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Abstract

Graph theory is the study of networks of objects (called vertices) joined by links
(called edges). Since many real world problems can be represented by a graph, graph
theory has applications in areas such as sociology, chemistry, and computing. In this
thesis, a number of open problems in graph theory are studied.

An old conjecture due to Erdos, Gyarfas, and Pyber says that in any edge-colouring
of a complete graph with r colours, it is possible to cover all the vertices with r vertex-
disjoint monochromatic cycles. So far, this conjecture has been proved only for r = 2.
In this thesis, it is shown that in fact this conjecture is false for all » > 3. In contrast
to this, it is shown that in any edge-colouring of a complete graph with three colours,
it is possible to cover all the vertices with three vertex-disjoint monochromatic paths,
proving a particular case of a conjecture due to Gyarfas. In addition, using some results
about partitioning coloured graphs the value of certain Ramsey Numbers is determined.
In particular the Ramsey number of a path of length n versus the power of a path of
length n is calculated, solving a conjecture of Allen, Brightwell, and Skokan.

A recent question posed by Hegarty asks how few edges the power of a regular
graph can have. The rth power of a graph (G is constructed from G by adding an edge
between any two vertices within distance r of each other. Hegarty showed that if G is
a regular, connected graph, then G? is either complete or satisfies e(G?)/e(G) > 1+ ¢
where € ~ 0.87. Hegarty asked whether similar results hold for other powers of graphs.
In this thesis his question is answered for every r > 4 by determining how small the
ratio e(G")/e(G) can be for a regular connected graph.

Finally, progress is made on a conjecture of Manickam, Miklés, and Singhi concern-
ing nonnegative k-sums (sums of k distinct elements) in a set of n numbers. Manickam,
Miklés, and Singhi conjectured that if n > 4k and we have a set of real numbers
X1, ...,%, satistying 1 +- - - +x, > 0, then there are at least (Zj) nonnegative k-sums
from {x1,...,z,}. It is shown that this conjecture holds whenever n > 10%k, giving

the first linear bound on this conjecture.
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Chapter 1

Introduction and preliminaries

A graph G = (V, FE) is given by a set V of vertices, and a set F C (‘;

pairs of vertices. Extremal problems, described by Bollobas as being “at the very heart

) of unordered

of graph theory” [9] are questions of the following form:

“How large does a parameter of a graph GG need to be to guarantee that G

contains a certain substructure?”

This question can be easy or hard depending on what parameter one considers and what
substructure one looks for. Many important theorems and conjectures in graph theory
can be phrased as an extremal problem. Indeed, Mantel’s Theorem tells us how many
edges a graph needs to have to ensure that it contains a triangle. Turan’s Theorem tells
us how many edges a graph needs to have to guarantee that it contains a clique of a
certain order. Dirac’s Theorem tells us how large the minimum degree of a graph needs
to be to guarantee that it contains a Hamiltonian Cycle. Ramsey’s Theorem gives a
bound on how many vertices a graph needs to have to guarantee that it contains either
a large complete graph or a large independent set.

More generally, extremal questions can be asked about almost any mathematical
structure. For example the Erdés-Ko-Rado Theorem tells us how many subsets from
{1,...,n} of order k we can have such that any two of them intersect. The Cauchy-
Davenport theorem tells us how large two sets A, B C Z,, (for a prime p) can be so that
the order of their sumset A+ B ={a+b:a € A,b e B} is bounded by some constant.
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In this thesis we give solutions and partial solutions to a number of extremal prob-
lems. Some of these, such as the Erdés-Gyarfas-Pyber Conjecture and the Manickam-
Miklés-Singhi Conjecture are old problems which have been open for 20 years and have
attracted much attention. Others, such as a question of Hegarty about graph powers,
were only asked recently, but have begun to attract attention. Over the remainder of

this chapter, we will describe in detail the problems which are studied in this thesis.

1.1 Nonnegative k-sums in a set of numbers with

nonnegative sum

Consider the following extremal problem:

“Suppose that we have a set of numbers x4, ..., x, satisfying ;1 +---+x, > 0. How
many subsets A C {x1,...,x,} must satisfy > _,a > 07"

By choosing 1 = n—1 and 29 = --- = 2, = —1 we see that the answer to
this question can be at most 2"7!. In fact, this example has the minimal number of
nonnegative sets. Indeed, for any set A C {z1,...,z,} either A or {z1,...,2,} \ A
must have nonnegative sum, so there must always be at least 2! nonnegative subsets
in any set of numbers {z,...,z,} with nonnegative sum.

A more difficult extremal problem arises if we count only subsets of fixed order. By
again considering the example when z; =n —1 and 29 = --- = z, = —1 we see that
"71) nonnegative

k—1
k-sums (sums of k distinct numbers). Manickam, Miklds, and Singhi conjectured that

there are sets of n numbers with nonnegative sums which have only (

for n > 4k this assignment gives the least possible number of nonnegative k-sums.

Conjecture 1.1.1 (Manickam, Miklés, Singhi, [41), [42]). Suppose that n > 4k, and we
have n real numbers x1, ..., x, such that x1+---+x, > 0. Then, at least (Zj) subsets
ACA{xy,...,x,} of order k satisfy Y, . a >0

Conjecture appeared in [42] where it was phrased in terms of calculating invari-
ants of an association scheme known as the Johnson Scheme. In [41], Conjecture [1.1.1]

was phrased in the combinatorial form in which it is stated above. In this thesis we



will speak only about the combinatorial version—we refer the reader to [42] [7] for more
details about the association scheme version.

A motivation for the bound “n > 4k” is that for kK > 3 and n = 3k 4 1 there exists
Z:}) nonnegative
k-sums. Indeed, letting 1 = 29 = 23 = 2 — 3k and x4 = -+ = X341 = 3 gives

3k—2
k

which is less than (kgfl) for £ > 3. Notice that these examples exist only when n =
3k + 1 . Thus it is possible that the bound “n > 4k” could be slightly strengthened
in Conjecture [[.1.1] For example for k£ = 3, Chowdhury proved that Conjecture [1.1.1
holds with the improved bound of n > 11, and that this bound is best possible [12].
Despite the apparent simplicity of the statement of Conjecture [I.1.1] it has been

open for over two decades. Many partial results have been proven. The conjecture has

an assignment of values to x1,..., 2341 which results in less than (

an assigment satisfying x; + - -+ + x3x11 = 0 but having ( ) nonnegative k-sums,

been proven for £ < 3 by Manickam [40] and independently by Chiaselotti and Marino
[21]. Tt has been proven whenever n = 0 (mod k) by Manickam and Singhi [42].

In addition, several results have been proved establishing the conjecture when n
is large compared to k. Manickam and Miklés [41] showed that the conjecture holds
when n > (k — 1)(k* + k%) + k holds. Tyomkyn [52] improved this bound to n >
k(4elogk)* ~ ekloslosk  Recently Alon, Huang, and Sudakov [3] showed that the
conjecture holds when n > 33k?. Subsequently Frankl [20] gave an alternative proof of
the conjecture in a range of the form n > 3k3/2. To date, Alon, Huang, and Sudakov’s
bound of n > 33k? stands as the best known bound for Conjecture [1.1.1]

In this thesis we improve these bounds by showing that the conjecture holds in a
range when n is linear with respect to k. In Chapter [2| we prove a theorem which shows
that Conjecture holds whenever we have n > 10%k. The method we use to prove
this theorem is inspired by Katona’s proof of the Erdds-Ko-Rado Theorem [35].

1.2 Edge growth in graph powers

For two sets of numbers A, B C Z,, their sumset is defined to be the set A + B =
{a+b:a€ Abe B}. Consider the following question “for two sets A and B of fixed

order, how small can the set A+ B be?”. When p is prime, this question was answered,



by Cauchy and Davenport in the following theorem.

Theorem 1.2.1 (Cauchy [11], Davenport [13]). Let p be a prime, and A, B C Z,. Then
we have either A+ B = Z, or

A+ B| > |A] +|B| - 1. (1.1)

If we take both A and B to be the arithmetic progression {a,2a,3a, ..., ka} for
some a and k, we see that it is possible for equality to hold in . In Chapter |3 we
study graph-theoretic analogues of Theorem [1.2.1]

Before we can state the results that we will look at, we will need a few definitions.
The distance between two vertices x,y in G is defined as the length of the shortest path
between them in GG. The rth power of a graph G, denoted G”, is constructed from G
by adding an edge between two vertices x and y when they are within distance r in G.
Define the diameter of a connected graph G, diam(G), as the minimal 7 such that G is
complete (alternatively, the maximal distance between two vertices in (). For a group
G and a set A C G, the Cayley Graph of A, denoted Cay(G, A), is defined to be the
graph with vertex set G with gh an edge whenever gh™' or hg~! € A holds.

It is easy to see that Theorem has the following corollary.

Corollary 1.2.2. Let p be a prime, A a subset of Z,, and G = Cay(Z,, A). Then for
any integer r < diam(G):
e(G") > re(G).

An interesting question to ask is whether analogues of Corollary hold for more
general graphs G. In particular since the Cayley graphs Cay(Z,, A) are always regular
and (when p is prime and A # () connected, we might focus on regular, connected G.

In [34] Hegarty proved the following theorem:

Theorem 1.2.3 (Hegarty, [34]). Suppose G is a reqular, connected graph which satisfies
diam(G) > 3. Then we have

e(G?) > (1+¢) e(G),
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with € ~ 0.087

In other words, the cube of GG retains the original edges of G and gains a positive
proportion of new ones. In Chapter 3| we give an alternative proof of this theorem
with an improved constant of ¢ = ¢. Since we announced this result, DeVos and
Thomassé [15] further improved the constant in Theorem m to € = %. They also
showed that the constant cannot be improved further by exhibiting a sequence of regular
graphs G,,, such that e(G3)/e(G,) — I as n — oc.

Theorem leads to the question of how the growth behaves for other powers
of the graph G. Note that Theorem cannot be used recursively to obtain such a
result — since the cube of a regular graph is not necessarily regular. In [34] it was shown
that Theorem does not hold with G? replaced by G? for any € > 0, and it was
asked what happens for higher powers. In Chapter [3| we will address this question for
4th powers and higher. For every r > 4, we determine how small the ratio e(G")/e(G)

can be for a regular, connected graph of diameter at least r.

1.3 Ramsey Theory

Ramsey Theory is a branch of mathematics concerned with finding ordered substruc-
tures in a mathematical structure which may, in principle, be highly disordered. An
early example of a result in Ramsey Theory is a theorem due to Van der Waerden [53],
which says that for for any & and r > 1 there is a number W (k, r), such that any colour-
ing of the numbers 1,2,... W (k,r) with r colours contains a monochromatic k-term
arithmetic progression. A special case of a theorem due to Ramsey [49] says that for
every n, there exists a number R(n), such that every 2-edge-coloured complete graph
on more than R(n) vertices contains a monochromatic complete graph on n vertices.
The number R(n) is called a Ramsey number.

A central definition in Ramsey Theory is the generalized Ramsey number R(G) of a
graph G: the minimum n for which every 2-edge-colouring of K,, contains a monochro-
matic copy of G. This is the so called diagonal Ramsey number of a graph G. For a
pair of graphs G and H the Ramsey number of G versus H, R(G, H), is defined to

11



be the minimum n for which every 2-edge-colouring of K, with the colours red and
blue contains either a red copy of G or a blue copy of H. This is the so called non-
diagonal Ramsey number of G versus H. Although there have been many results which
give good bounds on Ramsey numbers of graphs [24], the exact value of the Ramsey
number R(G, H) is only known when G and H each belong to one of a few families of
graphs.

One of the first Ramsey numbers to be determined exactly was the Ramsey number
of the path.

Theorem 1.3.1 (Gerencsér and Gyérfés, [22]). For m < n we have that

R(Po, P) =1 + {%J _1

Recall that the kh power of a path of order n is the graph constructed with vertex
set 1,...,n and ij an edge whenever 1 < |i — j| < k. Allen, Brightwell, and Skokan

conjectured the following generalization of the n = m case of Theorem [1.3.1]

Conjecture 1.3.2 (Allen, Brightwell, Skokan, [2]). For all k and n >k + 1, we have

R(P,, P¥) = (n— 1)k + Lﬂ—HJ :

In Chapter [6] we prove this conjecture. As an intermediate result we find an upper
bound on the Ramsey number of a path versus a balanced complete multipartite graph.
A balanced complete k-partite graph on km vertices, K* | is a graph whose vertices can
be partitioned into k sets Aj, ..., Ay such that |A;| = --- = |Ax| = m for all ¢, and
there is an edge between a; € A; and a; € A; if, and only if, i # j. In Chapter [6] we

show that for all n, m, and k we have
R(P, KF)<(k—1)(n—1)+k(m—1)+1. (1.2)

By considering a union of disjoint red copies of K,_1, it is easy to show that equality

holds in (1.2) whenever m = 1 (mod n — 1). Notice that a special case of (1.2)) we
obtain that R(P,, K;,m) = n + 2m — 2 whenever m = 1 (mod n — 1). This is also a

12



corollary of the following earlier theorem due to Haggkvist.

Theorem 1.3.3 (Héggkvist, [32]). If m,f =1 (mod n — 1), then we have
R(P,, Kps) =n+m+{—2.

The special case of ((1.2)) when m = 1 gives the following theorem which was essen-
tially proved by Erdds [17], as observed by Parsons [44].

Theorem 1.3.4 (Erdés, [I7]). For all n and m we have

R(Py, Kp) = (m —1)(n— 1) + 1.

1.4 Partitioning graphs into monochromatic sub-
graphs

Recall that in [22], Gerencsér and Gyérfas proved Theorem and so determined the
Ramsey Number of a path. In the same paper, they proved the following.

Theorem 1.4.1 (Gerencsér and Gyarfas, [22]). The vertices of every 2-edge-coloured
complete graph can be covered by two vertex-disjoint monochromatic paths of different

colours.

The proof of Theorem is so short that it was originally published in a footnote
of [22]. Indeed to see that the theorem holds, simply find a red path R in K, and a
vertex-disjoint blue path B in K, such that |R|+ |B| is as large as possible. Let r and
b be endpoints of R and B respectively. If there is a vertex x ¢ R U B, then it is easy
to see that the triangle {x,r, b} contains either a red path between x and r or a blue
path between z and b. This path can be joined to R or B contradicting maximality of
|R| + |B|.

The relation between Theorems [1.3.1] and [1.4.1] is that it is possible to determine

the weaker bound R(P,, P,,) < n + m — 1 on the Ramsey Number of a path using
Theorem [1.4.1] Indeed Theorem implies that every 2-edge-coloured K, ,,—1 can

13



be covered by a red path R and a disjoint blue path B. Clearly these paths cannot
cover all the vertices unless |R| > n or |B| > m.

Theorem has led to many results and conjectures about covering coloured
graphs by monochromatic subgraphs. One of these is a conjecture due to Gyarfas

which generalises Theorem [1.4.1]

Conjecture 1.4.2 (Gyarfas, [27]). The vertices of every r-edge-coloured complete graph

can be covered with r vertezx-disjoint monochromatic paths.

According to [28], Erdés offered 25 — 50 US Dollars for a solution of the r = 3 case

of this conjecture. Erdos, Gyarfas, and Pyber made the following stronger conjecture.

Conjecture 1.4.3 (Erd6s, Gyarfas & Pyber, [18]). The vertices of every r-edge-coloured

complete graph can be covered with r vertex-disjoint monochromatic cycles.

When dealing with these conjectures, the empty set, a single vertex, and a single
edge between two vertices are considered to be paths and cycles. It is worth noting that
neither of the above conjectures require the monochromatic paths covering K, to have
distinct colours. Indeed as we shall see, there are examples of r-edge-coloured complete
graphs which cannot be covered by r vertex-disjoint monochromatic paths without
repeating colours. Whenever the vertices of a graph G are covered by vertex-disjoint
subgraphs Hy, Hy, ..., Hy, we say that Hy, Ho, ..., Hy partition G.

Most effort has focused on Conjecture [1.4.3] It was shown in [18] that there is a
function f(r) such that, for all n, any r-edge-coloured K,, can be partitioned into f(r)
monochromatic cycles. The best known upper bound for f(r) is due to Gyérfas,
Ruszinké, Sarkozy, and Szemerédi [30] who show that, for large n, 1007 log, r monochro-
matic cycles are sufficient to partition the vertices of an r-edge-coloured K,,.

For small r, there has been more progress. The case r = 2 of Conjecture
is closely related to Lehel’s Conjecture, which says that any 2-edge-coloured complete
graph can be partitioned into two monochromatic cycles with different colours. This
conjecture first appeared in [4] where it was proved for some special types of colourings
of K,,. Gyérfas [26] showed that the vertices of a 2-edge-coloured complete graph can

be covered by two monochromatic cycles with different colours intersecting in at most

14



one vertex. Luczak, Roédl, and Szemerédi [39] showed, using the Regularity Lemma,
that Lehel’s Conjecture holds for r = 2 for large n. Later, Allen [I] gave an alternative
proof that works for smaller (but still large) n, and which avoids the use of the Regu-
larity Lemma. Lehel’s Conjecture was finally shown to be true for all n by Bessy and
Thomassé [0], using a short, elegant argument.

For r = 3, Gyarfas, Ruszinké, Sarkozy, and Szemerédi proved the following theorem.

Theorem 1.4.4 (Gyarfas, Ruszinkd, Sérkozy & Szemerédi, [31]). Suppose that the
edges of K, are coloured with three colours. There are three vertex-disjoint monochro-

matic cycles covering all but o(n) vertices in K.

In [31], it is also shown that, for large n, 17 monochromatic cycles are sufficient to
partition all the vertices of every 3-edge-coloured K.

Despite Theorem being an approximate version of the case r = 3 of Conjec-
ture [1.4.3] in Chapter 4| we show that the conjecture is false for all » > 3

Interestingly, in all the counterexamples to Conjecture that we construct it is
possible to cover all except one of the vertices with r disjoint monochromatic cycles.
Therefore the counterexamples we construct are quite “mild” and leave room for further
work to either find better counterexamples, or to prove better approximate versions of
the conjecture similar to Theorem [1.4.4]

The disproof of Conjecture|1.4.3also raises the question of whether Conjecture|1.4.2
holds for 7 > 3 or not. In Chapter [f], we will prove the r = 3 case of Conjecture [1.4.2

All the partitioning results mentioned so far have been about partitioning coloured
complete graphs. There have also been a number of interesting results and conjectures
about partitioning coloured graphs which are not complete into monochromatic sub-
graphs. For example Sarkozy [50] considered r-edge-coloured graphs of fixed indepen-
dence number and bounded the number of monochromatic cycles needed to partition
such graphs. Balogh, Barat, Gerbner, Gyarfas, and Sarkozy [5] considered 2-edge-
coloured graphs G with minimum degree |G|/2 and showed that |G| — o(|G|) vertices
in such a graph can be covered by two disjoint monochromatic cycles.

A complete bipartite graph is balanced if both its parts have the same size. Gyarfas

and Lehel proved the following theorem about partitioning a 2-edge coloured balanced
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complete bipartite graph. The proof of this theorem appears implicitly in [29], and the

statement appears in [26].

Theorem 1.4.5 (Gyarfas & Lehel, [26, 29]). Suppose that the edges of K, ,, are coloured
with two colours such that one of the parts of K, , is contained in a monochromatic
connected component. Then there exist two disjoint monochromatic paths with different

colours which cover all, except possibly one, of the vertices of K, .

In Chapter [5| we sharpen Theorem by showing that the two disjoint monochro-
matic paths of different colours can actually cover all the vertices of K, ,,. This theorem

is used in Chapter [5| in the proof of the r = 3 case of Conjecture [1.4.2]

1.5 Non-diagonal partitioning results

Recall that although Ramsey Theory initially focused on finding bounds for just the
quantity R(K,, K,), it quickly developed into looking for bounds on the more general
quantities R(G,H) for a pair of graphs G and H. This happened partly because
calculating R(G, H) for certain pairs of graphs G and H could shed light on the original
problem, and partly because calculating R(G, H) for any pairs of graphs is an interesting
problem in its own right.

So far most results about partitioning coloured graphs have partitioned a coloured
complete graph into a small number of monochromatic graphs Gy,..., Gy such that
the graphs Gy, ..., G} all have the same structure. These could be seen as “diagonal
partitioning results”. During the proofs of some results in this thesis we found it
useful to partition a 2-edge-coloured complete graph into two monochromatic graphs
G and H which have very different structure. These can be seen as “non-diagonal
partitioning results”. The most important of these results is a strengthening of the
original Gerencsér-Gyarfas Theorem about partitioning a 2-edge-coloured graph into
two monochromatic paths. It turns out that Theorem can be strengthened to give
the following.
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Lemma 1.5.1. Suppose that the edges of K,, are coloured with the colours red and blue.
Then there is a vertex-partition of K, into a red path and a blue balanced complete

bipartite graph.

Lemma plays an important role in this thesis. It is used in Chapter [5|in the
proof of the r = 3 case of Conjecture [1.4.2l A generalisation of Lemma [1.5.1] is used

in Chapter [6] in the proof of (1.2) and Conjecture [I.3.2] Lemma easily implies
that R(P,, K,,m) = n 4+ 2m — 2 holds, which is a special case of Héggkvist’s result

(Theorem [1.3.3)).

In view of the importance of Lemma [1.5.1], we give a proof of it here.

Proof of Lemma[1.5.1. Notice that a graph with no edges is a complete bipartite graph
(with one of the parts empty). Therefore, any 2-edge-coloured K, certainly has a
partition into a red path and a blue complete bipartite graph (by assigning all of K,
to be one of the parts of the complete bipartite graph). Partition K, into a red path P
and a complete bipartite graph B(X,Y) with parts X and Y such that the following
hold.

(i) max(|X],|Y]) is as small as possible.
(ii) |P] is as small as possible (whilst keeping (i) true).

We are done if | X| = |Y| holds. Therefore, without loss of generality, suppose that we
have | X| < |Y].

Suppose that P = (). Then let y be any vertex in Y, P’ = {y}, Y =Y — gy, and
X’ = X. This new partition of K, satisfies max(|Y'],|X’|) < |Y| = max(|X], |Y]),
contradicting minimality of the original partition in (i).

Now, suppose that P is nonempty. Let p be an end vertex of P.

If there is a red edge py for y € Y, then note that letting P = P+yandY' =Y —y
gives a partition of K, into a red path and a complete bipartite graph B(X,Y") with
parts X and Y’. However we have max(|Y’|, | X|) < |Y| = max(|X]|,|Y]), contradicting
minimality of the original partition in (i).

If all the edges between p and Y are blue, then note that letting P/ = P — p and
X' = X + p gives a partition of K, into a red path and a complete bipartite graph

17



B(X'")Y) with parts X’ and Y. We have that max(|X'[,|Y]) = |Y| = max(|X],|Y])

and |P’| < |P|, contradicting minimality of the original partition in (ii). O

A few other “non-diagonal partitioning results” are proved in this thesis. In Chap-
ter [6] we give a generalisation of Lemma [I.5.1] which says that for any k, every 2-
edge-coloured complete graph can be partitioned into k red paths and a blue balanced
complete (k+ 1)-partite graph. If the red edges of the complete graph form a connected
graph, then this result can be improved—in this case it is possible to partition the graph
into k red paths and a blue balanced complete (k + 2)-partite graph.

The ideas in the above proof of Lemma [1.5.1| are also important in this thesis. The
proof could be summarised as “first we find a partition of our graph which is in some
way extremal and then we show that it possesses the properties that we want”. A

number of other proofs we present in this thesis also have the same basic idea.

1.6 Notation

Notation that we will use is standard, apart from several exceptions which are explicitly
mentioned below. Notation for graphs which we will use can be found in [16]. Notation
for hypergraphs which we will use can be found in [g].

For a graph G, V(G) denotes the set of vertices of G, and E(G) the set of edges. For
a set of vertices S in a graph G, the induced subgraph of G with vertex set S is denoted
by G[S]. For two sets of vertices S and T in a graph G, let G[S,T] be the subgraph
of G with vertex set S UT with st an edge of G[S,T] whenever s € S and t € T.
A graph G is called bipartite if its vertices can be partitioned into two sets X and Y
such that there are no edges within X or Y. In this case we say that X and Y give a
bipartition of G and the sets X and Y are called the parts or classes of the bipartition.

We will often identify a graph G with its vertex set V(G). Whenever we say that
two subgraphs of a graph are “disjoint” we will always mean vertex-disjoint. When-
ever a graph G is covered by vertex-disjoint subgraphs Hy, Hs,..., Hx, we say that
H,, H,, ..., H; partition G.

For two vertices u,v € V(G), the distance between u and v, denoted d(u,v), is
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defined to be the length of the shortest path between them. The rth power of G,
denoted G", is the graph with vertex set V(G), and xy an edge whenever z and y are
within distance r of each other. The diameter of a connected graph is the smallest r
for which G" is complete (or, alternatively, the maximum possible distance between a
pair of vertices in G).

For v € V(G), define its neighbourhood as N(v) = {u € V(G) : uwv € E(G)}.
For a vertex v € G, its degree is defined as the number of edges containing v. The
maximum and minimum degrees of G are defined as A(G) = max,eq d(v) and 6(G) =
min,eq d(v) respectively. Similarly for a set S C V(G) we let A(S) = max,eg d(v) and
0(S) = mingegs d(v).

For a hypergraph H, the vertex-degree of a vertex v € H is the number of edges
containing v. We say that H is d-regular if every vertex has vertex-degree d. The
complete k-uniform hypergraph with n vertices is denoted by K.

A linear forest is a disjoint union of paths. A balanced complete k-partite graph,
denoted K  is a graph whose vertices can be partitioned into k sets A, ..., Ay such
that |A;| = --- = |Ag| = m for all 4, and there is an edge between a; € A; and a; € A,
if, and only if, i # j. A fact that we use about complete k-partite graphs is that K*
always contains a copy of the power of a path P,fnzl.

For a group G and a set A C @, the Cayley Graph of A, denoted Cay(G, A), is
defined to be the graph with vertex set G with gh an edge whenever hg=' or gh! € A
holds.

Throughout Chapters [5] and [0] it will be convenient to have special notation for
dealing with paths in graphs. Often we will define paths in a graph G by giving its
sequence of vertices p1,pa, ..., pr € G such that p;p;1 is an edge in G. For a nonempty
path P, we will distinguish between the two endpoints of P saying that one endpoint
is the “start” of P and the other is the “end” of P. Thus we will often say things like
“Let P be a path from u to v”. Let P be a path from a to b in G and @) a path from ¢
todin G. If P and @ are vertex-disjoint and bc is an edge in GG, then we define P + ()
to be the unique path from a to d formed by joining P and ) with the edge bc. If P is
a path and () is a subpath of P sharing an endpoint with P, then P — ) will denote
the subpath of P with vertex set V(P) \ V(Q).
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Throughout Chapters [d] — [6] we will deal with edge-coloured graphs. Whenever a
graph is coloured with two colours, the colours will be called “red” and “blue”. When
there are three colours, they will be called “red”, “blue”, and “green”. If a graph G
is coloured with some number of colours we define the red colour class of G to be the
subgraph of G with vertex set V(G) and edge set consisting of all the red edges of G.
We say that G is connected in red, if the red colour class is a connected graph. A red
component of a graph G is a connected component of the red colour class of G.

For any function f defined on uncoloured graphs we define f, to be that function
evaluated on the red colour class of a coloured graph. For example d,.(v) denotes the
number of red edges containing a vertex v, A,(G) denotes the maximum red degree
of G, etc.

Similar definitions are made for the colours blue and green as well (using subscripts
“b” and “¢” instead of “r”).

We will need the following special 3-colourings of the complete graph.

Definition 1.6.1. Suppose that the edges of K, are coloured with three colours. We
say that the colouring is 4-partite if there exists a partition of the vertex set into four

nonempty sets Ay, As, As, and Ay such that the following hold.
o The edges between Ay and Ay, and the edges between Ay and Az are red.
o The edges between Ay and Ag, and the edges between Ay and Asz are blue.
o The edges between Az and Ay, and the edges between Ay and Ay are green.

The edges within the sets Ay, As, As, and Ay can be coloured arbitrarily. The sets Ay,
Ay, Az, and Ay will be called the “classes” of the 4-partition.

When dealing with 4-partite colourings of K, the classes will always be labelled
“Ay7) “AY7, “Ag”, and “A4”, with colours between the classes as in the above definition.
See Figure for an illustration of a 4-partite colouring of K,,. The following lemma

gives a useful alternative characterization of 4-partite colourings of K,.

Lemma 1.6.2. Suppose that the edges of K, are coloured with three colours. The

colouring is 4-partite if and only it is disconnected in each colour and there is a red
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Figure 1.1: A 4-partite colouring of K.

connected component Cy and a blue connected component Cy such that all of the sets
CiNCy, (V(K,)\C)NCy, CrN(V(K,) \ Cy), and (V(K,) \ C1) N (V(K,) \ Cs) are

nonempty.

Proof. Suppose that we have a red component C and a blue component C as in the
statement of the lemma. Let A; = Cy N (V(K,) \ Cy), Ay = (V(K,) \ C1) N Cy,
As = (V(K,)\ C1)N(V(K,)\ Cy), and Ay = C, N Ch.

Since € and (5 are red and blue components respectively, all the edges between
A; and A, and between Az and A4 are green. Since K, is not connected in green,
there cannot be any green edges between A; and As. Therefore, since A; C C and
A3 N Cy = 0, all the edges between A; and Az are blue. Similarly, the edges between
Aj and Ay are all red. Since K, is not connected in red or green, the edges between A,
and Ay are all blue. Since K, is not connected in blue or green, the edges between A,
and As are all red. This ensures that the sets Ay, A,, Az, and A form the classes of a
4-partite colouring of K.

For the converse, suppose that A;, Ay, A3z, and A, form the classes of a 4-partite
colouring. Choose C; = A; U Ay and C5 = Ay U A4 to obtain components as in the

statement of the lemma. O

Just like 4-partite colourings are special colourings of K,,, we will need special
colourings of K, in the proof of Theorem [5.1.1]

Definition 1.6.3. Let K,,,, be a 2-edge-coloured balanced complete bipartite graph with
partition classes X and Y. We say that the colouring on K, , is split if it is possible
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X Y
Figure 1.2: A split colouring of K, j,.

to partition X into two nonempty sets X, and Xs, and Y into two nonempty sets Y;
and Yy, such that the following hold.

o The edges between X1 and Ys, and the edges between Xy and Yy are red.

o The edges between X and Yy, and the edges between Xy and Yy are blue.
The sets X1, Xo, Y1, and Yy will be called the “classes” of the split colouring.

When dealing with split colourings of K, ,, the classes will always be labelled “X;”,
“X57, “Y7”, and “Y3” with colours between the classes as in the above definition. See
Figure for an illustration of a split colouring of K,,. The following lemma gives an

alternative characterization of split colourings of K, .

Lemma 1.6.4. Let K,,,, be a 2-edge-coloured balanced complete bipartite graph. The
colouring on K, , s split if and only if none of the following hold.

(i) K, is connected in some colour.
(ii) There is a vertex u such that all the edges containing w have the same colour.

Proof. Suppose that K, , is not split and (i) fails to hold. We will show that (ii) holds.
Let X and Y be the classes of the bipartition of K,,,. Let C' be any red component
of Kppy X1 =XNC, Xo=X\C,Y1=YNC,and Yo =Y \ C. If all these sets are
nonempty, then G is split with classes X7, Xs, Y7, and Y. To see this note that there

cannot be any red edges between X; and Y5, or between X5 and Y; since C is a red
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component. There cannot be any blue edges between X; and Y7, or between X, and Y5
since K, , is disconnected in blue.

Assume that one of the sets X;, Xy, Y7, or Y; is empty. If X is empty, then C' is
entirely contained in Y and hence consists of a single vertex u, giving rise to case (ii) of
the lemma. If X5 is empty, then note that Y5 must be nonempty. Indeed, otherwise we
would have C' = K, ,,, contradicting our assumption that (i) fails to hold. Let u be any
vertex in Y. For any v, the edge uv must be blue, since X C C holds. Thus again (ii)
holds. The cases when Y; or Y; are empty are proved in the same way by symmetry.

For the converse, note that if K, ,, is split, then the red components are X; UY; and
X5 UY5, and that the blue components are X; UY5 and X, UY;. It is clear that neither
(i) nor (ii) can hold. O

A simple corollary of Lemma is that a 2-edge-colouring of K, , is split if,
and only if, neither of the parts of K, , is contained in a monochromatic connected

component.
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Chapter 2

Nonnegative k-sums in a set of

numbers with nonnegative sum

2.1 Introduction

Suppose that we have a set of numbers zq, ..., z, satisfying 1 +--- + x, > 0. How
many subsets A C {x1,...,2,} of order k must satisfy >  _,a > 07 By choosing
r1 =n—1and z9 = --- = z,, = —1 we see that the answer can be at most (Zj)

Manickam, Miklés, and Singhi conjectured that for n > 4k this assignment gives the
least possible number of nonnegative k-sums.

Conjecture (Manickam, Miklds, Singhi, [41l [42]). Suppose that n > 4k, and we
have n real numbers x1,...,x, such that x1 + --- + x, > 0. At least (Zj) subsets
ACA{xy,...,x,} or order k satisfy >, .,a >0

As mentioned in the introduction, there have been many results establishing the
conjecture when n is large compared to k. Manickam and Miklés [41] showed that the
conjecture holds when n > (k — 1)(k¥ + k?) + k holds. Tyomkyn [52] improved this
bound to n > k(4elog k)* ~ eckloeloek  Recently Alon, Huang, and Sudakov [3] showed
that the conjecture holds when n > 33k%. Subsequently Frankl [20] gave an alternative
proof of the conjecture in a range of the form n > 3k3/2. To date, Alon, Huang, and
Sudakov’s bound of n > 33k? stands as the best known bound for Conjecture m
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The aim of this chapter is to improve these bounds by showing that the conjecture

holds in a range when n is linear with respect to k.

Theorem 2.1.1. Suppose that n > 10*°k, and we have n real numbers 1, . .., x, such
that 1 + -+ + x, > 0. At least ("_1) subsets A C {x1,...,x,} of order k satisfy

k—1
ZaeA a Z 0

It is worth noticing at this point that there seem to be connections between the
problem and results mentioned so far in this chapter, and the Erdés-Ko-Rado Theorem
about intersecting families of sets. A family A of sets is said to be intersecting if any
two members of A intersect. The Erdds-Ko-Rado Theorem [19] says that for n > 2k,
any intersecting family A of subsets of [n] of order k, must satisfy |A| < (Z’j) The
extremal family of sets in the Erdos-Ko-Rado Theorem is formed by considering the
family of all k-sets which contain a particular element of [n|. This is exactly the family
A that we obtain from the extremal case of the Manickam-Miklés-Singhi Conjecture
if we let the members of A be the nonnegative k-sums from zi,...,x,. In addition,
many of the methods used to approach Conjecture [I.1.1] are similar to proofs of the
Erdds-Ko-Rado Theorem. The method we use to prove Theorem in this chapter
is inspired by Katona’s proof of the Erdés-Ko-Rado Theorem in [35].

Suppose that we have a hypergraph H together with an assignment of real numbers
to the vertices of H given by f : V(H) — R. We can extend f to the powerset of V(H)
by letting f(A) = Y .4 f(v) for every A C V(H). We say that an edge e € E(H) is
negative if f(e) < 0, and e is nonnegative otherwise. We let ef(#H) be the number of
nonnegative edges of H. Recall that the degree d(v) of a vertex v in a hypergraph H
is the number of edges containing v. A hypergraph H is d-regular if every vertex has
degree d. The minimum degree of a hypergraph H is 6(H) = min,cy(z) d(v).

The following observation is key to our proof of Theorem [2.1.1]

Lemma 2.1.2. Let H be a d-reqular k-uniform hypergraph on n vertices. Suppose that
for every f: V(H) — R satisfying 3,y f(x) = 0 we have ¢;(H) > d. Then for
every f : V(ICr(lk)) — R satisfying erV(ICSL’”) f(z) > 0 we have e}r(lC,(lk)) > (Zj) (and
so Congecture holds for this particular n and k).
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Lemma [2.1.2] is proved by an averaging technique similar to Katona’s proof of the
Erdés-Ko-Rado Theorem (see Section . This technique has already appeared in the
context of the Manickam-Miklds-Singhi Conjecture in [41] where it was used to prove
the conjecture when n > (k — 1)(k* + k?) + k. See [36] for a survey of other uses of this
method in extremal combinatorics.

Lemma [2.1.2shows that instead of proving the conjecture about the complete graph
nglk), it may be possible to find regular hypergraphs which satisfy the condition in
Lemma [2.1.2)and hence deduce the conjecture. This motivates us to make the following

definition.

Definition 2.1.3. A k-uniform hypergraph H has the MMS-property if for every
[ V(H) = R satisfying 3, e f(2) > 0 we have et (H) > 6(H).

Conjecture [1.1.1]is equivalent to the statement that for n > 4k the complete hyper-
graph on n vertices has the MMS-property. Lemma [2.1.2 shows that in order to prove
Conjecture for particular n and k, it is sufficient to find one regular n-vertex
k-uniform hypergraph H with the MMS-property. This hypergraph H may be much
sparser than the complete hypergraph—allowing for very different proof techniques.

Perhaps the first two candidates one chooses for hypergraphs that may have the
MMS-property are matchings and tight cycles. The matching M, is defined as the
k-uniform hypergraph consisting of tk vertices and ¢ vertex disjoint edges. Notice
that My, is 1-regular. The matching M, always has the MMS-property—indeed we
have that ZeeE(Mt,k) fle) = ZmeMM f(z) > 0, and so one of the edges of M,y is
nonnegative. This observation was used in [42] to prove Conjecture whenever £
divides n.

The tight cycle C,, ;. is defined as the hypergraph with vertex set Z,, and edges formed
by the intervals {i (mod n),i+1 (mod n),...,i+k (mod n)} for i € Z,. It turns out
that the tight cycles do not have the MMS-property when n # 0 (mod k). To see this
for example when k =3 and n =1 (mod k), let f(x) = 50, 50, 50, —101, 50, 50, —101,
50, 50, —101... forx =1,2,3,4,5,6,7,8,9,10,....

An interesting question, which we will return to in Section [2.6|is “which hypergraphs
have the MMS-property?”
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The main result of this chapter is showing that there exist k(k—1)2-regular k-uniform

hypergraphs on n vertices which have the MMS-property, for all n > 10%k.

Theorem 2.1.4. For n > 10%k, there are k(k — 1)*-regqular k-uniform hypergraphs
on n vertices, Hny, with the property that for every f : V(H,r) — R satisfying
> vevin, ) /(@) >0 we have e (M) > k(k — 1),

Combining Theorem and Lemma immediately implies Theorem [2.1.1

Throughout this chapter, we will use notation from Additive Combinatorics for
sumsets A+ B={a+0b:a € A be B} and translates A+ 2 ={a+x:a € A}.

The structure of this chapter is as follows. In Section we prove Lemma [2.1.2]
In Section we define the graphs H, ; used in Theorem and prove some of
their basic properties. In Section [2.4] we prove Theorem [2.1.4] with the weaker bound
of n > 14k* in order to illustrate the main ideas in the proof of Theorem . In
Section [2.5] we prove Theorem [2.1.4] In Section [2.6), we conclude by discussing the
techniques used in this chapter and whether they could be used to prove Conjecture[1.1.]]

in general.

2.2 Proof of the averaging lemma
Here we prove Lemma [2.1.2]

77777

0. Consider a random permutation o of {1,...,n}, chosen uniformly out of all permuta-
tions of {1,...,n}. We define a function f, : {1,...,n} — Rgiven by f, :  — f(o(z)).

77777

edge e € lcff), we have

e(H) d
P(o(e H) = = 1
R = =
Therefore we have
E(el,(H) = 3. Plo(e) € H) = e (K)
0l
f(e)>0
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However, by the assumption of the lemma, E(e; (H)) is at least d. This gives us

et (kW) > (Z:D-

2.3 Construction of the hypergraphs H,

In this section we construct graphs H, ; which satisfy Theorem We also prove
some basic properties which the graphs H,, , have.

Define the clockwise interval between a and b € Z, to be [a,b] = {a,a+ 1,...,b}.
The graph H, x has vertex set Z,. We define k-edges e(v, 1, j) as follows:

e(v,i,j)=[v,v+i—1Uv+i+jv+j+k—1]

The edges of H,, ;. are given by e(v,,j) forv € Z,, and i,5 € {1,...,k—1}. In other
words H,, ; consists of all the double intervals of order k, where the distance between
the two intervals is at most k& — 1.

Notice that the graph H,, is indeed k(k — 1)? regular.

In order to deal with the graphs H,, s, it will be convenient to assign a particular set
E(v) of O(k?) edges to each vertex v. First, for each vertex v in H,,x and 4,5 € [1,k—1],
we will define a set of edges, F(v,4,7). Then E(v) will be a union of the sets E(v,1,j).

The definition of the sets E(v,1,j) is quite tedious. However the sets E(v,,j) are
constructed to satisfy only a few properties. One property that we will need is that for
fixed, v, 7, 7 certain intervals can be formed as disjoint unions of edges in F(v,1,j). See
Figures[2.1]—[2.4] for illustrations of the precise configurations that we will use. Another

property that we will need is that no edge e € H,, ;, is contained in too many of the sets

E(v,i,7). See Lemmas [2.3.1) and [2.3.2| for precise statements of these two properties.

Over the next four pages we define the sets E(v, i, 7).
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Figure 2.1: The edges in E(v,i,7) when we have i + j > k and ¢ > j.

Ifi+ 7> kand > j, then we let

E(v,i,j) ={e(v,i,j),e(v+k+j,i,i+j — k),
ev+k+i+ygi+75—k2k—2i),e(v+i,j,k—1),
e(v+k+i+25k—1i,2k—i—7),e(v+1i,j,2k—1i—j),
e(v+3k—j,i,5),e(v+3k—3j+ijk— 1),
e(v+ii+j—k,2k—2i),e(fv+i+jk—i2k—i—7j),
e(v+2k,i,5),e(v+2k+i, j,k—1)}.
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Figure 2.2: The edges in E(v,i,7) when we have i +j > k and j < i.
Ifi+ 7>k and j <14, then we let

E(v,i,5) ={e(v,i,j),e(v+k+j,5,i+75—k),
ev+k+25,i+75—k2k—2j),e(v+i,j,k—1),
e(v+k+i+25k—742k—i—7j),
e(v+1i,7,2k —i—j),e(v+3k—7,4,7),
e(v+3k—j+i,j,k—1i)e(v,j,i+j—k),
e(v+j,i+75—k2k—2j),e(v+i+j,k—j,2k—i—7j),
e(v+2k,i,j),e(v+2k+i,j,k—1i)}.
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Figure 2.3: The edges in E(v,4,7) when we have i + j < k and 17 is even.
If i +j < k and 7 is even, then we let
E(Uv%j) = {6(1}7@7])76(1) + k+]7k — 500 +.])7

2

7 1
e(v+2k+j—§,i+j7i>,€(vai+jv§)a

e(v+2k+i+2), 2.k 5)e(v i+ 5. k=i j),

e(v+2k = k= i j)e(v+ 3k —j = 2i+ ji),

o0 1 (A
e(v+3k+i 5.k =) e(v.k =50+ ),

e(v+k—§,z+j,z),e(v+k+z+j,§,k—z—j),
e(v+i,7,k—i),e(v+2k,i,75),e(v+2k+i,j,k—1)}.

31



Figure 2.4: The edges in E(v,1i,j) when we have i + j < k and 7 is odd.

If i +j < k and 7 is odd, then we let

i—1
E(U,@j):{€<U,i,j),€<v+k+j,/€— 92 77'+j)7
i—1 i—1
e(v+2k+j — Ji+ 1), e(v,i+ J, ——),
2 2
1 -1 —1
dv+%H%+2$Z2,k—22)£@+hj+£?ﬂk—i—ﬁa
=1 =1
e(v+2k—j,k— 5 Ji+7),e(v+3k—j— 2 i+ g,1),
i — 1 —1 —1
€(U+3k5+2.,l2 ,k_ZQ )76(U7k_z2 7Z+j)>
i—-1 . i1 o
vtk ———itji)elvthktitj——k—i-j)

e(v+i,j,k—i),e(v+2k,i,5),e(v+2k+i,j,k—1i)}.

We define E~ (v, 1, ) to be the set of edges corresponding to edges in E(v,1,7), but
going anticlockwise (i.e. E~(v,4,5) = {{z1,..., 23} : {v —(x1—v),...,v—(z, —v)} €

E(v,i,7)). For each vertex v, we let

Ew) = |J E@.ij)UE (v,ij)

i.5€[1,k—1]

Notice that from the definition of E(v,14,7), we certainly have E(v,i,j) < 15 for
every i,j € [1,k — 1], which implies that |E(v)| < 15(k — 1)2. Also, since e(v,14,j) €
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E(v) for every i,j € [1,k — 1], we have that E(v) > (k — 1)?. Therefore, we have
|E(v)| = ©(k?).

There are only two features of the sets E(v,1,j) that will be needed in the proof of
Theorem [2.1.4] One is that sequences of edges similar to the ones in Figures [2.1] -

exist in F(v,1, ). This allows us to prove the following lemma.

Lemma 2.3.1. Suppose that i,j € [1,k— 1] and all the edges in E(v,i,j) are negative.
The following hold.

(i) f([v,v 42k —1]) <0.
(i) f([v,v+3k—1]) <O0.
(iii) f([v,v + 4k —1]) < 0.
(iv) f(lv+iv+it+j—1)<0 = f(jv,v+4k+j—1]) <0,
V) f(o+i,otriti—1)>0 = f(v,v+5k—j—1]) <0,

Proof. Figures 2.1 - [2.4] illustrates the constructions that are used in the proof of this
lemma.

(i) This follows from the fact that e(v,1,j),e(v+1,j,k—i) € E(v,i,7) and e(v,i,5)U
e(v+i,j, k—i) = [v,0+ 2k —1].

(ii) Fori+j > k and i > j, this follows from the fact that e(v,i,i+j —k),e(v+1i,i+
j—k,2k—2i)e(v+i+j,k—i,2k—i—j) € E(v,i,j) and e(v,i,i+j—k)Ue(v+
ivi+j—k,2k—2i)Ue(v+i+j,k—1i,2k—1i—j)=[v,v+3k—1]. The other

cases are similar.

(iii) This follows from the fact that e(v,1,j),e(v +1,7,k —i),e(v+ 2k, 1,7),e(v + 2k +
i,j,k—1i) € E(v,i,7) and e(v,i,j)Ue(v+1i,j,k —i)Ue(v + 2k, i, j) Ue(v + 2k +
i,j, k—i)=[v,v+4k —1].

(iv) For i+ j > k and i > j, this follows from the fact that e(v,,j),e(v + k + j, 4,7 +
G k) e(otkritiiti—k, 2k—2i),e(vtktit2j,k—i,2k—i—j) € Ev,i,j)
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and e(v,i,j)Ue(v+k+j,i,i+j—k)Ue(lv+k+i+j,i+75—k,2k—2i)Ue(v+
k4+i+25,k—i,2k—i—j)Uv+i,v+i+j—1] = [v,v+4k+ j—1]. The other

cases are similar.

(v) For i +j > k and i > j, this follows from the fact that e(v,i,7),e(v + 14,7,k —
i),e(v+i,7,2k—i—j),e(v+3k—7,4,7), e(v+3k—j+i,j,k—i) € E(v,i,j) and also
e(v, i, 7)Ue(v+i, j, k—i)Ue(v+i, j, 2k—i—j)Ue(v+3k—j, i, j)Ue(v+3k—j+1, j, k—
i) = [v,v+5k—j—1] and e(v+1i, 5, k—i)Ne(v+i, j, 2k—i—j) = [v+i,v+i+j—1].

The other cases are similar.
O

The other feature of the sets F(v,i,j) that we need is that no edge is contained
in too many of the sets E(v,i,7). This is quantified in the following lemma. For the

duration of this chapter, we fix the constant C; = 110.

Lemma 2.3.2. Let e be an edge in H, . The edge e is contained in at most Cy of the
sets E(v,i,7) UE™(v,i,7) forve V(Hux), and i,j € [1,k —1].

Proof. Notice that there are 55 edges mentioned in the definition of E(v,i,7). For
t = 1,...,55 let F'(v,i,7) be the singleton containing the ¢th edge in the defini-
tion of E(v,i,j), i.e. F(v,i,j) = {e(v,i,7)}, F*(v,i,5) = {e(v+ k + j,4,i + j —
k)}, ..., F®(v,i,j) = {e(v+2k+1i,j,k—1i)}. This definition is purely formal—for cer-
tain ¢ and j, it is possible that an edge in F*(v, i, j) is not an edge of H, . (for example
F3(v,1i,7) contains the edge e(v + k + i + 7,7 + j — k, 2k — 2i) which is not an edge of
Hpx if 2k — 20 > k). Similarly it is possible for F*(v,4,j) to be empty for certain i
and j—for example F*(v, i, j) should contain e(v + k + i + j, 5, k — i — j) which is
not defined when i is even.

Clearly E(v,i,7) € U;>, F*(v,i,7) holds. Also, it is straightforward to check that
for fixed ¢, the sets F*(v, i, j) are all disjoint for v € V(H,,x), and 4, j € [1, k—1]. Indeed
for fixed t, if we have e(u,a,b) € F*(v,1,7), then it is always possible to work out v, 1,
and j uniquely in terms of u, a, and b. These two facts, together with the Pigeonhole
Principle imply that the edge e can be contained in at most 55 of the sets E(v,,7) for
v € V(Hur), and 4,5 € [1, k]. The lemma follows, since C; > 2 - 55 = 110. O
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A useful corollary of Lemma is that an edge e can be contained in at most 110
of the sets E(v) for v € V(H, k).

2.4 Hypergraphs of order O(k*) which have the
MMS-property.

In this section we prove Theorem [2.1.4] with a weaker bound of n > 14k*. This proof
has many of the same ideas as the proof of Theorem [2.1.4] but is much shorter. We

therefore present it in order to illustrate the techniques that we will use in proving
Theorem [2.1.4] and hopefully aid the reader to understand that theorem.

Theorem 2.4.1. For n > 14k", and every function f : V(Hax) — R which satisfies
D vevi, o F (@) = 0 we have ef (Hyx) > k(k —1)°.

Proof. Suppose for the sake of contradiction that we have a function f: V(H,x) — R
satisfying > ey (5, ,) f(2) = 0 such that we have e (Har) < k(k—1)%

The proof of the theorem rests on two claims. The first of these says that any
sufficiently small interval I in Z,, is contained in a negative interval of almost the same

order as I.

Claim 2.4.2. Let I be an interval in Z, such that |I| < n — 2k. Then there is an
interval J = [j1, Ji] which satisfies the following:

(i) [J] <[]+ 2k,
(ii) ICJ.
(ii) f(J) < 0.

Proof. Without loss of generality, we may assume that I is the interval [2k, 2km + []
for some I € [0,2k — 1] and m < 2= — 1. First we will exhibit 2k(k — 1)* sets of

vertex-disjoint edges covering I.
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Forve {0...2k—1}, 4,5 € {1,...,k — 1} we let

D(v,i,5) = | J (e(v V 2tk i, ) Ue(v + 2tk + i, j, k — @))
t=0
Notice that an edge e(u,a,b) is contained only in the sets D(u (mod 2k),a,b) and
D(u — k + b (mod 2k),k — b,a). Therefore, since there are at less than k(k — 1)3
nonnegative edges in H,, i, there are some vg,iy and jy for which the set D(vo, %o, jo)
contains only negative edges. Letting J = |JD(vo, 0, jo) = [vo, vo + 2k(m + 1)] implies
the claim. [

The second claim that we need shows that any sufficiently large interval which does

not contain nonnegative edges in H,, 4 must be negative.

Claim 2.4.3. Let I = [iy,iy,] be an interval in Z,, which satisfies the following:
(i) |I| > 12k.
(ii) There are no nonnegative edges of H, contained in I.

We have that f(I) < 0.

Proof. Let Ry = {v e I: f([0,v—1]) <0} and R,, = {v € I : f(Jv,m]) < 0}. Let
Q- ={ie[l,k—1]: f([1,i]) <0} and Q* ={k —i e [1,k—1]: f([1,4]) > 0}.

Since I contains only negative edges, parts (iv) and (v) of Lemma imply that
we have that (Q~ U Q7T) + 4k C Ry. Part (iii) of Lemma implies that 4k € Ry.
Then, parts (i) and (i) of Lemma[2.3.1]imply that (Q~ U Q" U{0}) + tk C R, for any
t€{6,7,...,|2] — 1}. This implies that we have RoN[u,u+k—1] > |Q-UQTU{0}|
for any u € [6k,m — k — 1].

Notice that @~ U QT contains at least one element from each of the sets {1,k —
1},..., { LgJ , [%1 } This implies that for every u € {6k,...,m — k — 1} we have

k

|Ro N [u,u+k—1]| > Q- UQTU{0}] > EJ +1>§.
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Similarly we obtain |R,, N [u,u + k — 1]| > £ for every u € {k,...,m — 7k}. By
choosing u = 6k, we have that |Ry N [6k, 7k — 1]|, |R,, N [6k, 7k — 1]| > £, and hence
there exists some i € [6k, Tk — 1] such that i € Ry, R,, hold. This gives us f([0,m]) =

f([0,7]) + f([i +1,m]) < 0, proving the claim. O

We now prove the theorem. Suppose that every interval of order 14k in H,, j, contains

_n_

14k
have at least k* nonnegative edges in H,,x, contradicting our initial assumption that

ef (Hnx) < k(k —1)%

Suppose that there is an interval I of order 14k in H, j which contains only neg-
ative edges. Applying Claim to V(Hnx \ I) we obtain an interval J C I such
that f(V(Hnx) \ J) < 0 and |J| > 12k. Applying Claim to J we obtain that
f(J) < 0. Therefore, we have f(V(H,x)) = f(J) + f(V(Hnr) \ J) < 0 contradicting
the assumption that f(V(#H,x)) > 0 in the theorem O

a nonnegative edge. Since there are at least > k? such disjoint intervals in H,, 1, we

It is not hard to see that Claim 2.4.3 would still be true if we allowed I to contain
a small number of nonnegative edges. The proof of Theorem is similar to the
proof of Theorem [2.4.1] since it also consists of two main claims which are analogues of
Claims [2.4.2| and [2.4.3] However the analogue of Claim is much stronger since it

allows for O(k?®) nonnegative edges to be contained in 7. This is the main improvement

in the proof of Theorem [2.4.1| which is needed to obtain the linear bound which we have
in Theorem 2.1.4]

2.5 Proof of Theorem [2.1.4

In this section we use ideas from Sections 2.3 and 2.4l in order to Theorem 2.1.41

Proof of Theorem [2.1.4]. For convenience, we fix the following constants for the dura-
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tion of the proof.
Co=10"% ¢ =10
Cy, =110 € = 10718
Cy =10 e =106
C3 =28 €5 = 1072
e, =0.1
€5 = 0.25

Let n > Cpk, and let H,, ;, be the hypergraph defined in Section . Recall that for
any vertex v € V(H,, 1), we have |E(v)| = O(k?).

Definition 2.5.1. We say that a vertez v in H, 4 is bad if at least egk? of the edges in

E(v) are nonnegative and good otherwise.

Let Gy be the set of good vertices in H,, .
Suppose that we have a function f : V/(H, ;) — R such that we have e} (Hnx) <
k(k —1)?. We will show that f(V(Hnx)) < 0 holds. The proof of the theorem consists

of the following two claims.

Claim 2.5.2. Let I be an interval in Z,, such that |I| < n—4Csk. There is an interval
J = [j1, Ji] which satisfies the following:

(i) |J| < || +4Cqk.
(i) ICJ.
(iii) Both j;1 — 1 and j, + 1 are good.
(iv) f(J) <O.
Claim 2.5.3. Let I = [iy,iy,] be an interval in Z,, which satisfies the following:
(i) Cak < |I] < (Cy +4Cy)k.
(ii) Both iy and i,, are good.

(iii) Fvery subinterval of I of order k, contains at most €1k bad vertices.
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We have that f(I) < 0.

Once we have these two claims, the theorem follows easily:

First suppose that no intervals in Z, of order (C5 + 4Cs)k satisfies condition (iii)
of Claim [2.5.3] This implies that there are at least e;Cok/(Cs + 4Cs) bad vertices in
H, k. Then Claim together with the definition of “bad” implies that there are at
least epe; Cok® /C1(C3 +4C5) nonnegative edges in H,, .. However, since ege;Co/C1(Cs+
4C5) > 1, this contradicts our assumption that e (H,x) < k(k — 1)

Now, suppose that there is an interval I of order (C3 + 4C5)k which satisfies condi-
tion (iii) of Claim[2.5.3] Notice that all subintervals of I will also satisfy condition (iii) of
Claim[2.5.3] Applying Claim [2.5.2to V(H,,x) \ I gives an interval J C I which satisfies
all the conditions of Claim and also f(V (Hnr)\J) < 0. Applying Claim[2.5.3/to .J
implies that we also have f(J) < 0. Wehave }_ 5 f(v) = f(V(Hap)\J)+f(J) <O,
contradicting our initial assumption and proving the theorem.

It remains to prove Claims [2.5.2) and [2.5.3]

Proof of Claim[2.5.3. Without loss of generality, we may assume that I is the interval
[0, 2km + ] for some [ € [0,2k — 1] and m < 5z — 2C,. We partition [1, 2k] into two

sets as follows.

Definition 2.5.4. Forr € [1,2k] we say that r is unblocked if for everyt € [—Csy, m+
Cs), there are some i,j € [1,k — 1] such that both of the edges e(2tk + r,i,7) and
e(2tk +r 41,5,k — i) are negative. We say that r is blocked otherwise.

Notice that if r is unblocked, then for every t; € [—C5,0] and ty € [m,m + Cs]
we have that f([2t1k + r,2tsk +r — 1]) < 0. Therefore the claim holds unless either
2t1k + r — 1 or 2tk + r is bad. Therefore, for each r which is unblocked, we can
assume that all the vertices in either {r — 1 — 2kCy,r — 1 —2k(Cy — 1),...,7 — 1} or
{r+2km,r +2k(m+1),...,r 4+ 2k(m + Cs)} are bad.

To each r € [1,2k], we assign a set of nonnegative edges, P(r), as follows:

e If r is blocked, then there is some t, € [—Cy, m + Cy], such that for every i,j €
[1,k—1] one of the edges e(2t,k+r,1,j) or e(2t,k+r-+i, j, k—1) is nonnegative. We
let P(r) be the set of these edges. Notice that this ensures that |P(r)| > (k—1)2
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Also, note that for fixed a,b,c the P(r) can contain at most one edge of the form
e(a + 2tk,b, c) for any t € [-Cy,m + Cy].

e If r is unblocked we know that all the vertices in either {r — 1 — 2kCy,r — 1 —
2k(Cy—1),...,r—1} or {r+2km,r+2k(m+1),...,r+2k(m+Cs)} are bad. Let
P(r) be the set of nonnegative edges in E(r —1—2kCy)UE(r—1—2k(Cy—1))U
UE(r—=1)UE(r+2km)UE(r+2k(m+1))U---UE(r+2k(m+ Cs)). Since
at least (5 of these vertices are bad, Lemma together with the Pigeonhole
Principle implies that |P(r)| > 00%1/62.

Notice that an edge e can be in at most 2 of the sets P(r) for r blocked. This is
because it can be in at most one such set as an edge of the form “e(tk 4 r,,7)” and in

at most one such set and as an edge of the form “e(tk + r + 4, j,k — i)”. Therefore we

U P

r blocked
Lemma implies that an edge e can be in at most C; of the sets P(r) for r

unblocked. Therefore we have:

U po

r unblocked

have:

> ) %(k—l)Q (2.1)

r blocked

Cyeg 2
> .
> Y 2 (2.2)

2
r unblocked ( 1)

We claim that for any s € [1, 2k], we have

U E(s+2tk) m( U P(T)) < 2|E(s)]. (2.3)

te[—Co2,m+C>) r blocked

Indeed, otherwise the Pigeonhole Principle implies that for some r € [1, 2k], t1, o,
ty € [-Co,m+Cy), and i, j € [1, k—1] we have three distinct edges e(r+2t1k, i, j), e(r+
2tok, 1, j), and e(r+2tsk, 4, j) which are are all contained in (Ute[_C%mJFCQ] E(s+ th)) N

(UT blocked P(r)). This means that there are some 71, 73, and r3 € [1,2k] which are
blocked, such that e(r + 2t;k,4,j) € P(r;) holds for [ = 1, 2 and 3. Since each r; is
blocked, all the edges in P(r;) are of the form e(2t'k+r,4', j') or e(2t'k+r,+74', 7', k—1)
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for some ¢’ € [-Cy,m + Cy] and ¢, j' € [1, k — 1]. This, together with e(r + 2t,k, 1, ) €
P(r;), implies that we have r1, 79,73 € {r,r —k+ j}. This means that for some distinct
[,I' € {1,2,3}, we have r; = rp, which means that both e(r+2t,k, 7, ) and e(r+2t;k, i, j)
are contained in P(r;). However, this contradicts our definition of P(r;) for r; blocked
which allowed only one edge of the form e(r+2tk, i, j) to be in P(r;) for fixed r, i and j.
This shows that holds for all s € [1, 2k].

Recall that for all vertices s we have |F(s)| < C1k%. This, together with implies

that we have

( U P(s))ﬂ( U P(r))
s unblocked r blocked

< U E(s+2tk) m( U P(@)

s unblocked, r blocked
te[~C2,m+Co]

< Y 2B

s unblocked

< ) 200k (2.4)

s unblocked

Putting (2.1)), (2.2), and (2.4)) together, we obtain:

UJ P U PpPw) —‘( U P@))m( U P(r))‘

r blocked r unblocked
1 2 CQEQ 2 2
=Y SE— 17+ > (Cl)zk — > 204k

r blocked r unblocked s unblocked

e}i_ (Hn,k) Z +

1 1
> - . 2 - 1.2
> ) Sk =1+ > Sk
r blocked r unblocked
> k(k —1)% (2.5)
Coeg

The second last inequality follows from 204 > % The last inequality follows

cn?
from the fact that “the number of blocked vertices” + “the number of unblocked ver-

tices” = 2k. However ([2.5) contradicts the assumption that there are less than k(k—1)?

nonnegative edges in H,, 5, proving the claim. O]

It remains to prove Claim [2.5.3
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Proof of Claim[2.5.3. Without loss of generality, we can assume that I = [0,m] for
some m < (C3 4+ 4Cy)k.
Recall that we are using notation from additive combinatorics for sumsets and trans-

lates. Except where otherwise stated, sumsets will lie in Z. For a set A C Z, define
Amod (k) ={b€ [0,k —1]:b=amod (k) for some a € A}.
For each vertex v, we define a set of vertices R(v) contained in 1.
R(v)={uev+1,m]: f([v,u—1]) <0 and u is good.}
R(v) has the following basic properties.
Claim 2.5.5. The following hold.
(i) If u>v and u € R(v), we have R(u) C R(v).

(ii) Suppose that t > 2 and we have a set X C R(v) N [w,w + 2k — 1], for some
vertex w. There is a subset X' C X, such that we have |X'| > | X| — 2¢1kt and
X'+ t'k C R(v) for every t' € {2,...,t}.

(iii) Suppose that we have X C [0, 2k — 1] such that X +tok C R(0) for some ty. There
is a subset X' C X mod (k), such that X'+ (to+3)k C R(0) and | X'| > | X|—6€k.

(iv) Suppose that we have X C [w,w + k — 1] N R(0) for some w. Then for any
v > w + 2k, we have we have |[R(0) N [v,v+k —1]| > |X| — 2¢1(v —w + 1)k.

Proof. (i) This part is immediate from the definition of R(v).

(ii) First, we deal with the case when ¢ = 2 or 3. The general case will follow by

induction.

Suppose that we have x € X. Since z is good, Lemma [2.3.2 implies that there
are at most egC1k? pairs 4, j for which E(z,4,7) contains a nonnegative edge.

Therefore, since €xC7 < 1, there must be at least one pair g, jo for which all the

42



edges in E(z,ig,jo) are nonnegative. Combining this with parts (i) and (ii) of

Lemma [2.3.1] implies that we have

f(v,z+ 2k = 1]), f(Jv,z + 3k — 1]) < 0. (2.6)

If t = 2 we let X’ = X N(Gy — 2k). The identity [2.6)implies that X'+ 2k C R(v).
By condition (iii) of Claim [2.5.3] we know that there are at most 2¢;k bad vertices
in [w + 2k, w + 4k — 1], which implies that | X'| > |X| — 2¢1k.

Similarly, if ¢ = 3 we let X’ = X N (Gy —2k) N (G — 3k). The identity [2.6)implies
that X’ + 2k, X’ + 3k C R(v). By condition (iii) of Claim we know that
there are at most 3¢,k bad vertices in [w + 2k, w + 5k — 1], which implies that
| X' > | X| — 3eik.

Suppose that the claim holds for t = ¢, for some t;, > 3. We will show that
it holds for t = ty + 1. We know that there is a set X' C X + tgk, such that
we have |X'| > |X| — ekty and X' +t'k C R(v) for t' = 2,...,t,. Applying
the t = 2 part of this claim to X’ + tpk we obtain a set X” C X’ such that
| X" > | X' —erk > | X| — e1k(to+ 1) and also X" + (to+ 1)k C R(v). This proves

the claim by induction.

(iii) Apply part (i) to X + to with ¢ = 3 to obtain a set X’ with |X'| > |X| — 3¢,k
and X' + tok + {2k, 3k} C R(0). Let X” = X’ mod (k) to obtain a set satisfying
X" C X mod (k) and |X"| > |X mod (k)| — 3e1k. We have that X" + t; + 3k =
(X'N[0,k—=1]4+to+3k)U (X' N[k, 2k —1]+to+2k) C X'+t + {2k, 3k} C R(0).

(iv) Apply part (i) to X with ¢ = [%%] + 1 to obtain a set X’ with |X'| > |X]| —

1 ([252] 4 1) and X'+ £ € R(O) for any ¢ = 2,.... (|52 + 1) k. For any

x € X', either x + [ 22| k or 4+ (|%2%] +1) k is in [v,v + k — 1] N Ry, which

implies that |R(0) N [v,v +k —1]| > |X'| > | X| —e1(v —w + 1)k.

]

To every vertex v € I and € > 0, we assign sets Q7 (v), Q7 (v), Q(v) C [1,k — 1] as

€

follows.
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Q-(w)={je[lLk—1]:f(v+i,v+i+j—1]) <0

for at least ek numbers i € [1,k — 1]}
Qfw)y={k—jelk—1]: f(v+iv+i+j—1]) >0

for at least ek numbers i € [1,k — 1]}
Qe(v) = Q- (v) UQ: (v) U {0},

Q.(v) has the following basic properties.
Claim 2.5.6. The following hold.
(i) For any r € [0,k], we have Qa(v) C Qc(v —r) U Qc(v — 1+ k).

(ii) Fore< s,z € [l,k—1], and v € I either x or k —x is in Q(v).

N[

(iii) For e < 3 and v € I, we have |Q.(v)| > 3k.

Proof. It j € Q.(v), then there are at least 2ek numbers i € [1,k — 1] for which
f(Jv+i,v+i+j—1]) < 0. For every r € [0, k] the Pigeonhole Principle implies that there
must either be at least ek numbers ¢ € [1, k—1] for which f([v—r+i,v—r+i+j—1]) <0
or at least ek numbers i € [1, k — 1] for which f(jv—r+k+i,v—r+k+i+j—1]) <O0.
Therefore we have Q5. (v) C Q- (v — r) U Q7 (v —r + k). Similarly we obtain Q3 (v) C
QF (v —=r)UQf (v —r+ k) which implies part (i).

Part (ii) is immediate from the definition of Q.(v). Part (iii) follows from (ii). [

The following claim shows that for a good vertex v, there is a certain translate of
Qe (v) which will nearly be contained in R(v).

Claim 2.5.7. For any good vertex v satisfying 0 < v < m — bk, there is a Q' C Q¢ (v)
such that |Q'| > |Qe (V)| — €2k and we have

Q' + 4k +v C R(v).
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Proof. Let T' C [1,k — 1] be the set of j € [1,k — 1] for which there are at least esk
numbers ¢ € [1,k—1] such that E(v,1,j) contains a nonnegative edge. We have at least
|T|esk pairs i,j € [1,k — 1] for which E(v,1,7) contains a nonnegative edge. Since v is
good, Lemmaimplies that at most €;C1k? of the sets F(v, 1, j) contain nonnegative
edges for 7,5 € [1,k — 1]. Therefore, we have |T'|esk < ¢oC1k?. We define the set @)’ as

Q/

(Qe W\ T) U(QL () \T) U{0}) N (Gy — 4k).

First we prove Q' +4k 4+ v C R(v). Suppose that we have j € Q_ (v) \ 7. From the
definition of T', there are at at more than k — 1 — esk numbers i € [1, k — 1] such that all
the edges in E(v,1, j) are negative. From the definition of @ (v), there are at least esk
numbers ¢ € [1, k— 1] such that [v+i,v+i+ j — 1] is negative. Therefore, there is some
i € [1,k—1] such that all the edges in F(v,1, j) are negative and also [v+i,v+i+j—1]
is negative. Part (iv) of Lemmal[2.3.1]implies that we have f(v,v+4k-+j—1) < 0 and so
(Q, (V\T+4k+v)NGy € R(v). Similarly, using part (v) of Lemma , it is possible
to show that (QF (v) \ T+ 4k +v) N Gy C R(v). Finally, part (iii) of Lemma
implies that we have ({0} + 4k + v) N Gy C R(v), and hence Q' + 4k + v C R(v).

Now we prove |Q, (v)| — €2k. Since |T'| < ¢yC1k/e5, we must have

eoC
Qe TI 2 1Qus(v)] = =—F. (27)
Condition (iii) of Claim implies that
Q' > |Qes (V) \ T| — 1. (2.8)

Now, (2.7)), (2.8) and €2 > ¢yC /e5+€; imply |Q'| > |Qc, (v)|—€2k, proving the claim. [
Definition 2.5.8. For S C A x B we define

A+sB={a+b:(a,b) € S}.

The following claim shows that for a certain large set S, a translate of Q. (0) +g
(Qae, (Tk) is contained in R(0).
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Claim 2.5.9. Thereis a set S C Qc,(0) X Qae; (Tk) such that | S| > |Qe; (0) X Qe (TK)| —
e2k? and we have

(Qes(0) +5 Q25 (Tk)) + 13k C R(0).

Proof. For every good vertex v € I, Claim combined with part (i) of Claim [2.5.5]
implies that there is a set @, C @, (v) such that we have @, +v+ {6k, 7k} C R(v) and

also
Qo] 2 [Qe; (V)] — (Ter + e2)k. (2.9)

Now, part (i) of Claim implies that we have

U R(v) C R(0). (2.10)

vER(0)N[6k,8k—1]

Combining @, + v + {6k, 7Tk} C R(v) with (2.10) implies that we have

U Qi+ v+ {6k7k}) C R(0). (2.11)

vE(Qo+{6k,7k})

We let
S ={(a,b) € Qc;(0) X Qac;(Tk) : a € Qo and b € Quyex U Qurrr}-

The identity (2.11)) implies that we have
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Qe;(0) +5 Qo (Th) + 13k = {a+b: a € Qp and
b€ (Qayer U Qayrr) N Q2 (Th)} + 13K
C{a+b:aeQpand b€ Quiper UQuiri} + 13k

=< U Qa+a+7k)u< U Qa—l—a+6k)

a€Qo+6k a€Qo+Tk

c U (Quta+{6k 7k}

a€(Qo+{6k,7k})
C R(0).

Now we prove |S| > |Q (0) X Qa. (Tk)| — e2k*. Notice that for each a € [0,k — 1],
part (i) of Claim implies

Qae; (Tk) C Q. (a + 6k) U Q. (a + Tk) for all a € Q. (0). (2.12)

The identity (2.12) combined with (2.9) and @, C Q.. (v) implies that for all a €
[1,k — 1] we have

|(Qaror U Qasrrr) N Qacs (TR)| 2 [(Qes (@ + 6k) U Qs (@ + TE)) N Qs (TK)]
— 1461 -+ 262)k

= |Q2e; (TK)| — (1461 + 2€) k.
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This gives us

|S’ = Z ’(Qa+6k U QaJr?k) N Q265 (U)|

a€Qo

> Z <|Q2e5(7k)‘ — (146, + 262)k>

a€Qo
> (1Qer(0)] = (Ter + e2)k ) (1Qes(Th)| = (1461 + 262)k )
> |Q65(0) X Q2€5(7k)| - (2161 + 362)]{32
> Qe (0) X Qo (TK)| — 3K%.

The second last inequality follows from |Q,(0)|, |Q2(7k)| < k. The last inequality
follows from e% > 21e; + 3es. O

Claim [2.5.9]is combined with the following.

Claim 2.5.10. Suppose that A and B C Zj,, and satisfy that for any x € Zj, , either x or
—x € A and either x or —x € B. Let S C AX B be a set satisfying |S| > |A x B| —e3k?.
We have

1
|A+g B| > (5—1-64) k.

When £ is prime, Claim [2.5.10| follows from a theorem due to Lev [38], which itself
is closely related to a theorem due to Pollard [47]. In order to prove Claim [2.5.10, we

will need some results from additive combinatorics. We define
(A+ B); ={x € Zy : * = a+ b for at least i distinct pairs (a,b) € A x B}.

Notice that we have (A + B);11 € (A+ B);.
The proof of Claim [2.5.10| will use the following theorem due to Grynkiewicz.

Theorem 2.5.11 (Grynkiewicz, [25]). Let A and B C Zy, and t < k. We have one of
the following.
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(i) The following holds.

t
> [(A+ B)i| > t|A| +t[B| — 2> + 1. (2.13)

i=1
(ii) There are sets A’ C A and B’ C B such that |[A\ A'|+ |B\ B'| <t—1 and we
have A’ + B' = (A + B);.
We define the stabiliser of a set X € Zj to be Stab(X) ={y € Zy : y+ X = X}.

We use the following theorem due to Kneser.

Theorem 2.5.12 (Kneser, [37]). Let A and B C Zjy and H the stabiliser of A+ B
in Zy,. We have
|A+B| > |A+ H|+|B+ H|— |H]|. (2.14)

Sumsets in Claim [2.5.10, Theorem [2.5.11] and Theorem [2.5.12| are all in Z,,.

Proof of Claim[2.5.10. Notice that since x or —x € A, B, we must have |A|, |B| > %k .

Our initial goal will be to show that we have
1
|(A+ B)egk| > (5 + €4+ 63) k. (2.15)

Apply Theorem [2.5.11]to A and B with t = 2e3k. We split into two cases, depending
on which part of Theorem [2.5.11] holds.

i) Suppose that (2. olds. Since we are working over Zj in this claim, we have
) S hat (2.13) holds. Si ki 7, in this clai h
|(A+ B);| < k. Combining this with (2.13) implies

2e3k esk—1
> 1A+ Byl = 2epk(|A] + |B| — desk) +1— 3 [(A+ B)|
izegk =1

> egk:<2|A| Y o|Bl - (1+ 863)k>.
This, together with (A + B);+1 C (A + B); implies that we have
(A4 Blug| > 20A] + 2B — (1 + Sex)k.
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The identity ([2.15) follows since we have |A],|B| > 1k and 1 —8e3 > 1/2+ €4+ €.

(ii) Suppose that we have two sets A" and B’ as in part (ii) of Theorem [2.5.11] Apply
Theorem 2.5.12 to the sets A’ and B'.

Note that [A\ A'|+|B\ B'| <t—1 together with (2.14) and |A|, |B| > 3k implies

that we have

(A4 Besi| 2 [(A + B)acsi

=|A"+ B'|

> |A"+ Stab(A" + B')| + |B' + Stab(A’ + B')| — |Stab(A" + B')|
(2.16)

> |A| + |B| — |Stab(A" + B')| — 2esk

> (1 —2e3)k — |Stab(A' + B')|. (2.17)

If |Stab(A' + B')| < 3k, then (2.15) follows (2.17) combined with 1 —2e3 —1/3 >
1/2 + €4 + €3.

Otherwise, Lagrange’s Theorem implies that Stab(A’ + B’) is either all of Z; or
that k is even and Stab(A'+ B’) is the set of even elements of Zy. If Stab(A'+B') =
Zy, holds, then we have A'+ Stab(A'+ B') = B'+Stab(A'+ B') = Zj. Substituting
this into implies that we have |(A + B)e,x| = k and so holds.

Suppose that Stab(A’ + B’) consists of all the even elements of Zj;. Since for
every x, either x or —x € A, there are at least }lk even elements in A, and at least
+k odd elements in A. Therefore, since |A’| > |A] —2e3k, A’ must contain an even
element and an odd element. This implies that A'+ Stab(A’+ B') = Zj,. Similarly
B' + Stab(A' + B') = Zg. Thus implies that we have |(A + B)x| = k and

so ([2.15)) holds.

Now, we use (2.15)) to deduce the claim. Let T'= (A + B)x \ (A +s B). We have
|A+s B| 4+ |T| > |[(A+ B)ek|- Notice that from the definition of (A + B),, we have
esk|T| +|S| < |A x B|. This, combined with (2.15) and |S| > |A x B| — €2k* implies
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that we have

|A+s B| > [(A+ B)egk| — |7
1

> [(A+ B)egr| — E_?E(’/4 x Bl —[S])
3

2 (A4 B)ek| — €3k

1
> (5 +€4) k.

Claims[2.5.9 and [2.5.10| cannot be directly combined since sumsets in Claim[2.5.9]are
in Z whereas sumsets in Claim [2.5.10| are in Zj. However, Claim [2.5.9 gives us a set .S
such that [S| > |Qe; (0) X Qae; (Tk)| —€2k? and we have (Qc; (0)+5Qae; (Tk)) +13k C R(0).
Part (iii) of Claim implies that there is a subset Q" C (Qe, (0)+5 Q2 (7k)) mod (k)
such that Q' 4+ 16k C R(0) and we have

]

Q' > [(Qes(0) +5 Qaes (TK)) mod (k)| — 3erh. (2.18)
By Claim and part (i) of Claim [2.5.6] we have
|<Q€5 (O) +g Q255(7k)) mod (k’)| > (% + 64) k. (219)

Combining (2.18)) and (2.19) implies that |R(0) N [16k, 17k — 1]| > (1/2 + €4 — 3) €1k.
Applying part (iv) of Claim implies that for any w € I, we have

|R(0) N [w,w+k—1]] > (%—Fq—el (%+4)>k.

Combining this with m < (4C5 + C3)k gives

1
IR(0) N [m — 17k, m — 16k — 1]| > (5 + e — e (4Cs + Cy + 4)) . (2.20)
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We can define R~ (v) = {u € INGy : f([u+ 1,v]) < 0}. By symmetry, we obtain
1
|R™(m) N [m — 17k, m — 16k — 1]| > (5 bey— 361> k. (2.21)

Now, (2.20)), (2.21)), and €4 > €;(4Cy + C3 + 4) imply that we have

1
|R(m) N [m —17k,m — 16k — 1]| > §k’

1
|[R~(m) N [m — 17k, m — 16k — 1]| > Ek

Therefore, there is some v € [m—17k, m—16k—1] such that v € R(0) and v—1 € R~ (m).

By definition of R(0) and R(m) we obtain f(I) < 0. O
As mentioned before, Claims [2.5.2] and [2.5.3| imply the theorem. n

2.6 Discussion

In this section we discuss some further directions one might take with our approach to

Conjecture [I.1.1]

e The constant 10%6 in Theorem can certainly be improved by being more
careful in the proof. The main question is whether a better choice of hypergraphs
H, . can lead to a solution to Conjecture It is not clear what kind of
hypergraphs one should look for. Although in the above theorem, the hypergraphs

H.,, . are quite sparse, this does not seem to be crucial in the proof.

e The constant “10%” cannot be reduced to “4” in Theorem without changing
the graphs #H,, ;. Indeed for large k, the graphs Hsx—1)x do not have the MMS-
property. To see this, consider the following function f: V(G) — R.

fi)=k—=2ifi=0 (mod k—1),
fi)=—=1ifi#£0 (mod k—1).
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It is easy to see that we have erV(G) f(z) = 0. For two vertices ¢ and j let

The number of edges of Hs(,—1), containing 7 and j  if ¢ # 5
0 if i = j.

p(i, j) =

The graph Hs(—1),, has five nonnegative vertices 0, k—1,2(k—1),3(k—1),4(k—1).
An edge e € Hs(,—1), is nonnegative if and only if e contains at least two of these

vertices. Therefore the number of nonnegative edges in Hs—1) 1 is at most

1
5 2. P =50,k —1)+5p(0,2(k 1) (222)
i,5€{0,k—1,2(k—1),

3(k—1),4(k—1)}

Notice that an edge e(—v, 1, j) contains both 0 and k£ — 1 if and only if we have

i>v41, (2.23)
j>w, (2.24)
i+j>v+k—1. (2.25)

It’s easy to check that the number of triples (v, 4, j) which satisfy (2.23) — ([2.25])
is less than ¢k® + o(k?), which implies that p(0,k — 1) = 3k + o(k?).

The only edges Hs(—1),, which contain 0 and 2(k — 1) are of the form e(0,4,k —1)
for some 4, so we have that p(0,2(k — 1)) = k — 1. Therefore, there are less than
213+ o(k?) nonnegative edges in Hs(x—1), which is smaller than k(k—1)? for large

enough k.

The above argument shows that the constant “10%%” in Theorem cannot be
reduced to less than 5. This shows that Conjecture [1.1.1] cannot be solved by
the argument we used in this chapter without changing the graphs H,, 5 to some

other construction.

We conclude with the following general problem.

Problem 2.6.1. Which hypergraphs have the MMS-property?
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This problem is probably quite hard, since a solution to it would mean a gener-
alization of Conjecture [1.1.1, However, perhaps looking for hypergraphs which
have the MMS-property would lead to improved bounds on Conjecture [I.1.1]
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Chapter 3

Edge growth in graph powers

3.1 Introduction

Recall that the rth power of GG, denoted G", is the graph with vertex set V(G), and zy
an edge whenever x and y are within distance r of each other. One would expect that
when r < diam(G), then G" has substantially more edges than G. In this chapter we
study how small the ratio e(G")/e(G) can be for regular graphs GG. The motivation for
studying this comes from the following consequence of the Cauchy-Davenport Theorem

mentioned in the introduction.

Corollary (Cauchy, Davenport, [I1], 13]). Let p be a prime, G the Cayley graph
of a set A C Z,, and r an integer such that r < diam(G). Then we have

e(G")

) > 7. (3.1)

One could ask whether inequalities similar to (3.1)) hold for more general families
of graphs. Motivated by the fact that Cayley graphs are regular, Hegarty asked this

question for regular graphs and proved the following theorem.

Theorem m (Hegarty, [34]). Let G be a regular, connected graph, which satisfies
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diam(G) > 3. Then we have

>1+e (3.2)

Where € ~ 0.087.

In Section we give an alternative proof of this result with an improved constant
of e = %. DeVos and Thomassé subsequently improved the constant further to e = Z% [6].
The value € = % is optimal in a sense that there exists a sequence of regular graphs of
diameter greater than 3, Gy, satisfying e(G%)/e(G,,) — % as m — oo [6].

It is natural to ask what happens for other powers of G. For G2, Hegarty showed
that no inequality similar to can hold for regular graphs in general, by exhibiting
a sequence of regular, connected graphs of diameter greater than 2, G,,, satisfying
e(G2)/e(G) — 1 as m — oo [34]. See Figure [3.1] for examples of sequences of graphs
which have this property. Goff [23] studied the 2nd power of regular graphs further.
He showed that for any d-regular graph connected graph G such that diam(G) > 2,
we have ¢(G?)/e(G) > 1+ 2 — o(%). For general d-regular connected graphs G with
diam(G) > 2, he showed that the 2 term in this result cannot be replaced with A/d for
any A > % However he showed that with the exception of two families of exceptional
graphs, we have e(G?)/e(G) > 1+ 2 — o(%) for all d-regular connected graphs with
diam(G) > 2.

In Section we consider the case when r > 4 and determine how small the ratio

e(G")/e(G) can be in this case for a regular, connected graph G

Theorem 3.1.1. Let G be a connected, reqular graph, and r a positive integer such
that diam(G) > r.

e [fr=0 (mod 3), then we have

e(G") - r+3 3
e(G) — 3 2(r+3)

o I[fr#0 (mod 3), then we have




K2m +1 K2m K2m K;m -[{2111 Kva +1

Figure 3.1: Graphs showing the optimality of the cases “r = 8” and “r = 6” of
Theorem [3.1.1] The grey circles represent complete graphs of specified order. The
black lines between the sets represent all the edges being present between them. The
white cycle in the “r = 8” case represents a single cycle passing through all the
vertices in the specified sets being removed. The white matchings in the “r = 6”
case represent a perfect mathing being removed from the specified sets. The “r = 8”
example also shows that no identity of the form e(G?)/e(G) > 1 + € for € > 0 holds
in general for all regular, connected graphs of diameter greater than 2.

The case r = 3 of Theorem [3.1.1]is due to DeVos and Thomassé [6], and will not be
proved here.

Theorem [3.1.1] gives a lower bound on the ratio e(G")/e(G) for regular graphs. The
bounds on e¢(G")/e(G) in Theorem are optimal in the following sense. For each r,
there exists a sequence of regular, connected graphs of diameter at least r, G,,, such
that e(G7,)/e(G,,) tends to the bound given by Theorem as m tends to infinity.
See Figure for a diagram of the sequences that we will construct.

For r # 0 (mod 3), we construct the following sequence of graphs G,,. Take disjoint
sets of vertices Ny, ..., N, with [N;] =m —1if i =1 (mod 3) and |N;| = 2 otherwise.
Add all the edges between N; and N;yq fori =0, 1, ..., r—1. Add all the edges within
N; for all i. Remove a cycle passing through all the vertices in Ny U...UN,_;. It is easy
to see that G,, is m-regular and of diameter 7. If r = 1 (mod 3) then |G| = §(rm —

m + 3r — 3) will hold. Since G, is m-regular, we have e(G,,) = &(rm —m + 3r — 3)m.
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Since G7, is complete, we have e(Gr) = & (rm —m + 3r — 3)(rm — m + 3r — 4). This

implies that e(G7,)/e(G) — [£] as m — co. A similar calculation can be used to
show that the same limit holds when r = 2 (mod 3).

For r = 0 (mod 3), we construct the following sequence of graphs G,, to show
that Theorem is optimal. Take disjoint sets of vertices Np, ..., N.y1. Let |Ng| =
|N;t1] =2m+1, |N;| =1if i =2 (mod 3), and |N;| = 2m otherwise. Add all the edges
between N; and N;,q for i =0, 1, ..., r. Add all the edges within N; for all i. Delete
a perfect matching from each of the sets Ny and N,. This will ensure that G,, is 4m-
regular and has diameter r 4 1. Note that |G, | = +(4rm-+r+12m+6), and so we have
e(Gm) = g(4rm+r+12m+6)4m. The only edges missing from G7, will be between N,
and N, 1, so we have e(G,) = (g(4rm+r+12m+6)(4rm+r+12m+5) — (2m+1)2.
This implies that e(G7,)/e(Gp) — =2 — ﬁ as m — oo. This construction is a
generalization of one from [6].

The requirement of G being regular in the above theorems is quite restrictive. Fol-
lowing [6], we will instead assume that G' has minimum degree 0(G), and give the

following bound on e(G") in terms of |G| and §(G).
Theorem 3.1.2. Let G be a connected graph, and r a integer such that diam(G) > r.
e [fr=0 (mod 3), then we have

., r+3 3
(&) 2 ( 6 4(r+3)

> 5(G)|G).

o I[fr#0 (mod 3), then we have

1rr
RN (Ele
(@) = 5 [5] 5@l
The case r = 3 of Theorem is due to DeVos and Thomassé [6], and will not be
proved here. Theorem [3.1.2] immediately implies Theorem [3.1.1].
The structure of this chapter is as follows. In Section we give an alternative

proof of Theorem with an improved constant of € = ¢. In Section [3.3[ we prove
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Theorems|3.1.1land [3.1.2] In Section we discuss some related results and conjectures

in the area of edge growth in graph powers.

3.2 Cubes

In this section we prove the following theorem.

Theorem 3.2.1. Suppose G is a reqular, connected graph with diam(G) > 3. Then we

have

e(G?) > (1 + %) e(G).

Proof. Let the degree of each vertex be d. Note that as G is regular, and not complete,
every v € V(G) will have a non-neighbour in G. Together with connectedness this
implies that each v € V(G) has at least one new neighbour in G?. This implies the
theorem for d < 6. For the remainder of the proof, we assume that d > 6.

The proof rests on the following colouring of the edges of GG: For an edge uv in G,

colour

wv red if |[N(u) N N(v)| > =d,

uv blue if |[N(u) N N(v)| < =d.

WD Wl N

Notice that if uv is a blue edge, then there are at least %d — 1 neighbours of u
in G?. This is because u will be connected to everything in N(u) U N (v) except itself,
and |N(u) U N(v)| > 3d for uv blue. If, in addition, we have some z connected to u
by an edge (of any colour), then x will be at distance at most 3 from everything in
N(u)UN(v)\ {z}. Hence z will have at least 3d — 1 neighbours in G®.

Partition the vertices of GG as follows:

B ={v € V(G) : v has a blue edge coming out of it}, (3.3)
R={veV(G):v ¢ B and there is a u € B such that wv is an edge}, (3.4)
S=V(G)\ (BUR). (3.5)
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By the above argument, if v is in BU R, then v has at least %d— 1 neighbours in G®.
Recall that since G is d-regular, connected and non-complete each u € S will have at

least d + 1 neighbours in G®. Summing these two bounds over all vertices in G, gives
3 4
2e(G°) > gd—l |BUR|+ (d+1)|5]

:(%ﬂ&)@uRkwd+nUWGN—BuRD

— 5@+ 5 (1BURI- 3IVE) ) (@0

- ge@)+ 5 (1BURI = Jv@) ) -6,

Recall that we are considering the case when d > 6. Thus to prove that e(G®) >
Ze(@), it suffices to show that |BU R| > £|V(G)|. To show this we shall demonstrate
that |S| < |R|. First we need a proposition helping us to find blue edges in G.

Proposition 3.2.2. For any v € V(G) there is some b € B such that d(v,b) < 2.

Proof. Suppose d(v,u) = 3. Then there are vertices x and y such that {v, z,y,u} forms
a path between u and v. We will show that one of the edges vz, xy or yu is blue.
This will prove the proposition assuming that there are any blue edges to begin with.
However, it also shows the existence of blue edges because diam(G) > 3.

So, suppose that the edges vax and uy are red. Then we have |N(v) N N(z)| > %d,
and [N (u) N N(y)| > 2d. Using this and N(u) N N(v) = 0 gives

[N (2) UN(y)| = |(N(x) U N(y)) N N(v)| + [(N(z) UN(y)) 0N (u)|
> [N(z) AN ()] + [N (y) NN (u)]

4
> —d.
3

Therefore |N(z) N N(y)| = 2d — [N(z) U N(y)| < 2d. Hence xy is blue, proving the

proposition. O
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Now we will show that |S| < |R|. Suppose r € R. By the definition of R, there
is a b € B such that rb is an edge. This edge is necessarily red as r ¢ B. Using
N(b) € BU R,we have |[N(r) N (BUR)| > |N(r) N N(b)| > 2d. Hence

IN(F) S| < %d. (3.6)

Suppose s € S. Proposition implies that there is some r € R such that sr
is an edge. Since sr is red, we have |[N(s) N N(r)| > 2d. Using this, the fact that

N(s) C RUS, and (3.6), gives
IN(s)NR| > |N(s) N N(r)N R
=|N(s)NN(r)| = |N(s)NN(r)n S|
> [N(s) N N(r)| = [N(r)n S|

1
> —d. 3.7
. (3.7)

Double-counting the edges between S and R using the bounds (3.6)) and (3.7 gives
a contradiction unless |S| < |R|. Therefore |BU R| > 1|V(G)| as required. O

3.3 Higher powers

In this section we prove Theorems |3.1.1| and |3.1.2]

In this section we will consider graphs which may contain loops. This is because
the proof of the results in this section is more natural in this setting.

We will denote graphs which may contain loops by bold letters such as G. For two
vertices = and y (possibly x = y) we only ever allow one edge between x and y. The
neighbourhood of a vertex x, N(z), is defined as the set of vertices adjacent to z. (If
there is a loop at z, then N(z) will contain x itself.) The degree of z is |N(z)|. For
graphs with loops allowed, G" is defined identically to how it was defined for loopless
graphs. Note that if G is a graph with loops allowed, then G" always has a loop at each
vertex. For two sets of vertices X and Y, let d(X,Y’) denote the length of a shortest
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path between a vertex in X and a vertex in Y. If X is a set of vertices, let N"(X) be
the set of vertices distance at most r from X. We abbreviate N"({x}) as N"(z).

We prove the following theorem, and then deduce Theorem [3.1.2| as a corollary.
Many ideas in the proof of Theorem are taken from [6]. In particular, Claims

13.3.7| and |3.3.8| are analogues of claims proved in [6].

Theorem 3.3.1. Let G be a connected graph, and r a positive integer such that r > 4
and diam(G) > r.

e [fr=0 (mod 3), then we have

(@)= (0 - g )l + el

o I[fr#0 (mod 3), then we have

1rr 1

Gn = |L|a@)al+ Gl

(@) > 5 [z]8(@)GI + 516
Proof. For convenience, we will set § = §(G). If P is a path between two vertices x and
y, we say that P is a geodesic if the length of P is d(x,y). The notion of a geodesic is
useful because the neighbourhood of a geodesic must be quite large. This is quantified

in the following claim.
Claim 3.3.2. Let P be a length k geodesic. Then [N(P)| > (|£] +1) 6 holds.
Proof. Let xg, x1,...,x) be the vertices of P (in the order in which they occur along
the path). Notice that N(zo), N(x3),...,N(z, LEJ) must all disjoint, since otherwise
3
we could find a shorter path between zy and x. The sets N(zg), N(x3),... ’N<x3LEJ>
3

must also be contained in N(P), and each have order at least 4. This implies the
result. O

We now prove the theorem in the case when r Z 0 (mod 3).
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The diameter of G is at least r, so G must contain a length r geodesic, P. Claim|3.3.2

implies that the following holds:
G| > |N(P)| > (EJ + 1) 5= (9 5. (3.8)

Since G" contains a loop at every vertex, we have e(G") = > (g (3IN"(v)| + 3).
Thus to prove Theorem it is sufficent to exhibit [£]§ elements of N"(v) for each
vertex v € V(G).

Suppose that there exists a length » — 1 geodesic P, starting from a vertex v. Then

N(P,) is contained in N"(v), giving

()] > [N(P,)| > (V;lj ; 1) i-[1]s

The second inequality is an application of Claim |3.3.2

Suppose that all the vertices in G are within distance r — 1 of v. In this case we
have N"(v) = V(G), which is of order at least [£] 6 by (3.8). This completes the proof
of the case “r # 0 (mod 3)” of the theorem.

For the rest of the proof fix r such that » = 0 (mod 3). Note that this implies
that r > 6.

If v is a vertex of G, we say that v is sufficient if [N"(v)| > (5 +1)d. Otherwise
we say that v is insufficient.

The following is a useful property of insufficient vertices.

Claim 3.3.3. Let v be an insufficient vertex. Then there is some verter at distance

r+1 fromv.

Proof. Since diam(G) > r, Claim implies that |G| > (£ + 1) d. Since v is insuf-
ficient, we have [N"(v)| < (4 + 1) 6, and so v cannot be within distance r from all the

vertices in the graph. O

The following three claims will allow us to bound the number of insufficient vertices

in G.
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Claim 3.3.4. If2 < d(z,y) < r holds for x,y € V(Q), then either x ory is sufficient.

Proof. Suppose that z is insufficient. By Claim [3.3.3] we can find a length r geodesic
starting from x with vertex sequence x, x1, s, ..., Z;.

Suppose that N(y) N N(x;) # 0 for some i with 3 < ¢ < r — 3. In this case N(x),
N(z3), N(xg), ..., N(x,) are all contained in N"(y). There are £ + 1 of these, they are
all disjoint (since z, 1, 3, ..., x, form a geodesic), and are of order at least §. Hence
y is sufficient.

Otherwise N(y) N N(z;) = 0 for all 3 <7 <r — 3. In this case N(z), N(y), N(x3),
N(zg), ..., N(x,_3) are all disjoint and contained in N"(z). This contradicts our initial

assumption that x is insufficient. ]

Claim 3.3.5. Let x and y be two vertices in G such that d(z,y) =r ord(x,y) =r+1.
If there ezists a vertex z € G such that d(z,x), d(z,y) > r — 1, then either x or y is

sufficient.

Proof. Choose any z in N""'({z,y})\ N"2({x,y}). This set is nonempty by the second
assumption of the claim. We will have d(z,z),d(z,y) > r — 1 and either d(z,z) or
d(z,y) = r—1. Without loss of generality assume that d(z,z) = r—1and d(z,y) > r—1.

We will show that x is sufficient. Let x, z1,...,24uy)-1, ¥ be a geodesic between
zand y. Fori=1, ..., d(z,y) — 1, the triangle inequality implies that

dlz,z) —i=d(z,z) — d(z,z;) < d(x;, 2), (3.9)

d(y,z) —d(z,y) +i=d(y,z) — d(y,z;) < d(z;, 2). (3.10)

Averaging (3.9) and (3.10), and using the inequalities d(z,z),d(z,y) > r — 1 and

d(z,y) <r+1 gives
r—3

< d(z;, 2). (3.11)

If r > 9, then (3.11)) implies that d(z,x;) > 3 for all i. Hence N(z), N(z), N(z3),
N(xg),..., N(x,_3) are all disjoint and contained in N"(z). Hence z is sufficient.

If r = 6, then (3.9) and (3.10) imply that d(z,x;) > 3 for all z; except possibly x5
or z4. In this case N(z), N(zs) and N(x5) are all disjoint and contained in N®(z).
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Hence z is sufficient. O
Claim 3.3.6. If d(x,y) = r holds for x,y € V(Q), then either x ory is sufficient.

Proof. Suppose that x and y are insufficient. By Claimthere exists z € V(QG) such
that d(x,z) =r+1. Let z, z1,...,x,_1,y be a geodesic between = and y. Since x and y
are insufficient, Claim [3.3.5|implies that we have d(z,y) < r—1. Note that d(z, z) = r+1
implies that N(z) NN (z;) = 0 for all i < r—2. Thus N(2), N(z1), N(z4),..., N(x,_2)
are all disjoint and contained in N"(y). This contradicts our assumption that y is

insufficient. []

Let X be the set of insufficient vertices in G. We define an equivalence relation “~”
on X by letting x ~ y if d(x,y) < 2. For r > 6, Claim implies that this is an
equivalence relation. Let Xy,..., X; be the equivalence classes of “~7.

The following claim gives a lower bound on the order of G.

Claim 3.3.7. |G| > (“£2) 4l

Proof. Claims [3.3.4] and [3.3.6|imply that d(X;, X;) > r+1 for all i # j. If d(X;, X;) =
r + 1 for some 7 and j, then Claim implies that we have d(X;,z) < r—1 or
d(Xj,z) <r—1forall z € V(G). Then, Claim implies that all the vertices

outside of X; and X are sufficient. This gives us two cases to consider:

(i) d(X;, X;) >r+2forall i#j.
(ll) d(Xth) =r—+1 and [ = 2.

Suppose that (i) holds (this includes the case “I = 17). For each 4, choose z; to be
any vertex in X;. Note that NV 5] (x;) contains a length [%J geodesic, P. Using Claim

B-37) gives
s (g ) (722

Ly
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For the last inequality we are using the fact that » = 0 (mod 3). Note that (i) implies
that NL%JH(XZ-) N NL%JH(X]-) = () for all 4, j. This implies that the following holds:

> (7’ + 3) 5.
6
Suppose that (ii) holds. Using Claim we obtain

V(G = (5+1)d- (Tg?’) 5.

l
ve) =Y v

]

When z is insufficient, the following claim gives a lower bound on the order of N (z).

Claim 3.3.8. Suppose that x is an insufficient vertex in the equivalence class X;. Then,
IN"(z)| > | Xi| + 50 holds.

Proof. By Claim[3.3.3] we can choose a length r geodesic from x. Let x, x4, ..., z, be the
vertices of this geodesic. Suppose that X; NN (x;) is nonempty for some z;. Choose y €
X; N N(z;). Clearly 7 < 1 must hold, since otherwise N(x), N(x3), N(x¢),...,N(x,)
would all be contained in N"(y), contradicting that y is insufficient (since y € X;).
Hence X;, N(x3), N(z5),..., N(x,_1) are all disjoint and contained in N"(zx) prov-
ing the claim. [

Combining Claims [3.3.7 and [3.3.8| we prove the theorem.
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I
1
> 1521 + Zl (1%:* — 1 X,]0)
: 1
=1
I 2
1
=> (|Xi\ - 55)
=1
> (.

The first equality uses the fact that G” contains a loop at every vertex, hence 2¢(G") =
> zevia) IN"(2)] + |G|. The first inequality follows from the definition of “sufficient
vertex” and Claim [3.3.8] The second equality follows from the fact that there are
|G| — 22:1 | X;| sufficient vertices in G. The second inequality follows from Claim
[3.3.71 This completes the proof. ]

Proof of Theorem[3.1.3. Let G be a copy of G with a loop added at every vertex.
Then G" will be isomorphic to G" with a loop added at every vertex. Note that we
have e(G") = e(G") + |G|, and §(G) = 6(G) + 1. Substitute these into Theorem [3.3.1]

obtain the following.
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o If =0 (mod 3), then we have

L L e B B

o If £ 0 (mod 3), then we have

1rr 177 1
N> -[L]s 5] -5 )16t
(e 2 3 [5]s@mel+ (3 [5] - 5) 6
Note that for » > 3, both % - ﬁ — % and % (%W — % are non-negative, so
Theorem [3.1.2] follows. O

3.4 Discussion

All the examples constructed above have their diameter close to r. If a graph G has
diameter larger than r, it seems that the bounds of Theorem [3.1.1| can be improved.
Some results in this direction have been obtained by DeVos, McDonald and Scheide
[14].

All the questions from this chapter could be asked for directed graphs as well. In
particular one can define directed Cayley graphs for a set A C Z, by letting zy be a
directed edge whenever x — y € A. Then the Cauchy-Davenport Theorem implies an
identical version of Theorem for directed Cayley graphs. In this setting it is easy
to show that there is growth even for the square of an out-regular oriented graph D (a
directed graph is oriented when for a pair of vertices v and v, uv and vu are not both

edges). In particular, we have
3
€<D2) Z § €<D)

This occurs because every vertex v has |N§“(v)| > 1|N{“(v)| + 1 in an out-regular
oriented graph (here N$“(v) denotes the dth out-neighbourhood of a vertex—the set
of vertices to which there is a directed path of length at most d from v). It’s easy to see

that this is best possible for such graphs. One can construct out-regular oriented graphs
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where the proportion of vertices v satisfying |N§**(v)| = $|N{"(v)| + 1 is arbitrarily
close to 1. We sketch one such construction here. Consider three sets of vertices
Ay, Ay, and Aj of orders satisfying |A;| = n and |As| = 2m, |A3] = m + 1 where
n > m. We add all the edges from A; to As and from A, to As. Each vertex in Aj
has edges going to some set of 2m vertices in A;. Finally, we add edges inside A,, so
that it forms a regular tournament (i.e. there is an edge between any pair of vertices).
The resulting oriented graph is 2m-out-regular. However all vertices v in A; satisfy
IN§g“(v)| = m + 1 = 3|N{"(v)| + 1. Therefore by setting n to be sufficiently large
compared to m, the ratio e(D?)/e(D) can be made arbitrarily close to 3/2 for this
oriented graph.

However if we insist on both in and out-degrees to be constant, (8) no longer seems
tight. Such graphs are always Eulerian. In [5I] there is a conjecture attributed to
Jackson and Seymour that if an oriented graph D is Eulerian, then e(D?) > 2¢(D)
holds. If this conjecture were proved, it would be an actual generalization of the directed

version of Theorem [1.2.2] as opposed to the mere analogues proved above.
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Chapter 4

Counterexamples to the

Erdos-Gyarfas-Pyber Conjecture

4.1 Introduction
In this chapter we study the following conjecture due to Erdds, Gyarfas, and Pyber.

Conjecture (Erd6s, Gyarfas, Pyber, [18]). The vertices of every r-edge-coloured

complete graph can be covered by r vertex-disjoint monochromatic cycles.

This conjecture has only been proved for » = 2. In this case it was first proved for
large n by Luczak, R6dl, and Szemerédi [39] using the regularity lemma. Subsequently
Allen [1] proved it for smaller (but still large) n by an argument avoiding regularity. The
r = 2 case of Conjecture was finally proved for all n by Bessy and Thomassé [6],
using a short, elegant argument.

The goal of this chapter is to show that in fact this conjecture is false for all r > 3.

Theorem 4.1.1. Suppose that r > 3. There exist infinitely many r-edge-coloured

complete graphs which cannot be vertex-partitioned into r monochromatic cycles.

Theorem is proved in Section For a particular counterexample of low order
to the case r = 3 of Conjecture [I.4.3] see Figure [4.1]
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Figure 4.1: A 3-edge colouring of K46 which cannot be partitioned into three
monochromatic cycles. The small black dots represent single vertices. The large
red and blue circles represent red and blue complete graphs of order specified by the
numbers inside. The coloured lines between the sets represent all the edges between
them being of that colour. This particular colouring is called J31 in this chapter. In
Section 3 we prove that this colouring does not allow a partition into three monochro-
matic cycles.

Theorem raises a number of open question about partitioning coloured com-
plete graphs. In particular it is not clear whether some modification of Conjecture|1.4.3
holds or not. The counterexamples that we construct in this chapter are very mild—in
all the r-coloured graphs that we construct it is possible to cover all except one of the
vertices by r disjoint monochromatic cycles. Therefore it is still possible that slight
refinements of the conjecture are true. In Section [4.3| we discuss a number of such

refinements.

4.2 Construction

In this section, we will prove Theorem [4.1.1} by constructing a sequence of r-edge-
coloured complete graphs, J", which cannot be partitioned into 7 monochromatic cycles
for all » > 3. In order to construct J", we will first need a sequence of auxiliary r-edge-
coloured complete graphs, which cannot be partitioned into r monochromatic paths

with different colours. According to [28] such colourings were first found by Heinrich.
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The following lemma shows that such colourings exist.

Lemma 4.2.1. For each r > 3, there exists a sequence of r-edge-coloured complete

graphs, H", which satisfy the following.
(i) H™ cannot be vertex-partitioned into r — 1 monochromatic paths.
(ii) H™ cannot be vertex-partitioned into r monochromatic paths with different colours.

The proof of Lemma [4.2.1]is somewhat technical and will be performed at the end
of this section. First we will show how to use Lemma to prove Theorem [4.1.1]

Proof of Theorem[{.1.1. For fixed r, let H™ be a sequence of graphs satisfying (i) and
(ii) of Lemma [4.2.1, We construct a sequence of r-edge-coloured complete graphs, J™,

r

on |H™| 4 r vertices as follows.

Construction 4.2.2. We partition the vertices of |J"| into a set H of order |H™| and
a set of r vertices {vy,...,v,}. The edges in H are coloured to produce a copy of H".
For each i € {1,...,r}, we colour all the edges between v; and H with colour i. The
edge v1vy has colour 3. For j > 3 the edge viv; has colour 2 and the edge vov; has

colour 1. For 3 <1 < j, the edge v;v; has colour 1.

We now prove that for every m, J cannot be partitioned into r disjoint monochro-
matic cycles.

Suppose that Cf,...,C, are r disjoint monochromatic cycles in J*. We need to
show that Cy U---UC, # J". Note that, for any ¢ # j, the edge v;v; has a different
colour to the edges between v; and H. This means that a monochromatic cycle in J*
cannot simultaneously pass through edges in {vy,...,v,} and vertices in H.

Let P, = C; \ {v1,...,v.}. We claim that, for each i, P; is a monochromatic path
in H. If C;N{vy,...,v.} <1, then this is clear. So, suppose that for j # k we have
vj, v, € C;. In this case C; cannot contain vertices in H, since otherwise the edges of C;
which pass through v; and v, would have different colours, contradicting the fact that
C; is monochromatic. This means that P; = (), which is trivially a path.

Therefore Pj,..., P, partition H into r monochromatic paths. By Lemma 4.2.1]

they are all nonempty and not all of different colours. This means that there is a
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colour, say colour ¢, which is not present in any of the cycles C',...,C,.. For each 7,

the fact that P; is nonempty implies that C; does not contain edges in {vy,...,v,}.
But then, the vertex v; cannot be contained in any of the cycles (', ..., C, since all the
edges between v; and H have colour 1. O

It remains to prove Lemma [{.2.1] The following simple fact will be convenient to
state.

Lemma 4.2.3. Let G be a graph, X an independent set in G, and P a path in G. Then
we have
IPNX|<|PN(G\X)| + 1.

Proof. Let xq,...,x; be the vertex sequence of P. For ¢ < k — 1, if x; is in X, then

x;+1 must be in G \ X, implying the result. O]
We now prove Lemma [4.2.1]

Proof of Lemmal[{.2.1. For r = 3, the graphs HY" are 3-colourings of Kj3,, constructed
as follows.

Construction 4.2.4. Partition the verter set of Kz, into four classes Ay, As, As,
and Ay such that |A1| = 10m, |As| = 13m, |As| = Tm, and |A4| = 13m. The edges
between A1 and As and between Az and Ay are colour 1. The edges between Ay and Az
and between As and Ay are colour 2. The edges between Ay and Ay and between A, and
As are colour 3. The edges within Ay and As are colour 3. The edges within As and

Ay are colour 2.

For r > 4, the graphs H™ are r-coloured complete graphs with |H>™ |+ 2m vertices

constructed as follows.

Construction 4.2.5. Partition the vertices of H™" into two sets H and K such that
|H| = |H>™| and |K| = 2m. We colour H with colours 1,...,7 — 1 to produce a copy

of H™ . All other edges are coloured with colour r.
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It will be convenient to prove a slight strengthening of the lemma. We will prove
that for any 7' C V(H)") satisfying |T'| < m, the graph H" \ T satisfies parts (i) and
(ii) of the lemma.

The proof is by induction on r. First we shall prove the lemma for the initial
case, 7 = 3.

Recall that H}" is partitioned into four sets A;, As, Az, and Ay. Let B; = A; \ T
Since |T'| < m, the sets By, By, B3, and By are all nonempty. We will need the following

claim.

Claim 4.2.6. The following hold.

(a) Bs cannot be covered by a colour 1 path.
(b) By cannot be covered by a colour 2 path.
(¢) By cannot be covered by a colour 3 path.
(d) By cannot be covered by a colour 1 path.

(e) By U B3 cannot be covered by a colour 1 path contained in By U By and a disjoint
colour 3 path contained in By U Bs.

(f) B2 U Bs cannot be covered by a colour 1 path contained in B3 U By and a disjoint
colour 2 path contained in By U By.

Proof.

(a) Let P be any colour 1 path in H3*\ T which intersects By. The path P must then
be contained in the colour 1 component B; U By. The set By does not contain any

colour 1 edges, so Lemma implies that |P N Bs| < |P N By| + 1 holds. This,
combined with the fact that |T'| < m holds, implies that we have

This implies that P cannot cover all of Bs.
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(b) This part is proved similarly to (a), using the fact that B; does not contain any

(c)

()

(e)

(i

colour 2 edges and that we have [A3| +1=Tm+ 1 <9m < |By].

This part is proved similarly to (a), using the fact that B, does not contain any
colour 3 edges and that we have |A;| +1=10m + 1 < 12m < |By|.

This part is proved similarly to (a), using the fact that B, does not contain any
colour 1 edges and that we have |[As| +1=Tm+ 1 < 12m < |By.

Let P be a colour 1 path contained in B; U By and let () be a disjoint colour 3 path
contained in By U B3. The set B; does not contain any colour 1 edges and B3 does
not contain any colour 3 edges, so Lemma implies that |(PUQ)N (B UBs)| <
|(PUQ) N By| + 2 holds. This, combined with the fact that |T'| < m holds, implies

that we have

This implies that P and () cannot cover all of By U Bs.

This part is proved similarly to (e), using the fact that By does not contain any
colour 2 edges, B; does not contain any colour 1 edges, and that we have |A4|+2 =

We now prove the lemma for » = 3. We deal with parts (i) and (ii) separately.

) Suppose, for the sake of contradiction, that P and @) are two monochromatic paths
which partition H3* \ T'. Note that P and ) cannot have different colours since
any two monochromatic paths with different colours in H3" can intersect at most
three of the four sets By, Bs, Bs, and By. The colouring H* \ T" has exactly two
components of each colour, so, for each i, the set B; must be covered by either P
or ). This contradicts case (a), (b), or (c) of Claim depending on whether
P and @ hove colour 1, 2, or 3.
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(ii) Suppose, for the sake of contradiction, that P, P, and Ps are three monochro-

matic paths which partition H{* \ T such that P; has colour i.
Suppose that P, C B; U Bs. By parts (c) and (d) of Claim {4.2.6] both of the

paths P; and P3; must intersect B;. This leads to a contradiction since none of
the paths P, P», and Pj intersect Bs.

Suppose that P, C BoUBy. If P, C B;U B, then P3 must be contained in By U Bs,
contradicting part (e) of Claim [4.2.6/ If P, C B3 U By then P3 must be contained

in By U By. Therefore B, U B3 must be covered by P; and P, contradicting part
(f) of Claim |4.2.6l This completes the proof of the lemma for the case r = 3.

We now prove the lemma for » > 3 by induction on r. The initial case r = 3 was
proved above. Assume that the lemma holds for H™,, for all m > 1. Let H and K
partition H™ as in the definition of H™*. Suppose that H* \ T is partitioned into r
monochromatic paths P, ..., P, (with some of these possibly empty). Without loss of
generality we may assume that these are ordered such that each of the paths Py, ..., P
intersects K, and that each of the paths Py.q,..., P, is disjoint from K. Note that we
have k < |K| =2m. Let S = HN(P,U---U P;). The set H\ T does not contain
any colour r edges, so Lemma implies that we have |S| < |K| 4+ k < 4m, and so
|SUT| < 5m. We know that H \ (SUT) is partitioned into r — k monochromatic paths
Py, ..., P, so, by induction, we know that £ = 1 and that the paths P,..., P. are
all nonempty and do not all have different colours. This completes the proof since we
know that P; contains vertices in K, and hence Py, ..., P, are all nonempty, and do
not all have different colours.

O

4.3 Discussion

Much of the research on partitioning coloured graphs has focused around Conjec-
ture |1.4.3] Given the disproof of this conjecture, we will spend the remainder of this

chapter discussing possible directions for further work.
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Although we only constructed counterexamples to Conjecture for particular n
in Section 4.2 it is easy to generalize our construction to work for all n > N,., where N,
is a number depending on r. To see this, one only needs to replace the assumption of “m
is an integer” with “m is a real number” in Section[4.2] and replace expressions where m
appears with suitably chosen integral parts. Doing this and choosing m appropriately
will produce r-colourings of K, which cannot be partitioned into r monochromatic
cycles for all sufficiently large n.

Perhaps the most interesting weakening of Conjecture which may still be true

is the following earlier conjecture due to Gyarfas.

Conjecture (Gyarfas, [27]). The vertices of every r-edge-coloured complete graph

can be covered with r vertezx-disjoint monochromatic paths.

It is easy to check that all the r-coloured graphs constructed in Section |4.2] can be
partitioned into 7 monochromatic paths. In addition in Chapter [5| we show that Con-
jecture holds for r = 3. These two facts together make Conjecture [1.4.2] still seem
very plausible to the author.

Another weakening of Conjecture is the following approximate version.

Conjecture 4.3.1. For each r there is a constant c,., such that in every r-edge-coloured
complete graph K,, there are r vertex-disjoint monochromatic cycles covering n — c,

vertices in K.

For r = 3, Theorem shows that a version of Conjecture 4.3.1| is true with
or(n)
n

paper [46], the author will prove the r = 3 case of Conjecture 4.3.1]
Finally we can weaken Conjecture by removing the constraint that the cycles

¢, replaced with a function o,.(n) satisfying — 0 as n — oo. In a forthcoming

covering K, are disjoint.

Conjecture 4.3.2. Suppose that the edges of K, are coloured with r colours. There

are r (not necessarily disjoint) monochromatic cycles covering all the vertices in K,

A weaker version of this conjecture where “cycles” is replaced with “paths” has
appeared in [27]. Our method of finding counterexamples to Conjecture relied
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on first finding graphs which cannot be partitioned into r monochromatic paths of
different colours. For r = 3, using results from Chapter [f] it is easy 