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Abstract 

Latent variable models are widely used in social sciences in which interest is 

centred on entities such as attitudes, beliefs or abilities for which there e)dst no 

direct measuring instruments. Latent modelling tries to extract these entities, 

here described as latent (unobserved) variables, from measurements on related 

manifest (observed) variables. Methodology already exists for fitting a latent 

variable model to manifest data that is either categorical (latent trait and 

latent class analysis) or continuous (factor analysis and latent profile analysis). 

In this thesis a latent trait and a latent class model are presented for 

analysing the relationships among a set of mixed manifest variables using 

one or more latent variables. The set of manifest variables contains metric 

(continuous or discrete) and binary items. The latent dimension is continuous 

for the latent trait model and discrete for the latent class model. 

Scoring methods for allocating individuals on the identified latent dimen-

sions based on their responses to the mixed manifest variables are discussed. 

' Item nonresponse is also discussed in attitude scales with a mixture of 

binary and metric variables using the latent trait model. 

The estimation and the scoring methods for the latent trait model have 

been generalized for conditional distributions of the observed variables given 

the vector of latent variables other than the normal and the Bernoulli in the 

exponential family. 

To illustrate the use of the naixed model four data sets have been analyzed. 

Two of the data sets contain five memory questions, the first on Thatcher's 

resignation and the second on the Hillsborough football disaster; these five 

questions were included in BMRBI's August 1993 face to face omnibus survey. 

The third and the fourth data sets are from the 1990 and 1991 British Social 

Attitudes surveys; the questions which have been analyzed are from the sexual 

attitudes sections and the environment section respectively. 
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Chapter 1 

Introduction 

In this thesis we develop a method for analysing latent variable models with binary 

and metric manifest variables when observations may be missing. Binary items can 

take only two possible values (agree / disagree) while metric variables have real 

number values and can be either discrete or continuous. 

Latent variable models are widely used in social sciences in which interest is 

centred on entities such as attitudes, beliefs or abilities for which there exist no 

practical direct measuring instruments. Latent modelling tries to extract these 

entities, here described as latent (unobserved) variables, from measurements on 

related manifest (observed) variables. These latent variables are entities that in 

practice we may not be able or willing to directly measure e.g. wealth, status or 

which are not directly measurable such as attitude and ability. 

Bartholomew (1987) presented a unified approach for treating latent variable 

models. As already mentioned, in the theory of latent variable models we distin-

guish between two types of variables, the observed or manifest variables and the 

unobserved or latent variables. Both types of variables can be either metric or cat-

egorical. When both the manifest and latent variables are metric we apply factor 

analysis, when both are categorical we apply latent class analysis, metric manifest 

and categorical latent gives latent profile analysis and finally for categorical manifest 

and metric latent we apply latent trait analysis. 

In the literature there are two approaches for estimating the parameters of these 

kinds of models. First there is the underlying variable approach which treats all man- 
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ifest variables as continuous by assuming that underlying each categorical manifest 

variable there is a continuous_unobserved variable. Secondly there is the response 

function approach which starts by defining for each individual in the sample the 

probability of responding positively to a variable given the individual's position on 

the latent factor space. 

We will concentrate on the case where the manifest variables are of mixed type 

(binary and metric) and the latent variables are either continuous or discrete. In 

the literature only the underlying variable approach has been used for estimating 

the 'mixed' model. We will develop a response function approach for the 'mixed' 

model but before that a review of the existing approaches for binary, metric and 

mixed manifest variables will be given. 

1.1 Notation_ 

Variables that are directly observed are known as manifest variables and variables 

that are unobserved are known as latent variables. The manifest variables will be 

denoted by x and the vector x of dimension (p x 1) will denote a group of manifest 

variables. The vector x can contain both metric and binary items. The metric 

manifest variables will be denoted by w and the vector w of dimension (r x 1) will 

denote a group of metric manifest variables. The binary manifest variables will be 

denoted by v and the vector v of dimension (s x 1) will denote a group of binary 

manifest variables. In all the chapters of this thesis the above notation will be 

adopted for metric and binary manifest variables. 

The subscription h on the vector x, v or w will denote the values of the manifest 

variables for the hth sample member and the subscription i will denote the ith 

manifest variable. 

Latent variables with standard normal distributions will be denoted by z and y 

otherwise. The number of such variables will be q. 
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1.2 Factor analysis for metric manifest variables 

The origins of factor analysis go back to Spearman (1904). He tried to see whether 

something like 'general intelligence' could explain the correlations among sets of test 

scores. For an overview of the origins and the development of factor analysis see 

Bartholomew (1995) The first statistical treatment of factor analysis was given in 

Lawley and Maxwell (1971). 

In factor analysis we have a number r of observed metric variables that we want 

to express as linear combinations of q latent variables where q is much less than r. 

In other words the object of the analysis is to explain the interrelationships among 

a number of r manifest variables using a number of latent variables q where q < r. 

This analysis is carried out through the covariance or the correlation matrix of the 

r manifest variables w. 

Suppose wi, • • • , tor are r metric variables. The linear factor model is written 

wi = 	E AiJzi + ei i = 1, • • , r 	 (1.1) 
j=1. 

or in. a matrix form 

w=p+Az-ke 

where e Nr (0, Alf ). 

Suppose that the latent variables follow independent standard normal distribu-

tions, z Nq(0,I). Under the assumption of conditional independence, which states 

that conditional on the vector of latent variables z the responses to the r manifest 

items are independent, the conditional distribution of w given z follows a normal 

distribution N, (it + Az, 41), where A is r x q matrix of coefficients (factor loadings) 

and is a r xr diagonal matrix of specific variances. Considering the above results 

the conditional distribution of each manifest variable wi given z becomes: 

g(wi I z) = (270-1/21K1/2 exp( 	1 	 (wi — — E Aiizi)2), q 1 
2Tii 
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It then follows that the manifest variables w follow a normal distribution Nr(p, AA' + 

The posterior distribution of z given w follows a normal distribution, (see Basilevsky 

1994, chapter 6): 

N q(A' 	(w — 	(A/111-1A +1)-1) 

where 

E AA'+V 

and q < r. The matrix Ar" contains the covariances between elements of z and w. 

1.2.1 Estimation Methods 

The estimation of the model pa-,rameters is based on the maximization of the loglikeli-

hood of the marginal distribution of the manifest variables. Details of the estimation 

method are given in Lawley and Maxwell (1971) and Bartholomew (1987). 

Rubin and Thayer (1982) and (1983) proposed an EM algorithm for finding 

maximum likelihood estimates for the parameters of the linear factor model. The 

EM algorithm was introduced by Dempster, Laird, and Rubin (1977) for maximum 

likelihood estimation in a multivariate model with missing data. The EM algorithm 

for our application treats the latent variables z as missing data, and iteratively 

maximizes the likelihood supposing z were observed. 

Other estimation methods in the literature are the unweighted least squares 

method (ULS) and the generalized least squares method (GLS). Both methods try 

to fit a model by choosing estimates so that the observed and theoretical correlation 

matrices are as close as possible. 

With the ULS one minimizes the function: 

(s-E)/(s- E) 

and the GLS minimizes the function: 

(s- tyw-1(s- t) 
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where S and t are the sample and estimated by the model covariance matrix respec-

tively and W is a weight matrix. These methods will be discussed later for factor 

analysis with dichotomous variables. 

All three estimation methods, ML, ULS and GLS, provide consistent estimates 

of the parameters A and 111 and large sample chi-square tests for the goodness-of-fit. 

Unique estimates of the parameters A and Alf do not exist if we do not impose 

some constraints on the parameters for the case where q > 1. One possible constraint 

is to take diagonal. This is as a mathematical convenience but also it makes 

the conditional distribution of_ the z's given w independent. 

Any orthogonal rotation of the factors in the q-space will give a new set of 

factors which will also satisfy E = AA' + IF. Thus the likelihood will have more 

than one maximizing value and once one is found others can be found by orthogonal 

transformation of the solution obtained. This is what is called rotation in factor 

analysis. Rotation of the factor solution allows for an easier interpretation of the 

factors although in cases where there is a very dominant general factor it may not 

be helpful. 

Asymptotic standard errors for the parameters can be obtained by inverting 

the expected information matrix at the maximum likelihood solution. Lawley and 

Maxwell (1971) give the variance covariance matrices for the estimated parameters. 

These formulae assume that the estimates have been obtained from the covariance 

matrix rather than the correlation matrix and so they are not applicable in prac-

tice. Resampling techniques such as jackknife and bootstrapping can be used for 

calculating standard errors. 

1.2.2 Goodness of fit 

A test for the fit of the linear factor model may be based on the likelihood ratio 

statistic. If the number of latent variables q has been specified a priori, we use the 

likelihood ratio statistic to test the null hypothesis that E is E = AA' + against 

the alternative that E is unconstrained. 

It is known that for large samples the statistic —21L(Ho) — L(Hi )1 under the 

null hypothesis is distributed approximately as X2 with degrees of freedom 
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12--r(r + 1) - (rq r - .1q(q - 1)) = .1{(r - 	- (r q)} 

The number of degrees of freedom is the number of parameters in E minus the 

number of linear constraints imposed by the null hypothesis. 

The loglikelihood under the null hypothesis is 

1 	1 L(Ho) = --2nr log27 - -2n log I E --
1
ntrE-1S 

2 

The loglikelihood under the alternative hypothesis is 

1 	 1 L(Hi) = - -
2

nr log 2ir - -
1
n log S - -

2
ntrS-1S 

2 

The statistic is then 

-2{L(Ho) - L(Hi)} = nftrE-1S - log I E-1S -r} 	(1.2) 

Where the E = A.A.' + Air 

Bartlett (1954) showed that the likelihood ratio statistic can be better ap-

proximated from the chi-square distribution by replacing n in equation (1.2) by 
n _ 2r+11  aq. 

6 	3 

If q has not been specified in advance then a procedure for choosing the best 

value for q will be to start with q = 1 and stop when the likelihood ratio statistic 

is not significant. Lawley and Maxwell (1971) mentioned that the above procedure 

for choosing q does not take into account the fact that a sequence of hypotheses is 

being tested, with each one dependent on the rejection of all predecessors and the 

significance level has not been adjusted. Other criteria for choosing the value of q 

are mentioned in Bartholomew (1987). 
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1.3 Factor analysis for binary manifest variables 

In the literature of latent variable models there are two approaches for the fit of la-

tent models on binary items. One is called the underlying variable approach and it 

is an extension to the theory described above for continuous variables and the other 

one is called the response function approach. The first method supposes that the bi-

nary manifest variables have been produced by dichotomizing underlying continuous 

variables. The second method defines a response function that gives the probability 

of a positive response for an individual with latent position z. Bartholomew (1987) 

showed that the underlying variable approach and the response function approach 

are equivalent for binary items but different for polytomous items. 

1.3.1 Underlying variable approach 

This approach brings the analysis of binary variables within the framework of factor 

analysis for metric manifest variables. This is achieved by assuming that each binary 

variable is generated by an underlying continuous variable in the following way: 

{ 1 if v7 > 
Vi = 

0 if v7 < 

where Ti are called threshold parameters and 

Hence, if we make the same assumptions as before for the distributions of z and 

e then the linear factor model can be fitted on the covariance or correlation matrix 

of the v*'s variables. There are maximum likelihood methods for estimating the 

correlation coefficients from a 2x2 cross-classification of the data. These are called 

tetrachoric correlation coefficients. 

The assumption of normality for the underlying response variables might not 

be appropriate all the time and with all the variables. There are items for which 

there are no direct meaningful underlying variables to consider. This set of assump-

tions just makes the analysis of binary response consistent with factor analysis for 
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continuous variables. 

Other types of distribution for the bivariate continuous distribution underlying 

each of the 2x2 observed tables can be considered such as the C-type distribution. 

For this distribution, whatever the threshold is, the cross product ratio is the same. 

This property is quite important especially when the threshold values have been 

defined arbitrarily, and so the_results from the analysis do not depend on these cut 

values. 

Christofferson (1975) fitted a linear factor model on a set of s binary variables by 

estimating the parameters which minimize the distance between the observed and 

expected first- and secon.d-order marginal proportions assuming that the underlying 

variables v* follow a multivariate normal distribution. 

Let Pi and Pij be the expected proportion who respond positively to item i 

and positively to items i and j respectively. His method is based on minimizing 

the differences between these expected proportions and the ones observed from the 

sample denoted by lower letters pi and pij. 

The expected proportions are defined as: 

- 	= I f (u)du 
	 (1.3) 

and 

iTi 

= 	f( I _00 _co 
ui,u2; pij)duidu2 	 (1.4) 

where f(u) and f(ui, u2) are the standard univariate and bivariate normal density 

function. 

The model is written as: 

Pi = 	-I- ei, 	i -= 1,- • ,s 

Pii = Pii 	Eii) 
	i = 1, • • • , s — 1, 	j = i 	1, • • • , s 
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or in a vector form: 

p = P 

where the error term e has expectation zero and covariance matrix E,. The 

expected proportions P are expressed in terms of the thresholds, tetrachoric corre-

lations, the factor loadings and the error term E. 

When the model is true the differences e = p — P for the single and pair of items 

will follow a multivariate normal distribution in large samples with mean zero and 

covariance matrix E,. Christofferson (1975) obtained a consistent estimator of this 

matrix Se, this estimator uses also information from third and fourth order marginal 

proportions, (Christofferson appendix 2) and proceeded to minimize the generalized 

least squares quantity 

Q = (p — P)'s;1(P — P) 

This function was minimized using the Fletcher and Powell method. The esti-

mators obtained by this method are asymptotically efficient among those estimators 

that use the same amount of information, i.e. first and second order probabilities. A 

chi-square test for the goodness-of-fit of the model is available and standard errors of 

the estimates are also available from the inverse of the matrix of second derivatives of 

Q respect to the parameters. The generalized least square method has an advantage 

over the full maximum likelihood method when we fit several latent variables. 

Muthen (1978) proposed a transformation of Christofferson's method which is 

also based on the first and second order proportions but simplifies the computations 

because it avoids the integrations needed for the calculation of the first and second 

marginal proportions, equations (1.3) and (1.4) respectively. 

The estimates obtained are asymptotically efficient among those estimators that 

use the same amount of information. Muthen's method is less computationally 

heavy than Christofersson's but it is still limited to 20-25 items due to the rapid 

increase of the dimension of the weight matrix with the increase of the items. These 

methods have been implemented in a computer program LISCOMP (Muthen 1987). 

Christofferson (1975) and Muthen (1978) methods presented above make the 
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assumption that most of the information needed in the analysis is contained in the 

first- and second-order margins. This assumption comes from the fact that if the 

underlying variables, v'iK, were known then. the sample covariance matrix is required 

for the estimation of the model parameters and these require a knowledge of the 

bivariate distributions. 

1.3.2 Response function approach 

The methods discussed in the previous section were all 'limited information' methods 

in the sense that they take account of the first and second order probability margins. 

The only methods that use all the information provided from the 25 response pat-

terns are the maximum likelihood based methods and they will be discussed here. 

But before we go into the ML estimation method we discuss the different types of 

response function. 

Response function 

The response function is denoted by iri(y) an.d gives the probability that an indi-

vidual will respond positively to item i given his latent position y. There are many 

different models for the response function. Bartholomew (1980) defines some desir-

able properties for the response function. First, the response function r(y) must 

be monotonic non-increasing or non-decreasing with respect to the latent variable. 

Secondly, if 7r(y) E then the function obtained by replacing any sub-set of the 

elements of y by their complements should also belong to .F. This property satisfies 

the arbitrariness of the direction in which the latent variable is measured. Thirdly, 

if 7r(y) E then 1 — 7r(y) E T. This property satisfies the arbitrariness in the 

direction of the ordering of the categories. There are some other properties that 

deal with special cases, the complete independence, (7r(y) 7r E ,T), and the case 

of a perfect scale, (Guttman). Some less formal properties are the flexibility of 

the response function of describing many different shapes and the small number of 

parameters to be estimated. 

Bartholomew considered the class of functions: 
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G(.7ri(y)) = aio E aiiH-1(yj) 

where 7ri(y) is the response function, the probability that an individual will 

respond positively to item i given latent position y, and yj j = 1, • • , q have inde-

pendent uniform distributions with mean zero and variance one. 

The functions G-1 and H-1 are chosen so that the response function has the 

properties described above. 

In the literature the most commonly used response functions are the logit (G-1 = 

logit(v) = log v/(1 — v)) and the probit (G" = probit(v) = 4,-1(v)), where 4:13. is the 

cumulative of the standard normal). Lord and Novick (1968) use the logit/probit, 

model which has the logit for G-1 and the probit for H-1. Bock and Aitkin 

(1981) use the probit model in which the probit is selected for both G-1 and H-1. 

Bartholomew (1980) prefers the logit/probit model, (briefly called logit) in which 

G' is selected to be the logit and H' is selected to be the probit because it is easy 

to estimate and it also gives some very useful results when it comes to the scoring 

methods. 

In this thesis the logit response function will be used but a brief overview of 

the others will be given. The logistic and the normal are very similar in shape and 

which one is going to be used is a matter of practicality. There is an approximate 

relationship between the logistic and the normal which is given by: 

logit(v) -07 4,-1(v) 

Hence the logit/probit model: 

logit[7ri(y)] = aio E aii4D-1(yi) 

is approximately the same as: 

logit[ri(y)] = aio 	aij( .1-/ir)logityj 

So if we estimate the item parameter ceii of the logit/logit model we can also 
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get approximately the item parameter aij for the logit/probit model by multiplying 

that by fahr. 

Similarly from the probit model: 

-1[7ri(Y)] = aio E 
j=i 

we can get the logit/probit model: 

logit[ri(y)] = ir/f3-[aio 	ai.;13-1(yj)] 
i=i 

Finally, Bartholomew (1987) showed that in order to allow rotation of the fac-

tor solution it is appropriate to transform the variables yi to normally distributed 

variables zi, (zi = H-1(y j)). 

In. this thesis the shape of the response function is taken to be the logit function: 

logitri(z) = aio E aijzj q 
	 (1.5) 

Interpretation of the parameters 

The parameters aio and aij define the shape of the response function which shows 

how the probability of a correct response increases with 'ability' and so it should be 

monotonic nondecreasing in the latent space. 

Working with the logit model, the coefficient aio is the value of the logitri(z) at 

z = O. In other words this is the probability of a positive response for the median 

individual. The aio are called difficulty parameters. Items with large difficulty 

parameters are expected to be answered the same by most of the individuals. 

The coefficient is a measure of the extent to which the ith manifest variable 

discriminates between individuals. For two individuals with different positions on 

the latent dimension zj, the bigger the absolute value of ai j the greater the difference 

in their probabilities of giving a positive response to item i and thus the easier 

to discriminate between them on the evidence of their responses to item i. These 

discrimination parameters play a very important role since they give a different 

weight to each item according to its discriminating power. We will discuss that 
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again when we talk about the scaling methods. 

Ideally, when we construct scales in order to measure a particular concept all 

the items should have the same discriminating power. But in reality it often turns 

out that the discrimination parameters take very large values for some of the items. 

That means that the response function has a threshold for this item. Albanese 

(1990) investigated the behaviour of the likelihood for the one factor logit/probit 

model when some of the items have large discriminating parameters. She suggested 

a reparametrization of these cxii coefficients: 

ai*j = aii / ( E ce2i, 1) 
J=1 

which gave useful results in the sense that it showed better behaviour of the 

likelihood function. 

Properties of the response function 

There are two properties that one should have in mind when following this approach. 

1. For binary items the outcome which is going to be regarded as 'correct' or 

'wrong' is totally arbitrary. So if the correct answer has probability 71-i(z) then the 

wrong answer has probability 1 — ri(z), where: 

ri(Z) =
- 1 + exp(ceio E'.7-7=1 aiizi) 

= {1 + exp(—aio — E aijzi)} 
j=1. 

1 — rj(z) = {1 exp(aio E aiizi)} 

These two equations mean that if we increase z then the probability of a correct 

response increases by the same amount that the probability of a wrong response 

decreases. 

2. The direction of the latent variables is arbitrary. For the logit model a simple 

exp(aio Ec:T=.1 aiizi)  

and 

--1 
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rotation of factors changing the .z.; by —.z; has results in a change of the signs of the 

parameters. 

Estimation methods 

There are three different maximum likelihood methods in the literature. These are 

the methods of joint maximum likelihood, conditional maximum likelihood (CML) 

and marginal maximum likelihood (MML). 

The joint and the conditional maximum likelihood are called "fixed effects" so-

lutions, they assume that abilities are fixed parameters and are finite in number, 

when in fact they are not identifiable and have a distribution over the population 

of subjects. So each individual's position on the latent scale is represented by a 

parameter. 

The MML is a random effects solution in which individuals are supposed to be 

sampled at random from some population and so each individuals' position on the 

latent scale is the value of a random variable. 

In the fixed effects model the number of parameters to be estimated is much 

more than in the random effects model and as the sample size increases the number 

of parameters increases proportionally. Estimation becomes a difficult task and the 

random effects model seems preferable. 

The joint and the conditional ML methods have been used for estimating the 

parameters of the Rasch model. The Rasch model can be obtained from the two 

parameter logistic model, (see equation. 1.5), when q = 1 and ail = a by treating 

also each individual's position on the latent scale as a fixed parameter instead of a 

random variable. 

The joint maximum likelihood is based on the simultaneous estimation of the 

item parameters and the person abilities. Haberman (1977) has shown that consis-

tent estimates of the Rasch difficulty parameters are obtained by the joint method 

as both the number of items and the number of subjects increases without limit, 

but this condition is not realistic in practice. Several researchers have avoided this 

problem by assuming that subjects who have the same number of right score or the 
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same score pattern or who have been assigned provisionally to homogeneous groups 

have the same ability. 

The conditional maximum_likelihood has been used for estimating the difficulty 

parameters of the Rasch model. The CML method is based on the conditional 

distribution given minimal sufficient statistics. For example for the Rasch model 

instead of maximizing the likelihood function with respect to the difficulty parame-

ters and the individual's ability parameters, with the CML method we maximize the 

conditional likelihood of the item parameters given minimal sufficient statistics for 

the individual's ability parameters which. in that model are the raw score for each 

individual. Andersen (1970) and (1972) give the asymptotic properties of CML 

and the CML estimators for the one parameter logistic model (Rasch model). The 

method cannot be applied to the two parameter logistic model because the sufficient 

statistics depends on the discrimination parameters. Hence if the discrimination pa-

rameters are not estimated with a reliable way the CML cannot be used any more. 

The MML approach has been discussed more than the other two approaches. 

Bock and Lieberman (1970) fitted a response model on a number of binary items 

using an unconditional maximum likelihood estimation of a two parameter probit 

model on the assumption that individuals are a random sample from a standard 

normal distribution of ability. 

Their approach is like assuming again that underlying each manifest variable 

there is an underlying continuous variable. But by estimating the threshold and 

item parameters with ML it avoids the case of estimating a tetrachoric correlation 

matrix which might not be positive definite. 

The maximum likelihood solution was obtained via a Newton-Raphson method 

and Gauss-Hermite integration. Their method had computational difficulties due to 

the computations required in the Newton-Raphson method which limited the num-

ber of items to be analyzed to- 10 or 12 and the number of factors to one. 

Bock and Aitkin (1981) reformulated the Bock and Lieberman likelihood equa-

tions to make the estimation method more computational attractive. Their approach 

25 



is based on a variation of the EM algorithm. In this formulation of the problem the 

distribution of the latent variable does not need to be known in advance instead it 

can be estimated as a discrete distribution on a finite number of points. By defin-

ing each individual's position on the latent dimension the item parameters can be 

estimated using probit analysis. 

Their method applies to more than one latent dimension and it provides full-

information factor analysis of dichotomous and polytomous items. Because it uses 

the probit as response function it lacks the sufficiency principle which is described 

in Bartholomew (1987). 

Bartholomew (1987) uses the same formulation of the estimation procedure, 

taking as response function the logit instead of the probit. Since in this thesis the 

logit response function will be taken for the binary items, Bartholomew's formulation 

will be described in more details. 

Marginal maximum likelihood 

Suppose vi, v2, • • • , vs are s binary items taking values 0 and 1. Let vih be the value of 

the hth individual for the ith item, (h = 1, • • , n). The row vector v'h = (vih, • • , v8h) 

is referred to as the response pattern of the hth individual. 

First the results of the one factor model will be presented. If we would think of 

estimating parameters for any model which takes account of the manifest variables 

v and the latent variable z it would be appropriate to start with the distribution of 

the manifest variables v because that is the one we observe. 

+°° f(v) = 	g(v I z)h(z)dz 

Hence the only concern now is to define the form of the conditional distribution 

g(v I z) and to make an assumption about the distribution of the latent variables. 

Under the assumption of conditional independence 

xv z) H gi(vi I z) 
i=i 

This assumption means that the set of latent variables is complete and so it 

explains perfectly the interrelationships among the s manifest items. This is often 
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called the assumption of conditional or local independence. This is an assumption 

that cannot be tested empirically because there is no way to keep z constant. 

Since vi's are binary 

g(vi I z) 	ri(zr(1 — 7ri(z))1' = 1, • • ,s 

where Ti(z) 	Pr(vi = 1 I z) is the probability of a positive response for an in- 

dividual with latent position z and is called response function. The mathematical 

properties of the response function discussed in a previous section. 

The question is what form the conditional distribution must take in order for 

the reduction of the dimensionality from s to q to be possible, or in other words 

the posterior distribution of z given v to depend on v only through a q function of 

v. This reduction is named sufficiency principle by Bartholomew (1987) and it will 

explained in more details in the next chapter. 

Barankin and Maitra (1963) give the necessary and sufficient conditions, which 

are required in order that reduction of the dimensionality of the data to be possible. 

These conditions require that at least (8 — q) of the g's must have the exponential 

form. By choosing the response function to be the logit the above requirement is 

satisfied. The response function takes the form: 

logitri(z) = ceio 	 (1.6) 

The latent variable is assumed to have a standard normal distribution. For a 

random sample of n individuals the loglikelihood of the joint distribution of the 

items is given by 

log L = E log f (vh) 
h=1 

EM algorithm 

The EM algorithm presented here is given in Bartholomew (1987) for the logit 

model and for one latent variable. The method is easily extended to more than one 

latent variable but there are still technical problems to be solved especially when 

the number of latent variables exceeds two. Bartholomew described two different 
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versions of the EM algorithm for fitting the model. The first version allow individuals 

to have any value of z and at the E-step of the algorithm we predict the value of z 

for each individual. In the second version the set of values of z is fixed and we have 

to predict how many individuals are located at each z. The second version is the 

one given in Bock and Aitkin (1981) and it can be applied to any type of response 

functions. 

The second version of the algorithm, which is going to be used in this thesis, is now 

presented. 

Suppose that z takes the values zi, z2, • , z,, with probabilities 

h(zi), h(z2), • • , h(zu). The marginal distribution is written: 

f(vh) = E g(v-h I zt) h (zt) 
t=1 

where 

g(vh I zt) 	7ri (zt ) vih (1 - ri (ztn i-vih 
i=1 

We then have to maximize: 

L = E log f(vh ) 
h=1 

By differentiating the log-likelihood respect to unknown parameters we get: 

Where, 

aL 	Ev 07ri(zt) frit —  Nori(ztil  
aaii 	actii ri(zt){1 — ri(zt)} 

/ =-- 0, 1. 	(1.7) 

rit 	h(zt) E vihg(vh zi)/ f(Vh) 
h=1 

E vihh(zt Vh) 
	

(1.8) 
h=1 
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and 

= 11(Zt) E g(vh zi)/i(Vh) 
h=1 

E h(zt Vh) 
	

(1 .9) 
h=1 

The probability function h(zt I vh) is the probability that an individual h with 

response vector vh is located at zi. 

The Nt could be interpreted as the expected number of individuals at zi and rit 

is the expected number of those predicted to be at zt who will respond positively. 

The Nt and rit are functions of the unknown parameters. 

We define the steps of an EM algorithm as follows: 

• stepl Choose starting values for aio and ail 

• step2 Compute the values of rit and Nt from (1.8) and (1.9) 

• step3 Obtain improved estimates of the parameters by solving (1.7) 

• step4 Return to step 2 and continue until convergence is attained. 

Now if the response function is taken to be the logit equation (1.7) becomes: 

 

= E zifrit — Ntri(zt)}, 	/ -= 0,1. 
t=i 

(1.10) 
aaii 

There is a program called TWOMISS (Albanese and Knott 1992) which gives 

maximum likelihood estimates via this modified EM algorithm for the one and two 

latent trait model, using the logit model for the response function. 

Bock and Aitkin (1981) proposed this method when z was in fact continuous. 

This is achieved by approximating the continuous z variables using Gauss-Hermite 
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quadrature nodes available in FORTRAN libraries. They analyzed the data set Law 

School Aptitude Test which was also analyzed in Bock and Lieberman (1970). 

The results they got from using 2 and 10 quadrature nodes are very close to the 

ones Bock and Lieberman (1970) obtained. They also fitted other types of prior 

distributions, a 10-point rectangular and a 10-point empirical prior distribution. 

The parameter estimates were close to the ones obtained with the normal prior 

distribution. They suggested that a number of quadrature nodes between 3 and 

7 will be satisfactory for estimating a model with more than one latent variable. 

However, Shea (1984) show that many more nodes are needed in order to get a 

reasonable accuracy for the parameter estimates. 

More than one latent varia- ble 

If there is more than one latent variable the above formulae require modification. 

The response function takes the form 

logitri(z) = aio 
j=1 

The joint distribution of the manifest variables is given by 

f (vh) = I:- • • I g(v h I z)h(z)dz 

where the z's are assumed to be independent standard normal variables. 

This probability can be approximated to any practical degree of accuracy by 

Gauss-Hermite quadrature, 

f(vh) = E • • • E g(vh I ziti, • • • zqt,)h(ziti) • • • h(zqt,) 
t =1 	tq=1 

for h = 1, • • , n 

where zit„ • • zqtq are tabled quadrature nodes and h(zit,) • • • h(zqt,) are the cor-

responding weights (Stroud and Secrest 1966). 

The determination of the unknown parameters require the solution of q 1 
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simultaneous non-linear equations for each item i. 

The steps of the EM algorithm remain the same. The important thing that 

arises here when q > 1 is that there is no unique solution because of the fact that 

orthogonal transformations of the aij's leave the value of the likelihood unchanged. 

The joint distribution of the manifest variables will remain unchanged after the 

transformation if the joint distribution of z* (transformed) and z are the same. 

Constraints must be imposed on the parameters to give a unique solution. 

Comments on the EM algorithm 

As a criterion for the convergence of the EM algorithm we compare the relative 

change in the likelihood after each iteration with a very small number, (i.e. 0.00001). 

The general theory of the EM algorithm, (Dempster et al. 1977), proves that 

each iteration of EM increases the likelihood and when the algorithm converges, it 

converges to a maximum of the likelihood. 

The EM algorithm is simple to program and computationally efficient. 

Problems that arise with the use of the EM algorithm in factor analysis are 

reported in Bentler and Tanaka (1983). 

The drawbacks of the algorithm are 1) it does not check the second-order suf-

ficiency conditions for a maximum, 2) it does not yield standard errors for the 

estimated parameters and 3) the convergence is slow when it reaches the maximum 

solution. 

From practical experience it has been noticed that the EM may be sensitive to 

the starting values. So different starting values should be tried before reporting the 

ML solution. 

The convergence properties of the EM algorithm have been studied by Wu (1983). 

He investigated conditions for which the EM algorithm converges to stationary 

points and to a unique maximum solution. He reported that if the likelihood func-

tion is unimodal and a certain differentiability condition is satisfied, then the EM 

algorithm converges to the unique maximum likelihood estimate. 
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Prior distribution 

The distribution of the latent variable is arbitrary. What we mean by that is that 

we can transform the latent variable into another variable without actually changing 

the marginal distribution of the manifest variables. Usually the latent variable is 

assumed to follow a standard normal distribution but this is only for convenience, 

since any other distribution such as the uniform can be used, if the response function 

is modified suitably. 

Bartholomew (1988), investigated empirically the effect of the change of the prior 

distribution, when a fixed response function is fitted, on the expected one- and two-

way margins for models with one and more than one latent variables. The form 

of the prior distribution investigated is a symmetrical distribution with mean zero 

and variance one. He found that the expected one and two-way margins will not 

change much if the prior distribution is symmetrical and so the choice of the prior 

is a matter of convenience. 

Other types of prior distributions have been looked at, such as the logistic, normal 

and rectangular. Similar results have been found. 

As Bartholomew (1993) noted, in case where the latent variable is taken to have 

a normal distribution with mean it and variance o-2 there is an obvious location-

scale transformation in the difficulty parameters. More complex differences in the 

distribution of the latent variables may be partly allowed for changing the parameters 

of the model. Tzamourani and Knott (1995) investigated this area using methods 

from robustness theory. 

Sampling properties of the maximum likelihood estimates 

From the first order asymptotic theory for maximum likelihood estimates we know 

that the maximum likelihood estimates have a sampling distribution which is asymp-

totically normal. Asymptotically, the sampling variances and covariances of the 

maximum likelihood estimates of the parameters (aii) are given by the elements 

of the inverse of the information matrix at the maximum likelihood solution. The 

inverse of the information matrix for a vector of parameters /6' is 
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[i(f3)1_1 _Ela2  log  L 
ai@Ja0k 

Where, 

	

a  log L 	1  a f (vh)  

	

apj 	h.27-1_1 f (v h) sai3i 

52 log L 	n 	a2f(vh) 	1  af(vh)af(vh)  
RR 	=E{ 	f(v 	RR 	 A R 
-rj-rk 	h=1 	' hi 	 r \ • hj2 - rj 	• - • t-- k 

By taking the expectation the first term vanishes 

[414)]-1. = TIE{  1  a f (v)  af(v).1 
f(v)2 af3i aigk 14=P 

The expectation in equation (1.11) becomes 

	a f (v)  a f (v)  

all v f (v) $9,3; atok 

In the program TWOMISS the standard errors of the maximum likelihood esti-

mates are based on a approximation of equation (1.11) which is given by 

	

n 	a f (vh)  a f (vh)  
IC4) = {E fi 	R 

r 	$9,8.i 	auk 

In our analysis it is often the case that some of the estimated parameters take 

large values. In cases like these asymptotic standard errors are not trustworthy 

since the sampling distribution of these parameters can be skewed or a mixture of 

two distributions. Other techniques can be used for estimating the standard errors 

such as jackknife and bootstrapping. Albanese and Knott (1994) have investigated 

the behaviour of the standard errors of the MLE for the one factor logit/probit 

model by using bootstrapping methods. They reported that when the discrimination 

parameters are small the asymptotic theory works well, but when they get large 

it can be inadequate. It has also been observed that in the one- an.d two-factor 

logit/probit model the standard errors of large discriminating parameters are large 

as well. 

33 



Goodness of fit 

A test of the latent trait model may be based on either the Pearson goodness of fit 

(X2), or the likelihood ratio statistic (G2). If we denote by s the number of manifest 

variables and by T the number of all the possible response patterns (2s) 

	

T 	- Ei)2 

	

x2 . E 	 

	

i=1 	Ei 

G2 = —2 E Oi log —
0i i=i 

where Oi is the observed frequency of the response pattern i and Ei is the ex-

pected frequency of the response pattern i (estimating from the model). 

The degrees of freedom for each statistic are 2' — 2s(q +1) — 1, where q is the 

number of latent variables in the model. 

As the number of the manifest variables increases the number of response pat-

terns increases as well. If the sample size n is kept constant or if it is small compared 

to 2', the frequencies of the response patterns will become small. It is well known 

that when a large number of expected frequencies are too low, the X2 approxima-

tion for the distribution of X2 and G2 may not be valid. Informal techniques that 

are sometimes used to overcome the problem of cells with low or zero frequencies 

include combining cells with low expected frequencies and subtracting one degree of 

freedom each time a grouping is made or adding a small constant to each cell. The 

grouping technique is not successful in cases when the sparseness is very severe and 

there are times when there are no degrees of freedom left to carry on the test. The 

second technique has the disadvantage that it increases the sample size when again 

the sparseness is severe. 

An additional check of the model can be made by comparing the observed and 

expected frequencies of the one- two- and three- way marginal frequencies. From 

these tables we can detect cases where the model does not fit well. This way for 

checking the fit of the model has been used in de Menezes and Bartholomew (1996). 

Reiser and VandenBerg (1994) used some simulation results and suggested that 

when the number of manifest variables is greater than 8 the goodness-of-fit must be 
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checked from the one- and two- way margins which are obtained in their paper by 

following the limited-information method for factor analysis of dich.otomous variables 

where the response information is used only from the first- and second-order marginal 

distributions, (Christofferson 1975; Muthen 1978; Muthen 1984). The power of that 

test is not affected by sparseness but at the same time Type I error becomes quite 

high for nin.e or ten variables and so more investigation is needed. 

In the same study it was reported that when we use the full information method 

the Pearson statistic is more resistant than the likelihood ratio to the effect of 

sparseness for up to 7 manifest variables. 

1.4 Factor analysis for mixed manifest variables 

As already mentioned in the introduction of this chapter, this thesis will deal with the 

development of a latent variable model for binary and continuous manifest variables. 

The approach which will be used in this thesis is an extension of Bartholomew's work 

for fitting latent variable models. The new developments will be discussed in the 

next chapter. 

In the literature the underlying variable approach has been used for the mixed 

case. Contributions have been made by Muthen, kireskog and Sorbom, and Arminger 

and Kiisters. Their work cover a wide range of models which also allow relation-

ships among the latent variables and inclusion of exogenous (explanatory) variables. 

Their approaches will be discussed here. 

Muthen (1984) proposed a three stage estimation method which is actually an 

extension of the theory develoried by Muthen and Christoffersson (1981) and Muthen 

(1978) for categorical manifest variables. 

At the first stage first order statistics such as thresholds, means and variances 

are estimated by ML, in the second stage, second order statistics such as tetra-

choric, polychoric (Olsson 1979) and polyserial (Olsson, Drasgow, and Dorans 1982) 

correlations are estimated by conditional ML for given first stage estimates. 

Olsson (1979) pointed out that bad estimates of the tetrachoric and polychoric 

correlations can be obtained when some expected cell frequencies are low and also 
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that the standard errors of the estimates are not reasonable when the expected cell 

frequencies are less than 10. 

At the third stage the parameters of the structural part of the model are esti-

mated using a limited-information generalized least squares method. The estimation 

at the first two stages is based on maximizing the univariate and bivariate log like-

lihood function for the latent response variables (underlying variables). That is 

the reason why the ML estimated parameters are called limited information ML 

estimates. With this method they obtain a consistent estimator of the asymptotic 

covariance matrix of the estimates of the first two stages. 

The partition of the ML estimation might have an effect at the goodness of 

fit and the statistical properties of the estimates derived at the third stage of the 

estimation procedure. However Muthen (1984) claims that his estimates will be 

always asymptotically normally distributed and efficient. 

Although Muthen (1984) promises that his estimation procedure provides large 

sample chi-square tests of fit and standard errors of the parameter estimates for 

the mixed case as well, his method can only give covariances among polychoric 

correlations as an extension of Olsson (1979) work which derives only variances but 

there is nothing mentioned for covariances for polyserial correlations. This cannot 

be clarified with his examples because they both refer to ordinal and dichotomous 

scale variables. 

However his method covers a wide range of structural models (with exogenous 

variables as well) for the case of metric manifest variables. These models can be 

estimated using a program LISCOMP, (Muthen 1987). In the LISCOMP manual 

he reports that a simplified weight matrix is available which seems to work well and 

demands less computing time and memory. He also reports that the GLS estimators 

that use the full weight matrix require a lot of computing time because the weight 

matrix grows very rapidly with the increase of the manifest variables. 

There is a series of papers (Browne 1974,1982, 1984) describing the GLS estima-

tors in the analysis of covariance structures. 

Lee, Poon, and Bentler (1992) describe a two-stage procedure for analysing struc-

tural equation models with continuous and polytomous items. At the first stage they 
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estimate thresholds, polychoric, polyserial covariances using a full maximum likeli-

hood estimation and at the second stage the parameters of the structural part of 

the model are estimated using generalized least squares method. 

By estimating all the parameters simultaneously using ML approach (see Poon 

and Lee 1987) the final estimates have ML properties such as consistency, asymptotic 

efficiency and normality. As a consequence of the ML estimates at the first stage is 

that the weight matrix which is involved at the second stage will be more accurate. 

The estimates follow an asymptotic normal distribution and so their covariance 

matrix is obtained from the inverse of the information matrix. 

Their method is similar to Muthen (1984) method. The difference is actually at 

the estimation of the parameters at the first stage. They use a full ML estimation 

and Muthen uses a limited information ML estimation. Muthen's method looks less 

computationally heavy although it does not guarantee that the joint distribution of 

the parameters is asymptotically multivariate normal. The first stage estimates are 

obtained by the iterative Fletcher-Powell algorithm and the second stage estimates 

by the iterative Gauss-Newton algorithm 

They did a simulation study for comparing their estimation procedure with LIS-

COMP approach. In brief, they commented that at sample sizes 100 and 200, 

LISCOMP gave better parameter estimates than Lee et al. 1992. However LIS-

COMP gave goodness-of-fit statistics that were not chi-squared distributed. Lee 

et al. (1992) claim that the fact that Muthen is not using a full ML estimation at 

the first stage will have a bad effect on the inference of the model at the second 

stage of GLS estimation. Their program is not available and so comparisons with 

our approach is not possible. Because of the full ML estimation at the first stage 

their method is limited to a small number of categorical variables which in the paper 

is mentioned to be less than four. 

All these methods require the estimation of a weight matrix. This matrix grows 

very much with increase of the number of manifest variables and even more when 

we analyze mixed items. In practice that limits the number of variables for analysis 

to 15-20. 

The LISREL (JOreskog and Sorbom 1993b) approach is also based on the analysis 

of polychoric and polyserial correlations (estimated using PRELIS) and a weighted 
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least squares method for estimating the structural parameters. Joreskog (1990), 

among other new features of LISREL he mentions that polyserial correlation coeffi-

cients can be obtained from bivariate summary statistics consisting of the frequency 

in each cell, the mean and the variance of the continuous variables in each category 

of the categorical items. 

For the case where exogenous variables are included in the model the correlation 

coefficients estimated by PRELIS are unconditional that mea,ns that assumptions 

for the normality of the underlying and the exogenous variables are required. On 

the contrary LISCOMP estimates correlation coefficients of the underlying variables 

conditional on the exogenous variables that means that only the normality assump-

tion of the underlying variable given the exogenous variables is required and this is 

probably preferred. 

One of the estimation procedures for the structural parameters in LISREL is 

called weighted least squares _(WLS), (see Joreskog and SOrbom 1988). The dif-

ference between GLS and WLS is that the first method requires normality of the 

response variables and the latter is asymptotically distribution free. The difference 

is in the weight matrix used. The weight matrix in WLS requires the computation of 

fourth-order central moments, (that requires large sample sizes), but it gives correct 

asymptotic chi-squares and standard errors. It looks as if WLS estimation method is 

more appropriate for the mixed items case, although it appears to be computational 

heavy as the number of variables increases. 

So far the methods which are presented here can fit a latent variable model on 

mixed items by treating all items as metric and by using GLS or WLS as estimation 

method. 

Arminger and Kiisters (1988) have also adopted an underlying variable approach 

in which all the observed variables are treated as metric variables but in which the 

estimation method is maximum likelihood. 

They give a very general framework for estimating simultaneous equation mod-

els, (endogenous observed variables connected to latent endogenous variables), with 

observed variables of level of measurement of any type and metric latent variables. 
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Their formulation allows metric and dummy (0/1) exogenous variables to be in-

cluded in the model. 

In their formulation there are four different type of variables namely the en-

dogenous observed variables (x), the endogenous latent variable (z), the underlying 

response variable (x*), and the exogenous variables (6). 

They distinguish between a single indicator case in which the latent variable 

is equal to an endogenous variable and the multiple indicator case in which several 

endogenous observed variables are connected to only one latent variable. The vector 

of x can be partitioned into subsets, each of which depends only on one latent 

variable. These sets of variables seem to be treated separately in the estimation 

because the loglikelihood function is maximized for each of this sets. The set up of 

the model is the same as LISREL model, (confirmatory factor analysis). 

Only the multiple indicator case will be reviewed here, since we cannot see the 

use of the single indicator case. Also because we are not interested in the structural 

part of the model, relations between latent variables and between latent variables 

and exogenous variables, more emphasis in the presentation of their method will be 

given to the part related to our work that is the measurement relations rather than 

the structural part of the model. 

There are three different type of relationships to be defined in the analysis. First, 

the metric endogenous latent variable z modelled as in an ordinary structural equa-

tion model, here also depends on exogenous variables 6. Second, each observed 

variable (x) is related to an underlying variable (x*) via threshold models, (mea-

surement relations). Third, a set of underlying variables x* is related to one and 

only one latent variable (z) \rib, a linear factor model. 

Arminger and Kiisters (1989) start their analysis by defining the marginal dis-

tribution for each observed item, see also Bartholomew (1987). Because of the 

existence of exogenous variables the marginal distribution is conditional on these 

exogen.ous variables and for one latent variable is written: 

fcx 6) = I goc z, oh(z odz R(z) 
(1.12) 
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where R(z) denotes the domain of z. 

We need to define the conditional distribution g(x I z, 6) for each observed 

variable depending on its level of measurement. The latent variable z is taken 

continuous and so only latent trait models are included. 

For a random sample of n individuals the loglikelihood function to be maximized 

is the sum with respect to all individuals of the logarithm of the marginal density 

given in equation (1.12). 

Three assumptions/simplifications are required to be made for the estimation of 

the model: 

1. Conditional independence is assumed within the elements of each set and 

between sets. So if there are / sets of // elements in each sets: 

1 	// 

	

g (x I z) 	11 g(x j,i I zi) 
j.i i=i 

2. The endogenous observed variables x depends on the exogenous variables 6 
only through the latent variables z. 

3. They assume that the vector x can be partitioned into / subsets, each de-

pending on only one latent variable z. In other words this is the simple structure 

principle which assumes that each observed variable x is connected only to one latent 

variable. 

As already mentioned above the underlying response variables are connected 

with the latent variables through a linear factor model: 

	

= 	-F Aj,iZi 	ej,i 	 (1.13) 

where j denotes the subset number and i is the index denoting the different 

endogenous observed variables in each subset, and 65,i is the error term assumed to 

be independent of zi. 

All the endogenous observed variables (metric, categorical) are modelled using 

equation (1.13). 
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The specification of the measurement relations between xj,i and x'3'f,i and the error 

term 6j,i define the form of the conditional distribution g(xj,i z;). The measurement 

relations are given below. 

For the case where the x variable is metric the measurement model to be used 

is: 

	

Xi 	Xi 

where Ej,i r•-, N(0, Tj,i and the conditional density is: 

x _I z; 	Neya,i + A j,iz.ht j,i) 

For the case where the x variable is ordinal with cj,i categories the threshold 

model to be used is: 

= k 	if f 	rj,i,k-1 < 	< rj,i,k) 	k = 1,• • • ,ci,i 

with 

	

-°C) 	rj,i3O < T.; 1 • • < T; ; r • • = +0C) 4,1 

and 6 N(0,1), the conditional density function is: 

g(x;,i = k I zi) = 
frj,i,k 	

(x*)dx* 

where 0(x*) is a function of x* following Ne-yi,i Ai,izj, 1). 

For the case where the x variable is unordered categorical with ci,i categories the 

threshold model to be used: 

	

x••=k iff 	> XL,1 for / = 1, • • , 

the error terms Ej,i,k are independent identically distributed with the extreme 

value distribution with density function: 

F(6i,i,k) = exp[— exp( — Ei,i,k)] 
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giving the multinomial logit. 

The conditional density function is: 

expeyi,i,k 	Ai,i,kzi)  
g(xj,i 	k 	= 	c Efr_.;-i 	+ 	Ai,i,/z.i) 

(1.14) 

Measurement relations are also defined for censored metric variables. 

The model parameters contained in the conditional distribution x I z together 

with the asymptotic covariance matrix are estimated by a limited marginal likelihood 

approach. The structural parameters which connect the latent variables with the 

exogenous variables together with their asymptotic covariance matrix are estimated 

using the weighted or unweighted version of Amemiya's principle. More can be 

found in Arminger and Kiisters (1988). 

The limited marginal likelihood approach refers to the maximization of the 

marginal distribution given in equation (1.12) for each multiple indicator set. That 

means that a one factor model is fitted on a subset of the observed endogenous 

variables. The first derivatives of the loglikelihood with respect to the unknown 

parameters are given in Arminger and Kiisters (1988) for each type of observed 

variable. A consistent estimate of the asymptotic covariance matrix of the param.e-

ter estimates is computed using the inverse of an approximation of the information 

matrix. 

An EM algorithm is suggested for the maximization of the loglikelihood function 

which requires the maximization of the expected value of the logarithm of the com-

plete data likelihood given the observed data and the parameters estimated from 

the previous iteration: 

E Efing(x,z I ell I x, Od 
h=i 

where d denotes the dth iteration and 0 is a vector with the unknown parameters. 

This maximization is achieved sequentially for each observed variable xi , i = 1, • • • , / 

Results from this method have been presented in their paper Arminger and 

Kiisters (1989) for the case of three endogenous observed variables, one metric exoge- 
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nous and one latent variable using GAUSS routines. Arminger and Kiisters (1988) 

theory has not been implemented in any software such as MECOSA, (Schepers and 

Arminger 1992). 

The differences and similarities with our approach will be discussed in detail in 

Chapter 2 where our approach will be presented. 

We shall compare our approach for handling mixed items with the statistical 

software LISCOMP in the chapter with the applications (Chapter 4). 

1.5 Scaling methods 

Social scientists are particularly interested in locating individuals on the dimensions 

of the latent factor space according to their response patterns. The latent scores 

can be substituted for the manifest variables in analysis with other independent 

variables of interest. 

Scoring methods have been proposed in the literature for the known latent vari-

able models. 

For binary responses the total score of each individual which is obtained by 

adding the answers of all s items provides a simple scoring method which gives the 

same weight to all the items. 

Bartholomew (1980) proposed a method for scaling a set of binary responses 

using the logit factor model and in Bartholomew (1981) that method was extended 

to the factor model with continuous responses. He argues that as latent variables 

in the model are random, Bayes' theorem provides the logical link between the data 

and the latent variables. Hence, the mean of the posterior distribution of z given 

v, (E(z I v)) can be used to score v. The advantage of using the posterior mean 

as a scaling method is that it is approximately a linear function of the components 

V = aiivi if the ail coefficients are small and for any prior distribution. 

Knott and Albanese (1993) investigated h(z I v) for the logistic latent trait 

model for binary responses. They proved that if the conditional distribution of z 

when all responses are zero is normal, then the conditional distribution of z for any 

set of responses is normal. They also comment that this result is not altered if some 
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of the alpha coefficients are large and the number of items increases. 

An alternative method provides component scores proposed by Bartholomew 

(1984b) that method avoids the calculation of the posterior mean and the numerical 

integrations involved. In that paper he investigated the logistic latent model for 

binary responses where the latent variable z follows a uniform distribution on (0,1). 

From the posterior distribution of the latent variable given the observed response 

pattern it is clear that the posterior distribution depends on v only through V; V is 

thus a Bayesian sufficient statistic for z. The sufficiency of V was noted by Birnbaum 

in Lord and Novick (1968), (ch 18), for a fixed effects version of the model. The 

sufficiency depends on the choice of the response function, it holds for the logit but 

not for the probit. 

The component score has an obvious intuitive appeal because of its linearity and 

the fact that it weights the manifest variables in proportion to their contribution to 

the common factor. 

Bartholomew (1984b) shows than an approximation can be obtained: 

E(Y I v) r-ze, (1 + V)/(2 + A) 

where 

V = 	criivi and A = 	ail 

This result is exact if ri = 1/2 and ail = 1 for all i. 

The calculations suggest that E(y v) and V are almost equivalent for scaling 

purposes. This result depends on the choice of uniform prior distribution for y. 

Bartholomew (1984b) and Knott and Albanese (1993) have shown that for the 

one logit/logit model and the one logit/probit model for binary responses both 

scaling methods give the same ranking to response patterns/individuals. 

Analogous results have been derived for the linear factor model. Bartholomew 

(1984a) shows that the component scores are sufficient statistics given conditional 

independence for the items and that the posterior distribution of wi I z is of ex-

ponential type. By applying his results to a special case which is the linear factor 

model for which we assume that g(wi z) N cr2), we obtain the component 

score for the linear factor model to be Mi. 
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1.6 Outline of the thesis 

This chapter is an overview of the existing approaches in the literature of latent 

variable models for binary, metric and mixed manifest variables. The remainder of 

the thesis is organized as follows. 

In Chapter 2 a latent trait model (continuous factor space) is developed for fitting 

mixed, (binary and metric), manifest variables. We discuss the estimation method 

of the model parameters, standard errors, goodness-of-fit and scoring methods for 

the individuals on the latent factor space. 

In Chapter 3 a latent class model (discrete factor space) is developed for fitting 

mixed, (binary and metric), manifest variables. We discuss the estimation method 

of the model parameters, standard errors and the allocation of individuals in the 

latent classes fitted in the model. 

Two pieces of software have been developed for fitting the latent trait and the 

latent class model to mixed manifest variables. The models developed are fitted in 

four data sets vary in number of cases and number of manifest variables. The results 

of the analysis are given in Chapter 4. 

In Chapter 5 the latent trait model developed in Chapter 2 is extended to handle 

incomplete data,. We discuss the set up of the model and the estimation method. 

A number of applications are presented to illustrate the use of the model and the 

information that can be obtained about attitude from non-response. 

In Chapter 6 the results presented in Chapter 2 are put in a general framework 

that can handle manifest variables with conditional distributions in the exponential 

family. That general framework allows for a common estimation method and a 

generalization of the results derived in Chapter 2. 

Finally, Chapter 7 concludes with an overview of the contribution of the current 

research and proposals for futu-  re research. 
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Chapter 2 

Latent trait model 

2.1 Introduction 

Using the existing theory of latent variable models in the form adopted by Bartholomew 

(1987), an analogous technique is presented here for cases where the manifest vari-

ables are of mixed type. Some of the manifest variables are binary and some are 

continuous. For the continuous part the linear factor model is used and for the binary 

part the response function approach is followed. Both these models are described in 

Chapter 1, sections 1.2 and 1.3.2 respectively. 

The mixed model allows a single analysis of the binary and the continuous part. 

The latent variables are assumed to have continuous independent variables with 

standard normal distributions. 

2.2 Latent trait model with mixed manifest vari-

ables 

Suppose there are p manifest variables where r are continuous and s are discrete, 

(r s = p). The continuous manifest variables are denoted by w and the binary 

variables are denoted by v. Let us suppose that their relationship is accounted for 

by a number of q continuous variables y. 

As already- mentioned in Chapter 1 (section 1.3.2), the formulation of the model 

starts with the joint distribution of the manifest variables because this is the one 
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we observe. 

f(x) = 	g(x I y)h(y)dy 

where Ry is the range space of y. 

Under the assumption of conditional independence: 

g(x I y) = 	g(xi y) 

We have to decide about the form of the conditional distributions g(xi I y) and the 

form of the prior distribution of the latent variables, h(y). We have already seen in 

Chapter 1 (section 1.3.2) that the form of the prior distribution is quite arbitrary. 

The same could be assumed for the conditional distributions, g(xi I y), since the 

vector y is not observed and so it cannot be held fixed. However, Bartholomew's 

approach sets some restrictions on the choice of these conditional distributions as it 

will be shown now. 

Our first interest is to pass from the p = (r+ s) manifest variables to q unobserved 

variables where q is much less than p. The x's contain all the information about 

y. Bartholomew took that one step further by saying that it will be desirable. if 

summary statistics can be found to contain the information about y, which these 

observable summary statistics will be of q-dimension rather than p. 

Thus the problem becomes what form the conditional distributions, g(xi I y), 

must have in order the h(y I x) to depend on x through a q function of x. That 

is what called by Bartholomew (1987), the sufficiency principle. This principle is 

fundamental in the approach we use in this thesis. 

Barankin and Maitra (1963) have given the necessary and sufficient conditions 

in order the sufficiency principle to be satisfied which says that at least p — q of the 

conditional distributions g(xi y) must be of exponential type defined as: 

g(xi 1Y) = Fi(xi)Gi(Y) exP E uia(xi)o.i(Y) 
j=1 

The posterior distribution of h(y x) is: 
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h(Y)fif—i Fi(xi)Gi(Y) exP 	Xi0i(Y)  
h(Y Ix) = f h(y) 	Fi(xi)Gi(y) exp Eqj=i Xj0j(y) 

(2.1) 

where Xi = 	ujj(xi) and Oi(y) is a function of y. 

From equation (2.1) we see that the product 	Fi(xi) cancels out and we 

left with the posterior distribution h(y I x) to depend on x only through the q 

components Xj. This Xi is sufficient for y. 

For the binary case the sufficient statistic Xi is proven to be, (see Bartholomew 

1984b): 

E aijvi 
i=i 

and for the continuous case, (see Bartholomew 1984a), where the linear factor 

model is used it is: 

Ai• 

	

X. 	W• 

	

3 	T.. 

Now for the case of binary and continuous items because both the conditional 

distributions for the binary and the continuous items belong to the exponential 

family, the exponents in the two parts are added up and so the component is: 

x—Nr Aii 
Xi = 	aiivi + 2_, wi 

	

i=i 	i=i w 

We will come back to these results when we discuss scoring methods. 

The choice of the distribution of the latent variable y is arbitrary. In this thesis 

is taken to be the standard normal because it leads to linear models, so: 

Z. = 0.(Y) 3 	3 = 1, • • • , 

The first use of the sufficiency principle is that all the information we need to 

know for z is contained in the sufficient statistic X which for the case of q latent 

variables is a q function of x. 

The second one is that the sufficient statistic X for the binary and the continuous 
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case is linear in the x's and that can be used to construct measures for scaling 

individuals on the latent factor space by also allowing for a different weight to be 

given to each item. 

Now all the x's are not constrained to have the same type of conditional distri-

bution. So for the case of mixed type of manifest variables the binary items will 

have the Bernoulli distribution and the metric variables will have the normal. 

2.2.1 One factor latent trait model with mixed manifest 

variables 

The model will be presented here for one latent variable and it will be extended later 

to the case of more than one latent variable. We denote the conditional distribution 

of the manifest variables by g(wi I z) and g(vi I z) for continuous and binary variables 

respectively. 

Under the assumption of conditional independence, 

g(w I z) = 11 g(wi I z) 
i=1 

g(v I z)= 	g(vi I z) 

g(x I z) = 	g(wi z) 	9(vi z) 
i=i 

The joint distribution of the manifest variables is given by: 

f(xh ) = 170 g (wh I z )g (vh I z) h (z) dz 	 (2. 2) 

where xh represents the responses to the p manifest variables of the hth individual 

and h(z) is the prior distribution of the latent variable, assumed to be standard 

normal. 

We want to examine if f(xh ) is an adequate representation of the data for a 

single latent variable z. 

Using the sufficiency principle described above the form of the conditional dis- 
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tributions for the continuous and the binary items are taken from the exponential 

family. 

The continuous manifest variables are fitted using the linear factor model de-

scribed in Chapter 1 (section 1.2). So the conditional distribution of wi I z is given 

by: 

g(wi I z) 	(270-1/21K1/2 exp(--
2Tii

(wi — 	Aiiz)2) 	(2.3) 

The parameter Ail for the one factor model is abbreviated with Ai. 

The binary manifest items- are fitted using the response function method, also 

described in Chapter 1 (section 1.3.2). The conditional distribution of vi I z is given 

by: 

	

g(vi I z) = ri(zri(1 — ri(z))1' 	 (2.4) 

Where the response function takes the form: 

logitri(z) = cxio 	ailz 	 (2.5) 

The estimation of the parameters, (aio, ail, pi, Ai and Wii), is based on the 

marginal distribution of the Manifest variables given by equation (2.2). 

This probability can be approximated to any practical degree of accuracy by 

Gauss-Hermite quadrature, i.e., 

f(xh) = Eg(wh zog(vh zt)h(zt) h = 1,- • • , n 	(2.6) 
t= 1 

where zt is a tabled quadrature node and h(zt) is the corresponding weight 

(Stroud and Secrest 1966). 

	

This method involves choosing the number and location of the nodes 	z2, • • , zu, 
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so that the various sums over t approximate the corresponding integrals that arise in 

the continuous time treatment. In order to estimate the unknown parameters for the 

discrete and the continuous part we will maximize the log-likelihood function. The 

maximization of the likelihood will be achieved using optimization routines more 

specifically an E-M algorithm. 

The log-likelihood for a random sample of size n is 

L = E log f (Xh) 
h=1 

Or 

L = 	f(xh) = 	log il:g(wh I z)g(vh I z)h(z)dz 
h=1 	 h=1 

Finding partial derivatives, we have 

1  af(xh)  	 = 
acyii 	h=1

▪ 

 f(Xh) aail 

ag(Vh I Zt)  1 	v 
- ,

• 

r( 	E h(zoovh zt) 
aaii kxh) t=i 

where, 

ag (vh I zt 
a s 

= ,[11firi(ztilvin { 	71-i(zt)}1-vihl 
&xi/ i=1 

r  Vih 	(1 	Vih)  }thri(Zt)  

g(Vh I 2°1 ri(zt) 	(1 — ri(zt)) 	aaii 

	

i = 1,2, ...,s; 	/ = 0,1. 

Hence, by substituting (2.8) in (2.7) and interchanging the summations, we find 

aL 	 Vih 	(1  — 	aricZt)  = E 	, E h(zoovh zi)g(vh zt){ 
acvii 	h=1 f(Xh) t=1 	 ri(zt) 	— ri(zt)) 	aceii 

(2.7) 

(2 .8) 

51 



ari(Zt)  n g(Wh I Zt)g(Vh I Zt) 	Vih 	7ri(zt)  
= 	h(zi) aa„ 11,1 	Axh) 	Ci(zi){1 ri(zt)}1} 

ari(z-t)  x = E h(zt) 
t=1 

E7h1=1 g(Wh Zt)g(Vh I Zt)Vihif(Xh) — ER=1 g(Wh I Zt)g(Vh I zt)ri(zt) I f (xh)  
ri(zi){1 — 7ri(zt)} 

(2.9) 

Hence, equation (2.9) can be written: 

raL = v a  i(zt) friit —  Nori(zin  
2=1 aai, ri(z,){1— ri(ztil 

(2.10) 

where, rii.t and Nt are defined in (2.12) and (2.13). 

Finally, for the response function defined in equation (2.5) the first derivative of 

the loglikelihood respect to ail parameters becomes: 

— Nari(zt)}, 	/ = 0,1 	(2.11) 

where, 

= h(Zt) E vihg(wh zi)g(vh I zt)/ f (xh) 
h=1 

and 

= E vihh(zi Xh) 
h=1 

Nt = h(zt) E g(wh zog(vh zt) I f (Xh) 
h=1 

= E h(zi xh) 
h=1 

(2.12) 

(2.13) 

The probability function h(zt I xh) is the probability that an individual h with 

response vector xh is located at zt. 

aL 

t=1 
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The Nt could be interpreted as the expected number of individuals at zt and 

the riit could be interpreted as the expected number of individuals at zt that have 

responded positively to binary item vi. 

We carry on by computing the partial derivatives for the parameters of the con-

tinuous part. 

OL 
aA, 

1  af()ch)  
h=.1 f(xh) aAi 

  

 

=. 	E h(zt)g(vh 
f(xh) t=1. 

,ag(wh zt)  
zt) 	aAi 

(2.14) 

a r . 	[11(270-1/2111-iiiii2 exp( 	
1  , 

ax, i=i 	 c.„_,, kwih— pi— AiZt)2)] 
L Wu 

a .,. 
aAi [(27r)-1/241-11-11/2 exP( Hilii 	 (wih — 

x (270" 	k 21111"(wrh — pr — Arzt)2)] /2xicri./2 exp( 	 

Where, 

ag(wh zt)  
aAi 

— 	Zt ) 2) X • • • 

1  , (270-1/2TI-p2 exp( — 	— Aizt)2) x • 
2klin 

x (270'/24c1/2exp( 2111;  
lwrh — 	— Arzt)2)(270-1/2ipTil/2 

Tr 
a 	, 

exP(  	 — — Aizt>2) 
aA, 

(2.15) 

where, 

a 	1  
exp( 

2Tii (wih 	Aizt)2) aAi 
1  

exp( ofr, Wih — Pi — AiZt)2) X 

zt , 
Opih — iti — Aizt) (2.16) 

by substituting (2.16) to (2.15) we get: 

ag(wh I zt) 	 zt 
= g(wh zo[—(tvih — — Aizt)]. aAi 

(2.17) 

53 



Finally, by substituting (2.17) to (2.14): 

aL 	n 

aAi = 	zth(zo E gkvh zi)g(wh zt) 

t=1. 	 f (xh) 
(wih — 	— zt) 	(2.18) 

In the same way the partial derivative of the likelihood respect to iti is 

E h(zt) E g(vh I 
aL 	 Zt)g(Wh Zt)  1 (wih 	— zi) a 	 f (xh) t=1 	h=1 

The partial derivative of the likelihood respect to 

(2. 19) 

where, 

n 	1 a f (xh)  	 = f 
h=i J 1,X/0 

n 	1 	I/ 	 ag(Wh I Zt)  
f(xh) 	1..g(lih I zt)h(zi) (2. 20 ) 

ag(wh zt)  (270-1/2x11;"/1/2 exp( 2iFin  (wih — 	— Aizt)2) x • • • 

x (270-"2‘1177,1/2 exP( 	1 	 ( 2Trr ,Wrh itr 	ArZt)2) X 

a  

awii K27)-1/2‘K1/2 exp( 2wii (wih — 	— zi)2)] 	(2.21) 

a  
[(2r)-1/21K1/2 exp( 	(wih — — Ai zt)2)] = 

	

(2r)-112[(-1 / 2)4c3 / 2 exp( 2‘Fl 	(wih — 	— Aizi)2) kirTi1/2 x 

1 	 , 	1 , 
exp( r„-r, k.wih 	iti 	Aizt)2)(wih 	Aizt)2 21n 	

(2.22) 
hTii 

and, 
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By substituting (2.22) into- (2.21), 

ag(wh I zt)  
= g(wh I 	+ -WT2(wih - - Aizt)2] 2 	2 

By interchanging the summation and substituting (2.23) to (2.20): 

aL 	 n f 

= E h(zt) E gorh 1 zog(wh zt) 

t=1. 	h=1 	f(xh) 
1 	1 	9 _ 	_ Aizt)2] 

(2 .23) 

(2.24) 

Setting the partial derivatives of the continuous part equal to zero, (2.18, 2.19 

and 2.24), we get: 

aL 	o., 	 g(vh  I zft ()xg h(w)h I zt)  ii(wih _ 	_ "izt) 	0 
aAi   

E zth(zt) E 
I/ 	71 

	 E E zth(zt xh)(wih - - 5,izt) = 0 
t=1 h=1 

E zi[r2it - AiNt - AiztNt] = 0 
t.i 

and, 

E Zir2it 
t=1 	 2=1 

‘—',v 2 AT ztNt — Ai Li Z t lY = 0 
i=1 

(2. 25) 

aL 	 n 
g(Vh Zt)g(Wh I Zt)  1 (wih 

= 0 	 h(Zt) afti 	 t=1 	h=1 	f(xh) 
v n 

< 	E E h(zt xh )(wih - - 5t.izt) = 0 
t=1 h=1 _ 

< 	> E[r2it AiNt A‘iZtNti = 0 
t=1 

A v 
< 	> E r2it — E Nt — E ziNt = 0 

t=1. 	t.i 	t=i 

- 
Aizt) = 0 

(2.26) 

By solving the system with the equations (2.25) and (2.26) we get explicit for-

mulae for the estimation of the unknown parameters Ai and 	which are: 
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(Etu=1 Nt)(Etv=i Ztr2it) (Etv=1 r2it)(Etv=1 ztNt)  

(EL, Nt) (ELI. z? Nt) 	zt Nt) 2 (2.27) 

(Eiv=i r2it)(Etv=i 4Nt) — (EL, ztNt)(Etv=i ztr2it) 
it= = (Etv-i Nt)(Etv-i z?Nt) — (Etv_i ztNt)2 

(2.28) 

and, 

aL 	o., 	 = 
v n E E h(zt 

t=1 h=1. 
v n E E h(zt 

t=i h=i 

I xhil4V. + 	- - izt)21 = 0 

v n 
X h)lici E E h(zt I xh)kif Ti2(wih — — 5tizt)2 = 0 

t=i 

"kif' = 	[E 	[wih(wih — 214 — 	 Skizt) 11/(zt I xh)] 

n 
= 	{E[E qhh(Zt I Xh) — 21ti E wihh(zt xh) — 

h=1 

V■ iZt E wihh(zt xh) + 	+ "Aizt)2 E h(zt Xh)1} 
h=1 	 h=1 

1 	rx--,v r 
= 	12_,Lr3it 	 25tiZtr2it 	A‘iZt)2Nill (2.29) 

Lat=1 	t=1 

Where, 

r2it E wihh(zt xh) 
h=1 

r3it 	E Wihnk.Zt 2 Lf 

h=1 

Nt = E h(zt xh) 
h=1 

The equations (2.27) and (2.28) can be written in another form 

(2.30) 

(2.31) 

v n 
2 

a=1.1\rt t=i h= 1. 

Nt t=i h=1 

(Eiv=i Nt)(Etv=i zir2it) (Etv=i r2it)(Etv=i ztNt)  
5,, 

(EitLi Nt)(Eiti_i zt2Nt) - 	ziNt)2 

Eiv=,(zt  -  noit - 
El-t1-1(zt - z)2Nt 

(2 .32) 
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(Etv=1 r2it) ( Etv=1 Zt2Nt ) (Etv-1 ZiNi)(Etv-i Zir2it) = 
(ELI Nt)(E`;_i zt2Nt)- 	ziNt)2 

= 	- 	 (2.33) 

where, 

Oit = 
r2it 

Nt 

= Etv=i. OitNt 

Etv_i ztNt = 	 
Nt 

The equations (2.32) and (2.33) could be interpreted as least squares estimates 

of the regression of the dependent variable 0 on the variable z, where the variables 

z and 0 are multiplied by a weight factor Nt and Nt is the number of observations. 

The regression model is written as Oit = Aizi, where Oit = 

2.2.2 More than one factor latent trait model with mixed 

manifest variables 

The extension of the theory described above to more than one factor latent trait 

model does not have any theoretical difficulty. However, the full maximum likelihood 

method is computationally time consuming when more than two factors are fitted. 

If there is more than one latent variable the above formulae require some modi-

fication. The maximum likelihood equations for the q-latent trait model are given. 

The joint distribution of the manifest variables is given by 

	

f(xh) = I: • • fc:g(wh z)g(vh z)h(z)dz 	 (2.34) 

where the z's are assumed to be independent standard normal variables. 
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The response function for the binary items takes the form: 

logitzi(z) = aio E ai;zi 

Again here equation (2.34) can be approximated to any practical degree of ac-

curacy by Gauss-Hermite quadrature: 

Vi 	1/q 

f (xh) = E • • • E g(wh I 	' , zqt,),g(vh I ziti, • • • 7 Zqt0h(Zli • • • h(zqt,) 
ti=1 

for h = 1, • • , n 

where zit„ • • • , zgtq are tabled quadrature nodes and h(ziti), • • • , h(zgtq) are the 

corresponding weights (Stroud and Secrest 1966). 

In order to estimate the unknown parameters for the discrete and the continuous 

part we will maximize the log-likelihood function of the joint distribution of the 

manifest variables. The maximization procedure is based on the E-M algorithm 

discussed in section 2.2.2. 

The log-likelihood for a random sample of size n will be 

L = E log f (Xh) 
h=1 

Or 

1/q 

L = E log E • . • E g(wh I zit„ • • • ,zqt0g(vh I ziti, • • • 7 Zqt0h(Zlii) " • h(Zqtq) 
h=i 	t1=1 	tg=i 

The partial derivatives for the discrete part are 

Ili 	Uri 

E • • • E (r(1, 	• • • , tq) — N(ti, • • • ,tg)iri(zit„ • • •7zqtq)) = 0 
tg=i 

(2.35) 

aL 
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L 	vi 

	

= E " • E 	(r(1 i, 	• • • , tq) 	Mt17 • • • ) tOri(Zitj • • • 7 Zqtq)) = 0 
ti=1 	tq=1 

(2.36) 

for j = 1, • • • , q 

where, 

r(1,i,ti, • • • , t q) = h(ziti) " • h(z qtq) E vih,g(wh ziti, • • • , zgtog(vh zitt , • • • , z,t9)/f(xh) 
h=1 

= E vio(ziti, • • • 7 Zqtq I Xh) 
	

(2.37) 
h=1 

N(ti, • • • , t q) = h(ziti) • • • h(z qtq) E g(wh, ziti, • • ,zqtjg(vh I zit,, • • • ,zqtq)/f(xh) 
h=i 

= E h(z,ti, • • • , zqtq Xh ) 
	

(2.38) 
h=1 

The interpretation of equations (2.37) and (2.38) are equivalent to (2.1.2) and 

(2.13) for the one factor latent trait model. 

We continue computing the partial derivatives for the parameters of the contin-

uous part. 

aL = 
atti t,=1 

,„ 
E [r(2, 	• • • , tq) — AiN(ti, • • ,t 
tq=1 =1 

• -,tq)] = 0 

(2.39) 

aL _ 
495,ij t =1 

Vq 

tq=1 

q 
•i[r(2,i-,ti, • • , tq) — 	• ,tq) — E Aiizjtimti, • • • , to] = o 

(2.40) 

for j = 1, • ,q 

By solving the system with the equations (2.39) and (2.40) we get the maximum 

likelihood estimates for the parameters [Li and Aii. 
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The partial derivative for 	gives an explicit solution which is 

1 
= 	 X E • • • Efr(3,i,t1, • • tq) 	2itir(2, 	• • - , tq) 

Latil=1. • • • z_4:=1 	tg=i 
q 	 q 

—2 E Aiizatjr(2,i,ti, • • ,tq) — +(Pi E Ai.izio2mti, • • • , to} 
J=1. 

(2.41) 

where, 

r(2, ti, - • • , t q) = E wihh(ziti, • • • , zqt, Xh) 
h=1 

r(3, ti, • • • , q) = E qhh(ziti, • • • , zqt, xh) 
h=i 

N(ti, • • • , tq) 	E h(ziti, • • , zqt, xh)• 
h=1 

(2.42) 

(2.43) 

2.2.3 Estimation of the parameters 

An E-M algorithm is used to obtain the maximum likelihood estimates. This al-

gorithm is iterative and consists of an E step (expectation) followed by a M step 

(maximization). Dempster, Laird, and Rubin (1977) give the theoretical background 

of the E-M algorithm They prove that each iteration of the E-M algorithm not only 

increases the likelihood, but also that if an instance of the algorithm converges, it 

converges to a (local) maximum of the likelihood. 

The E-M algorithm which presented here is an extension of Bartholomew's mod-

ified algorithm presented in Chapter 1 (section 1.3.2) for the case of mixed manifest 

variables. In the E-M algorithm, described in Bartholomew's book (1987) as a vari-

ation of the E-M algorithm, the set of values of the latent variable z which can occur 

is fixed and we have to predict how many individuals are located at each z. 

A software program called LATENT (Moustaki 1995b) has been written in 

FORTRAN 77 which is based on the program TWOMISS (Albanese and Knott 

lA brief documentation and description of the program LATENT is given in Appendix A 
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1992) for handling latent models with binary manifest variables, and which im-

plements the above theory for mixed manifest variables and gives estimates and 

standard errors for the parameters of interest, aio, aii, Ai;, and 

2.2.4 E-M algorithm 

We define the E-M algorithm as follows 

Step 1 Choose starting values for the aio, aia, 	Aii and 

Step 2 Compute the values r(1,i, ti, • • ,tq), r(2,i, ti, • • • , tq), r(3, ti, • • ,tq) 

and N(ti, • • • , tq). 

Step 3 Obtain improved estimates of the aio, 	Ai; and 	by solving the 

equations 2.35, 2.36, 2.39, 2.40, and 2.41 for each item, treating r(1,i,ti, • • ,tq), 

r(2, ti, • • , tq), r(3, ti, • • • , tq) and N(ti, • • • , tq) as given numbers. 

Step 4 Return to Step 2 and continue until convergence is attained. 

Different initial values can be tried for the parameters of the discrete and the 

continuous part. 

Since the marginal distribution of each row of the manifest variable w is normal 

with mean IL and covariance matrix E, the ML estimate of it is the mean of the 

manifest variable w, (if)). So we use the mean of each manifest variable (item) as 

the initial value of the parameter it. Starting values for the last two parameters (Aij 

and Vii) can be given ad hoc. Rubin and Thayer (1982) in their study used ad hoc 

and initial values based on PCA. 

For the parameters of the continuous part we have derived explicit estimating 

equations, so we can easily obtain improved estimates as required for Step 3. 

Estimating equations for the parameters of the discrete part are obtained by 

setting the equations (2.35) and (2.36) equal to zero and for each variable i there 

is a q + 1 non-linear equations which can be solved for aio and aii. The solution 

to these equations when the location of each individual on the latent dimension is 

known is just a logit regression analysis problem. In the programs TWOMISS and 

LATENT the solution of the non-linear equations is done by a Newton-Raphson 

procedure, for more details see (Collett (1991), appendix B). 
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As a criterion for the convergence of the E-M algorithm we compare the rela-

tive change in the loglikelihood after each iteration with a very small number, (i.e. 

0.0000001). Advantages and drawbacks of the E-M algorithm have been discussed 

in chapter 1 (section 1.3.2). 

When q > 1 there is no unique solution because of the fact that orthogonal 

transformations of the loadings, (aii and Aii), leave the value of the joint distri-

bution of the manifest variables unchanged. More specifically for the binary items 

by premultiplying the loadings by an orthogonal matrix Mqxq we get the trans-

formed values aZi. The logit model is then written: logitfri) = (A*M-1)iz = A*z*, 

where Ai denotes the ith row of the A matrix, (Asxq = faii} ). It appears that the 

joint distribution of the binary variables will remain unchanged after this orthogo-

nal transformation if the joint distribution of z and z* are the same. It was shown 

by Lancaster (1954) that if both z and z* are to be independent under orthogonal 

transformation they must be normal. 

Now for the continuous items if we premultiply the loadings Aii by an orthogonal 

matrix M we get the transformed AZi. Then the part of the linear factor model which 

is going to be influenced is again: Aijz.i. After the orthogonal rotation of the 

loadings that becomes: (A*M-1)iz = A7z*, which is the same as in the binary case. 

If we put these two results together then simultaneous orthogonal transforma-

tions, (rotation), of the coefficients of the mixed model (aii and Ai;) leave the value 

of the likelihood unchanged and so they are allowed to be used for finding simple 

structures in the factor loadings. 

2.2.5 Interpretation of the parameters 

The parameters aio and aij of the discrete part and pi, Aij and 	of the continuous 

part are not directly comparable. That is a problem when we come to identify the 

factors by looking at the factor loadings. 

The problem is solved by standardizing the coefficients of the latent variables 

and Aii in order to express correlation coefficients between the manifest variable wi 

and the latent variable zj. 

Let consider first the parameters of the continuous part. The Aii denotes co- 
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variance between the manifest variable wi and the latent variable zj. By dividing 

Aii by the square root of the variance of the continuous variable wi we obtain the 

correlation between the variable wi and zj i.e.: 

Aij =  	
A?.; 

Now for the binary items, let consider the underlying variable model: 

Vi = 
{ 1 if v7 > ri 

0 if 4 < Ti 

where Ti are called threshold parameters and 

(2.44) 

= 	E Aiiz; + ei 

where, Aii denotes the covariance between the underlying variable 4 and the 

latent variable zj. From the equivalence of the response function and the underlying 

variable approach for binary items, (see Bartholomew 1987, page:104), we get that: 

Aii ciijC12 

SO, 

corr(4, zj) = 
cov(4, zj) 

Vvar(4) 
aiiwil2 

aii 

cqj + 1 
aij 	 (2.45) 

This reparameterization of the aij coefficients express the correlation between 

the underlying variable v7 and the latent variable zj. 
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The coefficients ceij and AZi given from equations (2.45) and (2.44) respectively 

can be used for giving a unified interpretation of the factor loadings. The standard-

ization of the parameters bring the interpretation close to factor analysis. 

For the binary items, Albanese (1990) suggested that when the values of the aij 

are greater than 2.5 the response function has a threshold at z = —aio/aij and it 

will be preferred to reparameterize these coefficients by using the formulae given in 

(2.45). This reparametrization of the discrimination parameters give useful results, 

in the sense that it showed better behaviour of the likelihood function. 

2.2.6 Sampling properties of the maximum likelihood esti-

mates 

The E-M algorithm does not yield standard errors of the estimated parameters. 

From the first order asymptotic theory the maximum likelihood estimates have a 

sampling distribution which is asymptotically normal. Asymptotically the sampling 

variances and covariances of the maximum likelihood estimates of the parameters 

aio and aii of the discrete and pi, Aij and of the continuous part are given by 

the elements of the inverse of the information matrix at the maximum likelihood 

solution. 

In the program LATENT the standard errors of the maximum likelihood esti-

mates are based on an approximation of the above matrix which is given by 

n 	a f  (xh,) a f  (xh,)  = {E 	2 	1- 

	

h.i f (xh) 	813.i 	aigk 

where 13 is the vector of the estimated parameters. For more details of this 

approximation see Chapter 1 (section 1.3.2). 

Resampling methods such as bootstrapping or jackknife can be used for calcu-

lating standard errors for the estimated parameters but they have not been used in 

this thesis. 
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2.2.7 Goodness of fit 

A difficult task now is to establish a statistical test for checking the fit of the mixed 

model. Tests for checking the goodness-of-fit for the binary and the continuous 

model have already been pre-sented in Chapter 1 (section 1.3.2). None of these 

statistics can be used directly here. 

The goodness-of-fit of the one or two-factor latent trait model has been looked 

at separately for the discrete and the continuous part. That is, the one- two- and 

three-way margins of the differences between the observed and expected frequencies 

under the model are investigated for any large discrepancies for pairs and triples of 

items which will suggest that the model does not fit well for these combinations of 

items. 

For the continuous part we check the discrepancies between the sample covariance 

matrix and the one estimated from the model. These two ways for checking the 

goodness-of-fit of the one- and two-factors model will be used in the chapter with 

the applications (chapter 4). 

Now instead of testing the goodness-of-fit of a specified model we can alterna-

tively use a criterion for selecting among a set of different models. This proce-

dure does not give as any information about the goodness-of-fit for each model but 

in comparison with other models. For that reason it cannot be con.sidered as a 

goodness-of-fit measure. 

However, a model selection criterion could be used for the determination of the 

number of factors required. In our case it will be to compare the one factor with the 

two factor model. Sclove (1987) gives a review of some of the model selection criteria 

used in multivariate analysis such as the Akaike, Schwarz and Kashap. These criteria 

take account of the value of the likelihood at the maximum likelihood solution and 

the number of parameters estimated. 

As Sclove (1987) pointed all these criteria take the form: 

—21og[maxL(k)] a(n)m(k) b(k, n) 	 (2.46) 

where L(k) is the likelihood of the kth model, n is the sample size, and m(k) is 
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a number of parameters estimated in the kth model. The model with the smallest 

value of (2.46) compared to the other models is the best one. 

Akaike's criterion for the determination of the order of an autoregressive model 

in. time series has been also used for the determination of the number of factors 

in factor analysis, see Akaike (1987). Akaike's criterion as introduced in Akaike 

(1969) and (1970) used a final prediction error criterion which in time series models 

was defined by an estimate of the expected mean square one-step ahead prediction 

error by the model with parameters estimated with least squares. Akaike (1987) 

found that in factor analysis the prediction error is the fitted distribution that was 

evaluated by the likelihood. 

The Akaike's criterion come from formula (2.46) for a(n) = 2 for all n and 

b(k, n) = 0, i.e. 

AI C —21og[max L(k)J 2m(k) 	 (2.47) 

The Sclove (1987) criterion arises from a Bayesian viewpoint and takes the form: 

—21og[maxL(k)] + (log n)m(k) 

The Rissanen (1978) criterion takes the form: 

—21og[maxL(k)] -I- log(
n -I- 2

)m(k) 2log(k -I- 1) 
24 

The Kashyap (1982) criterion takes the form: 

—21og[maxL(k)1+ (log n)m(k) log[detB(k , n)] 

where B(k, n) is the negative of the matrix of second partial derivatives of the 

L(k), evaluated at the maximum likelihood solution. 

JOreskog and SOrbom (1993b), refer to other selection criteria such as the CAIC 

developed by Bozdogan (1987) and the single sample cross-validation index ECVI 

developed by Cudeck and Browne (1983), which are also functions of the likelihood 

and the degrees of freedoms. The ECVI criterion requires the split of the sample 
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into two subsamples. 

As was pointed by Sclove (1987) and Cudeck and Browne (1983), Akaike's crite-

rion is proven to be more favourable to models with a greater number of parameters, 

than the Schwarz and the ECVI criterion. 

Because of the fact that in the AIC criterion the function of a(n) does not depend 

on n various researchers consider that it is not a consistent method. However, Sclove 

(1987) mentions that consistency is an asymptotic property and in reality we only 

deal with finite sample sizes. 

2.2.8 Comments on the model 

The limitations of the method presented for handling mixed items within the frame-

work of a latent variable model are: 

1. The method as illustrated can be easily extended to fit more than one factor 

to the set of manifest items but it faces computational problems. For up to two 

factors the method works satisfactorily 

2. There is no statistical test for checking the goodness-of-fit for the overall 

model. However, Akaike's criterion can be used as a selection model criterion. 

The advantages are: 

1. The method provides a single analysis for fitting a latent trait model on binary 

and continuous manifest items, by treating the data as they are. 

2. A full maximum likelihood estimation is used for obtaining the parameters of 

the discrete and the continuous part. The maximum likelihood estimates obtained 

are consistent and efficient. 

3. A unified interpretation of the estimated parameters can be given by stan-

dardizing the coefficients in order tO express correlation coefficients between the 

manifest and the latent variables. 

4. Our approach in comparison with the underlying variable method which is 

presented by Muthen, JOreskog and SOrbom, and Arminger and Kiister has the 

following advantages: 

First there is no need in. our approach to define an underlying variable for each 

manifest variable. Muthen's and Joreskog and Sorbom's approaches use the linear 
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factor model by assuming first that the response is normal and then estimating 

the correlations required such as tetrachoric and biserial correlation coefficients. 

The correlation matrix obtained might not be positive definite. Their estimation 

is a limited information method because it is based on the first- and second-order 

proportions, whereas our method analyzes the data as they are and so takes into 

account all the information contained in the data. Their method is limited in the 

number of items that it can handle because of the large weight matrix needed for 

estimation of the parameters with the generalized least squares method. 

In contrast to Arminger and Kiister's approach our method does not require 

a linear factor model for each underlying variable plus a model for defining mea-

surement relations between the underlying and the manifest variables. Because for 

the binary items the underlying and the response function approach are equivalent 

(which is not true for categorical variables) and for the continuous iterns the mea-

surement relation between the underlying and the manifest variable is the identity 

the two approaches give equivalent results. However their method has not been 

implemented by any computer program. MECOSA (Schepers and Arminger 1992) 

does not incorporate their work. 

All the above methods lack the sufficiency properties of our method which derive 

from the use of models from the exponential family, (sufficiency principle). It was 

shown in (Bartholomew 1987, page 104) that to every underlying variable model of 

the above kind there is a corresponding linear model defined in terms of a response 

function. Now given that the logit model has the sufficiency property and also that 

the likelihood is simpler in the logit case there is obvious reason for preferring the 

logit. 

In addition factor scores for the individuals in the sample are very easily obtained 

from the sufficiency principle on which our approach is based as it will be shown in 

the section below. 

68 



2.3 Scaling methods 

Scaling methods have been discussed in Chapter 1 (section 1.5) for binary and 

continuous manifest variables. A modified version of these scaling methods has 

been used here for the latent variable model with mixed data. 

The posterior mean of the latent variable given the whole response pattern (bi-

nary and continuous) for the one-factor latent model is the following: 

E(z I x) = fRzzg(x I z)h(z)/ f(x)dz 

and for the two-factor latent variable model: 

E(Zi I X) = jRzi Z1 jRz2 g(x z)h(z)/f(x)dz2dzi 

E(Z2 I X) = 	Z2 	g(x I z)h(z)/ f(x)dzidz2 
JRz2 fRzi 

The component score is the sum of the component score for the binary part plus 

the component score for the continuous part, i.e.: 

Aii E aijvi E 
•• i=i 

Knott and Albanese (1993) results can be generalized for the latent variable 

model with mixed items to show that for the one factor model the component score 

and the posterior mean give the same ranking to individuals. 

For the continuous part the conditional distribution of the response pattern w 

given z is 

g(w I z) = 	I z) 

1 
= 11(270-1/21K1/2 exp 2wii (w, iti — Ajz)2) 

1 	2 	1 	 1 Ai2 2 
11(270-1/211ciiii2 exp ( 	(wi 	+ TpTi(tvi — tti)zAi — 	) 

i=r1 
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g(w z) = g(0 z)11 exP 	(wi2 — 2wi,ui) —wizAi) 
2Tii 	 Tii i= 1 

(2.48) 

From this 

1 	1 	1 g(0 I z) = (270-1/2T.Ti1/2 exp ( 	/42 — 	yizAi — 	A,2z2) 
2Tii 

Hence, 

For the discrete part the conditional distribution of the manifest variables v given 

the latent variable z is 

s • 
g(v I z) = 	ri(z)vi - ri(z))1' 

i=i 

	

g(v I z) = g(0 I z) exp (co(v) ci(v)z) 
	

(2.49) 

where, g(0 I z) is the probability of a zero response pattern v given the latent 

variable z, and 

ca(v) -= E aiovi 
i=i 

(v) = 	vi 
i=i 

The joint probability of the manifest variables x = (w, v) may be written as 

f (x) 
	

re: g(v I z)g(w I z)h(z)dz 

— 2wipi) 
2Tii 

h(z 0) exp 

v, Aiwi 

r (wi2 
CiZ)g(0 I Z) eXpf — 

i=1 
(wi2 — 2witti)

)*  f (0,0) I 

(wi2 2wilLi))f(0,  0)Mzio(ci exRco 

wizAi 
	 h„} (z)dz 

i=i 

{(ci E Awiwi:)z}dz  

(2.50) 

g(0 z)exP(co 

1 
(exp co) exp(— -2- E 

where, Mzio is the moment generating function of the conditional distribution of the 

latent variable z given a zero response on all items. 
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From equations (2.48), (2.49), and (2.50) the conditional distribution of z given 

the response pattern x = (w, v) is: 

h(z I v ,w) g(w z)9(v z)h(z)  
f (X) 

12  E 	+ 	wizAi)g(0 I z) exp (co(v) 	(v)z)h(z) g(0 I z)exp ( 

exp(co 21 E (1142 	 ))f (°7 °)MzIO (C1 E ,twi) 
g(0 I z)g(0 I z)h(z)exp(E tAiwiz)exp(ciz) 

f (0, 0)Mzio(ci + E twi) 
exp{(ci E ,twi)z}h(z I 0) 

(2.51) 
Mzio(ci + E 

From equation (2.51), the moment generating function of the conditional distribution 

of z given x = (w, v) is 

Mz i.(t) = L. exp(tz)h(z I x)dz 

exp{(ci E -twi)z}h(z I 0) 
exp(tz) 	 dz 

Alzio((ci E 

Mzio(ci +  E 	+ (2.52) 
Mzio(ci + E ttwi) 

Result 1 If Kzio(t) is the cumulant generating function for the density of z given 

that all responses are zero, then 

E(z I x) 	M'zis(t) 

= IC*(t) 
1 	 Ai 
	 M 	+ 2_, —wi + t) It.o 
Mzio(ci + E 4twi) 

Ai 	, 
= Kcio(ci. + 2_, 	wi) (2.53) 

and 

Var(z I x) = Kllzio(ci. + E Ai 	
(2.54) 
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where the prime and double prime indicate first and second derivatives of the cu-

mulant generating function. 

Result 2 E(z x) is a strictly increasing function of (ci EI,Twi), if the 

variance of the conditional distribution of z given that all responses are zero has 

variance strictly greater than zero. Knott and Albanese (1993) give this proof for 

the one logit/probit model for binary data only. From equation (2.53) it follows that 

E(z I x) is a strictly increasing function of the (ci E twi), if KizIo(t) is strictly 

increasing in t. They have shown that using the Cauchy inequality the Kizio(t) is 

strictly increasing in t if K"zio(t) is greater than zero. 

There is one more result from the above paper that applies here as well. That is 

if the conditional distribution of z when all responses are zero is normal, then the 

conditional distribution of z for any set of responses is normal. 

72 



Chapter 3 

Latent class model 

3.1 Introduction 

In this chapter we will discuss the development of a latent class model for mixed 

manifest variables. The latent class model assumes that the latent space consists of 

a number of ordered or unordered classes, so the latent space is discrete instead of 

being continuous as it is for latent trait models. Depending on the level of measure-

ment for the manifest variables we have the latent class model for binary variables 

and the latent profile model for continuous variables. A systematic investigation of 

these models was first given in Lazarsfeld and Henry (1968), where they attempted 

to put latent variable models in a common framework. Bartholomew (1987) as 

already mentioned in Chapter 1 (section 1.3.2) put the latent variable models in 

a common framework, using estimation techniques based on maximum likelihood 

methods. 

Many latent class models have been developed over the years. A review of recent 

theoretical developments and available software for the latent class model are given 

in Clogg (1993). These developments include analysis of a wide range of manifest 

variables on different measurement scales, categorical nominal or categorical ordinal 

latent variables and also reparameterizations of the model that give different insights 

on the model such as the log-linear or the logit formulation . 

In this thesis we will develop a latent class model for mixed manifest variables 

which are either metric or binary and with categorical-nominal latent variable. Our 
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approach is an extension of Bartholomew's work (1987) for binary and metric vari-

ables. 

3.2 Latent class model with binary manifest vari-

ables 

Let v denote a vector of s binary manifest variables. Let rii be the probability 

of a positive response on variable i for an individual in class j, (i = 1, • ,s; j = 

0, • • • , K — 1) and be the prior probability that a randomly chosen individual is 

in class j with the constraint that Eii<±-01 = 1. 

Bartholomew (1987) fitted a latent class model on a number of s binary manifest 

variables. The marginal distribution of the manifest variables is: 

	

K —1 	s 

	

f (v) = E 	7:1.1 (1 — 	)1-14 
	

(3. 1) 

	

j=0 	i=1 

The log-likelihood for a random sample of size n is: 

K —1 
L E log{ E 77, 	rt!'ih(1 — 	 (3.2) 

h=1 	j=0 

Equation (3.2) has to be maximized subject to E/12.01 = 1, where rij > 0 and 

0 < 	< 1. 

The maximum likelihood estimates are: 

=_- E h(j I vh)In (j = 0, 1, • • • , K — 1) 
	

(3.3) 
h=1 

and 

= E vihhu vh)/ (nfli) (i = 11 • • • )5; = 0,1, • • ,K — 1) 	(3.4) 
h=1 

where, 11(j I vh), is the posterior probability that an individual with response 

pattern vh will be allocated to class j given by: 

h(j I vh) = 71.ig(vh 	(vh) 
	

(3 .5) 
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If the h(j v h) were known we could solve equations (3.3) and (3.4) and get the 

ML estimates for the parameters i); and respectively. The E-M algorithm is used 

here to derive the ML estimates. The steps of the algorithm are given below: 

step 1 Choose initial estimates for the posterior probabilities h(j I vh) 

step 2 Use equations (3.3) and (3.4) to obtain a first approximation to i); and iri; 

step 3 Substitute these estimates to equation (3.5) to obtain improved estimates of 

h(..7 vh) 

step 4 Return to step 2 and continue until convergence is attained. 

More details about the derivation of the maximum likelihood estimates can be 

found in. (Bartholomew 1987, Chapter 2). Bartholomew also mentions the problem 

of multiple maxima or local maxima that can be found when fitting latent class 

models and that the problem increases with the number of classes to be fitted. 

Aitkin, Anderson, and Hinde (1981) also reported multiple maxima for three or 

more latent classes fitted on the teaching style data, depending on the different initial 

values used. Different parameter estimates do not result in a unique interpretation 

of the classes. 

Goodness of fit 

Goodness-of-fit for the latent class model can be done by comparing the observed 

frequencies (0) for each response pattern with the expected frequencies (E) under 

the fitted model. This comparison is carried out with the chi-square goodness-of-fit 

statistic given by: 

2' (0, 	Ei)2 
X2 = E  Ei i=i 

or the likelihood ratio statistic given by: 

28 
G2 = 2 E 0/ log(—

oi
) 

Ei 1=1. 

where / denotes the response pattern 
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or the power-divergence statistic suggested by Read and Cressie (1988), given 

by: 

2 	23 	oi 
	Eoi{(—)A- 1} 
A(A + 1) /.1 

where / denotes the response pattern and A is a real-valued parameter chosen by 

the user. The chi-square statistic and the likelihood ratio test are special cases of 

the above statistic for values of A equal to 1 and A 0 respectively and where 28 

denotes all the possible response patterns. 

The above goodness-of-fit statistics are appropriate for use when the number of 

manifest items to be analyzed, s, is small. When the number of response patterns, 28, 

becomes large there will be cells with very small expected frequencies. It is known 

that when there is sparseness in the cells of a contingency table, here response 

patterns, the distribution of the goodness-of-fit statistics presented above are not 

well approximated by the chi-square distribution. A reference for these types of 

problem for more general models can be found in Read and Cressie (1988). 

A possible way to avoid that problem would be to examine goodness-of-fit for 

nested models. But Everitt (1988b) and Holt and Macready (1989) checked the 

distribution of the difference of the likelihood ratio statistic G2 for nested latent 

class models and found that it does not have a chi-square distribution. 

Some alternative methods for checking the goodness-of-fit of the latent class 

model have been suggested by Aitkin, Anderson, and Hinde (1981) and Collins, 

Fidler, Wugalter, and Long (1993). Collins et al. (1993) use a Monte Carlo sampling 

method in order to find the empirical distribution of the likelihood ratio statistic G2 

instead of assuming that it follows a theoretical distribution, here the x2. A number 

of data sets are generated under the null hypothesis that a latent class model has 

k classes. For each of the data sets the G2 value is calculated. These G2's form an 

empirical distribution G2. They applied their procedure to an artificial data set from 

a four latent class model and they found that the Monte Carlo sampling method 

worked satisfactorily. However, this method requires a lot of computational time 

depending on the number of samples generated. 

Aitkin. et al. (1981) suggested a graphical method which is based on the distribu- 
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tion of the total score EL.1 vi for each individual. If there is only one homogeneous 

population then the total score will be approximately normal, while if there are K 

classes and the conditional independence model holds then the distribution of the 

total score will be approximately normally distributed with K components. 

Allocation of individuals into classes 

The allocation of individuals into classes is based on the posterior distribution of 

the latent class given the response pattern of the hth individual, h(j I vh). An 

individual with response pattern vh will be located to the class with the highest 

posterior probability compared to the other classes. 

The posterior probability for the latent class j is written: 

h(j I vh.) = nig(vh I iVf(vh) 
7rZfh (1 — rii)(1-vih) 

v•IC - 	 Vih I 
Z-4=0 77.i 	7ria 

and the posterior probability for the latent class k is written: 

h(k I vh) = nhg(vh I k)I f(vh) 
IIL-1 rah (1 — rik)(1-vih) 

7K-1 
,rj 	— rij)(1-vih) ns „vihri 

In order to decide if an individual will be located into class j or class k we look 

at the ratio: 

    

h(i I vh)  
h( k I vh ) 

 

117=17 .21r (1 — wij ) (1 -vih) 

  

(1 _ Tikyi-vih) 

exp{E[{ NI, log rij + (1 — vih) log(1 — rii)} - 
i=i 

{vih log rik + (1 — vih) log(1 — rik)}1} (3.8) 

Furthermore, we allocate an individual into class j if the above ratio is greater 

than one for all k, i.e.: 

(3.6) 

(3.7) 
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[vih log 	+ (1 — vih) log(1 — rii)] + log ni > 

E[vjh log irik + ( 1 — vih) log(1 — rik)] + log nk. 
i=i 

(3.9) 

As we can see the posterior probability depends on the vector v through a linear 

function and the allocation of individ.uals into classes is based on the same linear 

function, ELI. [vih log -I- (1 — vih) log(1 — ria)]. This sort of result holds for all 

distributions from the exponential family. 

3.3 Latent class model with metric manifest vari-

ables 

A latent class model with metric manifest variables is called a latent profile model. 

There are two estimation methods for that model, a method based on maximum like-

lihood and a method based on moments estimators proposed originally by Lazarsfeld 

and Henry (1968). In the moment estimation method the distribution of the manifest 

variables is described by specifying the mean and the variance, and for non-normal 

variables third- or higher-order covariance terms. These moment statistics are used 

for estimating the unknown parameters of the model. For more details of the estima-

tion see (Lazarsfeld and Henry 1968, Chapter 8). This estimation approach reveals 

the similarities of the latent profile model to the factor model, (see Bartholomew 

1987, Chapter 2, section 2.4). 

The maximum likelihood approach for the latent profile model has been described 

in Bartholomew (1987). This estimation will be extended for the mixed model and 

for that reason it will be briefly discussed here. 

Let w denotes a vector of r continuous manifest variables. Let pi.; be the mean 

of the manifest variable i in class j, o-? be the variance of the manifest variable i 

assumed constant across classes, (i = 1, • • , r; j 0, • • • , K — 1) and 7/i be the prior 

probability that a randomly chosen individual is in class j with the constraint that 
Eix.-01 = 
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The marginal distribution of the manifest continuous variables is: 

	

-1 	r 

	

f(w) = E 	g(wi i) 
	

(3.10) 

	

j=0 	i=1 

The conditional distribution g(wi I j) was taken, in Bartholomew (1987) to be 

the normal with mean pi; and unit variance. 

The log-likelihood for a random sample of size n is: 

K-1 	r 
L = E log E ll g(wih i) 

h=1 	j=0 i=1 

where, g(wih j) = g(wii iiii) 
The maximum likelihood estimates are: 

= E hu wh)/n = 0,1, , K — 1) 
h=1 

and 

(3.11) 

(3.12) 

= E wihhU wh)I(nk7) (i =1,' • • ls;:i =0,1,• , K — 1) 	(3.13) 
h=1 

where, h(j I wh), is the posterior probability that an individual with response 

pattern wh will be allocated to class j given by: 

h (i I wh ) = nig (wh I i )/f(wh ) 
	

(3.14) 

Equations (3.12) and (3.13) can be incorporated into an E-M algorithm to derive 

the ML estimates. The steps of the E-M algorithm are similar to the ones described 

for the latent class model for binary manifest variables. 

Goodness of fit 

To test whether the data arises from a mixture of K normal distributions rather 

than K 1 a likelihood ratio statistic could be used. However, when two models 

are compared some of the parameters of the submodel are constrained at boundary 

values of the parameter space under the null hypothesis. As has been discussed by 
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- 
many researchers, (Wolfe 1971, Everitt and Hand 1981, Titterington, Smith, and 

Makov 1985), in such cases a regularity condition is violated and the likelihood ratio 

statistic does not follow the chi-square distribution. Simulation results for the form 

of the distribution of the likelihood ratio statistic can be found in Everitt (1981) 

and Holt and Macready (1989). Also Aitkin and Rubin (1985) proposed a ML 

estimation method which places a distribution to the prior probabilities 77.5, rather 

than treating them as parameters and estimate the parameter by maximizing the 

f L(Fij,c4,77j I w)c177j. Their method involves numerical integration and for that 

reason is computationally disadvantaged compared to the ML method that does not 

impose a prior distribution on the parameters. The advantage of their method is 

that when we test for the number of classes under the null hypothesis this is done 

within the parameter space of the model parameters. However, Quinn, McLachlan, 

and Hjort (1987) show that even with a prior distribution for the ni the regularity 

conditions do not hold. 

Allocation into classes 

The allocation of individuals into classes, as in the latent class model for binary 

variables, is based on the posterior probability h(j I wh), given by equation (3.14). 

An individual is more probable to be in class j than k if: 

h(i wh)  > (3.15) 
h(k I wh) 

For the normal model defined in the previous section equation (3.15) becomes: 

(27r)-ir eip - 	- Pij)2  
> 1 

nk (270- exp 	E::=1(wih — Pik? 
1 r 

- -2 E + log 77, > 
i=1 

r 

Wilt/4k - - E 	+ log 7/h 
2 i=i 

(3.16) 

From equation (3.16) we see that the allocation of individuals into classes is also 

based on a linear function of the manifest variables w. 
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3.4 Latent class model with mixed manifest vari-

ables 

Everitt (1988a) and Everitt and Merette (1990) have dealt with the problem of 

clustering mixed-mode data. They have used both a maximum likelihood method 

which assumes that the manifest categorical variables are generated by underlying 

continuous variables and the traditional hierarchical clustering methods such as the 

complete linkage, group average and Ward's method based on similarities and dis-

tance matrices which based on the Euclidean distance calculated from raw data, or 

from the data standardized to unit variance on each variable, or from the data after 

each variable has been standardized by its range, and Gower's similarity coefficient 

(Gower 1971). Using simulation results, (see Everitt and Merette 1990), they found 

that the hierarchical clustering methods have an unsatisfactory performance com-

pared to the maximum likelihood method. However, the estimation of the model by 

maximum likelihood requires the evaluation of multidimensional integrals and that 

restricts the number of categorical variables to one or two. 

The model presented by Everitt (1988a) will be described here for reasons of 

completeness. Suppose there is a vector of (p r s) continuous random variables 

wi, • • • 7 Wr 7 Wr-f-1) • • • 7 Wp with density function: 

f (w) = E nimvNfr+30,, E) 
j=o 

(3.17) 

where k is the assumed number of classes, ni is the prior probability of each class 

j or the mixing proportions for which Ef.:01 = 1 and where the r s variables 

have a multivariate normal distribution with mean pi and covariance matrix E taken 

as constant across classes. 

Now suppose that the variables W7-1-1) • ' • 7 Wr-i-s are not directly observable, but 

are related to a set of categorical manifest variables, v, through a threshold model 

in the following way: 
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if aiii < wr+i < aii2 

if aij2 < 	5- aii3 

if criici < wr+i 	aiaci+i 

where aiji are called threshold parameters and these are the ones that gen-

erate the manifest categorical variables from the underlying continuous variables, 

(Wr+11 • • ' Wr+s) and ci denote the number of categories of the ith categorical vari-

able and i = 1, • • , s; j 1, • • • , K and / = 1, • • • , ci. 

The joint density function of the inanifest variables is written as: 

f(w,v) = 	I • • • 	MVIV(r+s)(iti,E)dwr+i • • • dwr-fs 
)31. 

=.1 	al 	as 
(3.18) 

where w' = [wi, • • , wr] and v' 	[vi, • • • , vs] 

The joint density function of equation (3.18) can be written in an alternative 

form as: 

Pi 	Ps 
f(w,v) = E MV N(r)(14r) E r) i • • • 	MV N(s)(1491r) E (sir)) dY1 • • dYs 

J a, 

(3.19) 

The loglikelihood for a random sample of size n is: 

L = E log h(wh, vh ) 	 (3.20) 
h=1 

For the maximization of the loglikelihood Everitt used several optimization routines 

such as the Simplex method and a number of quasi-Newton algorithms. The compu-

tational difficulties that arise from the evaluation of the integrals limit the number 

of categorical variables to be analyzed to one or two. 

Our formulation of the latent class model does not assume that the binary vari-

ables are generated by underlying variables but analyzes the manifest variables as 

they are. As a result, our method does not involve any numerical integration and 
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that speeds up the estimation procedure and allows a large number of binary and 

continuous manifest variables to be analyzed. 

An extension of the theory presented for the latent trait model, (see Chapter 2), 

can be used to fit a latent class model on a set of mixed manifest variables. The 

same notation as before will be used for the manifest variables. In these models we 

assume that the factor space consists of k classes. That replaces the continuum factor 

space of a latent trait model. For each class there is an associated probability, 

The joint distribution of the Manifest variables, using the assumption of conditional 

independence is a finite mixture of conditional probabilities: 

K-1 

f(xh) = E nig(wh i)g(vh i) 
j=0 

where g(wh I j) is the conditional distribution of the vector of manifest contin-

uous variables for the h individual given the class j and g(vh I j) is the conditional 

distribution of the vector of manifest binary variables for the h individual given the 

class j. 
Under the assumption of conditional independence and the sufficiency principle, 

the forms of these conditional distributions are taken from the exponential family 

and more specifically the conditional distribution of the continuous items, where 

g(wh j, ttij,an g(wh I j), is taken to be: 

, 	1 , 2 \ 	 N2N 
g(Wh I 3, itij,cri ) = ll(270-1/2cri-1/2exPl----) l'wjh /LW 

Lai 

and the conditional distribution of the binary items is taken to be: 

g(vh I j) = 	_ 7riirvih 

(3.21) 

(3.22) 

where j denotes the class, (j = 0, • • • , K — 1), rij denotes the probability that an 

individual who belongs to class j will respond positively to item i, is the location 

parameter of the continuous item i in the class j and a? is the variance of the ith 

item taken as constant across classes. 

Finally, the log-likelihood for a random sample of size n is written: 
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n 	1 

f(xh)
(Vih riAg(wh I j)9(vh I :7) arij 	(1 — rii h= 

(3.27) 

= E log f (xh) 
h=i 

K -1 	r 	 1 E log E 77, ll [(270-1/2cli-1/2 exp(--(wih — 
201 h=1 	j=0 	i=1 

The above log-likelihood can be maximized using 

constraint that: Ef=-01 = 1 where O. In other 

the function: 

tiii)2)1[11[7ril'ih (1 — 7rii) 
:=1 

an EM algorithm under the 

words we need to maximize 

K -1 
'1° = L — 9( E 77; — 1) 

j=0 

where 0 is the Lagrance multiplier. 

Finding partial derivatives, we have: 

(3.23) 

= 
n 	1 	 af(xh)  e anj 	f (xh) arli 
n 	1 

f(xog(Wh I J)g(Vh I j) ° 
h= 

(3.24) 

where, 

ni 	ag(vh i)  
f(xh)

g(wh j) arii 
(3.25 ) 

ag(vh J) 	a s ri .vih 
thrij 

Orh 1:1)[ 	 7rii — rij) 

Hence, by substituting (3.26) into (3.25), we have: 

(3.26) 
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We carry on by computing the partial derivatives for the parameters of the 

continuous part. 

where, 

	 E 	, gkvh 
a4) 	n 

h=.1. f(xh) 	

.)ag(wh  I i)  (3.28) 

ag(wh I i)  

	

a r 	 —1 

	

i•=1 	eXp(T-07(wih yii)2) 

(Wih  

	

ai2 	g(Wh I j) (3.29) 

by substituting (3.29) into (3.28) we have: 

ao 	n (Wih 	taij)  = E 	g wh i)g(vh I i) 
h=i f(xh 

The partial derivative of the loglikelihood respect to 

ao 	n 	K-1 	
Og(Wh I j)  	E nig(vh i) a (7,2 

h="1 f kXhi j=0 	 aCrl 

where, 

ag(wh 	I j) = g(wh 
i){(wih- 

- 	 2o-i2 j 

by substituting (3.32) into (3.31) we have 

(3.30) 

(3.31) 

(3.32) 

\ 2 = En 	IC,-1 	1 r(Wih Pij 	i}g(Vh I Ag(Wh I j) 
ao 

f (xh) j2-'=0 71i 2Gri2 1 pal h=1 
(3.33) 

The maximum likelihood equations, (3.24, 3.27, 3.30, 3.33) , can be simplified by 

expressing them in terms of the posterior distribution h(j wh, vh). The posterior 

probability than an individual with response pattern xh = (wh, vh) will be in class 

j, is given by: 

h(j wh,vh) = 71j9(wh :7)9(vh I 	(xh) 
	

(3.34) 
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Setting the partial derivatives equal to zero, (3.24, 3.27, 3.30, 3.33), and substi-

tuting (3.34) in them, we get: 

ao n = o 

- 

E „ 	, g(wh .09(vh — 0 
h=i J 3C/t) 

11(i Wh, Vh)  2_, 	0 = o 
h=1 

- E hu wh,vh) = 
h=1 

(3.35) 

Summing both sides over 3" and using E31.c=-01 77.; = 1 we get that 0 = n and hence 

equation (3.35) becomes: 

= E hu wh,vh)/n (i = o, 1, , K —1) 	 (3.36) 
h=1 

Also, 

ao = o 
afrij (1 	E 

n 

Kij) h=1 f (Xh 
g(wh I i)g(vh I j)(vih — 	= 0 

E(Vih 	 I whvh) = 0 
h=1 

= E vihhu wh,vh)/(nc 	 (3.37) 
h=1 

ao 
	 = U 	 

< 	> 

n 

(.7? h= f(xh)
g(Wh I Ag(Vh 3)(Wih 

E(Wih flij)h(i I Wh, Vh) = 0 
h=1 

iiij E wihhu wh,vh)/(n7,i) 	 (3.38) 
h=1 

ao = o  	
n 	K-1 	 1 (Wih 	

1} 0 	 E 	.i)g(wh 13) 23-i2 { ^ 2 a (51 h=i f (xh) i=o 
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< 

n K-1 	 n K-1 E E 	wh,vh)(wi, - 	E E ho wh,vh) 0 ,2 

z h=1 j=0 	 h=1 j=0 
n K-1 	 n K-1 

1:;" 	E E (tvih - itiJ)2hu I Wh Vh)/ E E h(i I wh,vh) 
h=i 	 h=i i=o 
n K-1 

Cri 	E E (wih - itiJ)2h(i wh, vh)/n 	 (3.39) A 2 

h=1 j=0 

3.4.1 EM algorithm 

An E-M algorithm is used to obtain the maximum likelihood estimates of the un-

known parameters. 

If h(j I wh, vh) were known we could solve the ML equations respect to the 

unknown parameters. Based on that fact, the EM algorithm works as follows: 

step 1 Choose initial values for the posterior probabilities h(j I wh, vh)• 

step 2 Obtain a first approximation for ijj, 	itii and .51 from the equations (3.36), 

(3.37), (3.38) and (3.39). 

step 3 Substitute these in (3.34) to obtain a new estimate for h(j I wh, vh )• 

step 4 Return to step 2 and continue until convergence is attained. 

The EM algorithm is considered to have converged when the difference between 

the value of the loglikelihood in two successive iterations is equal to a very small 

value, i.e. 0.0000001. 

Different initial values for the posterior probability h(j I wh, vh) are used in 

order to investigate probable multiple or local maximum. The initial allocation of 

individuals into classes is based on their total score. In order to allow different initial 

values for the posterior probability we use the total score of each individual based on 

his responses to the binary items and the total score which is based on the responses 

to the binary and the metric variables. Hence, the initial value h(j I wh, vh) is 1 for 

an individual who belongs to class j and 0 otherwise. 

A software program called CLASSMIX (Moustaki 1995a) has been written in 

FORTRAN 77 for fitting a latent class model on a set of mixed manifest variables. 

lA brief documentation and description of the program is given in the Appendix B 
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3.4.2 Allocation of individuals into classes 

We have already discussed the allocation of individuals into classes for the case 

where the manifest variables are either binary or metric. In both these cases the 

allocation was based on the posterior probability. The same is also applied in the 

latent class model for mixed manifest variables. By combining the results we found 

above for the binary case, (see equation 3.9) and metric case, (see equation 3.16), 

we have that an individual will be located to class j and not to k if: 

r 	 1 	2 	s E{wihiti.; 	i itii., 
2 a2 _t + E[Vih log 'xi; + (1 

i.i 	01 	= 	i.i. 
r 	 2 	s Elwihipk  1 pa -,-} ± E[vih lOg rik + 

i.i. 	6i 	2 o-i i-1. 

h(j I w, v)  
h(k I w, v ) 

g(wh I i)g (vh j)  
rIk g(wh k)g(vh k) 

— vih) log(1 — rii)] + log qi > 

(1 — Vih) log(1 — rik)] lOg (3.40) 

So again here the allocation of individuals is based on a function which is linear 

on the vector of the manifest variables (w, v). 

3.4.3 Standard errors 

As has already been discussed in Chapters 1 and 2 the EM algorithm does not 

yield standard errors of the estimated parameters. Asymptotically, the sampling 

variances and covariances of the maximum likelihood estimates of the parameters 77; 

and rii of the discrete and a.? of the continuous part are given by the elements 

of the inverse of the information matrix at the maximum likelihood solution. 

The standard errors of the maximum likelihood estimates can be obtained from 

an approximation of the above matrix which is given by 

n 	a f (xh)  a f (xh,)  
I(S) = {E 	2 	 r 

h=i f (xh) 	(9/33' 	afik 

where /3 is the vector of the estimated parameters. 

88 



Bartholomew (1987) found out empirically that this approximation is good for 

standard errors and less good for covariances. 

Resampling methods such as bootstrapping or jackknife can be used for calcu-

lating standard errors for the estimated parameters but they have not been used in 

this thesis. 
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Chapter 4 

Applications 

Introduction 

The latent trait and the latent class models for mixed observed variables presented 

in Chapters 2 and 3 respectively have been fitted to four data sets. The analysis 

presented here is used for illustrating the fit of the mixed model into data sets with 

different sample sizes and different number of observed variables. 

Two of the data sets comprise the responses to five memory questions. The third 

data set is from the sexual attitudes section of the 1990 British Social Attitudes 

survey, and the fourth data set is from the environment section of the 1991 British 

Social Attitudes survey. 

In this chapter parameter estimates, scoring methods and measures of goodness 

of fit will be discussed for the four data sets. The analysis is done with the programs 

LATENT (Moustaki 1995b) and CLASSMIX (Moustaki 1995a). 

The same data sets will be analyzed using the underlying variable approach with 

the program LISCOMP, (Muthen 1987), in order to allow for comparisons with the 

results of our approach. We also tried to fit the models using LISREL 8, (JOreskog 

and Sorbom 1993a) but it did not give us admissible solutions most of the time and 

so we decided not to show the results. Neither of these programs LISCOMP and 

LISREL 8 provide standard errors for the parameter estimates of the models we 

fitted here. 

Lastly, data will be simulated from the estimated model for one of the data sets 
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in order to check the goodness-of-fit of the model to these data. 

4.1 Memory questions 

The question wording for this data set is given in Appendix C. These are four binary 

questions that deal with detailed recollection of personal circumstances at the time 

one hears of an event and one ordinal question on the clarity of the recollection of the 

event. For this paper the ordinal item is treated as an interval scale variable. The five 

questions were included by British Market Research Bureau International in their 

August 1993 face-to-face omnibus survey as part of an LSE Cognitive Laboratory 

experiment. For 489 individuals the event was the resignation of Thatcher as Prime 

Minister on November 22, 1990; a different 485 individuals were asked about the 

disaster at Hillsborough football stadium on April 15, 1989. 

These five questions have been analysed in Wright, Gaskell, and O'Muircheartaigh 

(1994). The objective of the research was to test the assumption that a detailed 

recollection of one's personal circumstances implies a vivid memory; this is what the 

theory of "flashbulb memory" postulates. They found that for both events, of the 

people who said they could remember all four attributes, approximately 55% said 

their memory was only "fairly clear" or worse. This result does not agree with the 

hypothesized vividness of "flashbulb memories". 

We are interested in the existence of one or more latent variables that could 

explain the interrelationships among the five items. This can be tested by fitting a 

latent variable model. 

For these five items we fitted a one-factor and a two-factor latent trait model 

and a two-latent class model. 

4.1.1 Thatcher's resignation 

First we fit a single latent trait model. The maximumlikelihood estimates are given 

in Table 4.1. 

The "discrimination" parameters ail are large for all the items; and in effect can 

be considered as threshold functions. Consequently we use the standardized form of 

91 



Table 4.1: Thatcher's resignation: Parameter estimates and standard errors for the 
one-factor latent trait model _ 

Variable vi aio ail ri asii 
where you were [1] 8.12 (*) 29.7 (*) 0.99 0.99 

who you were with [2] 1.62 (0.42) 5.71 (0.95) 0.84 0.98 
how you heard about it [3] 3.38 (0.41) 2.57 (0.39) 0.97 0.93 

what you were doing [4] 1.13 (0.24) 3.04 (0.38) 0.76 0.95 

Variable wi Yi Ail Tii At ii 
vividness of recollection [5] 2.93 (0.05) 0.78 (0.06) 0.75 (0.06) 0.67 
* The standard errors estimated are so large as to be untrustworthy. 

these coefficients, 4, (see Chapter 2, section 2.2.5). The pattern reveals a general 

factor. The ri's show a range of "difficulties" for the four binary items which shows 

that the median individual has a probability almost 1 of responding positively to 

items 1 and 3, (ri = 0.99, 7r3 0.97). 

The correlation between the observed metric variable wi and the latent variable 

z is measured by An.. The value 0.67 obtained here suggests a strong relationship 

between the continuous variable and the factor underlying the four binary variables. 

The value 0.75 is the estimate of the parameter which is the variance of the error 

term in the linear factor model, and it is estimated jointly from the continuous and 

the binary manifest items since there is a single analysis for both types of variables. 

We carry on by fitting a two factor latent trait model on the same five items. 

Table 4.2 gives the maximum likelihood estimates. The standardized alpha coeffi-

cients for the first latent variable are all large and positive and the coefficients for 

the second latent variable contrast items 1 and 2 with 3. The coefficient A'n is equal 

to 0.57 which is quite large. Figure 4.1 suggests no orthogonal rotation will give a 

simple and more intuitive interpretation of the variables. 

The goodness-of-fit of the model is. judged by looking at the one- two- and three-

way observed and expected margins of the binary part of the model after the mixed 

model has been fitted. The discrepancies are measured with the statistic (0—E)2IE. 

These discrepancies for the two-factor model are very small. 

The AIC criterion for the one-factor model is 3017.5 and for the two-factor model 
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Table 4.2: Thatcher's resignation: Parameter estimates and standard errors for the 
two-factor latent trait model 

Variable vi aio aii ai2 ri 0/12 
item [1] 35.4 (*) 136.9 (*) 77.8 (*) 1.00 0.869 0.494 
item [2] 1.36 (0.41) 4.15 (1.13) 2.99 (0.82) 0.79 0.796 0.574 
item [3] 18.6 (*) 27.0 (*) -1.48 (1.54) 1.00 0.998 -0.055 
item [4] 2.67 (16.2) 6.58 (31.0) 1.12 (0.62) 0.93 0.975 0.166 

Variable wi Ili Aii Ai2 kliii A1'1 A4i2 

item [5] 2.92 (0.05) 0.66 (0.06) 0.41 (0.07) 0.76 (0.06) 0.57 0.36 
* The standard errors estimated are so large as to be untrustworthy. 
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Figure 4.1: Thatcher's resignation - Standardized factor loadings 
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is 3000.2, suggesting that the two-factor model fits the data better. 

Table 4.3 gives the posterior mean for the first and the second latent variable 

given the response pattern of each individual. The component score is not given 

here because it depends on the discrimination parameters and since they are very 

large in that example we think that they will not be particularly meaningful. The 

ranking of the individuals is based on the posterior mean of the first general factor. 

The posterior mean takes the same value for some of the response patterns. The 

reason for that could be the steepness of the response function for the binary items. 

Figure 4.2 shows that the response patterns with the same value of the posterior 

mean are located in areas with very Small variation. In order to plot the response 

function of each binary item we set the right linear part of the logit function (i.e. 

aio ai2z2) equal to zero. Then for each item the response function can be 

represented by a line. 

A two-latent class model has been fitted to the same data. In this model we 

assume that the factor space consists of two classes. The parameters 7rij for the 

binary part of the model and and cr? for the continuous part are given in Table 

4.4. Individuals in class I have very large probabilities of responding positively to the 

four binary items. Individuals in class II have almost zero probabilities of responding 

positively to items 1,2 and 4 but still very high probability of responding positively 

to item 3. The parameters of the continuous item denote that although individuals 

in class I recollect all their personal circumstances very clearly the estimated mean 

of this item within class I is only 3.45. 

Table 4.3 gives also the allocation of individuals into the two latent classes based 

on their response patterns. The ranking of individuals based on the latent class 

model does not perfectly coincide with the ranking based on the latent class model. 

However the ranking of the latent trait model must be looked at with cautious since 

many response patterns have the same posterior mean value. 

Lastly we want to compare our results with the results obtained from the un-

derlying variable approach. In our case we are not interested in structural equation 

models (relationships between latent variables) and so only a measurement model is 

fitted. The estimation method used is a weighted least squares method. The output 

of the program gives threshold values for the binary variables and the correlation 

94 



-6 	-4 	-2 . 	 2 
	

4 
	

6 

z2 

Figure 4.2: Thatcher's resignation: Plot of the response functions of the four binary 
items 
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Table 4.3: Thatcher's resignation: Scaling methods 

E(Zi  I x) E(Z2 I x) LATENT 
CLASS 

RESPONSE 
PATTERN 

-1.76 (0.38) -0.37 (0.88) 
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0 0 0 0 1 
-1.69 (0.28) 0.00 (0.85) 0 0 0 0 2 
-1.65 (0.22) 0.35 (0.81) 0 0 0 0 3 
-1.63 (0.20) 0.66 (0.77) 0 0 0 0 4 
-1.62 (0.16) 1.40 (0.50) 0 1 0 0 2 
-1.62 (0.17) 1.48 (0.42) 0 1 0 0 3 
-0.76 (0.44) - 1.67 (0.83) 1 1 0 0 4 
-0.73 (0.41) 1.82 (0.78) 1 1 0 0 5 
-0.54 (0.02) 0.61 (0.28) 1 0 0 1 2 
-0.54 (0.04) 0.54 (0.06) 1 0 1 0 1 
-0.54 (0.05) 0.54 (0.08) 1 0 1 0 2 
-0.54 (0.05) -1.11 (0.67) 0 0 1 0 1 
-0.54 (0.05) 0.54 (0.11) 1 0 1 0 3 
-0.54 (0.06) -0.90 (0.58) 0 0 1 0 2 
-0.54 (0.11) -0.44 (0.39) 0 1 1 0 2 
-0.54 (0.12) -0.36 (0.46) 0 1 1 0 3 
-0.54 (0.09) -0.50 (0.34) 0 1 1 0 1 
-0.54 (0.10) -0.59 (0.35) 0 0 1 0 5 
-0.54 (0.07) -0.76 (0.48) 0 0 1 0 3 
-0.54 (0.04) 1.38 (0.66) 1 1 0 1 2 
-0.54 (0.04) 1.62 (0.68) 1 1 0 1 3 
-0.54 (0.07) 0.55 (0.14) 1 0 1 0 4 
-0.53 (0.08) 0.56 (0.18) 1 0 1 0 5 
-0.53 (0.09) 0.64 (0.34) 1 1 1 0 2 
-0.53 (0.11) 0.72 (0.43) 1 1 1 0 3 
-0.52 (0.13) 0.83 (0.52) 1 1 1 0 4 
-0.51 (0.16) 0.98 (0.60) 1 1 1 0 5 
-0.06 (0.59) 0.05 (0.68) 1 0 1 1 2 
-0.04 (0.54) --1.27 (0.74) 0 0 1 1 1 
0.04 (0.60) -0.03 (0.69) 1 0 1 1 3 
0.05 (0.54) -1.26 (0.68) 0 0 1 1 2 
0.14 (0.52) -1.29 (0.63) 0 0 1 1 3 
0.15 (0.60) -0.10 (0.70) 1 0 1 1 4 
0.21 (0.50) -1.33 (0.59) 0 0 1 1 4 
0.22 (0.59) 0.03 (0.73) 1 1 1 1 1 
0.26 (0.47) -1.27 (0.68) 0 1 1 1 2 
0.26 (0.60) -0.15 (0.71) 1 0 1 1 5 
0.28 (0.46) -1.37 (0.56) 0 0 1 1 5 
0.28 (0.46) -1.26 (0.72) 0 1 1 1 3 
0.28 (0.46) -1.19 (0.84) 0 1 1 1 5 
0.37 (0.60) 0.08 (0.78) 1 1 1 1 2 
0.54 (0.63) 0.20 (0.83) 1 1 1 1 3 
0.79 (0.68) 0.39 (0.88) 1 1 1 1 4 
1.11 (0.74) 0.64 (0.91) 1 1 1 1 5 
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matrix of the nine items. Here, we only report the values of the factor loadings. The 

factor loadings of the analysis of the five items with the one factor model are 0.99, 

0.97, 0.87, 0.93 and 0.69. The chi-square value obtained is 20.4 with p-value=0.001 

indicating a poor fit of the model. However the factor loadings obtained are very 

close to the results obtained with the program LATENT (see Table 4.1). LISCOMP 

does not give a solution for the two-factor model. It reports that this is due to a 

severe Heywood case for variable 3. 

- 
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4.1.2 Hillsborough football disaster 

The same models have been fitted on the second set of memory questions which deal 

with the Hillsborough football disaster. The maximum likelihood estimates of the 

one-factor latent trait model are given in Table 4.5. 

The 7r column shows that items 1,2 and 3 have very high probabilities of positive 

responses from the median individual. We may expect more people to recollect this 

event than Thatcher's resignation since no other football disasters have happened 

since then but many political events have occurred. The coefficients an are all large 

as we would expect with a general factor. The parameter ATI. here is also high, 

= 0.53. 

Table 4.6 gives the maximum likelihood estimates of the two-factor latent trait 

model. For the parameters of the discrete part we see that the loadings of the first 

factor are all very large and the loadings of the second factor discriminates between 

item 1 and items 3 and 4. Figure 4.3 plot the standardized factor loadings of the 

two latent variables. No straight forward rotation is emerged from the plot. 

-1.2 	-0.7 	-0.2 	0.3 
	

0.8 
	

1.3 
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Figure 4.3: Hillsborough disaster - Standardized factor loadings 
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Table 4.4: Thatcher's resignation: Parameter estimates for the two-latent class 
model 

Variable vi iil i.i2 
where you were [1] 

who you were with [2] 
how you heard about it [3] 

what you were doing [4] 

0.979 
0.935 
0.979 
0.892 

0.065 
0.056 
0.657 
0.179 

7,3 0.606 0.394 

Variable wi Ail iii2 q 
vividness of recollection [5] 3.45 2.07 0.911 

Table 4.5: Hillsborough disaster: Parameter estimates and standard errors for the 
one-factor latent trait model 

Variable vi aio ail 7ri cr71 
where you were [1] 4.41 (1.54) 6.45 (2.33) 0.99 0.988 

who you were with [2] 2.91 (0.73) 5.29 (1.31) 0.95 0.983 
how you heard about it [3] 5.55 (0.83) 3.24 (0.61) 0.99 0.955 

what you were doing [4] 1.39 (0.19) 2.03 (0.28) 0.80 0.897 

Variable wi Pi Ail Tii A411. 
vividness of recollection [5] 3.19 (0.05) 0.56 (0.05) 0.75 (0.06) 0.53 

Table 4.6: Hillsborough disaster: Parameter estimates and standard errors for the 
two-factor latent trait model 

Variable vi aio ail ai2 71-i a7i ce72 
item [1] 4.01 (1.55) 5.17 (1.02) 1.95 (2.20) 0.98 0.921 0.347 
item [2] 13.0 (*) 23.1 (2.09) 2.68 (*) 1.00 0.992 0.115 
item [3] 6.27 (1.40) 3.61 (1.23) -0.07 (0.93) 0.99 0.964 -0.017 
item [4] 10.7 (*) 19.53 (0.32) -0.43 (*) 1.00 0.998 -0.022 

Variable wi iti Ail Ai2 Tii All A4i2 
item [5] 3.21 (0.05) 0.50 (0.11) 0.25(0.06) 0.75 (0.07) 0.48 0.25 
* The standard errors estimated are so large as to be untrustworthy. 
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1:1 

The AIC criterion for the one-factor model is 2832.1 and for the two-factor model 

is 2834.8. Here, the one-factor model shows marginally better fit compared to the 

two-factor model. The discrepancies in the one- two- and three-way margins of the 

two-factor model show slight improvement on the one-factor model. 

From Table 4.7 we see again as with the previous example that there are quite 

a few response patterns which have exactly the same value of E(Zi I x) with zero 

standard errors. Figure 4.4 gives the plot of the response functions of the four binary 

items. They are threshold functions and we observe that the response patterns with 

the same value of the posterior mean are located in areas with zero variation. 
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Figure 4.4: Hillsborough disaster: Plot of the response functions of the four binary 
items 

The parameter estimates for the two latent class model are given in Table 4.8. 

The interpretation of the results is very similar to that for Thatcher's resignation. 
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E (Zi I x) 
Table 4.7: 
E(Z2 I x) 

Hillsborough 
CSCORE1 

disaster: Scaling 
CSCORE2 

methods 
LATENT 
CLASS 

RESPONSE 
PATTERNS 

-2.00 (0.56) -0.38 (0.95) 0.66 0.34 0 0 0 0 1 
-1.84 (0.46) -0.11 (0.93) 1.32 0.67 0 0 0 0 2 
-1.74 (0.37) 0.15 (0.92) 1.97 1.01 0 0 0 0 3 
-1.68 (0.29) 0.41 (0.90) 2.63 1.35 0 0 0 0 4 
-1.48 (0.38) 1.28 (0.99) 7.14 2.96 1 0 0 0 3 
-1.44 (0.43) -0.62 (0.94) 4.27 0.27 0 0 1 0 1 
-1.35 (0.49) -0.42 (0.94) 4.93 0.61 0 0 1 0 2 
-1.26 (0.52) -0.26 (0.95) 5.59 0.95 0 0 1 0 3 
-1.16 (0.54) -0.14 (0.96) 6.24 1.28 0 0 1 0 4 
-1.08 (0.55) -0.04 (0.98) 6.90 1.62 0 0 1 0 5 
-0.66 (0.34) -0.23 (0.78) 10.09 2.56 1 0 1 0 2 
-0.64 (0.32) -0.13 (0.79) 10.75 2.89 1 0 1 0 3 
-0.63 (0.31) -0.02 (0.81) 11.41 3.23 1 0 1 0 4 
-0.54 (0.00) -0.16 (0.60) 28.12 3.29 0 1 1 0 2 
-0.54 (0.00) -0.04 (0.62) 28.77 3.63 0 1 1 0 3 
-0.54 (0.00) -1.41 (0.71) 23.83 -0.16 0 0 1 1 1 
-0.54 (0.00) 0.09 (0.63) 29.43 3.97 0 1 1 0 4 
-0.54 (0.00) -1.24 (0.69 24.48 0.18 0 0 1 1 2 
-0.54 (0.00) -1.09 (0.66) 25.14 0.52 0 0 1 1 3 
-0.54 (0.00) -0.95 (0.63) 25.80 0.86 0 0 1 1 4 
-0.54 (0.00) 0.63 (0.67) 33.28 5.24 2 1 1 1 0 2 
-0.54 (0.00) -0.53 (0.54) 29.65 2.13 2 1 0 1 1 2 
-0.54 (0.00) 0.79 (0.70) 33.94 5.57 2 1 1 1 0 3 
-0.54 (0.00) -0.43 (0.55) 30.31 2.46 2 1 0 1 1 3 
-0.54 (0.00) -0.33 (0.56) 30.96 2.80 2 1 0 1 1 4 
-0.54 (0.00) -0.22 (0.59) 31.62 3.14 2 1 0 1 1 5 
-0.54 (0.00) 0.96 (0.73) 34.60 5.91 2 1 1 1 0 4 
-0.54 (0.00) 1.15 (0.77) 35.25 6.25 2 1 1 1 0 5 
-0.49 (0.22) 0.43 (0.69) 49.22 4.88 2 1 1 0 1 2 
-0.47 (0.27) 0.57 (0.71) 49.88 5.21 2 1 1 0 1 3 
-0.43 (0.33) -0.49 (0.80) 47.67 2.86 2 0 1 1 1 2 
-0.41 (0.35) -0.38 (0.81) 48.33 3.20 2 0 1 1 1 3 
-0.39 (0.38) -0.28 (0.83) 48.99. 3.54 2 0 1 1 1 4 
0.31 (0.60) -0.20 (0.96) 52.84 4.81 2 1 1 1 1 2 
0.49 (0.63) -0.03 (0.95) 53.49 5.15 2 1 1 1 1 3 
0.72 (0.68) 0.18 (0.95) 54.15 5.48 2 1 1 1 1 4 
1.02 (0.74) 0.42 (0.96) 54.81 5.82 2 1 1 1 1 5 
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Individuals in class II have higher prObabilities of responding positively to items 1, 

3 and 4. 

The allocation of individuals in the two classes is given in Table 4.7. There is 

no disagreement in the ranking of the individuals between the latent class and the 

latent trait model. 

Table 4.8: Hillsborough disaster: Parameter estimates for the two-latent class model 

Variable vi i-i i. 'fri2 
where you were [1] 

who you were with [2] 
how you heard about it [3] 

what you were doing [4] 

0.979 
0.933 
0.995 
0.863 

0.141 
0.090 
0.774 
0.274 

i'1.*7 0.724 0.276 

Variable wi • Ail 142 (31 
vividness of recollection [5] 3.44 2.53 0.898 

The five items were analyzed with the program LISCOMP. The factor loadings 

of the one and two-factor models are given in Table 4.9. 

Table 4.9: Hillsborough disaster: Parameter estimates from LISCOMP 

Variable vi  
where you were [1] 

who you were with [2] 
how you heard about it [3] 

what you were doing [4] 
vividness of recollection [5] 

 

one-factor 

 

two-factor 
0.84 
0.86 
0.62 
0.40 
0.49  

X2=5.42 
p-value=0.02 

 

 

0.98 
0.92 
0.89 
0.90 
0.56 

 

0.45 
0.43 
0.66 
0.86 
0.27 

  

x2 = 23.0 
p-value=0.000 

  

      

The two-factor model indicates a better fit than the one-factor model at 2% 

significance level. To compare the factor loadings of the two solutions (LISCOMP 

and LATENT) we orthogonally rotate the two solutions in order to find the best 

matching factors. The results of the rotation. are given in Table 4.10 and they show 

similar estimated coefficients. 

102 



For investigating whether there is a real difference between the loading patterns 

of the two memory experiments (see Table 4.2 and Table 4.6) we orthogonally rotate 

the two solutions to find the best matching factors. The rotation results are given in 

Table 4.11. It appears that there is not much difference in the two solutions, though 

some differences can be expected since we analyze results from two different sam-

ples where individuals were asked the same five memory questions but on different 

sub jects. 
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4.2 Sexual Attitude Questions, BSA 1990 

The third data set is from the sexual attitudes section of the British Social Attitudes, 

1990, Survey, (Brook, Taylor, and Prior 1991). The question wording for the nine 

variables which have been extracted for the analysis are given in Appendix D in the 

same order that they are going to be analyzed. There were 1121 individuals who 

were asked questions on sexual relationships. 

If we exclude the responses "depends/varies", "don't know" and "not answered" 

from the above items then items 1 to 6 are binary items with response categories 

1 for agree and 0 for disagree and items 7 to 9 are five point scale items with re-

sponses "always wrong", "mostly wrong", "sometimes wrong", "rarely wrong" and 

"not wrong at all". The items- 7,8 and 9 will be treated as metric variables. 

First we fit a one-factor latent trait model on these items. Parameter estimates 

are given in Table 4.12. The discrepancies in the one- two- and three-way margins 

of the observed and expected frequencies of the binary items only, show a very 

bad fit of the model, especially on the responses that contain items 5 and 6. Also 

the estimated covariance matrix compared to the sample covariance matrix of the 

continuous items shows big differences. For response (1,1), the discrepancies for 

items (5,6) are equal to 56.2. For response (1,0), the discrepancies for items (5,2), 

(5,3), (5,4), (6,2), (6,3), (6,4) and (6,5) are respectively equal to 15.9, 18.1, 4.2, 25.9, 

33.8, 12.1 and 50.5. For response (0,1), the discrepancy for items (6,5) is 22.2. For 

response (1,1,1), the discrepancies for items (1,5,6), (2,5,6), (3,5,6), and (4,5,6) are 

respectively 42.8, 30.5, 34.4 and 38.2.. Anywhere else the fit was good. 

The items on adoption of babies by female and male homosexual couples have 

a very small probability of a positive response from the median individual, 0.10 

and 0.02 respectively. In addition the item on homosexual relations has a smaller 

mean than the before marriage question and the highest loading among the contin-

uous items. From the ri column we see that people are more liberal in accepting 

homosexuals in higher education than in schools. 

The bad fit of the model suggests the possibility of an additional dimension and 

thus the fit of a two-factor model on these items. The results are in Table 4.13. 
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Table 4.10: Hillsborough disaster: Rotation of the factor loadings obtained from the 
programs LISCOMP and LATENT 

Variable i 
LISCOMP solution 

ce:'2 
LATENT solution 

where you were [1] 0.934 0.203 0.961 0.215 
who you were with [2] 0.930 0.233 0.998 -0.025 

how you heard about it [3] 0.903 -0.102 0.952 -0.152 
what you were doing [4] 0.860 -0.395 0.985 -0.161 

vividness of recollection [5] 0.547 0.115 0.510 0.180 

Table 4.11: Rotation of the standardized solutions of the two memory experiments 

Variable i 
Thatcher resignation 

ce;2 
Hillsborough 

ce7i. 
disaster 

where you were [1] 0.981 0.194 0.961 0.212 
who you were with [2] 0.944 0.273 0.998 -0.028 

how you heard about it [3] 0.900 -0.430 0.952 -0.155 
what you were doing [4] 0.972 -0.125 0.985 -0.164 

vividness of recollection [5] 0.659 0.143 0.511 0.179 

Table 4.12: Sexual attitudes: Parameter estimates and standard errors for the one-
factor latent trait model 

Variable vi - 	aio 	. ail ri 4. 
SEXLAW [1] 1.65 (0.09) 0.55 (0.11) 0.84 0.48 

GAYTEAS [2] -0.57 (0.39) 9.61 (1.30) 0.36 0.99 
GAYTEAH [3] 1.75 (0.89) 11.9 (3.55) 0.85 1.00 
GAYPUB [4] 0.90 (0.16) 3.72 (0.32) 0.71 0.97 

FGAYADP [5] -2.16 (0.15) 1.68 (0.17) 0.10 0.86 
MGAYADP [6] -3.74 (0.26) 2.38 (0.25) 0.02 0.92 

Variable wi iii  Aii. Ilfi Ai*i 
PMS [7] 3.66 (0.05) 0.53 (0.06) 1.87 (0.12) 0.36 

EXMS [8] 1.60 (0.03) 0.21 (0.03) 0.66 (0.02) 0.26 
SAME SEX [9] 2.02 (0.06) 0.90 (0.06) 1.44 (0.07) 0.60 
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The two-factor model has improved significantly the fit on the two- and three-

way margins of the observed and the expected frequencies of the binary responses 

and the differences on the sample and estimated covariance matrix of the continuous 

items. The discrepancies given above for the one-factor model went down to values 

less than one. The same conclusion is reached by looking at the AIC criterion. For 

the one-factor model the AIC -criterion is 15972.1 and for the two-factor model the 

AIC criterion is 15679.5 suggesting that the two-factor model fits the data better 

than the one-factor model. 

The interpretation of the "difficulty" parameters aio remains the same. The 

standardized factor loadings, aZi, AZ; , are recommended for the mixed model because 

they all somehow express correlations between the latent and the observed variables 

and so they allow comparisons between the binary and the metric variables. A plot 

of the standardized factor loadings is given in Figure 4.5. From the plot it emerges 

that items on adoption of babies by homosexuals (5 and 6) load heavily on the 

horizontal axis and items on homosexuals teaching and obtaining positions in public 

life (2,3 and 4) load heavily on the vertical axis. That implies that homosexuality is 

a two-dimensional issue. Items 7,8 and 9 are somewhere in the middle of these two 

dimensions. Furthermore items 2,3 and 4 can be considered as measuring the degree 

of sexual prejudice of individuals and so that dimension could indicate conservatism 

or liberalism of individuals. On the other hand items 5 and 6 are clearly related with 

homosexuality and these do not have to do necessarily with the degree of individual's 

conservatism. 

We carried out a latent class analysis to see if we would arrive at similar results. 

We fitted first a two-latent class model to the items. The parameter estimates are 

given in Table 4.14. From the estimated parameters, we see that item 1,7 and 

8 do not discriminate much between the two classes. Again the items on adoption 

and the after marriage relation have quite low probabilities of a positive response in 

the second class where individuals are more liberal concerning the rest of the items. 

Anyhow from the parameter we see that 73% of the individuals in the sample 

belong to the "conservative" class and only 27% to the "liberal" one. 

The fit of the two-latent class model was not good when we look at the observed 

and expected frequencies under the fitting model for each response pattern of the 
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Table 4.13: Sexual attitudes: Parameter estimates and standard errors for the two-
factor latent trait model 

Variable vi aio aii ai2 7ri C)41 (-42 
SEXLAW [1] 1.67 (0.08) 0.20 (0.11) 0.53 (0.10) 0.84 0.18 0.46 

GAYTEAS [2] -0.73 (0.23) 4.56 (0.28) 8.65 (0.49) 0.32 0.46 0.87 
GAYTEAH [3] 1.45 (0.18) 4.67 (0.34) 8.50 (0.44) 0.81 0.48 0.87 
GAYPUB [4] 0.89 (0.10) 1.90 (0.17) 2.86 (0.19) 0.71 0.53 0.80 

FGAYADP [5] -4.28 (0.15) 4.94 (0.23) 0.15 (0.17) 0.01 0.98 0.03 
MGAYADP [6] -24.8 (0.36) 16.2 (0.22) 0.33 (0.48) 0.00 1.00 0.02 

Variable wi Pi Ail. Ai2 'Ili A'il 42 
PMS [7] 3.67 (0.04) 0.66 (0.06) 0.19 (0.05) 1.69 (0.10) 0.45 0.13 

EXMS [8] 1.60 (0.02) 0.26 (0.03) 0.07 (0.03) 0.63 (0.02) 0.31 0.08 
SAME SEX [9] 2.03 (0.04) 0.80 (0.05) 0.52 (0.05) 1.35 (0.07) 0.53 0.35 
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Figure 4.5: Sexual attitudes - Standardized factor loadings 
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binary items only. A three-latent class model is fitted next. The parameter estimates 

of the three-latent class model are given in Table (4.15). 

Table 4.14: Sexual attitudes: Parameter estimates for the two-latent class model 

Variable vi Ira 'fri2 
SEXLAW [1] 0.786 0.937 

GAYTEASC [2] 0.325 0.865 
GAYTEAH [3] 0.412 0.902 
GAYPUB [4] 0.476 0.877 

FGAYADPT [5] 0.099 0.435 
MGAYADPT [6] 0.027 0.329 

11.i 0.730 0.270 

Variable wi Ail iii2 61 
PMS [7] 3.374 4.484 1.916 

EXMS [8] 1.487 1.909 0.667 
SAME SEX [9] 1.203 4.298 0.372 

By looking the parameter estimates it looks as if the first class has been split into 

two classes. The 3-latent class model gives a better fit than the 2-latent class model. 

Although the third class is considered to be the most "liberal" one again here the 

items on adoption have relatively small probabilities to receive a positive response 

from an individual in class 3 compare to the rest of the items. Item 9, "homosexual 

relations" is the one that discriminates better between class 2 and 3. These results 

are in agreement with the results we get from the two-latent trait model, in the 

sense that "homosexuality" appears to be a different issue from "liberalism". 

The same items have been analyzed by de Menezes and Bartholomew (1996); 

they treated all items as binary. Our results are consistent with theirs although our 

analysis by treating items 7, 8 and 9 as discrete variables avoids the arbitrariness 

of their dichotomization. In their study they analyzed the data twice once with the 

middle point of the metric items to be "yes" and once to be "no". Our analysis 

avoids this work. 

The nine observed variables on sexual attitudes were analyzed also with LIS- 

COMP. The results we obtained from the two-factor model are given in Table 4.16. 

Since the solutions obtained from both the program LATENT (see Table 4.13) 
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Table 4.15: Sexual attitudes: Parameter estimates for the three-latent class model 

Variable vi ii-ii iri2 iri3 
SEXLAW [1] 0.762 0.846 0.937 

GAYTEASC [2] 0.007 0.851 0.841 
GAYTEAH [3] 0.056 0.980 0.877 
GAYPUB [4] 0.020 0.915 0.859 

FGAYADPT [5] 0.053 0.164 0.505 
MGAYADPT [6] 0.009 0.065 0.390 

iii 0.448 0.340 0.212 

Variable wi Aii iti2 iti3 q 
PMS [7] 3.190 3.720 4.621 1.864 

EXMS [8] 1.424 1.638 1.918 0.666 
SAME SEX [9] 1.139 1.585 4.665 0.365 

Table 4.16: Sexual attitudes: Parameter estimates from LISCOMP 

Items factor 1 factor 2 
SEXLAW 0.301 0.138 

GAYTEASC 0.926 0.341 
GAYTEAH 0.949 0.298 
GAYPUB 0.856 0.294 

FGAYADPT 0.277 0.869 
MGAYADPT 0.286 1.030 

PMS 0.205 0.474 
EXMS 0.145 0.328 

SAME SEX 0.427 0.479 
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and LISCOMP (see Table 4.16) are arbitrary (no constraints imposed) we orthog-

onally rotate the two solutions. The best matching factor after the rotations are 

given in Table 4.17. The two solutions are quite close. The comparison of the two 

approaches has been already discussed in Chapter 1 and 2. 

Table 4.17: Sexual attitudes: Rotation of the factor loadings obtained from the 
programs LATENT & LISCOMP 

LATENT program LISCOMP program 
Items factor 1 factor 2 factor 1 factor 2 

SEXLAW 0.420 -0.264 0.317 -0.905 
GAYTEASC 0.901 -0.422 0.920 -0.356 
GAYTEAH 0.907 -0.407 0.909 -0.403 
GAYPUB 0.906 -0.319 0.837 -0.345 

FGAYADPT 0.800 0.567 0.782 0.469 
MGAYADPT 0.809 0.585 0.895 0.584 

PMS 0_.435 0.165 0.467 0.220 
EXMS 0.300 0.120 0.326 0.150 

SAME SEX 0.634 0.042 0.637 0.078 

We decided not to give the scores for this data set due to the large number of 

response patterns involved. 

4.3 Environment data, BSA 1991 

The third data set is from the 1991 BSA survey. The questions analyzed here have 

been extracted from the environment section of the survey. The data set contains 7 

binary and 7 continuous items. On this data set a two factor latent trait model has 

been fitted. 

The third data set is from the environment section of the British Social Attitudes 

Survey in 1991. The mode of administration was self-completion. The question 

wording for the fourteen variables which have been extracted for the analysis are 

given in Appendix E. The sample contains 1079 individuals. The same items have 

been analyzed by Witherspoon and Martin (1992), in a paper with the characteristic 

title "What do we mean by green?". We use this data set to illustrate the fit of the 

mixed model on a bigger number of binary and continuous items and on a larger 
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number of responses. We are interested in whether there is one underlying factor 

or more for the "green-ness" attitude. In other words if the "green-ness" attitude 

is more than one dimension then that means that people who are aware of some 

environmental issues may not be aware of other environmental issues. A way to 

test this assumption is to fit a latent variable model to these items, in which the 

latent variables will be indicators of the different dimensions of "green-ness" attitude. 

Witherspoon and Martin (1992) conducted a factor analysis and constructed three 

scales which have to do with people's willingness to take certain actions to protect or 

not to protect the environment. The first scale is the global green scale, the second 

is the pollution scale and the third is. the nuclear power scale. 

All fourteen items were based on 4 point scales and were treated as interval 

scale in earlier analysis. Most of these fourteen items are skewed and so by treating 

them all as continuous variables and then fit the linear factor model we violate the 

assumption about the normality of the observed variables. By dichotomizing some 

of them we certainly reduce the problem of misspecification of the model. What we 

do in this paper is to fit a two factor latent trait model on mixed items. We select 

7 items to be treated. as interval scale variables and 7 items to be treated as binary. 

To create the binary items we combine the first two categories (i.e 3 and 4) for each 

variable and recode them as "1" and we combine the last two categories (i.e 1 and 

2) and recode them as "0". 

Table 4.18 gives the maximum likelihood estimates of the two-factor latent trait 

model. 

By looking the two- and three- way margins of the binary items after the mixed 

model has been fitted, we see that the two factor model has not much improved the 

fit on the margins compared to the one factor model. A considerable improvement in 

the fit from the two factor model has been made on the continuous part and that is 

observed by comparing the sample covariance matrix with the estimated covariance 

matrix for the one and two factor models. 

The coefficients of the latent variables in Table 4.18 did not reveal the usual 

general factor. But if we disregard the negative signs of the second latent variable 

then we see that items 1, 2, 3, 4, 5, 6 and 7 load heavier on the first factor than 

the second factor and the opposite holds for the rest of the items, see also figure 
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Table 4.18: Environment section: Parameter estimates and standard errors for the 
two-factor latent trait model 

Variable vi ceio ail ai2 ri aL 42 
insecticides [1] 2.72 (0.19) 1.46 (0.16) -0.36 (0.16) 0.94 0.81 -0.20 
ozone layer [2] 3.93 (0.41) 2.52 (0.34) -0.49 (0.23) 0.98 0.92 -0.18 

nuclear power [3] 1.92 (0.17) 1.46 (0.17) -0.48 (0.15) 0.87 0.80 -0.27 
lead from petrol [8] 3.10 (0.23)- 0.82 (0.18) -1.45 (0.18) 0.96 0.42 -0.75 
industrial waste [9] 5.77 (0.67) 1.28 (0.33) -1.43 (0.36) 1.00 0.59 -0.66 
nuclear waste [10] 2.60 (0.21) 1.05 (0.20) -1.24 (0.17) 0.93 0.55 -0.65 
nuclear power [14] 0.96 (0.09) 0.76 (0.11) -0.64 (0.11) 0.72 0.54 -0.45 

Variable wi Pi Aii Aiz IFii AL AI2 

greenhouse effect [4] 3.24 (0.04) 0.56 (0.03) -0.17 (0.04) 0.35 (0.02) 0.67 -0.20 
use earth's fuels [5] 3.21 (0.03) 0.49 (0.03) -0.07 (0.04) 0.39 (0.02) 0.61 -0.08 

species loss [6] 3.46 (0.03) 0.38 (0.03) -0.09 (0.03) 0.35 (0.02) 0.53 -0.12 
disposal of chem. [7] 3.60 (0.04) 0.35 (0.02) -0.07 (0.03) 0.31 (0.02) 0.54 -0.10 
industrial fumes [11] 3.46 (0.03) 0.18 (0.04) -0.43 (0.02) 0.20 (0.01) 0.29 -0.67 

acid rain [12] 3.36 (0.03) 0.23 (0.04) -0.48 (0.03) 0.20 (0.01) 0.34 -0.69 
aerosol damage [13] 3.31 (0.03) 0.26 (0.04) -0.47 (0.03) 0.20 (0.01) 0.38 -0.67 

4.6. The loadings for item 14 are moderate for both factors. Analytically, scale 1 

contains the items: 1, 2, 3, 4, 5, 6, and 7 and scale 2 contains the items: 8, 9, 10, 

11, 12, 13 and 14. 

Our results are not directly comparable with Witherspoon et al. (1992) since we 

fit a two factor model and they fitted a three factor model. When we fit a two factor 

model using their method we find results very similar to ours. A general comment 

is that we find the green global scale (except from one item) plus two items of the 

nuclear power scale in our first scale and we find the pollution scale plus the rest of 

the items in the second scale. The items that have been extracted from the analysis 

suggest strongly that not only is there an effect which depends on the topic that 

each question asks but more than that there is a strong wording effect that has to 

do with the different things that questions 1-7 ask compared with questions 8-13. 

Questions 1-7 ask how concerned you are about certain environmental issues and 

questions 8-13 ask how serious you think an effect on our environment is from certain 

actions. That wording effect has as a result questions 1-7 to lie on one axis of the 

latent factor space and questions 8-13 to lie on the second axis. Our analysis shows 

that people respond differently to different environmental issues but this is also due 

to the fact that the question wording is different for the questions assigned to scale 

and those assigned to scale 2. 
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Figure 4.6: Environment data - Standardized factor loadings 

We attempted to fit the same model with LISCOMP but it did not give us any 

result because of a program failure. 

4.4 An.alyses on simulated data 

Data has been simulated according to the one and two factor latent trait model for 

mixed items, in order to provide sample estimates of the item parameters which can 

be compared with the known population values and so to evaluate the fit of the 

model to our empirical data. The method used is called parametric bootstrapping. 

The simulated data are from the third data set presented here on sexual atti-

tudes. For the one-factor model we generated a sample of N=1121 individuals from 

the standard normal distribution, z N(0,1). Given an individual's z-value, his 

responses to the r continuous items were generated according to the linear factor 

model, (chapter 1, section 1.2), and his responses to the s binary items according to 

the logistic item response model, (chapter 1, section 1.3.2). The parameters used are 

the ones estimated from the empirical data set, (BSA 1990). For the linear factor 

model, for each individual, an (e) value was sampled from the normal distribution 

0.5 

0 

-0.5 

-1 
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with mean zero and variance 

We analyzed the simulated data by fitting an one-factor latent trait model for 

mixed items. Table 4.19 gives the parameter estimates obtained under the correct 

model. Comparing the results with the ones we get from the empirical data, (Table 

4.12), we see that they are very close. That indicates that the parameters were 

estimated quite accurately. 

Table 4.19: Sexual attitudes: Simulated data - Parameter estimates for the one-
factor latent trait model 

Variable vi aio ail ri a*ii 
SEXLAW [1] 1.65 (0.09) 0.60 (0.10) 0.84 0.52 

GAYTEAS [2] -0.77 (0.27) 6.83 (0.91) 0.32 0.99 
GAYTEAH [3] 2.38 (3.75) 14.2 (16.5) 0.92 1.00 
GAYPUB [4] 0.52 (0.15) 3.71 (0.32) 0.63 0.97 

FGAYADP [5] -2:62 (0.19) 2.01 (0.21) 0.07 0.89 
MGAYADP [6] -4.23 (0.41) 2.47 (0.34) 0.01 0.93 

Variable wi /Li  Ail kliii Ai*i 
PMS [7] 3.56 (0.04) 0.54 (0.05) 1.90 (0.08) 0.36 

EXMS [8] 1.62 (0.03) 0.17 (0.03) 0.68 (0.03) 0.20 
SAME SEX [9] 2.01 (0.05) 0.90 (0.05) 1.62 (0.08) 0.58 

Similarly with the one-factor model we can simulate data for the two-factor 

latent trait model for mixed items. The factor solution we get for the two-factor 

model is arbitrary since no constraints are imposed in the estimation of the mixed 

model. In order to investigate if there is a difference in the two factor solutions 

we get from the simulated and the empirical data we orthogonally rotated the two 

factor standardized solutions we got. The results are given in Table 4.20 and they 

are quite close. 
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Table 4.20: Sexual attitudes: Rotation of the standardized solution of the simulated 
and empirical data 

Variable vi 
Simulated 

4 
data 
4 

Empirical 
4 

data 
al' :2 

SEXLAW [1] _ 0.37 0.19 0.43 0.26 
GAYTEAS [2] 0.91 0.42 0.91 0.41 
GAYTEAH [3] 0.89 0.43 0.92 0.39 
GAYPUB [4] 0.93 0.27 0.91 0.30 

FGAYADP [5] 0.79 -0.58 0.79 -0.58 
MGAYADP [6] 0.81 -0.58 0.80 -0.60 

Variable wi A7/ A71 Ali2 
PMS [7] 0.43 -0.29 0.43 -0.17 

EXMS [8] 0.28 -0.07 0.30 -0.13 
SAME SEX [9] 0.59 -0.05 0.63 -0.06 
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Chapter 5 

Missing values 

Introduction 

This chapter deals with the problem of missing values in attitude scales and the way 

these are treated in the analysis of mixed (binary and metric) manifest items with 

a latent trait model. 

There are three types of missing data. The first type is noncoverage in which 

units are missing from the sampling frame, the second type is unit nonresponse in 

which all responses are missing for an individual in the sample and the third type 

is item nonresponse in which some of the responses are missing for an individual in 

the sample. The sources of unit nonresponse includes refusals or people not at home 

and the sources of item nonresponse includes refusals, don't know, interviewer error 

and response that was missed out. Here, we are interested in item non-response. All 

the different types of item nonresponse will be treated as one category coded as '9'. 

The scope of our analysis is to include the missing values into the analysis of 

the manifest variables and to_ obtain information about the missing values based 

on what has been observed. Emphasis in our approach will be given not only to 

the estimation and the interpretation of the model coefficients but also to graphical 

methods based on posterior probabilities that will be used to obtain information 

about attitude from non expression of an opinion. The scoring of individuals on the 

latent factor space based on their response/ nonresponse pattern will be discussed. 

Artificial data sets from Guttman, and mixed scales as well as a real data set 
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from the BSA 1990 survey will be presented in order to examine the mechanism of 

the model and to illustrate its use. From the examples it will be apparent the use 

of the metric manifest variables in the analysis. 

Multivariate data with missing values are analyzed either by disregarding the 

missing cases and carrying out the analysis on the complete data or by imputing the 

missing values. Imputation methods can be simple such as mean. imputation, hot 

deck imputation, substitution and regression imputation. For a discussion of these 

methods see Little and Rubin (1987). Multiple imputation techniques have been 

also developed by Rubin (1987) in which more than one value for the missing items 

is imputed. 

Another approach in the literature is that of maximum likelihood based meth-

ods in which a model is defined for the complete and the incomplete data. Little 

and Schluchter (1985) developed a ML estimation method for analysing mixed con-

tinuous and categorical data with missing values in the context of linear, logistic 

regression and discriminant analysis. The models discussed in their paper assume 

that the missing data are missing at random which means that the missingess de-

pends only on observed variables. Rubin (1976) shows that if the data are missing 

at random then the likelihood based inference does not require the specification of 

a model for the missing data. In terms of Rubin's terminology this is an ignorable 

model with respect to the missing values. 

Here, the work of Albanese and Knott (1992) for a latent variable model for 

binary items which allows for item non-response will be extended for the mixed 

model. Their method analyzes the response patterns as they are and estimates 

model parameters from a single analysis of the response / nonresponse patterns. 

5.1 Models for non-response, binary variables 

Albanese and Knott (1992) proposed three models for handling missing values in the 

analysis of attitudinal items with a latent trait model. These models do not distin-

guish between different sources of item non-response. They define a two dimension 

factor model in which one factor is named as attitude factor za and the other one 

is named as expression factor ze. In other words za summarizes information about 
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individual's attitude on a subject and ze summarizes information about individual's 

propensity to express an opinion or not. Both factors, za, ze are assumed to have 

independent standard normal distributions. Conditional on the two factors the re-

sponses (approve or disapprove) and the non-responses are taken to be independent, 

(conditional independence). 

They also define probabilities of response and non-response to an item i together 

with probabilities of approval and disapproval of this item based on the breaking of 

the response function into two layers. 

Before we go into defining-these probabilities we should describe the basic idea 

of the Albanese and Knott (1992) approach. 

Suppose that we have s binary items to analyze and there is a proportion of 

non response in each item. We create s pseudo items as follows, when an individual 

gives a response (approval or disapproval) then the pseudo item for this individual 

will take the value one, when an individual do not respond to this item then the 

pseudo item will take the value zero. At a next stage they fit a two factor model on 

the (2* s) items. So in a way the first s items provide us information about attitude 

and they are called attitudinal items and the next s items provide us information 

about expression and they are called expression items. 

The response function is breaking into two layers. 

For each binary item: 

Pr (Vi = I Za , Ze , Vi 	9) = ra i (Za) 
	

(5.1) 

Pr(vi 0 9 I za, za) = rai(za, ze) 	 (5.2) 

It follows that, 

Pr(vi = 1 I za, ze) = rai(za)rei(za, ze) 

Pr(vi = 0 I Za, Ze) = ( 1 — rai(ZaThrei(Za, Ze) 
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Pr(vi = 9 I za, ze) = 1 — 	\za, Ze) 

The above formulation of the response function indicates that if an individual 

responds, (equation 5.1), then the expressed attitude is not dependent on ze but 

the probability that an individual does respond, (equation 5.2), depends on both za 

and ze, where ze is individuals inherent responsiveness for all questions. In other 

words individuals with high za may have a different probability of not responding 

than individuals with low za. 

A brief description of the three models proposed by Albanese and Knott (1992) 

will be given here. 

Model 1 is a simple model, in which the probability of an individual to express 

or not express an opinion is constant across individuals and independent of other 

items. It is written as: 

logit (rai(za)) = aio aiiza 

logit(rei(ze)) = eio 

where i = 1, - • , s 

Model 2 allows the probability of expressing or not expressing an opinion from 

an individual to depend on at expression factor. Probability of responding varies 

by individual but is independent of attitude. This model does not give us any 

information of how attitude influences expression. It is written as: 

logit (rai (za )) = aio aiiza 

logit(rei(ze)) = eio 	eiize 

where i = 1, • , s 

Model 3 is a more sophisticated one in which the probability of responding differs 

by individual and may depend on the individual's attitude. This model has been 

looked at thoroughly as it will be shown in the following sections. 

The model is written as: 

119 



	

logit ( rai(za)) = aio 	 = 1, • • • , s 

	

logit(rei(Za)Ze)) = eio 	eilZa 	ei2 Ze) 
	i = 1, • • • , s 

the coefficient eii shows how the log of the odds of expression of an opinion 

increases or decreases with respect to the attitude dimension. Models 1, 2 and 3 have 

been fitted on seven binary items on abortion, (see Knott, Albanese, and Galbraith 

1990), using the program TWOMISS. In this paper the parameter estimates and the 

scoring of the individuals have been reported. They reported that model 3 gave the 

best fit compared to model 1 and 2. Model 3 is the one that is going to be looked 

at for the mixed case. 

5.2 Model for non-response, mixed variables 

The idea described above for binary items will be extended here for mixed manifest 

variables. 

Similarly for the case of mixed items the pseudo items will be take the value zero 

if the individual did not respond to this item and 1 otherwise. After we have created 

the pseudo items there will be a number of (2* s r) binary items and r continuous 

items. We proceed by fitting a two factors latent trait model on the 2* (r -Fs) items. 

Equivalent to the results presenting in the previous section we can break the 

response function into two layers. 

For each attitude binary item: 

Pr(vi = 1 I za, 	vi 	9) = rai(za), 	i = 1, • • • ,s 	 (5.3) 

For each attitude continuous item: 

(wi I za, ze, wi 	9) 	N(pi 	Tii) 	i = 1, • , r 
	

(5.4) 

For each expression item: 
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Pr(xi 	9 za, ze) 	rei(za, ze) 	i = 1, • • , r 	s 	 (5.5) 

Where for our model: 

logitrai(za) = ceio 	ail za. 

and 

logitrei(za, ze) = eio 	eiiza 	ei2za 

It follows that 

	

Pr(Vi = 1 I Za, Ze) 	rai(Za)rei(Za, Ze) 

	

P r (V =01 Za,Ze) = 	— ai(Za))7r ei(Z a Ze) 

Pr(vi = 9 I za, ze) = 1 — Irei(za, ze) 

	

f (tv za, zc) = N(iti Aiiza, 	* rei(za, ze) 

Pr(wi = 9 I za, ze) = 1 — 7rei(za, ze) 

5.2.1 Estim.ation. of the model 

We make two assumptions for this model. The first one is the known assumption 

of conditional independence which says that the responses (approve or disapprove) 

or non-responses to the (2 * (r s)) items are independent given the vector of 

latent variables (za, ze). The second assumption says that given that an individual 

responded to an item the probability of approve or disapprove does not depend on 

the factor ze, (see equations 5.3 and 5.4). 

The density function to be looked at is the joint distribution of the manifest 
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variables which under the assumption of conditional independence is given by: 

f (vh, wh ) = 	g(vh 2)9(wh z)h(z)dz 	(5.6) 

where vh, wh represents the responses to the 2* (r s) manifest variables of the 

it' individual and h(z) denotes the prior distribution of the latent variables, za and 

ze taken to be independent standard normal. 

The conditional distribution of wh z is given by: 

g(wh z) = 	[N(tti + za , 	 R _ 	 (5.7) 

where, p* = r 2s 

The conditional distribution of vh I z is given by: 

g(vh I z) = H [rai(z. 	
— rai(z.))i—vih re,i+p(z)ri+p,h {1 — re,y+p(Z)]1—Vi+P'h (5.8) 

i= 1 

where, p = r s 

The log-likelihood for a random sample of size n is 

oo joo 
L = E log f(vh, wh ) = E log I 	g(wh I z)g(v h I z)h(z)dz 	(5.9) 

h=1 	 h=1 	—cx) —co 

The log-likelihood is maximized using the EM algorithm described in Chapter 

2. The model can be fitted with the program LATENT. The steps of the fit are 

given here. First we generate the r s pseudo items from the original manifest 

variables, secondly we fit the two factor model on the 2 * (r s) items treating 

the 2 * s r variables , (r here refers to the pseudo binary items derived from the 

metric variables), as binary and the original metric variables r as metric constrain 

the loadings of the second factor for the manifest variables, binary and metric, to 

zero. 
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5.2.2 Interpretation of the model 

From the formulation of the model presented in the section above we see that the 

missing values are included in the analysis with the observed values and parameter 

estimates are obtained from a single analysis of both the missing and the observed 

values. 

This model allows the probability of expressing an opinion to depend on two 

factors (za, ze) and the probability of approving or disapproving of an item given 

that an individual responded to that item to depend only on one factor za. 

By fitting this model on the 2 x (r s) mixed items we are interested in in-

vestigating how attitude affects expression. This information can be obtained from 

the coefficient eii which measures the effect of the attitude on the log odds of the 

response probability. 

But it is not enough to look only the magnitude and the sign of these coefficients. 

What we are mostly interested in is to find a way to obtain information about 

attitude from non-expression. That is explored in the following section. 

5.2.3 Posterior analysis 

From the model parameters we obtain information on how attitude affects expression 

and also information on how likely or unlikely is to get a response for an item. But 

we are also interested in obtaining information about the missing values and what 

they represent in our sample. We propose here to look for each item at the posterior 

distribution of the attitude latent variable za given the possible responses for that 

item. So for binary items we are interested in observing the relative position of the 

h(za I vi = 9) with respect to h(za I vi = 0) and h(za I vi = 1) and for metric 

variables we look at the relative position of h(za I wi = 9) with respect to the three 

quartiles. 
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These posterior probabilities can be computed after we estimated the model as 

follows: 

g(vi = k I za, ze)h(za)h(ze)dze 
h(za I vi = k) 	' 	

f (vi = k) 

k = 0,1,9 

where the form of the g(vi = k I za, ze) is given in equation (5.8) and 

f(vi = k) = 1°300 fo°0 g(vi = k zaze)h(za)h(ze)dzadze 

and for the metric variables: 

fff g(Wi = wi I za, ze)h(za)h(ze)dze 
h(za I 	= wi) = 

f (Wi = wi) 

where the form of the g(W = = w= za, ze) is given in equation (5.7). 

For the case wi = 9 

(5.10) 

(5.11) 

Pr(Wi = 9 I za, ze) = 1 — irei(za, ze) 

5.3 Applications 

In this section we will present the results we found when we fitted model 3 on 

a number of data sets with missing values. All except for one of the data sets 

used here are artificially created for illustrating reasons. The reason we are looking 

first at some artificial examples in which a specific number of patterns occur is 

because it is easier to obtain information about the mechanism of the model. An 

interesting result emerging from the analysis of the data is that the metric variables 

provide information that some times reduces the indeterminacy that arises from 

some response patterns and increases the strength of the predictive scope of the 

model with respect to the missing values. The posterior analysis presented above 

will be looked at for all the data sets: We are first interested in using the model to 

score the missing value for an item relative to the other responses for that item and 

to use this information to rank individuals on the attitude latent dimension. 
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5.3.1 Guttman and non-type scale variables 

First our plan is to fit the model presented above to a number of items that form a 

perfect Guttman scale. The reason is that in a Guttman scale we can predict in a 

satisfactory degree the outcome of our analysis and so we are able up to a degree to 

validate our model. Alth.ough Guttman scales have a deterministic nature as far as 

concern the structure of the responses from the individuals it is worth examined here 

for understanding the mechanism of the model. It is quite probable that the model 

does not fit well Guttman scale items for the reason that the response function of 

each item behaves as a threshold, that is actually verified by the large parameter 

estimates for the discrimination coefficients of the attitude items. The discrepancies 

in the observed and expected two- and three-way margins of the attitudinal and 

the expression (pseudo) items will be looked at for the data analyzed here. These 

discrepancies are measured with the statistic given by (0 — ErIE. 
However, the Guttman scale is used here only for illustration purposes and the 

results should be looked at with cautious. 

The data set used consists of 4 binary items and one metric item. The four binary 

items construct a perfect Guttman scale and the metric item is highly correlated 

with the scale. Three different experiments will be looked at here. The first one 

consists of only the four binary items and there is a number of missing values on 

the fourth item of the response pattern 1 1 1 1. So the effect of a single item with 

missing values will be examined. The response patterns together with the frequency 

for each pattern are given in Table (5.1). 

Table 5.1: Guttman scale 1 

Response pattern frequency 
1111 70 
1 1 1 9 70 
1 1 1 .0 70 
1100 70 
1000 70 
0000 70 

When we fit the model on this data we expect that the posterior distribution 
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h(za I v4 = 9) will be somewhere in the middle of h(za I v4 0) and h(za I v4 = 1). 

The reason is that we expect that the model extracts information from the response 

patterns in order to place the missing value. This indeterminacy is created because 

the '9' could come either from the response pattern 1 1 1 1 or 1 1 1 O. Figure (5.1) 

shows that the model places the h(za I v4 = 9) closer or even above 1. That is 

actually surprisingly since we would expect 9 to be between 0 and 1. The fit of the 

model on the margins looks satisfactory. One reason for that result might be that 

'9's come only in one response pattern and so the absence of clustering of '9' within 

other response patterns does not help the model to place '9' as it is expected. 

h(z_a/v_4=0) 

* h(z_a/v_4=1) 

h(z_a/v_4=9) 

Figure 5.1: Guttman scale 1, posterior probabilities 

The second experiment consists of four binary items and there is a number of 

missing values in the fourth item of the response pattern 1 1 0 O. The response 

patterns are given in Table (5.2). 

From the analysis of this response patterns we would expect no indeterminacy 

due to the fact that the response pattern 1 1 0 9 can only come from 1 1 0 O. The 

discrepancy measure show a good fit on the expression items and a less good fit on 

the attitude items. Looking at figure (5.2) we see that there is no indeterminacy 

here and the h(za I v4 = 9) is correctly placed closer to O. 
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Table 5.2: Guttman scale 2 

Response pattern frequency 
1111 70 
1110 70 
1 1 0 '0 70 
1 1 0 9 70 
1000 70 
0000 70 

• h(z_a/v_4=0) 

A h(z_a/v_4=1) 

h(z7a/v74=9) 

Figure 5.2: Guttman scale 2, posterior probabilities 
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The third experiment consists of four binary variables and one metric variable. 

The metric variable was chosen to be highly correlated with the binary items. The 

reason we add the metric variable here is to see whether the metric variable can 

reduce the indeterminacy created from the response pattern 1111 and 1 1 1 0 with 

respect to the missing value '9. The response patterns are given in Table (5.3). 

Table 5.3: Guttman mixed scale 

Response pattern frequency 
1 1 1 1 5 70 
1 1 1 9 4 50 
1 1 1 0 4 70 
1 1 0 0 3 70 
1 0 0 0 2 70 
00001 70 

By looking at figure (5.3) we see that the indeterminacy has disappeared and 

that h(za I v4 = 9) has corredly been placed closer to 0 since the response pattern 

1 1 1 9 4 can only now come from 1 1 1 0 4. Small discrepancies are observed in the 

margins of the expression items which shows a good fit. 
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• h(z_a/v_4=0) 
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Figure 5.3: Guttman mixed scale, posterior probabilities 
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We are also going to investigate the case where the scale is not a perfect Guttman 

scale but a non-scale type. The data set used is given in Table (5.4). 

Table 5.4: Non-scale type 1 

Response pattern frequency 
1111 70 
1110 70 
1101 70 
1100 70 
1 1 0 9 70 
1000 70 
0000 70 

We added the response pattern 1 1 0 1 and missing values occur on the fourth 

item of the response pattern 1 1 0 1. That will create an indeterminacy again 

because the response pattern 1 1 0 9 can come either from pattern 1 1 0 0 or 1 1 

0 1. Looking at figure (5.4) We see that the h(za  I v4  = 9) is somewhere in the 

middle of 0 and 1. In that example the model reflects the indeterminacy problem 

and places the missing value in the middle of 0 and 1. Comparing the margins on 

the expression items for that example with the margins for the first Guttman scale 

example these ones look marginally better. 

However this indeterminacy dissapears, (see figure 5.5), when a strong correlated 

with the binary items metric variable is included. The data set is given in Table 

(5.5). 

Table 5.5: Non-scale type 2 

Response pattern frequency 
1 1 1 1 5 70 
1 1 1 0 4 70 
1 1 0 1 4 70 
1 1 0 0 3 70 
1 1 0 9 3 70 
1 0 0 0 2 70 
00001 70 
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h(z_a/v_4=0) 
* h(z_a/v_4=1) 

h(z_a/v_4=9) 

 

z_a 

Figure 5.4: Non-scale type 1, posterior probabilities 

• h(z_a/v_4=0) 

h(z_a/v_4=1) 
h(z_a/v_4=9) 

Figure 5.5: Non -scale type 2, posterior probabilities 
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5.3.2 Mixed scale variables 

In this section we look at response patterns with binary and metric variables. The 

metric variables can be seen as Likert scales in which the respondent has to choose 

among several response categories, indicating various strengths of agreement and 

disagreement. Likert scales have been widely used in factor analysis in which interest 

is centered in the examination of the underlying structure of the set of manifest 

items. 

Here, Likert scale items together with binary items will be investigated in the 

case of item non-response. The same analysis as with the Guttman scale will be 

used. 

The first example will look at is one with four binary items and one likert item 

which here will be treated as metric. The response patterns together with their 

frequencies are given in Table (5.6). The correlation matrix for this data set has 

been computed with the program PRELIS, (JOreskog and Sorbom 1988), and are 

given in Table (5.7). 

Table 5.6: Mixed scale 1 

Responses freq Responses freq 
0 0 0 1 50 1 1 0 4 40 
0 0 0 2 50 0 1 1 2 40 
0 0 1 2 8 0 1 1 4 40 
0 0 1 3 4 1 1 1 2 30 
0 1 0 3 25 1 1 1 3 40 
1 0 1 2 40 1 1 1 4 50 
1 1 0 2 10 1 1 1 5 60 
1 1 0 3 40 1 1 1 9 25 

Table 5.7: Correlation matrix 1 

bin1 bin2 bin3 contl 
binl 
bin2 
bin3 
cont 1 

1.00 
0.66 
0.47 
0.60 

1.00 
0.53 
0.95 

1.00 
0.45 1.00 

We would probably expect that the posterior distribution of za given W = 9 will 
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be placed somewhere between 3 and 4. By looking at figure (5.6) we see that 9 is 

placed above 5. The model cannot predict the place of 9 correctly probably due to 

the fact that 9's come only with the same response pattern (1 1 1 9) and there is no 

clustering of 9's within other patterns. 

h(z_a/w=1) 

* h(z_a/w=2) 

h(z_a/w=3) 

-o- h(z_a/w=4) 

h(z_a/w=5) 

h(z_a/w=9) 

Figure 5.6: Mixed scale 1, posterior probabilities 

It is also interesting to look at the posterior mean of the attitude latent variable 

given the response pattern of each individual, E(.za I whvh). These results are given 

in Table (5.8). The pattern 1 1 1 9 scores higher than any other pattern. 

For the second example we used the same response patterns as in Table (5.6) by 

instead of taking 25 cases of 1 1 1 9 we take 25 cases of 0 0 0 9. The correlation 

matrix for this data set is given in Table (5.9). The results are given in figure (5.7). 

The response 9 for the fourth item is placed below O. So again here the model did 

not work as we expected. The posterior mean for the individuals is given in Table 

(5.10) 

As a third example we used the same response patterns as in example 1 and 2 

but we included 25 cases of 1 1 1 9 and 25 cases of 0 0 0 9. The correlation matrix 

for this data set is given in Table (5.11). In that case the model correctly placed 

9 somewhere between 2 and 4 as it can. be  seen in figure (5.8). The ranking of the 
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Table 5.8: Posterior mean: mixed scale 1 

E(za  I w , v) responses 
-1.63 0 0 0 1 
-0.58 0 0 0 2 
-0.54 1 0 1 2 
-0.54 0 0 1 2 
-0.54 0 0 1 3 
-0.54 0 1 1 2 
-0.54 1 1 0 2 
-0.54 1 1 1 2 
-0.16 0 1 0 3 
0.31 1 1 0 3 
0.46 1 1 1 3 
0.54 0 1 1 4 
0.55 1 1 0 4 
0.58 1 1 1 4 
1.63 1 1 1 5 
1.97 1 1 1 9 

Table 5.9: Correlation matrix 2 

binl bin2 bin3 contl 
binl 1.00 
bin2 0.69 1.00 
bin3 0.50 0.57 1.00 
cont 1 0.60 0.95 0.45 1.00 
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Figure 5.7: Mixed scale 2 posterior probabilities 

Table 5.10: Posterior mean: mixed scale 2 

E(za, I w , v) responses 
-2.01 0 0 0 9 
-1.63 0 0 0 1 
-0.56 0 0 0 2 
-0.54 0 0 1 2 
-0.54 1 0 1 2 
-0.54 0 0 1 3 
-0.54 0 1 1 2 
-0.54 1 1 0 2 
-0.54 1 1 1 2 
-0.05 0 1 0 3 
0.38 1 1 0 3 
0.48 1 1 1 3 
0.55 0 1 1 4 
0.56 1 1 0 4 
0.59 1 1 1 4 
1.63 1 1 1 5 
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individuals is given in Table (5.12). The ranking is satisfactory because the response 

pattern 0 0 0 9 is between 0 0 0 1 and 0 0 0 2 and the response pattern 1 1 1 9 is 

somewhere between 1 1 1 3 and 1 1 1 5. 

Table 5.11: Correlation matrix 3 

binl bin2 bin3 contl 
binl 
bin2 
bin3_ 
contl 

1.00 
0.71 
0.53 
0.60 

1.00 
0.59 
0.95 

1.00 
0.45 1.00 

h(z_aJw=1) 
h(z_a/w=2) 

h(z_a/w=3) 

-0- h(z_a/w=4) 

h(z_a/w=5) 

• h(z_a/w=9) 

Figure 5.8: Mixed scale 3, posterior probabilities 

We are now going to look at the case where we have two Likert scale variables 

rather than one. The response patterns are given in Table (5.14) and the correlation 

matrix for this data set is given in Table (5.13). 

Looking at figure (5.9) we see that the second metric variable reinforced the 

model to predict better the place of 9 here between 3 and 4. From table (5.15) we 

see that response pattern 1 1 1 9 2 scores higher than 1 1 1 2 2 but lower than 1 1 

1 3 3 and the response pattern 1 1 1 9 3 scores lower than 1 1 1 3 3 but above 1 1 1 

3 2. 
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Table 5.12: Posterior mean: mixed scale 3 

E(za, I w, v) responses 
-1.63 0001 
-1.51 0 0 0 9 
-0.56 0 0 0 2 
-0.55 0 0 1 2 
-0.54 1 0 1 2 
-0.54 0 0 1 3 
-0.54 0 1 1 2 
-0.54 1 1 0 2 
-0.54 1 1 1 2 
-0.11 0 1 0 3 
0.36 1 1 0 3 
0.48 1 1 1 3 
0.53 1 1 1 9 
0.55 0 1 1 4 
0.55 1 1 0 4 
0.59 1 1 1 4 
1.63 1 1 1 5 

Table 5.13: Correlation matrix 4 

binl bin2 bin3 contl cont2 
binl 
bin2 
bin3 
contl 
cont2 

1.00 
0.66 
0.47 
0.60 
0,41 

1.00 
0.53 
0.95 
0.86 

1.00 
0.45 
0.23 

1.00 
0.88 1.00 

Table 5.14: Mixed scale 4 

Responses freq Responses freq 
00011 50 10122 40 
0 0 0 2 2 50 0 1 1 2 2 40 
00122 3 01144 40 
00123 5 11122 30 
00132 1 11132 32 
00133 3 11133 8 
01033 9 11143 50 
0 1 0 3 4 16 1 1 1 5 4 10 
1 1 0 2 3 10 1 1 1 5 5 50 
1 1 0 3 3 40 1 1 192 10 
11 0 4 4 40 1 1 1 9 3 15 
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Figure 5.9: Mixed scale 4, posterior probabilities 

Table 5.15: Posterior mean: mixed scale 4 

E(za I w , v) responses 
-1.64 00011 
-0.54 0 0 0 1 2 
-0.54 1 0 1 2 2 
-0.54 0 0 1 2 3 
-0.54 0 1 1 2 2 
-0.54 1 1 1 2 2 
-0.54 0 0 1 3 3 
-0.54 1 1 0 2 3 
-0.53 1 1 1 9 2 
-0.53 1 1 1 3 2 
0.35 0 1 0 3 3 
0.49 1 1 0 3 3 
0.50 1 1 1 9 3 
0.51 1 1 1 3 3 
0.54 0 1 0 3 4 
0.54 1 1 1 4 3 
0.54 0 1 1 4 4 
0.54 1 1 0 4 4 
1.63 1 1 1 5 4 
1.64 1 1 1 5 5 
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5.3.3 A real example: BSA 1990 

The data set used here has been extracted from the British Social Attitudes, 1990, 

Survey. There were 1270 individuals who were asked questions on sexual relation-

ships. The questions given below are a subset of the questions analyzed already in 

Chapter 4. 

1...Now I would like you to tell me whether, in your opinion, it is acceptable for 
a homosexual person to be a teacher at a school? [GAYTEASC] 

2...Now I would like you to tell me whether, in your opinion, it is acceptable for 
a homosexual person to be a teacher in a college or a university? [GAYTEAHE] 

3...Now I would like you to tell me whether, in your opinion, it is acceptable for 
a homosexual person to hold a responsible position in public life? [GAYPUB] 

4...What about sexual relations between two adults of the same sex? [SAME 
SEX] 

If we exclude the responses "depends/varies", "don't know" and "not answered" 

from the above items the sample size reduces to 1215 individuals. The items 1 

to 3 are binary items with response categories 1 for agree and 0 for disagree and 

item 4 is a five point scale item with responses "always wrong", "mostly wrong", 

‘`sometimes wrong", "rarely wrong" and "not wrong at all", treated here as discrete. 

The percentage of non response for item 1 is 1.8% for item 2 is 1.9% for item 3 is 

2% and for item 4 is 0.8%. 

First we fit a one factor model to the four items, excluding the missing values. 

The results are given in Table (5.16). 

Table 5.16: Parameter estimates and standard errors for the one-factor latent trait 
model, complete data 

Variable vi aio  ail 71-i cell 
GAYTEASC [1] -0.82 (0.42) 9.73 (1.68) 0.31 0.99 
GAYTEAHE [2] 1.55 (0.76) 11.15 (3.19) 0.82 0.99 

GAYPUB [3] 0.80 (0.16) 3.53 (0.29) 0.69 0.97 

Variable wi _ 	Pi  Ail kIfi A',;. 
SAME SEX [4] 2.03 (0.06) 0.84 (0.06) 0.57 (0.07) 0.56 
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From the tables of the one- two- and three-way margins we see that the one 

factor model fits the data well. The ri column shows that item 1 has a very low 

probability of receiving a positive response from the median individual. The item 

SAME SEX as well has a relative low mean score (2.03). 

Table (5.17) gives the parameter estimates of the mixed model for missing values. 

Table 5.17: Parameter estimates and standard errors for the two-factor latent trait 
model with missing values 

Variable vi aio aii. ai2 Iri 441 (42 
GAYTEAS [1] -1.36 (0.35) 6.03 (0.64) 0.00 (1.00) 0.20 0.99 0.00 
GAYTEAH [2] 0.98 (0.28) 6.01 (0.52) 0.00 (1.00) 0.73 0.99 0.00 
GAYPUB [3] 0.61 (0.11) 3.05 (0.19) 0.00 (1.00) 0.65 0.95 0.00 

Variable wi Ili Ail Ai2 iki )qi )42 
SAME SEX [4] 1.98 (0.05) 0.83 (0.05) 0.00 (1.00) 1.56 (0.04) 0.55 0.00 

Variable vi eio  eii ei2 iri 4`, 42 
GAYTEAS [1] 24.73 (****) -0.08 (0.61) -13.3 (****) 1.00 -0.00 -0.99 
GAYTEAH [2] 11.4 (4.41) 0.94 (0.49) -5.16 (2.59) 1.00 0.18 -0.97 
GAYPUB [3] 6.40 (0.94) _ 	1.20 (0.49) -2.22 (0.51) 0.99 0.44 -0.82 

SAME SEX[4] 6.71 (1.37) -1.04 (0.56) -1.69 (0.69) 0.99 -0.46 -0.76 

From the tables with the one- two- and three-way margins the fit of the model 

looks satisfactory. As we have already said the formulation of the model allows 

attitude to affect expression. This information can be obtained by looking at the 

coefficients The values of this coefficients will be discussed in connection with 

the posterior probabilities for the four items given below. Item 1 has a value of 

eii = -0.08 that indicates that attitude is not related to expression and as a result 

no information. can be obtained for attitude from non-expression. From the posterior 

analysis discussed above we find that the h(za I vi = 9) for item 1 is in the middle 

of 0 and 1 (see figure 5.10). Item 2 has a value of = 0.94 that indicates that the 

more positive attitude an individual has towards homosexuality the more chances 

he has to respond and since he did not respond it is more likely that he will be 

on the left side of the attitude scale, (see figure 5.11). Item 3 is even more closer 

to 0 since the value of eii = 1.20, (see figure 5.12). Lastly for item 4 the value of 

eii = -1.04 and that indicates that the more positive attitide an individual has 

towards to homosexuality the less chances he has to respond and since he did not 
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respond it is more likely to be on the wright part of the attitude scale, see figure 

5.13. 
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Figure 5.10: Item GAYTEASC, posterior probabilities 

The scorings of individuals on the attitude scale based on their whole response 

pattern is given in Table (5.18). We see that someone who has not responded to the 

fourth item scores higher than someone who has the same answers to the rest of the 

items and responded to the fourth item as well. 
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Figure 5.11: Item GAYTEAHE, posterior probabilities 
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Figure 5.12: Item GAYPUB, posterior probabilities 
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Figure 5.13: Item SAME SEX, posterior probabilities 
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Table 5.18: Posterior mean, sexual attitudes 

E(za  I w, v) responses E(za  I w, v) responses 
-1.51 0991 0.00 0105 
-1.20 0091 0.25 0111 
-1.09 0901 0.26 1011 
-0.92 0001 0.31 9191 
-0.91 0902 0.33 9911 
-0.81 0099 0.36 0112 
-0.80 9001 0.36 1012 
-0.78 0002 0.43 0113 
-0.75 9991 0.47 0114 
-0.68 0003 0.50 1015 
-0.66 9901 0.53 1101 
-0.62 0004 0.54 1102 
-0.59 0005 0.55 1013 
-0.55 0011 0.57 1104 
-0.54 0012 0.57 1911 
-0.53 0013 0.59 1105 
-0.52 0014 0.62 1912 
-0.50 0015 0.63 9111 
-0.47 0911 0.67 1111 
-0.46 9992 0.68 9913 
-0.44 0101 0.76 1112 
-0.37 0102 0.83 1195 
-0.35 9903 0.88 9113 
-0.34 0191 0.90 1113 
-0.28 0103 1.08 9919 
-0.23 0192 1.08 1114 
-0.17 9909 1.32 1115 
0.00 9101 1.35 1119 
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Chapter 6 

Generalized latent trait models 

6.1 Introduction 

In this chapter we discuss the issue of generalizing the latent trait model for mixed 

manifest variables for types of distributions other than the Bernoulli and the Normal. 

The aim is to set up a general model framework from which manifest variables with 

different distributions in the exponential farnily can be analyzed with a latent trait 

model. A unified maximum likelihood method for estimating the parameters of the 

generalized latent trait model will be presented. 

It will be shown that the latent trait model for mixed variables already developed 

in Chapter 2 can be generalized for other types of distributions and that all these 

different models share common characteristics and so a common method can be used 

for estimating model parameters. 

In addition to the estimation of the latent trait model general results for the 

scoring methods (component score, posterior mean) will be presented. 

In statistical theory generalized linear models (GLIM) were introduced by Nelder 

and Wedderburn (1972) and a systematic discussion of them can be found in Mc-

Cullagh and Nelder (1989). The GLIM include as special cases, linear regression 

models with Normal, Poisson or Binomial errors and log-linear models. In all these 

models the explanatory variables are observed variables. In psychometric theory 

a similar generalization can be done in which the explanatory variables are latent 

(unobserved) variables. 
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Mellenbergh (1992) discusses the issue of putting the item response theory in a 

general framework. He refers to a number of different item formats such as dichoto-

mous, polytomous, ordered polytomous and continuous items. As he noticed the 

latent variable models of these item formats can be described by a general model 

(GLIM) in which a monotone function of the expected response to an manifest item 

can be expressed as a linear function of latent variables and manifest explanatory 

variables. However, he does not discuss the possibility of having several types of 

distributions and he does not go into the problem of estimating the parameters of 

the generalized item response model. 

In this chapter an attempt is made for putting in a general framework the latent 

trait model with mixed manifest variables. 

6.2 Generalized linear models 

A generalized linear model consists of three components: 

1. The random component in which the random response variables, (xi, • • , xp) have 

distributions from the exponential family, (such as Binomial, Poisson, Multinomial, 

Normal, Gamma). 

2. The systematic component in which covariates, here the latent variables, 	z2, • • , zq 

produce a linear predictor y: 

= aio + E ctijzj, 	i = 1, • • ,p 
- 	:7=1 

3. The link between the random and the systematic components: 

= gi(Pi) 

where gi(.) is called the link function which can be any monotonic differentiable 
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function and different for different manifest variables. 

Let (xi, x2, • • , xp) denote a vector of p manifest variables where each variable 

has a distribution in the exponential family taking the form: 

f(xi) 	exp{xioi— bi(0i) 
ce(0i) 	(k)} 	

p 	(6. 1) 

where 0 is called a canonical parameter and a(cb), b(0) and c(x, 0) are specific func-

tions taking a different form depending on the distribution of the response variable 

xi. More specifically a(cbi) is a scale parameter, taking commonly the form 0/w 
where w are known weights that may vary from observation to observation. 

The mean and variance of the variable X can be derived from the relations based 

on the loglikelihood function /(0, 0; x) = log f (x; 0 , 0): 

al E(-6-o) = 0 

and 
a21 

E(DT) E (11 )2 = 0 

From these two equations we get that: 

E (X) = 11(0) 

and 

V ar(X) = b"(0)ce(0) 

The variance of X is called the variance function. 

Now we are going to identify for different types of responses the three components 

of the generalized model and the form of the specific functions given above. We will 

illustrate the models with one latent variable. 
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6.2.1 Binary responses 

Let xi take values 0 and 1, (i = 1, • • • ,p). Suppose that the p manifest binary 

variables have Bernoulli distributions with expected value ri(z). The link function 

is defined to be the logit, i.e.: 

g(ri(z)) = Oi(z) = logitri(z) = log( 7i(z)  ) = «.0 a•iz 
1 — 7ri(z) 	" 

where 
iri(z) 	eei(z)/(1 	eoi(z)) 

bi(Oi(z)) = log(1 + e°i(z)) 

a(0i) =1 

g(xi I z) = ri(z)xi (1 — ri(z))1-si 

6.2.2 Normal distribution 

let Xi be a normally distributed variable with mean pi and variance 	The link 

function of the conditional distribution x I z is the identity: 

g(pi) = Oi(z) = pi(0) = aio ailz = + Aiiz 

Where +iz is a standard notation in the literature for the normal factor analysis 

model. 

Also, 

bi(Oi(z)) = [0i(z)]2 /2 

u2 

1 
g(xi I z) = 	 expf--

1
(xi — — Ailz)2} 

-V271-o-2 	2o-2 
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6.2.3 Gamma distribution 

Let Xi distributed as a Gamma function. The link function is the reciprocal: 

where -yi(z) = — oil(z) 

g(pi) = Oi(z) 
1 

ceio 	ailz -yi(z) 

bi(Oi(z)) = —log(-0i(z)) = — log(721(z)) 

1 
v 

ci(x; .0) = v log(vx) — log x — log 1-1(v) 

Hence, 

9(xi z) 
1 	1 

= exp{[--xi + log --]/(1/v) + v log(vx) — log x — log c(v)} 
7i 	7i 

= exp{____
xiv)(1 \vivxil,,x_i_ 1 
-yi Cyi) 	) i 11 (v) 

exp{—„I;zilxri- 

  

ez- Y11 (v) 

 

The shape parameter for the Gamma distribution is here v 	or la where wi 

are prior weights and the scale parameter is 21., = -yi or 14:  . 

6.3 Estimation 

The estimation of the parameters is based on the maximization of the joint dis-

tribution of the manifest -variables. In this formulation of the model we allow the 

manifest variables to take any form from the exponential family. 

Under the assumption of Conditional independence the joint distribution of the 

manifest variables is: 

f (x) = 	g(x I z)h(z)dz 
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.1+°° 
[ 	gi(xi z)]h(z)dz 

There is no constraint that the g(xi I z) for all the p items must be of the same 

type. Here, g(xi I z) can be any distribution from the exponential family. 

For a random sample of size n the loglikelihood is written as: 

E log f(Xh) 
h=1 

1+00 = E log 	g(xh I z)h(z)dz 
h=1 	-oo 

The integral in equation (6.2) is approximated by Gauss-Hermite quadrature 

nodes and the loglikelihood to be maximized is written as: 

n 	k P 	xj0i(Zt) 	bi(Oi(Zt)) 	c.(0. x•)}1h(zt) 	(6.3) = ElogE[11-exP a(00 	a(00 	" h=1 	t=1 i=1 

The unknown parameters are in Oi(z-t) and in a(q5i). Hence we have to differen-

tiate the loglikelihood given in equation (6.3) with respect to the Oi(zt) and a(0i) in 

order to obtain maximum likelihood estimates for the parameters, aio and ceii and 

the scale parameter. 

Finding partial derivatives, we have 

= 	1  af(xh)  
2_, 
h.=1 Axh) a au 

g(xhl zt)h(zt) ail 
a(0i) 	a(0i) j 

a [xihoi(zt) 	bioi(zt)), 

hE,., f (xh) tE.-1 
(6.4) 

By interchanging the summation in equation (6.4) we get: 

n 	g(xh I zt)  80i(zt) 	g(xh I zt)  abi(Oi(zt))  	 = E h(ziHE xih 	 f a ail 	t=i 	h=1 	f(xh)a(0i) aceil 	h=1 OCh)al`Pi) 	aail 

(6.2) 

aL 
aCeii 
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= E[riit0azt) Ntba0i(zt))]/a(0j) 
t=i 

where, 
30i(zt)  

°Azt) = 

abi(0i(zt))  
ba0i(zt)) 

riit 	h(zt) E xihg(xh ztvf(xh 
h=1 

E xihh(zt xh) 
h=1 

and 

Nt = h(zt) E g(3ch zt)/f(xh) 
h=1 

E h(zt I Xh) • 

Setting the partial derivatives equal to zero, (equation 6.5), we get: 

it0azt ) — Ntba0i(zt) )] = 0 , 	 (6 .8) 

where the b'i(Oi(zt)) becomes: 

Binary items: bar9i(zt)) = 47ri(zt), 	/ = 0,1 

Normal continuous items: bii(Oi(zi)) -= zaiti Aiizi), 	/ = 0,1 

Gamma continuous items: bli(Oi(zt)) = 4( c,,o+laiiz,), 	1 = 0,1 

By replacing the above results into equation (6.8) we get: 

(6.5) 

(6.6) 

(6.7) 
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For binary items: 

aL 
a6ti, lit -- Ntri (zt ) ] 	o, 	0 ,1 	 (6.9) 

For Normal continuous items: 

	

= 1,4[riit Nt(Iii :\iizt)] = 	1 = 0,1 

where = Ai and 	= 

For Gamma continuous items: 

aL .1V-t  E z,/{riit +  	o 	o, 
t.i 	etio + 

(6.10) 

(6.11) 

The maximum likelihood equations for the binary and the Normal continuous 

items (6.9) and (6.10) respectively are the same as the ones obtained in Chapter 2. 

By formulating the model in this general way it is noticed that the derivatives of 

the loglikelihood respect to the unknown parameters can be very easily obtained for 

any type of distribution from the exponential family and the only information we 

need is the first derivative of the specific function bi(Oi(zt)). 

For the Normal continuous items we get explicit formulae for the estimated pa-

rameters Ai and Ail. For the binary and the Gamma continuous items the ML equa-

tions are non-linear equations respect to the parameters. The non-linear equations 

can be solved using a Newton-Raphson iterative scheme. The updating equation of 

the Newton-Raphson iterative solution is given by: 

'A+1 = [3, — H-1(X)u(X) 	 (6.12) 

Where 13' denotes the vector with the unknown parameters, H-1(Sr) is called Hes-

sian matrix and contains the second derivatives of the loglikelihood respect to the 

unknown parameters and u(i4r) contains the first derivatives of the loglikelihood 

respect to the unknown parameters and r denotes the number of iteration. 

A general form of the second derivatives can be found. The derivation is shown 

in Appendix D. 
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a2L 
= — E zitNtbil(Oi(zt))1o1(0i) 	1 = 0, 1 	(6.13) 

acqi 	t=i 

a2L E NIIII(Oi(zt))1a(0i) 	 (6.14) 
actioaaii 

Where bil(Oi(zt)) denotes the second derivative respect to au. As it be seen from 

equations (6.13) and (6.14) the second derivatives depend on the second derivative 

of the specific function bi(Oi(zt)). This can be calculated for the different types of 

distributions. 

For binary items: 
a2bi(Oi(zt))  = 7ri(zt)(1 — ri(zt)) 

,92bi(Oi(zt))  = 47ri(zt)(1 — ri(zi)) 
acqi 

For Normal continuous items: 

a2bioi(zo)  =1 

ay? 

a2moi(zo)  _ 
aA?i. 

For Gamma continuous items: 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

a2b,(0,(zt))  _ 
acel 

492 bi(Oi(zt))  

acqi 

1 

(Ctio 	aiizt)2 

Zt 

 (aio 	aiizt)2 

(6.19) 

(6.20) 

Now it remains to estimate the scale parameter 0. By differentiating the loglike-

lihood respect to the scale parameter 0 we have: 

oL 	n 	1 	k 	 Xili0i(Zt) 	bi(Oi(zi)) 
 [a(001

, 
+ E 	E h(zi)g(xh zt)* { a0i 	h=i f OCh) 	 [a(C6i)12 

ca(ki, Xihil 	 (6.21) 
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By interchanging the summation in equation (6.21) and setting it equal to zero we 

have: 

k 	n 	( 	) t [bi(Oi(Zt)) — XihOi(Zt)l{a(q;i)1/ E tot) E g  
h=i J PCh) 

g()Ch I zt)  Ek h(zt) En 
[Cacbi)Xih) * [ce(i)12] = 0 

h==i f 0(1 

E[bi(02:(ZO)Nt — riit0i(Zt)1* [ci(iski)Y 
t=i 

g(Xh 	1 Zt)  E h(zt) E 	 xih) * [aCki))2 = 

	

t=1 	h=i f och ) 

By solving equation (6.22) respect to [a(0012 we have: 

	

[cy(0i)] 	= 	[riit0i(zt) — bi(Oi(zt))Nt]  

ELi h(zt) En 9(x111z/)  „/(;/; 
h=1 fOch) - 	Xih) 

(6.22) 

(6.23) 

Equation (6.23) is true if a'(0i) = 1. The function c'i(0i, xih) does depend on 0i and 

so we do not get explicit form for 0i. 

More specifically for the different type of distributions, we have that for the 

Bernoulli distribution the scale parameter 0 = 1. For the Normal continuous items 

the form of ci(0i, xi) is given by: 

1 x? 
ci(0i, xi) = 	log(2r0)) 

2 0 
(6.24) 

and 
X 2 

x.) = — — 02 o (6.25) 

By replacing (6.25) into equation (6.23) we get: 

i= i= kl 	 Ehit — 	— 2Lztriit 	Lzt)2Nt] 
Et=i 

(6.26) 
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E[riitoi(zt) — 
t=i 

t=i 

bi (0i (zi ) ) Nt ] 

— bi(Oi(Zt))Nti E r3it E Nt 
t=1. 

where, 

riit = 	xihh(zt I Xh) 
h=1 

r2it = 	XLh(Zt I Xh) 
h=1 

Nt = E h(zt I xh). 
h=i 

For Gamma continuous variables the form of the ci(0i, xi) is given by: 

ci(0i, xi) = v log vx — log x — /og11(v) 

(6.27) 

(6.28) 

where 0 = 1 or v = 1 The first derivative of the function ci(0i, xi) required by 

formula (6.23) is: 

ca0i, xi) = [0-1 log 0-ixi log xi — log r(0-1)y 
xi 	0 xi , 	 , 	, 

= 	log t 0 xi( 0 ) 	r(0_1)[r(0— )1 (0— ) 
xi 

= 	lc)g 76- — T2- + 02 r(0_1)[r(0-1)1' 

From equation 6.23 we get: 

(6.29 ) 

E ltc=i[riit0i (zt ) — bi (64i(zinNt] 

EL]. h(zt) ER =1 g(fx(clhz;) [ C162 [1()g T-5 4- 1 	Z-11);]] 

Ek h(Zt) Z—an 
g(Xh Zt)  [ 	Xh 	11(0-1)'i  

t=i 	h=i f(xh) 	g 0 	r(0-1) 

E[rii-t0i(zt) — bi(Oi(zt))Nt] 
t= 1. 

k 	k 	k 	
g()Ch I Zt)  r(0-1)'  Er3it +10g0ENt ENt +Eh(zt)E 

t=1 	 t=1 
	t=1. 	t=1 	h=1 

> 

< 	> 

f (xh) r (0-1) 
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< 	' 

log0ENt+ 

E[riitoi(zt) — 
t=1 

t=1 

bi(Oi(Zt))Nt 	r3it 	Nti 
- k 	n 

fiVCh  I Zt)  r(0-1)1 E h(zt) E 
t=i 	h=, gxh) r(0-9 

log OE Nt 
t=1 

k 	nil 

E h(zt) E gkxh zt)  r(0-1), 
h=i f (xh) r(0-1) 

(6.30) 

where, 

rait = h(Zt) E log xihg(xh I zt)/ f(xh) 
	

(6.31) 
h=1 

But r(0- ) does not depend on xh and so equation (6.30) becomes: 

r(cb—ly  k E[riii0i(zt) — bi(Oi(zt))Nt r3it Nt] = [log 0 + 	iENt r(0-1) t=i t=1 
(6.32) 

Before we proceed with equation (6.32) let investigate a Gamma model with 

both the response (x) and the explanatory (z) variables observed. The loglikelihood 

function of a random sample of size n is written: 

1 	X 	 VX 1 
L = E log 

r(v)
( rexp(--±i)— 

h=1 	 Xh 
(6.33) 

By differentiating the loglikelihood in equation (6.33) respect to the scale pa-

rameter v and set it up equal to zero we get: 

aL 
ai; 0 

4==>- 
r(0, 	n 

— A  nflog v 	 } = E{ log 	„ } 	(6.34) 
r(71) 	h=1 	P 	P 

where, 
Xh — A  2 Ef— log — 	} = D(x; It) 

h=1 
(6.35 ) 

where D(x; ,a) is called the deViance. The deviance is a goodness-of-fit measure that 

is defined to be the logarithm of the ratio of two likelihoods. One is the loglikelihood 

achievable for an exact fit in which the observed data are equal to the predicted data 
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from the model and the other is the loglikelihood for the model under investigation. 

D(x; A) = 2log /(x, 0; x) — 2 log /(A, 0;x) 	 (6.36) 

For the models from the exponential family in which we denote the canonical 

parameters under the full model and the model under investigation to be O = O(x) 

and 11 = ow respectively, the scaled deviance is written as: 

E 21x,co — — b(o) + b(0)}/(0/wi) = mx; /1)/0 
	

(6.37) 
h=1 

D(x; A) is known as the deviance for the current model and is a function of the data 

only. The scaled deviance is defined as: 

D*(x; = D(x; A)/0 	 (6.38) 

and it expressed as a m-ultiple of the dispersion parameter. 

The forms of the deviances for the distributions of the exponential family are 

given in McCullagh and Nelder (1989), page 34. For binary responses the scaled 

deviance is: 
xh 	 1 — xh 

D*(x; A) = 2 Efxh log — (1 — xh ) log 	} 
h=1 	11 	 1 - 

For Normal continuous variables the scaled deviance is: 

D.(x; fL) = Dx h — it ) 2/ (72 
h=1 

which is the residual sum of squares. For the Gamma continuous variables as we 

have already shown is: 

D* (x; it) = 2 Ef— log -x-11 xh 	} 
h=1 

In the generalized linear models there is only one response variable x. In the 

latent variable models there is a vector of p response (manifest) variables x. As a 

result we need a deviance for each manifest variable xi, i = 1, • • ,p. 
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—ENtTg 
t.i 	it= 	t=i 	Pi 	4=1 

X ih 	(X ih 	•) 	k 	 r(ac_i), 
-[ Nt log —,, — E Nt 	= E Nt [log 0-1 	] 

t.i 	t=i 	 t=i 

E[riit0i(zt) — bi(ei(zi))Nt r3it Nti = [log 0 + 
t=i 

1 
ElogNt(') ENtlogxih ENt = [log 0 + 

t=1 

11(0-1Y,  
r (0-1) 	t 
r(0_1), 
	lE Nt 	 r(0-1) 

(6.39) 

The reason for introduction of the deviance is that we can use it to get an esti-

mate of the scale parameter when we do not get an explicit solution from maximum 

likelihood estimation. Estimation of the scale parameter 0 is not needed for the 

Bernoulli and the Poisson distribution because it is taken to be equal to one and 

for the Normal distribution we get an explicit form for the estimator of the scale 

parameter. Now for the Gamma distribution the scale parameter can be estimated 

if subroutines that calculate the digamma, gamma and trigamma functions are pro-

vided. Another way to estimate the scale parameter is to use the deviance. We are 

now going to investigate that. 

The statistic S = D/0 can be computed from the data. Now under a reasonable 

model the statistic S has a x2 distribution with mean E(S) = n — r where r are 

the number of independent linear parameters that are estimated. By making the 

assumption that under a reasonable model the S statistic will be close to its expected 

value we can estimate the scale parameter from: 

= 	 
n — r 

In Francis, Green, and Payne (1993) is mentioned that the estimate 0 is incon-

sistent as n ---> oo. 

Let us see now how equation (6.32) is related to (6.35) which is the deviance in 

the generalized linear model for Gamma distribution. Equation (6.32) becomes: 

By replacing 0 = liv into equation (6.39) and multiple both sides by 2 we get: 
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k 	(xih — Ai) ] . 2 Ek Nt[logi) 

1111(fu);
I 

k 
Xih 

—2[E Nt log , — E Nt 	 (6.40) 
t=i 	ii i 	t=i 	A i 	t=1 

The right expression of equation (6.40) is the same with the right expression of 

equation (6.35). So the left hand side of equation (6.40) must be the deviance for 

the latent variable model with Gamma conditional distributions for the manifest 

variables. 

An approximation which is used for equation 6.35 is: 

D(6 D)  
— 6 + 2D 

(6.41) 

where r) D (x; /1)/n. The same approximation might be used for the latent variable 

models. 

6.3.1 EM Algorithm. 

So far we have used the letter x to denote the manifest variables assuming that x 

can be either binary or metric. Let denote with v the binary items, with w the 

normal continuous variables and with u the Gamma continuous variables. 

The maximization of the loglikelihood (equation 6.3) is done by an E-M algo-

rithm This is the same algorithm described in Chapter 2 (section 2.2.4) for the 

latent trait model with mixed manifest variables. The steps of the algorithm are 

defined as follows: 

step 1 Choose initial estimates for the model parameters (ail and the scale parame-

ter). 

step 2 —ompute the values riii(v), riit(w), riit(u), r2it(w2), r3it(log u) and Nt. 

step 3 Obtain improved estimates for the parameters by solving the non linear maxi-

mum likelihood equations for Bernoulli and Gamma distributed variables and 

using the explicit equations for Normal distributed variables. 

step 4 Return to step 2 and continue until convergence is attained. 
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6.4 Scoring methods for the generalized latent 

trait model 

It is appropriate if possible to find a general framework for the scoring methods for 

the generalized latent trait model. If the latent trait model fits the data then we 

can summarize the information in a set of manifest variables by obtaining a score on 

the latent dimension. The work in this section is an extension of the scoring meth-

ods already discussed in Chapter 2 for the latent trait model with mixed variables 

(binary and Normal continuous variables). Here, we would try to derive a general 

formula for the component scores which can be used under any type of distribution 

or mixture of distributions in the exponential family. 

For the time being we will assume that all x's are of the same type. The con-

ditional distribution of the response pattern x given z is in the exponential family 

and it takes the form: 

	

g(x I z) = 	g (x z) 

	

= 	expl xiOi  (z) —  bi(Oi(z))  

ai(cbi) 
+ (xi , 0) } 	(6.42) 

where Oi(z) = aio + aiiz. 

Equation (6.42) becomes: 

g(x I z) exp[E 	ai° x, 

exp[co(x) + (x).z] exp[— EP 	 

i=i a(0i) 	i=i a(0i) 

x,zbi (9/iE(Pz;  (+0,i,AE(p)cii:xiE,P0)c;  (xi, 0)1 
i=i ak,vi 

(6.43) 
cq0i 

where co(x) 7'1? ai° 	x, and ci(x) = 	11-500, x, = 	ce(cki) 

The conditional distribution of zero responses to all items given the latent vari- 
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1+00 

00 

g(x I z)h(z)dz f (x) = 

able is: 
P 	bi(Oi(z))  

g(0 I z) = 	exp{ 	ci(0, Oil 
i=i 	a(0i) 

From equations (6.43) and (6.44) we have: 

(6 .44) 

g(x I z) = exp[co(x) 

exp[co(x) ci(x)z] 	exp[ 	\°ivz))  p 

i=i 

exp[co(x) ci(x)z] fl exP[ 
i=i 

exp[co(x) 

The joint probability of the manifest variables (x) may be written as: 

P 	bi(Oi(z))  ci(x) z] 	exp[ 	+ 
a(c6i) 

cx(cbi) + 	
co] exP(ci(0,  4,i)) 

exp(ci(o, oi)) 

bi(Oi(z))  
a(00 	ci(0, 	exP(ci(xi, 0i)) 

' exp(ci(0, 0i)) 

ci(x)*(0 z)-Fr exp‘ci \xi, 00) P 

exp(ci(0, cbi)) (6.45) 

TEr exp(ci(xi,(b 
i" 	h(z)dz exp(ci(0, 0i)) 

f(0) j+°° g(°  I  z)  exp(ci(x)z)h(z)dz f (0) 

+°° f (0) I 	h(z I 0) exp(ci(x)z)dz 

f (0)Mzio(ci(x)(x) 

f g(0 z)exp(co(x) ci(x)z) 

exp(ci (xi,  cbi))  
(exp(co(x))) 

exp(ci(0, cbi)) 

exp(ci(xi,  0i)) 
(exp(co(x))) 

exp(ci(0, 0i)) 

(exp(co
(xm 	exp(ci(xi, 0i)) 

exp(ci(0, 0i)) 
(6.46) 

where, Mzio is the moment generating function of the conditional distribution of 

the latent variable z given a zero response on all items. 

Hence, the conditional distribution of z given the response pattern x is: 

h(z I x) g(x z)h(z)  
f(x) 

g(0 I z)exp(co(x) 	ci(x)z) 	ee.xpp((74(roilii))))  h(z) 

 

 

exp(co(x)) f (0) riLi eexPxpi(roilii));  mz,o(ci (x)) 
exp(ci(x)z)g(0 I z)h(z)  

f (0) M zio(ci(x)) 
(6 .47) 

160 



In the case that more than one type of manifest variables are fitted the part which 

is influenced in equation (6.47) is that that depends on the manifest variables i.e. 

ci(x). For the case we have for example three different type of manifest variables, 

(v, w, u), equation (6.47) becomes: 

h(z I x) = exp{(ci(v) + ci.(w) + ci(u))z}g(0 I z)h(z)  
f (0)mzio(ci(v) + ei(w) + ci(u)) 

(6.48) 

From equation (6.48) we see that the component scores are: 

For binary items: ci(v) = 	aiivi since (1(0) = 1 

For Normal continuous items: ci(w) = Ei twi since a(cb,) = 

For Gamma continuous items: ci (u) = Ei 

Hence, the component score for each response pattern/individual of the model 

with variables (v, w, u) each of different type is: 

Ail E 	+ 	+ 2_, 	 (6.49) 
. 1/v 

From equation (6.48), the moment generating function of the conditional distri-

bution of z given x is 

Mzi,(t) re° exp(tz)h(z I x)dz 

 

 

jexp(tz)exP[(cl(v) el(w) cl(u))ziqz 0)  d 
Mzio(ci(v) ci(w) ci(u)) 	z 

MzIo(ci(v) ci(w) ci(u)  t) 
MzIo(ci(v) ci(w) ci(u)) 

(6.50) 

In Chapter 2, section 2.3 the results of Knott and Albanese (1993) for the latent 

trait model with binary items extended for the latent trait model for mixed variables. 

The same results can be also applied here for the generalized latent trait model. 
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Result 1 If Kzio (t) is the cumulant generating function for the density of z given 

that all responses are zero, then 

E(z x) = 	zio(ci(v) ci(w) ci(11)) 
	

(6.51) 

and 

V ar(z I x) = K" zio(ci(v) ci(w) ci(u)) 
	

(6.52) 

where the prime and double prime indicate first and second derivatives of the cu-

mulant generating function. 

Result 2 E(z I v, w, u) is a strictly increasing function of (ci (v) ci(w)-F (u)), 

if the variance of the conditional distribution of z given that all responses are zero 

has variance strictly greater than zero. This results has been discussed in Chapter 2. 

Result 3 When the conditional distribution of z when all responses are zero is 

normal, then the conditional distribution of z for any set of responses is normal. 

6.5 Summary 

In this section we want to summarize the results we found for the generalized linear 

latent trait model for mixed variables. The results presented in the previous sections 

used only one latent variable. Here we assume more than one latent variables. 

Let the responses (xi, x2, • • , xp) are of different type formats. The different 

type formats can be binary items denoted by (v), normally distributed continuous 

items denoted by (w), gamma distributed continuous items denoted by (u), poisson 

count items denoted by (u*) or any other type that can be in the exponential family. 
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The generalized latent trait model is written as: 

aio + E aijzi 
j=i 

= 1, 	,p (6.53) 

where z denotes the latent variables and gi(.) can be any monotonic differentiable 

function taking different forms for different items depending on their distribution 

assumed. The latent variables are assumed to have independent standard normal 

distributions. 

The estimation of the model parameters aio and 	is based on the maximization 

of the loglikelihood of the joint distribution of the manifest variables which under 

the assumption of conditional independence is written: 

f(x) = +: • • • 	g(v I z)g(w I z)g(u I z)g(u* I z)dz 	(6.54) 

where the loglikelihood for a random sample of size n is: 

L = E log f (xh) 
h=--1 

The maximum likelihood equations respect to the unknown parameters are: 

aL = E zit[riit — Nibas9i(zt))] = 0 1 = 0, 1 	 (6.55) 
t=i 

where riit takes a different form depending on the type format of the ith manifest 

variable. The only think required to be calculated is the first derivative of the 

function bi(Oi(zt)). Non-linear equations can be solved with an iterative algorithm 

such as the Newton Raphson. 

For the estimation of the scale parameter either the ML estimate is used if an 

explicit solution exists or an estimate based on the deviance can be obtained. 

The maximization of the loglikelihood is done via an E-M algorithm described 

in section 6.3.1. 
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Chapter 7 

Contribution of the Research 

The purpose of this chapter is to outline the main findings of this research, to discuss 

the usefulness of the development of the theory and its applications and to discuss 

possible extensions of the present research in the future. The first section of this 

chapter is an overview of the research developments, as they have been presented 

in the previous chapters, the second section is a discussion of the limitations of the 

current research and some proposals for future research and the last section is a 

conclusion of the theoretical and practical contribution of the research. 

7.1 Overview 

This thesis has dealt with the Problem of fitting a latent variable model to a number 

of mixed observed variables with complete and incomplete data. The mixed observed 

variables can be either binary or metric (discrete and continuous). We are interested 

in the estimation of the model parameters but also emphasis has been given in 

scoring methods for allocating individuals into the latent dimension based on their 

response patterns, in the incorporation of missing values into the analysis and the 

application of these methods into real data sets. 

In Chapter 1 a discussion of the literature in the area of latent variable 

models for mixed observed variables is given. Although our work in this thesis is 

concentrated in the analysis of mixed variables an overview of the methods for binary 

and metric observed variables is given since many of these results have been extended 
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here for the mixed model. We discuss the two approaches for the estimation of latent 

variable models. These are the underlying variable approach that assumes that an 

underlying variable exists for each binary or categorical observed variable and carries 

on the analysis on the correlation matrix of the underlying variables. The second 

approach analyzes the data as -they are and defines for each individual in the sample 

the probability of responding positively to a variable given the individual's position 

on the latent factor space. 

Significant contributions based on the underlying variable approach have been 

made by Muthen, Arminger and Kiister as well as Joreskog and SOrbom but no work 

has been done so far on the second approach. 

The second approach has been well explored in the case where the observed 

variables are either binary or metric, see Bartholomew (1987). Our work here is an 

extension of Bartholomew's work for mixed type variables. Our approach is based 

on Bartholomew (1987) sufficiency principle that looks for summary statistics based 

on the observed variables that could contain all the information about the latent 

variables. 

In Chapter 2 a latent trait model (continuous latent variables) is developed 

for fitting a number p of mixed observed variables, binary, and metric variables 

that are normally distributed. The results presented are for fitting a latent trait 

model with q latent variables where q is much less than p. We assume that the 

conditional distribution of the observed variables given the vector of latent variables 

follows a Bernoulli distribution for the binary variables and a normal distribution 

for the metric variables. The model developed here analyzes the response patterns 

as they are in contrast with the underlying variable approach. A discussion on the 

comparison of the two approaches is given in Chapter 2, section 2.2.8. 

Marginal maximum likelihood estimation is used for estimating the model pa-

rameters via an E-M algorithm. Standard errors for the parameter estimates are 

obtained based on the asymptotic theory for maximum likelihood estimation. 

As far as concern the goodness-of-fit for the model no statistical criterion has 

been used. However we look at the fit of the model in the two- and three-way 

margins of the binary variables and the covariance matrix for the metric variables. 

165 



Model selection criteria are also discussed. 

A standardized solution is -proposed to be used for a more unified interpretation 

of the results. Orthogonal transformation of the maximum likelihood solution is 

shown to be possible. 

Finally, scoring methods for allocating individuals into the latent space are pre-

sented based on the posterior mean of the latent variable given the response pattern 

of each individual and the component score. 

In Chapter 3 a latent class model (discrete latent variables) is developed for 

fitting mixed observed variables, binary and metric variables that are normally dis-

tributed. A similar theory which developed for the latent trait model for mixed 

observed variables is set up here for latent class models. Theory that already existed 

for binary, metric and mixed variables is presented in the beginning of the chapter. 

The only contribution in the literature for mixed type variables is by Everitt and 

Merette which assumes underlying variables for the observed categorical variables. 

Their method involves, as it has been shown, heavy integrations. Our method does 

not require any integrations and for that reason it is more advantageous than the 

existing method. Standard errors for the estimated parameters are provided from 

asymptotic maximum likelihood theory. Allocation of individuals into the latent 

classes is discussed. 

In Chapter 4 four data sets have been analyzed using the models which developed 

in Chapter 2 and 3. The four data sets vary in the number of observed variables 

and the number of response patterns to be analyzed. Two of the data sets come 

from the British Social Attitudes Survey of 1990 and 1991 and the other two are 

from an LSE cognitive laboratory experiment. We discuss for all the models we fit 

the interpretation of the model parameters and scoring methods for the individuals. 

For goodness-of-fit we looked at the two- and three-way margins for the binary part 

of the model and at the sample and the one obtained under the model correlation 

matrix for the continuous part of the model. Akaike's criterion has been used as a 

model selection criterion. We should note that the metric variables used here are 

all four- or five-point scale variables treated as interval scale variables. 
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In Chapter 5 the latent trait model for mixed observed variables is expanded so 

that missing values can be handled. We are interested in item nonresponse. The set 

up and the estimation of the model are an extension of the work of Albanese and 

Knott (1992) for binary items with missing values. Apart from estimating the model 

parameters we give a lot of emphasis to how we can use the model to derive infor-

mation about attitude from non-expression and how we can score individuals on the 

attitude latent dimension based on their response pattern. Artificial examples have 

been used with Guttman scale, non-type scale and Likert scale observed variables 

to illustrate the model plus a real data set from the British Social Attitudes Survey. 

In Chapter 6 the results presented in Chapter 2 are generalized to observed vari-

ables with conditional distributions in the exponential family. Our aim is to develop 

a general framework like GLIM that can handle any type of observed variables in 

the exponential family such as the Binomial, Poisson, Normal and Gamma distribu-

tion. In Chapter 6 we show that this general framework exists and that a common 

estimation method can be used to find estimates for the model parameters. We 

work with the general form of the exponential family. The results of Chapter 2 can 

be derived as special cases for Bernoulli and Normally distributed variables. Also 

the issue of scoring individuals on the latent factor space has been looked at and is 

put in the general framework. 

7.2 Limitations and future research 

In this section we discuss the limitations of our research and problems that have 

risen. These limitations suggest areas for further research. 

There is no formal statistical test at the moment for testing the goodness-of-fit 

of the models developed here for mixed variables (latent trait and latent class). So 

far the goodness-of-fit has been looked at separately for the binary and the metric 

observed variables. 

The E-M algorithm suggested here for the maximization of the loglikelihood 

function converges very slowly if the number of latent variables is greater than two. 

Possible acceleration routines should be looked at. 
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The thesis has developed a latent trait model and a latent class model for binary 

an.d metric observed variables that are assumed to have conditional on the latent 

variables Bernoulli and normal distributions respectively. This part of the theory 

has been supported by software (LATENT and CLASSMIX). In the thesis we have 

further discussed the generalization of the latent trait model for other types of 

distributions in the exponential family, (chapter 6). This is not yet supported by 

software. 

The generalized theory could be further extended in the future to cover also the 

latent class model. 

Finally, it will be interesting to extend the model for categorical nominal and 

ordinal observed variables. This will make the model even more generally applicable. 

7.3 Conclusion 

In this section we would like to summarize the results of our research in order to 

show the contribution of this research in the area of latent variable models. 

A fourfold classification is used in Bartholomew 1987 to classify the techniques 

available in the area of latent variable models. This is shown in the first two columns 

of the table given below. We discussed in Chapter 1 how Bartholomew 1987 pre-

sented a unified approach for fitting latent variable models for either categorical or 

continuous observed variables-and for discrete or continuous latent variables. Our 

research is an extension of Bartholomew's work for mixed observed variables. 

Our methodology developed latent variable methods for the analysis of mixed 

observed variables with complete and incomplete data. The main contribution of 

this thesis lies in the last column of the table below. After we have developed 

the theory for the mixed case many different issues were looked at and these are 

discussed briefly in the first section of this chapter. 

Manifest variables 

Latent 
variables 

Metrical Categorical Mixed 
Metrical factor 

analysis 
latent trait 

analysis 
latent trait 

analysis 
Categorical latent profile 

analysis 
latent class 

analysis 
latent class 

analysis 
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Apart from the development of the methodology for handling mixed observed 

variables with latent variables emphasis is given in the application of this method-

ology in real problems. Data sets with mixed variables have been analyzed so that 

the advantages of the theory developed will be apparent. Two software programs 

have been written to fit the models developed. 

Social scientists such as psychometricians and sociometricians use latent analysis 

to describe attitude relations. Economists and policy makers also use latent analysis 

to construct a wealth indicator from observed indicators such as income, expendi-

ture, etc.. In all these disciplines it is common that the observed variables to be 

used have different level of measurements, such as binary and metric (discrete and 

continuous). By extending the existing theory of latent variable models for mixed 

data we have made an essential contribution in this area. 
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Appendix A 

Program LATENT 

The computer program LATENT fits a one and two factor latent trait model to 

mixed observed variables with complete and incomplete data. The program is writ-

ten in FORTRAN 77. 

The theoretical development for the latent trait model for mixed observed vari-

ables with complete data is presented in Chapter 2 and for the incomplete data in 

Chapter 5. 

The program provides for both models parameter estimates, standard errors of 

the parameter estimates, scoring methods that based on the component score and 

the posterior mean and finally for a goodness-of-fit measure computes the observed 

and expected under the model first, second and third order margins. 

Description of the program's input 

The three lines below are the input lines required to be read by the program. These 

three lines together with the data set are saved in a file called LAT.INP. 

TITLE 

N NPD NPC NQ 

MODEL NFAC INPUT FREQ DISPLAY MTER LOUT8 ERRC 

Individual's response patterns are displayed here. 
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N denotes the number of response patterns to be analyzed. 

NPD denotes the number of binary observed variables. 

NPC denotes the n-umber of metric observed variables. 

NQ denotes the number of quadrature points to be used (8,16,24,32,48). 

MODEL for complete data it takes the value 1 and for incomplete the value 3. 

NFAC denotes the number of latent variables to be fitted (1 or 2). 

INPUT takes the value 0 if the initial parameter values are set in the program 

and 1 if they have to be read by an external file called LAT3.INP. 

FREQ takes the value 0 if raw data are going to be read and the value 1 if the 

frequency of the response patterns is going to be read. 

DISPLAY takes the value 1 if a display of the frequency distribution is needed 

and 0 otherwise. 

MTER denotes the maximum number of iterations. 

LOUT8 takes the value 0 if a file with the final parameter estimates is needed 

to be saved and 1 otherwise. 

ERRC denotes the convergence tolerance for the EM algorithm 

Brief description of the program's subroutines 

• EM1 This subroutine does the maximization step of the E-M algorithm New 

estimates of the model parameters are obtained for the discrete and the con- 

tinuous part of the model. The convergence of the E-M algorithm is checked. 

• EM2 Same as EM1 but for the two factor model. 

• PHILIKD Computes the response function for each item 71-i(z) and the con-

ditional distribution of the binary variables given the vector of the latent vari-

ables for each individual h, g(vh I z) 

• PHILIKC Computes the conditional distribution of the metric variables given 

the vector of latent variables for each individual h, g(vh I z). 

• PHILIK Computes the conditionsl distribution of the binary and the metric 

variables given the vector of latent variables for each individual h, g(vh,wh I z) 

and the loglikelihood value. 
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• ENER This subroutine does the expectation step of the E-M algorithm 

• VARIANCE Computes the variance-covariance matrix of the parameter es-

timates. 

• POSMEAN Computes the posterior mean, E(z I vh, vh), for each response 

pattern/ individual. 

• COMPONENT Computes the component score for each response pattern/individual. 

• MARGIN Computes the observed and expected one- two- and three-way 

margins. 

• CODING Generates the pseudo variables required for the fit of model 2 

(missing cases). 

• POSTERIOR Computes the posterior values h(za I vi = 0),h(za I vi = 1), 

and h(za I vi = 9) for the binary variables and h(za I 	-= wi) for the metric 

variables required in the posterior analysis presented in Chapter 5 (section 

5.2.3). 



Appendix B 

Program CLASSMIX 

The computer program CLASSMIX fits a latent class model to mixed observed 

variables. The program is written in FORTRAN 77. 

The theoretical development for the latent class model for mixed observed vari-

ables is presented in Chapter 3. 

The program provides estimates of the model parameters, allocation of indi-

viduals into classes based on their response patterns and observed and expected 

frequencies for each response pattern (only for the binary items). 

Description of the program's input 

The three lines below are the input lines required to be read by the program. These 

three lines together with the data set are saved in a file called CLASS.INP. 

TITLE 

N NPD NPC 

NC INPUT FREQ DISPLAY MTER LOUTS ERRC 

Individual's response patterns are displayed here. 

N denotes the number of response patterns to be analyzed, 

NPD denotes the number of binary observed variables 

NPC denotes the number of metric observed variables 

NC denotes the number of classes to be fitted (1, • , k) 
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INPUT takes the value 0 if the initial parameter values are set in the program 

and 1 if they have to be read by an external file called CLASS3.INP. 

FREQ takes the value 0 if individual response patterns are going to be read and 

the value 1 if the frequency of the response patterns is going to be read. 

DISPLAY takes the value 1 if a display of the frequency distribution is needed 

and 0 otherwise. 

MTER denotes the maximum number of iterations. 

LOUT8 takes the value 0 if a file with the final parameter estimates is needed 

to be saved and 1 otherwise. 

ERRC denotes the convergence tolerance for the E-M algorithm 

Brief description of the program's subroutines 

• EM This subroutine's task is to control the expectation and maximization 

step of the E-M algorithm by actually calling two other subroutines one for 

each step. The convergence of the E-M algorithm is checked. 

• DISTRIB This subroutine does the E-step of the E-M algorithm 

• PARAMET This subroutine does the M-step of the E-M algorithm 

• ALLOCAT Allocates individuals into the latent classes according to the value 

of their posterior probabilities h(j I vh,wh)• 

• EXPECT Computes the expected frequency of each response pattern (binary 

items only) under the fitted model. 
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Appendix C 

Questionnaire for the two memory 
data sets 

The following questions have to do with how much you remember about the occasion 
when you first heard of Margaret Thatcher's announcement that she would resign 
as Prime Minister / Hillsborough football disaster. 

Q.1. Taking your answer from this list, how clear is your recollection of the 
event? [recollect] 

Cannot remember it 1 
Vague 2 
Fairly clear 3 
Clear 4 
Completely clear 5 

Q.2. Thinking back to when you first heard about her resignation/the disaster, 
can you remember -just answer yes or no- 

Yes No 
Where you were 1 0 
Who you were with 1 0 
How you heard about it 1 0 
What you were doing 1 0 
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Appendix D 

British Social Attitudes Survey, 
1990 

These are some of the questions that have been asked in the sexual attitudes section. 
Q1...There is law in Britain against sex discrimination, that is against giving 

unfair preference to rnen -or to women- in employment, pay and so on. Do you 
generally support or oppose the idea of a law for this purpose? [SEXLAW] 

Q2...Now I would like you to tell me whether, in your opinion, it is acceptable for a 
homosexual person to be a teacher at a school? [GAYTEASC] 

Q3...Now I would like you to tell me whether, in your opinion, it is acceptable for a 
homosexual person to be a teacher in a college or a university? [GAYTEAHE] 

Q4...Now I would like you to tell me whether, in your opinion, it is acceptable for a 
homosexual person to hold a responsible position in public life? [GAYPUB] 

Q5...Do you think female homosexual couples should be allowed to adopt a baby 
under the same conditions as other couples? [FGAYADPT] 

Q6...Do you think male homosexual couples should be allowed to adopt a baby un-
der the same conditions as other couples? [MGAYADPT] 

Q7...If a man and a woman have sexual relations before marriage, what would your 
general opinion be? [BEFORE MARRIAGE] 

Q8...What about a married person having sexual relations with someone other than 
his or her partner? [EXTRA MARITAL] 

Q9...What about sexual relations between two adults of the same sex? [SAME SEX] 
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Appendix E 

British Social Attitudes Survey, 
1991 

These are some of the questions that have been asked in the environment section. 
Q.1-7 How concerned are you about each of these environmental issues? 

1...insecticides, fertilisers, chemical sprays 
2...thinning of the ozone 
3...risks from nuclear power stations 
4..the greenhouse effect -a rise in the world's temperature 

5...using up the earth's remaining coal, oil and gas 
6...the loss of plant and animal species 
7...the transport and disposal of dangerous chemicals 

Very concerned 4 
A bit concerned 3 

Not very 
concerned 2 

Not at all concerned 1 

Q.8-13 How serious an effect on our environment do you think each of these things 
has? 

8 lead from petrol 
9 industrial waste in the rivers and sea 
10 waste from nuclear electricity stations 
11 industrial fumes in the air 
12 acid rain 
13 certain aerosol chemicals in the atmosphere 

Very Serious 4 
Quite Serious 3 

Not Very Serious 2 
Not at all Serious 1 

Q.14 As far as nuclear power stations are concerned, which of these statements 
comes closest to your own feelings? 

They create very serious risks for the future 
	

4 
They create quite serious risks for the future 

	 3 
They create only slight risks for the future 

	 2 
They create hardly any risks for the future 
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Appendix F 

Generalized latent trait models: 

general form of second derivatives 

The second derivatives of the loglikelihood respect to the unknown parameters re-

quired in the Newton-Raphson scheme are computed here. 

n 	 I \ 	En g(xh I zt)  yoi(zo)i} gkxh zt)  a2L 	a  k 
h(Zt)[ hE.:=1Xjh f (xh)a(Oi) 	h=i f (xh)ce(0i) 2 aceoi ItE=1 

= E h(zt){ E xihg'(xh zt)f(xh)a(cbi) — E xihg(xh zt)f(xh)a(0i) — 
t=1. 	h=1 	 h=1 

[E[g/ (3Ch Zt)bli(Oi(Zt)) 	g (3Ch I Zt)b/if (0 i(Zt))(0 i(Zt))/1 f (xh)ce(0j) 
t=1 

E g(xh zi) rxh)a(q5i)ba+9i(zt))1} I {(f (xh))2 (ce(0i))2} 
h=i 

= Eh(ztHE xihg/och zt)f(xh)a(.75i) — E h(zt)g(xh zt)xiha(cbi)Ei(xh I zt) 
t=i 	h=1 	 h=1 	 t=1 

Egi(xh zt) f (xh)a(cbi)ba0i(zt)) — E g(xh zob't(ei(zi))(0i(zori(xh)a(0i) 
h=1 	 h=1 

E g(xh zi)baoi(zt))Eg'(xh zoh(zoa(oi)}/{(f(xh))2(a(0i))2} 
h=1 	 t=1 

E h(ztmEg(xh zt)E h(zt)g'(xh zo(baoi(zo)— xih) + 
t=i 	h=1 	 t=1 

E (xh I zt)f(xh)(xih — baei(zt))) — 
h=1 
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g(xh I zt)Y1(0i(zt))f(xh)} {(f (xh))2(a(sbi))2} 

= E h(zi)-(- E g(xh zt) E h(zt)g(xh zt)(xih - ba0i(zt)))2/a(0i) + 
t=1. 	h=1. 	t=i 

E g(xh I zt)f(xh)(xjh — ba°i(zt)))2/ce(q5j) 
h=1 

En g(xh I zt)V1(0i(zt))f (xhil {(f (xh))2 (a(cki))2} 
h=1. 

= - E h(zt) 	g(xh zt)1/1(0i(zt))1 If (xha(Oin 	 (F.1) 
t =1 	h=1 

Hence, 

a2L  
acdo 
a2L 

a2L 

aaioaaii 

— E Ntb'1(0i(zt))1a(cki) 
t=1. 

— E ztNtb'i(Oi(zt))1a(cbi) 
t=i 

— 	 NY;(61i(zt))1c0i) 
t=i 
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