∪Q has a non-trivial partition with ‘cross’ colouring.

Recall that we assume that F , the largest green connected-matching in G, spans at least

(max{3
2α1 + 1

2α2, α3} − 10η1/2)k vertices and is contained in an odd component of G.

We have a partition of V (G) into L ∪ P ∪Q, such that |P | ≤ 95η1/2k,

(max{3
2α1 + 1

2α2, α3} − 10η1/2)k ≤ |L| ≤ α3k, (E4a′)

(1
2α1 + 1

2α2 − 96η1/2)k ≤ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b′)

Additionally, in this subcase, we assume that L and Q can be partitioned into L1 ∪ L2

and Q1 ∪ Q2 such that |L1|, |L2|, |Q1|, |Q2| ≥ 9η1/2k and all edges present in G[Li, Qj ]

are coloured exclusively red for i = j, and exclusively blue for i 6= j.

L1


L2


Q1


Q2


Figure 2.21: Decomposition into L1 ∪ L2 ∪Q1 ∪Q2 in Case E.i.b.

Then, by Lemma 2.6.14, there exist red connected-matchings

M11 on at least 2 (min{|L1|, |Q1|})− 2η1/2k vertices in G[L1, Q1], (2.23a)

M22 on at least 2 (min{|L2|, |Q2|})− 2η1/2k vertices in G[L2, Q2], (2.23b)

and blue connected-matchings

M12 on at least 2 (min{|L1|, |Q2|})− 2η1/2k vertices in G[L1, Q2], (2.23c)

M21 on at least 2 (min{|L2|, |Q1|})− 2η1/2k vertices in G[L2, Q1]. (2.23d)
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Thus, in order to avoid a red connected-matching on at least α1k vertices or a blue

connected-matching on at least α2k vertices, we may assume that |V (M11)|, |V (M22)| ≤
α1k and |V (M12)|, |V (M21)| ≤ α2k. Thus, (2.23a)–(2.23d), above can be used to obtain

bounds on the sizes of L1, L2, Q1 and Q2 as follows:

Since |V (M11)|, |V (M22)| ≤ α1k,we have min{|L1|, |Q1|} ≤ (1
2α1 + η1/2)k, (2.24a)

and min{|L2|, |Q2|} ≤ (1
2α1 + η1/2)k. (2.24b)

Since |V (M12)|, |V (M21)| ≤ α2k,we have min{|L1|, |Q2|} ≤ (1
2α2 + η1/2)k, (2.24c)

and min{|L2|, |Q1|} ≤ (1
2α2 + η1/2)k. (2.24d)

Observe that, since η ≤ (α1/15)2, by (E4a′) and (E4b′), we have

|L1|+ |L2| = |L| ≥ (3
2α1 + 1

2α2 − 10η1/2)k

≥ (1
2α1 + 1

2α2 + 5η1/2)k + (α1 − 15η1/2)k ≥ |Q| = |Q1|+ |Q2|.

Thus, it is not possible to have, for instance, |Q1|, |Q2| ≥ |L1|, |L2|. Without loss of

generality, we therefore consider four possibilities

(i) |L1|, |L2| ≥ |Q1|, |Q2|;

(ii) |L1| ≥ |Q1|, |Q2| ≥ |L2|;

(iii) |L1| ≥ |Qi| ≥ |L2| ≥ |Qj | for {i, j} = {1, 2};

(iv) |Qi| ≥ |L1| ≥ |L2| ≥ |Qj | for {i, j} = {1, 2}.

Case E.i.b.i: |L1|, |L2| ≥ |Q1|, |Q2|.

In this case, by (2.24c) and (2.24d), we may assume that |Q1|, |Q2| ≤ (1
2α2 +η1/2)k and,

consequently, by (E4b′), we have

|Q1|, |Q2| ≥ (1
2α1 − 97η1/2)k.

Thus, by (2.23a)–(2.23d), we have red connected-matchings M11,M22, each on at least

(α1− 196η1/2)k vertices and blue connected-matchings M12,M21, each on at least (α1−
196η1/2)k vertices. (Also, in order to avoid having a blue connected-matching on at

least α2k vertices, we may assume that α1 ≤ α2 + 196η1/2.)
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Notice that there can be no red edges present in G[L1, L2]∪G[Q1, Q2] since any such edge

would mean M11 and M22 being in the same red-component and so M11∪M22 would form

a red connected-matching on at least α1k vertices. Similarly, there can be no blue edges

present in G[L1, L2] ∪ G[Q1, Q2]. Therefore, all edges present in G[L1, L2] ∪ G[Q1, Q2]

are coloured exclusively green.

L1


L2


Q1


Q2


Figure 2.22: Colouring of G[L1 ∪ L2 ∪Q1 ∪Q2] in Case E.i.b.i.

Thus, we have found, as a subgraph of G, a graph belonging to

K∗
(
(1

2α1 − 97η1/2)k, (1
2α1 − 97η1/2)k, (1

2α1 − 97η1/2)k,

(1
2α1 − 97η1/2)k, (α3 − 10η1/2)k, 4η4k

)
⊆ K∗1 ∪ K∗2.

Case E.i.b.ii: |L1| ≥ |Q1|, |Q2| ≥ |L2|.

In this case, by (2.24a) and (2.24c), we have

|Q1| ≤ (1
2α1 + η1/2)k, |Q2| ≤ (1

2α2 + η1/2)k, (2.25)

and so, by (E4b′),

|Q1| ≥ (1
2α1 − 97η1/2)k, |Q2| ≥ (1

2α2 − 97η1/2)k. (2.26)

Thus, by (2.23a), we have a red connected-matching M11 on at least (α1 − 196η1/2)k

vertices in G[L1, Q1] and, by (2.23c), have a blue connected-matching M12 on at least

(α2 − 196η1/2)k vertices in G[L1, Q2].
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Suppose then that |L2| ≥ 100η1/2k. Then, by Lemma 2.6.14, there exists a red connected-

matchingRS on at least 198η1/2k vertices inG[L2, Q2] and a blue connected-matchingBS

on at least 198η1/2k vertices in G[L2, Q1]. Thus, there can be no red edges present in

G[L1, L2]∪G[Q1, Q2], since otherwise M11 and RS would belong to the same red compo-

nent and together span at least α1k vertices. Likewise, there can be no blue edges present

in G[L1, L2] ∪ G[Q1, Q2], since then M12 and BS would then belong to the same blue

component and together span at least α2k vertices. Therefore, we have, as a subgraph

of G, a graph belonging to

K∗
(
(1

2α1 − 97η1/2)k, (1
2α2 − 97η1/2)k, (α3 − 1

2α2 − 12η1/2)k,

100η1/2k, (α3 − 10η1/2)k, 4η4k
)
⊂ K∗2.

Thus, we may assume that |L2| ≤ 100η1/2k, in which case we have

|L1| ≥ (max{3
2α1 + 1

2α2, α3} − 110η1/2)k (2.27)

and know that all edges present in G[Q1, L1] are coloured exclusively red and all edges

present in G[Q2, L1] are coloured exclusively blue. In this case, we disregard L2 and

consider G[L1].

Q1


Q2


L1


L2


Figure 2.23: Colouring of G[L ∪Q] in Case E.i.b.ii.

Since η ≤ (α1/1000)2, by (2.25) and (2.27),

|L1| ≥ |Q1|+ 200η1/2k, |L1| ≥ |Q2|+ 200η1/2k. (2.28)

Suppose there exists a red matching RS on 196η1/2k vertices in G[L1]. Then, by (2.26)
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and (2.28), we have

|L1\V (RS)|, |Q1| ≥ (1
2α1 − 97η1/2)k.

Thus, by Lemma 2.6.14, there exists a red connected-matching RL on at least (α1 −
196η1/2)k vertices in G[L2, Q1] which shares no vertices with RS . Since all edges

present in G[L1, Q1] are coloured exclusively red and G is 4η4k-almost-complete, RS

and RL belong to the same red component and, thus, together form a red connected-

matching on at least α1k vertices. Therefore, the largest red matching in G[L1] spans

at most 196η1/2k vertices.

Similarly, the largest blue connected-matching in G[L1] spans at most 196η1/2k vertices.

Thus, after discarding at most 392η1/2k vertices from L1, we may assume that all edges

in G[L] are coloured green. Thus, we have obtained, as a subgraph of G, a graph in

K
(

(1
2α1 − 97η1/2)k, (1

2α2 − 97η1/2)k, (α3 − 502η1/2)k, 4η4k
)
.

Case E.i.b.iii: |L1| ≥ |Qi| ≥ |L2| ≥ |Qj| for {i, j} = {1, 2}.

Suppose that |L1| ≥ |Q1| ≥ |L2| ≥ |Q2|. Then by (2.24a)–(2.24d) and (E4b′), we obtain

(1
2α1 − 97η1/2)k ≤ |Q1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |Q2| ≤ (1

2α2 + η1/2)k.

Then, given the sizes of M11, M12, M21 and M22, there can be no red or blue edges

present in G[L1, L2] ∪G[Q1, Q2] and we may assume that α1 ≤ α2 + 196η1/2k.

Thus, we have found, as a subgraph of G, a graph in

K∗
(
(1

2α1 − 97η1/2)k, (1
2α2 − 97η1/2)k, (α3 − 1

2α1 − 12η1/2)k,

(1
2α2 − 97η1/2)k, (α3 − 10η1/2)k, 4η4k

)
⊂ K∗2.

Suppose instead that |L1| ≥ |Q2| ≥ |L2| ≥ |Q1|. Then, by (2.24a)–(2.24d) and (E4b′),

we obtain

(1
2α1 − 97η1/2)k ≤ |Q1| ≤ (1

2α2 + η1/2)k,

(1
2α1 − 97η1/2)k ≤ |Q2| ≤ (1

2α2 + η1/2)k.
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Again, there can be no red or blue edges present in G[L1, L2]∪G[Q1, Q2]. Thus, we have

found, as a subgraph of G, a graph in

K∗
(
(1

2α1 − 97η1/2)k, (1
2α2 − 97η1/2)k, (α3 − 1

2α2 − 12η1/2)k,

(1
2α1 − 97η1/2)k, (α3 − 10η1/2)k, 4η4k

)
⊂ K∗2.

Case E.i.b.iv: |Qi| ≥ |L1| ≥ |L2| ≥ |Qj| for {i, j} = {1, 2}.

Suppose |Q1| ≥ |L1| ≥ |L2| ≥ |Q2|. Then, |Q1| ≥ 1
2 |L1| + 1

2 |L2| = 1
2 |L| and, since

η ≤ (α2/100)2, by (E4a′), we have

|Q1| ≥ (3
4α1 + 1

4α2 − 5η1/2)k ≥ (1
2α1 + 1

2α2 − 5η1/2)k ≥ (1
2α1 + η1/2)k.

Also, by (E4a′), we have

|L| ≥ (3
2α1 + 1

2α2 − 10η1/2)k ≥ (α1 + α2 − 10η1/2)k.

Thus, either

|L1| ≥ (α1 − 5η1/2)k, or |L2| ≥ (α2 − 5η1/2)k.

Recall that all edges present in G[L1, Q1] are coloured exclusively red and all edges

present in G[L2, Q1] are coloured exclusively blue. Thus, by Lemma 2.6.14, there exists

either a red connected-matching on at least α1k vertices in G[L1, Q1] or a blue connected-

matching on at least α2k vertices in G[L1, Q1].

The result is the same in the case that |Q2| ≥ |L1| ≥ |L2| ≥ |Q1|.

Case E.i.c: G[L,Q] contains red and blue ‘stars’ centred in L.

We continue to assume that F , the largest green connected-matching in G, spans at least

(max{3
2α1 + 1

2α2, α3}−10η1/2)k vertices and is contained in an odd component of G and

that we have a partition of V (G) into L∪P ∪Q, satisfying (E4a′) and (E4b′) such that

all edges present in G[L,Q] are coloured red or blue. Additionally, in this case, we have

vertices vr, vb ∈ L such that vr has red edges to all but 36η1/2k vertices in Q and vb has

blue edges to all but 36η1/2k vertices in Q. Observe that the existence of vr means that

(E5′) G[Q] has a red effective-component on at least |Q| − 36η1/2k vertices.
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The proof then proceeds exactly as in Case E.i.a but with (E5) replaced by (E5′). The

result is the same.

Case E.i.d: G[L,Q] contains red and blue ‘stars’ centred in Q.

We continue to assume that F , the largest green connected-matching in G, spans at least

(max{3
2α1 + 1

2α2, α3}−10η1/2)k vertices and is contained in an odd component of G and

that we have a partition of V (G) into L∪P ∪Q, satisfying (E4a′) and (E4b′) such that

all edges present in G[L,Q] are coloured red or blue. Additionally, in this case, we have

vertices vr, vb ∈ Q such that vr has red edges to all but 36η1/2k vertices in L and vb has

blue edges to all but 36η1/2k vertices in L. Observe that the existence of vr means that

(E5′′) G[L] has a red effective-component on at least |L| − 36η1/2k vertices.

The proof then proceeds exactly as in Case E.i.a but with (E5) replaced by (E5′′). The

result is the same.

Case E.ii: |Q| ≤ 95η1/2k.

Recall that we have a decomposition of V (G) into M ∪N ∪ P ∪Q such that:

(E1) M ∪N is the vertex set of F and every edge of F belongs to G[M,N ];

(E2) every vertex in P has a green edge to M ;

(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ].

Recall also that

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k, (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)

Here, we consider the case when Q is sufficiently small to be disregarded. In that case,

provided |Q| ≤ 95η1/2k, from (E4b), we have

(1
2α1 + 1

2α2 − 96η1/2)k ≤ |P | ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b′′)
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P


M

N


Figure 2.24: Decomposition in Case E.ii.

By (E3), every edge in G[P ] is red or blue. Then, since G is 4η4k-almost-complete,

by Lemma 2.6.17, the largest monochromatic component FP in G[P ] contains at least

|P | − η1/2k vertices. Suppose that that this component is red.

We consider the largest red matching R in G[N,P ] and partition N into N1 ∪N2 and P

into P1 ∪ P2, where N1 = N ∩ V (R), N2 = N\N1, Q1 = Q ∩ V (R) and Q2 = Q\Q1.

Then, by maximality of R, all edges present in G[N2, P2] are coloured exclusively blue.

N1


N2


P1


P2


Figure 2.25: Decomposition of N ∪ P into N1 ∪N2 ∪ P1 ∪ P2 in Case E.ii.

Since P has a large red connected-component, all but η1/2k of the edges ofR belong to the

same red-component and thus form a red connected-matching. Thus, in order to avoid

having a red connected-matching on at least α1k vertices, we have |P1| ≤ (1
2α1 + η1/2)k.

Suppose that |N2| ≥ |P2|. Then, we have |P2| ≤ (1
2α2 + η1/2)k, since otherwise, by

Lemma 2.6.14, G[N2, P2] would contain a blue connected-matching on at least α2k ver-
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tices. Thus, by (E4a) and (E4b′′), we have

(1
2α1 − 97η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |P2| ≤ (1

2α2 + η1/2)k,

(1
2α1 − 97η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |N2|.





(2.29)

If instead |N2| ≤ |P2|, then, by Lemma 2.6.14, we have |N2| ≤ (1
2α2 + η1/2)k since, oth-

erwise, by Lemma 2.6.14, G[N2, P2] contains a blue connected-matching on at least α2k

vertices. Thus, by (E4a) and (E4b′′), we have

(3
4α1 − 1

4α2 − 6η1/2)k ≤ |P1| ≤ (1
2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |P2| ≤ (3

4α1 − 1
4α2 + 11η1/2)k,

(3
4α1 − 1

4α2 − 6η1/2)k ≤ |N1| ≤ (1
2α1 + η1/2)k,

(1
4α1 + 1

4α2 − 6η1/2)k ≤ |N2| ≤ (1
2α2 + η1/2)k,





(2.30)

which yields a contradiction unless α1 ≤ α2 + 28η1/2.

Six of the eight bounds obtained in (2.30) are stronger than the corresponding bounds

obtained in (2.29). The seventh is weaker but can be written in a similar form. Thus,

we will combine the two cases and continue under the assumption that

(1
2α1 − 97η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 97η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |N2|.





(2.31)

Suppose there exists a blue matching B1 on 198η1/2k vertices in G[N2, P1] and a blue

matching B2 on 198η1/2k vertices in G[N1, P2]. Then, defining Ñ = N2\V (B1) and

P̃ = P2\V (B2), we have |Ñ |, |P̃ | ≥ (1
2α2 − 197η1/2)k and, thus, by Lemma 2.6.14, there

exists a blue connected-matching B3 on at least (α2 − 396η1/2)k vertices in G[Ñ , P̃ ].

Since G2[N2, P2] is 4η4k-almost-complete, all vertices in N2 ∪ P2 belong to the same

blue component. Thus, B1 ∪ B2 ∪ B3 forms a blue connected-matching on at least α2k

vertices.
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N1


N2


P1


P2


Figure 2.26: Colouring of the edges of G[L1, Q2], G[L2, Q1].

Therefore, we proceed considering the following two subcases:

(a) the largest blue matching in G[N2, P1] spans at most 198η1/2k vertices;

(b) the largest blue matching in G[N1, P2] spans at most 198η1/2k vertices.

Case E.ii.a: Most edges in G2[N2, P1] are red.

Since the largest blue matching in G[N2, P1] spans at most 198η1/2k vertices, we can

discard at most 99η1/2k vertices from each of N2 and P1 so that all edges present in

G[N2, P1] are coloured exclusively red.

N1


N2


P1


P2


Figure 2.27: Initial colouring in Case E.ii.a.

In order to retain the equality |N1| = |P1| and the property that every vertex in N1

belongs to an edge of R, we discard from N1 each vertex whose R-mate in P1 has
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already been discarded. Recalling (2.31), we then have

(1
2α1 − 196η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 196η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 196η1/2)k ≤ |N2|.

Now, suppose there exists a red matching RU on 396η1/2k vertices in G[N1, P2]. Observe

that there exists a set R− of 198η1/2k edges belonging to R such that N1 ∩ V (RS) =

N1 ∩ V (R−). Then, we have |N2|, |P1 ∩ V (R−)| ≥ 198η1/2k so, by Lemma 2.6.14,

there exists a red connected-matching RV on at least 394η1/2k vertices in G[N2, P1 ∩
V (R−)]. Then, since all edges present in G[N2, P1] are coloured exclusively red and

every vertex in N1 has a red neighbour in P1, (R\R−), RU and RV belong to the

same red-component and, thus, together form a red-connected-matching on at least

2(1
2α1 − 196η1/2k − 199η1/2k) + 396η1/2k + 394η1/2k ≥ α1k vertices. Thus, we can

discard at most 198η1/2k vertices from each of N1 and P2 so that all edges present in

G[N1, P2] are coloured exclusively blue. We then have

(1
2α1 − 196η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 295η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 394η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 196η1/2)k ≤ |N2|.

N1


N2


P1


P2


Figure 2.28: Colouring of the edges of G[N1, P2].
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Observe then that, since |N2|, |P2| ≥ (1
2α2 − 295η1/2)k, by Lemma 2.6.14, there exists

a blue connected-matching on at least (α2 − 592η1/2)k vertices in G[N2, P2]. Thus,

since all edges present in G[N,P2] are coloured exclusively blue, if there existed a blue

matching on 592η1/2k vertices in G[N1, P1], we would have a blue connected-matching

on at least α2k vertices. Therefore, after discarding at most 296η1/2k vertices from each

of P1 and N1, we may assume that all edges in G[P1, N1] are coloured exclusively red

and that

(1
2α1 − 492η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 295η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 690η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 196η1/2)k ≤ |N2|.





(2.32)

Then, since η ≤ (α2/20000)2, by (2.32), we have

|N | = |N1|+ |N2| ≥ |P1|+ 5000η1/2k, (2.33)

|N | = |N1|+ |N2| ≥ |P2|+ 5000η1/2k. (2.34)

In particular, |N | ≥ |P2| so, by Lemma 2.6.14, we have

|P2| ≤ (1
2α2 + η1/2)k. (2.35)

N1


N2


P1


P2


M

N


P1


P2


Figure 2.29: Colouring after three rounds of discarding vertices.

Having determined the colouring of the red-blue graph G[N,P ], we now expand our

sights to G[M ∪N ] and G[M,P ], each of which can include green edges:
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Suppose there exists a red matching RA on 986η1/2k vertices in G[N ]∪G[M,N ]. Then,

by (2.32) and (2.33), we have |N\V (RA)| ≥ |P1| ≥ (1
2α1−492η1/2)k so, by Lemma 2.6.14,

there exists a red connected-matching RB on at least (α1−986η1/2)k in G[N\V (RA), P1].

Since all edges in G[N,P1] are coloured exclusively red, RA and RB belong to the

same red component and, thus, together form a red connected-matching on at least

α1k vertices. Similarly, if there exists a blue matching on at least 594η1/2k vertices in

G[N ] ∪ G[M,N ], then this can be used along with G[N,P2] to give a blue connected-

matching on at least α2k vertices. Thus, after discarding at most 790η1/2k vertices

from M and at most 2370η1/2k vertices from N , we may assume that all edges present

in G[N ] and G[M ∪N ] are green.

M

N


P1


P2


Figure 2.30: Colouring of the edges of G[N ] ∪G[N,M ].

After discarding these vertices, we have

(1
2α3 − 800η1/2)k ≤ |M | ≤ 1

2α3k,

(1
2α3 − 3300η1/2)k ≤ |N | ≤ 1

2α3k.



 (2.36)

Next, suppose there exists a green matching GS on 8240η1/2k vertices in G[M,P ].

By (2.36), we have |M\V (GS)| ≥ (1
2α3 − 4920η1/2)k. Then, taking Ñ to be any subset

of (1
2α3 − 4920η1/2)k vertices in N , by Lemma 2.6.14, there exists a green connected-

matching GL on at least (α3 − 9842η1/2)k vertices in G[M\V (GS), Ñ ]. Also, since

|N\Ñ | ≥ 1618η1/2k, by Theorem 2.6.1, there exists a green matching GT on 1610η1/2k

vertices in G[N\Ñ ]. Then, together GS , GL and GT form a green connected-matching

on at least α3k vertices which is odd by the definition of the decomposition. Thus, we

may discard at most 4120η1/2k vertices from each of M and P such that none of the

edges present in G[P,M ∪N ] are coloured green.
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M

N


P1


P2


Figure 2.31: Colouring of the edges of G[M,P ].

Then, recalling (2.32), (2.35) and (2.36), we have

(1
2α1 − 4612η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 4415η1/2)k ≤ |P2| ≤ (1

2α2 + η1/2)k,

(1
2α3 − 4920η1/2)k ≤ |M | ≤ 1

2α3k,

(1
2α3 − 3300η1/2)k ≤ |N | ≤ 1

2α3k.





(2.37)

Now, suppose there exists a red matchingRS on 9230η1/2k vertices inG[M,P2]. By (2.33)

and (2.37), we have |N | ≥ |P1| ≥ (1
2α1 − 4612η1/2)k. So, by Lemma 2.6.14, there exists

a red connected-matching RL on at least 2|P1| − 2η1/2k ≥ (α1 − 9226η1/2)k vertices in

G[N,P1]. Since G[P ] has a red effective-component on at least |P | − η1/2k, RL belongs

to the same red component as at least 4614η1/2k of the edges of RS , thus giving a red

connected-matching on at least α1k vertices in G[M,P2] ∪ G[N,P1]. Therefore, after

discarding at most 4615ηk vertices from each of M and P2, we may assume that all

edges present in G[M,P2] are coloured exclusively blue.

We then have

(1
2α1 − 4612η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 9030η1/2)k ≤ |P2| ≤ (1

2α2 + η1/2)k,

(1
2α3 − 9335η1/2)k ≤ |M | ≤ 1

2α3k,

(1
2α3 − 3300η1/2)k ≤ |N | ≤ 1

2α3k.





(2.38)
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Similarly, suppose there exists a blue matching BS on 18062η1/2k vertices in G[M,P1].

By (2.34) and (2.38), |N | ≥ |P2| ≥ (1
2α1−9030η1/2)k. So, by Lemma 2.6.14, there exists

a blue connected-matching BL on at least 2|P2| − 2η1/2k ≥ (α1 − 18062η1/2)k vertices

in G[N,P2]. Then, since G is 4η4k-almost-complete and all edges present in G[M,P2]

are coloured exclusively blue, BL and BS belong to the same blue component of G, and

thus, together, form a blue connected-matching on at least α2k vertices. Thus, after

discarding at most 9031ηk vertices from each of M and P1, we may assume that all

edges present in G[M,P1] are coloured exclusively red. We then have

(1
2α1 − 13643η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 9030η1/2)k ≤ |P2| ≤ (1

2α2 + η1/2)k,

(1
2α3 − 18366η1/2)k ≤ |M | ≤ 1

2α3k,

(1
2α3 − 3300η1/2)k ≤ |N | ≤ 1

2α3k.





(2.39)

Finally, since |N | ≥ |P1|, |P2|, if there existed a red matching on at least 27288η1/2k

vertices in G[M ] or a blue matching on at least 18062η1/2k vertices in G[M ], then we

could obtain a red connected-matching on at least α1k vertices or a blue connected-

matching on at least α2k vertices. Thus, after discarding at most 45350η1/2k further

vertices from M , we may assume that all edges present in G[M ∪N ] are green.

M

N


P1


P2


Figure 2.32: Final colouring in Case E.ii.a.

In summary, we now have

|P1| ≥ (1
2α1 − 13643η)k, |P2| ≥ (1

2α2 − 9030η)k, |M ∪N | ≥ (α3 − 67216η1/2)k,
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and know that all edges present in G[M ∪N,P1] are coloured exclusively red, all edges

present G[M∪N,P2] are coloured exclusively blue and all edges in G[M∪N ] are coloured

exclusively green.

We have thus found, as a subgraph of G, a graph belonging to

K
(

(1
2α1 − 14000η1/2)k, (1

2α2 − 14000η1/2)k, (α3 − 68000η1/2)k, 4η4k
)
.

Case E.ii.b: Most edges in G2[N1, P2] are red.

Recall that we have a decomposition of V (G) into M ∪N ∪ P ∪Q such that:

(E1) M ∪N is the vertex set of F and every edge of F belongs to G[M,N ];

(E2) every vertex in P has a green edge to M ;

(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ].

Recall also that

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k, (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)

Furthermore, recall that the largest red matching R in G[N,P ] defines a partition of N

into N1 ∪ N2 and P into P1 ∪ P2 such that the edges of R belong G[N1, P1], all edges

present in G[N2, P2] are coloured exclusively blue and that

(1
2α1 − 97η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 97η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |N2|.

Additionally, in this case, we assume that the largest blue matching in G[N1, P2] spans

at most 198η1/2k vertices. Thus, we can discard at most 99η1/2k vertices from each

of N1 and P2 so that all edges present in G[N1, P2] are coloured exclusively red.
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N1


N2


P1


P2


Figure 2.33: Initial colouring in Case E.ii.b.

In order to retain the equality |N1| = |P1| and the property that every vertex in P1

belongs to an edge of R, we discard from P1 each vertex whose R-mate in N1 has

already been discarded. We then have

(1
2α1 − 196η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 196η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 196η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 97η1/2)k ≤ |N2|.

Then, suppose there exists a red matching on 396η1/2k vertices in G[N2, P1]. Such a

matching could be used together with G[N1, P1] and G[N1, P2] to give a red connected-

matching on at least α1k vertices. Thus, we can discard at most 198η1/2k vertices from

each of N2 and P1 so that all edges present in G[N2, P1] are coloured exclusively blue.

We then have

(1
2α1 − 394η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 196η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 196η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 295η1/2)k ≤ |N2|.

Then, if there existed a blue matching on 592η1/2k vertices in G[P1, N1], this could

be used along with G[P,N2] to give a blue connected-matching on at least α2k vertices.
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Thus, after discarding at most 296η1/2k vertices from each of N1 and P1, we may assume

that all edges present in G[N1, P1] are coloured exclusively red and that

(1
2α1 − 690η1/2)k ≤ |P1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 196η1/2)k ≤ |P2| ≤ (1

2α2 + 32η1/2)k,

(1
2α1 − 492η1/2)k ≤ |N1| ≤ (1

2α1 + η1/2)k,

(1
2α2 − 295η1/2)k ≤ |N2|.





(2.40)

N1


N2


P1


P2


Figure 2.34: Colouring of the edges of G[N,P ].

Observe, now, that, given any subset P ′ of (1
2α1 − 492η1/2)k vertices from P , by

Lemma 2.6.14, there exists a red connected-matching on at least (α1−986η1/2)k vertices

in G[N1, P
′]. Thus, the largest red matching in G[P ] spans at most 986η1/2k vertices.

Similarly, given any subset P ′′ of (1
2α1 − 295η1/2)k vertices from P , we can find a blue

connected-matching on at least (α1 − 592η1/2)k vertices in G[N2, P
′′]. Thus, the largest

blue matching in G[P ] spans at most 592η1/2k vertices. Thus, since there are no green

edges within G[P ], we have |P | ≤ 1600η1/2k, which, since η ≤ (α1/10000)2, contra-

dicts (2.40), completing Case E.ii.b.

At the beginning of Case E.ii, we assumed that FP , the largest monochromatic com-

ponent in G[P ], was red. If instead that monochromatic component is blue, then the

proof proceeds exactly as above following the same steps with the roles of red and blue

exchanged and with α1 and α2 exchanged. The result is identical.
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Case E.iii: |P |, |Q| ≥ 95η1/2k.

We now consider the case when neither P nor Q is trivially small. This case is fairly

involved, combining elements of Case E.i and Case E.ii with new arguments. However,

because neither P norQ is trivially small, we can exploit the structure of the two coloured

graph G[P ∪Q].

Recall that we have a decomposition of V (G) into M ∪N ∪ P ∪Q such that:

(E1) M ∪N is the vertex set of F and every edge of F belongs to G[M,N ];

(E2) every vertex in P has a green edge to M ;

(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ].

M

N


Q


P


Figure 2.35: Decomposition in Case E.iii.

Recall also that

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k, (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)

In this case, we assume that |P |, |Q| ≥ 95η1/2k. Recall that G[P ∪ Q] is 4η4k-almost-

complete. Then, since |P | + |Q| ≥ 190η1/2k, we have 4η4k ≤ η2(|P | + |Q| − 1) and,

thus, G[P ∪ Q] is (1 − η2)-complete. Since α2 ≤ α1 ≤ 1, recalling (E4b), we have

|P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k ≤ (1 + 5η1/2)k and so

|P |, |Q| ≥ 95η1/2k ≥ 4η1/2(1 + 5η1/2) ≥ 4η1/2(|P |+ |Q|) ≥ 4η(|P |+ |Q|).
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Thus, provided k ≥ 1/(190η5/2), we may apply Lemma 2.6.18 to G[P ∪ Q], giving rise

to two possibilities:

(a) P ∪Q contains a monochromatic component F on at least |P ∪Q| − 8ηk vertices;

(b) there exist vertices wr, wb ∈ Q such that wr has red edges to all but 8ηk vertices

in P and wb has blue edges to all but 8ηk vertices in P .

Case E.iii.a: P ∪Q has a large monochromatic component.

Suppose that F , the largest monochromatic component in P ∪ Q is red. We consider

G[M,Q] andG[N,P ], both of which have only red and blue edges, and letR be the largest

red matching in G[M,Q]∪G[N,P ]. We partition each of M,N,P,Q into two parts such

that M1 = M ∩ V (R), M2 = M\M1, N1 = N ∩ V (R), N2 = N\N1, P1 = P ∩ V (R),

P2 = M\P1, Q1 = Q ∩ V (R) and Q2 = Q\Q1. Observe that, by maximality of R, all

edges present in G[P2, N2] and G[Q2, N2] are blue.

Q1


P2


Q2


Q1


M2


M1


P1
N1


N2


Figure 2.36: Decomposition into eight parts.

Notice that, since G is 4η4k-almost-complete, G[M2 ∪ Q2] and G[N2 ∪ P2] each have a

single blue component. We then consider two subcases:

(i) P2 and Q2 belong to the same blue component of G;

(ii) P2 and Q2 belong to different blue components of G.
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Case E.iii.a.i: P2 and Q2 belong to the same blue component.

Since F , the largest red component in P ∪Q, contains at least |P ∪Q|− 8ηk vertices, all

but at most 8ηk of the edges of R belong to F . Thus, since |M1| = |Q1| and |N1| = |P1|,
we have a red connected-matching on at least 2(|P1| + |Q1| − 8ηk) vertices and so we

may assume that

|P1|+ |Q1| ≤ (1
2α1 + 8η)k (2.41)

in order to avoid having a red connected-matching on at least α1k vertices.

Recalling (E4a) and (E4b), since η ≤ (α1/100)2, we have

|M |+ |N | ≥ |P |+ |Q|+ 80η1/2k

and also

|M |, |N | ≥ 3
4α1 + 1

4α2 − 5η1/2k ≥ 1
2α1 + 1

2α2 − 5η1/2k ≥ |P |+ |Q| − 10η1/2.

Thus, since |M1| = |Q1|, |N1| = |P1| and |P |, |Q| ≥ 95η1/2k, we have

|M2| ≥ |P |+ |Q2| − 10η1/2k ≥ |Q2|+ 85η1/2k, (2.42a)

|N2| ≥ |P2|+ |Q| − 10η1/2k ≥ |P2|+ 85η1/2k. (2.42b)

In particular, we have |M2| ≥ |Q2| and |N2| ≥ |P2|. Thus, since P2 and Q2 belong to the

same effective-blue component, by Lemma 2.6.14, there exists a blue connected-matching

on at least (2|P2| − 2ηk) + (2|Q2| − 2ηk) vertices in G[N2, P2] ∪ G[M2, Q2]. Thus, we

may assume that

|P2|+ |Q2| ≤ (1
2α2 + 2η)k, (2.43)

in order to avoid having a blue connected-matching on at least α2k vertices.

Then, by (E4a), (E4b), (2.41) and (2.43), we have

|P1|+ |Q1| ≥ (1
2α1 − 3η)k, |P2|+ |Q2| ≥ (1

2α2 − 9η)k. (2.44)

We now proceed to determine the coloured structure of G. We begin by proving the

following claim whose proof follows the same three steps as that of Claim 2.8.1. Con-

sidering in parallel G[M,Q] and G[N,P ], the first step in the proof is to show that,
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after possibly discarding some vertices, all edges contained in G[M2, Q1]∪G[N2, P1] are

coloured exclusively red, the second is to show that, after possibly discarding further

vertices, all edges contained in G[M1, Q2] ∪G[N1, P2] are coloured exclusively blue and

the third is to show that, after possibly discarding still more vertices, all edges contained

in G[M1, Q1] ∪G[N1, P1] are coloured exclusively red.

Claim 2.8.2. We may discard at most 70ηk vertices from P1∪Q1, at most 48η1/2k ver-

tices from P2∪Q2, at most 94η1/2k vertices from each of M1 and N1 and at most 11ηk ver-

tices from M2 ∪N2 such that, in what remains, all edges present in G[M,Q1]∪G[N,P1]

are coloured exclusively red and all edges present in G[M,Q2] ∪ G[N,P2] are coloured

exclusively blue.

Proof. Suppose there exists a blue matching BS on at least 22ηk vertices in G[M2, Q1]∪
G[N2, P1]. By (2.42a) and (2.42b), we have |M2\V (BS)| ≥ |Q2| and |N2\V (BS)| ≥ |P2|.
Thus, since P2 and Q2 belong to the same blue component of G, applying Lemma 2.6.14

to each of G[M2\V (BS), Q2] and G[N2\V (BS), P2] gives a blue connected-matching BL

in G[M2\V (BS), Q2]∪G[N2\V (BS), P2] on at least (2|P2|−2ηk)+(2|Q2|−2ηk) vertices

which belongs to the same blue component of G as BS but shares no vertices with it.

Thus, BL ∪BS forms a blue connected-matching on at least 2|P2|+ 2|Q2|+ 18ηk ≥ α2k

vertices. Therefore, after discarding at most 11ηk vertices from each of M2 ∪ N2 and

P1 ∪ Q1, we may assume that all edges present in G[M2, Q1] ∪ G[N2, P1] are coloured

exclusively red.

Q1


P2


Q2


Q1


M2


M1


P1
N1


N2


Figure 2.37: Colouring of G[M2, Q1] ∪G[N2, P1].
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Recalling (2.44), we then have

|P1|+ |Q1| ≥ (1
2α1 − 14η)k, |P2|+ |Q2| ≥ (1

2α2 − 9η)k.

In order to retain the equalities |M1| = |Q1| and |N1| = |P1| and the property that every

vertex in M1 ∪N1 belongs to an edge of R, we discard from M1 ∪N1 each vertex whose

R-mate in P1 ∪Q1 has already been discarded. Thus, we discard at most a further 11ηk

vertices.

Then, if either G[N1, P2] or G[M1, Q2] contains a red matching on at least 48ηk vertices

in G[N1, P2], then we may construct a red connected-matching on at least α1k vertices

as follows:

Suppose that there exists a red matching RP on 48ηk vertices in G[N1, P2]. Then,

observe that there exists a set R− of 24ηk edges belonging to R such that N1∩V (RP ) =

N1∩V (R−). Define P̃ = P1∩V (R−) and consider G[N2, P̃ ]. Since |N2|, |P̃ | ≥ 24ηk and

G[N2, P̃ ] is 4η4k-almost-complete, we may apply Lemma 2.6.14 to find a red connected-

matching RS on at least 46ηk vertices in G[N2, P̃ ]. Then, recalling that P ∪ Q has a

red effective-component including all but 8ηk of its vertices, we have a red connected-

matching R? ⊆ (R\R−) ∪RS ∪RP on at least

2
(
|P1\V (R−)|+ |Q1|+ |P1∩ V (RS)|+ |P2 ∩ V (RP )| − 8ηk)

≥ 2
(

1
2α1 − 39η + 23η + 24η − 8η

)
k ≥ α1k vertices

in G[N1\V (RP ), P1\V (RS)] ∪G[M1, Q1] ∪G[N2, P1 ∩ V (RS)] ∪G[N1 ∩ V (RP ), P2].

Similarly, suppose that there exists a red matching RQ on 48ηk vertices in G[M1, Q2].

Then, observe that there exists a set R= of 24ηk edges belonging to R such that M1 ∩
V (RQ) = M1∩V (R=). Define Q̃ = Q1∩V (R=) and consider G[M2, Q̃]. Since |M2|, |Q̃| ≥
24ηk and G[M2, Q̃] is 4η4k-almost-complete, we may apply Lemma 2.6.14 to find a red

connected-matching RT on at least 46ηk vertices in G[M2, Q̃]. Then, recalling that

P ∪Q has a red effective-component including all but 8ηk of its vertices, we have a red

connected-matching R∗ ⊆ (R\R=) ∪RT ∪RQ on at least

2 (|P1|+ |Q1\V (R=)|+ |Q1 ∩ V (RS)|+ |Q2 ∩ V (RQ)| − 8ηk) ≥ α1k vertices

in G[N1, P1] ∪G[M1\V (RQ), Q1\V (RT )] ∪G[M2, Q1 ∩ V (RT )] ∪G[M1 ∩ V (RQ), Q2].
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Thus, after discarding at most 24ηk vertices from each of M1, N1, P2 and Q2, we may

assume that all edges present in G[M1, Q2]∪G[N1, P2] are coloured exclusively blue. We

then have

|P1|+ |Q1| ≥ (1
2α1 − 14η)k, |P2|+ |Q2| ≥ (1

2α2 − 57η)k.

Q1


P2


Q2


Q1


M2


M1


P1
N1


N2


Figure 2.38: Colouring of G[M1, Q2] ∪G[N1, P2].

Recalling (2.42a) and (2.42a), given that, so far, we have discarded at most 11ηk vertices

from M2 ∪N2, we have

|M2| ≥ |Q2|+ 14η1/2k, |N2| ≥ |P2|+ 14η1/2k.

Thus, by Lemma 2.6.14, there exist blue connected-matchings B1 spanning at least

2|Q2| − 2ηk vertices in G[M2, Q2], and B2 spanning at least |P2| − 2ηk vertices in

G[N2, Q2]. Recall that we assume that P2 and Q2 belong to the same blue effective-

component. Then, since all edges present in G[M,Q2] and G[N,P2] are coloured blue,

all vertices in M ∪N ∪ P2 ∪ Q2 belong to the same blue component of G and B1 ∪ B2

forms a connected-matching on at least 2(|P2|+ |Q2|)− 4ηk ≥ (α2 − 118η)k vertices in

that component.

Thus, the largest blue matching in G[M1, Q1] ∪ G[N1, P1] spans at most than 118ηk

vertices. Therefore, after discarding at most 59ηk vertices from each of M1 ∪ N1 and

P1 ∪ Q1, we may assume that all edges present in G[M1, Q1] ∪ G[N1, P1] are coloured
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exclusively red, completing the proof of Claim 2.8.2. 2

In summary, we now know that all edges in G[M,Q1]∪G[N,P1] are coloured exclusively

red and that all edges in G[M,Q2] ∪G[N,P2] are coloured exclusively blue.

Q1


P2


Q2


Q1


M2


M1


P1
N1


N2


Figure 2.39: Colouring of G[M,Q] ∪G[N,P ].

Additionally, we have

|M1|+ |M2| ≥ |Q1|+ |Q2|+ 13η1/2k, |P1|+ |Q1| ≥ (1
2α1 − 73η)k,

|N1|+ |N2| ≥ |P1|+ |P2|+ 13η1/2k, |P2|+ |Q2| ≥ (1
2α2 − 57η)k.



 (2.45)

We now move on to consider G[M,P ] ∪ G[N,Q], taking the same approach as we did

for G[M,Q] ∪G[N,P ] but recalling the possibility of green edges in G[M,P ]. We prove

the following claim:

Claim 2.8.3. We may discard at most 145ηk vertices from P1 ∪ Q1, at most 84η1/2k

vertices from P2∪Q2 and at most 229ηk vertices from M∪N such that, in what remains,

there are no red edges present in G[M,P2] ∪ G[N,Q2] and no blue edges present in

G[M,P1] ∪G[N,Q1].

Proof. Suppose that there exists a red matching R× on at least 168ηk vertices in

G[M,P2] ∪ G[N,Q2]. Then, by (2.45), we have |M\V (R×)| ≥ |Q1| and |N\V (R×)| ≥
|P1|. Thus, since all but at most 8ηk vertices of P ∪Q belong to the same red component
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of G, R× can be used along with edges from G[N\V (R×), P1] and G[M\V (R×), Q1] to

form a red connected-matching on

(2|P1| − 2ηk) + (2|Q1| − 2ηk) + (168ηk − 16ηk) ≥ α1k

vertices. Thus, after discarding at most 84ηk vertices from each of M∪N and P2∪Q2, we

may assume that there are no red edges present in G[M,P2] ∪ G[N,Q2]. In particular,

since there are no green edges present in G[N,Q], we know that all edges present in

G[N,Q2] are coloured exclusively blue. We then have

|M1|+ |M2| ≥ |Q1|+ |Q2|+ 12η1/2k, |P1|+ |Q1| ≥ (1
2α1 − 73η)k,

|N1|+ |N2| ≥ |P1|+ |P2|+ 12η1/2k, |P2|+ |Q2| ≥ (1
2α2 − 142η)k.



 (2.46)

Next, suppose that there exists a blue matching B× on at least 290ηk vertices in

G[M,P1] ∪G[N,Q1]. Then, by (2.46), we have |M\(V (B×)| ≥ |Q2| and |N\(V (B×)| ≥
|P2|. Thus, since M2 ∪ N2 ∪ P2 ∪ Q2 belong to the same component of G, B× can

be used along with edges from G[N\V (B×), P2] and G[M\V (B×), Q2] to give a blue

connected-matching on at least

(2|P2| − 2ηk) + (2|Q2| − 2ηk) + 290ηk ≥ α2k

vertices. Thus, after discarding at most 145ηk vertices from each of P1∪Q1 andN∪M , we

may assume that there are no blue edges present in G[M,P1] ∪G[N,Q1]. In particular,

since there are no green edges present in G[N,Q], we know that all edges present in

G[N,Q1] are coloured exclusively red.

In summary, we have discarded at most 145ηk vertices from P1 ∪ Q1, at most 84ηk

vertices from P2 ∪Q2 and at most 229ηk vertices from M ∪N . Having done so, we now

know that there are no red edges present in G[M,P2] ∪G[N,Q2] and that there are no

blue edges present in G[M,P1] ∪ G[N,Q1]. In particular, since we already knew that

are no green edges present in G[N,Q], we know that all edges present in G[N,Q1] are

coloured exclusively red and that all edges present in G[N,Q2] are coloured exclusively

blue, thus completing the proof of Claim 2.8.3. 2
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Figure 2.40: Colouring of G[M,P ] ∪G[N,Q] after Claim 2.8.3.

We now have

|M | ≥ |Q1|+ |Q2|+ 11η1/2k, |P1|+ |Q1| ≥ (1
2α1 − 218η)k,

|N | ≥ |P1|+ |P2|+ 12η1/2k, |P2|+ |Q2| ≥ (1
2α2 − 142η)k.



 (2.47)

Finally, we turn our attention to G[M ∪N ], proving the following claim.

Claim 2.8.4. We may discard at most 732ηk vertices from M ∪N , such that, in what

remains, all edges present in G[M ∪N ] are coloured exclusively green.

Proof. Suppose that there exists a red matching R† on 442ηk vertices in G[M ∪ N ].

Then, by (2.47), we have |M\V (R†)| ≥ |Q1|, |N\V (R†)| ≥ |P1|. Also, since all edges

present in G[M ∪ N,Q1] are coloured exclusively red, M ∪ N belongs to a single red

component of G. Thus, by Lemma 2.6.14, there exists a red connected-matching R‡ in

G[N\V (R†), P1]∪G[M\V (R†), Q1] on at least (2|P1|−2ηk)+(2|Q1|−2ηk) vertices. Then,

since R† and R‡ belong to the same red component but share no vertices, together they

form a red connected-matching on at least (2|P1| − 2ηk) + (2|Q1| − 2ηk) + 442ηk ≥ α1k

vertices.

Similarly, suppose that there exists a blue matching B† on 290ηk vertices in G[M ∪
N ]. Then, by (2.47), we have |M\V (B†)| ≥ |Q2|, |N\V (B†)| ≥ |P2|. Since all edges

present in G[M ∪N,Q2] are coloured exclusively blue, M ∪N belongs to a single blue

component of G. Then, by Lemma 2.6.14, there exists a blue connected-matching B‡
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in G[N\V (B†), P2]∪G[M\V (B†), Q2] on at least (2|P2| − 2ηk) + (2|Q2| − 2ηk) vertices.

Since B† and B‡ belong to the same blue component but share no vertices, together they

form a blue connected-matching on at least (2|P2| − 2ηk) + (2|Q2| − 2ηk) + 290ηk ≥ α1k

vertices.

Thus, after discarding at most 732ηk vertices from M ∪N , we can assume that all edges

present in G[M ∪N ] are coloured exclusively green, completing the proof of Claim 2.8.4.

2

P1U Q1


P2U Q2


M U N


Figure 2.41: Colouring of G[M ∪N ].

Thus far, we have discarded at most 1200ηk vertices from M ∪ N . Recalling (E4), we

now have |M ∪N | ≥ (α3−9η1/2)k. Suppose there exists a green matching G† on 20η1/2k

vertices in G[M ∪ N,P ∪ Q]. Then, we have |(M ∪ N)\V (G†)| ≥ (α3 − 19η1/2)k. By

Theorem 2.6.1, since G is 4η4k-almost-complete, G[(M ∪ N)\V (G†)] contains a green

connected-matching on all but at most one of its vertices. Thus, provided k ≥ 1/η1/2,

there exists a connected-green matching G‡ on at least (α3−20η1/2)k vertices in G[(M ∪
N)\V (G†)]. Since G is 4η4k-almost-complete and all edges present in G[M ∪ N ] are

coloured exclusivly green, all vertices of M ∪ N belong to the same green component

of G. Thus, together, G† and G‡ form a green connected-matching on at least α3k

vertices. Thus, we may, after discarding at most 10η1/2k vertices from each of M ∪ N
and P ∪Q, assume that there are no green edges in G[M ∪N,P ∪Q].

In summary, we now have

|P1|+ |Q1| ≥ (1
2α1 − 218η)k, |P2|+ |Q2| ≥ (1

2α2 − 142η)k, |M ∪N | ≥ (α3 − 20η1/2)k,

and know that all edges present in G[M ∪ N,P1 ∪ Q1] are coloured exclusively red, all
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edges present G[M ∪N,P2∪Q2] are coloured exclusively blue and all edges in G[M ∪N ]

are coloured exclusively green.

P1U Q1


P2U Q2


M U N


Figure 2.42: Final colouring in Case E.iii.a.i.

Thus, we have found, as a subgraph of G, a graph belonging to

K
(

(1
2α1 − 10η1/2)k, (1

2α1 − 10η1/2)k, (α3 − 20η1/2)k, 4η4k
)
,

completing Case E.iii.a.i.

Case E.iii.a.ii: P2 and Q2 belong to the different components.

Recall that we have a decomposition of V (G) into M ∪N ∪ P ∪Q satisfying (E1)–(E3)

such that

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)

Recall also that F , the largest monochromatic component in P ∪ Q, is red and spans

at least |P ∪ Q| − 8ηk vertices and that each of M,N,P and Q have been subdivided

into two parts such that M1 = M ∩ V (R), M2 = M\M1, N1 = N ∩ V (R), N2 = N\N1,

P1 = P ∩ V (R), P2 = M\P1, Q1 = Q ∩ V (R), Q2 = Q\Q1, where R is the largest red

matching in G[M,Q] ∪G[N,P ]. By maximality of R, all edges present in G[M2, Q2] or

G[N2, P2] are blue.

Additionally, in this case, we assume that P2 and Q2 belong to different blue components

of G. Thus, in particular, all edges present in G[N2, Q2] and G[P2, Q2] are coloured red.
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 P2


Figure 2.43: Initial colouring in Case E.iii.a.ii.

By Lemma 2.6.14, there exist red connected-matchings

RPQ on at least 2 min{|P2|, |Q2|} − 2ηk vertices in G[P2, Q2]

RNQ on at least 2 min{|N2|, |Q2|} − 2ηk vertices in G[N2, Q2].

Then, since F includes all but at most 8ηk of the vertices of P ∪ Q, these connected-

matchings can be augmented with edges from R to give the red connected-matchings

illustrated in Figure 2.44:

R1 on at least 2|P1|+ 2|Q1|+ 2 min{|P2|, |Q2|} − 18ηk vertices

in G[M1, Q1] ∪G[N1, P1] ∪G[P2, Q2],

R2 on at least 2|P1|+ 2|Q1|+ 2 min{|N2|, |Q2|} − 18ηk vertices

in G[M1, Q1] ∪G[N1, P1] ∪G[N2, Q2],

Given the existence of these matchings, we can obtain bounds on the sizes of the various

sets identified:

Since |P |, |Q| ≥ 95η1/2k, by (E4b), |P |, |Q| ≤ (1
2α1 + 1

2α2 − 90η1/2)k. But, then,

|M |, |N | ≥ (3
4α1 + 1

4α2 − 5η1/2)k ≥ max{|P |, |Q|}+ 85η1/2k.

104



Q1


Q2


Q1


M2


M1


P1
N1


N2
 P2


R1


R1


R1


Q1


Q2


Q1


M2


M1


P1
N1


N2
 P2


R2


R2


Figure 2.44: The red connected-matchings R1 and R2.

So, since |M1| = |Q1| and |N1| = |P1|, we have

|M2| ≥ |Q2|+ 85η1/2k, |N2| ≥ |P2|+ 85η1/2k. (2.48)

In particular, |M2| ≥ |Q2| and |N2| ≥ |P2|. Thus, by Lemma 2.6.14, we may obtain a

blue connected-matching on 2|P2| − 2ηk vertices in G[N2, P2] and one on 2|Q2| − 2ηk

vertices in G[M2, Q2]. Thus, in order to avoid a blue connected-matching on at least

α2k vertices, we may assume that

|P2|, |Q2| ≤ (1
2α2 + η)k. (2.49)

Suppose, for now, that |Q2| ≥ |N2|. Then, recalling, that |N2| ≥ |P2|, we have |Q2| ≥ |P2|
and, therefore, R1 spans at least 2|P1| + 2|Q1| + 2|P2| − 18ηk vertices in G[M1, Q1] ∪
G[N1, P1]∪G[P2, Q2]. Thus, in order to avoid a red connected-matching on at least α1k

vertices, we may assume that

|P1|+ |Q1|+ |P2| ≤ (1
2α1 + 10η)k.

Also, since |Q2| ≤ (1
2α2 + η)k, by (E4b), we have

|P1|+ |Q1|+ |P2| ≥ (1
2α1 − 2η)k.
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Thus, R1 spans at least (α1 − 22η)k vertices. Now, since |Q2| ≥ |N2|, by (2.48), we

have |Q2| ≥ |P2|+ 15η1/2k. Thus, there exists Q̃ ⊆ Q2\V (R1) such that |Q̃| ≥ 15η1/2k.

Therefore, by Lemma 2.6.14, we may find a red connected-matching M3 on at least

28η1/2k vertices in G[N2, Q̃] which belongs to the same red component as R1. Thus,

together R1 and R3 form a red-connected-matching on α1k vertices, completing the

proof in this case.

Therefore, we may instead assume that |N2| ≥ |Q2|. In that case, R2 spans at least

2|P1|+ 2|Q1|+ |Q2| − 20ηk vertices in G[N1, P1] ∪G[M1, Q1] ∪G[N2, Q2]. Thus, |P1|+
|Q1|+ |Q2| ≤ (1

2α1 + 10η)k. Then, by (E4b) and (2.49), we obtain

(1
2α1 − 2η)k ≤ |P1|+ |Q1|+ |Q2| ≤ (1

2α1 + 10η)k,

(1
2α1 − 12η)k ≤ |P2| ≤ (1

2α2 + η)k.



 (2.50)

Observe that, by (2.49) and (2.50), we may assume that

|Q2| ≤ |P2|+ η1/2k. (2.51)

We are now in a position to examine the coloured structure of G[N,P ]. We show

that, after possibly discarding some vertices, we may assume that all edges contained in

G[N,P1] are coloured exclusively red and all edges contained in G[N,P2] are coloured

exclusively blue. Following the same steps as in the proofs of Claim 2.8.1 and Claim 2.8.2

we prove:

Claim 2.8.5. We may discard at most 67ηk vertices from N1, 14ηk vertices from N2,

54ηk vertices from P1 and at most 27ηk vertices from P2 such that, in what remains, all

edges present in G[N,P1] are coloured exclusively red and all edges present in G[N,P2]

are coloured exclusively blue.

Proof. Given any Ñ2 ⊆ N such that |Ñ2| ≥ |P2| ≥ (1
2α2 − 12η)k, by Lemma 2.6.14,

we can obtain a blue connected-matching on (α2 − 26η)k vertices in G[Ñ2, P2]. Then,

since |N2| ≥ |P2|+ 15η1/2k, the existence a blue matching BS on at least 28ηk vertices

G[N2, P1] would allow us to obtain a blue connected-matching on at least α2k vertices.

Thus, after discarding at most 14ηk vertices from each of P1 and N2, we may assume

that all edges present in G[N2, P1] are coloured exclusively red.
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Figure 2.45: Colouring of the edges of G[N2, P1].

After discarding these vertices, we have

|P1|+ |Q1|+ |Q2| ≥ (1
2α1 − 16η)k

and, thus, may assume that R2 spans at least (α1 − 50η)k vertices in G[M1, Q1] ∪
G[N1, P1] ∪G[N2, Q2]. Also, recalling (2.48) and (2.51), we have

|N2| ≥ |P2|+ 14η1/2k ≥ |Q2|+ 13η1/2k.

Thus,

|N2\V (R2)| ≥ |N2| − |Q2| ≥ 13η1/2k.

Suppose there exists a matching RS on 54ηk vertices in G[N1, P2], then we can obtain a

red connected-matching on at least α1k vertices as follows:

Observe that there exists a set R− of 27ηk edges belonging to R2 such that N1∩V (RS) =

N1∩V (R−). Define R∗ = R2\R− and P̃ = P1∩V (R−), let Ñ be any set of 27ηk vertices

in N2\V (R2) and consider G[Ñ , P̃ ]. Since |Ñ |, |P̃ | ≥ 27ηk, we may apply Lemma 2.6.14

to find a red connected-matching RT on at least 52ηk vertices in G[Ñ , P̃ ]. Since all

edges present in G[N2, Q2] ∪ G[P2, Q2] are coloured exclusively red, RS and RT belong

to the same red component as R2. Then, R∗ ∪RS ∪RT is a red connected-matching in

G[M1, Q1] ∪G[N1, P1] ∪G[N2, Q2] ∪G[N2, P1] ∪G[N1, P2]
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on at least (α1 − 50η − 55η)k + 54ηk + 52ηk ≥ α1k vertices.

Q1


Q2


Q1


M2


M1


P1
N1


N2
 P2


R*   G[M1,Q1]
U	
  

R*   G[N1,P1]
U	
  

RS
RT


Figure 2.46: Enlarging the matching R2 with edges from G[N1, P2].

Thus, after discarding at most 27ηk vertices from each of N1 and P2, we may assume

that all edges present in G[N1, P2] are coloured exclusively blue and, recalling (2.50),

that |P2| ≥ (1
2α2 − 38η)k.

Q1


Q2


Q1


M2


M1


P1
N1


N2
 P2


Figure 2.47: Resultant colouring of the edges of G[N1, P2].

Finally, suppose that there exists a blue matching BS on at least 80ηk vertices in

G[N1, P1]. Then, we could obtain a blue connected-matching on at least α2k vertices.
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Thus, after discarding at most 40ηk vertices from each of N1 and P1, we may assume

that all edges present in G[N1, P1] are coloured exclusively red, thus completing the

proof of the claim. 2

In summary, recalling (2.50), we now have

|P1|+ |Q1|+ |Q2| ≥ (1
2α1 − 56η)k,

|P2| ≥ (1
2α2 − 40η)k,

and know that all edges present in G[N,P1] are coloured exclusively red and that all

edges present in G[N,P2] are coloured exclusively blue. Observe, also, that there can be

no blue edges present in G[N1, Q2] since then M2 ∪Q2 and N2 ∪P2 would belong to the

same blue component of G.

Q1


Q2


Q1


M2


M1


P1
N1


N2
 P2


Figure 2.48: Colouring after Claim 2.8.5.

Next, we consider, in turn G[M2, N ∪ P2], G[N ] and G[M1, N ] showing that after dis-

carding a few vertices, we may assume that all edges remaining in each are coloured

exclusively green:

Suppose there exists a red matching RM on at least 136ηk vertices in G[M2, N ∪ P2].

Then, since |N | ≥ |P1| + |Q2| + 12η1/2k, we have |N\(RM )| ≥ |P1| + |Q2|. Thus, by

Lemma 2.6.14, there exists a red connected-matching RN on at least (2|P1| − 2ηk) +

(2|Q2| − 2ηk) vertices in G[N,P1 ∪ Q2] sharing no vertices with RM . Since all edges
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present in G[N ∪ P2, Q2] ∪ G[N,P1] are coloured red, RM and RN belong to the same

red component of G.

Since P ∪Q has a red effective-component on F on at least |P ∪Q|−8ηk vertices, all but

at most 8ηk of the edges of R contained in G[M1, Q1] belong to the same red component

as RM ∪ RN . Thus, defining RQ to be the subset of R belonging to G[M,Q1 ∩ F ], we

have a red connected-matching RM ∪RN ∪RQ on at least 136ηk+(2|P1|−2ηk)+(2|Q2|−
2ηk) + (2|Q1| − 16ηk) ≥ α1k vertices in G[M2, N ∪ P2] ∪G[N,P1 ∪Q2] ∪G[M1, Q1].

Q1


Q2


Q1


M2


M1


P1


N

P2


RQ


RM


RN


Figure 2.49: Construction of red connected-matching RM ∪RN ∪RQ.

Thus, discarding at most 68ηk vertices from each of M2 and N ∪P2, we may assume that

there are no red edges G[M2, N ∪P2]. Thus, recalling that we assume that P2 and Q2 are

in different blue components, all edges present in G[M2, N ∪P2] are coloured exclusively

green and have

|N | ≥ |P1|+ |Q2|+ 11η1/2k, |P1|+ |Q1|+ |Q2| ≥ (1
2α1 − 57η)k,

|N | ≥ |P2|+ 11η1/2k, |P2| ≥ (1
2α2 − 108η)k.



 (2.52)

Next, suppose there exists a red matching RA on 136ηk vertices inG[N ]. Then, by (2.52),

we have |N\V (RA)| ≥ |P1| + |Q2|. So, by Lemma 2.6.14, there exists a red connected-

matching RB on at least (2|P1| − 2ηk) + (2|Q2| − 2ηk) vertices in G[N\V (RA), P1 ∪Q2].

Since all edges in G[N,P1] are coloured red, all edges of RA and RB belong to the

same red component. Also, since the red component F spans all but at most 8ηk

vertices of P ∪ Q, there exists a red-matching RC ⊆ R in G[M1, Q1] on at least
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2|Q1| − 16ηk vertices belonging to the same red component as RA and RB. Then,

together RA, RB and RC form a red connected-matching on at least α1k vertices in

G[N ] ∪G[N,P1 ∪Q2] ∪G[M1 ∪Q1].

Similarly, if there exists a blue matching BA on 218ηk vertices in G[N ], then we can con-

struct a blue connected-matching on at least α2k vertices as follows. By (2.52), we have

|N\V (RB)| ≥ |P2|. So, by Lemma 2.6.14, there exists a blue connected-matching BB on

at least 2|P2|−2ηk vertices in G[N\V (BA), P2]. Since all edges in G[N,P2] are coloured

blue, all edges in BA and BB belong to the same blue component. Thus, together, BA

and BB form a blue connected-matching on at least 2|P2| + 216ηk ≥ α2k vertices in

G[N ] ∪ G[N,P1 ∪ Q2] ∪ G[M1 ∪ Q1]. Thus, discarding at most 354ηk vertices from N ,

we have

|N | ≥ |P1|+ |Q2|+ 10η1/2k, |N | ≥ |P2|+ 10η1/2k (2.53)

and may assume that all edges in G[N ] are coloured exclusively green.

Q1


Q2


Q1


M2


M1


P1


P2


N
N


Figure 2.50: Colouring of G[M2, P2] ∪G[N ].

Finally, we consider G[M1, N ]. Suppose there exists a red matching RD on 138ηk ver-

tices in G[M1, N ]. Then, by (2.53), we have |N\V (RD)| ≥ |P1| + |Q2|. Therefore, by

Lemma 2.6.14, there exists a red connected-matching RE on at least (2|P1| − 2ηk) +

(2|Q1| − 2ηk) vertices in G[N,P1 ∪ Q2] which shares no vertices with RD. Then, since

all edges present in G[N,P1] are coloured red, RD and RE belong to the same red com-

ponent. Since F , the largest red component in G[P ∪ Q] includes all but at most 8ηk
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of the vertices of P ∪ Q, there exists a matching RF ⊆ R in G[M1, Q1] on at least

2(|Q1| − |M1 ∩ V (RD)| − 8ηk) vertices which shares no vertices with RD but belongs to

the same red component as it. Thus, together, RD, RE and RF form a red connected-

matching on at least 2(|P1|+ |Q1|+ |Q2|+ |N ∩ V (RD)|)− 20ηk ≥ α1k vertices.

Similarly, if there exists a blue matching BD on 220ηk vertices in G[M1, N ]. Then,

by (2.53), we have |N\V (BD)| ≥ |P2|. Therefore, by Lemma 2.6.14, there exists a blue

connected-matching BE on at least (2|P2| − 2ηk) vertices in G[N,P2] which shares no

vertices with BD. Since all edges present in G[N,P2] are coloured blue, BD and BE

belong to the same blue component. Thus together BD and BE form a blue connected-

matching on at least 2|P2| − 2ηk + 220ηk ≥ α2k vertices. Therefore, after discarding at

most 174ηk vertices from each of M1 and N , we may assume that all edges present in

G[M1, N ] are coloured exclusively green.

Q1


Q2


Q1
M1


P1


P2


N


M2


N


Figure 2.51: Final Colouring in Case E.iii.a.ii.

Given the colouring found so far, we now show that we may obtain a green connected-

matching on at least α3k vertices: Having discarded at most 1000ηk vertices from M∪N ,

recalling (E4a), since η < 10−7, we have |M |, |N | ≥ (1
2α3 − 6η1/2)k. Recalling (2.48),

we have |M2| ≥ |Q2| + 14η1/2k ≥ 14η1/2 and, by (2.52), have |P2| ≥ (1
2α2 − 108η)k ≥

14η1/2k. Letting M ′ be a subset of M2 and N ′ a subset of N such that 14η1/2k ≤
|M ′| = |N ′| ≤ 15η1/2k, by Lemma 2.6.14, there exist green matchings GMP on at least

2|M ′| − 2ηk vertices in G[M ′, P2] and GMN on at least 2 min{|M\M ′|, |N\N ′|} − 2ηk

vertices in G[M\M ′, N\N ′]. Finally, by Theorem 2.6.1, provided k ≥ 1/η2, there exists
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a connected-matching GN on at least |N ′| − 1 vertices in G[N ′]. Then, since all edges

present in G[M,N ] are coloured green, GNP , GMN and GN belong to the same green

component and, since they share no vertices, form a green connected-matching on at

least

(2|M ′| − 2ηk) + (2 min{|M\M ′|, |N\N ′|} − 2ηk) + |N ′| − 1

≥ α3k + η1/2k − 4ηk − 1 ≥ α3k

vertices. By the definition of the decomposition M ∪N ∪P ∪Q, this connected-matching

is odd, thus completing Case E.iii.a.ii.

At the begining of Case E.iii.a, we made the assumption that F , the largest monochro-

matic component in G[P ∪Q] was red. If, instead, F is blue, then the proof is essentially

identical to the above with the roles of red and blue reversed. The result is the same,

that is, G will either contain a red connected-matching on at least α1k vertices, a blue

connected-matching on at least α2k vertices, a green odd connected-matching on at least

α3k vertices or a subgraph in

K
(

(1
2α1 − 10η1/2)k, (1

2α1 − 10η1/2)k, (α3 − 20η1/2)k, 4η4k
)
,

thus completing Case E.iii.a.

Case E.iii.b: G[P,Q] contains red and blue stars centred in Q.

Recall that we have a decomposition of V (G) into M ∪N ∪ P ∪Q satisfying (E1)–(E3)

with |P |, |Q| ≥ 95η1/2k and

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)

Additionally, in this case, we assume that the sets

Wr = {q ∈ Q : q has red edges to all but at most 8ηk vertices in P},

Wb = {q ∈ Q : q has blue edges to all but at most 8ηk vertices in P},

are both non-empty.

113



Q


P


M

N
 P


Q


wb  
wr  


Figure 2.52: Red and blue stars centred in Q.

We define two further sets which will be useful in what follows:

Pr = {p ∈ P : p has a red edge to some vertex q ∈Wr},

Pb = {p ∈ P : p has a blue edge to some vertex q ∈Wb}.

Observe that, since |P |, |Q| ≥ 95η1/2k, by (E4b), we have

95η1/2k ≤ |Q| ≤ (1
2α1 + 1

2α2 − 90η1/2)k.

Thus, considering (E4a) and (E4b), we have

|N | ≥ |Q| ≥ 95η1/2 ≥ 6(2η1/2)|N ∪Q| ≥ 6(2η)|N ∪Q|.

Recall that, at the start of Case E, after discarding some edges, G was assumed to be

(1 − 3
2η

4)-complete. Recall also that, from (2.16), we have α3 ≥ 3
2α1 + 1

2α2 − 10η1/2.

Thus, considering (E4a), since |Q| ≥ 95η1/2k, we have

|N ∪Q| ≥ 1
2α3k ≥ 1

4(α3 + 3
2α1 + 1

2α2 − 10η1/2)k ≥ 1
4(α3 + 1

2α1 + 1
2α2 + 10η1/2)k ≥ 1

4K.

Then, since η < 0.1, we have 6η4 ≤ 2η so G[N ∪Q] is (1− 2η)-complete and, provided

|N ∪Q| ≥ 1/η, we may apply Lemma 2.6.19 to G[N,Q] and distinguish four cases:

(i) G[N ∪Q] has a monochromatic component E on at least |N ∪Q| − 28ηk vertices;

(ii) N,Q can be partitioned into N1∪N2, Q1∪Q2 such that |N1|, |N2|, |Q1|, |Q2| ≥ 3ηk

and all edges present between Ni and Qj are red for i = j and blue for i 6= j;
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(iii) there exist vertices nr, nb ∈ N such that nr has red edges to all but 16ηk vertices

in Q and nb has blue edges to all but 16ηk vertices in Q;

(iv) there exist vertices qr, qb ∈ Q such that qr has red edges to all but 16ηk vertices

in N and qb has blue edges to all but 16ηk vertices in N .

Case E.iii.b.i: G[N ∪Q] has a large monochromatic component.

Suppose that E, the largest monochromatic component in G[N ∪Q], is red. In that case,

if G[Q ∩ E,Pr] contains a red edge, then G[P ∪Q] has a red effective-component on at

least |P ∪Q| − 36ηk vertices. Alternatively, every edge in G[Q∩E,Pr] is blue, in which

case, G[P ∪Q] has a blue connected-component on at least |P ∪Q| − 36ηk vertices.

wr    Wr


U
	
  

Q   E
U	
  

Q
M

N


Q


P

P


Pr
N   E
U	
  

Figure 2.53: Large red effective-component.

Suppose instead that E is blue. In that case, if G[Q ∩E,Pb] contains a blue edge, then

G[P ∪Q] has a blue effective-component on at least |P ∪Q|−36ηk vertices. Alternatively,

every edge present in G[Q ∩ E,Pb] is red, in which case, G[P ∪Q] has a red connected-

component on at least |P ∪Q| − 36ηk vertices.

In either case the proof proceeds via exactly the same steps as Case E.iii.a with the result

being that G will either contain a red connected-matching on at least α1k vertices, a

blue connected-matching on at least α2k vertices, a green odd connected-matching on

at least α3k vertices or a subgraph in

K
(

(1
2α1 − 100η1/2)k, (1

2α1 − 100η1/2)k, (α3 − 200η1/2)k, 4η4k
)
,

thus completing Case E.iii.b.i.
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Case E.iii.b.ii: N ∪Q has a non-trivial partition with ‘cross’ colouring.

In this case, we assume that N and Q can be partitioned into N1∪N2, Q1∪Q2 such that

|N1|, |N2|, |Q1|, |Q2| ≥ 3ηk and all edges present between Ni and Qj are red for i = j

and blue for i 6= j.

Q1


P


Q2


Q1


M


N2


N1


Q1


Figure 2.54: ‘Cross’ colouring of G[N,Q].

Recall that Wr and Wb are both non-empty, that is, there exist vertices wr, wb ∈ Q such

that wr has red edges to all but 8ηk vertices in P and wb has blue edges to all but 8ηk

vertices in P .

Observe that, we may assume that P ∪ Q does not have a monochromatic effective-

component on at least |P ∪ Q| − 16ηk vertices. Indeed, otherwise, the proof proceeds

via the same steps as Case E.iii.a, with the result being that G will either contain a red

connected-matching on at least α1k vertices, a blue connected-matching on at least α2k

vertices, a green odd connected-matching on at least α3k vertices or a subgraph in

K
(

(1
2α1 − 100η1/2)k, (1

2α1 − 100η1/2)k, (α3 − 200η1/2)k, 4η4k
)
.

Without loss of generality, we assume wr ∈ Q1. Observe then that the existence of

a red edge in G[Q2, Pr] would result in P ∪ Q having a red effective-component on at

least |P ∪ Q| − 8ηk vertices. Thus, we assume that every edge present in G[Q2, Pr] is

blue. Similarly, we may assume every edge present in G[Q1, Pb] is red. Since Wr and Wb

are non-empty, |Pr|, |Pb| ≥ |P | − 8ηk. Then, as |P | ≥ 95η1/2k, we have |Pr ∩ Pb| ≥
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|P |−16ηk > 0 and know that all edges present in G[Q2, Pr∩Pb] are coloured exclusively

red and all edges present in G[Q1, Pr ∩ Pb] are coloured exclusively blue.

Q1
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  Pr    Pb
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Figure 2.55: Red and blue edges in G[N,Q] ∪G[P,Q].

Recall that, by (E3), there are no green edges in G[P,N ] and notice that, if there existed

a vertex p ∈ P with red edges to both N1 and N2, then P ∪Q would have an effective

red-component on at least |P ∪ Q| − 16ηk vertices. Thus, we assume that there is no

such vertex. Similarly, we assume there does not exist a vertex in P with blue edges to

both N1 and N2. Thus, P can be partitioned into P1 ∪ P2 such that all edges present

between Pi and Nj are red for i = j and blue for i 6= j.
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Figure 2.56: Partitioning of P .
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Figure 2.57: Resultant colouring of G[N,P ].

Recall, however, that all edges present in G[Q1, Pr] are red and that all edges present

in G[Q2, Pb] are blue. Thus, in order to avoid G[P,Q] having a red effective-component

on at least |P ∪Q| − 16ηk vertices, we must have Pr ⊆ P1 but then, since |Pr ∩ Pb| > 0,

there exists a blue edge in G[Q2, P1], giving rise to a blue effective-component on at least

|P ∪Q| − 16ηk vertices, completing Case E.iii.a.ii.

Case E.iii.b.iii: G[N,Q] contains red and blue stars centred in N .

Recall that we have a decomposition of V (G) into M ∪N ∪P ∪Q satisfying (E1)–(E4b)

and that there exists vertices wr ∈Wr and wb ∈Wb, where

Wr = {q ∈ Q : q has red edges to all but at most 8ηk vertices in P},

Wb = {q ∈ Q : q has blue edges to all but at most 8ηk vertices in P}.

Additionally, in this case, we assume that there exist vertices nr ∈ Nr and nb ∈ Nb,

where

Nr = {n ∈ N : n has red edges to all but at most 16ηk vertices in Q},

Nb = {n ∈ N : n has blue edges to all but at most 16ηk vertices in Q}.

Recall that

118



Pr = {p ∈ P : p has a red edge to some vertex q ∈Wr},

Pb = {p ∈ P : p has a blue edge to some vertex q ∈Wb},

and define QN = {q ∈ Q : q has a red edge to some vertex n ∈ Nr}.

M

N


Q


P
P


wr  


Q


wb  


nb  

nr  


Figure 2.58: ‘Stars’ centred at wr, wb, nr and nb.

Notice that, since |Wr|, |Wb| > 0, we have |Pr|, |Pb| ≥ |P | − 8ηk and, since |Nr| > 0,

we have |QN | ≥ |Q| − 16ηk. So, if there exists a red edge in G[Pr, QN ], then G[P ∪Q]

has a red effective-component on at least |P ∪ Q| − 24ηk vertices. Alternatively, every

edge present in G[Pr, QN ] is blue. Then G[P ∪ Q] is has a blue component on at least

|P ∪ Q| − 24ηk vertices. In either case, the proof then follows the same steps has in

Case E.iii.a with the result being that G will either contain a red connected-matching

on at least α1k vertices, a blue connected-matching on at least α2k vertices, a green odd

connected-matching on at least α3k vertices or a subgraph in

K
(

(1
2α1 − 100η1/2)k, (1

2α1 − 100η1/2)k, (α3 − 200η1/2)k, 4η4k
)
,

thus completing case E.iii.b.iii.

Case E.iii.b.iv: G[N,Q] contains red and blue stars centred in Q.

Recall that we have a decomposition of V (G) into four parts M ∪N ∪ P ∪Q satisfying

(E1) M ∪N is the vertex set of F and every edge of F belongs to G[M,N ];

(E2) every vertex in P has a green edge to M ;
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(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ];

such that the sizes of the four parts satisfy

(max{3
4α1 + 1

4α2,
1
2α3} − 5η1/2)k ≤ |M | , |N | ≤ 1

2α3k, (E4a)

(1
2α1 + 1

2α2 − η)k ≤ |P |+ |Q| ≤ (1
2α1 + 1

2α2 + 5η1/2)k. (E4b)

Recall, also, that there exists vertices wr ∈Wr and wb ∈Wb, where

Wr = {q ∈ Q : q has red edges to all but at most 8ηk vertices in P},

Wb = {q ∈ Q : q has blue edges to all but at most 8ηk vertices in P}.

Additionally, in this case, we assume that there exist vertices qr ∈ Qr and qb ∈ Qb, where

Qr = {n ∈ Q : n has red edges to all but at most 16ηk vertices in N},

Qb = {n ∈ Q : n has blue edges to all but at most 16ηk vertices in N}.

We consider G[Q ∪M ]. Since all edges present in G[Q,M ] are coloured red or blue,

Lemma 2.6.19 can be applied to G[M ∪Q] as it was previously applied to G[N ∪Q] with

the same four possible outcomes:

(i) G[M ∪Q] has a monochromatic component on at least |M ∪Q| − 28ηk vertices;

(ii) M,Q can be partitioned intoM1∪M2, Q1∪Q2 such that |M1|, |M2|, |Q1|, |Q2| ≥ 3ηk

and all edges present between Mi and Qj are red for i = j and blue for i 6= j;

(iii) there exist vertices mr,mb ∈ N such that mr has red edges to all but 16ηk vertices

in Q and mb has blue edges to all but 16ηk vertices in Q;

(iv) there exist vertices qr, qb ∈ Q such that qr has red edges to all but 16ηk vertices

in M and qb has blue edges to all but 16ηk vertices in M .

For possibilities (i)–(iii), the proof proceeds via exactly the same steps as in the corre-

sponding cases above with the same possible outcomes.

Thus, we consider possibility (iv). That is, we assume that (in addition to wr, wb, qr, qb)

there exist vertices vr, vb ∈ Q such that vr has red edges to all but 16ηk vertices in M

and vb has blue edges to all but 16ηk vertices in M .
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Figure 2.59: ‘Stars’ centred in Q.

Consider the largest red matching R in G[N,P ∪Q] and partition each of N , P and Q

into two parts such that N1 = N ∩ V (R), N2 = N\N1, P1 = P ∩ V (R), P2 = P\P1,

Q1 = Q∩V (R) and Q2 = Q\Q1. By maximality of R, all edges present in G[N2, P2∪Q2]

are coloured exclusively blue.

Q1


P2


Q2


Q1


M


P1
N1


N2


Figure 2.60: Partition of N , P and Q.

Notice that, in order to avoid having a blue connected-matching on at least α2k vertices,

by Lemma 2.6.14, we may assume that

min{|P2 ∪Q2|, |N2|} ≤ (1
2α2 + η1/2)k.
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Thus, by (E4a) and (E4b), we may thus assume that

|N1| = |P1 ∪Q1| ≥ (1
2α1 − 6η1/2)k. (2.54a)

Since qr has red edges to all but at most 16ηk vertices in N , all but at most 16ηk of the

edges of R belong to the same red component and we have a red connected-matching on

2(|N1| − 16ηk) vertices in G[N1, P1 ∪Q1]. Thus, we may assume that

|N1| = |P1 ∪Q1| ≤ (1
2α1 + η1/2)k

and, therefore, by (E4a) and (E4b), that

|N2|, |P2 ∪Q2| ≥ (1
2α2 − 6η1/2). (2.54b)

Recall that vr has red edges to all but 16ηk vertices in M and vb has blue edges to all

but 16ηk vertices in M . Thus, we may, after discarding at most 32ηk vertices from M ,

assume that G[M ] is effectively red-connected and effectively blue-connected.

Similarly, we may, after discarding at most 16ηk vertices from G[P ], assume that P is

effectively red-connected and effectively blue-connected and, after discarding at most

32ηk vertices from N , assume that N is effectively red-connected and effectively blue-

connected. In order to maintain the equality |N1| = |P1|, we also discard from N1 ∪ P1

any vertex whose R-mate has already been discarded.

Then, in summary, having discarded some vertices, we have a decomposition of V (G)

into M ∪N ∪ P ∪Q and a refinement into M ∪N1 ∪N2 ∪ P1 ∪ P2 ∪Q1 ∪Q2 such that

(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ];

(E6a) G[M ], G[N ] andG[P ] each have a single red and a single blue effective-component;

(E6b) G[N1, P1 ∪Q1] contains a red matching utilising every vertex in G[N1 ∪P1 ∪Q1];

(E6c) all edges present in G[N2, P2 ∪Q2] are coloured exclusively blue.

Having discarded some vertices, recalling (E4a), (2.54a) and (2.54b), we have

|M | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 6η1/2

)
k, |N1| = |P1 ∪Q1| ≥ (1

2α1 − 8η1/2)k,

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 7η1/2

)
k, |N2|, |P2 ∪Q2| ≥ (1

2α2 − 8η1/2)k.



 (E7)
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and also

|P | ≥ 90η1/2k, max{|Q1|, |Q2|} ≥ 45η1/2k. (E8)

For the final time, we distinguish between three cases:

(a) G[M,N ∪ P ∪Q1] contains a red edge;

(b) G[M,N ∪ P ∪Q2] contains a blue edge;

(c) G1[M,N ∪ P ∪Q1] and G2[M,N ∪ P ∪Q2] each contain no edges.

Case E.iii.b.iv.a: G[M,N ∪ P ∪Q1] contains a red edge.

Given the existence of a red edge in G[M,N ∪ P ∪ Q1,M ], then the existence of a

red matching on at least 14η1/2k vertices in G[P2 ∪Q2,M ] would give a red connected-

matching on at least α1k vertices. Thus, we may, after discarding at most 7η1/2k vertices

from each of M and P2 ∪ Q2, assume that all present edges in G[M,Q2] are coloured

exclusively blue and that there are no red edges in G[M,P2].

Q1


P2


Q2


Q1


P1
N1


N2


M


Figure 2.61: Colouring immediately before Claim 2.8.6.

We then have

|N1| = |P1 ∪Q1| ≥ (1
2α1 − 8η1/2)k,

|N2|, |P2 ∪Q2| ≥ (1
2α2 − 15η1/2)k.



 (2.55)

The following pair of claims establish the coloured structure of G[M ∪N,P ∪Q]:
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Claim 2.8.6.a. If |Q1| ≥ 45η1/2k, we may discard at most 43η1/2k vertices from N1,

at most 43η1/2k vertices from N2, at most 16η1/2k vertices from M , at most 59η1/2k

vertices from P1 ∪ Q1 and at most 27η1/2k vertices from P2 ∪ Q2 such that, in what

remains, there are no blue edges present in G[M ∪N,P1 ∪Q1] and no red edges present

in G[M ∪N,P2 ∪Q2].

Claim 2.8.6.b. If |Q2| ≥ 45η1/2k, we may discard at most 45η1/2k vertices from N1,

at most 18η1/2k vertices from N2, at most 18η1/2k vertices from M , at most 18η1/2k

vertices from P1 ∪ Q1 and at most 27η1/2k vertices from P2 ∪ Q2 such that, in what

remains, there are no blue edges present in G[M ∪N,P1 ∪Q1] and no red edges present

in G[M ∪N,P2 ∪Q2].

Proof. (a) We begin by considering G[M ∪ N1, P1 ∪ Q1]. Suppose there exists a blue

matching BS on 32η1/2k vertices in G[M ∪N1, P1 ∪Q1]. Observe that, since |N2|, |P2 ∪
Q2| ≥ (1

2α2 − 15η1/2)k, by Lemma 2.6.14, there exists a blue connected-matching BL

on at least (α2 − 32η1/2)k vertices in G[N2, P2 ∪ Q2]. Then, since all edges present in

G[M ∪ N2, Q2] are coloured blue and G[N ] is blue effectively-connected, BS and BL

belong to the same blue component and thus form a blue connected-matching on at

least α2k vertices. Thus, after discarding at most 16η1/2k vertices from each of M ∪N1

and P1∪Q1, we may assume that there are no blue edges present in G[M ∪N1, P1∪Q1].

Notice then, in particular, that all edges present in G[M,Q1]∪G[N1, P1∪Q1] are coloured

exclusively red.
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Figure 2.62: Colouring of the edges of G[M ∪N1, P1 ∪Q1] in Claim 2.8.6.a.
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Having discarding these vertices, we have

|Q1| ≥ 29η1/2k, |N1| ≥ |P1 ∪Q1| ≥ (1
2α1 − 24η1/2)k.

Now, suppose there exists a red matching RS on at least 54η1/2k vertices in G[N1, P2 ∪
Q2]. Since |P1∪Q1| ≥ (1

2α1−24η1/2)k and |Q2| ≥ 29η1/2k, there exists Q̃ ⊆ Q1 such that

|P1 ∪ Q̃| ≥ (1
2α1 − 52η1/2)k and |Q1\Q̃| ≥ 27η1/2k. Then, since |N1\V (RS)|, |P1 ∪ Q̃| ≥

(1
2α1−52η1/2)k and |M |, |Q1\Q̃| ≥ 27η1/2k, by Lemma 2.6.14, there exist red connected-

matchings RL on at least (α1 − 106η1/2)k vertices in G[N1, P1 ∪Q1] and RT on at least

52η1/2k vertices in G[Q1,M ] sharing no vertices with each other or RS . Then, since all

edges in G[N1, Q1] are coloured red, RL, RS and RT belong to the same red component

and, thus, together, form a red connected-matching on at least α1k vertices. Therefore,

after discarding at most 27η1/2k vertices from each of N1 and P2 ∪Q2, we may assume

that all edges in G[N1, P2 ∪Q2] are coloured exclusively blue.
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Figure 2.63: Colouring of the edges of G[N1, P2 ∪Q2] in Claim 2.8.6.a.

We then have

|N1| ≥ (1
2α1 − 51η1/2)k, |P1 ∪Q1| ≥ (1

2α1 − 24η1/2)k,

|N2| ≥ (1
2α2 − 15η1/2)k, |P2 ∪Q2| ≥ (1

2α2 − 42η1/2)k.

Suppose now that there exists a blue matching BU on 86η1/2k vertices in G[N2, P1∪Q1].

Then, since |N\V (BU )|, |P2 ∪ Q2| ≥ (1
2α2 − 42η1/2)k, by Lemma 2.6.14, there exists a

blue connected-matching BV on at least (α2−86η1/2)k vertices in G[N\V (BU ), P2∪Q2].
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Therefore, BU∪BV forms a blue connected-matching on at least α2k vertices in G[N,P ∪
Q]. Thus, after discarding at most 43η1/2k vertices from each of N2 and P1 ∪ Q1, we

may assume that all edges present in G[N1, P1 ∪ Q1] are coloured exclusively red, thus

completing the proof of Claim 2.8.6.a.

(b) Suppose that G is coloured as in Figure 2.61 and that |Q2| ≥ 45η1/2k. We begin

by considering G[M ∪N,P1 ∪Q1]. Suppose there exists a blue matching BS on 36η1/2k

vertices in G[M ∪ N,P1 ∪ Q1], then we can obtain a blue connected-matching on at

least α1k vertices as follows: Recalling (2.55), we have |P2 ∪ Q2| ≥ (1
2α2 − 15η1/2)k.

Then, since |Q2| ≥ 45η1/2k, there exists Q̃ ⊆ Q2 such that |P2 ∪ Q̃| ≥ (1
2α2 − 34η1/2)k

and |Q2\Q̃| ≥ 18η1/2k. Then, we have |N2\V (BS)|, |P2 ∪ Q̃| ≥ (1
2α2k − 34η1/2)k and

|M\V (BS)|, |Q2\Q̃| ≥ 18η1/2k. Thus, by Lemma 2.6.14, there exist blue connected-

matchings BL on at least (α2k− 70η1/2)k vertices in G[N\V (BS), P2 ∪ Q̃] and BT on at

least 34η1/2k vertices in G[M\V (BS), Q2\Q̃]. Since M and N are each blue effectively-

connected and all edges present inG[M∪N2, P2] are coloured blue, BL, BS andBT belong

to the same blue component in G and, thus, together, form a blue connected-matching

on at least α2k vertices. Therefore, after discarding at most 18η1/2k vertices from each

of M ∪N and P1 ∪Q1, we may assume that all edges present in G[M ∪N,P1 ∪Q1] are

coloured exclusively red.
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Figure 2.64: Colouring of G[M ∪N,P1 ∪Q1] in Claim 2.8.6.b.

Recalling (2.55), we then have

|N1| ≥ (1
2α1 − 26η1/2)k, |P1 ∪Q1| ≥ (1

2α1 − 26η1/2)k,

|N2| ≥ (1
2α2 − 33η1/2)k, |P2 ∪Q2| ≥ (1

2α2 − 15η1/2)k.
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Finally, suppose there exists a red matching RS on 54η1/2k vertices in G[N1, P2 ∪ Q2].

Then, |N\V (RS)|, |P1 ∪Q1| ≥ (1
2α1 − 26η1/2)k so, by Lemma 2.6.14, there exists a red

connected-matching RL on at least (α1−54η1/2)k vertices in G[N\V (RS), P1∪Q1]. The

red matchings RS and RL share no vertices and, since G[N ] is red effectively-connected,

belong to the same red component of G, thus, together, they form a red connected-

matching on at least α1k vertices. Therefore, after discarding at most 27η1/2k vertices

from each of N1 and P2∪Q2, we may assume that all edges in G[N,P2∪Q2] are coloured

blue, thus completing the proof of Claim 2.8.6.b. 2

In summary, combining the two cases above, we may now assume that there are no blue

edges present in G[M ∪ N,P1 ∪ Q1] and no red edges present in G[M ∪ N,P2 ∪ Q2].

In particular, we may assume that all all edges present in G[N,P1 ∪ Q1] are coloured

exclusively red and that all edges in G[N,P2 ∪Q2] are coloured exclusively blue.

Q1


P2


Q2


Q1


P1


M


N


Q1


P2


Q2


Q1


P1


M


N


Figure 2.65: Colouring after Claim 2.8.6.

We then have

|N1| ≥ (1
2α1 − 54η1/2)k, |P1 ∪Q1| ≥ (1

2α1 − 67η1/2)k,

|N2| ≥ (1
2α2 − 58η1/2)k, |P2 ∪Q2| ≥ (1

2α2 − 42η1/2)k.



 (2.56)

Recalling (E7), having discarded at most 86η1/2k vertices from N and at most 25η1/2k

vertices from M , we have

|M | ≥
(

max{3
4α1 + 1

4α2,
1
2α3} − 31η1/2

)
k, |N | ≥

(
max{3

4α1 + 1
4α2,

1
2α3} − 93η1/2

)
k.
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Thus, provided that η ≤ (α2/600)2, we have

|N | ≥ |P1 ∪Q1|+ 400η1/2k, |N | ≥ |P2 ∪Q2|+ 400η1/2k.

Therefore, if there existed either a red matching on 136η1/2k vertices or a blue matching

on 86η1/2k vertices in G[N ] ∪ G[N,M ], then these could be used together with edges

from G[N,P ∪Q] to obtain a red connected-matching on at least α1k vertices or a blue

connected-matching on at least α2k vertices. Thus, after discarding at most 111η1/2k

vertices from M and 333η1/2k vertices from N , we may assume that all edges present in

G[N ] ∪G[M,N ] are coloured exclusively green.

Q1


P2


Q2


Q1


P1


N


M


Figure 2.66: The green graph after considering G[N ] ∪G[M,N ].

We then have

|M | ≥
(

max{3
4α1 + 1

4α2,
1
2α3} − 142η1/2

)
k,

|N | ≥
(

max{3
4α1 + 1

4α2,
1
2α3} − 426η1/2

)
k.

Now, suppose there exists a green matching GMP on 1146η1/2k vertices in G[M,P ].

Letting Ñ be any subset of 290η1/2k, by Lemma 2.6.1, provided k ≥ 1/η2, there exists

a green connected-matching GN on at least 289η1/2k vertices in G[Ñ ]. We then have

|M\V (GMP )|, |N\V (GN )| ≥ (1
2α3 − 716η1/2)k and, thus, by Lemma 2.6.14, we have

a green connected-matching GMN on at least (α3 − 1434η1/2)k vertices in G[M,N ],

which shares no vertices with GMP or GN . Then, since all edges present in G[M,N ] are
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coloured green, together, GMP , GMN and GN form a green connected-matching on at

least α3k vertices which, since all edges in G[N ] are green, is odd. Thus, after discarding

at most 574η1/2k vertices from each of M and P , we may assume that there are no green

edges in G[M,P ∪Q]. In particular, since earlier we found that there could be no blue

edges in G[M,P1] and no red edges in G[M,P2], we now know that all edges present

in G[M,P1] are coloured exclusively red and all edges present in G[M,P2] are coloured

exclusively blue.

Q1

P2


Q2


Q1


P1


M


N


Figure 2.67: Colouring of G[M,P ].

In summary, having discarded these vertices, we may assume that all edges present in

G[M∪N,P1∪Q1] are coloured exclusively red, that all edges present in G[M∪N,P2∪Q2]

are coloured exclusively blue, that all edges in G[N ] ∪G[M,N ] are coloured exclusively

green and that we have

|M | ≥
(

max{3
4α1 + 1

4α2,
1
2α3} − 716η1/2

)
k, |P1 ∪Q1| ≥ (1

2α1 − 642η1/2)k,

|N | ≥
(

max{3
4α1 + 1

4α2,
1
2α3} − 426η1/2

)
k, |P2 ∪Q2| ≥ (1

2α1 − 616η1/2)k.

Notice that, provided that η ≤ (α2/5000)2, we have |M | ≥ |P1 ∪Q1|+ 2200η1/2k. Thus,

there cannot exist in G[M ] a red matching on 1286η1/2k vertices or a blue matching on

1234η1/2k vertices. Therefore, after discarding at most 2520η1/2k vertices from M , we

may assume that all edges present in G[M ] are coloured exclusively green and that

|M ∪N | ≥ (α3 − 3662η1/2)k.
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P1U Q1


P2U Q2


M U N


Figure 2.68: Final colouring in Case E.iii.b.iv.a.

In summary, we know that all edges present in G[M∪N,P1∪Q1] are coloured exclusively

red, all edges present G[M ∪N,P2 ∪ Q2] are coloured exclusively blue and all edges in

G[M ∪N ] are coloured exclusively green.

Thus, we have found, as a subgraph of G, a graph in

K
(

(1
2α1 − 700η1/2)k, (1

2α1 − 700η1/2)k, (α3 − 4000η1/2)k, 4η4k
)
,

thus completing Case E.iii.b.iv.a.

Case E.iii.b.iv.b: G[M,N ∪ P ∪Q2] contains a blue edge.

In this case, following similar steps as in Case E.iii.b.iv.a will result in either a red

connected-matching on at least α1k vertices, a blue connected-matching on at least α2k

vertices, a green odd connected-matching on at least α3k vertices or a subgraph in

K
(

(1
2α1 − 700η1/2)k, (1

2α1 − 700η1/2)k, (α3 − 4000η1/2)k, 2η4
)
,

thus completing Case E.iii.b.iv.a.

Case E.iii.b.iv.c: G[M,N ∪ P ∪Q1] contains no red edges.

and G[M,N ∪ P ∪Q2] contains no blue edges.

Recall that we that we have a decomposition V (G) into M ∪N ∪P ∪Q and a refinement

into M ∪N1 ∪N2 ∪ P1 ∪ P2 ∪Q1 ∪Q2, such that
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(E3) there are no green edges in G[N,P ], G[M,Q], G[N,Q], G[P,Q] or G[P ];

(E6a) G[M ], G[N ] andG[P ] each have a single red and a single blue effective-component;

(E6b) G[N1, P1 ∪Q1] contains a red matching utilising every vertex in G[N1 ∪P1 ∪Q1];

(E6c) all edges present in G[N2, P2 ∪Q2] are coloured exclusively blue.

This decomposition also satisfies

|M | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 6η1/2

)
k, |N1| = |P1 ∪Q1| ≥ (1

2α1 − 8η1/2)k,

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 7η1/2

)
k, |N2|, |P2 ∪Q2| ≥ (1

2α2 − 8η1/2)k.



 (E7)

|P | ≥ 90η1/2k, max{|Q1|, |Q2|} ≥ 45η1/2k. (E8)

Additionally, in this case, we may assume that

(E9a) all edges present in G[Q2,M ] are coloured exclusively red;

(E9b) all edges present in G[Q1,M ] are coloured exclusively blue; and

(E9c) all edge present in G[M,P1 ∪ P2] ∪G[M,N ] are green.

Q1


Q2


Q1


P1
N1


N2


M


P2


Q1


P2


Q2


Q1


P1
N1


N2


M


Figure 2.69: Initial red and blue graphs in Case E.iii.b.iv.c.
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Q1


P2
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Q1


P1
N1


N2


M


Figure 2.70: Initial green graph in Case E.iii.b.iv.c.

We begin by proving the following claim which concerns the structure of the red and

blue graphs:

Claim 2.8.7.a. If |Q1| ≤ 38η1/2k, we may discard at most 71η1/2k vertices from N ,

at most 12η1/2k vertices from P1, at most 59η1/2k vertices from P2 and at most 38η1/2k

vertices from Q1 so that, in what remains, all edges present in G[N,P1∪Q1] are coloured

exclusively red and all edges present in G[N,P2 ∪Q2] are coloured exclusively blue.

Claim 2.8.6.b. If |Q1| ≥ 38η1/2k, we may discard at most 57η1/2k vertices from N , at

most 19η1/2k vertices from P1, at most 38η1/2k vertices from P2 and at most 30η1/2k

vertices from Q1 so that, in what remains, all edges present in G[N,P1∪Q1] are coloured

exclusively red and all edges present in G[N,P2 ∪Q2] are coloured exclusively blue.

Proof. (a) Observe that, since |Q1| ≤ 38η1/2k < 45η1/2k, by (E8), we have |Q2| ≥
45η1/2k. Considering the red graph, we show that all edges present in G[N ∪ P,Q2] are

blue as follows: Given (E9a), since |M |, |Q2| ≥ 45η1/2k, by Lemma 2.6.14, there exists

a red connected-matching RS on at least 88η1/2k vertices in G[M,Q2]. Then, since

|N | = |P1∪Q1| ≥ (1
2α1−8η1/2)k, recalling (E6a), if G[N∪P,Q2] contains a red edge, then

R ∪ RS forms a red connected-matching on at least α1k vertices. Thus, recalling (E3),

all edges present in G[N ∪ P,Q2] are coloured exclusively blue (see Figure 2.71).

Now, suppose there exists a blue matching BT on 24η1/2k vertices in G[N,P1] (see

Figure 2.72). Then, since |Q2| ≥ 45η1/2k, there exist subsets Ñ2 ⊆ N2\V (BT ) and

Q̃2 ⊆ Q2 such that |Ñ2| = |P2 ∪ Q̃2| ≥ (1
2α2 − 20η1/2)k and |Q2\Q̃2| ≥ 11η1/2k.
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Then, by Lemma 2.6.14, there exist blue connected-matchings BU on at least (α2 −
42η1/2)k vertices in G[N2\V (BT ), P2 ∪ Q̃2] and BV on at least 20η1/2k vertices in

G[N1\V (BT ), Q2\Q̃2]. Since all edges present in G[N,Q2] are coloured blue, BT , BU

and BV belong to the same blue component and, thus, together, form a blue connected-

matching on at least α2k vertices. Therefore, there can not exist such a matching as BT

and, after discarding at most 12η1/2k vertices from each of N and P1, we may assume

that all edges present in G[N,P1] are coloured exclusively red.
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Q2


P1
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N2
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Q1

P2


Q2


P1
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Figure 2.71: Red and blue subgraphs of G, provided |Q1| ≤ 38η1/2k.
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Figure 2.72: BT and the resultant colouring of the edges of G[N,P2].
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Having discarded these vertices, we have

|M | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 6η1/2

)
k, |N1|, |P1 ∪Q1| ≥ (1

2α1 − 20η1/2)k,

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 19η1/2

)
k, |P2 ∪Q2| ≥ (1

2α2 − 8η1/2)k,

|N2| ≥ (1
2α2 − 20η1/2)k.





(2.57)

Since |Q1| ≤ 38η1/2k and η < (α1/1000)2, by (E4b) and (2.57), we have

|N | ≥ |P1|+ 200η1/2k, |P1| ≥ (1
2α1 − 58η1/2)k.

Thus, if there existed a red matching RS on 118η1/2k vertices in G[N,P2], we could

obtain a red connected-matching on at least α1k. Indeed, since |N\V (RS)|, |P1| ≥
(1

2α1−58η1/2)k, by Lemma 2.6.14, there exists a red connected-matching RL on 118η1/2k

vertices in G[N\V (RS), P1]. Then, since G[N ] has a single red effective-component, RL

and RS belong to the same red component of G and, therefore, together, form a red

connected-matching on at least α1k vertices. Thus, after discarding at most 59η1/2k

vertices from each of N and P2, we may assume that all edges present in G[P2, N ] are

coloured exclusively blue.

Finally, we discard all vertices from Q1. Having done so, we have P1 = P1 ∪ Q1 and

know that all edges present in G[N,P1 ∪Q1] are coloured exclusively red, that all edges

present in G[N,P2 ∪Q2] are coloured exclusively blue.
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Figure 2.73: The final red and blue graphs in Claim 2.8.7.a.
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We then have

|M | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 6η1/2

)
k, |P1 ∪Q1| ≥ (1

2α1 − 58η1/2)k,

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 78η1/2

)
k, |P2 ∪Q2| ≥ (1

2α2 − 67η1/2)k.



 (2.58)

thus completing the proof of Claim 2.8.7.a.

(b) SupposeG is coloured as shown in Figures 2.69–2.70 and that we have |Q1| ≥ 38η1/2k.

Considering the blue graph, we are able to show that all edges present in G[N ∪ P,Q1]

are red as follows: Given (E9b), since |M |, |Q1| ≥ 38η1/2k, by Lemma 2.6.14, there

exists a blue connected-matching BS on at least 74η1/2k vertices in G[M,Q1]. Then,

since |N2|, |P2 ∪ Q2| ≥ (1
2α2 − 8η1/2)k, if G[N ∪ P,Q1] contains a blue edge, we can

obtain a blue connected-matching on at least α2k vertices utilising edges from BS and

from G[N2, P2∪Q2]. Thus, recalling (E3), all edges present in G[N ∪P,Q1] are coloured

exclusively red.

Q1
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P1
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N2


Q2
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M
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Figure 2.74: Red and blue subgraphs of G when |Q1| ≥ 38η1/2k.

Now, let N11 = N1 ∩ V (R) and N12 = N1\V (R). Then, since |Q1| ≥ 38η1/2k and

|N11| = |P1|, we have |N12| ≥ 38η1/2k. Suppose there exists a red matching RS on

18η1/2k vertices in G[N12, P2]. Then, since |N2|, |Q1| ≥ (1
2α1 − 8η1/2)k − |P1| and all

edges in G[N,Q1] are coloured red, by Lemma 2.6.14, there exists a red connected-

matching RT on at least (α1 − 18η1/2)k − 2|P1| vertices in G[N2, Q1]. Observe that,

since |N11| = |P1|, RU = R ∩G[N11, P1] is a red matching on 2|P1| vertices. Thus, since

G[N ] has a single red effective-component, RS∪RT ∪RU forms a red connected-matching

on at least α1k vertices. Thus, after discarding at most 9η1/2k vertices from each of N12
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and P2, we may assume that all edges in G[N12, P2] are coloured exclusively blue. We

then have |N12| ≥ 28η1/2k and |P2 ∪Q2| ≥ (α2k − 17η1/2)k.

Q1


P2


Q1


P1
N1


N2


M

Q2


Figure 2.75: Colouring of G[N12, P2].

Then, suppose there exists a blue matching BS on 38η1/2k vertices in G[N,P1]. Then

|(N2 ∪N12)\V (BS)| ≥ (1
2α2 − 8η1/2)k + 28η1/2k − 19η1/2k

≥ (1
2α2 + η1/2)k ≥ |P2 ∪Q2| ≥ (1

2α2 − 17η1/2)k.

Thus, by Lemma 2.6.14, there exists a blue connected-matching on at least (α2−38η1/2)k

vertices belonging to the same component as BS . Thus, together, these matchings form

a blue connected-matching on at least α2k vertices. Therefore, after discarding at most

19η1/2k vertices from each of N and P1, we may assume that all edges present in G[N,P1]

are coloured exclusively red and that |P1 ∪Q1| ≥ (1
2α1 − 27η1/2)k.

Penultimately, suppose there exists a red matching RV on 58η1/2k vertices in G[N11, P2].

Then, since |N\V (RV )|, |P1 ∪ Q1| ≥ (1
2α1 − 27η1/2)k, by Lemma 2.6.14, there exists a

red connected-matching RW on at least (α1−56η1/2)k vertices in G[N\V (RV ), P1∪P2],

which together with RV gives a red connected-matching on at least α1k vertices. Thus,

after discarding at most 29η1/2k vertices from each of N11 and P2, we may assume that

all edges in G[N,P2] are coloured exclusively blue.
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Figure 2.76: Colouring of G[N,P ].

Finally, observe that, if |Q2| ≥ 30η1/2k, there can be no red edges in G[N ∪ P,Q2].

Indeed, in that case, since |M |, |Q2| ≥ 30η1/2k and |N |, |P1 ∪ Q1| ≥ (1
2α1 − 27η1/2)k,

there exist red connected-matchings RW in G[M,Q2] and RX in G[P1 ∪ Q1, N ] which

belong to the same component and together span at least α1k vertices. Alternatively, if

|Q2| ≤ 30η1/2k, we can discard every vertex in Q2, rendering the graph G[N,Q2] trivial.

Thus, in either case, all edges in G[N,Q2] are coloured exclusively blue.
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Figure 2.77: The final red and blue graphs in Claim 2.8.7.b. if |Q2| ≥ 30η1/2k.

In summary, having discarded some vertices, we may assume that all edges present in

G[N,P1 ∪ Q1] are coloured exclusively red, that all edges present in G[N,P2 ∪ Q2] are
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coloured exclusively blue and that

|M | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 6η1/2

)
k, |P1 ∪Q1| ≥ (1

2α1 − 27η1/2)k,

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 64η1/2

)
k, |P2 ∪Q2| ≥ (1

2α2 − 76η1/2)k,



 (2.59)

thus, completing the proof of Claim 2.8.7.b. 2

Having proved the claim, we know that all edges in G[N,P1∪Q1] are coloured exclusively

red and all edges in G[N,P2 ∪ Q2] are coloured exclusively blue. Combining (2.59)

and (2.58), we have

|M | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 6η1/2

)
k, |P1 ∪Q1| ≥ (1

2α1 − 58η1/2)k,

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 78η1/2

)
k, |P2 ∪Q2| ≥ (1

2α2 − 76η1/2)k.



 (2.60)

P1U Q1


P2U Q2


    N


Figure 2.78: G1[N ∪ P ∪Q] ∪G2[N ∪ P ∪Q] after Claim 2.8.7.

We now consider the green graph (see Figure 2.70). Recall that all edges present in

G[M,N ∪ P ] are coloured green. Now, suppose there exists a green matching GS on

17η1/2k vertices in G[N ]. Since |M | ≥ |P | ≥ 90η1/2k, by Lemma 2.6.14, there exists

a green connected-matching GT on 178η1/2k vertices in G[M,P ]. Then, by (2.60), we

have

|M\V (GT )|, |N\V (GS)| ≥ (1
2α3 − 96η1/2)k.

Thus, by Lemma 2.6.14, there exists a green connected-matching GL on at least (α3 −
194η1/2)k in G[M\V (GT ), N\V (GS)]. Then, since all edges present in G[M,N ] are

coloured exclusively green, GS , GT and GL belong to the same green component of G
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and, thus, together form an green odd connected-matching on at least α3k vertices.

Therefore, after discarding at most 17η1/2k vertices from N , we may assume that there

are no green edges in G[N ] and that

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 95η1/2

)
k. (2.61)

We continue to consider G[N ]. Recall that we know that all edges in G[N,P1 ∪Q1] are

coloured exclusively red, that all edges in G[N,P2∪Q2] are coloured exclusively red and

that. From (2.60), we have

|P1 ∪Q1| ≥ (1
2α1 − 58η1/2)k, |P2 ∪Q2| ≥ (1

2α2 − 76η1/2)k.

Recalling (E4b) and (2.61), provided that η ≤ (α1/2000)2, we have

|N | ≥ |P1 ∪Q1|+ 300η1/2k.

Then, suppose that there exists a red-matching RA on at least 118η1/2k vertices in G[N ].

Then, since |N\V (RA)| ≥ |P1 ∪Q1| ≥ (1
2α1 − 58η1/2)k, by Lemma 2.6.14, there exists a

red connected-matching RB on at least (α1−118η1/2)k vertices in G[N\V (RA), P1∪Q1].

Then, by (E6a), RA and RB belong to the same red component of G and thus, together,

form a red connected-matching on at least α1k vertices.

Likewise, if there exists a blue-matching BA on at least 154η1/2k vertices in G[N ],

then we can obtain a blue connected-matching on at least α2k vertices, as follows:

Since |N\V (RB)| ≥ |P2 ∪Q2| ≥ (1
2α1 − 76η1/2)k, by Lemma 2.6.14, there exists a blue

connected-matching BB on at least (α1 − 154η1/2)k vertices in G[N\V (BA), P2 ∪ Q2].

Then, since all edges present in G[N,Q2] are coloured exclusively blue, BA and BB,

together, form a blue connected-matching on at least α2k vertices.

Thus, after discarding at most a further 272η1/2k vertices from N , we can assume that

there are no edges of any colour in G[N ] and that

|N | ≥
(
max{3

4α1 + 1
4α2,

1
2α3} − 367η1/2

)
k ≥ 10η1/2k.

This contradicts the fact thatG is 4η4k-almost-complete, thus completing Case E.iii.b.iv.c.

and the proof of Theorem B.
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2.9 Proof of the main result – Setup

For α1, α2, α3 > 0 such that α1 ≥ α2, we set c = max{2α1 + α2,
1
2α1 + 1

2α2 + α3},

η =
1

2
min

{
ηB1(α1, α2, α3), ηB2(α1, α2, α3), 10−50,

( α2

2500

)2
,
( α2

200

)64
}

and let k0 be the smallest integer such that

k0 ≥ max

{(
c− 1

2η
)
kB1(α1, α2, α3, η),

(
c− 1

2η
)
kB2(α1, α2, α3, η),

72

η

}
.

We let

N = max
{

2〈〈α1n〉〉+ 〈〈α2n〉〉 − 3, 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+ 〈α3n〉 − 2
}
,

for some integer n such that N ≥ K2.3.1(η4, k0) and

n > max{n2.3.4(2, 1, 0, η), n2.3.4(1
2 ,

1
2 , 1, η)}

and consider a three-colouring of G = (V,E), the complete graph on N vertices.

In order to prove Theorem A, we must prove that G contains either a red cycle on 〈〈α1n〉〉
vertices, a blue cycle on 〈〈α2n〉〉 vertices or a green cycle on 〈α3n〉 vertices.

We will use G1, G2, G3 to refer to the monochromatic spanning subgraphs of G. That

is, G1 (resp. G2, G3) has the same vertex set as G and includes as an edge any edge

which in G is coloured red (resp. blue, green).

By Theorem 2.3.1, there exists an (η4, G1, G2, G3)-regular partition Π = (V0, V1, . . . , VK)

for some K such that k0 ≤ K ≤ K2.3.1(η4, k0). Given such a partition, we define the

(η4, η,Π)-reduced-graph G = (V, E) on K vertices as in Definition 2.3.2. The result is a

three-multicoloured graph G = (V, E) with

V = {V1, V2, . . . , VK}, E = {ViVj : (Vi, Vj) is (η4, Gr)-regular for r = 1, 2, 3},

such that a given edge ViVj of G is coloured with every colour for which there are at

least η|Vi||Vj | edges of that colour between Vi and Vj in G.

Note that, by scaling, we may assume that either α2, α3 ≤ α1 = 1 or α2 ≤ α1 ≤ 1 ≤
α3 ≤ 2. Thus, since K ≥ k0 ≥ 72/η, we may fix an integer k such that
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(c− η) k ≤ K ≤
(
c− 1

2η
)
k. (2.62)

and may assume that k ≤ K ≤ 3k, n ≤ N ≤ 3n.

Notice, also, that since the partition is η4-regular, we have |V0| ≤ η4N and, for 1 ≤ i ≤ K,

(1− η4)
N

K
≤ |Vi| ≤

N

K
. (2.63)

Applying Theorem B, we find that G contains at least one of the following:

(i) a red connected-matching on at least α1k vertices;

(ii) a blue connected-matching on at least α2k vertices;

(iii) a green odd connected-matching on at least α3k vertices;

(iv) two disjoint subgraphs H1, H2 from H1 ∪H2, where

H1 =H
(

(α1 − 2η1/16)k, (1
2α2 − 2η1/16)k, 3η4k, η1/16, red,blue

)
,

H2 =H
(

(α2 − 2η1/16)k, (1
2α1 − 2η1/16)k, 3η4k, η1/16,blue, red

)
;

(v) a subgraph from

K
(

(1
2α1 − 14000η1/2)k, (1

2α2 − 14000η1/2)k, (α3 − 68000η1/2)k, 4η4k
)

;

(vi) a subgraph from K∗1 ∪ K∗2, where

K∗1 = K∗
(
(1

2α1 − 97η1/2)k, (1
2α1 − 97η1/2)k, (1

2α1 + 102η1/2)k,

(1
2α1 + 102η1/2)k, (α3 − 10η1/2)k, 4η4k

)
,

K∗2 = K∗
(
(1

2α1 − 97η1/2)k, (1
2α2 − 97η1/2)k, (3

4α3 − 140η1/2)k,

100η1/2k, (α3 − 10η1/2)k, 4η4k
)
.

Furthermore,

(iv) occurs only if α3 ≤ 3
2α1 + 1

2α2 + 14η1/2, with H1, H2 ∈ H1 unless α2 ≥ α1 − η1/8;

(v) and (vi) occur only if α3 ≥ 3
2α1 + 1

2α2 − 10η1/2.
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Since n > max{n2.3.4(2, 1, 0, η), n2.3.4(1
2 ,

1
2 , 1, η)} and η < 10−20, in cases (i)–(iii), Theo-

rem 2.3.4 gives a cycle of appropriate length, colour and parity to complete the proof.

Thus, we need only concern ourselves with cases (iv)–(vi). We divide the remainder of

the proof into three parts, each corresponding to one of the possible coloured structures.

2.10 Proof of the main result – Part I – Case (iv)

Suppose that G contains two disjoint subgraphs H1, H2 from H1 ∪H2, where

H1 =
(

(α1 − 2η1/16)k, (1
2α2 − 2η1/16)k, 3η4k, η1/16, red,blue

)
,

H2 =
(

(α2 − 2η1/16)k, (1
2α1 − 2η1/16)k, 3η4k, η1/16, blue, red

)
.

In this case, additionally, from Theorem B we may assume that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2 ≤ 2α1 + 14η1/2. (2.64)

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1.

In this case, defining G1,G2 and G3 to be the monochromatic spanning subgraphs of the

reduced-graph G, the vertex set V of G has a partition into X1 ∪ X2 ∪ Y1 ∪ Y2 ∪W with

(α1 − 2η1/16)k ≤ |X1| = |Y1| = p ≤ α1k,

(1
2α2 − 2η1/16)k ≤ |X2| = |Y2| = q ≤ 1

2α2k,



 (2.65)

such that

(HA1) G1[X1],G1[Y1] are each (1− 2η1/16)-complete (and thus connected);

(HA2) G2[X1,X2],G2[Y1,Y2] are each (1− 2η1/16)-complete (and thus connected);

(HA3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);

(HA4) G[X1],G[Y1] are each 2η1/16-sparse in blue and contain no green edges; and

(HA5) G[X1,X2],G[Y1,Y2] are each 2η1/16-sparse in red and contain no green edges.
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2.10 Proof of Theorem A - Part I
s:p11

We assume that G contains two disjoint subgraphs H1, H2 from H1 ∪ H2, where

H1 =
�
(α1 − 2η1/16)k, (1

2α2 − 2η1/16)k, 3η4k, η1/16, red, blue
�

,

H2 =
�
(α2 − 2η1/16)k, (1

2α1 − 2η1/16)k, 3η4k, η1/16, blue, red
�

,

and that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2. (2.61) a3notbig

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether each of H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1

In this case, the vertex set V of G has partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W with

|X1| = |Y1| = (α1 − 2η1/16)k = p, |X2| = |Y2| = (1
2α2 − 2η1/16)k = q.

X1 X2 

Y1 Y2 

Figure 2.74: Initial coloured structure in Part I.A.figeiii

Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);

(A2) G2[X1, X2], G2[Y1, Y2] are each (1 − η1/16)-complete (and thus connected);

(A3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);
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Figure 2.79: Coloured structure of the reduced-graph in Part I.A.

The remainder of this section focuses on showing that the original graph must have a

similar structure which can then be exploited in order to force a cycle of appropriate

length, colour and parity.

By definition, each vertex Vi of G = (V, E) represents a class of vertices of G = (V,E).

In what follows, we will refer to these classes as clusters (of vertices of G). Additionally,

recall, from 2.63, that

(1− η4)
N

K
≤ |Vi| ≤

N

K
.

Since n > max{n2.3.4(2, 1, 0, η), n2.3.4(1
2 ,

1
2 , 1, η)}, we can (as in the proof of Theo-

rem 2.3.4) prove that

|Vi| ≥
(

1 +
η

24

) n
k
>
n

k
.

We partition the vertices of G into sets X1, X2, Y1, Y2 and W corresponding to the

partition of the vertices of G into X1,X2,Y1,Y2 and W. Then, X1, Y1 each contain p

clusters of vertices and X2, Y2 each contain q clusters and, recalling (2.65), we have

|X1|, |Y1| = p|V1| ≥ (α1 − 2η1/16)n,

|X2|, |Y2| = q|V1| ≥ (1
2α2 − 2η1/16)n.



 (2.66)

In what follows, we will remove vertices from X1 ∪X2 ∪Y1 ∪Y2 by moving them into W

in order to show that, in what remains, G[X1 ∪X2 ∪ Y1 ∪ Y2] has a particular coloured

structure. We begin by proving the below claim which essentially tells us that G has

similar coloured structure to G:
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Claim 2.10.1. We can remove at most 9η1/32n vertices from each of X1 and Y1 and at

most 4η1/32n vertices from each of X2 and Y2 so that the following pair of conditions hold.

(HA6) G1[X1] and G1[Y1] are each 8η1/32n-almost-complete; and

(HA7) G2[X1, X2] and G2[Y1, Y2] are each 4η1/32n-almost-complete.

Proof. Consider the complete three-coloured graph G[X1] and recall, from (HA1), (HA3)

and (HA4), that G[X1] contains only red and blue edges and is 3η4k-almost-complete.

Given the structure of G, we can bound the number of non-red edges in G[X1] as follows:

Since regularity provides no indication as to the colours of the edges contained within

each cluster, these could potentially all be non-red. There are p clusters in X1, each

with at most N/K vertices. Thus, there are at most

p

(
N/K

2

)

non-red edges in X1 within the clusters.

Now, consider a pair of clusters (U1, U2) in X1. If (U1, U2) is not η4-regular, then we can

only trivially bound the number of non-red edges in G[U1, U2] by |U1||U2| ≤ (N/K)2.

However, by (HA3), there are at most 3η4|X1|k such pairs in G. Thus, we can bound

the number of non-red edges coming from non-regular pairs by

3η4pk

(
N

K

)2

.

If the pair is regular and U1 and U2 are joined by a blue edge in the reduced-graph, then,

again, we can only trivially bound the number of non-red edges in G[U1, U2] by (N/K)2.

However, by (HA4), G2[X1] is 2η1/16-sparse, so there are at most 2η1/16
(
p
2

)
blue edges

in G[X1] and, thus, there are at most

2η1/16

(
p

2

)(
N

K

)2

non-red edges in G[X1] corresponding to such pairs of clusters.

Finally, if the pair is regular and U1 and U2 are not joined by a blue edge in the reduced-

graph, then the blue density of the pair is at most η (since, if the density were higher,
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they would be joined by a blue edge). Likewise, the green density of the pair is at most η

(since there are no green edges in G[X1]). Thus, there are at most

2η

(
p

2

)(
N

K

)2

non-red edges in G[X1] corresponding to such pairs of clusters.

Summing the four possibilities above gives an upper bound of

p

(
N/K

2

)
+ 3η4pk

(
N

K

)2

+ 2η1/16

(
p

2

)(
N

K

)2

+ 2η

(
p

2

)(
N

K

)2

non-red edges in G[X1].

Since K ≥ k, η−1, N ≤ 3n and p ≤ α1k ≤ k, we obtain

e(G2[X1]) + e(G3[X1]) ≤ [4.5η + 27η4 + 18η1/16 + 9η]n2 ≤ 24η1/16n2.

Since G[X1] is complete and contains at most 24η1/16n2 non-red edges, there are at

most 6η1/32n vertices with red degree at most |X1| − 8η1/32n. Removing these vertices

from X1, that is, re-assigning these vertices to W gives a new X1 such that every vertex

in G[X1] has red degree at least |X1| − 8η1/32n. The same argument works for G[Y1],

thus completing the proof of (HA6).

Now, consider G[X1, X2]. In a similar way to the above, we can bound the number of

non-blue edges in G[X1, X2] by

3η4pk

(
N

K

)2

+ 2η1/16pq

(
N

K

)2

+ 2ηpq

(
N

K

)2

.

Where the first term bounds the number of non-blue edges between non-regular pairs,

the second bounds the number of non-blue edges between pairs of clusters that are joined

by a red edge in the reduced-graph and the second bounds the number of non-blue edges

between pairs of clusters that are not joined by a red edge in the reduced-graph.

Since K ≥ k, N ≤ 3n, p ≤ α1k ≤ k and q ≤ 1
2α2k ≤ 1

2k, we obtain

e(G1[X1, X2]) + e(G3[X1, X2]) ≤ 16η1/16n2.

Since G[X1, X2] is complete and contains at most 16η1/16n2 non-blue edges, there are
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at most 4η1/32n vertices in X1 with blue degree to X2 at most |X2| − 4η1/32n and at

most 4η1/32n vertices in X2 with blue degree to X1 at most |X1| − 4η1/32n. Removing

these vertices results in every vertex in X1 having degree in G2[X1, X2] at least |X2| −
4η1/32n and every vertex in X2 having degree in G2[X1, X2] at least |X1| − 4η1/32n.

We repeat the above for G[Y1, Y2], removing vertices such that every (remaining) vertex

in Y1 has degree in G2[Y1, Y2] at least |Y2| − 4η1/32n and every (remaining) vertex in Y2

has degree in G2[Y1, Y2] at least |Y1| − 4η1/32n, thus completing the proof of (HA7).

2

X1
 X2


Y1

Y2


Figure 2.80: Colouring of G after Claim 2.10.1.

Having discarded some vertices, recalling (2.66), we have

|X1|, |Y1| ≥ (α1 − 10η1/32)n, |X2|, |Y2| ≥ (1
2α2 − 5η1/32)n. (2.67)

We now proceed to the end-game: Notice that, given the colouring found thus far, G[X1]

and G[Y1] each contain a red Hamiltonian cycle. Similarly, G[X1, X2] and G[Y1, Y2] each

contain a blue cycle of length twice the size of the smaller part. Essentially, we will

show that it is possible to augment each of X1, X2, Y1, Y2 with vertices from W while

maintaining these properties and, then, considering the sizes of each part, show that

there must, in fact, be a cycle of appropriate length, colour and parity to complete the

proof.

The following pair of claims tell us that after removing a small number of vertices fromX1

and Y1, we may assume that all edges in G[X1, Y1] are coloured green:

Claim 2.10.2.a. If there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that x1y1

and x2y2 are coloured red, then G contains a red cycle of length exactly 〈〈α1n〉〉.
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Claim 2.10.2.b. If there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that x1y1

and x2y2 are coloured blue, then G contains a blue cycle of length exactly 〈〈α2n〉〉.

Proof. (a) Suppose there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that

the edges x1y1 and x2y2 are coloured red. Then, let X̃1 be any set of 1
2〈〈α1n〉〉 vertices

in X1 such that x1, x2 ∈ X̃1.

By (HA6), every vertex in X̃1 has degree at least |X̃1| − 8η1/32n in G1[X̃1]. Since

η ≤ (α1/100)32, we have |X̃1| − 8η1/32n ≥ 1
2 |X̃1|+ 2. So, by Corollary 2.6.3, there exists

a Hamiltonian path in G1[X̃1] between x1, x2, that is, there exists a red path between x1

and x2 in G[X1] on exactly 1
2〈〈α1n〉〉 vertices.

Likewise, given any two vertices y1, y2 in Y1, there exists a red path between y1 and y2

in G[Y1] on exactly 1
2〈〈α1n〉〉 vertices. Combining the edges x1y1 and x2y2 with the red

paths gives a red cycle on exactly 〈〈α1n〉〉 vertices.

(b) Suppose there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that x1y1 and

x2y2 are coloured blue. Then, let X̃2 be any set of

`1 =

⌊〈〈α2n〉〉 − 2

4

⌋
≥ 4η1/32n+ 2

vertices from X2. By (HA7), x1 and x2 each have at least two neighbours in X̃2 and, since

η ≤ (α1/100)32, every vertex in X̃2 has degree at least |X1|−4η1/32n ≥ 1
2 |X1|+ 1

2 |X̃2|+1

in G[X1, X̃2]. Since |X1| > `1+1, by Lemma 2.6.6, G2[X1, X̃2] contains a path on exactly

2`1 + 1 vertices from x1 to x2.

Likewise, given y1, y2 ∈ Y1, for any set Ỹ2 of

`2 =

⌈〈〈α2n〉〉 − 2

4

⌉
≥ 4η1/32n+ 2

vertices from Y2, G2[Y1, Ỹ2] contains a a path on exactly 2`2 + 1 vertices from y1 to y2.

Combining the edges x1y1, x2y2 with the blue paths found gives a blue cycle on exactly

2`1 + 2`2 + 2 = 〈〈α2n〉〉 vertices, completing the proof of the claim. 2

The existence of red cycle on 〈〈α1n〉〉 vertices or a blue cycle on 〈〈α2n〉〉 vertices would

be sufficient to complete the proof of Theorem A. Thus, there cannot exist such a pair

of vertex-disjoint red edges or such a pair of vertex-disjoint blue edges in G[X1, Y1].

Similarly, there cannot be a pair of vertex-disjoing blue edges in G[X1, Y2] or in G[X2, Y1].
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Thus, after removing at most three vertices from each of X1 and Y1 and one vertex from

from each of X2 and Y2, we may assume that

(HA8a) the green graph G3[X1, Y1] is complete; and

(HA8b) the are no blue edges in G[X1, Y2] ∪G[X2, Y1].

Then, recalling (2.67), we have

|X1|, |Y1| ≥ (α1 − 11η1/32)n, |X2|, |Y2| ≥ (1
2α2 − 6η1/32)n. (2.68)

X1
 X2


Y1

Y2


Figure 2.81: Colouring of G after Claim 2.10.2.

We now consider W . Defining WG to be the set of vertices in W having a green edge

to both X1 and Y1, we prove the following claim which allows us to assume that WG is

empty:

Y1


Y2


WG


X1


X2


Figure 2.82: Using w ∈WG to construct an odd green cycle.
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Claim 2.10.3. If WG is non empty, then G contains either a red cycle on exactly 〈〈α1n〉〉
vertices or a green cycle on exactly 〈α3n〉 vertices.

Proof. Suppose that WG is non-empty. Then, there exists w ∈ W , x ∈ X1, y ∈ Y1 such

that wx and wy are both coloured green. Recalling (HA8a), G3[X1, Y1] is complete,

thus, we may obtain a cycle of any odd length up to |X1|+ |Y1|+ 1 in G[WG ∪X ∪ Y ].

Therefore, to avoid having a a green cycle on exactly 〈α3n〉 vertices, we may assume

that |X1|+ |Y1|+ 1 < 〈α3n〉.

Then, considering (2.64) and (2.68), we have

2α1 − 22η1/32 ≤ α3 ≤ 2α1 + 2η1/32,

and

|X1|+ |Y1| ≥ (2α1 − 22η1/32)n ≥ (α3 − 24η1/32)n.

In that case, suppose that, for some xa, xb ∈ X1 and ya, yb ∈ Y1, there exist green paths

P1 from xa ∈ X1 to xb ∈ X1 on 2d12η1/32ne+ 1 vertices in G[X1, Y2],

P2 from ya ∈ Y1 to yb ∈ Y1 on 2d12η1/32ne+ 1 vertices in G[Y1, Y2].

X1


X2


Y1


Y2


WG


x


y


xa


xb


ya

yb


Figure 2.83: Construction of a long odd green cycle.

Then, since G3[X1, Y1] is complete and WG is non-empty, P1 and P2 could be used along

with edges from G[X1, Y1] and G[w,X1∪Y1] to give an odd green cycle on exactly 〈α3n〉
vertices. Therefore, without loss of generality, we may assume that G[X1, Y2] does not

contain a green path on 2d12η1/32ne + 1 vertices. Thus, by Theorem 2.6.8, G[X1, Y2]

contains at most 16η1/32n2 green edges.
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Recalling (HA8b), we know that G[X1, Y2] is complete, contains no blue edges and

contains at most 16η1/32n2 green edges. Thus, there are at most 4η1/64n vertices in X1

with red degree to Y2 at most |Y2| − 4η1/64n and at most 4η1/64n vertices in Y2 with

red degree to X1 at most |X1| − 4η1/64n. Removing these vertices from X1 ∪ Y2 results

in every vertex in X1 having red degree at least |Y2| − 4η1/64n in G[X1, Y2] and every

vertex in Y2 having red degree at least |X1| − 4η1/64n in G[X1, Y2]. Thus, G1[X1, Y2] is

4η1/64n-almost-complete.

X1
 X2


Y1

Y2


Figure 2.84: Colouring of G[X1, Y2] in Claim 2.10.3.

Recalling (2.68), since η < 10−20, having discarded these vertices, we have

|X1| ≥ (α1 − 7η1/64)n, |Y2| ≥ (1
2α2 − 7η1/64)n. (2.69)

Then, given this bound for X1, there exist disjoint subsets XL, XS ⊆ X1 such that

|XL| = 〈〈α1n〉〉 − 2b8η1/64nc − 1, |XS | = b8η1/64nc. (2.70)

Let x1, x2 be distinct vertices in XL. By (HA6), every vertex in X1 has red degree at

least (|X1| − 1) − 8η1/32n in G[X1]. Thus, since η ≤ (α1/100)64, every vertex in XL

has red degree in G[XL] at least 1
2 |XL|+ 1 and so, by Corollary 2.6.3, there exists a red

Hamiltonian path R1 in G[XL] from x1 to x2.

We now consider G[Y2, XS ]. Since G1[X1, Y2] is 4η1/64n-almost-complete, there exist

disjoint vertices y1, y2 ∈ Y2, such that x1y1 and x2y2 are red and d(y1), d(y2) ≥ 2. Since

η ≤ (α2/100)64, considering (2.69) and (2.70), we have |Y2| > |XS | + 1 and know that

every vertex in XS has red degree at least |Y2| − 4η1/64n ≥ 1
2(|Y2|+ 1

2α2n− 13η1/64n) ≥
1
2(|Y2| + |XS | + 1) in G[Y2, XS ]. Thus, by Lemma 2.6.6, there exists a red path R2
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in G[Y2, XS ] from y1 to y2 which visits every vertex of XS .

Together, the pathsR1, R2 and the edges x1y1 and x2y2 form a red cycle on exactly 〈〈α1n〉〉
vertices in G[X1] ∪G[X1, Y2], thus completing the proof of the claim. 2

The existence of a red cycle on exactly 〈〈α1n〉〉 vertices or a green cycle on exactly

〈α3n〉 vertices as offered by Claim 2.10.3 would be sufficient to complete the proof of

Theorem A. We may, therefore, assume that WG is empty.

Thus, defining WX to be the set of vertices in W having no green edges to X1 and WY

to be the set of vertices in W having no green edges to Y1, we see that WX ∪WY is a

partition of W .

Y1


Y2

WY


X1


X2
WX


Figure 2.85: Partition of W into WX ∪WY .

We thus have a partition of V (G) into X1 ∪X2 ∪ Y1 ∪ Y2 ∪WX ∪WY . Then, since

|V (G)| ≥ 2〈〈α1n〉〉+ 〈〈α2n〉〉 − 3,

without loss of generality, we may assume that

|X1 ∪X2 ∪WX | ≥ 〈〈α1n〉〉+ 1
2〈〈α2n〉〉 − 1

since, if not, then Y1 ∪ Y2 ∪WY is that large instead.

Given (HA6) and (HA7), we can obtain upper bounds on |X1|, |X2|, |Y1| and |Y2| as

follows: By Corollary 2.6.2, for every integer m such that 16η1/32n+ 2 ≤ m ≤ |X1|, we

know that G[X1] contains a red cycle of length m. Thus, in order to avoid having a red

cycle on exactly 〈〈α1n〉〉 vertices, we may assume that |X1| < 〈〈α1n〉〉. By Corollary 2.6.5,

for every even integer m such that 16η1/32n + 2 ≤ m ≤ 2 min{|X1|, |X2|}, we know
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X1


X2

WX


Figure 2.86: Colouring of G[WX ∪X1 ∪X2].

that G[X1, X2] contains a blue cycle on m vertices. Recalling (2.68), we have |X1| ≥
(α1 − 11η1/32)n ≥ 1

2α2n, thus, in order to avoid having a blue cycle on exactly 〈〈α2n〉〉
vertices, we may assume that |X2| < 1

2〈〈α2n〉〉. In summary, we then have

(α1 − 9η1/32)n ≤ |X1| < 〈〈α1n〉〉,
(1

2α2 − 6η1/32)n ≤ |X2| < 1
2〈〈α1n〉〉.



 (2.71)

Letting

WB = {w ∈WX such that w has at least |X1| − 64η1/32 blue neighbours in X1}; and

WR = W\WB = {w ∈WX such that w has at least 64η1/32 red neighbours in X1},

we have W = WR ∪WB. Thus, either |X1 ∪WR| ≥ 〈〈α1n〉〉 or |X2 ∪WB| ≥ 1
2〈〈α2n〉〉.

X1


X2

WR


WB


Figure 2.87: Partition of WX into WB ∪WR.

If |X1 ∪WR| ≥ 〈〈α1n〉〉, then we show that G1[X1 ∪WR] contains a long red cycle as

follows: Let X be any set of 〈〈α1n〉〉 vertices from X1 ∪WR consisting of every vertex

from X1 and 〈〈α1n〉〉−|X1| vertices from WR. By (HA6) and (2.71), the red graph G1[X]

has at least 〈〈α1n〉〉 − 11η1/32n vertices of degree at least |X| − 20η1/32n and at most

11η1/32 vertices of degree at least 64η1/32n. Thus, by Theorem 2.6.7, G[X] contains a

red cycle on exactly 〈〈α1n〉〉 vertices.

Thus, we may, instead, assume that |X2 ∪WB| ≥ 1
2〈〈α2n〉〉, in which case, we consider

the blue graph G2[X1, X2 ∪WB]. Given the relative sizes of X1 and X2 ∪WB and the
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large minimum-degree of the graph, we can use Theorem 2.6.4 to give a blue cycle on

exactly 〈〈α2n〉〉 vertices. Indeed, by (2.71), we have |X1| ≥ 1
2〈〈α2n〉〉 and may choose

subsets X̃1 ⊆ X1, X̃2 ⊆ X2 ∪WB such that X̃2 includes every vertex of X2 and

|X̃1| = |X̃2| = 1
2〈〈α2n〉〉, |X̃2 ∪WB| ≤ 6η1/32n.

Recall that G2[X1, X2] is 4η1/32k-almost-complete and that, all vertices in WB have

blue degree at least |X̃1| − 64η1/32n in G[X̃1, X̃2]. Thus, since |X̃2 ∪WB| ≤ 6η1/32n and

η ≤ (α2/200)32, for any pair of vertices x1 ∈ X̃1 and x2 ∈ X̃2, we have

d(x1) + d(x2) ≥ |X̃1|+ |X̃2| − 74η1/32n ≥ 1
2〈〈α2n〉〉+ 1.

Therefore, by Theorem 2.6.4, G2[X̃1, X̃2] contains a blue cycle on exactly 〈〈α2n〉〉 vertices,

thus completing this part of the proof.

Part I.B: H1, H2 ∈ H2.

By Theorem B, this case only occurs when

α2 ≤ α1 ≤ α2 + η1/8. (HB0)

Recalling that G1,G2 and G3 are the monochromatic spanning subgraphs of the reduced-

graph G, the vertex set V of G has a partition into W ∪X1 ∪ X2 ∪ Y1 ∪ Y2 with

(α2 − 2η1/16)k ≤ |X1| = |Y1| = p ≤ α2k,

(1
2α1 − 2η1/16)k ≤ |X2| = |Y2| = q ≤ 1

2α1k,



 (2.72)

such that

(HB1) G2[X1],G2[Y1] are each (1− 2η1/16)-complete (and thus connected);

(HB2) G1[X1,X2],G1[Y1,Y2] are each (1− 2η1/16)-complete (and thus connected);

(HB3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);

(HB4) G[X1],G[Y1] are each 2η1/16-sparse in red and contain no green edges; and

(HB5) G[X1,X2],G[Y1,Y2] are each 2η1/16-sparse in blue and contain no green edges.
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2.10 Proof of Theorem A - Part I
s:p11

We assume that G contains two disjoint subgraphs H1, H2 from H1 ∪ H2, where

H1 =
�
(α1 − 2η1/16)k, (1

2α2 − 2η1/16)k, 3η4k, η1/16, red, blue
�

,

H2 =
�
(α2 − 2η1/16)k, (1

2α1 − 2η1/16)k, 3η4k, η1/16, blue, red
�

,

and that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2. (2.61) a3notbig

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether each of H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1

In this case, the vertex set V of G has partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W with

|X1| = |Y1| = (α1 − 2η1/16)k = p, |X2| = |Y2| = (1
2α2 − 2η1/16)k = q.

X1 X2 

Y1 Y2 

Figure 2.74: Initial coloured structure in Part I.A.figeiii

Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);

(A2) G2[X1, X2], G2[Y1, Y2] are each (1 − η1/16)-complete (and thus connected);

(A3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);
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Figure 2.88: Coloured structure of the reduced-graph in Part I.B.

The proof in this case is essentially identical to that in Part I.A. However we include

the key steps here for completeness. As in Part I.A, each vertex Vi of G represents

a class of vertices of G. We partition the vertices of G into sets X1, X2, Y1, Y2 and W

corresponding to the partition of the vertices of G into X1,X2,Y1,Y2 andW. Then X1, Y1

each contain p clusters of vertices, X2, Y2 each contain q clusters and we have

|X1|, |Y1| = p|V1| ≥ (α2 − 2η1/16)n, |X2|, |Y2| = q|V1| ≥ (1
2α1 − 2η1/16)n. (2.73)

By the following claim, G has essentially the same colouring as the reduced-graph:

Claim 2.10.4. Given G as described, we can remove at most 9η1/32n vertices from each

of X1 and Y1 and at most 4η1/32n vertices from each of X2 and Y2 so that the following

pair of conditions hold.

(HB6) G2[X1] and G2[Y1] are each 8η1/32n-almost-complete;

(HB7) G1[X1, X2] and G1[Y1, Y2] are each 4η1/32n-almost-complete.

Proof. Identical to that of Claim 2.10.1 with the roles of red and blue exchanged. 2

Having discarded some vertices, recalling (2.73), we have

|X1|, |Y1| ≥ (α2 − 10η1/32)n, |X2|, |Y2| ≥ (1
2α1 − 5η1/32)n, (2.74)

and can proceed to the end-game.

The following pair of claims allow us to determine the colouring of G[X1, X2]:
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Claim 2.10.5.a. If there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that x1y1

and x2y2 are coloured blue, then G contains a blue cycle of length exactly 〈〈α2n〉〉.

Claim 2.10.5.b. If there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that x1y1

and x2y2 are coloured red, then G contains a red cycle of length exactly 〈〈α1n〉〉.

Proof. Identical to that of Claim 2.10.2 with the roles of red and blue exchanged and also

the roles of α1 and α2. Note that, when needed in (b), the fact that |X1| > `1 + 1, |Y1| >
`2 + 1, follows from (HB0). 2

The existence of a red cycle on 〈〈α1n〉〉 vertices or a blue cycle on 〈〈α2n〉〉 vertices would

be sufficient to complete the proof of Theorem A. Thus, there cannot exist such a pair

of vertex-disjoint red edges or such a pair of vertex-disjoint blue edges in G[X1, Y1].

Similarly, there cannot be a pair of vertex-disjoint red edges in G[X1, Y2] or in G[X2, Y1].

Thus, after removing at most three vertices from each of X1 and Y1 and one vertex from

from each of X2 and Y2, we may assume that

(HB8a) the green graph G3[X1, Y1] is complete; and

(HB8b) the are no red edges in G[X1, Y2] ∪G[X2, Y1].

X1
 X2


Y1

Y2


Figure 2.89: Colouring of G after Claim 2.10.5.

Then, recalling (2.74), we have

|X1|, |Y1| ≥ (α2 − 11η1/32)n, |X2|, |Y2| ≥ (1
2α1 − 6η1/32)n. (2.75)

We now consider W . Defining WG to be the set of vertices in W having a green edge to

both X1 and Y1, the following claim allows us to assume that WG is empty:
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Claim 2.10.6. If WG is non empty, then G contains either a blue cycle on exactly

〈〈α2n〉〉 vertices or a green cycle on exactly 〈α3n〉 vertices.

Proof. Identical to that of Claim 2.10.2 with the roles of red and blue and also the roles

of α1 and α2 exchanged. 2

Since WG is empty, defining WX to be the set of vertices in W having no green edges

to X1 and WY to be the set of vertices in W having no green edges to Y1, we see that

WX ∪WY is a partition of W . We may assume, without loss of generality that

|X1 ∪X2 ∪WX | ≥ 〈〈α1n〉〉+ 1
2〈〈α2n〉〉 − 1.

X1


X2

WX


Figure 2.90: Colouring of G[X1 ∪X2 ∪WX ].

Given (HB6) and (HB7), we can obtain upper bounds on |X1|, |X2|, |Y1| and |Y2| as

follows: By Corollary 2.6.2, for every integer m such that 16η1/32n+ 2 ≤ m ≤ |X1|, we

know that G2[X1] contains a blue cycle of length m. Thus, in order to avoid having a

blue cycle of length 〈〈α2n〉〉, we may assume that |X1| < 〈〈α2n〉〉. By Corollary 2.6.5,

for every even integer m such that 16η1/32n+ 2 ≤ m ≤ 2 min{|X1|, |X2|}, we know that

G1[X1, X2] contains a red cycle of length m. Recalling (HB0) and (2.75), we have

|X1| ≥ (α2 − 11η1/32)n ≥ 1
2α1n. Thus, in order to avoid having a red cycle on exactly

〈〈α1n〉〉 vertices, we may assume that |X2| < 1
2〈〈α1n〉〉. In summary, we have

(α2 − 1η1/32)n ≤ |X1| < 〈〈α2n〉〉,
(1

2α1 − 6η1/32)n ≤ |X2| < 1
2〈〈α1n〉〉.



 (2.76)

Let

WR = {w ∈WX such that w has at least |X1| − 64η1/32 red neighbours in X1}; and

WB = W\WR = {w ∈WX such that w has at least 64η1/32 blue neighbours in X1}.
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X1


X2

WB


WR


Figure 2.91: Partition of WX into WR ∪WB.

Then, we have W = WB∪WR. Thus, either |X1∪WB| ≥ 〈〈α2n〉〉 or |X2∪WR| ≥ 1
2〈〈α1n〉〉.

If |X1 ∪WB| ≥ 〈〈α2n〉〉, then we show that G2[X1 ∪WB] contains a long blue cycle as

follows: Let X be any set of 〈〈α2n〉〉 vertices from X1 ∪WB consisting of every vertex

from X1 and 〈〈α2n〉〉−|X1| vertices from WB. By (HB6) and (2.76), the blue graph G2[X]

has at least 〈〈α2n〉〉 − 11η1/32n vertices of degree at least |X| − 20η1/32n and at most

11η1/32n vertices of degree at least 64η1/32n. Thus, by Theorem 2.6.7, G[X] contains a

blue cycle on exactly 〈〈α2n〉〉 vertices.

Thus, we may, instead, assume that |X2 ∪WR| ≥ 1
2〈〈α1n〉〉, in which case, we consider

the red graph G2[X1, X2 ∪WR]. Given the relative sizes of X1 and X2 ∪WR and the

large minimum-degree of the graph, we can use Theorem 2.6.4 to give a red cycle on

exactly 〈〈α1n〉〉 vertices as follows: By (HB0) and (2.76), we have |X1| ≥ 1
2〈〈α1n〉〉 and

may choose subsets X̃1 ⊆ X1, X̃2 ⊆ X2 ∪ WR such that X̃2 includes every vertex

of X2, |X̃1| = |X̃2| = 1
2〈〈α1n〉〉 and |X̃2 ∩ WR| ≤ 6η1/32n. Recall, from (HB7), that

G1[X1, X2] is 4η1/32k-almost-complete and that, by definition, all vertices in WR have

red degree at least |X̃1| − 64η1/32n in G[X̃1, X̃2]. Thus, since |X̃2 ∩ WR| ≤ 6η1/32n,

for any pair of vertices x1 ∈ X̃1 and x2 ∈ X̃2, we have d(x1) + d(x2) ≥ 1
2〈〈α1n〉〉 + 1.

Therefore, by Theorem 2.6.4, G1[X̃1, X̃2] contains a red cycle on exactly 〈〈α1n〉〉 vertices,

thus completing this part of the proof.

Part I.C: H1 ∈ H1, H2 ∈ H2.

By Theorem B, this case only occurs when

α2 ≤ α1 ≤ α2 + η1/8. (HC0)

Recalling that G1,G2 and G3 are the monochromatic spanning subgraphs of the reduced-

graph G, the vertex set V of G has a partition into X1 ∪ X2 ∪ Y1 ∪ Y2 ∪W with
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(α1 − 2η1/16)k ≤ |X1| = p ≤ α1k, (1
2α2 − 2η1/16)k ≤ |X2| = q ≤ 1

2α2k,

(α2 − 2η1/16)k ≤ |Y1| = r ≤ α2k, (1
2α1 − 2η1/16)k ≤ |Y2| = q ≤ 1

2α1k

such that

(HC1) G1[X1],G2[Y1] are each (1− 2η1/16)-complete (and thus connected);

(HC2) G2[X1,X2],G1[Y1,Y2] are each (1− 2η1/16)-complete (and thus connected);

(HC3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);

(HC4) G[X1] is 2η1/16-sparse in blue and contains no green edges,

G[Y1] is 2η1/16-sparse in red and contains no green edges; and

(HC5) G[X1,X2] is 2η1/16-sparse in red and contains no green edges,

G[Y1,Y2] is 2η1/16-sparse in blue and contains no green edges.

2.10 Proof of Theorem A - Part I
s:p11

We assume that G contains two disjoint subgraphs H1, H2 from H1 ∪ H2, where

H1 =
�
(α1 − 2η1/16)k, (1

2α2 − 2η1/16)k, 3η4k, η1/16, red, blue
�

,

H2 =
�
(α2 − 2η1/16)k, (1

2α1 − 2η1/16)k, 3η4k, η1/16, blue, red
�

,

and that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2. (2.61) a3notbig

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether each of H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1

In this case, the vertex set V of G has partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W with

|X1| = |Y1| = (α1 − 2η1/16)k = p, |X2| = |Y2| = (1
2α2 − 2η1/16)k = q.

X1 X2 

Y1 Y2 

Figure 2.74: Initial coloured structure in Part I.A.figeiii

Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);

(A2) G2[X1, X2], G2[Y1, Y2] are each (1 − η1/16)-complete (and thus connected);

(A3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);
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Figure 2.92: Coloured structure of the reduced-graph in Part I.C.

The proof that follows is essentially similar to those in Parts I.A and I.B but with some

additional complications.

Again, each vertex Vi of G represents a class of vertices of G. We partition the vertices

of G into sets X1, X2, Y1, Y2 and W corresponding to the partition of the vertices

of G into X1,X2,Y1,Y2 and W. Then X1 contains p clusters, X2 contains q clusters Y1

contains r clusters, Y2 contains s clusters and we have

|X1| = p|V1| ≥ (α1 − 2η1/16)n, |X2| = q|V1| ≥ (1
2α2 − 2η1/16)n,

|Y1| = r|V1| ≥ (α2 − 2η1/16)n, |Y2| = s|V1| ≥ (1
2α1 − 2η1/16)n.



 (2.77)

We may then show that G has similar coloured structure to the reduced-graph G:
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Claim 2.10.7. Given G as described, we can remove at most 9η1/32n vertices from each

of X1 and Y1 and at most 4η1/32n vertices from each of X2 and Y2 so that the following

pair of conditions hold:

(HC6) G1[X1] and G2[Y1] are each 8η1/32n-almost-complete;

(HC7) G2[X1, X2] and G1[Y1, Y2] are each 4η1/32n-almost-complete.

Proof. The proof for G1[X1] and G2[X1, X2] is identical to that of Claim 2.10.1. The

proof for G2[Y1] and G1[Y1, Y2] is identical but with the roles of red and blue exchanged.

2

X1
 X2


Y1

Y2


Figure 2.93: Colouring of G after Claim 2.10.7.

Having discarded some vertices, recalling (2.77), we now have

|X1| ≥ (α1 − 10η1/32)n, |X2| ≥ (1
2α2 − 5η1/32)n,

|Y1| ≥ (α2 − 10η1/32)n, |Y2| ≥ (1
2α1 − 5η1/32)n.



 (2.78)

and proceed to consider G[X,Y ]:

Claim 2.10.8. If there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y1 such that x1y1

and x2y2 are coloured red, then G contains a red cycle of length exactly 〈〈α1n〉〉.

Proof. Suppose there exist distinct vertices x1, x2 ∈ X1 and y1, y2 ∈ Y2 such that the

edges x1y1 and x2y2 are coloured red. Then, letting X̃1 be any set of of 2d1
4〈〈α1n〉〉e − 1

vertices in X1 such that x1, x2 ∈ X̃1, by (HC6), every vertex in X̃1 has degree at least

|X̃1| − 8η1/32n in G[X̃1]. Since η ≤ (α1/100)32, we have |X̃1| − 8η1/32n ≥ 1
2 |X̃1|+ 2, so,

159



by Corollary 2.6.3, there exists a red path from x1 and x2 on exactly 2d1
4〈〈α1n〉〉e − 1

vertices in X1.

Let Ỹ2 be any set of b1
4〈〈α1n〉〉c ≥ 4η1/32n + 2 vertices from Y2. By (HC7), y1 and y2

each have at least two neighbours in Ỹ2. Also, by (HC0) and (HC7), every vertex in Ỹ2

has degree at least 1
2 |Y1|+ 1

2 |Ỹ2|+1 in G[Y1, Ỹ2]. Finally, by (HC0), we have |Y1| ≥ `+1.

Thus, by Lemma 2.6.6, G2[Y1, Ỹ2] contains a path on exactly 2b1
4〈〈α1n〉〉c + 1 vertices

from y1 to y2. Then, combining the red edges x1y1 and x2y2 with the red paths found

in G[X1] and G[Y1, Y2] gives a red cycle on exactly 〈〈α1n〉〉 vertices. 2

The existence of a red cycle on 〈〈α1n〉〉 vertices would be sufficient to complete the proof.

Thus, there cannot exist such a pair of vertex-disjoint red edges. Similarly, there cannot

exist a pair of vertex-disjoint red edges in G[X1, Y2] or a pair of vertex-disjoint blue edges

in G[X1, Y1] or G[X2, Y1].

X1
 X2


Y1

Y2


Figure 2.94: Colouring of G after Claim 2.10.8.

Thus, after removing at most three vertices from each of X1, Y1 and at most one vertex

from each of X2, Y2, we may assume that

(HC8a) the green graph G3[X1, Y1] is complete; and

(HC8b) the are no red edges in G[X1, Y2] and no blue edges in G[X2, Y1].

Then, recalling (2.78), we have

|X1| ≥ (α1 − 11η1/32)n, |X2| ≥ (1
2α2 − 6η1/32)n,

|Y1| ≥ (α2 − 11η1/32)n, |Y2| ≥ (1
2α1 − 6η1/32)n.



 (2.79)
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We now consider W . Defining WG to be the set of vertices in W having a green edge to

both X1 and Y1, the following claim allows us to assume that WG is empty:

Claim 2.10.9. If WG is non empty, then G contains either a red cycle on exactly 〈〈α1n〉〉
vertices, a blue cycle on exactly 〈〈α2n〉〉 vertices or a green cycle on exactly 〈α3n〉 vertices.

Proof. Suppose that WG is non-empty. Then, there exists w ∈ W , x ∈ X1, y ∈ Y1 such

that wx and wy are both coloured green. Recalling (HC8a), G3[X1, Y1] is complete,

thus we may obtain an odd cycle of any odd length up to |X1|+ |Y1|+ 1 in G[WG, X1 ∪
Y1]∪G[X1, Y1]. Therefore, to avoid having a a green cycle on exactly 〈α3n〉 vertices, we

assume that |X1|+ |Y1|+ 1 < 〈α3n〉.

Then, considering, (2.64), (HC0) and (2.79), we have

|X1|+ |Y1| ≥ (α1 + α2 − 22η1/2)n ≥ (α3 − 24η1/32)n.

In that case, suppose that, for some xa, xb ∈ X1 and ya, yb ∈ Y1, there exist green paths

P1 from xa ∈ X1 to xb ∈ X1 on 2d12η1/32ne+ 1 vertices in G[X1, Y2],

P2 from ya ∈ Y1 to yb ∈ Y1 on 2d12η1/32ne+ 1 vertices in G[Y1, Y2].

Then, since G3[X1, Y1] is complete and WG is non-empty, P1 and P2 could be used along

with edges from G[X1, Y1] and G[w,X1∪Y1] to give an odd green cycle on exactly 〈α3n〉
vertices.

Thus, at most one of G[X1, Y2], G[X2, Y1] contains a green path on 2d12η1/32ne + 1

vertices. Thus, by Theorem 2.6.8, either (a) G[X1, Y2] contains at most 16η1/32n2 green

edges or (b) G[X2, Y1] contains at most 16η1/32n2 green edges.

(a) If G[X1, Y2] contains at most 16η1/32n2 green edges, then recalling (HC8b), we know

that G[X1, Y2] is complete, contains no red edges and contains at most 16η1/32n2 green

edges. Thus, after removing at most 4η1/64 vertices from each of X1 and Y2 we may

assume that G2[X1, Y2] is 4η1/64n-almost-complete. Recall from (HC6) that G2[X1, X2]

is 4η1/32-almost-complete. Thus, G2[X1, X2 ∪ Y2] is 6η1/64-almost-complete.

Having discarded these vertices, recalling (2.79), since η < 10−20, we have

|X1| ≥ (α1 − 7η1/64)n, |X2| ≥ (1
2α2 − 2η1/64)n,

|Y1| ≥ (α2 − 2η1/64)n, |Y2| ≥ (1
2α1 − 7η1/64)n.



 (2.80)
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X1
 X2


Y1

Y2


Figure 2.95: Colouring of G[X1, Y2] in Claim 2.10.9(a).

Given the bounds in (2.80), there exist subsets X̃1 ⊆ X1 and X̃2 ⊆ X2 ∪ Y2 such that

|X̃1| = |X̃2| = 1
2〈〈α2n〉〉. Then, by Theorem 2.6.4, G2[X̃1, X̃2] is Hamiltonian and, thus,

provides a blue cycle on exactly 〈〈α2n〉〉 vertices.

(b) If instead G[X2, Y1] contains at most 16η1/32n2 green edges, then, after removing

at most 4η1/32n vertices from each of X2 and Y1, we may assume that G1[X2, Y1] is

4η1/64n-almost-complete. Recall from (HC6) that G2[Y1, Y2] is 4η1/32-almost-complete.

Thus, G1[Y1, X2∪Y2] is 6η1/64-almost-complete. Having discarded these vertices, recall-

ing (2.79), since η < 10−20, we have

|X1| ≥ (α1 − 2η1/64)n, |X2| ≥ (1
2α2 − 7η1/64)n,

|Y1| ≥ (α2 − 7η1/64)n, |Y2| ≥ (1
2α1 − 2η1/64)n.



 (2.81)

Given these bounds, there exist subsets Ỹ1 ⊆ X1 and Ỹ2 ⊆ X2 ∪ Y2 such that |Ỹ1| =

|Ỹ2| = 1
2〈〈α1n〉〉. Then, by Theorem 2.6.4, G1[Ỹ1, Ỹ2] is Hamiltonian and, thus, provides

a red cycle on exactly 〈〈α1n〉〉 vertices. 2

The existence of a red cycle on exactly 〈〈α1n〉〉 vertices, a blue cycle on exactly 〈〈α2n〉〉
vertices or a green cycle on exactly 〈α3n〉 vertices, as offered by Claim 2.10.9, would

be sufficient to complete the proof of Theorem A. We may, therefore, instead assume

that WG is empty.

Then, defining WX to be the set of vertices in W having no green edges to X1 and WY

to be the set of vertices in W having no green edges to Y1, we see that WX ∪WY is a
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partition of W . Thus either

|X1 ∪X2 ∪WX | ≥ 〈〈α1n〉〉+ 1
2〈〈α2n〉〉 − 1 or |Y1 ∪ Y2 ∪WY | ≥ 〈〈α1n〉〉+ 1

2〈〈α2n〉〉 − 1.

In the first case, the proof proceeds exactly as in Part I.A. In the second case, the proof

proceeds exactly as in Part I.B. Thus, we obtain either a red cycle on exactly 〈〈α1n〉〉 or

a blue cycle on exactly 〈〈α1n〉〉, completing Part I of the proof of Theorem A.

Notice that, in particular, since the graph providing the corresponding lower bound has

already been seen, we have proved that, given α1, α2, α3 > 0 such that α1 ≥ α2, α3,

there exists nA′ = nA′(α1, α2, α3) such that, for n > nA′ ,

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) = 2〈〈α1n〉〉+ 〈〈α2n〉〉 − 3.

2.11 Proof of the main result – Part II – Case (v)

Suppose that G contains a subgraph from

K
(

(1
2α1 − 14000η1/2)k, (1

2α1 − 14000η1/2)k, (α3 − 68000η1/2)k, 4η4k
)
.

In that case, by Theorem B, we may assume that

α3 ≥ 3
2α1 + 1

2α2 − 10η1/2.

Recalling that G1,G2 and G3 are the monochromatic spanning subgraphs of the reduced-

graph G, since η < 10−20, the vertex set V of G has partition into X1 ∪X2 ∪X3 ∪W with

(1
2α1 − η1/4)k ≤ |X1| = p ≤ 1

2α1k,

(1
2α2 − η1/4)k ≤ |X2| = q ≤ 1

2α2k,

(α3 − η1/4)k ≤ |X3| = r ≤ α3k.

such that all edges present in G[X1,X3] are coloured exclusively red, all edges present in

G[X2,X3] are coloured exclusively blue, all edges present in G[X3] are coloured exclusively

green and G[X1 ∪ X2 ∪ X3] is 4η4k-almost-complete.
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graph G, since η < 10−20, the vertex set V of G has partition into X1 ∪X2 ∪X3 ∪W with

|X1| = (1
2α1 − η1/4)k = p, |X2| = (1

2α2 − η1/4)k = q, |X3| = (α3 − η1/4)k = r,

such that all edges present in G[X1, X3] are coloured exclusively red, all edges present in

G[X2, X3] are coloured exclusively blue, all edges present in G[X3] are coloured exclusively

green and G[X1 ∪ X2 ∪ X3] is 4η4k-almost complete.

Thus far, we have obtained information about the structure of the reduced graph G. The

remainder of this section focuses on showing that the original graph must have a similar

structure which can then be exploited to force a cycle of appropriate length, colour and

parity.

Recall that each vertex Vi of G = (V, E) represents a class of vertices of G = (V, E) with

(1 − η4)
N

K
≤ |Vi| ≤

N

K
.

Again, in what follows, we will refer to these classes as clusters (of vertices of G).

Then, since N ≥ max{N2.3.4(2, 1, 0, η), N2.3.4(
1
2 , 1

2 , 1, η)}, we can (as in the proof of

Theorem 2.3.4) prove that

|Vi| ≥
�
1 +

η

24

� n

k
>

n

k
.

We partition the vertices of G into sets X1, X2, X3 and W corresponding to the partition

of the vertices of G into X1, X2, X3, W. Then X1 contains p clusters of vertices, X2

contains q clusters and X3 contains r clusters.

We have

|X1| = p|V1| ≥ (1
2α1 − η1/4)n,

|X2| = q|V1| ≥ (1
2α2 − η1/4)n,

|X3| = r|V1| ≥ (α3 − η1/4)n.

In what follows, we will remove vertices from X1, X2, X3, by moving them into W .

Recalling the definition of the reduced graph and its colouring, we are able to prove the

below claim which will be useful to us in completing the proof:

G-structII Claim 2.11.1. We can remove at most 7η1/2n vertices from X1, 7η1/2n vertices from X2,
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2.10 Proof of Theorem A - Part I
s:p11

We assume that G contains two disjoint subgraphs H1, H2 from H1 ∪ H2, where

H1 =
�
(α1 − 2η1/16)k, (1

2α2 − 2η1/16)k, 3η4k, η1/16, red, blue
�

,

H2 =
�
(α2 − 2η1/16)k, (1

2α1 − 2η1/16)k, 3η4k, η1/16, blue, red
�

,

and that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2. (2.61) a3notbig

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether each of H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1

In this case, the vertex set V of G has partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W with

|X1| = |Y1| = (α1 − 2η1/16)k = p, |X2| = |Y2| = (1
2α2 − 2η1/16)k = q.

X1 X2 

Y1 Y2 

Figure 2.74: Initial coloured structure in Part I.A.figeiii

Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);

(A2) G2[X1, X2], G2[Y1, Y2] are each (1 − η1/16)-complete (and thus connected);

(A3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);
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Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);
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Figure 2.96: Coloured structure of the reduced-graph in Part II.

Again, each vertex Vi of G = (V, E) represents a cluster of vertices of G = (V,E) with

(1− η4)
N

K
≤ |Vi| ≤

N

K

and, since n > max{n2.3.4(2, 1, 0, η), n2.3.4(1
2 ,

1
2 , 1, η)}, we have

|Vi| ≥
(

1 +
η

24

) n
k
>
n

k
.

We partition the vertices of G into sets X1, X2, X3 and W corresponding to the partition

of the vertices of G into X1,X2,X3 and W. Then X1 contains p clusters of vertices, X2

contains q clusters, X3 contains r clusters and we have

|X1| = p|V1| ≥ (1
2α1 − η1/4)n, |X3| = r|V1| ≥ (α3 − η1/4)n,

|X2| = q|V1| ≥ (1
2α2 − η1/4)n.



 (2.82)

In what follows, we will remove vertices from X1, X2, X3, by moving them into W . We

prove the below claim which essentially tells us that G has a similar coloured structure

to G.

Claim 2.11.1. We can remove at most 7η1/2n vertices from X1, 7η1/2n vertices from X2,

and 24η1/2n vertices from X3 such that the following holds:

(i) G1[X1, X3] is 7η1/2n-almost-complete;

(ii) G2[X2, X3] is 7η1/2n-almost-complete;

(iii) G3[X3] is 10η1/2n-almost-complete.
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Proof. Consider the complete three-coloured graph G[X3] and recall that G[X3] is 4η4k-

almost-complete and has only green edges. Given the structure of G, we can bound the

number of non-green edges in G[X3] as follows:

Since regularity provides no indication as to the colours of the edges contained within

each cluster, these could potentially all be non-green. There are r clusters, each with at

most N/K vertices. Thus, there are at most

r

(
N/K

2

)

non-green edges in X3 within the clusters of X3.

Now, consider a pair of clusters (U1, U2) in X3. If (U1, U2) is not η4-regular, then we can

only trivially bound the number of non-green edges in G[U1, U2] by |U1||U2| ≤ (N/K)2.

However, there are at most 4η4|X3|k such pairs in G. Thus, we can bound the number

of non-red edges coming from non-regular pairs by

4η4rk

(
N

K

)2

.

If the pair is regular, then U1 and U2 are joined, in the reduced-graph, by an edge which

is coloured exclusively green. The red and blue densities of the pair are at most η (since

a higher density would result in an edge of that colour in the reduced-graph). Thus,

there are at most

2η

(
r

2

)(
N

K

)2

non-green edges in G[X3] corresponding to such pairs of clusters.

Summing the three possibilities above gives an upper bound of

r

(
N/K

2

)
+ 4η4rk

(
N

K

)2

+ 2η

(
r

2

)(
N

K

)2

non-green edges in G[X3].

Since K ≥ k, η−1, N ≤ 3n and r ≤ α3k ≤ 2k, we obtain

e(G1[X3]) + e(G2[X3]) ≤ [9η + 72η4 + 36η]n2 ≤ 50ηn2.

Since G[X3] is complete and contains at most 50ηn2 non-green edges, there are at most
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10η1/2n vertices with green degree at most |X3| − 10η1/2n. After re-assigning these

vertices to W , every vertex in G[X3] has red degree at least |X3| − 10η1/2n.

Now, consider G[X1, X3]. In a similar way to above, we can bound the the number of

non-red edges in G[X1, X3] by

4η4rk

(
N

K

)2

+ 2ηpr

(
N

K

)2

.

Where the first term bounds the number of non-red edges between non-regular pairs,

the second bounds the number of non-red edges between pairs of clusters that are joined

by a red edge in the reduced-graph.

Since K ≥ k, N ≤ 3n, p ≤ 1
2α1k ≤ 1

2k and r ≤ α3k ≤ 2k, we obtain

e(G2[X1, X3]) + e(G3[X1, X3]) ≤ (72η4 + 18η) ≤ 40ηn2.

Since G[X1, X3] is complete and contains at most 40ηn2 non-red edges, there are at

most 7η1/2 vertices in X1 with red degree to X3 at most |X3|−7η1/2n and at most 7η1/2

vertices in X3 with red degree to X1 at most |X1| − 7η1/2n. Re-assigning these vertices

to W results in every vertex in X1 having degree in G1[X1, X3] at least |X3| − 7η1/2n

and every vertex in X3 having degree in G1[X1, X3] at least |X1| − 7η1/2n.

We repeat the above for G[X2, X3], removing vertices such that every (remaining) vertex

in X2 has degree in G2[X2, X3] at least |X3|−7η1/2n and every (remaining) vertex in X3

has degree in G2[X1, X3] at least |X2|−7η1/2n, thus completing the proof of Claim 2.11.1.

2

X1


X2


X3


Figure 2.97: Colouring of G after Claim 2.11.1
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We now proceed to the end-game: Observe that, by Corollary 2.6.5 there exist red cycles

in G[X1, X3] of every (non-trivial) even length up to twice the size of the smaller part

and blue cycles in G[X2, X3] of every (non-trivial) even length up to twice the size of

the smaller part. Similarly, by Corollary 2.6.2, there exist green cycles in G[X3] of every

(non-trivial) length up to |X3|. We will show that it is possible to augment each of

X1, X2, X3 with vertices from W while maintaining this property. Then, considering the

sizes of each part, there must, in fact, be a cycle of appropriate length, colour and parity

to complete the proof:

Since 24η1/2 ≤ η1/4, recalling (2.82), having discarded some vertices while proving

Claim 2.11.1, we have

(1
2α1 − 2η1/4)n ≤ |X1| < 1

2〈〈α1n〉〉,
(1

2α2 − 2η1/4)n ≤ |X2| < 1
2〈〈α2n〉〉,

(α3 − 2η1/4)n ≤ |X3| < 〈α3n〉,

and know that G1[X1, X3], G2[X2, X3] and G3[X3] are each η1/4n-almost-complete.

Now, let

WG = {w ∈W : w has at least 4η1/4n green edges to X3}.

Suppose that |X3 ∪WG| ≥ 〈α3n〉. Then, since |X3| ≤ 〈α3n〉, we may choose a subset X

of size 〈α3n〉 from X3∪WG which includes every vertex from X3 and 〈α3n〉−|X3| vertices

from WG. Then, G[X] has at least (α3−2η1/4)n vertices of degree at least (α3−4η1/4)n

and at most 2η1/4 vertices of degree at least 4η1/4n, so, by Theorem 2.6.7, G[X] is

Hamiltonian and, thus, contains a green cycle of length exactly 〈α3n〉. The existence of

such a cycle would be sufficient to complete the proof of Theorem A in this case, so we

may assume, instead that |X3 ∪WG| < 〈α3n〉.

Thus, letting WRB = W\WG, we may assume that

|X1|+ |X2|+ |WRB| ≥ 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉 − 1,

and, defining

WR = {w ∈W : w has at least 1
2 |X3| − 2η1/4n red edges to X3},

WB = {w ∈W : w has at least 1
2 |X3| − 2η1/4n blue edges to X3},
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may assume, without loss of generality, that |X1 ∪WR| ≥ 〈〈α1n〉〉.

In that case, let W̃R ⊆ WR be such that |X1| + |W̃R| = 1
2〈〈α1n〉〉. Then, observing that

any w ∈ WR and x ∈ X1 have at least 1
2 |X3| − 3η1/4n ≥ |W̃R| common neighbours

and that any x, y ∈ X1 have at least (α3 − 2η1/4)n ≥ α1n common neighbours, we can

greedily construct a red cycle of length 〈〈α1n〉〉 using all the vertices of X1 ∪ W̃R, thus

completing this part of the proof of Theorem A.

2.12 Proof of the main result – Part III – Case (vi)

We now consider the final case, thus, we suppose that G contains a subgraph K∗ from

K∗1 ∪ K∗2, where

K∗1 = K∗
(
(1

2α1 − 97η1/2)k, (1
2α1 − 97η1/2)k, (1

2α1 + 102η1/2)k,

(1
2α1 + 102η1/2)k, (α3 − 10η1/2)k, 4η4k

)
,

K∗2 = K∗
(
(1

2α1 − 97η1/2)k, (1
2α2 − 97η1/2)k, (3

4α3 − 140η1/2)k,

100η1/2k, (α3 − 10η1/2)k, 4η4k
)
.

Recalling, Theorem B, we may assume that

α3 ≥ 3
2α1 + 1

2α2 − 10η1/2. (K0)

Recalling that G1,G2 and G3 are the monochromatic spanning subgraphs of the reduced-

graph, we have a partition of the vertex set V of G into X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W such

that all edges present in G[X1,Y1] ∪ G[X2,Y2] are coloured exclusively red, all edges

present in G[X1,Y2] ∪ G[X2,Y1] are coloured exclusively blue and all edges present in

G[X1,X2]∪G[Y1,Y2] are coloured exclusively green. Also, for any Z ⊆ X1∪X2∪Y1∪Y2,

G[Z] is 4η4k-almost-complete.

In each case, before proceeding to consider G, we we must determine more about the

the coloured structure of the reduced-graph G. In the process, we will discard further

vertices from X1,X2,Y1 and Y2. As in Section 2.8, these discarded vertices are considered

as having been re-assigned to W.
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2.10 Proof of Theorem A - Part I
s:p11

We assume that G contains two disjoint subgraphs H1, H2 from H1 ∪ H2, where

H1 =
�
(α1 − 2η1/16)k, (1

2α2 − 2η1/16)k, 3η4k, η1/16, red, blue
�

,

H2 =
�
(α2 − 2η1/16)k, (1

2α1 − 2η1/16)k, 3η4k, η1/16, blue, red
�

,

and that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2. (2.61) a3notbig

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether each of H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1

In this case, the vertex set V of G has partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W with

|X1| = |Y1| = (α1 − 2η1/16)k = p, |X2| = |Y2| = (1
2α2 − 2η1/16)k = q.

X1 X2 

Y1 Y2 

Figure 2.74: Initial coloured structure in Part I.A.figeiii

Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);

(A2) G2[X1, X2], G2[Y1, Y2] are each (1 − η1/16)-complete (and thus connected);

(A3) G[X1 ∪ X2 ∪ Y1 ∪ Y2] is 3η4k-almost-complete (and thus connected);
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Figure 2.98: Initial coloured structure of the reduced-graph in Part III.

Part III.A: K∗ ∈ K∗1.

In this case, we have a partition of the vertex set V of G into X1∪X2∪Y1∪Y2∪W with

|X1|, |X2| ≥ (1
2α1 − 97η1/2)k,

|Y1|, |Y2| ≥ (1
2α1 + 102η1/2)k,

|Y1|+|Y2| ≥ (α3 − 10η1/2)k.

Observe that, since |X1|, |Y1| ≥ (1
2α1−97η1/2)k and G1[X1∪Y1] is 4η4k-complete, G[X1∪

Y1] has a single red component. Similarly, G[X2 ∪ Y2] has a single red component and

each of G[X1 ∪ Y2] and G[X2 ∪ Y1] has a single blue component.

Consider G[Y1] and suppose that there exists a red matching R1 on 198η1/2k vertices

in G[Y1]. Then, we have |Y1\V(R1)|, |X1| ≥ (1
2α1 − 97η1/2)k, so, by Lemma 2.6.14,

G[X1,Y1\V(R1)] contains a red connected-matching on at least (α1−196η1/2)k vertices,

which combined with R1 gives a red connected-matching on at least α1k vertices. Thus,

there can be no such red matching in G[Y1]. Similarly, G[Y1] cannot contain a blue

matching on 198η1/2k vertices.

Thus, after discarding at most 396η1/2k vertices from Y1, we may assume that all edges

present in G[Y1] are coloured exclusively green. Similarly, after discarding at most

396η1/2k vertices from Y2, we may assume that all edges present in G[Y2] are coloured

exclusively green.
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Figure 2.99: Colouring of G[Y1] ∪ G[Y2].

Thus, we may assume that we have a partition X1 ∪ X2 ∪ Y1 ∪ Y2 ∪W such that

(1
2α1 − 97η1/2)k ≤ |X1| = |X2| = p ≤ 1

2α1k,

(1
2α1 − 294η1/2)k ≤ |Y1| = r,

(1
2α1 − 294η1/2)k ≤ |Y2| = s.





(2.83a)

Additionally, writing Y for Y1 ∪ Y2, we have

(α3 − 802η1/2)k ≤ |Y| = r + s ≤ α3k (2.83b)

and know that all edges present in G[X1,Y1]∪ G[X2,Y2] are coloured exclusively red, all

edges present in G[X1,Y2]∪G[X2,Y1] are coloured exclusively blue and all edges present

in G[X1,X2] ∪ G[Y1 ∪ Y2] are coloured exclusively green.

Thus far, we have obtained information about the structure of the reduced-graph G. The

remainder of this section focuses on showing that the original graph must have a similar

structure which can then be exploited to force a cycle of appropriate length, colour and

parity. Again, each vertex Vi of G = (V, E) represents a cluster of vertices of G = (V,E)

with

(1− η4)
N

K
≤ |Vi| ≤

N

K

and that, since n > max{n2.3.4(2, 1, 0, η), n2.3.4(1
2 ,

1
2 , 1, η)}, we have

|Vi| ≥
(

1 +
η

24

) n
k
>
n

k
.
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We partition the vertices of G into sets X1, X2, Y1, Y2 and W corresponding to the

partition of the vertices of G into X1,X2,Y1,Y2 and W. Then X1 and X2 contain p

clusters of vertices, Y1 contains q clusters and Y2 contains r clusters. Note that, we

write Y for Y1 ∪ Y2 and Y for Y1 ∪ Y2. Thus, we have

|X1| = |X2| = p|V1| ≥ (1
2α1 − 97η1/2)n,

|Y1| = r|V1| ≥ (1
2α1 − 294η1/2)n,

|Y2| = s|V1| ≥ (1
2α1 − 294η1/2)n,

|Y | = |Y1|+ |Y2| = (r + s)|V1| ≥ (α3 − 802η1/2)n.





(2.84)

Again, we will remove vertices from X1 ∪X2 ∪ Y1 ∪ Y2, by moving them into W .

The following claim tells us that the graph G has essentially the same coloured structure

as the reduced-graph G:

Claim 2.12.1. We can remove at most 14η1/2n vertices from X1, 14η1/2n vertices

from X2 and 38η1/2n vertices from Y such that each of the following holds:

(KA1) G1[X1, Y1] and G1[X2, Y2] are each 7η1/2n-almost-complete;

(KA2) G2[X1, Y2] and G2[X2, Y1] are each 7η1/2n-almost-complete;

(KA3) G3[Y ] is 10η1/2n-almost-complete.

Proof. Consider the complete three-coloured graph G[Y ] and recall that G[Y] is 4η4k-

almost-complete and that all edges present in G[Y] are coloured exclusively green. Given

the construction of G, we can bound the number of non-green edges in G[Y ] as follows:

Since regularity provides no indication as to the colours of the edges contained within

each cluster, these could potentially all be non-green. There are r+s clusters, each with

at most N/K vertices. Thus, there are at most

(r + s)

(
N/K

2

)

non-green edges in Y within the clusters of Y.

Now, consider a pair of clusters (U1, U2) in Y . If (U1, U2) is not η4-regular, then we can

only trivially bound the number of non-green edges in G[U1, U2] by |U1||U2| ≤ (N/K)2.
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However, there are at most 4η4|Y|k such pairs in G[Y]. Thus, we can bound the number

of non-red edges coming from non-regular pairs by

4η4(r + s)k

(
N

K

)2

.

If the pair is regular, then U1 and U2 are joined by an edge in the reduced-graph which is

coloured exclusively green. The red density of the pair is at most η (since, if the density

were higher, they would be joined by a red edge) and likewise the blue density is at

most η. Thus, there are at most

2η

(
r + s

2

)(
N

K

)2

non-green edges in G[Y ] corresponding to such pairs of clusters.

Summing the three possibilities above gives an upper bound of

(r + s)

(
N/K

2

)
+ 4η4(r + s)k

(
N

K

)2

+ 2η

(
r + s

2

)(
N

K

)2

non-green edges in G[Y ].

Since K ≥ k, η−1, N ≤ 3n and r + s ≤ α3k ≤ 2k, we obtain

e(G1[Y ]) + e(G2[Y ]) ≤ [9η + 72η4 + 36η]n2 ≤ 50ηn2.

Since G[Y ] is complete and contains at most 50ηn2 non-green edges, there are at most

10η1/2n vertices with green degree at most |Y | − 10η1/2n. Re-assigning these vertices

to W gives a new Y such that every vertex in G[Y ] has red degree at least |Y |−10η1/2n.

Next, we consider G[X1, Y1], bounding the the number of non-red edges in G[X1, Y1] by

4η4pk

(
N

K

)2

+ 2ηpr

(
N

K

)2

.

Where the first term bounds the number of non-red edges between non-regular pairs and

the second bounds the number of non-red edges between regular pairs.

Since K ≥ k, N ≤ 3n, p ≤ 1
2α1 ≤ 1

2k and r ≤ α3k ≤ 2k, we obtain

e(G2[X1, Y1]) + e(G3[X1, Y1]) ≤ (18η4 + 18η)n2 ≤ 40ηn2.
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Since G[X1, Y1] is complete and contains at most 40ηn2 non-red edges, there are at most

7η1/2n vertices in X1 with red degree to Y1 at most |Y1| − 7η1/2n and at most 7η1/2n

vertices in Y1 with red degree to X1 at most |X1| − 7η1/2n. Re-assigning these vertices

to W results in every vertex in X1 having degree in G1[X1, Y1] at least |Y1| − 7η1/32n

and every vertex in Y1 having degree in G1[X1, Y1] at least |X1| − 7η1/32n.

We repeat the above for each of G[X1, Y2], G[X2, Y1] and G[X2, Y2], thus completing the

proof of the claim. 2

Y1
 X1


Y2

X2


Figure 2.100: Colouring of G after Claim 2.12.1.

Having removed some vertices from X1, X2, Y1 and Y2, recalling (2.84), we have

|X1| = |X2| ≥ (1
2α1 − 112η1/2)n, |Y1| ≥ (1

2α1 − 332η1/2)n,

|Y | ≥ (α3 − 840η1/2)n, |Y2| ≥ (1
2α1 − 332η1/2)n.



 (2.85)

Notice also, that, since η ≤ (α2/2500)2, without loss of generality, we have

|Y1| = max{|Y1|, |Y2|} ≥ 1
2(α3 − 840η1/2)n

≥ (3
4α1 + 1

4α2 − 430η1/2)n ≥ (1
2α1 + 100η1/2)n.



 (2.86)

Then, recalling (KA1) and (KA2), by Corollary 2.6.5, in order to avoid having a red

cycle on exactly 〈〈α1n〉〉 vertices in G[X1, Y1] or a blue cycle on exactly 〈〈α2n〉〉 vertices

in G[X2, Y1], we may assume that |X1| < 1
2〈〈α1n〉〉 and |X2| < 1

2〈〈α2n〉〉. Also, recalling

(KA3), by Corollary 2.6.2, in order to avoid having a green cycle on exactly 〈α3n〉, we

may assume that |Y | < 〈α3n〉.
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Now, let

WG = {w ∈W : w has at least 850η1/2n green edges to Y }.

Suppose that |Y ∪WG| ≥ 〈α3n〉. Then, we may choose a set Y ′ of vertices from Y ∪WG,

including every vertex from Y and at most 840η1/2n vertices from WG. In that case,

G[Y ′] has at least (α3−840η1/2)n vertices of degree at least (α3−850η1/4)n and at most

840η1/2n vertices of degree at least 850η1/2n, so, by Theorem 2.6.7, G[Y ′] is Hamiltonian

and thus contains a green cycle of length exactly 〈α3n〉. The existence of such a cycle

would be sufficient to complete the proof of Theorem A. Thus, we may assume, instead

that |Y ∪WG| < 〈α3n〉.

Thus, letting WRB = W\WG, we may assume that

|X1|+ |X2|+ |WRB| ≥ 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉 − 1. (2.87)

By definition every vertex in WRB has at least |Y | − 850η1/2n red or blue edges to Y .

Observe that, given any pair of vertices y11, y12 in Y1, we can use Lemma 2.6.6 to establish

the existence of a long red path in G[X1, Y1] from y11 to y12. Likewise, given y21, y22

in Y2, we can use Lemma 2.6.6 to establish the existence of a long red path in G[X2, Y2]

from y21 to y22. Thus, we may prove the following claim:

Claim 2.12.2. If there exist distinct vertices y11, y12 ∈ Y1, y21, y22 ∈ Y2 and w1, w2 ∈W
such that the edges w1y11, w2y12, w1y21 and w2y22 are all coloured red, then G contains

a red cycle on exactly 〈〈α1n〉〉.

Y1
 X1


Y2

X2


W


Figure 2.101: Existance of two red vertex-disjoint paths between X1 and Y1.
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Proof. Suppose there exist distinct vertices y11, y12 ∈ Y1, y21, y22 ∈ Y2 and w1, w2 ∈ W
such that the edges w1y11, w2y12, w1y21 and w2y22 are all coloured red.

Then, let X̃1 be any set of

`1 =

⌊〈〈α1n〉〉 − 4

4

⌋
≥ 7η1/2n+ 2

vertices from X1.

By (KA1), y11 and y12 each have at least two neighbours in X̃1 and, since η ≤ (α1/100)2,

every vertex in X̃1 has degree at least |Y1| − 7η1/2n ≥ 1
2 |Y1| + 1

2 |X̃1| + 1 in G[X̃1, Y ].

Then, Since |Y1| > `1 + 1, by Lemma 2.6.6, G1[X̃1, Y1] contains a red path R1 on exactly

2`1 + 1 vertices from y11 to y12.

Similarly, letting X̃2 be any set of

`2 =

⌈〈〈α1n〉〉 − 4

4

⌉
≥ 7η1/2n+ 2

vertices from X2, by Lemma 2.6.6, G1[X̃2, Y2] contains a red path R2 on exactly 2`2 + 1

vertices from y21 to y22. Then, combining R1 and R2 with y11w1y21 and y12w2y22 gives

a red cycle on exactly 2`1 + 2`2 + 4 = 〈〈α1n〉〉 vertices. 2

Similarly, the existence of two such vertex-disjoint paths blue paths from Y1 to Y2 via W

would result in a blue cycle on exactly 〈〈α2n〉〉 vertices. The existence of such a red or

blue cycle would be sufficient to complete the proof of Theorem A. Therefore, we may

assume that there can be at most two vertices in WRB with red edges to both Y1 and Y2

or blue edges to both Y1 and Y2.

We denote by W ∗ the (possibly empty) set of vertices having either red edges to both Y1

and Y2 or blue edges to both Y1 and Y2. Then, letting W ∗RB = WRB\W ∗, observe that

we may partition W ∗RB into W1 ∪W2 such that there are no blue edges in G[W1, Y1] ∪
G[W2, Y2] and no red edges in G[W1, Y2] ∪G[W2, Y1]. Then, recalling that every vertex

in WRB has at most 850η1/2n green edges to Y , we know that

(KA4a) every vertex in W1 has red degree at least |Y1| − 850η1/2n in G[W1, Y1];

(KA4b) every vertex in W1 has blue degree at least |Y2| − 850η1/2n in G[W1, Y2];

(KA4c) every vertex in W2 has red degree at least |Y2| − 850η1/2n in G[W2, Y2];
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(KA4d) every vertex in W2 has blue degree at least |Y1| − 850η1/2n in G[W2, Y1].

W2


W1

Y1


Y2


X1


X2


W*  


Figure 2.102: Partition of WRB into W1 ∪W2 ∪W ∗.

Then, since WRB = W1 ∪W2 ∪W ∗, by (2.87), we have

|X1|+ |X2|+ |W1|+ |W2|+ |W ∗| ≥ 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉 − 1.

Thus, one of the following must occur:

(i) |X1|+ |W1| ≥ 1
2〈〈α1n〉〉;

(ii) |X2|+ |W2| ≥ 1
2〈〈α2n〉〉;

(iii) |X1|+ |W1| = 1
2〈〈α1n〉〉 − 1, |X2|+ |W2| = 1

2〈〈α2n〉〉 − 1, and |W ∗| = 1;

(iv) |X1|+ |W1| = 1
2〈〈α1n〉〉 − 2, |X2|+ |W2| = 1

2〈〈α2n〉〉 − 1, and |W ∗| = 2;

(v) |X1|+ |W1| = 1
2〈〈α1n〉〉 − 1, |X2|+ |W2| = 1

2〈〈α2n〉〉 − 2, and |W ∗| = 2.

In each case, we can show that G contains either a red cycle on exactly 〈〈α1n〉〉 vertices

or a blue cycle on exactly 〈〈α2n〉〉 vertices as follows:

(i) Suppose |X1| + |W1| ≥ 1
2〈〈α1n〉〉 and recall that, by (2.86), |Y1| ≥ 1

2〈〈α1n〉〉. Then,

by (2.85), we may choose X̃1 ∈ X1∪W1 and Ỹ1 ∈ Y1 such that |X̃1| = |Ỹ1| = 1
2〈〈α1n〉〉 and

|X̃1 ∩W1| ≤ 114η1/2n. By (KA1), every vertex in Ỹ1 has at least |X̃1 ∩X1| − 7η1/2n red

neighbours in X̃1∩X1, that is, at least |X̃1|−121η1/2n red neighbours in X̃1. By (KA1)
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and (KA4a), every vertex in X̃1 has at least |Ỹ1|− 850η1/2n red neighbours in Ỹ1. Thus,

for any x ∈ X̃1, y ∈ Ỹ1, d(x) + d(y) ≥ |X̃1|+ |Ỹ1| − 971η1/2n ≥ 1
2 |X̃1|+ 1

2 |Ỹ1|+ 1. So, by

Theorem 2.6.4, there exists a red cycle on exactly 〈〈α1n〉〉 vertices in G[X̃1, Ỹ1].

(ii) Suppose |X2| + |W2| ≥ 1
2〈〈α2n〉〉 and recall that, by (2.86), |Y1| ≥ 1

2〈〈α2n〉〉. Then,

by (2.85), we may choose X̃2 ∈ X2 ∪W2 and Ỹ1 ∈ Y1 such that |X̃2| = |Ỹ1| = 1
2〈〈α2n〉〉

and |X̃2 ∩W2| ≤ 114η1/2n. By (KA2), every vertex in Ỹ1 has at least |X̃2 ∩X2|− 7η1/2n

blue neighbours in X̃2∩X2, that is, at least |X̃2|−121η1/2n neighbours in X̃2. By (KA2)

and (KA4d), every vertex in X̃2 has at least |Ỹ1|−850η1/2n blue neighbours in Ỹ1. Thus,

for any x ∈ X̃2, y ∈ Ỹ1, d(x) + d(y) ≥ |X̃2|+ |Ỹ1| − 971η1/2n ≥ 1
2 |X̃2|+ 1

2 |Ỹ1|+ 1. So, by

Theorem 2.6.4, there exists a blue cycle on exactly 〈〈α2n〉〉 vertices in G[X̃2, Ỹ2].

(iii) Suppose that |X1|+ |W1| = 1
2〈〈α1n〉〉 − 1, |X2|+ |W2| = 1

2〈〈α2n〉〉 − 1 and |W ∗| = 1.

Consider w ∈ W ∗. Since W ∗ ⊂ WRB, we know that w has green edges to at most

850η1/2n of the vertices of Y = Y1 ∪ Y2. Thus, w either has red edges to at least two

vertices in Y1 or blue edges to at least two vertices in Y1. We denote two of these as y1

and y2.

In the former case, by (KA1), y1 and y2 each have at least two red neighbours in X1.

By (2.86), we have |Y1| > |W1| + |X1| + 1. By (KA1), (KA4a) and (2.86), since η ≤
(α2/5000)2, every vertex in W1∪X1 has at least |Y1|−850η1/2n ≥ 1

2(|W1|+|X1|+|Y1|)+1

red neighbours in Y1. Thus, by Lemma 2.6.6, there exists a red path in G[X1 ∪W1, Y1]

from y1 to y2 which visits every vertex of X1 ∪W1. This path, together with the red

edges wy1 and wy2, forms a red cycle on exactly 〈〈α1n〉〉 vertices.

In the latter case, by (KA2), y1 and y2 each have at least two blue neighbours in X2.

By (2.86), we have |Y1| > |W2| + |X2| + 1. By (KA2), (KA4d) and (2.86), since η ≤
(α2/5000)2, every vertex in W2∪X2 has at least |Y1|−850η1/2n ≥ 1

2(|W2|+|X2|+|Y1|)+1

blue neighbours in Y1. Thus, by Lemma 2.6.6, there exists a blue path in G[X2∪W2, Y1]

from y1 to y2 which visits every vertex of X2 ∪W2. This path, together with the blue

edges wy1 and wy2, forms a blue cycle on exactly 〈〈α2n〉〉 vertices.

(vi) Suppose that |X1|+ |W1| = 1
2〈〈α1n〉〉 − 2, |X2|+ |W2| = 1

2〈〈α2n〉〉 − 1 and |W ∗| = 2.

Then, considering w1, w2 ∈ W ∗, since W ∗ ⊂ WRB, we know that w1 and w2 each have

green edges to at most 850η1/2n of the vertices of Y = Y1∪Y2. Thus, either one of w1, w2

has blue edges to two distinct vertices in Y1 or both have at least |Y1| − 900η1/2n red

neighbours in Y1. In the former case, the situation is identical to one already considered

in (iii): We have |X2|+ |W2| = 1
2〈〈α2n〉〉 − 1 and know of the existence of a vertex in W
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with blue edges to two distinct vertices in Y1.

In the latter case, the situation is similar to the one considered in (i): We have |X1| +
|W1|+|W ∗| ≥ 1

2〈〈α1n〉〉 and |Y1| ≥ 1
2〈〈α1n〉〉. By (2.85), we may choose X̃1 ∈ X1∪W1∪W ∗

and Ỹ1 ∈ Y1 such that |X̃1| = |Ỹ1| = 1
2〈〈α1n〉〉 and |X̃1 ∩ (W1 ∪ W ∗)| ≤ 114η1/2n.

By (KA1) and (KA4a), every vertex in Ỹ1 at least |X̃1| − 121η1/2n red neighbours in X̃1

and every vertex in X̃1 has at least |Ỹ1| − 900η1/2n red neighbours in Ỹ1. Thus, for any

x ∈ X̃1, y ∈ Ỹ1, d(x) + d(y) ≥ |X̃1| + |Ỹ1| − 1021η1/2n ≥ 1
2 |X̃1| + 1

2 |Ỹ1| + 1. So, by

Theorem 2.6.4, there exists a red cycle on exactly 〈〈α1n〉〉 vertices in G[X̃1, Ỹ1].

(v) Suppose that |X1|+ |W1| = 1
2〈〈α1n〉〉 − 1, |X2|+ |W2| = 1

2〈〈α2n〉〉 − 2 and |W ∗| = 2.

Then, considering w1, w2 ∈ W ∗, since W ∗ ⊂ WRB, we know that w1 and w2 each have

green edges to at most 850η1/2n of the vertices of Y . Thus, either one of w1, w2 has red

edges to two distinct vertices in Y1 or both have at least |Y1|−900η1/2n blue neighbours

in Y1. In the former case, the situation is identical to one already considered in (iii): We

have |X1| + |W1| = 1
2〈〈α1n〉〉 − 1 and know of the existence of a vertex in W with red

edges to two distinct vertices in Y1.

In the latter case, the situation is similar to the one considered in (ii): We have |X2|+
|W2|+|W ∗| ≥ 1

2〈〈α2n〉〉 and |Y1| ≥ 1
2〈〈α2n〉〉. By (2.85), we may choose X̃2 ∈ X2∪W2∪W ∗

and Ỹ1 ∈ Y1 such that |X̃2| = |Ỹ1| = 1
2〈〈α2n〉〉 and |X̃2 ∩ (W2 ∪ W ∗)| ≤ 114η1/2n.

By (KA2) and (KA4d), every vertex in Ỹ1 at least |X̃2| − 121η1/2n blue neighbours

in X̃2 and every vertex in X̃2 has at least |Ỹ1| − 900η1/2n blue neighbours in Ỹ1. Thus,

for any x ∈ X̃2, y ∈ Ỹ1, d(x) + d(y) ≥ |X̃1| + |Ỹ1| − 1021η1/2n ≥ 1
2 |X̃2| + 1

2 |Ỹ1| + 1. So,

by Theorem 2.6.4, there exists a red cycle on exactly 〈〈α1n〉〉 vertices in G[X̃2, Ỹ1].

The existence of such a red or blue cycle would be sufficient to complete the proof of

Theorem A. Thus, we have completed Part III.A.

Part III.B: K∗ ∈ K∗2.

In this case, we have a partition the vertex set V of G into X1 ∪X2 ∪ Y1 ∪ Y2 ∪W with

|X1| ≥ (1
2α1 − 97η1/2)k, |X2| ≥ (1

2α2 − 97η1/2)k (2.88a)

and, writing Y for Y1 ∪ Y2,

|Y1| ≥ (3
4α3 − 140η1/2)k, |Y2| ≥ 100η1/2k, |Y| ≥ (α3 − 10η1/2)k, (2.88b)
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such that all edges present in G[X1,Y1]∪G[X2,Y2] are coloured exclusively red, all edges

present in G[X1,Y2] ∪ G[X2,Y1] are coloured exclusively blue and all edges present in

G[X1,X2] ∪ G[Y1,Y2] are coloured exclusively green (see Figure 2.98). Also, for any

Z ⊆ X1 ∪ X2 ∪ Y1 ∪ Y2, G[Z] is 4η4k-almost-complete.

Observe that, since G1[X1∪Y1] is 4η4k-complete, it has a single red component. Similarly,

G[X2∪Y2] has a single red component and each of G[X1∪Y2] and G[X2∪Y1] has a single

blue component.

Consider G[Y1] and suppose that there exists a red matching R1 on 198η1/2k vertices

in G[Y1]. Then, we have |Y1\V(R1)|, |X1| ≥ (1
2α1 − 97η1/2)k, so, by Lemma 2.6.14,

G[X1,Y1\V(R1)] contains a red connected-matching on at least (α1−196η1/2)k vertices,

which combined with R1 gives a red connected-matching on at least α1k vertices. Thus,

there can be no such red matching in G[Y1]. Similarly, G[Y1] cannot contain a blue

matching on 198η1/2k vertices. Thus, after discarding at most 396η1/2k vertices from Y1,

we may assume that all edges present in G[Y1] are coloured exclusively green.

2.10 Proof of Theorem A - Part I
s:p11

We assume that G contains two disjoint subgraphs H1, H2 from H1 ∪ H2, where

H1 =
�
(α1 − 2η1/16)k, (1

2α2 − 2η1/16)k, 3η4k, η1/16, red, blue
�

,

H2 =
�
(α2 − 2η1/16)k, (1

2α1 − 2η1/16)k, 3η4k, η1/16, blue, red
�

,

and that

α3 ≤ 3
2α1 + 1

2α2 + 14η1/2. (2.61) a3notbig

We divide the proof that follows into three sub-parts depending on the colouring of the

subgraphs H1 and H2, that is, whether each of H1 and H2 belong to H1 or H2:

Part I.A: H1, H2 ∈ H1

In this case, the vertex set V of G has partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ W with

|X1| = |Y1| = (α1 − 2η1/16)k = p, |X2| = |Y2| = (1
2α2 − 2η1/16)k = q.

X1 X2 

Y1 Y2 

Figure 2.74: Initial coloured structure in Part I.A.figeiii

Defining G1, G2, G3 to to be the monochromatic spanning subgraphs of the reduced graph

G, we have

(A1) G1[X1], G1[Y1] are each (1 − η1/16)-complete (and thus connected);
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Figure 2.103: Colouring of G[Y1].

After discarding these vertices, recalling (2.88a) and (2.88b), we may assume that we

have a partition X1 ∪ X2 ∪ Y1 ∪ Y2 ∪W such that

(1
2α1 − 97η1/2)k ≤ |X1| = p ≤ 1

2α1k,

(1
2α2 − 97η1/2)k ≤ |X2| = q ≤ 1

2α2k,

(3
4α3 − 536η1/2)k ≤ |Y1| = r ≤ (α3 − 100η1/2)k,

100η1/2k ≤ |Y2| = s ≤ (1
4α3 + 536η1/2)k.





(2.89a)
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Additionally, writing Y for Y1 ∪ Y2, we have

(α3 − 406η1/2)k ≤ |Y| = r + s ≤ α3k (2.89b)

and know that all edges present in G[X1,Y1]∪ G[X2,Y2] are coloured exclusively red, all

edges present in G[X1,Y2]∪G[X2,Y1] are coloured exclusively blue and all edges present

in G[X1,X2] ∪ G[Y1,Y2] ∪ G[Y1] are coloured exclusively green.

The remainder of this section focuses on showing that the original graph must have a

similar structure which can then be exploited to force a cycle of appropriate length,

colour and parity. Again, each vertex Vi of G = (V, E) represents a cluster of vertices of

G = (V,E) with

(1− η4)
N

K
≤ |Vi| ≤

N

K

and, since n > max{n2.3.4(2, 1, 0, η), n2.3.4(1
2 ,

1
2 , 1, η)}, we have

|Vi| ≥
(

1 +
η

24

) n
k
>
n

k
.

Simillarly, we may show that

|Vi| ≤
(
1 + η

)n
k
.

We partition the vertices of G into sets X1, X2, Y1, Y2, and W corresponding to the

partition of the vertices of G into X1,X2,Y1,Y2 and W. Then X1 contains p clusters of

vertices, X2 contains p clusters, Y1 contains r clusters and Y2 contains s clusters.

Writing Y for Y1 ∪ Y2 and recalling (2.89a) and (2.89b), we have

|X1| = p|V1| ≥ (1
2α1 − 97η1/2)n, |Y1| = r|V1| ≥ (3

4α3 − 536η1/2)n,

|X2| = p|V1| ≥ (1
2α2 − 97η1/2)n, |Y2| = s|V1| ≥ 100η1/2n,

|Y | = (r + s)|V1| ≥ (α3 − 406η1/2)n.





(2.90)

In what follows, we will remove vertices from X1∪X2∪Y1∪Y2 by moving them into W .

The following claim tells us that the graph G has essentially the same coloured structure

as the reduced-graph G:

Claim 2.12.3. We can remove at most 7η1/2n vertices from X1, 7η1/2n vertices from X2,

31η1/2n vertices from Y1 and 7η1/2n vertices from Y2 such that each of the following holds:

180



(KB1) G1[X1, Y1] is 7η1/2n-almost-complete;

(KB2) G2[X2, Y1] is 7η1/2n-almost-complete;

(KB3) G3[Y1] is 10η1/2n-almost-complete and G3[Y1, Y2] is 7η1/2n-almost-complete.

Proof. Consider the complete three-coloured graph G[Y1] and recall that G[Y1] is 4η4k-

almost-complete and that all edges present in G[Y1] are coloured exclusively green. Given

the construction of G, we can bound the number of non-green edges in G[Y1] as follows:

Since regularity provides no indication as to the colours of the edges contained within

each cluster, these could potentially all be non-green. There are r clusters, each with at

most N/K vertices. Thus, there are at most

r

(
N/K

2

)

non-green edges in Y within the clusters of Y1.

Now, consider a pair of clusters (U1, U2) in Y1. If (U1, U2) is not η4-regular, then we can

only trivially bound the number of non-green edges in G[U1, U2] by |U1||U2| ≤ (N/K)2.

However, there are at most 4η4|Y1|k such pairs in G[Y1]. Thus, we can bound the number

of non-red edges coming from non-regular pairs by

4η4rk

(
N

K

)2

.

If the pair is regular, then U1 and U2 are joined by an edge in the reduced-graph which

is coloured exclusively green. The red density of the pair is at most η (since, if the

density were higher, the edge would also be coloured red). Likewise the blue density is

at most η. Thus, there are at most

2η

(
r

2

)(
N

K

)2

non-green edges in G[Y1] corresponding to such pairs of clusters.

Summing the three possibilities above gives an upper bound of

r

(
N/K

2

)
+ 4η4rk

(
N

K

)2

+ 2η

(
r

2

)(
N

K

)2

non-green edges in G[Y1].
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Since K ≥ k, η−1, N ≤ 3n and r ≤ α3k ≤ 2k, we obtain

e(G1[Y ]) + e(G2[Y ]) ≤ [9η + 72η4 + 36η]n2 ≤ 50ηn2.

Since G[Y1] is complete and contains at most 50ηn2 non-green edges, there are at most

10η1/2n vertices with green degree at most |Y1| − 10η1/2n. Re-assigning these vertices

to W gives a new Y1 such that every vertex in G[Y1] has red degree at least |Y1|−10η1/2n.

Now, consider G[X1, Y1], bounding the the number of non-red edges in G[X1, Y1] by

4η4pk

(
N

K

)2

+ 2ηpr

(
N

K

)2

.

Where the first term bounds the number of non-red edges between non-regular pairs and

the second bounds the number of non-red edges between regular pairs.

Since K ≥ k, N ≤ 3n, p ≤ 1
2α1k ≤ 1

2k and r ≤ α3k ≤ 2k, we obtain

e(G2[X1, Y1]) + e(G3[X1, Y1]) ≤ (18η4 + 18η)n2 ≤ 40ηn2.

Since G[X1, Y1] is complete and contains at most 40ηn2 non-red edges, there are at most

7η1/2n vertices in X1 with red degree to Y1 at most |Y1| − 7η1/2n and at most 7η1/2n

vertices in Y1 with red degree to X1 at most |X1| − 7η1/2n. Re-assigning these vertices

to W results in every vertex in X1 having degree in G1[X1, Y1] at least |Y1| − 7η1/32n

and every vertex in Y1 having degree in G1[X1, Y1] at least |X1| − 7η1/32n.

By the same argument we can show that each of G2[X2, Y1] and G3[Y1, Y2], are 7η1/2n-

almost-complete, thus completing the proof of the claim. 2

Following the removals in Claim 2.12.3, recalling (2.90), we have

|X1| ≥ (1
2α1 − 104η1/2)n, |Y1| ≥ (3

4α3 − 567η1/2)n,

|X2| ≥ (1
2α2 − 104η1/2)n, |Y2| ≥ 93η1/2n,

|Y | ≥ (α3 − 444η1/2)n.





(2.91)

and know that G1[X1, Y1], G2[X2, Y1] and G3[Y1, Y2] are each 7η1/2n-almost-complete

and G3[Y1] is 10η1/2n-almost-complete.
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Y1
 X1


Y2
 X2


Figure 2.104: Colouring of G after Claim 2.12.3.

Observe that, by Corollary 2.6.5, there exist red cycles in G[X1, Y1] of every (non-trivial)

even length up to twice the size of the smaller part and blue cycles in G[X2, Y1] of every

(non-trivial) even length up to twice the size of the smaller part. Additionally, we may

use use Corollary 2.6.3 and Lemma 2.6.6 to obtain a green cycle in G[Y ] of any length

up to |Y | = |Y1|+ |Y2| as follows:

Recalling (2.89a), we have s ≤ (1
4α3 + 536η1/2)k. Then, |Y2| = s|V1| ≤ (1 + η)(1

4α3 +

536η1/2)n ≤ (1
4α3+538η1/2)n. Thus, we have |Y1| ≥ (3

4α3−567η1/2) ≥ |Y2|+14η1/2n+2.

Thus, since G3[Y1] is 10η1/2n-almost-complete and G3[Y1, Y2] is 7η1/2n-almost-complete,

every vertex in Y1 has degree at least two in G3[Y1, Y2] and every vertex in Y2 has degree

at least 1
2(|Y1| + |Y2|) + 1 in G3[Y1, Y2]. Therefore, by Lemma 2.6.6, given any two

vertices y1 and y2 in Y1, there exists a green path P1 on 2|Y2|+ 1 vertices from y1 to y2

in G[Y1, Y2].

Let Y ′1 be a subset of
(
Y1\V (P1)

)
∪{y1, y2} such that y1, y2 ∈ Y ′1 and |Y ′1 | ≥ 20η1/2n+ 2.

Then, since G3[Y1] is 10η1/2n-almost-complete, every vertex in Y ′1 has degree at least

1
2 |Y ′1 | + 1 in G3[Y ′1 ] and so, by Corollary 2.6.3, there exists a green path P2 on |Y ′1 |
vertices from y1 to y2 in G[Y ′1 ]. Together, the green paths P1 and P2 form a green cycle

on exactly |Y ′1 |+ |Y2| vertices.

Thus, we may assume that

|X1| ≤ 1
2〈〈α1n〉〉, |X2| ≤ 1

2〈〈α2n〉〉, |Y | ≤ 〈α3n〉. (2.92)

We will show that it is possible to augment each of X1, X2, Y with vertices from W

and that, considering the sizes of each part, there must in fact be a cycle of appropriate
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length, colour and parity to complete the proof.

Observe that, by (KB3) and (2.91), every vertex in Y1 has degree at least

(3
4α3 − 577η1/2)n ≥ 〈α3n〉 − (1

4α3 + 577η1/2)n

in G3[Y1] ⊆ G3[Y ] and every vertex in Y2 has degree at least

(3
4α3 − 574η1/2)n ≥ 〈α3n〉 − (1

4α3 + 574η1/2)n

in G3[Y1, Y2] ⊆ G3[Y ]. Then, let

WG = {w ∈W : w has at least (1
4α3 + 578η1/2)n green edges to Y1}

and suppose that |WG ∪ Y1 ∪ Y2| ≥ 〈α3n〉.

In that case, since |Y | ≤ 〈α3n〉, we we may choose a subset Ỹ of size 〈α3n〉 from WG ∪
Y1 ∪ Y2 which includes every vertex of Y1 ∪ Y2 and 〈α3n〉 − |Y | vertices from WG. Then,

by (2.91), Ỹ includes at least (α3−444η1/2)n vertices from Y1∪Y2 and at most 445η1/2n

vertices from WG. Thus, G[Y ] has at least (α3 − 444η1/2)n vertices of degree at least

〈α3n〉−(1
4α3+577η1/2)n and at most 445η1/2 vertices of degree at least (1

4α3+578η1/2)n.

Therefore, by Theorem 2.6.7, G[Y ] is Hamiltonian and thus contains a green cycle of

length exactly 〈α3n〉. The existence of such a cycle would be sufficient to complete the

proof of Theorem A in this case so we may assume instead that |X3 ∪WG| < 〈α3n〉.

Thus, letting WRB = W\WG, we may assume that

|X1|+ |X2|+ |WRB| ≥ 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉 − 1

and, defining

WR = {w ∈W : w has at least (1
2α1 − 575η1/2)n red edges to Y1},

WB = {w ∈W : w has at least (1
2α2 − 575η1/2)n blue edges to Y1},

may assume, without loss of generality, that |X1 ∪WR| ≥ 〈〈α1n〉〉.

In that case, by (2.92), we may choose a subset W̃R ⊆ WR such that |X1| + |W̃R| =

1
2〈〈α1n〉〉. By (2.91), we have |W̃R| ≤ 106η1/2n. Then, observing that any w ∈ WR

and x ∈ X1 have at least (1
2α1 − 582η1/2)n ≥ |W̃R| common neighbours and that any
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x, y ∈ X1 have at least (3
4α3 − 581η1/2)n ≥ α1n common neighbours, we can greedily

construct a red cycle of length 〈〈α1n〉〉 using all the vertices of X1 ∪ W̃R and 1
2〈〈α1n〉〉

vertices from Y1, completing Part III of the proof of Theorem A.

Observing that we have exhausted all the possibilities arising from Theorem B and

that the graphs providing the corresponding lower bounds have already been seen (in

Section 2.1), we have proved that, given α1, α2, α3 > 0 such that α1 ≥ α2, there exists

nA = nA(α1, α2, α3) such that, for n > nA,

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) = max{2〈〈α1n〉〉+〈〈α2n〉〉− 3, 1
2〈〈α1n〉〉+ 1

2〈〈α2n〉〉+〈α3n〉− 2},

thus completing the the proof of Theorem A. 2

2.13 The even-even-odd case

In this section, we consider the complementary mixed-parity case, for which Figaj and

 Luczak [F L07b] proved that, for all α1, α2, α3 > 0,

R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) = max{4α1, α1 + 2α2, α1 + 2α3}n+ o(n),

as n→∞.

Improving on their result, we can prove the following:

Theorem C. For every α1, α2, α3 > 0 such that α2 ≥ α3, there exists a positive integer

nC = nC(α1, α2, α3) such that, for n > nC ,

R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) = max{4〈〈α1n〉〉 − 3, 〈〈α1n〉〉+ 2〈α2n〉 − 3}.

The full proof of this result is, necessarily, reasonably long. As a standalone proof, it

would be comparable in length to this chapter, that is, circa 160 pages. It can, however,

be shortened significantly, to about 35 pages, by quoting results (including Theorem B)

from this chapter and a three-colour stability result from [KSS09a]. For the sake of

space, time and sanity, we postpone the full proof of this result to [Fer13] and offer only

an outline here.
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The well-known structures shown in Figure 2.105 and 2.106 provide the lower bound:

V1
 V3


V2
 V4


Figure 2.105: First extremal colouring for Theorem C.

The graph shown in Figure 2.105 has 4〈〈α1n〉〉 − 4 vertices, divided into four equally-

sized classes V1, V2, V3 and V4 such that all edges in G[V1], G[V2], G[V3] and G[V4] are

coloured red, all edges in G[V1, V3] and G[V2, V4] are coloured blue and all edges in

G[V1 ∪ V3, V2 ∪ V4] are coloured green.

The graph shown in Figure 2.106 has 〈〈α1n〉〉 + 2〈α2n〉 − 4 vertices, divided into four

classes V1, V2, V3 and V4 with |V1| = |V2| = 〈α2n〉− 1 and |V3| = |V4| = 1
2〈〈α1n〉〉− 1 such

that all edges in G[V1, V3] and G[V2, V4] are coloured red, all edges in G[V1] and G[V3]

are coloured blue, all edges in G[V1 ∪ V3, V2 ∪ V4] are coloured green and all edges in

G[V3] and G[V4] are coloured red or blue.

V1
 V3


V2
 V4


Figure 2.106: Second extremal colouring for Theorem C.

For the upper bound, the key steps are the same as in the Proof of Theorem A. Again,

much of the work is concerned with proving a connected-matching stability result. The
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stability result says that, for every α1, α2, α3 > 0 and every k sufficiently large, every

three-multicolouring of G, a graph on slightly fewer than K = max{4α1, α1 + 2α2, α1 +

2α3}k vertices with sufficiently many edges, results in G containing a red connected-

matching on at least α1k vertices, a blue odd connected-matching on at least α2k vertices

or a green odd connected-matching on at least α3k vertices, or results in G having a

particular coloured structure.

The proof of the connected-matching stability results follows the same pattern as Part I

of the proof of Theorem B (as found in Section 2.7):

Given α1, α2, α3 > 0, we set

c = max{4α1, α1 + 2α2, α1 + 2α3},

choose η sufficiently small and consider G, a (1 − η4)-complete graph on K vertices,

where (c − η)k ≤ K ≤ (c − η
2 )k for some sufficiently large k. As in Section 2.7, we

begin by considering the average degree of the monochromatic spanning subgraphs. If

d(G1) ≥ α1k, then, by Corollary 2.6.9, G contains a red connected-matching on α1k

vertices. Thus, since the number of missing edges at each vertex can be bounded above,

we see that either d(G2) > 1
2(c−α1− 2η)k or d(G3) > 1

2(c−α1− 2η)k. Without loss of

generality, we assume the former and, thus, have

e(G2) > 1
4(c− α1 − 2η)(c− η)k2.

We then use the decomposition from Lemma 2.6.10 applied to the blue graph to partition

the vertices into W∪X∪Y such that there are no blue edges in G[X]∪G[Y ]∪G[W,X∪Y ]

and few blue edges in W . By this decomposition, writing wk for |W |, we find that

e(G2) ≤ 1
2α2wk

2 + 1
4(c− w)2k2.

Comparing the upper and lower bounds obtained for e(G2), we obtain a quadratic in-

equality in w. Solving this results in two possibilities:

(F) w > c− 4η;

(G) w < α1 + 4η.

In Case F, almost all of the vertices of G belong to W . Since G[W ] is the union of the
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odd blue-components of G, any blue matching found there is, by definition, odd. Thus,

in G[W ], any result which provides a blue connected-matching of unspecified parity can

be used to provide a blue odd connected-matching.

This situation is similar to that found in Case A (see page 52). In that case, G[W ]

was the union of odd green-components. We were able to apply a (parity-free) technical

result (Theorem 2.6.11) to G[W ] to give a connected-matching of appropriate size, colour

and parity to complete the proof in that case. In Case F, if c = 4α1, in the same way,

we apply the main (even-even-odd) result from [F L07b] to G[W ], giving a connected-

matching of appropriate size, colour and parity to complete the proof. Alternatively, if

c = α1 + 2α2 or c = α1 + 2α3, we apply Theorem B to G[W ], giving either a connected-

matching of appropriate size, colour and parity or one of a list of particular coloured

structures, completing Case F.

Moving on to Case G, recall that in Case B (starting on page 52) we had a similar bound

for w and that, considering the decomposition, we were able to apply Lemma 2.6.12 to

show that, in fact, W must be either trivially small or contain roughly α1k vertices.

In Case G, we may do the same thing but must utilise an alternative technical lemma

(specifically [F L07b, Lemma 13]).

In Case B, for w small, we applied a two-coloured (even) connected-matching stability

result (Lemma 2.6.15) to each of G[X] and G[Y ], giving a specified coloured struc-

ture. Analogous two-coloured connected-matching stability results for odd connected-

matchings and for mixed parity connected-matchings will appear in [KSS07b]. In Case G,

depending on the relative sizes of α1, α2 and α3, we use one or more of these applied to

each of G[X] and G[Y ] to specify the coloured structure of G.

The remaining case is when W contains almost α1k vertices. In Case B, we were able to

show that X and Y each included close to half the remaining vertices (and were, thus,

of size close to α1k). Then, since G[X] and G[Y ] contained only red and blue edges,

Corollary 2.6.15 gave either a red or blue connected-matching in each of X and Y on

roughly 2
3α1k vertices. Considering these matchings together with the graphs G[X,W ]

and G[Y,W ] (each of which contained only red and blue edges) and making use of

Lemma 2.6.18, we were able to find either a red connected-matching on at least α1k

vertices or a blue connected-matching on at least α2k vertices. In Case G, G[X], G[Y ],

G[X,W ] and G[Y,W ] each contain only red and green edges. This time, we use the

same approach, making use of corollaries to the additional two-coloured stability results

discussed in the above paragraph to find either a red connected-matching on at least
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α1k vertices or a green odd connected-matching on at least α3k vertices, completing

the proof of the connected-matching stability result. Note that the argument needed is

similar to that given in Cases B.i–B.iii (see pages 54–59) but is slightly more involved

since one of the possible connected-matchings we seek is odd.

Note that, alternatively, when c takes the first form, that is, when the graph con-

tains slightly fewer than 4α1k vertices, a result of Kohayakawa, Simonovits and Skokan

[KSS09a, Theorem 6] gives either a red odd connected-matching on at least α1k vertices,

a blue odd connected-matching on at least α2k vertices, a green odd connected-matching

on at least α3k vertices or one of two particular structures. The first structure is the

same structure obtained by following the approach above and the second immediately

implies that the graph contains a red connected-matching on at least α1k vertices. Thus,

this result can be used to slightly shorten the proof of the connected-matching stability

result.

Having proved the connected-matching stability result, we apply it to the reduced graph,

as in Section 2.9, the result being that G contains either a connected-matching or a

particular coloured structure. A version of Theorem 2.3.4 for one even and two odd

cycles can be used to blow up the connected-matchings to cycles. Thus, it suffices to

deal with the coloured structures. Most of the potential coloured structures have already

been seen in Section 2.5. The only one that has not already been seen resembles the

graph shown in Figure 2.105 but with greater freedom of colouring:

Definition 2.13.1. For x, c positive, let L(x, c) be the class of edge-multicoloured graphs

defined as follows:

A given two-multicoloured graph H = (V,E) belongs to L if the vertex set of V can be

partitioned into X1 ∪X2 ∪X3 ∪X4 such that

(i) |X1|, |X2|, |X3|, |X4| ≥ x;

(ii) H is c-almost-complete; and

(iii) (a) all edges present in H[X1], H[X2], H[X3], L[X4] are coloured red,

(b) all edges present in H[X1, X2], H[X3, X4] are coloured green.

For each coloured structure, the proof follows the pattern established in Sections 2.10–

2.12, that is, we lift the structure found in the reduced graph back to the original graph
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where we exploit it to force either a red cycle on 〈〈α1n〉〉 vertices, a blue cycle on 〈α2n〉
vertices or a green cycle on 〈α3n〉 vertices. For the structures already dealt with, the

proofs in Sections 2.10–2.12 must be adapted slightly since we now require the blue cycle

to have odd length.

For the structure not already seen, we outline the key steps in the proof that the existence

of such a structure in the reduced graph implies the existence, in the original graph, of

either a red cycle on 〈〈α1n〉〉 vertices, a blue cycle on 〈α2n〉 vertices or a green cycle

on 〈α3n〉 vertices:

Given a three-coloured graph on at least 4〈〈α1n〉〉 − 3 vertices, suppose that its reduced

graph G contains a structure from L((α1 − η1/4)k, 4η4k) and that α1 ≥ 2
3α2 − η1/4 ≥

2
3α3 − η1/4. Then, the vertex set V of G has partition V = X1 ∪ X2 ∪ X3 ∪ X4 ∪W with

|X1| = |X2| = |X3| = |X4| ≥ (α1 − η1/4)k (2.93)

such that all edges present in G[X1],G[X2],G[X3],G[X4] are coloured exclusively red and

all edges present in G[X1,X2],G[X3,X4] are coloured exclusively green. We also know

that G is 4η4k-almost-complete.

Considering the colouring of G and the sizes of X1,X2,X3 and X4, we can show that

all edges present in G[X1 ∪ X2,X3 ∪ X4] must be coloured either blue or green since the

presence of a red edge in G[X1 ∪ X2,X3 ∪ X4] would give a red connected-matching on

at least α1k vertices.

Similarly, since |X1|+ |X2| ≥ (2α1− 2η1/4)k > (α3 + 2η1/4)k, for instance, G[X1,X3] and

G[X2,X3] cannot both contain a green edge, as such a pair of edges could be used along

with G[X1,X2] to give a green odd connected-matching on at least α3k vertices. Thus,

without loss of generality, we may assume that all edges present in G[X1,X3]∪G[X2,X4]

are coloured exclusively blue.

We then show that the original graph must have a similar coloured-structure which can

be exploited to force a cycle of appropriate length, colour and parity. We partition

the vertices of G into sets X1, X2, X3, X4 and W corresponding to the partition of the

vertices of G into X1,X2,X3,X4 and W. Having done so, each Xi contains roughly α1n

vertices. We can then prove the following claim:
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Claim 2.13.2. We can remove at most η1/4n vertices from each of X1, X2, X3 and X4

so that, in what remains,

(i) G1[X1], G1[X2], G1[X3] and G1[X4] are each η1/4n-almost-complete;

(ii) G2[X1, X3] and G2[X2, X4] are each η1/4n-almost-complete;

(iii) G3[X1, X2] and G3[X3, X4] are each η1/4n-almost-complete.

Given this colouring, we see that it is possible to construct a red cycle in each of

G[X1], G[X2], G[X3] and G[X4] of any (non-trivial) length up to the size of that part

of the graph, a blue cycle in each of G[X1, X3] and G[X2, X4] of any (non-trivial) even

length up to twice the size of the smaller part and a green cycle in each of G[X1, X2]

and G[X3, X4] of any (non-trivial) length up to twice the size of the smaller part. Given

the relative sizes of α1, α2 and α3, the blue and green cycles found exceed the length

required to complete the proof but, as they arise from bipartite graphs, they are not odd.

We then consider the vertices of W , showing that they can be partitioned into W1 ∪
W2∪W3∪W4 such that, for each i, all vertices in Wi have large red degree to Xi. Then,

since we consider a graph on 4〈〈α1n〉〉−3 vertices, we have |Xi∪Wi| ≥ 〈〈α1n〉〉 for some i

and can, thus, obtain a red cycle on 〈〈α1n〉〉 vertices, completing the proof.

2.14 Conclusions

Together, [KSS09a], [BS09] and this chapter give exact values for the Ramsey number of

any triple of sufficiently long cycles (except when all three cycles are even but of different

lengths). We now discuss briefly what is known for four or more colours beginning with

the case when all the cycles in question are of odd length.

Recall, from Section 1.4, that Bondy and Erdős gave the following bounds for the

r-coloured Ramsey number of odd cycles

2r−1(n− 1) + 1 ≤ R(Cn, Cn, . . . , Cn) ≤ (r + 2)!n

and conjectured that the lower bound gives the true value of the Ramsey number.

In 2012,  Luczak, Simonovits and Skokan [ LSS12] gave an improved asymptotic upper
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bound. For n odd and r ≥ 4, they proved that

R(Cn, Cn, . . . , Cn) ≤ r2rn+ o(n)

as n→∞.

Note that the conjecture still stands and has been confirmed for three colours by Ko-

hayakawa, Simonovits, and Skokan [KSS09a]. The structures providing the lower bound

are well known and easily constructed. For two colours, the structure is simply two

classes of n − 1 vertices coloured such that all edges within each class are coloured red

and all edges between classes are coloured blue (see Figure 2.107).

V1
 V2


Figure 2.107: Coloured structure giving the lower bound for two colours.

The relevant r-coloured structure is obtained by taking two copies of the (r−1)-coloured

structure and colouring all edges between the copies with colour r (see Figure 2.108).

Figure 2.108: Coloured structure giving the lower bound for four colours.

Notice that these structures also give a lower bound for the r-coloured Ramsey number

when the cycles have different lengths. Thus, for n1 ≥ n2 ≥ · · · ≥ nr all odd, we have

R(Cn1 , Cn2 , . . . , Cnr) ≥ 2r−1(n1 − 1) + 1.

In 1976, Erdős, Faudree, Rousseau and Schelp [EFRS76] considered the case when one

cycle is much longer than the others, proving in the case of odd cycles that, if n is much
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larger than m, `, k all odd, then

R(Cn, Cm, C`, Ck) = 8n− 7,

thus showing that the above bound is tight in that case.

This ‘doubling-up’ process can also be used to provide structures giving sensible lower

bounds for mixed parity multicolour Ramsey numbers. For example, consider the case

of two even and two odd cycles. The three-coloured graph shown in Figure 2.109 below,

was used earlier to provide a lower bound for R(Cn, Cm, C`) in the case that n,m are

even and ` is odd. Taking two copies of the graph and colouring all the edges between

the copies with a fourth colour gives a four-coloured graph providing a lower bound for

R(Cn, Cm, C`, Ck), in the case that n,m are even and `, k are odd.

V1
 V3


V2
 V4


Figure 2.109: Structure providing a lower bound for even-even-odd case.

As the number of colours increases, there are simply too many mixed parity cases to

discuss each one here or to give conjectures for the exact or asymptotic Ramsey numbers.

However, looking at the structures already seen for three colours and ‘doubling-up’ would

seem to be a good place to start.

For even cycles, this ‘doubling-up’ is not an option and the Ramsey numbers grow more

slowly as the number of colours increases. Indeed,  Luczak, Simonovits and Skokan

[ LSS12], proved that the r-coloured Ramsey number for even cycles essentially grows no

faster than linearly in r, proving that, for n even,

R(Cn, Cn, . . . , Cn) ≤ rn+ o(n)

as n→∞.
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Recall that Bondy and Erdős [BE73] proved that, for n ≥ 3 even,

R(Cn, Cn) = 3
2n− 1.

The simple structure providing the lower bound is shown in Figure 2.110 below. It has

two classes of vertices, the first containing n− 1 vertices and the second 1
2n− 1 vertices.

It is coloured such that all edges within the first class receive one colour and all other

edges receive the second.

X1


Figure 2.110: Coloured structure giving the lower bound in the two coloured even case.

This structure is easily extended to give a lower bound for the multicoloured odd cycles

(see Figure 2.111) showing that for r colours

R(Cn, Cn, . . . , Cn) ≥ 1
2(r + 1)n− r + 1.

X1


X3


X2


Xr


.	
  .	
  .	
  

X1


Figure 2.111: Structure providing a lower bound for r-coloured even cycle result.
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It can also be adapted to provide a lower bound in the case that the cycles are all even

but are of different lengths, showing that, for n1 ≥ n2, . . . , nr all even,

R(Cn1 , Cn2 , . . . , Cnr) ≥ n1 + 1
2n2 + · · ·+ 1

2nr − r + 1. (2.94)

Also in [EFRS76], Erdős, Faudree, Rousseau and Schelp showed that, for n much larger

than m, `, k all even,

R(Cn, Cm, C`) = n+ 1
2n+ 1

2`− 2,

R(Cn, Cm, C`, Ck) = n+ 1
2n+ 1

2`+ 1
2k − 3.

Thus, for two or three colours, the bound in (2.94) is tight when one of the cycles is

much longer than the others. Notice, also, that this bound agrees with the asymptotic

result of Figaj and  Luczak in [F L07a].

However, as shown by the exact result of Benevides and Skokan [BS09], this bound can

be beaten slightly in the case of three even cycles of equal length. In that case, the less

easily extended structure shown in Figure 2.112 gives R(Cn, Cn, Cn) = 2n.

Figure 2.112: Structure providing the lower bound in the paper of Benevides and Skokan.

Based on the results discussed, one might be tempted to conjecture an asymptotic r-

colour result for even cycles of the form

R(C〈〈α1n〉〉, C〈〈α2n〉〉, . . . , C〈〈αrn〉〉) = 1
2 (α1 + α2 + · · ·+ αr + max{α1, α2, . . . , αr))n+ o(n).

However, in 2006, in the case of r cycles of equal even length n, Sun Yongqi, Yang
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Yuansheng, Xu Feng and Li Bingxi [YYXB06] proved, that

R(Cn, Cn, . . . , Cn) ≥ (r − 1)n− 2r + 4,

suggesting that the true form of such a result for even cycles is much more complicated.

There is potential to apply the methods used in this chapter to the case of four or more

colours but there are limitations which could make this quite difficult. For instance. two

key sets of tools used to prove the stability result (Theorem B) were decompositions

(which were used to find large two-coloured subgraphs within three-coloured graphs)

and connectivity results (which reduce the difficulty of finding a connected-matching

in a two coloured graph). The most basic such connectivity result states that a two-

coloured graph is connected in one of its colours. Such results do not apply (or are

much more complicated) for three-coloured graphs. Therefore, an alternative approach

or (even) more case analysis could well be necessary.
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Chapter 3

Removal lemmas for equations

over finite fields

In this chapter, we prove a removal lemma for two particular classes of multinomials.

Letting F be a finite field of of order q and X1, X2, . . . Xm be subsets of that field, we

prove that, if a multinomial of the form

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm−1 + xm = b

or x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm = 0

has o(qm−1) solutions (x1, x2, x3, . . . , xm) with xi ∈ Xi, then we can delete o(q) elements

from each Xi so that no solutions remain.

Analogous results are known for linear equations over finite groups and for systems

of equations over finite fields. However, probably the most natural place to begin an

exploration of this topic is the famous Triangle Removal Lemma of Ruzsa and Szemerédi

which states that a graph on n vertices containing o(n3) triangles can be made triangle-

free by the removal of o(n2) edges (where we say that a graph G contains k copies of a

graph H if G has, as subgraphs, k graphs isomorphic to H). This result can be stated

more precisely as follows:

Theorem 3.1. (The Triangle Removal Lemma [RS78]). For every ε > 0, there exists

N3.1 = N3.1(ε) and δ = δ3.1(ε) such that, if H is a graph on n ≥ N3.1 vertices with at

most δn3 triangles, then one can remove from H at most εn2 edges to obtain a graph

that contains no triangles.
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The standard proof of this result, as seen in Section 1.5, utilises Szemerédi’s Regularity

Lemma, meaning that N3.1 is taken to be a tower of twos of height proportional to ε−5.

In 1997, Gowers [Gow97] demonstrated that N1.5.2 must be at least as large as a tower

of twos of height proportional to ε−1/16, meaning that significant improvement in the

size of N3.1 would require a proof not utilising regularity. Such a proof was provided by

Fox [Fox11] who provided a new proof not using regularity which gives a bound for N3.1

that is a tower of height proportional to log(ε−1).

The Triangle Removal Lemma can be generalised in a number of ways, for instance, from

triangles to general graphs:

Theorem 3.2. (The Graph Removal Lemma [EFR86]). Let K be a fixed (directed)

graph on k vertices. Given ε > 0, there exists N3.2 = N3.2(ε, k) and δ = δ3.2(ε, k) such

that, if H is a (directed) graph on n ≥ N3.2 vertices with at most δnk copies of K, then

one can remove from H at most εn2 edges to obtain a graph that contains no (directed)

copies of K.

In 2005, Green proved a version of Szemerédi’s Regularity Lemma for Abelian groups

and derived as a consequence the below removal lemma for linear equations over Abelian

groups:

Theorem 3.3. (Removal Lemma for equations over Abelian groups [Gre05]). Given

ε > 0 and an integer m, there exists N3.3 = N3.3(ε,m) and δ = δ3.3(ε,m) such that the

following holds:

Letting G be a finite Abelian group of order N ≥ N3.3 and g a fixed element of G, if

X1, X2, . . . , Xm are subsets of G such that there are at most δNm−1 solutions to the

equation x1 + x2 + · · ·+ xm = g with xi ∈ Xi, then it is possible to remove at most εN

elements from each set Xi so that no solutions remain.

More recently, Král', Serra and Vena [KSV09] were able to use the Graph Removal

Lemma to give a proof of Green’s result which also works for non-Abelian groups:

Theorem 3.4. (Removal Lemma for equations over groups [KSV09]). Given ε > 0 and

an integer m, there exists N3.4 = N3.4(ε,m) and δ = δ3.4(ε,m) such that the following

holds:

Letting G be a finite group of order N ≥ N3.4 and g a fixed element of G, if X1, X2, . . . , Xm

are subsets of G such that there are at most δNm−1 solutions to the equation x1x2 . . . xm = g
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with xi ∈ Xi, then it is possible to remove at most εN elements from each set Xi so that

no solutions remain.

Later, the same authors and, independently, Shapira proved a version of the above for

systems of linear equations over finite fields:

Theorem 3.5. (Removal Lemma for systems of linear equations [KSV12], [Sha10]).

Given ε > 0 and an integer m, there exists q3.5 = q3.5(ε,m) and δ = δ3.5(ε,m) such that

the following holds:

Letting F = Fq be the finite field of order q ≥ q3.5 and k ≥ 1 an integer, if A is a

(k ×m) matrix of rank k with coefficients in F , b is a k-dimensional vector over F and

X1, X2, . . . , Xm are subsets of F such that there are at most δqm−k solutions to the

system Ax = b with xi ∈ Xi, then it is possible to remove at most εq elements from

each Xi so that no solutions remain.

Both proofs made use of the following coloured hypergraph analogue of the graph removal

lemma which we will also use later in this chapter (note that the colourings referred to

in the result are not required to be proper):

Theorem 3.6. (The coloured Hypergraph Removal Lemma [Ish09], [AT10]). Let K

be a fixed r-uniform c-coloured hypergraph on k vertices. Given ε > 0, there exists

N3.6 = N3.6(ε, k) and δ = δ3.6(ε, k) such that, if H is an r-uniform c-coloured hypergraph

on n ≥ N3.6 vertices with fewer than δnk copies of K, then one can remove from H at

most εnr edges to obtain a hypergraph containing no copies of K.

3.1 Results

We begin by asking a general question:

‘Can the theorems of the first section be extended

to general multinomials and polynomials?’

Notice that a simple extension to multinomials can be obtained from Theorem 3.5 by

setting k equal to one, xi = ypi and Xi = {yp : y ∈ Yi}:
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Corollary 3.1.1. Given ε > 0 and an integer m, there exists q3.1.1 = q3.1.1(ε,m) and

δ = δ3.1.1(ε,m) such that the following holds:

Letting F = Fq be a finite field of order q ≥ q3.1.1 and p ≥ 1 an integer, if b ∈ F

and Y1, Y2, . . . , Ym are subsets of F such that there are at most δqm−1 solutions to the

equation yp1 + yp2 + · · · + ypm = b with yi ∈ Yi for all i, then it is possible to remove at

most εq elements from each set Yi so that no solutions remain.

Extending these results to general polynomials and multinomials appears to be surpris-

ingly difficult. However, we have been able to extend them to two particular classes of

multinomials and the remainder of this chapter is dedicated to proving these extensions:

Theorem 3.1.2. Given ε > 0 and an integer m, there exists q3.1.2 = q3.1.2(ε,m) and

δ = δ3.1.2(ε,m) such that the following holds:

Letting F = Fq be the finite field of order q ≥ q3.1.2, b be an element of F and s, p1, . . . , ps

integers, if X1, X2, . . . , Xm are subsets of F such that the equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm−1 + xm = b

has at most δqm−1 solutions with xi ∈ Xi for all i, then it is possible to remove at most εq

elements from each Xi so that no solutions remain.

The last term, consisting of a single variable xm, seems somewhat unnatural but, so far,

we have only been able to remove it when b = 0:

Theorem 3.1.3. Given ε > 0 and an integer m, there exists q3.1.3 = q3.1.3(ε,m) and

δ = δ3.1.3(ε,m) such that the following holds:

Letting F = Fq be the finite field of order q ≥ q3.1.3 and s, p1, . . . , ps integers, if

X1, . . . , Xm are subsets of F such that the equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm = 0

has at most δqm−1 solutions with xi ∈ Xi for all i, then it is possible to remove at most εq

elements from each Xi so that no solutions remain.
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3.2 Illustrations

In order to better illustrate the method of proof we will use, we repeat the proof of

Theorem 3.4 found in [KSV09] and then prove a specific case of Theorem 3.1.2.

Proof of Theorem 3.4. Fix ε0 > 0, m ≥ 3. Let G be a finite group of order N , let g be

an element of G and let X1, X2, . . . , Xm be sets of elements of G.

We define the directed graph H on vertex set G×{1, 2, . . . ,m} with the following edges:

(i) for 1 ≤ i ≤ m− 1, we include a directed-edge from (u, i) to (v, i+ 1) if there exists

an element xi ∈ Xi such that uxi = v and label this edge [xi, i];

(ii) we include a directed-edge from (u,m) to (v, 0) if there exists an element xm ∈ Xm

such that uxmg
−1 = v and label this edge [xm,m].

Notice that, for each xi ∈ Xi, H contains N edges labelled with [xi, i]. Observe, also,

that any directed cycle in H of length m gives a solution to the equation x1x2 . . . xm = g.

Indeed, if [x1, 1], [x2, 2], . . . , [xm,m] are the labels of the edges of the cycle and it contains

the vertex (u, 1), then ux1x2 . . . xmg
−1 = v by definition of H. Conversely, a solution

x1, x2, . . . , xm of the equation corresponds to N disjoint directed cycles of length m in H:

(u, 1), (ux1, 2), (ux1x2, 3), . . . , (ux1x2 . . . xm−1,m), (ux1x2 . . . xmg
−1, 1) = (u, 1),

one for each of the N possible choices of u ∈ G.

Suppose, now, that there are at most ε0N
m−1 solutions to the equation

x1x2 . . . xm = g with xi ∈ Xi.

Then, by correspondence of the cycles of H and the solutions of the above, the directed

graph contains no more than ε0N
m distinct directed cycles of length m.

We then apply the Graph Removal Lemma (Theorem 3.2) to H with ε = ε0/m
m: Since H

has at most ε0N
m = ε(mN)m copies of the directed cycle of length m, provided N ≥

N3.2(ε,m), there is a set E of at most δ(mN)2 edges such that H−E contains no directed

cycle on m vertices (for some δ depending only on ε and m).

Let Yi be the set of those elements x ∈ Xi such that E contains at least N/m directed-

edges labelled with [x, i]. Since |E| ≤ δ(mN)2, the size of each Yi is at most m|E|/N ≤
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δm3N . Set X ′i = Xi\Yi. Then, since the size of Yi is bounded by δm3N , where δ depends

on ε and m only, and δ → 0 as ε0 → 0, all that remains is to prove that there are no

solutions to

x1x2 . . . xm = g with xi ∈ X ′i.

Assume that there is a solution to the above and consider the N edge disjoint directed

cycles corresponding to x1, x2, . . . , xm. Each of these cycles contains at least one of

the edges of E and every edge contained within these cycles has one of the labels

[x1, 1], [x2, 2], . . . , [xm,m]. Since the cycles are disjoint, E will contain at least N/m

edges with the same label, [xi, i]. Consequently, xi ∈ Yi and, thus, xi /∈ X ′i, a contradic-

tion. 2

The below is a specific case of Theorem 3.1.2 intended to illustrate the method of proof

used later to prove Theorems 3.1.2 and 3.1.3, whose proofs follow in Sections 3.3 and 3.4.

Claim 3.2.1. Given ε > 0, there exists q3.2.1 = q3.2.1(ε) and δ = δ3.2.1(ε) such that the

following holds: Letting F = Fq be the finite field of order q ≥ q3.2.1 and X1, X2, . . . , X7

subsets of F , if the equation

x1x2 + x3x4 + x5x6 + x7 = b

has at most δq6 solutions with xi ∈ Xi, then it is possible to remove at most εq elements

from each Xi so that no solution remains.

Proof. We consider the above equation and, motivated by re-writing it as

(c0x1x2 + c1) + (c0x3x4 + c2) + (c0x5x6 − c1 − c2) + c0x7 = c0b, (3.1)

define a large hypergraph H and smaller fixed hypergraph K so that copies of K in H

will correspond to solutions of (3.1).

Let H have vertex set V = F × {0, 1, 2, . . . 8} and write Vi for the vertices arising from

F × i for i ∈ {0, 1, 2} (each to Vi corresponding to a ci) and Wi for the vertices arising

from F × (i+ 2) for i ∈ {1, 2, 3, 4, 5, 6}.

For ci ∈ Vi (i = 0, 1, 2), qj ∈Wj (j = 1, 2, . . . , 6), we include the following edges:
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Include edge labelled coloured if there exists

(c0, c1, c2, q1) [x1, 1] 1 x1 ∈ X1 s.t. c0x1 = q1

(c1, c2, q1, q2) [x2, 2] 2 x2 ∈ X2 s.t. q1x2 + c1 = q2

(c0, c1, c2, q3) [x3, 3] 3 x3 ∈ X3 s.t. c0x3 = q3

(c1, c2, q3, q4) [x4, 4] 4 x4 ∈ X4 s.t. q3x4 + c2 = q4

(c0, c1, c2, q5) [x5, 5] 5 x5 ∈ X5 s.t. c0x5 = q5

(c1, c2, q5, q6) [x6, 6] 6 x6 ∈ X6 s.t. q5x6 − c1 − c2 = q6

(c0, q2, q4, q6) [x7, 7] 7 x7 ∈ X7 s.t. q2 + q4 + q6 + c0x7 = c0b

We define the hypergraph K as follows: K has nine vertices, v0, v1, v2, w1, w2, w3,

w4, w5, w6, and seven edges, v0v1v2w1 coloured 1, v1v2w1w2 coloured 2, v0v1v2w3 col-

oured 3, v1v2w3w4 coloured 4, v0v1v2w5 coloured 5, v1v2w5w6 coloured 6 and v0w2w4w6

coloured 7.

Notice that, for each xi ∈ Xi, H contains q3 edges labelled with [xi, i]. Observe, also, that

any coloured copy of K contained within H gives a solution to the equation. Conversely,

a solution x1, x2, . . . , x7 of the equation corresponds to q3 edge disjoint coloured copies

of K.

Suppose, now, that there are at most ε0q
6 solutions to the equation

x1x2 + x3x4 + x5x6 + x7 = b.

Then, by correspondence of the coloured copies of K in H and the solutions of the above,

the directed graph contains no more than ε0q
9 distinct coloured copies of K.

Then, recalling that H is a 4-uniform hypergraph on N0 = 9q vertices, we apply the

coloured Hypergraph Removal Lemma (Theorem 3.6) to H with ε = ε0/9
9. Since H has

at most ε0q
9 = ε(9q)9 coloured copies of K, provided q ≥ N3.6, there is a set E of at

most δN4
0 edges such that H −E contains no coloured copy of K (for some δ depending

only on ε).

Let Yi be the set of those elements x ∈ Xi such that E contains at least q3/7 edges

labelled with [xi, i]. Since |E| ≤ δ(N0)4, the size of each Yi is at most 7|E|/(q3) ≤ 95δq.

Set X ′i = Xi\Yi. Since the size of Yi is bounded in terms of δ and δ → 0 as ε0 → 0, all

that remains is to prove that there are no solutions to

x1x2 + x3x4 + x5x6 + x7 = b with xi ∈ X ′i.
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Assume that there is a solution to the above and consider the q3 edge disjoint coloured

copies of K corresponding to x1, x2, . . . , xm. Each contains at least one of the edges

of E and every edge contained within these has one of the labels [x1, 1], [x2, 2], . . . , [x7, 7].

Since the cycles are disjoint, E will contain at least q3/7 edges with the same label, [xi, i].

Consequently, xi ∈ Yi and, thus, xi /∈ X ′i, a contradiction. 2

3.3 Proof of Theorem 3.1.2

Consider the equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm−1 + xm = b,

which can be re-written as

(c0x1x2 . . . .xp1 + c1) + (c0xp1+1xp1+2 . . . xp2 + c2) + . . .

+ (c0xps−1+1xps−1+2xps + cs) + (c0xps+1 . . . xm−1 − c1 − c2 − . . .− cs) + c0xm = c0b.

Let H = (V,E) have vertex set V = F × {0, 1, 2, . . . s, s+ 1, . . . , s+m− 1}.

We write Vi for the vertices arising from F × i for i ∈ {0, . . . , s} (each Vi corresponding

to a ci) and Wi for the vertices arising from F × (i+ s) for i ∈ {1, . . . ,m− 1}.

(Setting p0 = 0 and ps+1 = m) for ci ∈ Vi, qj ∈Wj , we include the following edges:

(i) For 1 ≤ k ≤ s+ 1,

we include (c0, c1, c2, . . . cs, qpk−1+1) labelled [xpk−1+1, pk−1 + 1], coloured pk−1 + 1

if there exists xpk−1+1 ∈ Xpk−1+1 s.t. c0xpk−1+1 = qpk−1+1;

(ii) for 1 ≤ k ≤ s+ 1, for pk−1 + 1 < j < pk,

we include (c1, c2, . . . cs, qj−1, qj) labelled [xj , j], coloured j

if there exists xj ∈ Xj s.t. qj−1xj = qj ;

(iii) for 1 ≤ k ≤ s,
we include (c1, c2, . . . cs, qpk−1, qpk) labelled [xpk , pk], coloured pk

if there exists xpk ∈ Xpk s.t. qpk−1xpk + ck = qpk ;
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(iv) for k = s+ 1,

we include (c1, c2, . . . cs, qm−2, qm−1) labelled [xm−1,m− 1], coloured m− 1

if there exists xm−1 ∈ Xm−1 s.t. qm−2xm−1 − c1 − c2 − . . .− cs = qm−1;

(v) finally, we include (c0, qp1 , qp2 , . . . , qps , qm−1) labelled [xm,m], coloured m

if there exists xm ∈ Xm s.t. qp1 + qp2 + · · ·+ qps + qm−1 + c0xm = c0b.

We define the hypergraphK as follows: K has s+m vertices v0, v1, . . . , vs, w1, w2, . . . , wm−1

and m edges each of size (s+ 2):

(i) For 1 ≤ k ≤ s+ 1, (v0, v1, v2, . . . vs, wpk−1+1) coloured pk−1 + 1;

(ii) for 1 ≤ k ≤ s+ 1, for pk−1 + 1 < j < pk, (v1, v2, . . . vs, wj−1, wj) coloured j;

(iii) for 1 ≤ k ≤ s, (v1, v2, . . . vs, wpk−1, wpk) coloured pk;

(iv) for k = s+ 1, (v1, v2, . . . vs, wm−2, wm−1) coloured m− 1;

(v) and, finally, (v0, wp1 , wp2 , . . . , wps , wm−1) coloured m.

Notice that, for each xi ∈ Xi, H contains qs+1 edges labelled with [xi, i]. Observe,

also, that any coloured copy of K contained within H gives a solution to the equation

by definition. Conversely, solution x1, x2, . . . , xm of the equation corresponds to qs+1

disjoint coloured copies of K.

Suppose, now, that there are at most ε0q
m−1 solutions to the equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm−1 + xm = b.

Then, by correspondence of the coloured copies of K in H and the solutions of the above,

the directed graph contains no more than ε0q
s+m distinct coloured copies of K.

Then, recalling that H is an (s + 2)-uniform hypergraph on N0 = (s + m)q vertices,

we apply the coloured Hypergraph Removal Lemma (Theorem 3.6) to H with ε =

ε0/(s + m)s+m: Since H has at most ε0q
s+m = ε((s + m)q)s+m coloured copies of K,

provided q ≥ N3.6, there is a set E of at most δN s+2
0 edges such that H −E contains no

coloured copy of K (for some δ depending only on ε and m).

Let Yi be the set of those elements x ∈ Xi such that E contains at least qs+1/m edges

labelled with [xi, i]. Since |E| ≤ δ(N0)s+2, the size of each Yi is at most m|E|/(qs+1) ≤
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δ(s+m)s+3q. Set X ′i = Xi\Yi. Since the size of Yi is bounded in terms of δ (depending

only on ε and m) and δ → 0 as ε0 → 0, all that remains is to prove that there are no

solutions to

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm−1 + xm = b with xi ∈ X ′i.

Assume that there is a solution to the above and consider the qs+1 edge disjoint coloured

copies of K corresponding to x1, x2, . . . , xm. Each contains at least one of the edges of E

and every edge contained within these has one of the labels [x1, 1], [x2, 2], . . . , [xm,m].

Since the cycles are disjoint, E will contain at least qs+1/m edges with the same label,

[xi, i]. Consequently, xi ∈ Yi and, thus, xi /∈ X ′i, a contradiction. 2

3.4 Proof of Theorem 3.1.3

Consider the equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm = 0,

which can be re-written as

(c0x1x2 . . . .xp1 + c1) + (c0xp1+1xp1+2 . . . xp2 + c2) + . . .

+ (c0xps−2+1xps−2+2 . . . xps−1 + cs−1) + (c0xps−1+1 . . . xps − c1 − c2 . . .− cs−1)

+ (c0xps+1xps+2 . . . xm) = 0.

Let H = (V,E) have vertex set V = F × {0, 1, 2, . . . s− 1, s, . . . , s+m− 2}.

We write Vi for the vertices arising from F×i for i ∈ {0, . . . , s−1} (each Vi corresponding

to ci) and Wi for the vertices arising from F × (i+ s− 1) (for i ∈ {1, . . . ,m− 1}).

(Setting p0 = 0 and ps+1 = m), for ci ∈ Vi, qj ∈Wj , we include the following edges:

(i) For 1 ≤ k ≤ s+ 1,

include (c0, c1, c2, . . . cs−1, qpk−1+1) labelled [xpk−1+1, pk−1 + 1], coloured pk−1 + 1

if there exists xpk−1+1 ∈ Xpk−1+1 s.t. c0xpk−1+1 = qpk−1+1;
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(ii) for 1 ≤ k ≤ s+ 1, for pk−1 + 1 < j < pk,

include (c1, c2, . . . cs−1, qj−1, qj) labelled [xj , j], coloured j

if there exists xj ∈ Xj s.t. qj−1xj = qj ;

(iii) for 1 ≤ k ≤ s,
include (c1, c2, . . . cs−1, qpk−1, qpk) labelled [xpk , pk], coloured pk,

if there exists xpk ∈ Xpk s.t. qpk−1xpk + ck = qpk ;

(iv) for k = s,

include (c1, c2, . . . cs−1, qps−1, qps) labelled [xps , ps], coloured ps

if there exists xps ∈ Xps s.t. qpsxps−1 − c1 − c2 − . . .− cs−1 = qps ;

(v) finally, include (qp1 , qp2 , . . . , qps , qm−1) labelled [xm,m], coloured m

if there exists xm ∈ Xm s.t. qp1 + qp2 + · · ·+ qps + qm−1xm = 0.

We define the hypergraph K as follows: K has s + m − 1 vertices v0, v1,. . . , vs−1, w1,

w2,. . . , wm−1 and m edges, each of size (s+ 1):

(i) For 1 ≤ k ≤ s+ 1, (v0, v1, v2, . . . , vs−1, wpk−1+1) coloured pk−1 + 1;

(ii) for 1 ≤ k ≤ s+ 1, for pk−1 + 1 < j < pk, (v1, v2, . . . vs−1, wj−1, wj) coloured j;

(iii) for 1 ≤ k ≤ s, (v1, v2, . . . , vs−1, wpk−1, wpk) coloured pk;

(iv) for k = s, (v1, v2, . . . , vs−1, wps−1, wps) coloured ps;

(v) and, finally, (wp1 , wp2 , . . . , wps , wm−1) coloured m.

Notice that, for each xi ∈ Xi, H contains qs edges labelled with [xi, i]. Observe, also,

that any coloured copy of K contained within H gives a solution to the equation by

definition. Conversely, solution x1, x2, . . . , xm of the equation corresponds to qs disjoint

coloured copies of K.

Suppose, now, that there are at most ε0q
m−1 solutions to the equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm = 0.

Then, by correspondence of the coloured copies of K in H and the solutions of the above,

the directed graph contains no more than ε0q
s+m−1 distinct coloured copies of K.
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Then, recalling that H is an (s+ 1)-uniform hypergraph on N0 = (s+m− 1)q vertices,

we apply the coloured graph removal lemma to H with ε = ε0/(s+m−1)s+m−1: Since H

has at most ε0q
s+m−1 = ε((s+m− 1)q)s+m−1 coloured copies of K, provided q ≥ N3.6,

there is a set E of at most δN s+1
0 edges such that H−E contains no coloured copy of K

(for some δ depending only on ε and m).

Let Yi be the set of those elements x ∈ Xi such that E contains at least qs/m edges

labelled with [xi, i]. Since |E| ≤ δ(N0)s+1, the size of each Yi is at most m|E|/(qs) ≤
δ(s+m−1)s+2q. Set X ′i = Xi\Yi. Since the size of Yi is bounded in terms of δ (depending

only on ε and m) and δ → 0 as ε0 → 0, all that remains is to prove that there are no

solutions to

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm = 0 with xi ∈ X ′i.

Assume that there is a solution to the above and consider the qs edge disjoint coloured

copies of K corresponding to x1, x2, . . . , xm. Each contains at least one of the edges of E

and every edge contained within these has one of the labels [x1, 1], [x2, 2], . . . , [xm,m].

Since the cycles are disjoint, E will contain at least qs/m edges with the same label, [xi, i].

Consequently, xi ∈ Yi and, thus, xi /∈ X ′i, a contradiction. 2

3.5 Conclusions and open problems

The final singleton term xm in the multinomial

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm−1 + xm = b

in Theorem 3.1.2 seems somewhat unnatural. However, our proof, as given in Section 3.3,

relies upon this ‘extra’ term, in that, without it, the required correspondence between

solutions of the above and copies of K in H cannot be established. This is because, in

order for each solution, x1, x2, . . . , xm to correspond to qs+1 disjoint copies of K, it is

necessary that, given a copy of K, one can re-construct from the definitions of H and

K the values of c0, c1 . . . , cs and thus x0, x1 . . . , xs. In the proof in Section 3.3, this

is possible and is based upon K having edges corresponding to each product and an

additional edge corresponding to the sum. However, dropping the singleton term xm

would reduce the number of edges available by one, causing difficulties which we were

unable to overcome except in the case where b = 0.
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However, we offer the following conjecture:

Conjecture 3.5.1. Given ε > 0 and an integer m, there exists q3.1.3 = q3.5.1(ε,m) and

δ = δ3.5.1(ε,m) such that the following holds: Letting F = Fq be the finite field of order

q ≥ q3.5.1 and s, p1, . . . , ps integers, if X1, X2, . . . , Xm are subsets of F such that the

equation

x1x2 . . . xp1 + xp1+1xp1+2 . . . xp2 + · · ·+ xps+1xps+2 . . . xm = b

has at most δqm−1 solutions with xi ∈ Xi for all i, then it is possible to remove at most εq

elements from each Xi so that no solutions remain.
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Chapter 4

Fractional colouring

In this chapter, we consider the problem of bounding the fractional chromatic number

of a triangle-free graph with maximum degree at most three.

Recall, from Section 1.3, that, for a graph G = (V,E), a function w which assigns to

each independent set of vertices I a real number w(I) ∈ [0, 1] is called a weighting ; that

the weight w[v] of a vertex v ∈ V with respect to a weighting w is defined to be the

sum of w(I) over all independent sets containing v; and that a fractional colouring is

a weighting w such that, for each v ∈ V , w[v] ≥ 1. Recall also that the size |w| of

a fractional colouring w is the sum of w(I) over all independent sets I and that the

fractional chromatic number χf (G) is defined to be the infimum of |w| over all possible

fractional colourings of G.

By Lemma 1.3.1, for a graph G and a positive rational q, the following are equivalent:

(i) χf (G) ≤ q;

(ii) there exists an integer N and a multi-set W of at most qN independent sets in G

such that each vertex is contained in exactly N sets from W;

(iii) there exists a probability distribution π on the independent sets of G such that,

for each vertex v, the probability that v is contained in a random independent set

(with respect to π) is at least 1/q.

Finally, recall that the problem of finding χf (G) for a given a graph G can be viewed as

the LP-relaxation of the integer programming problem of finding χ(G). Thus, for any

graph G, we have χf (G) ≤ χ(G).
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Brooks’ Theorem asserts that any triangle-free subcubic graph has chromatic number at

most three and, thus, has fractional chromatic number at most three. On the other hand,

Fajtlowicz [Faj78] observed that the independence number of the generalised Petersen

Graph P (7, 2) is at most five, which implies that χf (P (7, 2)) ≥ 14/5 = 2.8.

Figure 4.1: The generalised Petersen graph P (7, 2).

In 2001, Heckman and Thomas [HT01] conjectured that, if G is a triangle-free subcubic

graph, then χf (G) ≤ 2.8. This conjecture is based on a result of Staton [Sta79] (see also

[Jon90, HT01]) that any triangle-free subcubic graph contains an independent set of size

at least 5n/14, where n is the number of vertices of G. As shown by the graph P (7, 2),

this result is optimal.

Hatami and Zhu [HZ10] proved that under the same assumptions, χf (G) ≤ 3− 3/64 ≈
2.953. More recently, Lu and Peng [LP12] were able to improve this bound to χf (G) ≤
3 − 3/43 ≈ 2.930. We offer a new probabilistic proof which improves this bound to

3− 1/11 ≈ 2.909:

Theorem 4.1. If G is a triangle-free subcubic graph, then

χf (G) ≤ 32/11.

Subsequently to the work done in this thesis Liu [Liu12] was able to improve this bound

to 3 − 3/43 ≈ 2.867. More recently still, Dvořák, Sereni and Volec [DSV13] proved the

conjectured bound of 2.8. Both proofs are quite long and use different methods to our

proof.

In the remainder of this chapter, we set up the machinery necessary to prove Theorem 4.1

before illustrating our method by giving a short proof of a slightly weaker result. We

then discuss how to complete the proof of Theorem A via a long case analysis found in

Appendix A.
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Note that, recently,

4.1 Definitions and notation

Recall that the length of a path P , denoted by |P |, is defined to be the number of

edges in the path. If P is a path and x, y ∈ V (P ), then we write xPy for the subpath

of P between x and y. The same notation is used when P is a cycle with a specified

orientation, in which case xPy is the subpath of P from x to y with respect to the

orientation. We will refer to the edges in directed graphs as arcs where, if xy is an arc,

then x is its tail and y its head.

Given a graph G, we call a collection of m edges whose removal from E(G) renders G

disconnected an edge-cut of size m. We call an edge cut of size 1 a bridge and say that

a graph which does not contain a bridge is bridgeless.

4.2 An algorithm

For now, let us assume that G is a triangle-free bridgeless cubic graph (we will extend

the arguments which follow to general triangle-free subcubic graphs later).

By a well-known theorem of Petersen (see, for instance, [Die05, Corollary 2.2.2]), G has

a 2-factor. It will be helpful to choose a 2-factor satisfying the conditions in the following

result of Kaiser and Škrekovski [KŠ08]:

Theorem 4.2.1 ([KŠ08, Corollary 4.5]). Every cubic bridgeless graph contains a 2-factor

whose edge set intersects each inclusion-wise minimal edge-cut in G of size 3 or 4.

Among all 2-factors ofG satisfying the condition of Theorem 4.2.1, we choose a 2-factor F

with as many components as possible.

In what follows, we will refer to the perfect matching complementary to F as M . If

u ∈ V (G), then u′ denotes the opposite end of the edge of M containing u, that is,

the M -mate of u. For the sake of brevity, we refer to the M -mate of u simply as the

mate of u. We fix a reference orientation of each cycle of F and let u+k (where k is

a positive integer) denote the vertex reached from u by following k consecutive edges

of F in accordance with the fixed orientation. The symbol u−k is defined symmetrically.
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We write u+ and u− for u+1 and u−1 respectively. These vertices are referred to as the

F -neighbours of u. To simplify the notation for mates we write, for example, u′+2 instead

of (u+2)′.

We now describe Algorithm 1, an algorithm to construct a random independent set I

in G. An independent set is said to be maximum if no other independent set has larger

cardinality. Given a set X ⊆ V (G), we define Φ(X) ⊆ X as follows:

(a) if F [X] is a path, then Φ(X) is either a maximum independent set of F [X] or its

complement in X, each with probability 1/2;

(b) if F [X] is a cycle, then Φ(X) is a maximum independent set in F [X], chosen

uniformly at random;

(c) if F [X] is disconnected, then Φ(X) is the union of the sets Φ(X∩V (K)), where K

ranges over all components of F [X].

In Phase 1 of the algorithm, we choose an orientation ~σ of M by directing each edge

of M independently at random, choosing each direction with probability 1/2. A vertex u

is active (with respect to ~σ) if u is a head of ~σ; otherwise, it is inactive.

An active run of ~σ is a maximal set R of vertices such that the induced subgraph F [R]

is connected and each vertex in R is active. Thus, F [R] is either a path or a cycle. We

let

σ1 =
⋃

R

Φ(R),

where R ranges over all active runs of ~σ. Thus, σ1 is an independent set I (which will

be modified by subsequent phases of the algorithm and eventually become its output).

The vertices of σ1 are referred to as those added in Phase 1.

In Phase 2, we add to I all the active vertices u such that each neighbour of u is inactive.

Observe that, if an active run consists of a single vertex u, then u will be added to I

either in Phase 1 or in Phase 2.

In Phase 3, we consider the set of all vertices of G which are not contained in I and

have no neighbour in I. We call such vertices feasible. Note that each feasible vertex

must be inactive. A feasible run R is defined analogously to an active run, except that

each vertex in R is required to be feasible.
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We define

σ3 =
⋃

R

Φ(R),

where R now ranges over all feasible runs. All of the vertices of σ3 are added to I.

In Phase 4, we add to I all the feasible vertices with no feasible neighbours. As with

Phase 2, a vertex which forms a feasible run by itself is certain to be added to I either

in Phase 3 or in Phase 4.

When referring to the random independent set I in Sections 4.3–4.5, we mean the set

output from Phase 4 of Algorithm 1. We represent the random choices made during an

execution of Algorithm 1 by the triple σ = (~σ, σ1, σ3) which we call a situation. Thus,

the set Ω of all situations is the sample space in our probabilistic scenario. An event is

any subset of Ω. Note that, if we know the situation σ associated with a particular run of

Algorithm 1, we can determine the resulting independent set I = I(σ). We will say that

an event Γ ⊆ Ω forces a vertex u ∈ V (G) if u is included in I(σ) for any situation σ ∈ Γ.

4.3 Templates and diagrams

Throughout this and the subsequent sections, let u be a fixed vertex of G and let v = u′.

Furthermore, let Z be the cycle of F containing u. All cycles of F are taken to have a

preferred orientation which enables us to use notation such as uZv for subpaths of these

cycles.

We will analyse the probability of the event u ∈ I(σ), where σ is a random situation

produced by Algorithm 1. To this end, we classify situations based on what they look

like in the vicinity of u.

A template in G is a 5-tuple ∆ = (∆,∆1,∆1̄,∆3,∆3̄), for which the following hold:

(i) ∆ is an orientation of a subgraph of M ,

(ii) ∆1 and ∆1̄ are disjoint sets of heads of ∆,

(iii) ∆3 and ∆3̄ are disjoint sets of tails of ∆.

We set ∆∗ = ∆1 ∪∆1̄ ∪∆3 ∪∆3̄. The weight of ∆, denoted by w(∆), is defined as

w(∆) = |E(∆)|+ |∆∗| .
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A situation σ = (~σ, σ1, σ3) weakly conforms to ∆ if the following hold:

(i) ∆ ⊆ ~σ,

(ii) ∆1 ⊆ σ1, and

(iii) ∆1̄ ∩ σ1 = ∅.

If, in addition,

(iv) ∆3 ⊆ σ3 and ∆3̄ ∩ σ3 = ∅,

then we say that σ conforms to ∆. The event defined by ∆, denoted by Γ(∆), consists

of all situations conforming to ∆.

In the above definition, we can think of ∆1 and ∆1̄ as specifying which vertices must or

must not be added to I in Phase 1. Note, however, that a vertex u in an active run of

length one will be added to I in Phase 2 even if u ∈ ∆1̄. Similarly, ∆3 and ∆3̄ specify

which vertices will or will not be added to I in Phase 3, with an analogous provision for

feasible runs of length one.

To facilitate the discussion, we represent templates by pictorial diagrams. These usually

show only the neighbourhood of the distinguished vertex u, and the following conventions

apply for a diagram representing a template ∆:

• the vertex u is circled;

• solid and dotted lines represent edges and non-edges of G, respectively;

• u− is shown to the left of u, while v− is shown to the right of v;

• the arcs of ∆ are shown with arrows;

• the vertices in ∆1 (∆1̄, ∆3, ∆3̄, respectively) are shown with a star (crossed star,

triangle, crossed triangle, respectively);

• sometimes, only one end-vertex of an arc will be shown (so an edge of G may

actually be represented by one or two arcs of the diagram) but the other end-

vertex can still be assigned one of the above symbols.
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u− u+

v−v+ v

u

Figure 4.2: The location of neighbours of u and v.

�

�

�

�

Figure 4.3: A diagram.

An arc with only one endvertex in a diagram is called an outgoing or an incoming arc,

depending on its direction. A diagram is valid in a graph G if all of its edges are present

in G and each edge of G is given at most one orientation in the diagram. Thus, a diagram

is valid in G if and only if it determines a template in G. An event defined by a diagram

is valid in G if the diagram is valid in G.

A sample diagram is shown in Figure 4.3. The corresponding event consists of all situa-

tions (~σ, σ1, σ3) such that v, v+, u−2 and u′+ are heads of ~σ, σ1 includes v+ and u−2 but

does not include u′+, and σ3 includes u.

We call a template ∆ admissible if ∆3∪∆3̄ is either empty or contains only u and, in the

latter case, u is feasible in any situation weakly conforming to ∆. All the templates we

consider will be admissible. Therefore, we state the subsequent definitions and results

in a form restricted to this case.

We will need to estimate the probability of an event defined by a given template. If it were

not for the sets ∆1, ∆3̄, etc., this would be simple as the orientations of distinct edges

represent independent events. However, the events, say, u1 ∈ ∆1 and u2 ∈ ∆1 (where u1

and u2 are vertices) are in general not independent, and the amount of their dependence

is influenced by the orientations of certain edges of F . To keep the dependence under
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control, we introduce the following concept:

A sensitive pair of a template ∆ is an ordered pair (x, y) of vertices in ∆1 ∪ ∆1̄ such

that x and y are contained in the same cycle W of F , the path xWy has no internal

vertex in ∆∗ and one of the following conditions holds:

(a) x, y ∈ ∆1 or x, y ∈ ∆1̄, x 6= y, the path xWy has odd length and contains no tail

of ∆;

(b) x ∈ ∆1 and y ∈ ∆1̄ or vice versa, the path xWy has even length and contains no

tail of ∆;

(c) x = y ∈ ∆1, W is odd and W contains no tail of ∆.

Sensitive pairs of the form (x, x) are referred to as circular ; the other ones are linear.

A sensitive pair (x, y) is k-free (where k is a positive integer) if xWy contains at least k

vertices which are not heads of ∆. Furthermore, any pair of vertices which is not sensitive

is considered k-free for any integer k.

We define a number q(∆) in the following way: If u ∈ ∆3 and Z is an odd cycle,

then q(∆) is the probability that all vertices of Z are feasible with respect to a random

situation from Γ(∆); otherwise, q(∆) is defined as 0.

Observation 4.3.1. Let ∆ be a template in G. Then,

(i) q(∆) = 0 if u /∈ ∆3 or Z contains a head of ∆ or Z is even, and

(ii) q(∆) ≤ 1/2t if Z contains at least t vertices which are not tails of ∆.

The following lemma is a basic tool for estimating the probability of an event given by

a template.

Lemma 4.3.2. Let G be a graph and ∆ an admissible template in G such that

(i) ∆ has ` linear sensitive pairs, the i-th of which is xi-free (i = 1, . . . , `), and

(ii) ∆ has c circular sensitive pairs, the i-th of which is yi-free (i = 1, . . . , c).

Then,

P(Γ(∆)) ≥
(

1−
∑̀

i=1

1

2xi
−

c∑

i=1

1

5 · 2yi −
q(∆)

5

)
1

2w(∆)
. (4.1)
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Proof. Consider a random situation σ. We need to estimate the probability that σ

conforms to ∆. We begin by investigating the probability PW that σ weakly conforms

to ∆.

In Phase 1, the orientation σ is chosen by directing each edge of M independently at ran-

dom, each direction being chosen with probability 1/2. Therefore, the probability that

the orientation of each edge in the subgraph specified by ∆ agrees with the orientation

chosen at random is (1/2)|E(∆)|.

As noted above, the sets ∆1,∆1̄,∆3 and ∆3̄ prescribe vertices to be added or not added

in Phases 1 and 3 of the algorithm.

Suppose, for now, that ∆3 ∪ ∆3̄ is empty and that every active run R satisfies |R ∩
(∆1 ∪ ∆1̄)| = 1 and is either a path or an even cycle. Then, a given vertex in ∆1 is

added in Phase 1 with probability 1/2. Likewise, a given vertex in ∆1̄ is not added in

Phase 1 with probability 1/2. Indeed, R has either one or two maximum independent

sets and Φ(R) either chooses between the maximum independent set and its complement

or between the two maximum independent sets.

There are |∆1| vertices required to be added in Phase 1 and |∆1̄| vertices required to not

be added in Phase 1. These events are independent each with probability 1/2, giving

the resultant probability

P(∆1 ⊆ σ1,∆
1̄ ∩ σ1 = ∅) =

(
1

2

)|∆1|+|∆1̄|
. (4.2)

In this case, the probability PW is then obtained by multiplying (4.2) by (1/2)|E(∆)| and

agrees with (4.1), completing the proof in that case.

Thus, we now assume that ∆3 ∪ ∆3̄ contains only u and assess the probability that σ

conforms to ∆ under the assumption that it conforms weakly and that |R∩(∆1∪∆1̄)| = 1

for every active run R. Then, since ∆ is admissible, u is feasible with respect to σ. Let R

be the feasible run containing u. Suppose that R is a path or an even cycle. Then, if

u ∈ ∆3, it is added in Phase 3 with probability 1/2 and, if u ∈ ∆3̄, it is not added in

Phase 3 with probability 1/2. Since u is the only vertex allowed in ∆3 ∪∆3̄, we obtain

P(∆3 ⊆ σ3,∆3̄ ∩ σ3 = ∅) =





1
2 if u ∈ ∆3 ∪∆3̄,

1 otherwise.
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x y

(a)

x y

(b)

Figure 4.4: The probability that x and y are in distinct active runs in a conforming
random situation is: (a) 3/4, (b) 1/2.

The assumption that u is feasible whenever σ weakly conforms to ∆ implies that the

addition of u to σ3 is independent of the preceding random choices.

Note that we can relax the assumption that |R ∩ (∆1 ∪∆1̄)| = 1 to allow, for instance,

|R∩∆1| ≥ 1, provided that the vertices of ∆1 are appropriately spaced. Suppose that x

and y are in the same component W of F and that all vertices of xWy are active after

the choice of orientations in Phase 1. Let R be the active run R containing xWy:

If |xWy| is even, Φ will choose both x and y with probability 1/2 for addition to I in

Phase 1, an increase compared to the probability 1/4 if they are in different active runs.

On the other hand, if |xWy| is odd, then the probability of adding both x and y is zero

as x and y cannot both be contained in Φ(R). Thus, if x, y ∈ ∆1 and |xWy| is odd,

then x and y must be in distinct active runs with respect to any situation conforming

to ∆. As a result, we will, in general, get a lower value for the probability in (4.2), which

will depend on the sensitive pairs involved in ∆.

Let (x, y) be a k-free sensitive pair contained in a cycle W of F , and let the internal

vertices of xWy which are not heads of ∆ be denoted by x1, . . . , xk. Suppose that (x, y)

is of type (a), say, x, y ∈ ∆1. The active runs of x and y with respect to σ will be

separated if we require that at least one of x1, x2, . . . , xk is the tail of an arc of σ, which

happens with probability 1− (1/2)k. The same computation applies to a sensitive pair

of type (b).

Now suppose that (x, x) is sensitive of type (c), that is, x is the only member of ∆1

belonging to an odd cycle W of length `. If some vertex of W is the tail of an arc of ~σ,

then x will be added in Phase 1 with probability 1/2 as usual. It can happen, however

(with probability (1/2)`−1) that all the vertices of W are heads in ~σ, in which case

Φ(V (W )) is one of ` maximum independent sets in W . If this happens, x will be added

to I with probability (1/2)(`− 1)/` ≥ 2/5 rather than 1/2; this results in a reduction in

P(Γ(∆)) of at most (1/5)(1/2)`−1(1/2)w(∆).

Finally, let us consider the situation where u ∈ ∆3 and the feasible run containing u is
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cyclic, that is, the case where every vertex in Cu is feasible. If Z is even, then this has

no effect as u is still added in Phase 3 with probability 1/2. If Z is odd, then u is added

in Phase 3 with probability at least 2/5 instead. Thus, if the probability of all vertices

in Cu being feasible is q(∆), then the resultant loss of probability from P(Γ(∆)) is at

most q(∆)/(5 · 2w(∆)).

Putting all this together gives:

P(Γ(∆)) =

(
1−

∑̀

i=1

1

2xi
−

c∑

i=1

1

5 · 2yi −
q(∆)

5

)
1

2w(∆)
,

as required. 2

Note that, by a careful analysis of the template in question, it is sometimes possible to

obtain a bound better than that given by Lemma 4.3.2; however, the latter bound will

usually be sufficient for our purposes.

A template without any sensitive pairs is called weakly regular. If a weakly regular

template ∆ has q(∆) = 0, then it is regular. By Lemma 4.3.2, if ∆ is a regular template,

then P(Γ(∆)) ≥ (1/2)w(∆).

The analysis is often much more involved if sensitive pairs are present. To allow for a

brief description of a template ∆, we say that ∆ is covered (in G) by ordered pairs of

vertices (xi, yi), where i = 1, . . . , k, if every sensitive pair of ∆ is of the form (xi, yi) for

some i. In most cases, our information on the edge set of G will only be partial; although

we will not be able to tell for sure whether any given pair of vertices is sensitive, we will

be able to restrict the set of possibly sensitive pairs.

For brevity, we also use (x, y)` to denote an `-free pair of vertices (x, y). Thus, we

may write, for instance, that a template ∆ is covered by pairs (x, y)2 and (z, z)4. By

Lemma 4.3.2, we then have P(Γ(∆)) ≥ (1/2)w(∆) · (1− 1/4− 1/80).

We extend the terminology used for templates to events defined by templates. Suppose

that ∆ is a template in G. The properties of Γ(∆) simply reflect those of ∆. Thus, we

say that the event Γ(∆) is regular (weakly regular) if ∆ is regular (weakly regular), and

we set q(Γ(∆)) = q(∆). A pair of vertices is said to be k-free for Γ(∆) if it is k-free

for ∆. Γ(∆) is covered by a set of pairs of vertices if ∆ is.
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4.4 Events forcing a vertex

In this section, we build up a repertoire of events forcing the distinguished vertex u.

(Recall that u is forced by an event Γ if u is contained in I(σ) for every situation σ ∈ Γ.)

In our analysis, we will distinguish various cases based on the local structure of G and

show that, in each case, the total probability of these events (and, thus, the probability

that u ∈ I) is large enough.

Suppose, first, that σ is a situation for which u is active. By the description of the

Algorithm, we will have u ∈ I if either both u+ and u− are inactive, or u ∈ σ1. Thus,

each of the templates E0, E−, E+ and E±, represented by the diagrams in Figure 4.5,

defines an event which forces u. These events are pairwise disjoint. Observe that, by

the assumption that G is triangle-free, each of the diagrams is valid in G.

(a) Template E0.

�
(b) Template E−.

�
(c) Template E+.

�
(d) Template E±.

Figure 4.5: Some templates defining events which force u.

It is not difficult to estimate the probabilities of these events. The event E0 is regular of

weight 3, so P(E0) ≥ 1/8 by Lemma 4.3.2. Similarly, E+ and E− are regular of weight 4

and have probability at least 1/16 each. The weakly regular event E± has weight 4 and

the only potentially sensitive pair is (u, u). If the pair is sensitive, the length of Z must

be odd and hence at least 5; thus, the pair is 2-free. By Lemma 4.3.2,

P(E±) ≥ 1

16
· 19

20
=

1.9

32
.

Note that, if Z has a chord (for instance, uv), then E± is actually regular, which improves

the above estimate to 1/16.

By the above,

P(E0 ∪ E+ ∪ E− ∪ E±) ≥ 4 + 2 + 2 + 1.9

32
=

9.9

32
.
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These events cover most of the situations where u ∈ I. To prove Theorem 4.1, we will

need to find other situations forcing u whose total probability is at least around one

tenth of the above. Although this number is much smaller, finding the required events

turns out to be a more difficult task.

4.5 Illustration

Recall that, in order to prove Theorem A, we need to present disjoint events forcing the

fixed vertex u whose probabilities sum to at least 11/32. Thus far, we have found that

P(E0 ∪ E+ ∪ E− ∪ E±) ≥





9.9
32 if uv is not a chord

10
32 if uv is a chord.

Therefore, we need to find further valid events whose total probability is sufficient to

give P(u ∈ I) ≥ 11/32.

It turns out that this is not always possible, making it necessary to use a compensation

step in which those vertices with surplus probability donate that probability to those

vertices which are deficient. The complete proof is quite involved and includes a long

case analysis. For that reason, we postpone it to Appendix A. Instead, we will prove the

following as an illustration of the method of proof:

Theorem 4.1′. If G is a bridgeless cubic graph with girth at least six, then

χf (G) ≤ 32/11.

That is, in addition to the assumptions that G is triangle free, cubic and bridgeless, we

will assume that G contains no four-cycles and no five-cycles.

Since Figure 4.5 exhausts all the possibilities where u is active, we now turn to the

situations where u is inactive. Suppose that an event forces u although u is inactive.

We find that, if u− is active, then u−2 must be added in Phase 1. If u− is inactive,

then there are several configurations which allow u to be forced since u can be added in

Phase 3. However, the result also depends on the configurations around u+ and v. We

will express the events forcing u as combinations of certain ‘primitive’ events.

Let us begin by defining templates A,B (so called left templates). Recall that the vertex v

is the mate of u. Diagrams corresponding to the templates are given in Figure 4.6:
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template heads of ~σ other conditions

A v, u−, u−2 u−2 ∈ σ1

B v, u′− u ∈ σ3

�

(a) Template A.

�

(b) Template B.

Figure 4.6: Left templates.

In addition, for P ∈ {A,B}, the template P ∗ is obtained by exchanging all ‘−’ signs

for ‘+’ signs in this description. These are called right templates. In our diagrams,

templates such as A restrict the situation to the left of u, while templates such as A∗

restrict the situation to the right.

We also need primitive templates related to v and its neighbourhood (upper templates),

since the configuration here is also relevant (see Figure 4.7):

template heads of ~σ other conditions

D− v, v−, v′+ v− ∈ σ1

D0 v, v−, v+ v /∈ σ1

D+ v, v′−, v+ v+ ∈ σ1

�

(a) Template D−.

�

(b) Template D0.

�

(c) Template D+.

Figure 4.7: Upper templates.

We define the templates obtained from the left, right and upper events as their combi-

nations. More precisely, for P,Q ∈ {A,B} and R ∈
{
D−, D0, D+

}
, we define PQR to

be the template ∆ such that

∆ = P ∪Q∗ ∪R,
∆1 = P 1 ∪ (Q∗)1 ∪R1,
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and so on for the other constituents of the template. The same symbol PQR will be

used for the event defined by the template. If the result is not a legitimate template

(for instance, because an edge is assigned both directions or because u is required to be

both in ∆3 and ∆3̄), then the event is an empty one and is said to be invalid, just as if

it were defined by an invalid diagram.

Let Σ be the set of all valid events PQR given by the above templates. Thus, Σ includes,

for example, the events AAD0 or ABD+. However, some of them may be invalid and

the probability of others will, in general, depend on the structure of G. We will examine

this dependence in the following section. It is not hard to check (using the description

of Algorithm 1) that each of the valid events in Σ forces u and also that each of them is

given by an admissible template, as defined in Section 4.3.

We now show that the total probability of the valid events in Σ is sufficient to give

P(u ∈ I) ≥ 11/32, dividing the remainder of the proof into two cases:

Case A: uv is not a chord

Recall that v denotes the vertex u′ and Z denotes the cycle of F containing u. Define

Cv 6= Z to be the cycle of F containing v. Note that, since G has girth at least six, the

set {u−2, u−, u+, u+2, v−, v+} is independent.

As observed above, P(E0 ∪ E− ∪ E+ ∪ E±) ≥ 9.9/32 = 79.2/256.

Thus, we need to find events in Σ whose total probability is at least 8.8/256.

Then, consider the weakly regular event BBD+ (shown in Figure 4.8). Since |V (Z)| ≥ 6,

Observation 4.3.1(ii) implies that q(BBD+) ≤ 1/8. Then, since the event has weight 7,

by Lemma 4.3.2, we have P(BBD+) ≥ 1.95/256. We also get the same estimate for

BBD− and BBD0.

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

Figure 4.8: The event BBD+ used in Case A.
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Since u− is not adjacent to either v− or v+, the event ABD+ (shown in Figure 4.9) is

valid. The event is regular and has weight 9, so, by Lemma 4.3.2, P(ABD+) ≥ 0.5/256.

The same applies to the events ABD−, ABD0, BAD+, BAD− and BAD0. Thus, the

probability of the union of these six events is at least 3/256. Together with the other

events described so far, the probability exceeds 88/256, completing the proof in this case.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 4.9: The event ABD+ used in Case A.

Case B: uv is a chord

Observe that, in this case, one useful simplification is that, by Observation 4.3.1(i), we

now have q(∆) = 0 for any template ∆. Thus, in particular, we have P(E±) ≥ 1/16,

which implies

P(E0 ∪ E− ∪ E+ ∪ E±) ≥ 10

32
.

Thus, we need to find events in Σ whose total probability is at least 1/32.

Recall that we assume that G has girth at least six and hence, again, we may assume that

the set {u−2, u−, u+, u+2, v−, v+} is independent. Again, we begin by considering the

event BBD+. The event is regular so, by Lemma 4.3.2, we have P(BBD+) ≥ 0.25/32.

The same applies to the events BBD0 and BBD−. Thus, it suffices to find additional

events of total probability at least 0.25/32 = 2/256.

Next, we consider the event ABD− of weight 9 (shown in Figure 4.10). Since neither

(u−2, v−) nor its reverse is a sensitive pair, the event is regular. Thus, P(ABD−) ≥
0.5/256. By symmetry, we also have P(BAD+) ≥ 0.5/256.

The argument for ABD− can also be applied to the event ABD+ (shown in Figure 4.11),

whose diagram has two outgoing arcs, to give a contribution of at least 0.25/256, unless

the vertex set of the path vZu is {v, v+, u
′
+, v

′
−, u−, u}, which cannot occur since G has

girth at least six. Next, consider the event ABD0 (shown in Figure 4.12). It is valid and

225



covered by the pair (v, u−2). Since the girth of G is at least six and the diagram of ABD0

contains only one outgoing arc (namely u+u
′
+), the pair is 1-free. Thus, by Lemma 4.3.2,

we have P(ABD0) ≥ 0.25/256 and, by symmetry, have P(BAD0) ≥ 0.25/256.
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�
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�
�

� �
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� �
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�

�

�
Figure 4.10: The event ABD− used in Case B.
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Figure 4.11: The event ABD+ used in Case B.
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Figure 4.12: The event ABD0 used in Case B.

Thus, we have found a sufficient probability to complete the proof of Theorem 4.1′.

2
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4.6 Subcubic graphs

Appendix A expands on Section 4.5 to give a proof of Theorem A for triangle-free

bridgeless cubic graphs. Thus, it remains to generalise from triangle-free bridgeless

cubic graphs to triangle-free subcubic graphs. This generalisation is perhaps most clear

when phrased in terms of the second equivalent definition of the fractional chromatic

number as given in Lemma 1.3.1:

Having shown that, for a triangle-free bridgeless cubic graph, G′, χf (G′) ≤ k = 32/11,

by Lemma 1.3.1, there exists an integer N such that kN is an integer and we can colour

the vertices of G′ using N -tuples from {1, 2, . . . , kN} in such a way that adjacent vertices

receive disjoint lists of colours.

Now, suppose that G is an arbitrary triangle-free subcubic graph. We show, by induction

on the number of vertices of G, that χf (G) ≤ k. The base cases where |V (G)| ≤ 3 are

trivial. Suppose that G has a bridge and choose a block B1 incident with only one

bridge e. (A block of G is a maximal connected subgraph of G without cut-vertices.)

Let B2 be the other component of G− e. For i = 1, 2, the induction hypothesis implies

that Bi (i = 1, 2) admits a colouring by Ni-tuples from a list of bkNic colours, for a

suitable integer Ni. Setting N to be a common multiple of N1 and N2 such that kN

is an integer, we see that each Bi has an N -tuple colouring by colours {1, . . . , kN}.
Furthermore, since k > 2, we may permute the colours used for B1 so as to make the

end-vertices of e coloured by disjoint N -tuples. The result is a valid N -tuple colouring

of G by kN colours, showing χf (G) ≤ k.

We may, thus, assume that G is bridgeless; in particular, it has minimum degree 2 or 3.

In fact, we may assume that it contains a vertex of degree 2 for, otherwise, we are done

by Sections 4.2–4.4 and Appendix A. If G contains at least two vertices of degree 2,

we can form a graph G′′ by taking two copies of G and joining the two copies of each

vertex of degree 2 by an edge. Since G′′ is a cubic bridgeless graph and contains G as a

subgraph, we find that χf (G) ≤ k.

It remains to consider the case where G is bridgeless and contains exactly one vertex v0

of degree 2. Let G0 be the bridgeless cubic graph obtained by suppressing v0, and

let e0 denote the edge corresponding to the pair of edges incident at v0 in G. By

Theorem 4.2.1, G0 has a 2-factor F0 containing e0 such that E(F0) intersects every

inclusion-wise minimal edge-cut of size 3 or 4 in G0.
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Let G1 be obtained from two copies of G by joining the copies of v0 by an edge. Thus, G1

is a cubic graph with precisely one bridge. The 2-factor F0 of G0 yields a 2-factor F1

of G1 in the obvious way. Moreover, every inclusion-wise minimal edge-cut of size 3

or 4 in G1 is intersected by E(F1). In that case, the arguments of Sections 4.2–4.4 and

Appendix A still work even though G1 is not bridgeless. Consequently, χf (G1) ≤ k and,

since G is a subgraph of G1, we infer that χf (G) ≤ k as well, which completes the proof

of Theorem 4.1. 2
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Chapter 5

An analogue of Vizing’s Theorem

for intersecting hypergraphs

Recall that, when considering (proper) edge-colourings of a graph G, the Theorems of

Shannon [Sha49] and Vizing [Viz64] give the following bounds for the chromatic index

of a multigraph G:

χ′(G) ≤ 3
2∆,

χ′(G) ≤ ∆ + µ,

where ∆ is the maximum degree of the vertices of G and µ is the maximum multiplicity

of the edges of G.

A natural question to ask would be:

‘Can these results be generalised to hypergraphs?’

In this chapter, we consider a possible first step towards answering that question, namely:

‘How many edges can an intersecting hypergraph have?’

where a hypergraph H = (V,E) is intersecting if, for any edges e1, e2 ∈ E, e1 ∩ e2 6= ∅.

In order to illustrate the connection, we first define the notion of proper colouring that

we will use for hypergraphs. We define a proper k-edge-colouring of a hypergraph H to
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be an assignment of a colour to each edge such that any two edges sharing at least one

vertex receive different colours and at most k colours are used.

We can then define the chromatic-index χ′(H) to be the minimum k such that there

exists a proper k-edge-colouring of H. Under these definitions, if H is an intersecting

hypergraph, then

|e(H)| = χ′(H).

In what follows, we allow multiple copies of edges. Therefore, all references to hyper-

graphs should be understood as referring to multi-hypergraphs.

Given a vertex v ∈ V (H), we define the degree of that vertex d(v) to be the number of

edges (including multiple copies of the same edge) incident at v and define the maximum

degree ∆(H) to be the maximum of d(v) over v ∈ V (H). Similarly, we define the

multiplicity µ(e) of an edge to be the number of copies of that edge present in the

hypergraph and define the maximum multiplicity µ(H) to be the maximum of µ(e) over

e ∈ E(H).

In 1981, Füredi [Für81] proved that, for a intersecting r-uniform simple hypergraph H

with maximum degree ∆,

χ′(H) = |e(H)| ≤ (r − 1 + 1/r)∆.

This bound takes the same form as Shannon’s bound and, indeed, agrees with it for r = 2.

Furthermore, Füredi proved that this maximum is uniquely obtained by a particular class

of hypergraphs and that, for any other intersecting r-uniform simple hypergraph,

χ′(H) = |e(H)| ≤ (r − 1)∆.

The class of hypergraphs in question are the finite projective planes, where the finite

projective plane of order r−1 can be defined to be an r-uniform hypergraph on r2−r+1

vertices satisfying the following properties:

(i) any pair of vertices belong to some edge;

(ii) any two edges share exactly one vertex;

(iii) every vertex has degree r.
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Such hypergraphs are known to exist when r is a prime power and are known to not

exist for r = 6 [BR49] and r = 10 [Lam91].

For intersecting 3-uniform simple hypergraphs H, Füredi’s result gives

χ′(H) ≤ |e(H)| ≤ 7
3∆,

with equality only if H is the projective plane of order two. This well known hypergraph,

known as the Fano Plane, is shown below.

a
 f


b


c


d


e


g


Figure 5.1: The Fano Plane.

In the remainder of this chapter, we consider intersecting 3-uniform hypergraphs (and

allow multiple copies of edges). We prove an upper bound for |e(H)| more similar in

form to Vizing’s bound and that this upper bound is obtained only by (multiple copies

of) the Fano plane:

Theorem 5.1. Let H be an intersecting 3-uniform hypergraph with maximum degree ∆

and maximum multiplicity µ. Then,

χ′(H) = |e(H)| ≤ 2∆ + µ.

Furthermore, the unique structure achieving this maximum is µ copies of the Fano Plane.

Given the form of this bound, it is tempting to conjecture that Vizing’s Theorem and

Theorem 5.1 are special cases of a result that would say that, for r-uniform hypergraphs,

χ′(H) ≤ (r − 1)∆ + µ.

Alternatively, defining µr(H) to be the maximum number of edges having r vertices in

231



common, we can re-write Vizing’s bound as

χ′(G) ≤ µ1 + µ2

and the bound for 3-uniform hypergraphs suggested by Theorem 5.1 as

χ′(H) ≤ 2µ1 + µ3.

In this notation, the form of the latter bound is less pleasing and we notice that it takes

no specific account of edges sharing two vertices, raising the possibility that the true

form of an analogue of Vizing’s Theorem for r-uniform hypergraphs may need to be

more complicated.

5.1 Proof of Theorem 5.1

Let us begin by defining a property, which we will make much use of:

Definition 5.1.1. We say that an intersecting hypergraph H is loosely-intersecting if,

given any edge e1 and any vertex v ∈ e1, there exists an edge e2 such that e1 ∩ e2 = v.

For a hypergraph H, we define

W (H) = {v ∈ V (H) s.t. v = e1 ∩ e2 for some e1, e2 ∈ E}.

Then, by definition, if H is loosely-intersecting, W (H) = V (H) and every vertex v

belongs to at least two distinct edges e1, e2, which intersect each other only at v.

Observe that it suffices to prove Theorem 5.1 for loosely-intersecting hypergraphs. In-

deed, it can be shown that an intersecting 3-uniform hypergraph which is not loosely-

intersecting has fewer than 2∆ + µ edges as follows: Suppose H is such a hypergraph,

then there exists some (multi-)edge e1 and x ∈ e1 such that, whenever x ∈ e1 ∩ e2,

|e1 ∩ e2| ≥ 2. In that case, we can delete x from (every copy of) e1, obtaining an inter-

secting hypergraph H ′ in which e1 spans only two vertices. Notice then that, since every

edge must intersect e1, we have |e(H)| = |e(H ′)| ≤ 2∆(H ′) + µ(H ′) ≤ 2∆(H) + µ(H).

Notice, also, that loosely connected 3-graphs with at most six vertices have at most 2∆

edges. Indeed, suppose such a hypergraph has n ≤ 6 vertices and degree sequence
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d1, d2, . . . , dn. Then, 3e(H) = Σdi ≤ 6∆ so e(H) ≤ 2∆. Thus, we may restrict our

attention to loosely-intersecting 3-graphs with at least seven vertices.

It is known (see, for instance, [Tal05]) that, if H is an intersecting 3-graph, then W (H)

has cardinality at most 7. We could use this result to restrict our attention to loosely-

intersecting 3-graphs with exactly seven vertices. However, for the sake of completeness,

in the proof that follows, we prove directly that the 3-graphs we consider can have at

most seven vertices.

The following observation allows us, when considering 3-graphs on exactly seven vertices,

to assume that every vertex belongs to at least three distinct edges:

Observation 5.1.2. Let H be a 3-uniform hypergraph on seven vertices with at least 2∆+

µ edges. Then, every vertex has degree at least 3µ.

Proof. Suppose the vertices of H have degree sequence ∆ = d1 ≥ d2 ≥ · · · ≥ d7 with

di < 3µ for some i. Then, 3e(H) =
∑
di < 6∆ + 3µ, so e(H) < 2∆ + µ. 2

We now proceed to complete the proof of Theorem 5.1 by case analysis. In what follows,

we suppose that H is a 3-uniform hypergraph with maximum degree ∆, maximum

multiplicity µ and at least 2∆ +µ edges. We will refer to the vertices of H as a, b, c, . . . .

Case A: H has at least two edges sharing some pair of vertices.

Without loss of generality, suppose that H includes the edges abc and abd. Then, since H

is loosely-intersecting, there must exist an edge which intersects abc only at c. Since H

is intersecting, this edge must be, without loss of generality, the edge cde.

a
 f


b


c


d


e


g


Now, consider the vertex e. Since H is loosely-intersecting, there must be an edge

intersecting cde only at e. Since H is intersecting, this edge must be, without loss of

generality, either abe or aef .

233



Suppose that H includes the edge abe. Then, since H is loosely-intersecting, considering

a ∈ abd forces H to include an edge intersecting abd only at a. Thus, since H is

intersecting, it must include, without loss of generality, either aef or ace.

Thus, we may, in fact, consider the following two cases:

(i) H includes the edges abc, abd, cde and aef ;

(ii) H includes the edges abc, abd, cde, abe and ace but not aef .

Case A.i: H includes the edges abc, abd, cde and aef .

a
 f


b


c


d


e


g


Since H is loosely-intersecting, considering vertex f forces H to include, as an edge,

without loss of generality, either cdf or bcf .

a
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g
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In either case, we consider the seventh vertex g. Since H is loosely-intersecting, there

must exist two distinct edges intersecting each other only at g. Therefore, we seek pairs

of vertices from {a, b, c, d, e, f} which cover all the edges identified so far.

In the first case, only two such pairs exist, namely ac and ad, but these contain a common

vertex, giving a contradiction. In the second case, exactly two such pairs cover all the

edges, namely ac and be. Thus, H must include, as edges, acg and beg. Since these are

the only such pairs, g has degree at most 2µ.
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Consider a potential eighth vertex h. In order that h may belong to an edge, recalling

that H is intersecting, we seek pairs (or singletons) from {a, b, c, d, e, f, g} covering all

the edges identified thus far. There are no such pairs (or singletons), so H cannot have

an eighth vertex. Thus, H has exactly seven vertices and, by Observation 5.1.2, each of

those vertices has degree at least 3µ, giving a contradiction and completing the proof in

Case A.i.

Case A.ii: H includes the edges abc, abd, cde, abe and ace but not aef .

a
 f


b


c


d
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g


Since H is loosely-intersecting, considering b in the edge abc forces H to include an edge

intersecting abc only at b. Since H is intersecting, such an edge must intersect all other

known edges. Without loss of generality, the only two possibilities for such an additional

edge are bde and beg. Similarly, considering b in abe forces H to include at least one of

bcd and bcf . Observe, though, that the hypergraphs obtained by adding either bcf or

beg to those edges already found are isomorphic to each other.
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∼=
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g


Thus, without loss of generality, H includes either both of the edges bde and bcd or the

edge bcf .

Suppose that H includes the edge bcf . Then, consider the edges abd, abe, cde and bcf .

Exchanging the roles of a and b and of c and e gives a situation identical to that con-

sidered in case A.i.

a
 f


b


c


d


e


g
 ∼=

a
 f


b


c


d


e


g


Thus, we may suppose thatH includes the edges bde and bcd. In that case, notice that the

edges found thus far span only five vertices but recall that H has at least seven vertices.

Three pairs, namely ad, be and bc, cover every edge found so far. Thus, considering

the sixth vertex f , H must include the edge adf and also at least one of the edges bcf

or bef . In either case, consider the seventh vertex g. Since H is loosely-intersecting, g

belongs to two distinct edges. However, none of the pairs from {a, b, c, d, e, f} cover all

of the edges already found, giving a contradiction and completing the proof in Case A.

Case B: Every two edges of H intersect in exactly one vertex.

Recall that, since H is loosely-intersecting, every vertex in H belongs to at least two

distinct edges. Suppose, in fact, that every vertex in H belongs to exactly two distinct

edges. Suppose the vertex a belongings to abd and aef . Then, considering vertex e
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forces H to include, without loss of generality, the edge cde. Then, the only other edge

that can exist in H is bcf , resulting in a 3-graph with |e(H)| ≤ 2∆.

Thus, we may assume that H has a vertex, say a, belonging to three distinct edges.

Thus, H must include, without loss of generality, the edges abd, acg and aef .

a
 f


b


c


d


e


g


Then, consider vertex c. Recalling that H is loosely-intersecting, we see that H must

include, without loss of generality, the edge cde. Similarly, considering vertex f , we see

that there must exist an edge intersecting aef only at f . The only possibilities for such

edges are bcf or dgf .

a
 f


b


c


d


e


g
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The two situations are, in fact, identical save for the naming of the vertices. In either

case, there is only one pair spanning all the edges found so far. Thus, recalling that every

vertex must belong to at least two distinct edges, we may assume that H has no more

than the seven vertices identified so far and that, by Observation 5.1.2, every vertex has

degree at least 3µ. Thus, in fact, H includes both bcf and dgf . There remain three

vertices (b, e and g) which belong to only two of the edges found thus far. Considering

spanning pairs, we see that the only possible additional edge is beg.

At this point all vertices belong to exactly three distinct edges and, recalling that any

pair of edges must intersect in exactly one vertex, no more distinct edges can be present.
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The distinct edges found form the Fano Plane. Since the hypergraph spans exactly seven

vertices and each vertex belongs to exactly three distinct edges, by Observation 5.1.2,

every edge must have multiplicity µ, thus, completing the proof.
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d


e


g


2
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[EFR86] P. Erdős, P. Frankl, and V. Rödl. The asymptotic number of graphs not con-

taining a fixed subgraph and a problem for hypergraphs having no exponent.

Graphs Combin., 2(2):113–121, 1986.
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(Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 295–352. János

Bolyai Math. Soc., Budapest, 1996.

[KSV09] Daniel Král', Oriol Serra, and Llúıs Vena. A combinatorial proof of the
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Appendix A

Fractional colouring

This appendix includes the remaining parts of the proof of Theorem 4.1.

Recall that we consider a cubic bridgeless graph G and that, in Section 4.4, we showed

that

P(E0 ∪ E+ ∪ E− ∪ E±) ≥





79.2
256 if uv is not a chord

80
256 if uv is a chord,

and defined a set of events Σ, each forcing u. Recall also that, if we could show that

P(u ∈ I) ≥ 11/32, then Lemma 1.3.1 would give us χf (G) ≤ 32/11 as required.

Recall that, in Section 4.5, we proved the required result in the case that G had girth at

least six. The proof in this appendix follows essentially the same approach but requires

a long case analysis since short cycles introduce additional dependancies.

A.1 Outline

Before beginning the case analysis, we expand the definition of Σ to include more events,

define a small amount of additional terminology and prove a lemma that will be useful

later.

In Section A.4, we will consider the case when uv is not a chord of Z and in Section A.5

we will consider the case when uv is a chord of Z. In both cases, it will turn out that the

contribution from the events in Σ is not always sufficient, which will make it necessary

to modify the algorithm in order to allow vertices with surplus probability to donate

that probability to those vertices which are deficient. This augmentation step will be

referred to as Phase 5 of the Algorithm and will be discussed in Section A.6.

245



A.2 Additional templates

Let us recall the definition of the left-templates A and B and define three further left-

templates C1, C2, C3. Diagrams corresponding to the templates are given in Figure A.1:

template heads of ~σ other conditions

A v, u−, u−2 u−2 ∈ σ1

B v, u′− u ∈ σ3

C1 v, u′− u /∈ σ3, u′− ∈ σ1

C2 v, u′−, u−2 u /∈ σ3, u′− /∈ σ1, u−2 ∈ σ1

C3 v, u′−, u−2, u
′
−3 u /∈ σ3, u′− /∈ σ1, u−2 /∈ σ1

�

(a) Template A.

�

(b) Template B.

�
�

(c) Template C1.

�

�

�

(d) Template C2.

�

�
�

(e) Template C3.

Figure A.1: Left-templates.

As before, given a left-template P , the right-template P ∗ is obtained by exchanging all

‘−’ signs for ‘+’ signs in this description.

For P,Q ∈ {A,B,C1, C2, C3} and R ∈
{
D−, D0, D+

}
, we define PQR to be the tem-

plate ∆ such that

∆ = P ∪Q∗ ∪R,
∆1 = P 1 ∪ (Q∗)1 ∪R1,

and define Σ be be the set of all valid events PQR given by the above templates.

It is not hard to check (using the description of Algorithm 1) that each of the valid

events in Σ forces u and also that each of them is given by an admissible template.
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Note that, in the analysis which follows, in some cases, the structure of G may make

some of the symbols in a diagram redundant. For instance, consider the diagram in

Figure A.2(a) and let R1 be the event corresponding to the associated template ∆1.

Since the weight of ∆1 is 4, Lemma 4.3.2 implies a lower bound for P(R1) which is

slightly below 1/16. However, if we happen to know that the mate of u+ is v−, then we

can remove the symbol at u′+; the resulting diagram encodes the same event and comes

with a better bound of 1/8. We will describe this situation by saying that the symbol

at u′+ in the diagram for ∆1 is removable (under the assumption that u′+ = v−).

�

�

(a) ∆1.

�

(b) ∆2.

Figure A.2: The symbol at u′+ in the diagram defining the template ∆1 becomes remov-
able if we add the assumption that u′+ = v−.

A.3 Additional terminology

We define some additional terminology and and prove a lemma that will be used to rule

out some of the cases in the analysis found in Section A.5:

If G is a graph and X,Y ⊆ V (G), then E(X,Y ) is the set of edges of G[X,Y ]. We

let ∂(X) denote the set E(X,V (G) − X). For a subgraph H ⊆ G, we write ∂(H) for

∂(V (H)) and extend the definition of the symbol E(X,Y ) to subgraphs in an analogous

way. The neighbourhood of a vertex u of G is the set N(u) of its neighbours. We define

N [u] = N(u) ∪ {u} and call this set the closed neighbourhood of u.

Lemma A.3.1. Let C be a cycle of F . If there exist vertex-disjoint cycles D1 and D2

in G such that V (C) = V (D1) ∪ V (D2), then the following hold:

(i) 2 ≤ |E(D1, D2)| ≤ 4,
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(ii) if the length of D1 or D2 equals 5, then |E(D1, D2)| ≤ 3.

Proof. Let d = |E(D1, D2)|. We prove (i). Clearly, d ≥ 2 since at least two edges of C

join D1 to D2. Suppose that d ≥ 5. We claim that the 2-factor F ′ obtained from F by

replacing C with D1 and D2 satisfies the condition of Theorem 4.2.1. If not, then there

is an inclusionwise minimal edge-cut Y of G of size 3 or 4 disjoint from E(F ′). Since Y

intersects E(F ), it must separate D1 from D2 and hence contain E(D1, D2). But then

|Y | ≥ 5, a contradiction which shows that F ′ satisfies the condition of Theorem 4.2.1.

Having more components than F , it contradicts the choice of F . Thus, d ≤ 4.

(ii) Assume that d = 4 and that the length of, say, D1 equals 5. Let F ′ be defined as in

part (i). By the same argument, E(D1, D2) is the unique inclusionwise minimal edge-cut

of G disjoint from E(F ′). Let K1 be the component of G − E(D1, D2) containing D1.

Since ∂(D1) contains exactly one edge of K1, this edge is a bridge in G, contradicting

the assumption that G is bridgeless. 2

A.4 Analysis: uv is not a chord

Recall that v denotes the vertex u′ and Z denotes the cycle of F containing u. In this

section, we begin with the case where v is contained in a cycle Cv 6= Z of F (that is, uv

is not a chord of Z). We define a number ε(u) as follows:

(u) =





1 if uv is contained in a 4-cycle,

0 if u has no F -neighbour contained in a 4-cycle intersecting Cv,

−1 otherwise.

The vertices with ε(u) = −1 will be called deficient of type 0.

The aim of this section if to prove the following Proposition. This requires a case analysis

in which the end of each case is marked by N.

Proposition A.4.1. If uv is not a chord of Z, then

P(u ∈ I) ≥ 88 + ε(u)

256
.

Proof. As observed in Section 4.4, the probability of the event E0 ∪E− ∪E+ ∪E± is at

least 79.2/256. Thus, we seek additional probability of (8.8 + ε(u))/256.
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Case 1. The edge uv is contained in two 4-cycles.

Consider the event BBD0 of weight 5 (see the diagram in Figure A.3(a)). We claim

that P(BBD0) ≥ 8/256. Note that, for any situation σ ∈ BBD0, at least one of the

vertices v−, v+ is added to I in Phase 1. It follows that, for any such situation, u− or u+

is infeasible. Thus, q(BBD0) = 0 and, by Lemma 4.3.2,

P(BBD0) ≥ 1

25
=

8

256
.

Next, we consider the event ABD− of weight 7 (see Figure A.3(b)). Since u−2 ∈ σ1,

for any situation σ ∈ ABD−, u−2 is infeasible and hence q(ABD−) = 0. Furthermore,

ABD− contains no sensitive pair and, thus, it is regular. Lemma 4.3.2 implies that

P(ABD−) ≥ 2/256. This shows that

P(u ∈ I) ≥ 89.2/256.

We remark that a further contribution of 2/256 could be obtained from the eventAC1D
−,

but it will not be necessary. N

�

�

(a) BBD0.

�
�

�

(b) ABD−.

Figure A.3: The events used in Case 1 of the proof of Lemma A.4.1.

Case 2. uv is contained in one 4-cycle.

We may assume that u+ is adjacent to v−. From Figure A.4(a), we see that the event

BBD0 is weakly regular; we will estimate q(BBD0). Let σ be a random situation from

BBD0. If Cv is even, then v− ∈ σ1, which makes u+ infeasible, so q(BBD0) = 0. Thus,

we may assume that Cv is odd; since G is triangle-free, the length of Cv is at least 5.
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Thus, it contains at least two vertices other than v, v−, v+; consequently, the probability

that all the vertices of Cv are active is at most 1/4. If all the vertices of Cv are active,

then v− ∈ σ1 (and hence u+ is infeasible) with probability at least 2/5. It follows that

q(BBD0) ≤ P(v− /∈ σ1 | σ ∈ BBD0) ≤ 1

10
.

By Lemma 4.3.2, P(BBD0) ≥ 98/100 · 1/64 = 3.92/256.

Consider the weakly regular event BBD− (Figure A.4(b)). Observe, first, that the event

is valid in G as u− and v+ are not neighbours. Since u+ is infeasible with respect to any

situation from BBD−, we have q(BBD−) = 0 and so BBD− is regular. Lemma 4.3.2

implies that P(BBD−) ≥ 4/256.

Finally, consider the events ABD− and AC1D
− (Figure A.4(c) and (d)); note that

the only difference between them is that, for σ ∈ ABD−, u ∈ σ3, whereas, for σ ∈
AC1D

−, u /∈ σ3. Both events, however, force u. Observe that their validity does not de-

pend on whether u−2 and v+ are neighbours: even if they are, the diagram prescribes con-

sistent orientations at both ends of the edge u−2v+. The events are regular of weight 8,

and, thus, P(ABD− ∪AC1D
−) ≥ 2/256. This proves that P(u ∈ I) > 89.1/256. N

Having dealt with the above cases, we may now assume that the set {u−, u+, v−, v+} is

independent.

Case 3. M includes the edges u−2v+ and u+2v−.

The event BBD+ (Figure A.5(a)) is regular of weight 7; thus, P(BBD+) ≥ 2/256.

Similarly, P(BBD−) ≥ 2/256. We also have P(BBD0) ≥ 2/256 since v+ and v− have

mates on Z, ensuring that one of the vertices of Z is infeasible and thus q(BBD0) = 0.

Furthermore, P(ABD− ∪BAD+) ≥ 2/256 by Lemma 4.3.2.

We may assume that u′− 6= v+2 and u′+ 6= v−2, since, otherwise, u has a neighbour

contained in a 4-cycle and ε(u) = −1. In that case, the bound P(u ∈ I) ≥ 87.2/256,

proved so far, would be sufficient.

If u+ or u− have a mate on Z, then E± is regular and hence P(E±) = 16/256. This

adds further 0.8/256 to P(u ∈ I), making it reach 88/256, which is sufficient. Thus, we

may assume that u′− and u′+ are not contained in Z.
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�

�

(a) BBD0.

�

�

(b) BBD−.

�

�

�

(c) ABD−.

�

�

�
(d) AC1D

−.

Figure A.4: The events used in Case 2 of the proof of Lemma A.4.1.

�

�

(a) BBD+.

�
�

�

�

(b) C1AD+.

�
�

�

�
�

(c) C1C2D
+.

Figure A.5: Some of the events used in Case 3 of the proof of Lemma A.4.1.
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Consider the event C1AD
+ given by the diagram in Figure A.5(b). The only vertices

which can be included in a sensitive pair are u′−, u+2 and v+. Neither (u+2, u+2) nor

(v+, v+) are circular sensitive pairs since both Z and Cv contain a tail in C1AD
+ (u−

and v−, respectively). Hence, the only possible circular sensitive pair is (u′−, u
′
−). As for

linear sensitive pairs, the only possibility is (v+, u
′
−): the vertex u+2 is ruled out since

none of u′− and v+ is contained in Z, and the pair (u′−, v+) cannot be sensitive as v− is a

tail in C1AD
+. (Note that the sensitivity of a pair depends on the order of the vertices

in the pair.) Summarizing, the sensitive pair is (u′−, u
′
−) or (v+, u

′
−) and it is clear that

both pairs cannot be sensitive at the same time.

If (u′−, u
′
−) is sensitive, then the cycle of F containing u′− contains at least four ver-

tices which are not heads in C1AD
+. Consequently, the pair (u′−, u

′
−) is 4-free and

Lemma 4.3.2 implies P(C1AD
+) ≥ 79/80 · 0.5/256 > 0.49/256.

On the other hand, if (v+, u
′
−) is sensitive, we know that |v+Cvu

′
−| is odd and our

assumption that u′− 6= v+2 implies that the pair (v+, u
′
−) is 2-free. By Lemma 4.3.2,

P(C1AD
+) ≥ 3/4 · 0.5/256 = 0.375/256. As this estimate is weaker than the preced-

ing one, C1AD
+ is guaranteed to have probability at least 0.375/256. Symmetrically,

P(AC1D
−) ≥ 0.375/256.

So far, we have accumulated a probability of 87.95/256. The missing bit can be supplied

by the event C1C2D
+ of weight 10 (Figure A.5(c)). Since the mates of u− and u+ do not

belong to Z, any sensitive pair will involve only the vertices u′−, u′+ and v+, and it is not

hard to check that there will be at most two such pairs. Since u′− 6= v+2, each of these

pairs is 1-free. If one of them is 2-free, then P(C1C2D
+) ≥ 1/4 · 0.25/256 > 0.06/256 by

Lemma 4.3.2, which is more than the amount missing to 88/256.

We may thus assume that none of these pairs is 2-free. This implies that (v+, u
′
−) is not

a sensitive pair, as |v+Cvu
′
−| would have to be odd and strictly between 1 and 3. Thus,

there are only two possibilities: (a) C1C2D
+ is covered by (u′−, u

′
+) and (u′+, u

′
−), or (b)

it is covered by (v+, u
′
+) and (u′+, u

′
−). The former case corresponds to u′+ and u′− being

contained in a cycle W of F of length 4, which is impossible by the choice of F . In the

latter case, u′+ and u′− are contained in Cv; in fact, u′+ = v+3 and u′− = v+5. Although

Lemma 4.3.2 does not give us a non-zero bound for P(C1C2D
+), we can get one by

exploiting the fact that G is triangle-free. Since v+2v+4 /∈ E(M), the probability that

both v+2 and v+4 are tails with respect to the random situation σ is 1/4, and these events

are independent of orientations of the other edges of G. Thus, the probability that σ

weakly conforms to the template for C1C2D
+ and v+2, v+4 are tails is 1/27 = 2/256.

252



Under this condition, σ will conform to the template with probability 1/25 (a factor

1/2 for each symbol in the diagram). Consequently, P(C1C2D
+) > 0.06/256, again a

sufficient amount. N

Case 4. M includes the edge u−2v+ but not u+2v−.

As in the previous case, P(BBD−) ≥ 2/256. Consider the weakly regular event BBD+

(Figure A.6(a)). Since u′−2 = v+ ∈ σ1 for any σ ∈ BBD+, we have q(BBD+) = 0. By

Lemma 4.3.2, P(BBD+) ≥ 2/256.

The event BBD0 is also weakly regular, and it is not hard to see that q(BBD0) ≤ 1/10

(using the fact that the length of Cv is at least 5). Lemma 4.3.2 implies that P(BBD0) ≥
98/100 · 2/256 = 1.96/256.

Each of the events BAD0 (Figure A.6(b)), BAD+ and BAD− is regular and has weight

9. By Lemma 4.3.2, it has probability at least 0.5/256. Furthermore, the regular event

ABD− has P(ABD−) ≥ 1/256, also by regularity. So far, we have shown that P(u ∈
I) ≥ 87.66/256. As in the previous case, this enables us to assume that u′− and u′+
are not vertices of Z. Furthermore, it may be assumed that u′− 6= v+2, for otherwise

ε(u) = −1 and the current estimate on P(u ∈ I) is sufficient.

If M includes the edge u−v−2, then AC1D
− is regular and P(AC1D

−) ≥ 0.5/256, which

would make the total probability exceed 88/256. Let us, therefore, assume the contrary.

The event C1AD
− is covered by (u′−, v−)2 and q(C1AD

−) = 0, so the probability of

C1AD
− is at least 3/4 · 0.25/256. Similarly, C1AD

+ is covered by (v+, u
′
−). Suppose for

a moment that this pair is 2-free; we then get P(C1AD
+) ≥ 3/4 · 0.25/256. The event

C1AD
0 is covered by (v, u′−) and (u′−, v). Our assumptions imply for each of the pairs

that it is 2-free. By Lemma 4.3.2, P(C1AD
0) ≥ 1/2 · 0.25/256. The contribution we

have obtained from C1AD
+ ∪C1AD

− ∪C1AD
0 is at least 0.5/256, which is sufficient to

complete the proof in this subcase.

It remains to consider the possibility that (v+, u
′
−) is not 2-free in the diagram for

C1AD
+. It must be that the path v+Cvu

′
− includes v′− and has length 3. The probability

bound for C1AD
+ is now reduced to 1/2 · 0.25/256. However, now, C1AD

0 is covered

by (u′−, v), and we find that P(C1AD
0) ≥ 3/4 · 0.25/256. In other words, as before, we

have

P(C1AD
+ ∪ C1AD

− ∪ C1AD
0) ≥ 0.5/256.
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(a) BBD+.

�
�

�

(b) BAD0.

Figure A.6: Some of the events used in Case 4 of the proof of Lemma A.4.1.

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

Figure A.7: The event BBD+ used in the final part of the proof of Lemma A.4.1.

N

By symmetry, it remains to consider the following case:

Case 5. The set {u−2, u−, u+, u+2, v−, v+} is independent.

Consider the weakly regular event BBD+ (Figure A.7). As before, since |V (Z)| ≥ 5,

if Z is odd, Observation 4.3.1(ii) implies that q(BBD+) ≤ 1/4. Since the event has

weight 7, P(BBD+) ≥ 1.9/256 by Lemma 4.3.2. We get the same estimate for BBD−

and BBD0.

Since u− is not adjacent to either of v− and v+, the event ABD+ is valid. It is regular so

P(ABD+) ≥ 0.5/256. The same applies to the events ABD−, ABD0, BAD+, BAD−

and BAD0. Thus, the probability of the union of these six events is at least 3/256.

Together with the other events described so far, the probability is at least 87.9/256.

As in the previous cases, this means that we may assume that the mate of u+ is not

contained in Z, since, otherwise, we would obtain a further 0.8/256 from the event E±

and reach the required amount.

Since the length of Cv is at least 5, u′+ is not adjacent to both v− and v+. Suppose that
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it is not adjacent to v+ (the other case is symmetric). Then, AC1D
+ is covered by the

pair (v+, u
′
+)2. Hence, P(AC1D

+) ≥ 3/4 · 0.5/256 = 0.375/256. The total probability

of u ∈ I is therefore larger than 88/256, which concludes the proof. N

2

A.5 Analysis: uv is a chord

In this section, we continue the analysis of Section A.4, this time considering the case

where uv is a chord of Z. Although this case is more complicated, one useful simplifi-

cation is that, by Observation 4.3.1(i), we now have q(∆) = 0 for any template ∆. In

particular, P(E±) ≥ 16/256, which implies

P(E0 ∪ E− ∪ E+ ∪ E±) ≥ 80

256
.

Roughly speaking, since the probability needed to prove Theorem B is 88/256, we need

to find events in Σ whose total probability is at least 8/256. However, like in Section A.4,

we may actually require a higher probability or be satisfied with a lower one, depending

on the type of the vertex. The surplus probability will be used to compensate for the

deficits in Section A.6.

Recall that, at the beginning of Section A.4, we defined deficient vertices of type 0 and

associated a number ε(u) with the vertex u provided that uv is not a chord of a cycle

of F . We are now going to provide similar definitions for the opposite case, introducing

a number of new types of deficient vertices.

Suppose that uv is a chord of Z which is not contained in any 4-cycle of G. The vertex u

is deficient if it satisfies one of the conditions in Table A.1. (See the illustrations in

Figure A.8.) Since the conditions are mutually exclusive, this also determines the type

of the deficient vertex u.

We now extend the definition to cover the symmetric situations. Suppose that u satisfies

the condition of type II when the implicit orientation of Z is replaced by its reverse —

which also affects notation such as u+, uZv etc. In this case, we say that u is deficient

of type II∗. (As seen in Figure A.9, the picture representing the type is obtained by a

flip about the vertical axis.) The same notation is used for all the other types except

types 0 and I. A type such as II∗ is called the mirror type of type II.

255



type of u condition ε(u)

I the path v−vv+ is contained in a 4-cycle in G, neither the
path u−uu+ nor the edge uv are contained in a 4-cycle, and
u is not of types Ia, Ib, Ia∗ or Ib∗

−0.5

Ia |uZv| = 4 and M includes the edges u+2v+, u−2v−, while
u+v+2 /∈ E(M)

−2

Ib |uZv| = 4 and M includes the edges u+2v+, u−2v−, u+v+2 −1.5

II |uZv| = 4, |vZu| ≥ 7 and M includes all of the edges u−v+2,
u−2v+, u−3u+, while v+3v− /∈ E(M)

−0.125

IIa |uZv| = 4, |vZu| = 6, and M includes all of the edges u−2v+,
u−3u+ and u−u−4,

−0.5

III |uZv| = 4, |vZu| = 8 and M includes all of the edges u−2v+,
u−3u+, v+3v− and u−u−4

−0.125

Table A.1: The type of a deficient vertex u provided that uv is a chord of Z, and the
associated value ε(u).

Note that even with this extension, the types of a deficient vertex remain mutually

exclusive. Furthermore, we have the following observation which will be used repeatedly

without explicit mention:

Observation A.5.1. If u is deficient (of type different from 0), then its mate v is not

deficient.

Proof. Let u be as stated. A careful inspection of Table A.1 and Figure A.8 shows that

the path u−uu+ is not contained in any 4-cycle. It follows that v is not deficient of

type I, Ia, Ib or their mirror variants. Suppose that v is deficient. By symmetry, u also

does not belong to the said types and, hence, the types of both u and v are II, IIa, III or

the mirror variants. As seen from Figure A.8, when u is of any of these types, the path

u−uu+ belongs to a 5-cycle in G. By symmetry again, the same holds for v−vv+. The

only option is that u belongs to type III and v to III∗, or vice versa. But this is clearly

impossible: if u is of type III or III∗, then one of its neighbours on Z is contained in a

4-cycle, and this is not the case for any neighbour of v on Z. Hence, v cannot be of type

III or III∗. This contradiction shows that v is not deficient. 2

We will often need to apply the concept of a type to the vertex v rather than u. This

may at first be somewhat tricky; for instance, to obtain the definition of ‘v is of type

IIa∗’, one needs to interchange u and v in the definition of type IIa in Table A.1 and then

perform the reversal of the orientation of Z. In this case, the resulting condition will be

that |uZv| = 4, |vZu| = 6 (here the two changes cancel each other out) and M includes
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the edges v+2u−, v+3v− and v+v+4. To spare the reader from having to turn Figure A.8

around repeatedly, we illustrate the various cases where v is deficient in Figure A.10.

Table A.1 also associates the value ε(u) with each type. By definition, a type with an

asterisk (such as II∗) has the same value assigned as the corresponding type without an

asterisk.

We now extend the function ε to all vertices of G. It has been defined for all deficient

vertices, as well as for all vertices whose mate is contained in a different cycle of F .

Suppose that w is a non-deficient vertex whose mate w′ is contained in the same cycle

of F . We set

ε(w) =




−ε(w′) if w′ is deficient,

0 otherwise.

Our aim in the remainder of this section is to prove the following proposition. As in the

proof of Proposition A.4.1, we mark the end of each case by N; furthermore, the end of

each subcase is marked by 4.

Proposition A.5.2. If uv is a chord of Z, then we have

P(u ∈ I) ≥ 88 + ε(u)

256
.

Proof. We distinguish a number of cases based on the structure of the neighbourhood

of u in G.

Case 1. The edge uv is contained in a 4-cycle.

Observe that, in this case, neither u nor v is deficient.

Suppose that uvv−u+ is a 4-cycle (the argument in the other cases is the same). Consider,

first, the possibility that v−u+ is an edge of M . The event BBD0 is (valid and) regular.

By Lemma 4.3.2, P(BBD0) ≥ 4/256. Since this lower bound increases to 8/256 if u−v+

is an edge of M (and since v is not deficient), we may actually assume that this is not

the case. Consequently, P(BBD−) ≥ 4/256 as BBD− is regular. The total contribution

is 8/256, as desired.

We may, thus, assume that v−u+ is an edge of F and no edge of M has both end-

vertices in {u−, u+, v−, v+}. Since the events BBD0 and BBD− are regular, we have

P(BBD0 ∪BBD−) ≥ 4/256.
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(a) Type I (only one
of the two possibilities
shown).

(b) Type Ia. (c) Type Ib.

(d) Type II. (e) Type IIa. (f) Type III.

Figure A.8: Deficient vertices.

Figure A.9: A deficient vertex u of type II∗.
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(a) v has type I. (b) v has type Ia. (c) v has type Ib.

(d) v has type II. (e) v has type IIa. (f) v has type III.

Figure A.10: The situation when the vertex v is deficient. As usual, the vertex u is
circled.
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(a) Case 1 (one of the
possibilities).

(b) Case 2 (one of the
possibilities).

(c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

(g) Case 7. (h) Case 8.

Figure A.11: The main cases in the proof of Proposition A.5.2. Relevant non-edges are
represented by dotted lines, paths are shown as dashed lines.
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Figure A.12: The event BBD+.

A further probability of 4/256 is provided by the regular events BAD0 and BAD−.

Indeed, although the template BAD0 has weight 8, which would only yield P(BAD0) ≥
1/256 by Lemma 4.3.2, the estimate is improved to 2/256 by the fact that the associated

diagram has a removable symbol at v. The same applies to the event BAD−. We

conclude

P(BBD0 ∪BBD− ∪BAD0 ∪BAD−) ≥ 8/256,

as required. N

We will henceforth assume that uv is not contained in a 4-cycle. Note that this means

that the set {u−, u+, v−, v+} is independent. Consider the regular event BBD+ (Fig-

ure A.12).

By Lemma 4.3.2, we have

P(BBD+) ≥ 2

256
.

The same applies to the events BBD0 and BBD−. Thus, in the subsequent cases, it

suffices to find additional events of total probability at least (2 + ε(u))/256.

Case 2. The path u−uu+ is contained in a 4-cycle.

Suppose that u−uu+u+2 is such a 4-cycle. (The other case is symmetric.) Consider

the events C1AD
+ and BAD+. Since the condition of Case 1 does not hold, and,

by the assumption that G is triangle-free, the set {u+, v−, v+} is independent in G.

Furthermore, each of the events is regular and, by Lemma 4.3.2, each of them has

probability at least 1/256. Thus, it remains to find an additional contribution of ε(u).

We distinguish several subcases based on the deficiency and type of the vertex v. Since

u−uu+ is contained in a 4-cycle, v is either not deficient, or is deficient of type I, Ia, Ib,

Ia∗ or Ib∗.
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Subcase 2.1. v is not deficient.

In this subcase, ε(u) ≤ 0, so there is nothing to prove. 4

Subcase 2.2. v is deficient of type I.

By the definition of type I, both of the following conditions hold:

• u+v+2 /∈ E(M) or |uZv| ≥ 5,

• u−v−2 /∈ E(M) or |vZu| ≥ 5.

Moreover, we have ε(u) = 0.5.

We may assume that M includes the edge u−2v− since, otherwise, the event ABD− is

regular (see Figure A.13(a)) and has probability at least 0.5/256, as required.

The event ABD+ (Figure A.13(b)) is covered by the pair (v+, u−2). Consequently, we

may assume that |vZu| = 4: otherwise the pair is 1-free, and since the event has weight 8,

we have P(ABD+) ≥ 0.5/256 by Lemma 4.3.2.

By a similar argument applied to the event C1AD
−, we infer that |uZv| = 4. Thus, the

length of Z is 8 and the structure of G[V (Z)] is as shown in Figure A.14(a). The regular

event C1C2D
+ (Figure A.14(b)) has probability at least 0.5/256, which is sufficient.

This concludes the present subcase.

4

Subcase 2.3. v is deficient of type Ia, Ib, Ia∗ or Ib∗.

By symmetry, we may assume that v is either of type Ia∗ (if u−2v− is not an edge of M)

or Ib∗ (otherwise). Accordingly, we have either ε(u) = 2 or ε(u) = 1.5.

The regular event C1C2D
+ provides a contribution of 1/256. If u−2v− /∈ E(M) (thus, v

is of type Ia∗ and ε(u) = 2), then the event ABD− is also regular (including when

|vZu| = 4) and P(ABD−) ≥ 1/256, a sufficient amount.
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Figure A.13: Subcase 2.2 of the proof of Proposition A.5.2: (a) The event ABD− if
u−2v− /∈ E(M). (b) The event ABD+.
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(b)

Figure A.14: (a) A configuration in Subcase 2.2 of the proof of Proposition A.5.2. (b)
The event C1C2D

+.
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It remains to consider the case that u−2v− ∈ E(M). The required additional probability

of 0.5/256 is supplied by the event ABD+, which is covered by the 1-free pair (v+, u−2).

4

Having completed these subcases, the discussion of Case 2 is complete. N

From here on, we assume that none of the conditions of Cases 1 or 2 hold. In particular, v

is not deficient of type I, Ia, Ib or their mirror types. We distinguish further cases based

on the set of edges induced by M on the set

U = {u−2, u+2, v−, v+} .

Note that the length of the paths uZv and vZu is now assumed to be at least 4. We

call a path short if its length equals 4.

Case 3. E(M [U ]) = ∅.

We claim that, if v is deficient, then its type is III or III∗. Indeed, for types I, Ia, Ib and

their mirror types, u−uu+ would be contained in a 4-cycle and this configuration has

been covered by Case 2. For types II, IIa and their mirror variants, U would not be an

independent set. Since type 0 is ruled out for trivial reasons, types III and III∗ are the

only ones that remain. The only subcase compatible with these types is Subcase 3.2;

in the other subcases, v is not deficient and we have ε(u) ≤ 0. This will simplify the

discussion in the present case.

We begin by considering the event ABD−. By the assumptions, it is valid. Since neither

(u−2, v−) nor its reverse is a sensitive pair, the event is regular. Thus, P(ABD−) ≥
0.5/256. By symmetry, we have P(BAD+) ≥ 0.5/256.

We distinguish several subcases, in each of which we try to accumulate a further (1 +

ε(u))/256 worth of probability.

Subcase 3.1. None of uZv and vZu is short.

Consider the event ABD0. By the assumptions, it is valid and covered by (v+, u−2).

Since vZu is not short and the diagram of ABD0 contains only one outgoing arc (namely
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(a) (b)

Figure A.15: Two cases where the event ABD+ cannot be used in Subcase 3.1 of the
proof of Proposition A.5.2.

u+u
′
+), the pair is 1-free. By Lemma 4.3.2, P(ABD0) ≥ 1/2 · 0.5/256 = 0.25/256. By

symmetry, P(BAD0) ≥ 0.25/256.

The argument for ABD0 also applies to the event ABD+ (whose diagram has two

outgoing arcs), unless the vertex set of the path vZu is
{
v, v+, u

′
+, v

′
−, u−, u

}
(in which

case we get the two possibilities in Figure A.15). If this does not happen, then we obtain

a contribution of at least 0.25/256 again.

Let us examine the exceptional case in Figure A.15(a) (i.e., u′+ = u−3 and v′− = v+2).

The event C1C1D
+ is covered by (u′−, u

′
−)4. By Lemma 4.3.2, P(C1C1D

+) ≥ 79/80 ·
1/256 > 0.98/256.

Consider now the situation of Figure A.15(b). The eventAAD+ is valid, since {u−2, u+2, v+}
is an independent set by assumption and it is regular. We infer that P(AAD+) ≥
0.25/256.

To summarize the above three paragraphs, we proved

P(ABD+ ∪ C1C1D
+ ∪AAD+) ≥ 0.25/256.

By symmetry, in the above paragraphs, we proved that

P(BAD− ∪ C1C1D
− ∪AAD−) ≥ 0.25/256.

Together with the events ABD0 and BAD0 considered earlier, this makes for a total

contribution of at least 1/256. As noted at the beginning of Case 3, ε(u) ≤ 0 so this is

265



sufficient. 4

Subcase 3.2. The path vZu is short but uZv is not.

In this subcase, v may be deficient of type III∗, in which case ε(u) = 0.125; otherwise,

ε(u) ≤ 0.

The event BAD− is covered by the pair (u+2, v−), which is 1-free unless v′+ and u′−
are the only internal vertices of the path u+2Zv−. However, this situation would be

inconsistent with our choice of F since ∂(Z) would have size 4. (Recall that ∂(Z) is the

set of edges of G with one end in V (Z).) Consequently, P(BAD−) ≥ 1/2 · 0.5/256 =

0.25/256. Moreover, if u′+ (which is a tail in BAD−) is contained in u+2Zv−, then

P(BAD−) ≥ 0.5/256.

The same discussion applies to the event BAD0. In particular, if u′+ ∈ V (u+2Zv−),

then the probability of the union of these two types is at least 1/256. This is a sufficient

amount unless v is deficient of type III∗, in which case a further 0.25/256 is obtained

from the regular event AAD−.

We may, thus, assume that u′+ /∈ V (u+2Zv−) (so v is not deficient). The event AC1D
−

is then covered by (u′+, u
′
+)3 (we are taking into account the arc incident with v+) and

hence P(AC1D
−) ≥ 39/40 · 0.25/256 > 0.24/256 by Lemma 4.3.2.

The event AC2D
− is covered by the pair (u+2, v−)1 and has probability at least 1/2 ·

0.0625/256 > 0.03/256. We claim that P(BAD− ∪ BAD0 ∪ AAD−) ≥ 0.75/256. Since

the total amount will exceed 1/256, this will complete the present subcase:

Suppose first that v′+ ∈ V (uZv). Then the event BAD0 is regular and P(BAD0) ≥
0.5/256. In addition, BAD− has only one sensitive pair (u+2, v−). This pair is 1-free

since, otherwise, v′+ and u′− would be the only internal vertices of the path u+2Zv−

and Z would be incident with exactly four non-chord edges of M , a contradiction with

the choice of F . Thus, P(BAD−) ≥ 0.25/256 and the claim is proved.

Let us therefore assume that v′+ /∈ V (uZv). We again distinguish two possibilities

according to whether u′− is contained in uZv or not. If u′− ∈ V (uZv), then P(BAD−) ≥
1/2 · 0.5/256 = 0.25/256 as BAD− is covered by (u+2, v−)1. Similarly, P(BAD0) ≥
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0.25/256. The event AAD− is regular of weight 10, whence P(AAD−) ≥ 0.25/256. The

total probability of these three events is at least 0.75/256, as claimed.

To complete the proof of the claim, we may assume that u′− /∈ V (uZv). The only

possibly sensitive pair of BAD− and BAD0 is now 2-free, implying a probability bound

of 3/4 ·0.5/256 for each event. Thus, P(BAD−∪BAD0) ≥ 0.75/256, finishing the proof

of the claim and the whole subcase. 4

Subcase 3.3. Both vZu and uZv are short.

In this subcase, Z is an 8-cycle; by our assumptions, it has only one chord uv. Recall

also that in this subcase, ε(u) ≤ 0.

Consider the event AC1D
−. Since it is covered by (u′+, u

′
+)3, we have P(AC1D

−) ≥
39/40 · 0.25/256 > 0.24/256 by Lemma 4.3.2. By symmetry, P(C1AD

+) ≥ 0.24/256 so

the total probability so far is 0.48/256.

Suppose now that the vertices u′+ and u′− are located on different cycles of F . By

Lemma 4.3.2, P(C1C1D
0) ≥ 39/40 · 0.5/256 > 0.48/256. Similarly, P(C1C1D

+) ≥
77/80 · 0.5/256 > 0.48/256, which makes for a sufficient contribution.

We may, thus, assume that u′+ and u′− are on the same cycle, say Z ′, of F . Suppose that

they are non-adjacent, in which case C1C1D
0 is covered by (u′+, u

′
−)2 and (u′−, u

′
+)2,

and its probability is at least 1/2 · 0.5/256 = 0.25/256. If neither v′− nor v′+ are on Z ′,

then the same computation applies to C1C1D
+ and C1C1D

− so the total probability

accumulated so far is (0.48 + 0.25 + 0.25 + 0.25)/256 > 1/256 by Lemma 4.3.2. We may,

thus, assume, without loss of generality, that v′+ ∈ V (u′+Z
′u′−). Under this assumption,

C1C1D
− is covered by (u′−, u

′
+)1 and, thus, P(C1C1D

−) ≥ 1/2 · 0.5/256 = 0.25/256. At

the same time, P(C1C1D
+) is similarly seen to be at least 0.125/256, which makes the

total probability at least (0.48 + 0.25 + 0.25 + 0.125)/256 > 1/256.

It remains to consider the possibility that u′+ and u′− are adjacent. In this case,

P(AC1D
− ∪ C1AD

+) ≥ 0.5/256, so we need to find additional 0.5/256. The event

C1C2D
+ has a template covered by (u′−, u

′
−)2, and hence its probability is at least

19/20 · 0.25/256 > 0.23/256. Similarly, P(C2C1D
−) ≥ 0.23/256. The same argu-

ment applies to the events C1C3D
+ and C3C1D

−, resulting in a total probability of

(0.5 + 4 · 0.23)/256 > 1/256. This finishes Case 3. 4
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N

Case 4. E(M [U ]) = {u−2v+}.

In this case, two significant contributions are from the regular events ABD− and BAD+:

P(ABD−) ≥ 1

256
,

P(BAD+) ≥ 0.5

256
.

We distinguish several subcases; in each of them, we try to accumulate a contribution

of (0.5 + ε(u))/256 from other events. In particular, if u is deficient of type I, IIa or IIa∗

(and ε(u) = −0.5), we are done.

Let us consider the vertex v. We claim that, if v is deficient, then it must be of type

II∗ or IIa∗. Indeed, the assumption that u−uu+ is not contained in a 4-cycle excludes

types I, Ia, Ib and their mirror variants. An inspection of the type definitions shows

that, if v is of type II or IIa, then M includes the edge u+2v−, which we assume not to

be the case. Finally, if v is of type III or III∗, then u−2v+ is not an edge of M , another

contradiction with our assumption.

The only types that remain for v are II∗ and IIa∗. Observe that, if v is of one of these

types, then uZv is short.

Subcase 4.1. The path uZv is not short.

By the above discussion, v is not deficient of either type, whence ε(u) ≤ 0. The event

BAD− is covered by (u+2, v−)1 (consider the outgoing arc incident with u−). It follows

that P(BAD−) ≥ 0.25/256. The same argument applies to BAD0, and thus

P(ABD− ∪BAD+ ∪BAD− ∪BAD0) ≥ 1 + 0.5 + 0.25 + 0.25

256
=

2

256
.

4

We have observed that, if v is deficient, then it must be of type II∗ or IIa∗. Since this

requires that the F -neighbours of u′− are v+ and v′−, it can only happen in the following

subcase.
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Figure A.16: Two events used in Subcase 4.2 of the proof of Proposition A.5.2: (a)
AC1D

−, (b) C1C1D
−.

Subcase 4.2. The vertices u′+ and u′− are non-adjacent.

Consider the events AC1D
− and C1C1D

− (Figure A.16). If the event AC1D
− has a

sensitive pair, it is either (u′+, u
′
+) or (u′+, u−2).

Suppose first that u′+ is distinct from u−3. In this case, Lemma 4.3.2 implies that

P(AC1D
−) ≥ 3/4·0.5/256 no matter whether u′+ ∈ V (Z) or not. Secondly, P(C1C1D

−) ≥
1/2 · 0.5/256 (by Lemma 4.3.2 again) so the total contribution is at least 0.625/256,

which is sufficient if v is either not deficient or is deficient of type II∗. It remains to

consider the possibility that v is deficient of type IIa∗. In this case, AC1D
− is covered

by (u′+, u
′
+)4; by Lemma 4.3.2, P(AC1D

−) ≥ 79/80 · 0.5/256 > 0.49/256. Similarly, we

obtain P(C1C1D
−) > 0.49/256 and P(C2C1D

−) ≥ 0.24/256. The total contribution is

1.22/256 > (0.5 + ε(u))/256.

We may thus suppose that u′+ = u−3; since this is incompatible with v being of type

II∗ as well as IIa∗, we find that v is not deficient and ε(u) ≤ 0. We have P(C1C1D
−) ≥

3/4 · 0.5/256 (whether u′− is contained in vZu or outside Z) since the event C1C1D
− is

covered by a single 2-free pair (either (u′−, u
′
−) or (u′−, u−3)) and the weight of the event

is 9. It remains to find a further contribution of 0.125+ ε(u) to reach the target amount.

In particular, we may assume that u is not deficient of type II.

If u′− 6= v+2, the event C1C1D
0 is covered by (v+, u

′
−) and (u′−, u−3). Using Lemma 4.3.2,

we find that P(C1C1D
0) ≥ 1/2 · 0.5/256, which is sufficient.

Thus, the present subcase boils down to the situation where u′− is adjacent to v+ (that
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is, u′− = v+2) and u′+ = u−3. Since u is not deficient of type II, it must be that

v−v+3 is an edge of M . In this case, the only events of non-zero probability in Σ are

the events ABD−, BAD+ and C1C1D
− considered above. Fortunately, the condition

that v−v+3 ∈ E(M) increases the probability bound for C1C1D
+ from 3/4 · 0.5/256 to

0.5/256, as required. 4

As all the subcases where v is deficient have been covered in Subcase 4.2, we may

henceforth assume that ε(u) ≤ 0 and seek find a further contribution of (0.5+ ε(u))/256.

Subcase 4.3. The vertices u′+ and u′− are adjacent, uZv is short and u′+ 6= u−3.

Suppose first that u′− (and u′+) is contained in Z. The event C2C1D
− is then covered

by the 1-free pair (u′−, u−2) or (u′+, u−2). Since its weight is 9, we have P(C2C1D
−) ≥

1/2 · 0.5/256 = 0.25/256. Note that the event C3C1D
− is valid; it is also regular so

P(C3C1D
−) ≥ 0.25/256. Together, this yields 0.5/256, which is sufficient.

We may therefore assume that u′− (and u′+) are not contained in Z. The event C2C1D
− is

covered by (u′+, u
′
−) or its reverse, each of which is 3-free. By Lemma 4.3.2, P(C2C1D

−) ≥
39/40 · 0.5/256 > 0.48/256. The event C3C1D

−, if irregular, has the same sensi-

tive pair and it is now 2-free. Since the weight of its diagram is 10, P(C3C1D
−) ≥

19/20 · 0.25/256 > 0.23/256. The total contribution exceeds the desired 0.5/256. 4

Subcase 4.4. The vertices u′+ and u′− are adjacent, uZv is short and u′+ = u−3.

Suppose first that the path v+Zu−4 contains at least two vertices distinct from v′−.

Then the event C1AD
+ (see Figure A.17) is covered by (v+, u−4)2. Since the weight of

C1AD
+ is 10, we have P(C1AD

+) ≥ 3/4 · 0.25/256. The events C1C2D
+ and C1C3D

+

have weight 11 but the diagram of each of them has a removable symbol at u−3 so we

get the same bound of 3/4 · 0.25/256 for each of C1C2D
+ and C1C3D

+, since each of

the diagrams is covered by one 2-free pair. The total contribution is at least 0.56/256.

If v′− is the only internal vertex of v+Zu−4, then the above events are in fact regular and

we obtain an even higher contribution. Thus, we may assume that either v+ and u−4

are neighbours on Z, or v+Zu−4 contains two internal vertices and one of them is v′−.
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Figure A.17: The event C1AD
+ used in Subcase 4.4 of the proof of Proposition A.5.2.

The former case is ruled out since we are assuming (from the beginning of Case 4) that u

is not deficient of type IIa. It remains to consider the latter possibility. Here, v′− is either

v+2 or v+3. In fact, it must be v+3, since otherwise u would be deficient of type I, which

has also been excluded at the beginning of Case 4. But, then, u is deficient of type III,

so ε(u) = −0.125. At the same time, the unique sensitive pair for each of the events

C1AD
+, C1C2D

+ and C1C3D
+, considered above, is now 1-free; the probability of the

union of these events is, thus, at least 3 · 1/2 · 0.25/256 = 0.375/256 = (0.5 + ε(u))/256

as necessary. 4

N

Case 5. E(M [U ]) = {u−2v+, u+2v−}.

As in Case 4, the probability of the event ABD− is at least 1/256; by symmetry,

P(BAD+) ≥ 1/256. We claim that the resulting contribution of 2/256 is sufficient

because ε(u) ≤ 0. Clearly, v is not of type 0. Applying the definitions of the remaining

types to v, we find that none of them is compatible with the presence of the edges u−2v+

and u+2v− in M . This shows that ε(u) ≤ 0. N

Case 6. E(M [U ]) = {u−2u+2}.

Recall our assumption that the set J = {u−, u+, v−, v+} is independent. If we suppose

that, moreover, both the paths uZv and vZu were short, then the mate of each vertex

in J must be outside Z. This means that |∂(Z)| = 4, a contradiction with F satisfying
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the condition in Theorem 4.2.1. Thus, we may assume, by symmetry, that the path vZu

is not short.

The event ABD− is regular of weight 9 so P(ABD−) ≥ 0.5/256. Similarly, P(BAD+) ≥
0.5/256. We need to find additional (1 + ε(u))/256 to add to the probabilities of ABD−

and BAD+ above. Note also that, if v is deficient, then it must be of type III∗ and this

only happens in Subcase 6.3.

Subcase 6.1. uZv is not short.

Assume that u′+ is not contained in vZu and consider the events ABD+ and ABD0.

If v′− is not contained in vZu, then ABD+ is covered by the pair (v+, u−2)2, and it follows

that P(ABD+) ≥ 3/4 · 0.5/256 = 0.375/256. Similarly, P(ABD0) ≥ 0.375/256. On the

other hand, if v′− is contained in vZu, then the pair (v+, u−2) may only be 1-free for

ABD+, whence P(ABD+) ≥ 1/2 ·0.5/256 = 0.25/256, but this decrease is compensated

for by the fact that P(ABD0) ≥ 0.5/256 as ABD0 is now regular. Summarizing, if u′+
is not contained in vZu, then the probability of ABD+ ∪ABD0 is at least 0.75/256.

The event BAD0 of weight 9 is covered by the pair (u+2, v), which is 1-free since uZv

is not short. Hence, P(BAD0) ≥ 1/2 · 0.5/256 = 0.25/256. Putting this together, for

u′+ /∈ V (vZu), we have

P(ABD− ∪BAD+ ∪ABD+ ∪ABD0 ∪BAD0)

≥ 0.5 + 0.5 + 0.375 + 0.375 + 0.25

256
=

2

256
.

Since this is the required amount, we may assume by symmetry that u′+ ∈ V (vZu) and

u′− ∈ V (uZv) (Figure A.18).

If v′+ is not contained in uZv then in addition to P(BAD0) ≥ 0.25/256 as noted above,

we have P(BAD−) ≥ 0.25/256 for the same reasons. On the other hand, v′+ ∈ V (uZv)

increases the probability bound for BAD0 to P(BAD0) ≥ 0.5/256 as the event is regular

in this case. All in all, the contribution of BAD− ∪BAD0 is at least 0.5/256.

By symmetry, ABD+∪ABD0 also contributes at least 0.5/256. Together with the events

ABD− and BAD+, which each have a probability of at least 0.5/256 as discussed above,

we have found the required 2/256. 4
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Figure A.18: A configuration in Subcase 6.1 of the proof of Proposition A.5.2.

Thus, the path uZv may be assumed to be short.

Subcase 6.2. u′+ /∈ V (Z).

As in the previous subcase, P(ABD+ ∪ABD0) ≥ 0.75/256.

The event AC1D
− has weight 10 (see Figure A.19). If the cycle of F containing u′+ is

odd, it contains at least 3 vertices different from u′+ and v′+. Thus, AC1D
− is covered

by (u′+, u
′
+)3. By Lemma 4.3.2, P(AC1D

−) ≥ 39/40 · 0.25/256 > 0.24/256.

Similarly, AC1D
0 has a diagram of weight 10 and is covered by (u′+, u

′
+)4 and (v−, u−2)2.

By Lemma 4.3.2, P(AC1D
0) ≥ 59/80·0.25/256 > 0.18/256. The probability of AC1D

−∪
AC1D

0 is, thus, at least (0.24 + 0.18)/256 = 0.42/256, more than the missing 0.25/256.

4

�

�

�
�

Figure A.19: The event AC1D
− used in Subcase 6.2 of the proof of Proposition A.5.2.
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Figure A.20: The situation where v is deficient of type III∗ in Subcase 6.3 of the proof
of Proposition A.5.2.

Subcase 6.3. u′+ ∈ V (Z) and the length of vZu is at least 7.

We will show that the assumption about vZu increases the contribution of ABD+ ∪
ABD0. Suppose that v′− ∈ V (Z). Then, ABD+ is covered by (v+, u−2)2 and ABD0 is

regular so P(ABD+ ∪ABD0) ≥ (3/4 + 1) · 0.5/256 = 0.875/256. On the other hand, if

v′− /∈ V (Z), then the pair (v+, u−2) is 3-free for both ABD+ and ABD0, and we get the

same result:

P(ABD+ ∪ABD0) ≥ 2 · 7

8
· 0.5

256
= 0.875/256.

We need to find the additional (0.125 + ε(u))/256.

Suppose, first, that v is deficient (necessarily of type III∗) so ε(u) = 0.125. The induced

subgraph of G on V (Z) is then as shown in Figure A.20; in this case, the event C1C1D
−

is regular and P(C1C1D
−) ≥ 0.5/256, a sufficient amount.

We may, thus, assume that ε(u) ≤ 0. Suppose that u′+ is not adjacent to either u−2 or

v+. Then, the event AC1D
0 is covered by (v+, u

′
+)2 and (u′+, u−2)2. By Lemma 4.3.2,

P(AC1D
0) ≥ 1/2 · 0.25/256 = 0.125/256 as required.

The vertex u′+ can therefore be assumed to be adjacent to u−2 or v+. The event C1C1D
−

has only one sensitive pair, namely (u′−, u
′
+) or its reverse (if u′− ∈ V (Z)) or (u′−, u

′
−)

(if u′− is outside Z). If this is a 1-free pair, then, by Lemma 4.3.2, P(C1C1D
−) ≥

1/2 · 0.5/256 > 0.125/256, as required. In the opposite case, it must be that u′− is a

neighbour of u′+. Then, however, we observe that P(ABD+) and P(ABD0) are both at

least 0.5/256 (as the events are regular) and this increase provides the missing 0.125/256.

4

Thus, we may assume that the length of vZu is 5 or 6. If the length of vZu is 5, then
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u−uu+ belongs to a cycle of length 4, which has already been considered in Case 2. Thus,

to complete the discussion of Case 6, it remains to consider the following subcase.

Subcase 6.4. uZv is short, u′+ ∈ V (Z), and the length of vZu is 6.

The vertex u′+ equals either v+2 or v+3. Suppose, first, that u′+ = v+2. Then, each

edge in ∂(Z) is incident with a vertex in {v+3, u−, v−, v+}. By the choice of F , M

must contain an edge with both ends in the latter set. For trivial reasons, the only

candidate is v+3v− (Figure A.21(a)). However, this is also not an edge of M since the

5-cycles u−2Zu+2 and v−Zv+3 would contradict Lemma A.3.1(ii). (See Figure A.21(b)

for illustration.)

(a) (b)

Figure A.21: The use of Lemma A.3.1 in Subcase 6.4 of the proof of Proposition A.5.2.
(a) The cycle Z and its chords assuming that u′+ = v+2. (b) The two 5-cycles (bold)
contradicting Lemma A.3.1(ii).

Thus, u′+ = v+3. Here, each edge of ∂(Z) is incident with a vertex in {u−, v−, v+, v+2},
and it is easy to see that one of these edges must be incident with v+. There are two

possibilities for an edge with both ends in {u−, v−, v+, v+2}, namely v−v+2 or u−v+2. In

either case, the event ABD0 is easily seen to be regular and, thus, P(ABD0) ≥ 0.5/256.

In fact, this concludes the discussion if v−v+2 ∈ E(M), since then u is deficient of type I

and ε(u) = −0.5, thus, the contribution of 0.5/256 is sufficient.

In the remaining case that u−v+2 ∈ E(M), we need a further 0.5/256, which is provided

by the regular event ABD+. 4

N
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Case 7. E(M [U ]) = {u−2v−}.

If both the paths uZv and vZu are short, then each edge of ∂(Z) is incident with a

vertex in {u−, u+, u+2, v+}. Our assumptions imply that no edge of M joins two of

these vertices, so |∂(Z)| = 4, contradicting our choice of F . We may therefore assume

that at least one of vZu and uZv is not short.

In all the subcases, we can use the regular event BAD+, for which we have P(BAD+) ≥
0.5/256. Hence, we need to find an additional probability of (1.5 + ε(u))/256.

Subcase 7.1. vZu is short.

In this subcase, the path v−vv+ is contained in a 4-cycle and it is not hard to see that u

must be deficient of type I (neither uv nor u−uu+ is contained in a 4-cycle, and the

missing edge u+2v+ rules out cases Ia∗ and Ib∗). Thus, ε(u) = −0.5 and we need to find

further 1/256 worth of probability.

Observe first that, by our assumptions, the set {u−, u+, u+2, v+} is independent. We

will distinguish several cases based on whether u′−, u′+ and v′+ are contained in Z (and

hence in u+3Zv−2) or not.

If u′+ ∈ V (Z), then the events BAD0 and BAD− are regular, and each of them has

probability 0.5/256, which provides the necessary 1/256.

Suppose thus that u′+ /∈ V (Z) and consider, first, the case that u′− /∈ V (Z). The

event C1AD
+ is covered by the pair (u′−, u

′
−)4, so, by Lemma 4.3.2, its probability is

P(C1AD
+) ≥ 79/80 · 0.25/256 > 0.24/256. The event C1AD

0 has up to two sensitive

pairs: it is covered by (u′−, u
′
−)4 and (u+2, v−)2, where the latter pair is 2-free because

uZv is not short. We obtain P(C1AD
0) ≥ 59/80 · 0.25/256 > 0.18/256.

To find the remaining 0.58/256 (still for u′− /∈ V (Z)), we use the events BAD0 and

BAD−. We claim that their probabilities add up to at least 0.75/256. Indeed, if v′+ /∈
V (Z), then both BAD0 and BAD− are covered by the pair (u+2, v−)2 (which is 2-free

because uZv is not short and u′− /∈ V (Z)). By Lemma 4.3.2, they have probability at

least 0.375/256 each. On the other hand, if v′+ ∈ V (Z), then BAD0 is regular and

BAD− is covered by (u+2, v−)1 so P(BAD0) ≥ 0.5/256 and P(BAD−) ≥ 0.25/256. For

both of the possibilities, P(BAD0 ∪BAD−) ≥ 0.75/256 as claimed.
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We can, therefore, assume that u′− ∈ V (Z) (and u′+ /∈ V (Z), of course). A large part

of the required 1/256 is provided by the event C1C1D
+, which is covered by the pair

(u′+, u
′
+)4, so P(C1C1D

+) ≥ 79/80 · 0.5/256 > 0.49/256.

A final case distinction will be based on the location of v′+. Suppose, first, that v′+ /∈
V (Z). We claim that the length of uZv is at least 7. If not, then, since uZv is not short,

the length of Z is 9 or 10. At the same time, Z has at least 3 chords (incident with u,

u− and u−2) and, therefore, |∂(Z)| ≤ 4. By the choice of F and the assumption that the

mates of u+ and v+ are outside Z, Z has length 10 and ∂(Z) is of size 2. In addition, u+2

is incident with a chord of Z whose other endvertex w is contained in u+3Zv−2. However,

|uZv| = 6 implies that w ∈ {u+3, u+4}, contradicting the assumption that G is simple

and triangle-free. We conclude that |uZv| ≥ 7, as claimed.

This observation implies that, for the event BAD0, the only possibly sensitive pair,

namely (u+2, v−), is 2-free. Hence, P(BAD0) ≥ 3/4 · 0.5/256 = 0.375/256. Hence,

P(BAD−) ≥ 0.375/256 and this amount is sufficient.

It remains to consider the case that v′+ ∈ V (Z). Being regular, the event BAD0 has

probability at least 0.5/256. Thus, it is sufficient to find further events forcing u of total

probability at least 0.01/256. It is easiest to consider the mutual position of u′− and v′+
on u+3Zv−2. If u′− ∈ V (v′+Zv−2), then the event C1AD

+ is regular and has probability

at least 0.25/256. In the opposite case, C1C1D
0 is covered by the pair (u′+, u

′
+)4, which

means that P(C1C1D
0) ≥ 79/80 · 0.5/256 > 0.49/256. In both cases, the probability is

sufficiently high. 4

Having dealt with Subcase 7.1, we can use the event AAD+, which is covered by

(v+, u−2)2. By Lemma 4.3.2, P(AAD+) ≥ 3/4 · 0.5/256 = 0.375/256 and, hence,

P(BAD+ ∪ AAD+) ≥ 0.875/256. Since v is not deficient, we seek a further contri-

bution of at least 1.125/256.

Subcase 7.2. Neither vZu nor uZv is short.

Consider the event ABD+ of weight 8 (Figure A.22) which is covered by the pair

(v+, u−2). Since vZu is not short, the vertices in the pair are not neighbours. Fur-

thermore, if the pair is sensitive, then the path v+Zu−2 contains at least two internal

vertices, one of which is different from u′+. Thus, the pair is 1-free and, by Lemma 4.3.2,
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Figure A.22: The event ABD+ used in Subcase 7.2 of the proof of Proposition A.5.2.

P(ABD+) ≥ 1/2 · 1/256. If the pair (v+, u−2) is actually 2-free in ABD+, then the

estimate increases to 3/4 · 1/256.

The event BAD0 is covered by the pair (u+2, v−), which is 1-free as uZv is not short;

moreover, if u′− /∈ V (uZv), then the pair is 2-free. Thus, P(BAD0) ≥ 1/2 · 0.5/256 =

0.25/256 or 3/4 · 0.5/256 = 0.375/256 in the respective cases.

If the higher estimates hold for both the events ABD+ and BAD0 considered above,

then the contributions of these events total

0.75 + 0.375

256
=

1.125

256
,

which is sufficient.

Suppose, first, that we get the higher estimate for P(ABD+), that is, that (v+, u−2)

is 2-free in ABD+. By the above, it may be assumed that u′− ∈ V (uZv) and the

pair (u+2, v−) is not 2-free in BAD0. We need to find an additional 0.125/256. To

this end, we use the event BAD− of weight 9. The probability of BAD− is at least

1/2 · 0.5/256 (which is sufficient) if (u+2, v−) is 1-free in BAD−. This could be false

only if
{
u′−, v

′
+

}
= {u+3, v−2}; for each of the corresponding two possibilities, the event

BAD0 is a regular one, contradicting the assumption that (u+2, v−) is not 2-free in

BAD0.

It remains to discuss the possibility that (v+, u−2) is not 2-free in ABD+. In that

case, the length of vZu is 6 and u′+ ∈ {v+2, v+3}. Since the lower bound to P(AAD+)

increases to 0.5/256 in this case, the total probability of BAD+, AAD+ and ABD+ is

at least 1.5/256. In addition, we have a contribution of 1/2 · 0.5/256 from BAD0 so we

need to add a further 0.25/256.
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Assume, first, that u′− 6= v−2 and consider C1C1D
−. We claim that P(C1C1D

−) ≥
1/2 · 0.5/256. This is certainly true if u′− /∈ V (Z) since C1C1D

− has weight 9 and it is

covered by (u′−, u
′
−)4. Suppose, thus, that u′− ∈ V (Z). There is at most one sensitive

pair for C1C1D
− ((u′−, u

′
+) or (u′−, v−) or none). If the event is regular or the sensitive

pair is 1-free, then P(C1C1D
−) ≥ 1/2 · 0.5/256, as required. Otherwise, since there is

only one outgoing arc in the diagram for C1C1D
−, u′− must be adjacent to v− or u′+.

The former case is ruled out by the assumption u′− 6= v−2. In the latter case, the 5-cycle

uvZv+2u− and the cycle u′+u+Zv−u−2 provide a contradiction with Lemma A.3.1(ii).

We may, therefore, assume that u′− = v−2. Consider the cycles v−Zu−2 and u−Zv−2.

Since each of the edges v−2v−, u−2u−, uv and u+u
′
+ has one endvertex in each of the

cycles, Lemma A.3.1(i) implies that neither u−3 nor v+ have their mate in u−Zv−2. We

claim that P (BAD−) ≥ 7/8 · 0.5/256. The event is covered by the pair (u+2, v−) so, by

Lemma 4.3.2, it suffices to show that the pair is 3-free. If not, then |u+2Zv−| = 3 and u+3

is the only vertex of u+2Zv− which is not a head of BAD−. In that case, however, ∂(Z)

consists of the four edges of M incident with a vertex from {u+2, u+3, v+, v+2, v+3} −{
u′+
}

, contradicting the choice of F . We conclude that P (BAD−) ≥ 7/8 · 0.5/256,

as claimed. Since this contribution exceeds the required 0.25/256, the discussion of

Subcase 7.2 is complete. 4

Subcase 7.3. uZv is short and either the length of vZu is at least 7, or u′+ /∈ V (vZu).

The eventABD+ is covered by (v+, u−2)2 by assumption. Thus, P(ABD+) ≥ 3/4·1/256.

In view of the events BAD+ (probability at least 0.5/256) and AAD+ (probability at

least 3/4 · 0.5/256), we need to collect further 0.375/256.

Suppose, first, that u′+ /∈ V (vZu). The event AC1D
+ of weight 9 is covered by (u′+, u

′
+)4

and (v+, u−2)2. By Lemma 4.3.2, P(AC1D
+) ≥ 59/80 · 0.5/256 > 0.36/256. The event

AC2D
+ of weight 11 is covered by (v+, u−2)2; thus, P(AC2D

+) ≥ 3/4 ·0.125/256, which

together with P(AC1D
+) yields more than the required 0.375/256.

We may, therefore, assume that u′+ ∈ V (vZu), which increases P(AAD+) to at least

0.5/256 (so the missing probability is now 0.25/256).

Suppose that u′− and u′+ are non-adjacent. If u′− /∈ V (Z), then C1C1D
− is covered by

(u′−, u
′
−)3. Otherwise, it is covered by (u′−, u

′
+)1 (we have to consider v′+ here). In either

case, P(C1C1D
−) ≥ 1/2 · 0.5/256, as required.

279



We may, thus, assume that u′− and u′+ are adjacent. The event AC1D
+ has weight 9

and at most one possibly sensitive pair; this pair is (u′+, u−2) if (u′−)+ = u′+, or (u′+, v+)

otherwise. If the sensitive pair is 2-free, we are done since P(AC1D
+) ≥ 3/4 · 0.5/256.

In the opposite case, we get two possibilities.

The first possibility is that u′+ is adjacent to u−2, so u′+ = u−3. In this case, the 5-cycle

u−3u+Zv−u−2 and the cycle uvZu−4u− provide a contradiction with Lemma A.3.1(ii).

The second possibility is that u′+ is adjacent to v+, that is, u′+ = v+2. Here, the event

AC2D
+ is regular, and P(AC2D

+) ≥ 0.25/256, as desired. 4

Subcase 7.4. uZv is short, the length of vZu is 6 and u′+ ∈ V (vZu).

The vertex u′+ equals either v+2 or v+3. Each of the events ABD+, BAD+, AAD+

(considered earlier) now have probability at least 0.5/256. We need to find an additional

0.5/256.

If u′+ = v+2, then each edge of ∂(Z) is incident with a vertex from the set {u−, u+2, v+, v+3}.
By the choice of F , some edge of M must join two of these vertices; our assumptions

imply that the only candidate is the edge u−3u+2. The events AC2D
+, C2AD

+ and

C2C2D
+ are regular with AC2D

+ having a removable symbol and their probabilities are

easily computed to be at least 0.25/256, 0.125/256 and 0.125/256, respectively. This

adds up to the required 0.5/256.

On the other hand, if u′+ = v+3, then each edge of ∂(Z) is incident with {u−, u+2, v+, v+2}.
In two of the cases, there is a pair of 5-cycles which yields a contradiction with Lem-

ma A.3.1(ii): if u+2v+2 ∈ E(M), then the cycles are u−3Zu+ and u+2Zv+2, while, if

u−v+2 ∈ E(M), then the cycles are u−uvZv+2 and u+2Zv−u−2u−3. All the other cases

are ruled out by the assumptions (notably, the assumption that u+2v+ /∈ E(M)). 4

The only possibility in Case 7 not covered by the above subcases is that uZv is short, vZu

has length 5 and u′+ ∈ V (vZu). This is, however, excluded by our choice of Z: the

cycle Z of length 9 would have at least three chords, implying |∂(Z)| ∈ {1, 3}, which is

impossible. N

Case 8. E(M [U ]) = {u−2v−, u+2v+}.
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Figure A.23: The event ABD+ used in Subcase 8.1 of the proof of Proposition A.5.2.

We will call a chord f of Z bad if f ∈ {u−u+3, u+u−3, u−v−2, u+v+2}.

Subcase 8.1. Neither uZv nor vZu is short and Z has no bad chord.

The event ABD+ has one sensitive pair, namely (v+, u−2) (see Figure A.23). We claim

that this pair is 2-free. Suppose not; then it must be that u′+ is an internal vertex of

v+Zu−2 and there is exactly one other internal vertex in the path. This would mean

that the edge of M incident with u+ is a bad chord, contrary to the assumption. Hence,

(v+, u−2) is 2-free in ABD+ and P(ABD+) ≥ 3/4 · 1/256 as the weight of ABD+ is 8.

For a similar reason (using the symmetry in the definition of a bad chord), P(BAD−) ≥
3/4 · 1/256. Since v is not deficient in this subcase, it suffices to find a further 0.5/256

to reach the desired bound.

Suppose, first, that u′− and u′+ are not neighbours.

If u′− and u′+ are contained in two distinct cycles of F , both different from Z, then, by

Lemma 4.3.2, we have P(C1C1D
+) ≥ 39/40 · 0.5/256 and the same estimate holds for

C1C1D
0 and C1C1D

−. Thus,

P(C1C1D
+ ∪ C1C1D

0 ∪ C1C1D
−) ≥ 1.46

256
,

much more than the required amount.

If u′+ and u′− are contained in the same cycle Z ′ 6= Z of F , then the event C1C1D
+ is

covered by (u′+, u
′
−)2 and (u′−, u

′
+)2. By Lemma 4.3.2, P(C1C1D

+) ≥ 1/2·0.5/256. Since

the same holds for C1C1D
0 and C1C1D

−, we find a sufficient contribution of 0.75/256.

If, say, u′+ is contained in Z and u′− is not, then C1C1D
+ is covered by the pairs
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(v+, u
′
+)2 and (u′−, u

′
−)4 (note that the first pair is 2-free since u′+ 6= v+2 by the absence

of bad chords). Using Lemma 4.3.2, we find that P(C1C1D
+) ≥ 59/80 · 0.5/256 >

0.36/256. Similarly, C1AD
− is covered by (u+2, v−)2 and (u′−, u

′
−)4 so, by Lemma 4.3.2,

P(C1AD
−) ≥ 59/80 · 0.5/256 > 0.36/256. Thus,

P(C1C1D
+ ∪ C1AD

−) ≥ 0.36 + 0.36

256
=

0.72

256

and we are done.

Thus, still in the case that u′+ and u′− are not neighbours, we may assume that they

are both contained in Z. Consider the event AC1D
+. If u′− ∈ V (vZu), then the event

is covered by a single 2-free pair, namely (v+, u
′
+) or (u′+, u−2), so P(AC1D

+) ≥ 3/4 ·
0.5/256. On the other hand, if u′− ∈ V (uZv), then AC1D

+ is regular if u′+ ∈ V (uZv),

or is covered by (v+, u
′
+)2 and (u′+, u−2)2 otherwise. Summing up, P(AC1D

+) ≥ 1/2 ·
0.5/256. Symmetrically, P(C1AD

−) ≥ 1/2 · 0.5/256 and we have found the necessary

0.5/256.

We may, thus, assume that u′− and u′+ are neighbours.

If they are contained in a cycle of F different from Z, then the event C1AD
− is covered

by the 2-free pair (u+2, v−) so P(C1AD
−) ≥ 3/4 · 0.5/256. By symmetry, P(AC1D

+) ≥
3/4 · 0.5/256, making for a sufficient contribution of 1.5/256.

We may, thus, suppose that u′− and u′+ are both contained in vZu. By the absence of

bad chords, u′+ is not a neighbour of v+ nor u−2. Thus, the event AC1D
+ is covered

by a single 2-free pair, namely (v+, u
′
+) or (u′+, u−2), and P(AC1D

+) ≥ 3/4 · 0.5/256.

Moreover, P(C1AD
−) ≥ 3/4 · 0.5/256 since the event is covered by (u+2, v−)1 so

P(AC1D
+ ∪ C1AD

−) ≥ 0.375 + 0.375

256
=

0.75

256
,

as required. This finishes Subcase 8.1. 4

Subcase 8.2. Neither uZv nor vZu is short but Z has a bad chord.

By symmetry, we may assume that at least one of u+v+2, u+u−3 is a bad chord of Z

(see Figure A.24).

Consider, first, the possibility, that u+v+2 ∈ E(M). By Lemma A.3.1(i), uv and u−2v+
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(a) (b)

Figure A.24: The possibilities in Subcase 8.2 of the proof of Proposition A.5.2.

are the only two chords of Z with one endvertex in v+3Zu and the other one in u+3Zv.

In particular, u′− /∈ V (uZv).

We will use the events BAD−, ABD+, C1C1D
− and C1AD

−. Let us estimate their

probabilities. The event BAD− of weight 8 is covered by the pair (u+2, v−), which is

2-free as uZv is not short. Thus, P(BAD−) ≥ 3/4 · 1/256 by Lemma 4.3.2. Similarly,

ABD+ is covered by the pair (v+, u−2)1 and, therefore, P(ABD+) ≥ 1/2 · 1/256. The

event C1C1D
− of weight 9 is covered by (u′−, u

′
−)4, implying P(C1C1D

−) ≥ 79/80 ·
0.5/256. Finally, the event C1AD

− of weight 9 is covered by the pairs (u′−, u
′
−)4 and

(u+2, v−)2 (the latter of which is, again, 2-free since uZv is not short). By Lemma 4.3.2,

P(C1AD
−) ≥ 59/80 · 0.5/256. Summarizing,

P(BAD− ∪ABD+ ∪ C1C1D
− ∪ C1AD

−) >
0.75 + 0.5 + 0.49 + 0.36

256
=

2.1

256
,

which is sufficient.

We may, therefore, assume that u+u−3 is a bad chord (Figure A.24(b)). The length of

vZu is at least 6, as can be seen by considering the cycles u−3Zu+ and u+2Zv+ and using

Lemma A.3.1(ii). Furthermore, Lemma A.3.1(i) implies that u′− 6= u−4 since, otherwise,

the cycles u+Zv−u−2u−3 and u−uvZu−4 would provide a contradiction.

We distinguish three cases based on the position of u′−. Assume, first, that u′− is con-

tained in vZu. The regular event ABD+ has probability at least 1/256. The event

BAD− is covered by the pair (u+2, v−), which is 2-free since uZv is not short. Thus,

P(BAD−) ≥ 3/4 · 1/256. Finally, the event C1C1D
− is covered by the pair (u′−, u−3),

which is 2-free since u′− 6= u−4, as noted above. Consequently,

P(ABD+ ∪BAD− ∪ C1C1D
−) ≥ 1

256
+

0.75

256
+

0.75 · 0.5
256

=
2.125

256
,
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more than the required 2/256.

Suppose, next, that u′− is contained in uZv. Note that u′− 6= v−2 by Lemma A.3.1(i).

Since the event ABD+ is covered by (v+, u−2)1, P(ABD+) ≥ 1/2 · 1/256. Similarly,

BAD− is covered by (u+2, v−)1 and so P(BAD−) ≥ 1/2 · 1/256. The event C1C1D
− is

covered by the 2-free pair (v+, u−3) and, thus, P(C1C1D
−) ≥ 3/4 · 0.5/256 = 0.375/256.

The same bound is valid for C1C1D
+. Finally, P(C1C1D

0) ≥ 1/2 · 0.5/256 as the event

is covered by (u′−, v−)2 and (v+, u−3)2. Altogether, we have

P(ABD+ ∪BAD− ∪ C1C1D
− ∪ C1C1D

+ ∪ C1C1D
0) ≥

0.5 + 0.5 + 0.375 + 0.375 + 0.25

256
=

2

256
.

The last remaining possibility is that u′− is not contained in Z. We have P(ABD+) ≥
0.5/256 and P(BAD−) ≥ 0.75/256 by standard arguments. The event C1C1D

− is cov-

ered by the pair (u′−, u
′
−)4 so P(C1C1D

−) ≥ 79/80 ·0.5/256 > 0.49/256 by Lemma 4.3.2.

Similarly, P(C1C1D
+) ≥ 59/80 · 0.5/256 > 0.36/256 since the event is covered by

(u′−, u
′
−)4 and (v+, u−3)2. The total contribution is at least 2.1/256. This concludes

Subcase 8.2. 4

We may now assume, without loss of generality, that the path uZv is short; note that

this means that u is deficient of type Ia or Ib. In the former case, there is nothing to

prove as 2 + ε(u) = 0. Therefore, suppose that u is of type Ib (i.e., u′+ = v+2). Since

ε(u) = −1.5, it remains to find events forcing u with total probability at least 0.5/256.

It is sufficient to consider the event ABD+ of weight 8, which is covered by the 1-free

pair (v+, u−2), and, therefore, P(ABD+) ≥ 0.5/256 by Lemma 4.3.2. This finishes the

proof of Case 8 and the whole proposition. N

2

A.6 Augmentation

In this section, we show that it is possible to apply the augmentation step mentioned in

the preceding sections.

Suppose that u is a deficient vertex of G and v = u′. Let us continue to use Z to denote
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the cycle of the 2-factor F containing u. The sponsor s(u) of u is one of its neighbours,

defined as follows:

• if u is deficient of type 0 (recall that this type was defined at the beginning of

Section A.4), then s(u) is the F -neighbour u with ε(s(u)) = 1; if there are two

such F -neighbours, we choose s(u) = u−,

• if u is deficient of any other type (in particular, v ∈ V (Z)), then s(u) = v.

Observation A.6.1. Every vertex is the sponsor of at most one other vertex.

Proof. Clearly, a given vertex can only sponsor its own neighbours, that is, its mate and

F -neighbours. Suppose that u is the sponsor of its mate v; thus, u ∈ Cv. Suppose also

that u is the sponsor of one of its F -neighbours, say u+. Then, uv belongs to a 4-cycle

intersecting Cu′+ but this is not possible since Cu′+ 6= Cv.

The only remaining possibility is that u is the sponsor of both of its F -neighbours. In

that case, both u+ and u− are deficient of type 0 and ε(u) = 1. Thus, uv is contained

in a 4-cycle but neither u+ nor u− is, giving rise to a contradiction. 2

Recall that N [u] denotes the closed neighbourhood of u, that is, N [u] = N(u) ∪ {u}.
An independent set J in G is said to be favourable for u if N [u] ∩ J = {s(u)}. The

receptivity of u, denoted ρ(u), is the probability that a random independent set (with

respect to the distribution given by Algorithm 1) is favourable for u. We say that u is

k-receptive (k ≥ 0) if the receptivity of u is at least k/256.

For an independent set J , we let p(J) denote the probability that the random indepen-

dent set produced by Algorithm 1 is equal to J . We fix an ordering J1, . . . , Js of all

independent sets J in G such that p(J) > 0. Furthermore, an ordering u1, . . . , ur of all

deficient vertices is chosen in such a way that |ε(ui)| ≤ |ε(uj)| if 1 ≤ i < j ≤ s (which

we refer to as the monotonicity of the ordering).

Let ui be a deficient vertex. We let Ñ(ui) be the set of all deficient neighbours uj of ui

such that j < i; furthermore, we put Ñ [ui] = Ñ(ui) ∪ {ui}. We define η(ui) as

η(ui) =
∑

uj∈Ñ [ui]

|ε(uj)| .
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We aim to replace s(ui) with ui in some of the independent sets that are favourable for ui,

thereby boosting the probability of the inclusion of ui in the random independent set I.

Clearly, this requires that the receptivity of ui is at least |ε(ui)| /256, since, otherwise,

the probability of ui ∈ I cannot be increased to the required 88/256 in this way. We

also need to take into account the fact that an independent set may be favourable for ui

and its neighbour at the same time, but the replacement can only take place once. To

dispatch the replacements in a consistent way, the following lemma will be useful. We

remark that the number p(ui, Jj) which appears in the statement will turn out to be

the probability that ui is added to the random independent set during Phase 5 of the

execution of the algorithm.

Lemma A.6.2. If the receptivity of each deficient vertex ui is at least η(ui), then we

can choose a non-negative real number p(ui, Jj) for each deficient vertex ui and each

independent set Jj in such a way that the following holds:

(i) p(ui, Jj) = 0 whenever Jj is not favourable for ui;

(ii) for each deficient vertex ui,
∑

j p(ui, Jj) · p(Jj) = |ε(ui)| /256;

(iii) for each independent set Jj and deficient vertex ui,
∑

ut∈Ñ [ui]
p(ut, Jj) ≤ 1.

Proof. We may view the numbers p(ui, Jj) as arranged in a matrix (with rows corre-

sponding to vertices) and choose them in a simple greedy manner as follows. For each

i = 1, . . . , r in this order, we determine p(ui, J1), p(ui, J2) and so on. Let ~ri be the i-th

row of the matrix, with zeros for the entries that are yet to be determined. Furthermore,

let ~p = (p(J1), . . . , p(Js)).

For each i, j such that Jj is favourable for ui, p(ui, Jj) is chosen as the maximal num-

ber such that ~ri · ~p T ≤ |ε(ui)| /256, and its sum with any number in the j-th column

corresponding to a vertex in Ñ(ui) is at most one. In other words, we set

p(ui, Jj) = min
( |ε(ui)| /256−∑j−1

`=1 p(ui, J`) · p(J`)
p(Jj)

, 1−
∑

u`∈Ñ(ui)

p(u`, Jj)
)

(A.1)

if Jj is favourable for ui and p(ui, Jj) = 0 otherwise. Note that the denominator in the

fraction is non-zero since every independent set Jj with 1 ≤ j ≤ s has p(Jj) > 0. By the

construction, properties (i) and (iii) in the lemma are satisfied and so is the inequality

~ri · ~p T ≤ |ε(ui)| /256 in property (ii). We need to prove the converse inequality.
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Suppose that, for some i, ~ri · ~p T is strictly smaller than |ε(ui)| /256. This means that,

in (A.1), for each j such that Jj is favourable for ui, p(ui, Jj) equals the second term in

the outermost pair of brackets. In other words, for each such j, we have

∑

u`∈Ñ [ui]

p(u`, Jj) = 1.

Thus, we can write

∑

j

Jj favourable for ui

( ∑

u`∈Ñ [ui]

p(u`, Jj)
)
· p(Jj) =

∑

j

Jj favourable for ui

p(Jj) (A.2)

= ρ(ui) ≥ η(ui) =
∑

u`∈Ñ [ui]

|ε(u`)|
256

,

where the inequality on the second line follows from our assumption on the receptivity

of ui.

On the other hand, the expression on the first line of (A.2) is dominated by the sum

of the scalar products of ~p with the rows corresponding to vertices in Ñ [ui]. For each

such vertex u`, we know from the first part of the proof that ~r` · ~p T ≤ |ε(u`)| /256.

Comparing with (A.2), we find that we must actually have equality both here and in

(A.2); in particular,

~ri · ~p T =
|ε(ui)|

256
,

a contradiction. 2

For brevity, we will say that an event X ⊆ Ω is favourable for u if the independent

set I(σ) is favourable for u for every situation σ ∈ X. We lower-bound the receptivity

of deficient vertices as follows:

Proposition A.6.3. Let u be a deficient vertex. The following holds:

(i) u is 1.9-receptive;

(ii) if u is of type 0, then it is 3-receptive;

(iii) if u is of type Ia or Ib (or their mirror types), then it is 8-receptive.

Proof. All the event(s) discussed in this proof will be favourable for u, as it is easy to

check. To avoid repetition, we shall not state this property in each of the cases.
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(i) First, let u be a deficient vertex of type I. We distinguish three cases, in each case

presenting an event which is favourable for u and has sufficient probability. If u−2u+2

is not an edge of M , then the event Q1 given by the diagram in Figure A.25(a) is

valid. Since it is a regular diagram of weight 7, P(Q1) ≥ 2/256 by Lemma 4.3.2. Thus,

ρ(u) ≥ 2/256 as Q1 is favourable for u.

We may, thus, assume that u−2u+2 ∈ E(M). Suppose that neither u′− nor u′+ is con-

tained in vZu. Consider the event Q2, given by the diagram in Figure A.25(b). Since

the edge uv is not contained in a 4-cycle (u being deficient), neither v− nor v+ is the

mate of u+ so the diagram is valid. The event is covered by the pair (u′+, u
′
+). If the

pair is sensitive, then the cycle of F containing u′+ has length at least 5 and, hence, it

contains at least two vertices different from u′+, v′− and v′+. Thus, the pair is 2-free and

we have P(Q2) ≥ 19/20 · 2/256 = 1.9/256 by Lemma 4.3.2.

By symmetry, we may assume that each of uZv and vZu contain one of u′− and u′+.

Hence, the event Q3, defined by Figure A.25(c), is regular and P(Q3) ≥ 2/256. (The

event is valid for the same reason as Q2.)

To finish part (i), it remains to discuss deficient vertices of types other than I. In view of

parts (ii) and (iii), it suffices to look at types II, IIa, III and their mirror variants. Each

of these types is consistent with the diagram in Figure A.25(d) or its symmetric version.

The diagram of weight 6 defines a regular event Q4, whose probability is at least 4/256

by Lemma 4.3.2. This proves part (i).

We prove (ii). Let u be deficient of type 0. We may assume that u− is contained in a

4-cycle intersecting the cycle Cv; in particular, the mates of u− and u−2 are contained

in Cv. By the definition of type 0, we also know that neither u−2 nor u+2 has a neighbour

in {v−, v+}.

Suppose that the set {u−2, u+2, v−, v+} is independent. Since u′− ∈ V (Cv), the event R

defined by the diagram in Figure A.26(a) is regular and it is easy to see that it is

favourable for u and its probability is at least 1/256. Since the same holds for the

events R+ and R−, obtained by reversing the arrow at v− or v+, respectively, we have

shown that u is 3-receptive in this case.

If M includes the edge u−2v+, then both R and R+ remain valid events and the prob-

ability of each of them increases to at least 2/256, showing that u is 4-receptive. An

analogous argument applies if M includes u−2v−.

It remains to consider the possibility that u+2v− or u+2v+ is in M . Suppose that
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� �

(a) Q1.

�

�
(b) Q2.

� �
(c) Q3 (note that each of
uZv, vZu contains one
of u′+, u′−).

�

�

(d) Q4.

Figure A.25: Events used in the proof of Proposition A.6.3(i).

289



u+2v− ∈ E(M). The event R− remains valid and regular; its probability increases to

at least 2/256. Let S+ and T+ be the events given by diagrams in Figure A.26(b) and

(c), respectively. It is easy to check that R+, S+ and T+ are pairwise disjoint and

favourable for u. The event S+ is covered by the pair (u+2, u−)1 and Lemma 4.3.2

implies that P(S+) ≥ 0.5/256. The event T+ is regular and P(T+) ≥ 0.5/256. Since

P(R+ ∪ S+ ∪ T+) ≥ 3/256, u is 3-receptive.

In the last remaining case, namely u+2v+ ∈ E(M), we argue similarly. Let S− and T−

be the events obtained by reversing both arcs incident with v+ and v− in the diagram

for S+ or T+, respectively. It is routine to check that P(R− ∪ S− ∪ T−) ≥ 3/256 and

the events are favourable for u. Hence, u is 3-receptive. The proof is finished.

Part (iii) follows by considering the event defined by the diagram in Figure A.27. Note

that the event is regular and its probability is at least 1/25 = 8/256. Furthermore, the

event is favourable for the vertex u. Thus, u is 8-receptive. 2

We now argue that Proposition A.6.3 implies the assumption of Lemma A.6.2 that the

receptivity of a deficient vertex ui is at least η(ui). By the monotonicity of the order-

ing u1, . . . , ur and the fact that
∣∣∣Ñ [ui]

∣∣∣ ≤ 4 and each deficient vertex has at least one

non-deficient neighbour (namely its sponsor), we have η(ui) ≤ 3 |ε(ui)|. From Proposi-

tion A.6.3 and the definition of ε(ui) (see the beginning of Section A.4 and Table A.1),

it is easy to check that ui is (3 |ε(ui)|)-receptive, which implies the claim.

Hence, the assumption of Lemma A.6.2 is satisfied. Let p(ui, Jj) be the numbers whose

existence is guaranteed by Lemma A.6.2. We can finally describe Algorithm 2, which

consists of the four phases of Algorithm 1, followed by Phase 5 described below.

Assume a fixed independent set I = Jj was produced by Phase 4 of the algorithm. We

construct a sequence of independent sets I(0), . . . , I(r). At the i-th step of the construc-

tion, ui may or may not be added and we will ensure that

P(ui is added at i-th step) = p(ui, Jj). (A.3)

At the beginning, we set I(0) = I. For 1 ≤ i ≤ r, we define I(i) as follows. If ui ∈ I or I

is not favourable for ui, we set I(i) = I(i−1). Otherwise, by (A.3) and property (iii) of

Lemma A.6.2, the probability that none of ui’s neighbours has been added before is at
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�

�

(a) R.

�

� �
(b) S+.

�

� �

(c) T+.

Figure A.26: Events used in the proof of Proposition A.6.3(ii) for vertices of type 0. Only
the possibility that u′−2 = (u′−)− is shown but the events remain valid if u′−2 = (u′−)+

(that is, if the chords of Z incident with u− and u−2 cross).

�

�

Figure A.27: The event used in the proof of Proposition A.6.3(iii) for vertices of type Ia
and Ib and their mirror types.
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least

1−
∑

u`∈Ñ(ui)

p(u`, Jj) ≥ p(ui, Jj).

Thus, by including ui based on a suitably biased independent coin flip, it is possible to

make the probability of inclusion of ui in Phase 5 (conditioned on I = Jj) exactly equal

to p(ui, Jj). The output of Algorithm 2 is the set I ′ := I(r).

We analyze the probability that a deficient vertex ui is in I ′. By Lemma A.4.1 and

Proposition A.5.2,

P(ui ∈ I) ≥ 88 + ε(ui)

256
.

By the above and property (ii) of Lemma A.6.2, the probability that ui is added to I ′

during Phase 5 equals

P(ui is added in Phase 5) =
s∑

j=1

P(ui is added in Phase 5 | I = Jj) ·P(I = Jj)

=

s∑

j=1

p(ui, Jj) · p(Jj) =
|ε(ui)|

256
.

Since ui is deficient, ε(ui) < 0; therefore, we obtain

P(ui ∈ I ′) = P(ui ∈ I) + P(ui is added in Phase 5)

≥ 88 + ε(ui)

256
− ε(ui)

256
=

88

256
.

If w is a vertex of G which is the sponsor of a (necessarily unique) deficient vertex ui,

then the probability of the removal of w in Phase 5 is equal to the probability of the

addition of ui, namely |ε(ui)| /256. From Lemma A.4.1 and Proposition A.5.2, it follows

that P(w ∈ I) is high enough for P(w ∈ I ′) to be still greater than or equal to 88/256.

Finally, if a vertex w is neither deficient nor the sponsor of a deficient vertex, it is not

affected by Phase 5 and hence P(w ∈ I ′) ≥ 88/256 as well. Applying Lemma 1.3.1 to

Algorithm 2, completes the proof that χf (G) ≤ 256/88 = 32/11 for bridgeless cubic

graphs.
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