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Abstract

This thesis entitled “Essays on Human Capital” is comprised of three essays on various aspects

of human capital and its effects on firms and labor markets. Chapter 1 provides an overview.

In Chapter 2 we estimate the effects of human capital on firm-level management practices. We

adopt an instrumental variables strategy to overcome the potential endogeneity of human capital.

Starting with data on management practices from the World Management Survey, we geocode the

locations of more than 6,000 manufacturing plants in 19 countries. Then, we calculate driving

times to universities in the World Higher Education Database. Using distance as an instrument

for human capital, we estimate that every one standard deviation increase in the share of workers

with a university degree leads to 0.5 of a standard deviation improvement in management. These

findings are robust to a battery of checks and a placebo instrument using distances to world heritage

sites. We show that both managers’ and non-managers’ human capital matter.

In Chapter 3 we estimate the effects of university degree class on initial labor market outcomes.

We employ a regression discontinuity design which utilizes university rules governing the award of

degrees. We find sizeable and significant effects for Upper Second degrees and positive but smaller

effects for First Class degrees on wages. A First Class is worth roughly 3 percent in starting wages

which translates into £1,000 per annum. An Upper Second is worth more-7 percent in starting

wages which is roughly £2,040. We interpret these results as the signaling effects of degree class

and provide evidence consistent with this.

Finally in Chapter 4 we study the labor market effects of increased automation. We build

a model in which firms optimally design machines, train workers, and assign these factors to

tasks. Borrowing concepts from computer science and robotics, the model features tasks which are

difficult from an engineering perspective but easy for humans to carry out due to innate capacities

for functions like vision, movement, and communication. In equilibrium, firms assign low-skill
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workers to such tasks. High skill workers have a comparative advantage in tasks which require much

training and are difficult to automate. Workers in the middle of the skill distribution perform tasks of

intermediate difficulty on both dimensions. When the cost of designing machines falls, firms adopt

machines mainly in tasks that were previously performed by middle-skill workers. Occupations

at both the bottom and the top of the wage distribution experience employment gains. The wage

distribution becomes more dispersed near the top but compressed near the bottom. As design costs

fall further, only the most skilled workers enjoy rising skill premiums, and an increasing fraction of

the labor force is employed in jobs that require little or no training. The model’s implications are

consistent with recent evidence of job polarization and a hollowing-out of the wage distribution. In

addition, the model yields novel predictions about trends in occupational training requirements that

are consistent with evidence we present.
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Chapter 1

Introduction

One of the most important ideas in economics is that differences in earnings across people

reflect differences in their human capital. Human capital is a broad idea capturing the sum of

skills, abilities, talents and even social or personality traits in a person. As modeled in Mincer

(1974), human capital, like physical capital, can be invested in and accumulated over time. These

investments are primarily thought of as schooling although the notion encompasses non-schooling

investments like health and on-the-job training (Becker 1964). In the Mincer view, differences in

investments result in differences in human capital and, ultimately, differences in earnings. But

why does human capital result in differences in earnings? And are differences in earnings purely

the result of differences in observed human capital? At an economy-wide level, how does human

capital explain the distribution of earnings? This thesis is a collection of three essays studying these

aspects of human capital.

The most direct way that human capital affects earnings is when it is used in the production of

goods and services. Then, human capital is an input in the production function just like physical

capital or intermediate materials. Another view, that we associate with Lucas (1978), is that human

capital is allied to the organization of production. In this view, human capital is complementary to

the efficiency with which output is produced. For example, better human capital could be associated

with better management practices that enable productivity improvements. This is the hypothesis

explored in Chapter 2. We find evidence that higher skills improve management practices in

manufacturing plants.

Not all differences in earnings can be attributed to differences in human capital. This is because

we do not actually observe human capital and can only measure it indirectly. This allows for an

14



CHAPTER 1. INTRODUCTION 15

alternative interpretation of measures of human capital. In the Spence (1973) view, differences

in schooling reflect differences in human capital rather than cause it. Because human capital is

not observable, individuals take costly actions to signal it. Schooling provides such a signal even

if it does not directly change human capital. In Chapter 3 we explore this aspect in the labor

market for university graduates. We find evidence that degree classification plays a signaling role

in determining initial labor market outcomes.

Taking a broader view of the economy, human capital alone does not explain all the variation in

earnings because labor works with capital. This interaction between human and physical capital,

between man and machine, is the subject of Chapter 4. We develop a theoretical model of how

workers interact with machines in the production process to explore the effects of falling machine

learning costs on the distribution of earnings and employment. This theory speaks to the effects of

computerization on labor markets and explains the phenomena of job polarization. We argue that

as machines get better at learning how to produce, workers will be increasingly polarized in jobs

that require either low or high skill.

These essays appear to be a mix of micro- and macro-economics, of empirical and theoretical

studies, but they have in common a view of human capital as a useful tool for understanding

earnings differences. As Becker (1993) recognized, “it becomes clear that the analysis of human

capital can help explain many regularities labor markets and the economy at large”.



Chapter 2

Human Capital and Management

Practices: Evidence from Driving Times

to Universities

Abstract. We estimate the effects of human capital on firm-level management practices. We

adopt an instrumental variables strategy to overcome the potential endogeneity of human capital.

Starting with data on management practices from the World Management Survey, we geocode the

locations of more than 6,000 manufacturing plants in 19 countries. Then, we calculate driving

times to universities in the World Higher Education Database. Using distance as an instrument

for human capital, we estimate that every one standard deviation increase in the share of workers

with a university degree leads to 0.5 of a standard deviation improvement in management. These

findings are robust to a battery of checks and a placebo instrument using distances to world heritage

sites. We show that both managers’ and non-managers’ human capital matter.

2.1 Introduction

Management is an important influence on productivity. This was shown in survey data (Bloom

and Van Reenen 2007) and established in experimental evidence (Bloom, Eifert, Mahajan, McKen-

zie, and Roberts 2013). Differences in management explain some of the variation in productivity

across firms and even across countries. But what determines management? If firms have some

control over the management practices they adopt, it is important to understand how differences

16



CHAPTER 2. HUMAN CAPITAL AND MANAGEMENT PRACTICES 17

in management arise. This is useful knowledge for businesses seeking higher profits and for

economists explaining the vast productivity differences across firms (Syverson 2011).

This paper finds that human capital influences management– higher skills are associated with

better management practices. We start with data from the World Management Survey which

provides management practice scores on more than 6,000 manufacturing plants in 19 countries. We

measure human capital as the plant-level shares of workers with a university degree. The cross-

sectional correlation between human capital and management scores is likely to be confounded

by omitted variables so we adopt an instrumental variables strategy. We calculate driving times

between plants and nearest universities as an instrument for human capital.

We find that human capital has a positive and significant effect on management. Our central

IV estimates suggest that increasing the share of workers with a university degree by one standard

deviation increases the management score by 0.5 of a standard deviation. Using results from

Bloom, Sadun, and Van Reenen (2012a), this translates into roughly 5 percent higher total factor

productivities.1 When we look at managers and non-managers separately we find that both matter.

However, managers generate larger effects than non-managers. Every 10 percent increase in the

share of managers with degrees improves management by 0.11 standard deviations. A similar

10 percent increase in non-managers generates a 0.04 standard deviations improvement. These

findings are robust to a battery of checks and a placebo instrument using distances to world heritage

sites.

Theoretically, we explain these results as the complementarity between human capital and the

organization of production. Empirically, our results rely on the plausibility of university distance

as an instrument for skills. We take several steps to address concerns regarding the validity of

our empirical strategy. First, we control for region fixed effects and other geographic variables

to avoid confounding influences from location-specific factors. Second, we isolate universities

without business departments to avoid any direct effects on plant-level management. Third, we look

at universities founded after the plant was located to address concerns regarding the endogenous

location of plants. Fourth, we conduct a series of specification checks to show that our results are

not a statistical artifact. Finally, we use distance to UNESCO world heritage sites as a placebo

instrument to show that our results are not driven by some statistical artefact.

1Referring to the specification in table 3 column 2 of the paper.
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2.1.1 Related Literature

Lucas (1978) developed a theory of human capital where the distribution of managerial ability

determines firm sizes. Higher ability managers control larger firms subject to diminishing returns

in the span of control. More recent literature exploring the links between human capital and

productivity include Bartel, Ichniowski, and Shaw (2007), Bresnahan, Brynjolfsson, and Hitt

(2002), Garicano and Rossi-Hansberg (2006) and Gennaioli, La Porta, Lopez-De-Silanes, and

Shleifer (2013). Of note is Caroli and Van Reenen (2001) who test the hypothesis of skill-biased

organizational change and find strong complementarities between human capital and organization

of firms.

Bloom and Van Reenen (2007) pioneered research in measuring management practices. Follow-

on work in Bloom, Sadun, and Van Reenen (2012b) and Bloom, Eifert, Mahajan, McKenzie, and

Roberts (2013) identifies competition, labor market regulations, ownership, trust and informational

barriers as some of the factors driving the discrepancies in management across firms, industries

and countries. This variation in management in turn explains a significant share of TFP gaps– up

to half of the difference between US and other countries (Bloom, Sadun, and Van Reenen 2012a).

Bloom, Garicano, Sadun, and Van Reenen (2009) distinguish between the effects of information

and communications technologies in driving organizational hierarchies. This highlights the fact that

technologies may have competing effects on the management and organizational structure within

firms.

Another literature is linked to our empirical strategy of using distance as an instrument for

skills. Much of this literature in labor economics is inspired by Card (1995).2 In contrast to the

labor literature, however, we use distance as an instrument for skills in businesses as opposed to

workers.

The effects of distance on firm productivity is studied in Jaffe, Tratjenberg, and Henderson

(1993). They look at the effects of distance on patent citations as evidence of local spillover effects

on innovative activity. Many subsequent papers have refined and explored this topic (see for e.g.

Audretsch and Feldman (1996) and Lychagin, Pinkse, Slade, and Van Reenen (2010)). A strand of

this literature looks specifically at the effects of distances to universities. Hausman (2012) uses the

Bayh-Dole Act in the US as a policy experiment to identify the effects of university innovation on

2In the education literature, Frenette (2006), Kjellstrma and Regnra (1999) and Spiess and Wrohlich (2010) are
some recent papers that have looked at distances to university and its effect on enrolment decisions.
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nearby firms. She finds faster employment and wage increases for establishments closer in industry

and geographic space to the universities. Other examples include Anselin, Varga, and Acs (1997),

Belenzon and Schankerman (forthcoming) and Henderson, Jaffe, and Tratjenberg (1998).

Finally there is the literature on local labor markets and geographic variation in the price of

skills. Skills may have spillover effects on workers (Moretti 2004a) and firms (Moretti 2004b).

Moretti (2011) provides a good summary.

The paper is organized as follows. Section 2.2 develops a simple model of management and

human capital to illustrate key ideas. Section 2.3 presents the empirical strategy and descriptive

statistics. Section 2.4 examines the OLS reduced form results while Section 2.5 reports the IV

regression results. Section 2.6 discusses our findings and Section 2.7 concludes.

2.2 Simple Model of Management Technology and Human Capital

In this section we outline a simple model of management and human capital to illustrate one

path to our estimating equations. In a static environment we assume a neoclassical production

function Y = f(A,M,H) where output Y is some function of technology and human capital inputs

H with ∂Y/∂H > 0, ∂2Y/∂H2 < 0. Following Lucas (1978) we make a distinction between

production technology A and management technology M .3 Following Bresnahan, Brynjolfsson,

and Hitt (2002) we model the human capital-management complementarity, ∂2Y/∂M∂H , as:

M = g(H,A, η)(2.1)

where η is an idiosyncratic error term. This model captures the fact that even conditioning on the

level of human capital, there is variation across plants in management due to other technological

reasons or idiosyncratic factors. In this simple setup we abstract from modeling A. A dynamic

model would treat technology as draws from a known distribution, see for e.g. Hopenhayn (1992) or

Melitz (2003).4 Several interpretations of our model are possible. If we interpret ?? as a production

function, better management is “produced” by higher skilled workers or managers. Alternatively, a

Nelson and Phelps (1966) interpretation is that higher skilled managers are able to draw and adapt

random management technology from a better distribution. An interpretation closer to the Lucas

3See Bloom, Sadun, and Van Reenen (2012a) for a fuller description of management as a technology.
4We also abstract from entry and exit decisions by assuming that A is large enough to cover fixed costs.



CHAPTER 2. HUMAN CAPITAL AND MANAGEMENT PRACTICES 20

(1978) model is that skilled managers are assigned better workers within a matching framework.

2.3 Empirical Strategy and Data Description

2.3.1 Empirical Strategy

We now move from our simple model to an empirical strategy for estimating the effects of

human capital on management. Our unit of observation is a manufacturing plant. Suppose we

estimated the following equation using OLS:

Mi = β0 + β1Hi + εi(2.2)

where as before M is the management score, H is the level of human capital (which we measure as

the share of workers with a university degree) and ε is an idiosyncratic error term. In the limit,

p limβOLS1 = β1 + β2
cov(H,A)

var(H)

where β2 is the effect of technology on management. Depending on the nature of the omitted

technologies, their effects on management and their correlation with human capital, OLS could

be biased upwards or downwards. For example, if information technologies that facilitate better

management practices are positively correlated with skills, there would be an upwards bias in OLS.

On the other hand, if communications technologies that facilitate better management lead to a

reduction in worker skills, there would be a downwards bias in OLS.5

We propose an instrumental variables strategy to overcome this endogeneity bias. Our identifi-

cation strategy can be described schematically as:

Distance to university → Share of workers with a university degree → Management practices

The first arrow in the diagram describes the relationship between distance and skill shares. In

a frictionless world, the law of one price ensures that the price of skill is equalized across space

and the distance to universities should have no effect on skill shares. Frictions and the inelastic

5Bloom, Garicano, Sadun, and Van Reenen (2009) investigate the effects of information and communications tech-
nologies on the hierarchy of firms. They find that improvements to information technology push decisions down leading
to decentralization while improvements in communications technologies push decisions up leading to centralization.
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supply of non-tradables, such as land, limit the action of price equalization (Roback 1988, Glaeser

and Gottlieb 2009). In this paper we utilize within-region variation in the proximity to universities

that drive variation in skill prices across firms. The empirical literature on the mobility of college

graduates within regions after graduation is scarce.6 Kodrzycki (2001) looks at NLSY data in the US

and finds that less than one-third of college graduates migrate states after graduation. While college

graduates are the most mobile education group, it appears that many migrate for the purposes of

attending college and stay in the same region for work. For our distance instrument, it suffices that

mobility is imperfect after graduation and plants that locate near to universities benefit from a lower

cost of hiring skills.

Using the distance instrument for skills, we write our first-stage equation as:

(2.3) Hi = α0 + α1Di + νi.

We measure distance, D, as the driving time in hours between the plant and its nearest university.

We expect that greater distances from universities reduces skills. This corresponds to a negative

sign on α1.

We prefer using driving times as opposed to simpler straight-line measures for two reasons.7

First, driving times are a more refined measure of market access (Gibbons, Lyytikainen, Overman,

and Sanchis-Guarner 2012, Sanchis-Guarner 2012). Second, driving times account for natural

geographic features that would be missed in a straightforward measure like straight-line distance.

To give an actual example in the data, a plant in Scotland has a university within 100km straight-line

distance (which is predicted to correspond to a 1.7 hour driving time) but in reality this is a 7 hour

driving time and a 410km driving distance. Thus the straight-line distance misses some valuable

information about how isolated the plant is. Nevertheless, in robustness tests we find qualitatively

similar results using straight-line or driving distances.

We have described the first-stage but a valid instrument require the exclusion restriction to be

satisfied. In our schematic diagram, there should be no direct arrows from “distance to university”

to “management practices” . There are at least three reasons why this could be violated. First, there

could be location specific factors that both attract good managers and skilled workers and generate

6The literature mainly focuses on the mobility of college versus non-college workers across states from the time of
birth. These estimates are biased by selection. See for instance Groen (2004), Malamud and Wozniak (2012) and Gregg,
Machin, and Manning (2004). Furthermore, the literature that looks beyond the US or UK is even scarcer.

7The actual calculations are done using Haversine formulas which account for the curvature of the Earth.
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agglomeration economies that reduce distances to universities. A second possible violation of the

exclusion restriction arises when universities directly improve management. An obvious example

would be a business school that trains managers or offers management consulting services. A third

situation is reverse causality whereby better (or worse) managed plants endogenously choose to

locate nearer to universities to tap on local skill markets.

To deal with location specific factors confounding our estimates we do several things. First, in

our benchmark specification we control for region fixed effects. This eliminates omitted variables

that vary at the region level, in particular regional variation in skill prices. In robustness checks we

control for more demanding city-effects and find similar results. This suggests that even within

cities, plants which are closer to universities benefit from higher skills. More directly we also

include controls for the population density, longitude and latitude of the plant.

To avoid the direct effects of business schools, we look at universities without business de-

partments. Although the majority of universities in our sample have a business department, we

show in regressions below that excluding them does not change our results and suggests that our

identification is not only coming from business schools.8

To tackle the third issue of endogenous plant location, we examine universities founded after

the plants were located.9 Here there is less possibility that universities choose locations close to

medium-sized manufacturing plants or that the plant endogenously chose locations on the basis of

future universities. We get qualitatively similar results here.

With these identification assumptions our IV estimator is consistent:

p limβIV1 =
cov(D,M)

cov(D,H)
= β1.

2.3.2 Data Description

We use data from two main sources (see Appendix Chapter A for full details). The World

Management Survey (WMS) provides survey data on management practices and skills in a cross

section of plants. The World Higher Education Database (WHED) provides location and other

data on the population of universities. Our unit of analysis is the manufacturing plant. Figures 2.1

and 2.2 map the geographic distribution of plants and universities.

8We may still worry that non-business departments offer direct management consulting to local plants. In separate
work we look more closely at the relationship between business schools and management practices.

9See Greenstone, Hornbeck, and Moretti (2010) for a study on how firms chose county locations.
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Our outcome variable from the WMS is the standardized management score (see Appendix

Chapter A for details on the survey instrument and the calculation of this score). We interpret a

higher score as better management. To measure human capital we use the share of workers with a

university degree. We look at the total workforce, managers and non-managers separately.10

We start by examining some country-level descriptives. Appendix Table B.3 shows the mean

and standard deviations of management scores and degree shares across countries. Confirming

the findings in Bloom, Sadun, and Van Reenen (2012a) the United States has the highest average

management scores, although it is also clear that the within-country variation is substantial. For

skills, Japan has the highest average skill share with 32 percent of the workforce in the average

plant being university graduates.

Our instrumental variable for human capital is the distance between each plant and the nearest

university. The WHED provides the addresses of universities and along with the locations of the

plants. We calculate driving times between plants and nearest universities via google maps (see

Appendix Chapter A for details on how this was done). Appendix Table B.3 reports the average

and standard deviations of these driving times across countries. Similar to the management scores

and skills, there is variation across countries in the mean distances. Although these cross-country

comparisons are interesting in their own right, our focus is on finer grained analysis using within-

country variation. In our main regressions we control for country effects and in our benchmark

specification we control for region effects (which subsume country effects).

Appendix Table B.4 shows region level descriptive statistics. We use within-region variation in

estimation so it is useful to highlight the number of regions and number of plants within regions.

The region is the first-level administrative region in a country, e.g. for the United States this is

the state. In this table we report the differences between the 90th and 10th percentile plant in

management scores, degree share and distances. There is substantial within-region variation that

we utilize in our empirical approach.

Now we move to the plant-level descriptive statistics. Table 2.1 reports descriptive statistics

for the key variables that are used in our analysis. By construction, the management score is mean

zero with standard deviation one. The average plant has 15 percent of its workers with a university

degree. This is broken down into 58 percent of its managers and 10 percent of the non-managers

10Total workforce = managers + non-managers. The availability of skill measures is a unique feature of the WMS
that is not readily available in other datasets like annual censuses.
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with a university degree. In our regressions we also control for plant employment, firm employment,

plant age (in years) and MNE status.11

The average distance between plants and universities is 0.4 hours (roughly 26 minutes by car).

Figure 2.3 plots the histogram of driving times in 10 minute bins. We control for location features

using longitude, latitude and average population density within a 100km radius of the plant. We

also check the robustness of these geographic controls to various non-linear specifications.

In Appendix Table B.5 we provide summary statistics for the additional variables used in our

robustness checks. 60 percent of our plants are part of multi-unit firms, 28 percent of them are in

firms that are listed and 40 percent of the workforce in the average plant is a union. The universities

are described by several characteristics. Arts department, social sciences department etc. are

indicator variables for the presence of this department in the university. For instance, 62 percent

of universities have a business department. These indicator variables are not mutually exclusive

because a university may contain several departments. University founding is the year in which

instruction first began in the university. The average university was founded in 1945 and 60 percent

of the universities were founded before the manufacturing plant.12

Appendix Table B.5 also provides alternative distance measures that we explore in robustness

checks. The average driving distance is 27 km and the average straight-line distance is 21km. As an

alternative measure of access, we also counted the number of universities within a 100km and 50km

radius of the plant– on average there are 34 and 19 universities for each plant respectively. In our

placebo test in Section 2.5.4 we use distances to UNESCO World Heritage Sites as an instrument

for skills. The average site is 1,200km away. We explore various radiuses in calculating average

population densities by using 50km and nearest centroid definitions. 10 percent of plants share

postal codes with their nearest university and 1.6 percent of plants did not have a university within

100km radius. For these latter plants we winsorize their driving times using the region maximum to

prevent outlier bias.13

To round up this section we list the full set of covariates that we use in our benchmark

specification. To control for plant characteristics we include plant employment, firm employment,

plant age, MNE status and 21 two-digit industry effects. To control for geography we include 313

11Dummy variables are included in regressions where these were missing. Imputation for missing values is described
in Appendix Chapter A.

12Where founding dates were missing we imputed this using the regional average.
13In robustness checks we exclude these plants and find no difference in results.
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region fixed effects (which subsume country effects), average population density within 100km

of the plant, longitude and latitude. Finally, to control for noise from the survey, we include

survey controls which are survey wave dummies, the gender, tenure and seniority of the manager

who responded, the day of the week and hour of the interview, the duration of the interview, a

measure of the reliability of the information as coded by the interviewer and a full set of 106

interviewer dummies. Throughout, we cluster standard errors at the region level. This accounts for

heteroscedasticity and allows for unrestricted correlation between plants in a region. In robustness

checks we experiment with other corrections for the standard errors.

2.4 Reduced Form Results

2.4.1 Reduced Form and First-Stage Regressions

In this section we look at reduced form regressions of management scores and human capital

on driving times to universities. That is, we estimate equations:

(2.4) Yi = γ0 + γ1Di + γ2Xi + ηi

for Y ∈ {M,H}.14 To visualize our results, Figure 2.4 plots average management scores within 10

minute driving time bins. We note two points from this simple graph. First, there is a clear negative

correlation between the driving time to a university and how well managed the plant is. This

negative correlation is robust to the inclusion of many other covariates we explore subsequently.

Second, this negative relationship exists whether we use a simple linear specification or a non-linear

specification. In robustness tests we show that the results hold when we allow for non-linearity.

Table 2.2, panel A reports results from regressing management scores on distances. Column (1)

corresponds to the specification underlying Figure 2.4 and includes only survey controls and country

fixed-effects. There is a significant and negative relationship between management scores and

distances to universities. Every extra hour of driving time (which is roughly 2 standard deviations)

leads to a 0.07 standard deviation drop in the management score. Column (2) adds region fixed-

effects while column (3) adds industry fixed-effects which are both highly significant as shown

by the p-values reported at the bottom of the panel. In columns (3) to (5) identifying variation is

14As noted in Angrist and Krueger (2001), the reduced form effects are proportional to the coefficient of interest.
Thus the strength of the reduced form is an indicator of the effect of interest.
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coming from within regions and industries. Column (4) adds plant and firm employment to control

for plant size as well as controls for plant age and MNE status– the coefficient on distance is slightly

smaller at -0.05. Finally in column (5) we control for the location specific factors that may confound

the relationship between unobserved management and the distance to universities by including the

average population density, longitude and latitude. These are individually insignificant and do not

change the coefficient on distances. Column (5) is our benchmark specification.

Table 2.2, panel B reports the first-stage regressions of degree share on distances. Degree share

is the percentage share of the total workforce in a plant with a university degree. In column (1) we

see a significant and negative correlation between distances and degree shares. Every additional

hour of driving reduces the degree share by 2.3 percentage points (mean degree share is 14.8

percent). The other columns in panel B are arranged as discussed previously. Moving straight to

the benchmark specification in column (5), the coefficient drops in magnitude to -1.5 but is still

economically and statistically significant. This is preliminary evidence that our first-stage is strong

and does not suffer from a weak instruments problem (Section 2.5 explores this in more detail).

Apart from using the share of total workforce with degrees as our measure of human capital, we

also look at managers and non-managers separately.15 Table 2.2, panels C and D report the same

progression of specifications using degree share of managers and non-managers as the dependent

variables, respectively. Reporting the results from the benchmark specifications in column (5),

every additional driving hour reduces the share of managers and non-managers with degrees by

2.5 and 1.2 percentage points respectively. The average plant has 58 percent of managers and 10

percent of non-managers with degrees so this corresponds to a 4 percent and 12 percent reduction

in the managers and non-managers’ skills. This is an economically significant reduction in skill.

2.4.2 Heterogeneity

In this section we explore if our reduced form relationship between management and distance

to universities exhibits heterogeneity along observable university or plant characteristics. This

exercise serves two purposes. First, we might be interested in modifying our empirical strategy

if heterogeneities existed. For instance, if we found that our results were driven only by business

departments, we may be worried that our effects stem directly from consulting services and would

15Although we could include both managers and non-managers in the same specification, we chose not to do so
because this would require at least two instruments for the two endogenous variables. As we show in Section 2.5 our
distance instruments are correlated so using any subset of them may generate a weak instruments problem.
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reconsider our instrumental variables approach. Second, our interpretation of the instrumental

variables regressions may be shaded by the presence of heterogeneities. In particular, strong

evidence of heterogeneities would suggest that our estimates are local effects and lessen the external

validity of our results

In Table 2.3 we run modifications of the benchmark regression by interacting driving times

with dummies for university characteristics. That is, we estimate:

(2.5) Mi = φ0 + φ1Di + φ2Di × UNI + φ3UNI + φ4Xi + ηi

where UNI is a dummy variable indicating the presence of a particular department in the university.

Column (1) reproduces the benchmark results for easy reference. By inspecting the coefficient

on the distance variable in the first row, it appears that there is no clear evidence of heterogeneity

across department types. The exceptions are the social science departments in column (3) and the

science and technology departments in column (7) which appear to render the main distance effect

insignificant and small in magnitude. This is surprising but does not directly affect our empirical

strategy. Our main concern was that only business departments are driving the management effect

and we would not be able to identify the human capital channel. Column (4) suggests that business

departments do not exert any additional effects on management. In column (8) we use a dummy

variable for whether a university has all the listed departments (15 percent of universities do). This

is a measure of university size and the results show that our estimates are not driven only by the

large universities.

Next we ask if our results vary across plant characteristics. To explore heterogenous effects for

plants we estimate:

(2.6) Mi = ψ0 + ψ1Di + ψ2Di × PLANT + ψ3PLANT + ψ4Xi + υi

where PLANT is a plant characteristic listed in the rows of Table 2.4. The first row of coefficients

on the distance variable suggests that there is little evidence of heterogeneity across most plant

characteristics. The one exception is the MNE variable in column (2). The results here suggest

that the distance effect is stronger for non-MNEs which accords with the idea that MNEs who have

access to larger skill markets may be less influenced by the local price of skill.
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In summary, we find little evidence of heterogeneity that would affect our identification strategy.

2.5 IV Results

2.5.1 IV Regressions

So far we have estimated reduced form regressions. To identify our structural model of

management practices and human capital, we now turn to instrumental variables regressions. We

start by looking at the OLS results for ?? reported in column (1) of Table 2.5. In panel A we regress

management on total degree share and find a positive and precisely estimated effect. Panels B

and C show that this result is present when we look at managers and non-managers separately.

The coefficient in panel A column (1) suggests that a one standard deviation increase in degree

shares by 17 percentage points is associated with a 0.14 standard deviation increase in management

scores.16 Columns (1) in panels B and C suggest that a one standard deviation increase in manager

and non-manager degree shares is associated with a 0.14 and 0.11 standard deviation increase in

management scores respectively.17 However our discussion in Section 2.3 suggests that we cannot

interpret these OLS results as causal because of the endogeneity of human capital.

In column (2) we report results from the just-identified IV regression where we instrument

human capital with driving times. We also report the first-stage coefficient from a regression of

degree share on distances and the F-statistic for excluded instruments is given at the bottom.18 The

F-statistic of 13 is of reasonable magnitude and does not suggest a weak-instruments problem.19

The coefficient on degree share is interpreted as the causal effect of human capital on management.

A one standard deviation increase in degree share (17 percentage points) leads to a 0.5 standard

deviation increase in management scores. Panels B and C report results using different measures of

skill and reveal that there is a positive and significant causal effect of human capital on management.

Every one standard deviation increase in manager and non-manager degree shares leads to a 0.6

and 0.7 standard deviation improvement in management scores.

Although it would be useful to include both managers and non-managers in the same spec-

ification to tease out the relative importance of the two, in practice we do not have sufficient

1616.8 × 0.008 = 0.136
1733.9 × 0.004 = 0.135 for managers, 16.3 × 0.007 = 0.114 for non-managers
18Note that this first-stage regression is the benchmark model we reported in column (5) of panel B in Table 2.2.
19Staiger and Stock (1997) suggest an F-statistic of 10 as a rule of thumb. See also Stock, Wright, and Yogo (2002)
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instruments. This is seen in column (3) where we include the number of universities within a

100km radius of the plant as an additional instrument. As noted earlier, this measure is highly

correlated with driving times (even though it is the least correlated compared to driving distances

and straight-line distances). The coefficient on degree share does not change much from column

(2). While the first-stage coefficient on the number of universities is significant at 10 percent, the

first-stage F-statistic has now dropped to 9.5. A similar pattern emerges when we look at managers

and non-managers separately (although for managers, the first-stage F-statistic increased slightly).

We conclude that the just-identified model using only distance as instrument is our preferred model.

A discussion of the magnitudes of OLS and IV estimates is left to Section 2.6.

2.5.2 Assessing Instrument Validity

As discussed in Section 2.3, there are at least three concerns about instrument validity that we

need to tackle. The first concern regarding location-specific factors is addressed by controlling for

region fixed-effects and geography covariates. More seriously, we may be concerned that business

departments have a direct effect on management practices or that better (or worse) managed plants

endogenously locate closer to universities. We address these concerns in Table 2.6.

We tackle the “business schools” problem by estimating the following second-stage and first-

stage equations:

Mi = β0 + β1Hi + β2Xi + φ1Di ×BUSINESS + φ2BUSINESS + νi(2.7)

Hi = α0 + α1Di + α2Xi + δ1Di ×BUSINESS + δ2BUSINESS + εi.(2.8)

Here BUSINESS is a dummy variable for whether a university has a business department. Thus

we allow business schools to have a direct effect on management practices (both a main effect and

interacted with distances).20 We instrument for human capital using only distances to universities

without business departments, i.e. Di.

We first report the OLS results for ?? in Table 2.6, panel A, column (1). Business departments

do not have a direct effect on management once distances are controlled for. This is confirmed

in the IV regression reported in column (2). As before we report the first-stage coefficient of the

20This is a form of the over-identification test. Card (1995) employs a similar strategy allowing distance to have a
direct effect and using distance interacted with family variables as the excluded instrument for college.
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excluded distance instrument which is still significant with an F-statistic of 11. The coefficient on

degree share is slightly smaller (0.023 compared to 0.032) and still positive and significant. Results

for managers and non-managers reported in panels B and C are qualitatively similar although less

precisely estimated. Business schools do not appear to have direct effects on management.21

We conduct a parallel exercise for universities founded after the plant was founded to address the

concerns over endogenous location. Specifically, we estimate the following second- and first-stage

equations:

Mi = β0 + β1Hi + β2Xi + φ1Di ×BEFORE + φ2BEFORE + νi(2.9)

Hi = α0 + α1Di + α2Xi + δ1Di ×BEFORE + δ2BEFORE + εi(2.10)

where BEFORE is an indicator for whether the university was founded before the plant, i.e.

pre-existing universities. The excluded instrument D is now the distance to a university that was

founded after the plant was located.

The OLS regressions in Table 2.6, panel A, column (3) suggest that universities that were

founded before the plant have little direct effect on management. This is inconsistent with the

story that plants endogenously locate near to pre-existing universities on the basis of management

scores but consistent with our identifying assumption that distances are exogenous. However, the

IV results in column (4) reveal that the estimates are imprecise. The first-stage F-statistic is only

4.8. Although the point estimate for distance is larger in magnitude compared to the plain IV (0.062

compared to 0.032), the large standard errors means that we cannot reject that they are the same.

Results for managers and non-managers in panels B and C paint a similar picture although the

estimates are imprecise. Neither business schools nor pre-existing universities have a direct effect

on management scores.

2.5.3 Robustness Checks

In Table 2.7 we conduct a battery of tests on our benchmark IV specification. We report parallel

robustness checks for the reduced form specification in the Appendix Table B.6 but do not detail

the findings here in the interests of space. Each row reports a different specification based on the

benchmark in Table 2.5, panel A, column (2). The first column of numbers is the coefficient on

21The corresponding reduced form regression is reported in row (2) of Table 2.3.
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degree share and the second column is the standard error. The full sample of 6,406 plants is used

unless otherwise stated. Row (1) repeats the results from the benchmark results for comparison.

In panel A we check the standard errors. Recall that in our benchmark specification we cluster

standard errors at the region level. In row (2) we cluster the errors at the region × industry level,

in row (3) we allow for two-way clustering at region and industry while in row (4) we cluster at

the university level (Cameron, Gelbach, and Miller 2011). None of these corrections affect the

significance of the results.22

Panel B allows for non-linearities in the effects of distance. First we may worry that the

distribution of distance is skewed to the right (as shown in Figure 2.3). We check that taking logs

does not affect the sign or significance of the results in row (5). Next in rows (6) to (8) we include

various polynomials in the driving times up to a quartic (fourth-order polynomial) and use these as

instruments for degree share. The coefficient on degree share continues to be significant.

Geography variables are checked in panel C. In row (9) we control for quartics in the average

population density, longitude and latitude. P-values are reported in brackets and show that the

polynomial in geographic controls are jointly significant but do not change the coefficient on degree

share. In rows (10) and (11) we control for population density in a 50km radius and using only the

nearest centroid. These do not affect the results.

Panel D checks that our results are robust to various measures of distance. Row (12) uses the

driving distance from google maps. Because the driving times and driving distances are highly

correlated there is little surprise that the coefficient is consistent with earlier results.23 In row (13)

we use the straight-line distance which shows a very similar coefficient that is significant at the 5

percent level. Finally in row (14), we look at the number of universities within a 100km radius of

the plant as a measure of “density”. Although this coefficient is correctly signed, it is imprecisely

estimated because there is little variation within a region in the number of universities facing plants.

In panel E different samples of the data are used. As detailed in the Chapter A, some plants

were interviewed in multiple waves and in our main analysis we used the latest interview. Row

(15) checks that including all interviews does not change the results. Row (16) excludes the plants

that share the same postal codes as its nearest university, which would have resulted in a zero

reported driving time. Again results are robust to their exclusion. In row (17) we exclude those

22For the reduced form in Appendix Table B.6 we check Conley standard errors and find similar results.
23The pairwise correlations between driving times and driving distances, straight-line distances and number of

universities are 0.61, 0.49 and -0.27 respectively.
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plants for which the nearest university was greater than 100km away and thus had the driving times

winsorized to the region maximum. In fact, results are stronger suggesting that geographically

isolated plants are not driving our results. In rows (18) and (19) we distinguish between capital and

non-capital regions.24 The effects are positive in both capital and non-capital regions.

In panel F we experiment with various fixed effects. These specifications are very demanding

on the data because we are comparing plants in smaller units of geography. Row (20) includes 2,283

region × industry fixed effects with little difference on the degree share coefficient. In row (21)

we use control for 724 county fixed-effects.25 The coefficient on degree share is now smaller and

imprecisely estimated, but are still positive. Finally in row (22) we include 851 city fixed-effects

thus narrowing our comparisons to plants in the same city. While the coefficient is imprecisely

estimated, we observe that it is still positive and consistent with our other results.26

The robustness checks reveal a consistent picture of the effect of skills on management practices.

Whichever way we correct the standard errors, allow for non-linearities in distance, control for

geography, measure distances, select the sample, or include fixed effects, we find a positive effect

of human capital on management.

2.5.4 Placebo Test Using Distance to World Heritage Sites

We may still worry that our results are capturing some statistical artefact or some other factor

that by chance is correlated with distance to universities.27 To exclude this possible explanation

we use distances to UNESCO world heritage sites as a placebo instrument.28 World heritage sites

are cultural attractions and should not have any effect on the human capital or management of

manufacturing plants.

Table 2.8 reports our results where we have repeated our estimation of ???? using distances to

heritage sites. The reduced form result in column (1) and first stage estimates in column (2) show

24Capital regions correspond to the regions containing the country capital or the region with the most observations.
These are Buenos Aires in Argentina, New South Wales in Australia, South in Brazil, Ontario in Canada, Region
Metropolitana in Chile, Guangdong in China, Ile-de-France in France, Nordrhein-Westfalen in Germany, Attiki in Greece,
Maharashtra in India, Lombardia in Italy, Chubu in Japan, Mexico in France, Auckland in New Zealand, Mazowieckie in
Poland, Porto in Portugal, Vastra Gotalands lan in Sweden, South East in UK and California in US.

25We refer to the second regional administrative level as a county.
26We checked that these results were not driven by sample selection by running our benchmark specification on these

smaller samples.
27Distances to universities may be correlated with distances to headquarters. Giroud (2013) and Kalnins and

Lafontaine (2013) are two recent papers exploring how increasing distance from headquarters negatively affects plant-
level productivity and survival.

28We chose to use world heritage sites because the geocoded list is easily available and covers all the countries in our
sample. We use straight-line distances because some sites vary greatly in area and some are inaccessible by road.
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that this placebo instrument has no effect on management or skills. Column (3) confirms that when

we use this placebo as our instrument for skills, we find no effect of skills on management. This

adds to the evidence that our instrument using distances to universities is capturing the price of

skills.

2.6 Discussion

Our results suggest that human capital is important for management and point to the relevance

of measuring both manager and non-manager skills. This is consistent with the theoretical com-

plementarity between the management practices and skills but we have much less to say about

the microeconomic channels through which this occurs. Explorations of heterogeneity across

universities or plant characteristics in Section 2.4.2 revealed little that would shed light on this.

When we compare the OLS and IV estimates in Table 2.5, although both estimates are significant

and positive, the IV figures are larger than the OLS. This may be cause for concern if this reflects

violations of the exclusion restriction that are biasing our IV estimates upwards.29 As discussed

in Section 2.5.2 we have taken steps to show that our main concerns regarding the validity of our

instrument appear not to affect our results. However, the exclusion restriction is ultimately not

testable. Our interpretation of the differences in the OLS and IV estimates is that unobservable

technologies bias the OLS estimates downwards. For instance, if communications technologies that

improve management practices also reduced the need for skilled workers, the positive effects of

skills on management would be attenuated.

2.7 Conclusion

In this paper we estimated the causal effect of human capital on management. We proposed

using driving times to universities as an instrument for human capital. We argue that driving times

are plausibly exogenous and conduct a series of checks that are consistent with this view. First, we

control for region fixed effects and other geographic variables to avoid confounding effects from

location-specific factors. Second, we look at universities without business departments to avoid any

direct effects from universities on plant-level management. Third, we look at universities founded

after the plant was founded to address concerns regarding the endogenous location of plants. In
29If the exclusion restriction is violated, IV estimates may be more biased than OLS (Murray 2006).
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robustness checks we showed that results are qualitatively similar when we use different measures

of distance, different standard error corrections, various sample selections, allow for non-linearities

in distance and adopt stricter geographic controls.

Additionally, we argue that there is very little heterogeneity in these effects. First, these effects

come from both manager and non-manager skills. Second, there is no heterogeneity arising from

the different types of universities. Third, there is no heterogeneity when we look at plant observable

characteristics.

While our results are not too surprising it does confirm the importance of human capital

in an aspect of economics that is seeing increasing interest. Research on the managerial and

organizational aspects of firms has been facilitated by more and larger datasets. In turn, this

research is important for understanding the determinants of wage and productivity distributions.
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Table 2.1: Descriptive Statistics

Mean S.D. Min Median Max

Management Z-Score 0 1 -2.89 0.024 2.93

Degree Share (percent) 14.8 16.8 0 9.19 100

Degree Share of Managers (percent) 58.2 33.9 0 60 100

Degree Share of Non-managers (percent) 10.5 16.3 0 5 100

Log plant employment 5.10 0.96 0 5.01 8.99

Missing log plant employment 0.017 0.13 0 0 1

Log firm employment 5.83 1.11 0 5.70 11.1

Missing log firm employment 0.0016 0.039 0 0 1

Log plant age 3.40 0.79 0 3.43 6.28

Missing log plant age 0.44 0.50 0 0 1

MNE 0.46 0.50 0 0 1

Distance (hours) 0.45 0.54 0 0.28 7.55

Latitude 23.4 32.7 -54.8 37.9 65.7

Longitude 8.20 78.3 -127.5 0.39 176.9

Avg pop density ('000 per sqkm) 1.33 1.87 0 0.70 16.0

World Management Survey plant level variables

Google maps and GIS calculations

Notes: N=6,406. Management Z-score  is the World Management Survey standardized score of management 

practices. Degree Share, Degree Share of Managers  and Degree Share of Non-managers  are plant-level 

percentages of total workforce, managers and non-managers with university degrees, respectively.  Log plant 

employment, Log firm employment  and Log plant age  are employment and plant age data. Missing values of 

plant and firm employment are mean-coded and an indicator is included in all regressions. Missing values of 

plant age are imputed and an indicator is included in all regressions. MNE  is a dummy variable indicating 

multinational status. Details of variable construction are provided in the Data Appendix. Distance  is the 

google driving time in hours from the plant to the nearest university (full description in Data Appendix). 

Longitude  and latitude  are geographic coordinates of the plant location corresponding to its postal code. The 

mapping from postal codes to coordinates was done using the geopostcodes database. Avg pop density  is the 

average population density within a 100km radius of the plant calculated using GIS software. Population 

density data is from the Gridded Population of the World, Center for International Earth Science Information 

Network (CIESIN). 
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Table 2.2: Reduced form effects of distances to universities on management and skills

(1) (2) (3) (4) (5)

Distance -0.069*** -0.073*** -0.054*** -0.050*** -0.049***

(0.018) (0.020) (0.020) (0.018) (0.019)

Log plant employment 0.202*** 0.201***

(0.017) (0.017)

Log firm employment 0.072*** 0.072***

(0.013) (0.013)

Log plant age -0.032** -0.032**

(0.014) (0.014)

MNE 0.390*** 0.389***

(0.032) (0.031)

Avg pop density 0.016

(0.015)

Latitude 0.004

(0.009)

Longitude -0.011

(0.007)

Regions p-value < 0.01 < 0.01 < 0.01 < 0.01

Industries p-value < 0.01 < 0.01 < 0.01

R-squared 0.345 0.380 0.404 0.492 0.493

Distance -2.267*** -2.020*** -1.565*** -1.502*** -1.533***

(0.403) (0.451) (0.411) (0.419) (0.423)

Log plant employment 0.709** 0.696**

(0.330) (0.332)

Log firm employment 0.609** 0.609**

(0.289) (0.289)

Log plant age -0.535* -0.530*

(0.284) (0.285)

MNE 3.106*** 3.105***

(0.533) (0.534)

Avg pop density 0.133

(0.158)

Latitude 0.251*

(0.152)

Longitude -0.145

(0.130)

Regions p-value < 0.01 < 0.01 < 0.01 < 0.01

Industries p-value < 0.01 < 0.01 < 0.01

R-squared 0.144 0.197 0.243 0.255 0.256

Survey controls x x x x x

Region dummies (313) x x x x

Industry dummies (21) x x x

(continued…)

Panel A: Dependent variable is Management Z-score

Panel B: Dependent variable is Degree Share
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Table 2.2: Reduced form effects of distances to universities on management and skills (cont.)

(1) (2) (3) (4) (5)

Distance -3.458*** -3.302*** -2.769*** -2.607*** -2.577***

(0.940) (0.912) (0.905) (0.895) (0.908)

Log plant employment 1.851*** 1.837***

(0.598) (0.597)

Log firm employment 0.901* 0.903*

(0.515) (0.519)

Log plant age 0.596 0.602

(0.585) (0.585)

MNE 7.086*** 7.059***

(1.002) (0.995)

Avg pop density 0.549***

(0.204)

Latitude 0.281

(0.591)

Longitude -0.265

(0.323)

Regions p-value < 0.01 < 0.01 < 0.01 < 0.01

Industries p-value < 0.01 < 0.01 < 0.01

R-squared 0.273 0.319 0.353 0.367 0.367

Distance -1.893*** -1.595*** -1.158*** -1.113*** -1.149***

(0.384) (0.440) (0.403) (0.412) (0.417)

Log plant employment 1.163*** 1.150***

(0.332) (0.334)

Log firm employment 0.653** 0.651**

(0.295) (0.295)

Log plant age -0.607** -0.603**

(0.279) (0.280)

MNE 2.609*** 2.612***

(0.517) (0.518)

Avg pop density 0.085

(0.129)

Latitude 0.207

(0.152)

Longitude -0.166

(0.127)

Regions p-value < 0.01 < 0.01 < 0.01 < 0.01

Industries p-value < 0.01 < 0.01 < 0.01

R-squared 0.119 0.172 0.207 0.223 0.223

Survey controls x x x x x

Region dummies (313) x x x x

Industry dummies (21) x x x

Panel C: Dependent variable is Degree Share of Managers

Panel D: Dependent variable is Degree Share of Non-managers

Notes: ***, **, * significant at the 1, 5 and 10 percent level. N=6,406. This table shows OLS 

regressions of management z-scores and skill measures on the distances to nearest universities. Each 

panel uses a different dependent variable and each column estimates a different specification. Refer 

to Table 1.1 for a description of the key variables. All regressions include survey controls for the 

survey wave, interviewee sex, interviewee job tenure, interviewee seniority, interview reliability, 

interview day of week, time and duration and 106 interview analyst dummies. Dummy variables were 

included to indicate when these variables were missing and missings were mean-coded. Standard 

errors are clustered at the region level (313 clusters).
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Table 2.3: Reduced form effects of distance on management with interactions on university
characteristics

(1) (2) (3) (4) (5) (6) (7) (8)

Distance -0.049*** -0.039 -0.001 -0.053* -0.049** -0.042 0.001 -0.040*

(0.019) (0.046) (0.048) (0.028) (0.025) (0.034) (0.033) (0.021)

-0.011

(0.046)

0.000

(0.034)

-0.057

(0.049)

0.036

(0.026)

0.006

(0.031)

0.001

(0.027)

-0.000

(0.034)

-0.002

(0.028)

-0.011

(0.038)

0.014

(0.034)

-0.071**

(0.036)

0.024

(0.025)

-0.048

(0.045)

0.024

(0.035)

Uni has 

medical

Dependent variable is Management Z-score

Distance x Arts

Uni has arts

Distance x 

Social science

Uni has social 

sciences

Distance x 

Business

Uni has 

business

Distance x Law

Uni has law

Distance x 

Medical

Distance x 

Science

Uni has science

Distance x All 

depts

Uni has all 

listed depts

Notes: ***, **, * significant at the 1, 5 and 10 percent level. N=6,406. This table shows reduced form regressions 

of management scores on distances, university characteristics and their interactions. Col (1) reproduces the 

benchmark specification from Table 1.2, panel A column 5. See notes to Table 1.2 for a full description of 

covariates used in the benchmark model.
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Table 2.4: Reduced form effects of distance on management scores with interactions on plant
characteristics

(1) (2) (3) (4) (5)

Distance -0.049*** -0.082*** -0.055* -0.034 -0.020

(0.019) (0.022) (0.028) (0.021) (0.027)

Distance x MNE 0.154***

(0.043)

MNE 0.347***

(0.034)

Distance x Multiunit 0.011

(0.037)

Multiunit 0.070**

(0.028)

Distance x Listed -0.058

(0.046)

Listed 0.225***

(0.032)

Distance x Union -0.001

(0.000)

Union (percent) 0.000

(0.000)

Dependent variable is Management Z-score

Notes: ***, **, * significant at the 1, 5 and 10 percent level. N=6,406. This table shows 

reduced form regressions of management scores on distances, plant characteristics and 

their interactions. Col (1) reproduces the benchmark specification from Table 1.2, panel 

A column 5. See notes to Table 1.2 for a full description of covariates used in the 

benchmark model.
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Table 2.5: Instrumental variables estimates of effects of skills on management practices

(1) (2) (3)

Specification OLS IV IV

Degree Share 0.008*** 0.032*** 0.036***

(0.001) (0.011) (0.011)

Distance -1.533*** -1.507***

(0.423) (0.422)

No. of universities within 100km 0.011*

(0.006)

First stage F-stat 13.15 9.55

Degree Share of Managers 0.004*** 0.019** 0.020***

(0.000) (0.008) (0.008)

Distance -2.577*** -2.500***

(0.908) (0.896)

No. of universities within 100km 0.032***

(0.009)

First stage F-stat 8.06 11.85

Degree Share of Non-managers 0.007*** 0.043** 0.045***

(0.001) (0.017) (0.017)

Distance -1.149*** -1.144***

(0.417) (0.420)

No. of universities within 100km 0.002

(0.006)

First stage F-stat 7.61 4.31

Dependent variable is Management Z-score

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are 

clustered at the region level (313 clusters). N=6,406. The dependent variable is the 

management z-score. Each panel uses a different measure of skill. Each column 

reports a different specification. See main text for details.

First stage excluded instruments

Panel A: Degree share is endogenous skill measure

First stage excluded instruments

Panel B: Degree share of managers is endogenous skill measure

First stage excluded instruments

Panel C: Degree share of non-managers is endogenous skill measure
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Table 2.6: Extended IV regressions

(1) (2) (3) (4)

Specification OLS IV OLS IV

Degree Share 0.008*** 0.023* 0.008*** 0.062*

(0.001) (0.013) (0.001) (0.033)

Distance × Bus. Dept -0.035* -0.020

(0.019) (0.022)

Bus. Dept 0.017 0.008

(0.024) (0.025)

Distance × Before plant founded -0.010 0.082

(0.025) (0.074)

University founded before plant 0.019 -0.012

(0.024) (0.050)

Distance -2.295*** -1.168**

(0.686) (0.532)

First stage F-stat 11.18 4.82

Degree Share of Managers 0.004*** 0.020 0.004*** 0.051

(0.000) (0.013) (0.000) (0.045)

Distance × Bus. Dept -0.033* 0.004

(0.019) (0.037)

Bus. Dept 0.014 -0.016

(0.024) (0.041)

Distance × Before plant founded -0.009 0.143

(0.025) (0.154)

University founded before plant 0.016 -0.075

(0.024) (0.107)

Distance -2.653** -1.426

(1.066) (1.205)

First stage F-stat 6.19 1.39

(continued…)

Dependent variable is Management Z-score

Panel A: Degree Share is endogenous skill measure

First stage excluded instruments

Panel B: Degree Share of Managers is endogenous skill measure

First stage excluded instruments
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Table 2.6: Extended IV regressions (cont.)

(1) (2) (3) (4)

Specification OLS IV OLS IV

Degree Share of Non-Managers 0.007*** 0.028* 0.007*** 0.090

(0.001) (0.016) (0.001) (0.060)

Distance × Bus. Dept -0.038* -0.024

(0.020) (0.022)

Bus. Dept 0.020 0.010

(0.024) (0.025)

Distance × Before plant founded -0.014 0.097

(0.026) (0.101)

University founded before plant 0.021 -0.013

(0.024) (0.069)

Distance -1.865*** -0.808

(0.685) (0.514)

First stage F-stat 7.41 2.47

Dependent variable is Management Z-score

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are clustered at 

the region level (313 clusters). N=6,406. The dependent variable is the management z-score. 

Each panel uses a different measure of skill. Each column reports a different specification. 

See main text for details.

First stage excluded instruments

Panel C: Degree Share of Non-managers is endogenous skill measure
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Table 2.7: Robustness checks of benchmark IV regression

Specification Coefficient on 

degree share

(S.E.)

(1) Benchmark (Table 2.5, panel A, col (2)) 0.032*** (0.011)

(2) Cluster at region × industry 0.032** (0.014)

(3) 2-way cluster at region + industry 0.032*** (0.009)

(4) Cluster at university 0.032** (0.013)

(5) log (1 + Driving time) 0.027*** (0.010)

(6) Quadratic in driving time 0.025*** (0.009)

(7) Cubic in driving time 0.019** (0.008)

(8) Quartic in driving time 0.019** (0.008)

(9) Including quartic in geography controls (joint p-

value = 3.09e-06)

0.031** (0.014)

(10) Average population density within 50km (joint p-

value=0.752)

0.034*** (0.013)

(11) Average population density nearest centroid 

(joint p-value=0.649)

0.035*** (0.011)

(12) Driving distance ('00km) 0.029** (0.014)

(13) Straight line distance ('00km) 0.042** (0.020)

(14) No. of universities within 100km 0.066 (0.049)

(15) All survey waves, N=9,586 0.024** (0.010)

(16) Exclude same postal codes, N=5,710 0.030** (0.013)

(17) Exclude winsorized, N=6,302 0.034*** (0.012)

(18) Capital regions, N=1,884 0.014 (0.013)

(19) Non-capital regions, N=4,498 0.035** (0.014)

(continued…)

E. Sample selection

A. Checking standard errors

B. Non-linearities in distance

C. Checking geography controls

D. Different distance measures
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Table 2.7: Robustness checks of benchmark IV regression (cont.)

Specification Coefficient on 

degree share

(S.E.)

(20) Including 2,283 region × industry fixed effects 

(N=6,406)

0.034** (0.017)

(21) Including 724 county fixed effects (N=4,553) 0.019 (0.012)

(22) Including 851 city fixed effects (N=2,756) 0.011 (0.012)

F. Fixed effects

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are 

clustered at the region level (313 clusters) except otherwise stated. N=6,406 except 

otherwise stated. The dependent variable is the management z-score and the 

endogenous skill measure is degree share. Each row presents a different robustness 

check of the benchmark 2SLS specification (same as Table 1.5, panel A, column 2).
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Table 2.8: Placebo test using UNESCO world heritage sites

(1) (2) (3)

Dependent variable Management Degree share Management

Specification OLS OLS IV

0.010 0.003

(0.011) (0.265)

Degree share 2.817

(206.9)

Distance to UNESCO world 

heritage site

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are 

clustered at the region level (313 clusters). N=6,406. This table shows estimates of the 

reduced form, first-stage and IV regressions using the placebo instrument. Distance to 

UNESCO world heritage site  is the straight line distance in '00km to nearest site. All 

models control for the same covariates as the benchmark specification. See main text 

for details.
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Figure 2.1: World Management Survey plant locations, N=6,406

A
m

e
r
ic

a
s

E
u

ro
p

e
A

s
ia

1



CHAPTER 2. HUMAN CAPITAL AND MANAGEMENT PRACTICES 47

Figure 2.2: UNESCO World Higher Education Database university locations, N=8,656
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Figure 2.3: Histogram of distances between plants and nearest universities (10 minute bins)
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Figure 2.4: Plot of management z-scores against distances (10 minute bins)
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Appendix A

Data Appendix

A.1 World Management Survey

The World Management Survey (hereafter WMS) offers unique survey data on management

practices.1 The WMS dataset gives us a cross section of management practice data in 6,406 plants

across 313 regions in 19 countries in the final analysis sample. Here we describe the key aspects of

this dataset and how it is used in this paper. Further details on the survey methodology is found

in Bloom and Van Reenen (2007) (hereafter BVR), Bloom and Van Reenen (2010b), Bloom and

Van Reenen (2010a) and Bloom, Sadun, and Van Reenen (2012a).

A.1.1 Sampling Frame

The sampling frame was based on firm-level accounting databases of the Bureau van Dijk

(BVD) Amadeus dataset for Europe (France, Germany, Greece, Italy, Ireland, Poland, Portugal

and the U.K.), on BVD Icarus for the US, on CMIE Firstsource dataset for India, on the BVD

Oriana dataset for China and Japan, on BVD Orbis for Argentina, Brazil, Canada, Mexico, on BVD

Orbis and Duns and Bradstreet for Australia and New Zealand, and on Industrial Annual Survey

Sample of Firms (Encuesta Nacional Industrial Annual - ENIA) for Chile. These databases all

provide sufficient information on companies to conduct a stratified telephone survey (company

name, address and a size indicator). These databases also typically have accounting information on

employment, sales and capital. Apart from size, accounting information was not used to form the

1http://worldmanagementsurvey.org/ has full details.
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sampling population, however.2

Amadeus, Firstsource and Orbis are constructed from a range of sources, primarily the National

registries of companies (such as Companies House in the UK and the Registry of Companies in

India). Icarus is constructed from the Dun and Bradstreet database, which is a private database of

over 5 million US trading locations built up from credit records, business telephone directories and

direct research. Oriana is constructed from Huaxia credit in China and Teikoku Database in Japan,

covering all public and all private firms with one of the following: 150 or more employees, 10

million US$ of sales or 20 million US$ of assets. ENIA, collected by the Chilean Statistic Agency,

covers all the manufacturing plants that employ at least 10 individuals.

In every country the sampling frame for the management survey was all firms with a manu-

facturing primary industry code with between 50 and 5,000 employees on average over the most

recent three years of data prior to the survey. In Japan and China they used all manufacturing firms

with 150 to 5,000 employees since Oriana only samples firms with over 150 employees, while in

Portugal they supplemented the sample with firms with 75 to 100 employees.

Because the sampling frame was based on accounting databases, one concern could be that the

firms are not representative of the population. Bloom, Sadun, and Van Reenen (2012a) examine

this extensively in the data appendix by comparing the size-distribution from the sample against

national Census Bureau data from each of the twenty countries. The broad picture is that for most

countries the coverage is comparable. In this paper we always control for country effects and this

mitigates biases in cross-country comparisons.

A.1.2 Survey Method

The survey evaluation tool defines 18 key management practices in 4 broad areas and scores

them from 1 (worst practice) to 5 (best practice). Table B.1 lists these 18 management dimensions

and the nature of the questions asked. These practices codify the concepts of “good” and “bad”

management into comparable measures across different firms, industries and countries. Together,

these practices can be interpreted as a subset of a wider but unknown spectrum of management

dimensions. These practices can be grouped into four areas: operations, monitoring, targets and

incentives. The operations area focuses on the introduction of lean manufacturing techniques,

the documentation of process improvements and the rationale behind the introduction of such im-

2Ireland was surveyed but excluded from our analysis because it does not use post codes.
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provements. The monitoring area focuses on the tracking of performance of individuals, reviewing

performance (e.g. through regular appraisals and job plans) and consequence management (e.g.

making sure that plans are kept and appropriate sanctions and rewards are in place). The targets area

examines the type of targets (whether goals are simply financial or operational or more holistic), the

realism of the targets (stretching, unrealistic or non-binding), the transparency of targets (simple or

complex) and the range and interconnection of targets (e.g. whether they are given consistently

throughout the organization). Finally, the incentives area includes promotion criteria (e.g. purely

tenure based or including an element linked to individual performance), pay and bonuses, and fixing

or firing bad performers, where best practice is deemed the approach that gives strong rewards for

those with both ability and effort.

Innovative steps were taken during the conduct of the survey to maximize the quality of the

data. First, a double-blind methodology was employed to ensure unbiased responses to the survey

questions. On one side of this double-blind method, interviewed managers were not told they were

being scored. Open ended questions (e.g. “can you tell me how you promote your employees?”)

were used as opposed to closed questions (e.g. “do you promote your employees on tenure?”). On

the other side of the double-blind method, interviewers did not know anything about the firm’s

financial information or performance in advance of the interview. Second, the survey was targeted

at plant managers who were typically senior enough to have an overview of management practices

but not senior enough to be detached from day-to-day operations of the enterprize. Third, skilled

interviewers, typically MBA students, were hired to run the interviews because they generally had

some business experience and training. Fourth, official government endorsements were sought to

encourage responses. Fifth, interviewers were encouraged and incentivized to be persistent and in

obtaining data. These steps helped to yield a high 44 percent response rate. Sixth, a series of data

on the interview process itself was collected to serve as “noise controls” in regression analysis.

Following Bloom and Van Reenen (2007) we normalize each practice score to a mean zero,

standard deviation one z-score then take the unweighted average of these and z-score this average

again as the measure of managerial input in the plant.3 This variable is called the “management

z-score” in all regressions.

3This standardization is done unconditionally i.e. across regions and countries.
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A.1.3 Survey Waves

Interviewers were each given a randomly selected list of firms from the sampling frame

described above. This should be representative of medium sized manufacturing firms. The survey

has been administered in several waves since 2004. There were three large waves in 2004, 2006

and 2009. While a few firms were re-interviewed over these waves we will not be exploiting the

panel aspect of the data in this paper.4 Instead we take the latest survey wave for the firm, although

we do conduct robustness checks that include all survey waves.

The response rate was 42.2 percent, a high success rate given the voluntary nature of participa-

tion. Of the remaining firms, 14.7 percent refused to be surveyed, while the remaining 42.9 percent

were in the process of being rescheduled when the survey ended. A total of 10,163 interviews were

available although not all were used in the final analysis sample. See sample selection sub-section

below for further details.5

A.1.4 Validation

BVR explore both the internal and external validity of the survey tool. To validate the survey

as a consistent measure of management, a 5 percent sample was re-surveyed using a second

interviewer to independently survey a second plant manager in the same firm. The ideas was

that two independent management interviews on different plants within the same firms reveal the

consistency of measurements. They found that the correlation between first and second interviews

was 0.51 (p-value of 0.001). This is highly significant and suggests the survey tool has internal

validity.

To check the external validity of the management scores, BVR correlate the scores with

observable measures of firm performance including sales, profitability and survival probabilities.

They conclude that the management score has important empirical content and is not merely picking

up noise or “cheap talk”.

4Up to three interviews were carried out for some firms. A sample of 732 firms from France, Germany the UK and
the US with a manufacturing primary industry code and 50 to 10,000 employees (on average between 2000 and 2003)
used in Bloom and Van Reenen (2007) were re-interviewed. In 2009/10 firms interviewed from 2004 and 20066 were
re-interviewed. This was a sample of 4,145 firms from China, France, Germany, Greece, India, Italy, Japan, Poland,
Portugal, the UK, the US and Sweden with a manufacturing primary industry code and 100 to 5,000 employees (on
average prior to the survey).

5We drop observations which were missing or misreported postal codes and only kept the most recent interview
wave of the remaining plants.
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A.1.5 Contacts Project

Plant location information was not collected in the initial surveys. A separate contacts project

was conducted during 2011 to collect data on the postal code locations of the interviewed plants.6

This project was able to yield a substantial 97.5 percent response from the sampled firms.7 Of

the 10,002 firms in the sample only 416 (4.1 percent) were either missing postal codes or had

incorrectly reported information.

A.1.6 Additional Data

Apart from the management score, we have three other sets of variables from the WMS–plant-

level measures of skills, plant and firm-level control variables and survey noise controls. To measure

plant-level skills we use the percentage share of the total workforce, managers and non-managers

with university degrees. These were collected during the survey.

Firm accounting data on sales, employment, capital, profits, shareholder equity, long-term debt,

market values (for quoted firms) and wages (where available) were available from the accounting

databases described above and merged into the WMS. As detailed in the paper, we use data on

plant and firm employment, plant age, MNE status and two-digit SIC industry. Additionally in

robustness checks we include listing status, the number of competitors perceived by the manager,

the number of production sites and the percent of union members.

Information was collected about the interview process itself that we include as noise controls.

These are survey wave dummies, the gender, tenure and seniority of the manager who responded,

the day of the week and hour of the interview, the duration of the interview, a measure of the

reliability of the information as coded by the interviewer and a full set of 106 interviewer dummies.

These covariates were chosen to follow previous specifications in Bloom and Van Reenen (2010b).

Missing values for plant employment, firm employment and interview noise controls were

imputed using the average of these variables. A dummy variable is included in all regressions

where these were missing. For plant age we followed the following imputation strategy. We first

used firm age where that was available. Otherwise we “hot-decked” plant age using regressions

on plant founding dates on all other regressors for the sample that was not missing plant age.8

6I thank the project leader Daniela Scur for this information.
7When the initial interviewed manager was no longer at the plant, they made sure that the manager was indeed

previously at the plant and obtained the postal code from another manager.
8The full list of covariates is the same as that used in the benchmark regressions. This includes plant employment,
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We experimented with a simpler strategy of using the region average plant age and found similar

results.

A.1.7 Final Analysis Sample Selection

An initial 10,163 interviews were available. Ireland was dropped because it does not use postal

codes and hence we could not establish the exact location of the plants– this resulted in 10,002

interviews remaining. A further 416 interviews had missing or misreported postal codes and were

dropped resulting in 9,586 interviews remaining. As mentioned previously, a few plants were

interviewed multiple times either during follow up waves or during the same wave as a second

interview for internal validity checks. We chose the most recent interview of the plant in our sample

and this resulted in 7,191 interviews remaining. In this sample the unit of observation is a plant.

Finally, we drop plants with missing observations on the degree shares which is our key explanatory

variable of interest . This results in our final analysis sample of 6,406 plants. In robustness checks,

we repeated the benchmark reduced form specification for the 9,586 interviews for which we had

postal code information and found similar results.

A.2 World Higher Education Database

The World Higher Education Database (WHED) is a database of higher education institutions

across the world compiled by the International Association of Universities, an organization asso-

ciated with UNESCO.9 The WHED can be accessed online for a fee and provides a description

of the education system and credentials of over 17,000 higher education institutions in more than

180 countries. Data includes information and admission criteria for national and overseas students,

quality assurance and recognition systems and contact details for national bodies. Importantly, it

also contains detailed information location, brief history, funding type, academic divisions and

degrees awarded. This is the most comprehensive collection of information on higher education

institutions available with worldwide coverage.

In this paper we use data on the university location, founding date, funding type (public or

private funded) and availability of various academic divisions (arts, business, social sciences, law,

firm employment, MNE status, industry effects, region effects and interview noise controls described before.
9Website here http://www.whed-online.com/.

http://www.whed-online.com/
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medical and science and technology).10 Data is available for the population of universities in all 19

countries in our WMS sample.

A.3 Geographic Data

Our empirical strategy requires measurement of the distance between plants and universities.

The first step is to obtain accurate measurements of locations. For this we geocoded the plants

using postal codes from the contacts project and geocoded the universities using addresses provided

in the WHED database. Geocoding was done using the GeoPostcodes database described below.

Driving times and distances between geocoded plants and universities were then calculated using

google maps, as described below. Additional geographic information was then added using GIS

software.

A.3.1 GeoPostcodes Database

The GeoPostcodes database is a commercial website providing data on the region, city, longitude

and latitude of postal codes in countries.11 We purchased country-level databases for 18 of our

countries in March 2012.12 We use this database to match postal codes to geographic coordinates

and regions. In Table B.2 we show the geocoding success rates across countries for WMS plants

and WHED universities. On average, the geocoding success rate is very high, yielding 96 percent

match for plants and 95 percent for universities. While there is variation across countries in the

success rates, we always include country effects that would mitigate biases due to the accuracy of

postal code information across countries. Figure 2.1 and Figure 2.2 map the geographic distribution

of plants and universities.

One point to note is that a fraction of plants and universities appear to be in the same postcode

and thus have the same geographic coordinates (this affects 10 percent of the plants). This could

be due to postcodes being fairly large geographies or measurement errors in the postcodes. In

robustness checks, we exclude these plants and find similar results.

10The WHED reports the departments by name, eg “engineering”. Where founding dates were missing we imputed
this using the regional average.

11Website here http://www.geopostcodes.com/.
12We did not purchase the database for UK because its price was substantially higher than for other countries.

Instead, we used the geocode command in stata to geocode UK plants and universities. Information on geocode
stata command available here http://ideas.repec.org/c/boc/bocode/s457450.html. It uses google
maps to geocode postal codes.

http://www.geopostcodes.com/
http://ideas.repec.org/c/boc/bocode/s457450.html
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A.3.2 Google Driving Times

We calculated the driving times between each plant and the nearest university. This was done

using the traveltime command in stata.13 This command uses the geographic coordinates of

plants and universities and calculates driving times (in hours) via google maps. A corresponding

driving distance (in kilometers) is also calculated. To minimize computing times we limited the

search of the nearest university within a 100km Euclidean radius of each plant. Where a plant

did not have a university within this radius, we find the nearest university within any distance and

winsorized the resulting driving times using the regional maximum. This was done to minimize

outlier bias.14

Driving times in google maps are calculated using information from GPS-enabled devices of

users. To ensure that seasonality or varying traffic conditions were not affecting our results, we

calculated another set driving times several months apart. The correlation between the two sets was

0.95.

A.3.3 CIESIN Population Data

We control for the population density at the location of the plant. The Center for International

Earth Science Information Network (CIESIN) provides the Gridded Population of the World (GPW)

that depicts the distribution of population across the world in 2000.15 We use GIS software to

spatially intersect each plant with population density data from the CIESIN within a 100km buffer

and find the average population density within that buffer.16

A.3.4 UNESCO World Heritage List

In our placebo regression we look at distances to UNESCO World Heritage sites. The list

of sites can be found at http://whc.unesco.org/en/list. We use the computationally

13Information on traveltime can be found here http://ideas.repec.org/c/boc/bocode/s457449.
html. It uses google maps to calculate driving times.

14This affected 1.6 percent of the sample. In robustness checks we exclude these isolated plants from the analysis
and find no difference in results. It should be noted that for the fraction of plants and universities that shared postcodes,
the resulting google driving time would be reported as 0. In robustness checks we exclude these plants and find no
significant difference in results.

15Data is available here http://sedac.ciesin.columbia.edu/data/collection/gpw-v3. Popula-
tion density is represented as centroids in a features file. These centroids correspond to the smallest geography available
for the country. For example, in the US this is the Census block group.

16We also checked the robustness of results with varying buffer sizes including the using only the nearest centroid.
See main paper for details.

http://whc.unesco.org/en/list
http://ideas.repec.org/c/boc/bocode/s457449.html
http://ideas.repec.org/c/boc/bocode/s457449.html
http://sedac.ciesin.columbia.edu/data/collection/gpw-v3
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easier straight-line distances between plants and heritage sites.
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Table B.1: Management practices

Management Practice Area  Score from 1 to 5 based on:  

 1) Introduction of modern  Operations  What aspects of manufacturing have been formally introduced,  

 manufacturing techniques   including just-in-time delivery from suppliers, automation,  

  flexible manpower, support systems, attitudes, and behavior?  

 2) Rationale for introduction of  Operations  Were modern manufacturing techniques adopted just because  

 modern manufacturing   others were using them, or are they linked to meeting business  

 techniques   objectives like reducing costs and improving quality?  

 3) Process problem  Operations  Are process improvements made only when problems arise, or are  

 documentation   they actively sought out for continuous improvement as part of  

  a normal business process?  

 4) Performance tracking  Monitoring  Is tracking ad hoc and incomplete, or is performance continually  

  tracked and communicated to all staff?  

 5) Performance review  Monitoring  Is performance reviewed infrequently and only on a  

  success/failure scale, or is performance reviewed continually  

  with an expectation of continuous improvement?  

 6) Performance dialogue  Monitoring  In review/performance conversations, to what extent is the  

  purpose, data, agenda, and follow-up steps (like coaching)  

  clear to all parties?  

 7) Consequence management  Monitoring  To what extent does failure to achieve agreed objectives carry  

  consequences, which can include retraining or reassignment to  

  other jobs?  

 8) Target balance  Targets  Are the goals exclusively financial, or is there a balance of financial  

  and nonfinancial targets?  

 9) Target interconnection  Targets  Are goals based on accounting value, or are they based on  

  shareholder value in a way that works through business units and  

  ultimately is connected to individual performance expectations?  

 10) Target time horizon  Targets  Does top management focus mainly on the short term, or does it  

  visualize short-term targets as a “staircase” toward the main  

  focus on long-term goals?  

 11) Targets are stretching  Targets  Are goals too easy to achieve, especially for some “sacred cows”  

  areas of the firm, or are goals demanding but attainable for all  

  parts of the firm?  

 12) Performance clarity  Monitoring  Are performance measures ill-defined, poorly understood, and  

  private, or are they well-defined, clearly communicated, and  

  made public?  

 13) Managing human capital  Targets  To what extent are senior managers evaluated and held  

  accountable for attracting, retaining, and developing talent  

  throughout the organization?  

 14) Rewarding high  Incentives  To what extent are people in the firm rewarded equally  

 performance   irrespective of performance level, or are rewards related to  

  performance and effort?  

 15) Removing poor performers  Incentives  Are poor performers rarely removed, or are they retrained and/or  

  moved into different roles or out of the company as soon as the  

  weakness is identified?  

 16) Promoting high performers  Incentives  Are people promoted mainly on the basis of tenure, or does the  

  firm actively identify, develop, and promote its top performers?  

 17) Attracting human capital  Incentives  Do competitors offer stronger reasons for talented people to join  

  their companies, or does a firm provide a wide range of reasons  

  to encourage talented people to join?  

 18) Retaining human capital  Incentives  Does the firm do relatively little to retain top talent or do whatever  

  it takes to retain top talent when they look likely to leave?  

Notes: This table is taken from Bloom and Van Reenen (2010)
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Table B.2: Geocoding success rate for World Higher Education Database and World Higher
Education Database

No. of Plants Geocode rate No. of unis Geocode rate

Argentina 249 0.95 95 0.95

Australia 452 0.95 44 1

Brazil 591 0.94 1852 0.90

Canada 419 1 146 1

Chile 372 0.89 88 1

China 763 0.92 548 0.98

France 639 0.97 281 1.00

Germany 672 0.99 339 1

Greece 272 0.96 38 0.97

India 936 0.97 559 0.99

Italy 314 0.98 93 0.94

Japan 176 0.97 696 0.92

Mexico 190 0.99 1322 0.93

New Zealand 150 0.97 23 1

Poland 364 1 408 1.00

Portugal 311 1.00 114 0.86

Sweden 404 0.98 38 1

United Kingdom 1381 0.94 174 0.99

United States of America 1347 0.95 2184 1.00

Total 10002 0.96 9081 0.95

World Higher Education DatabaseWorld Management Survey

Notes: This table shows the geocoding success rates for WMS plants and WHED universities using the 

GeoPostcodes database. The final analysis sample is 6,406 plants (see Data Appendix for sample 

selection criteria). The 9,081 universities represent the population of universities in the WHED database.
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Table B.3: Country-level descriptive statistics

Mean S.D. Mean S.D. Mean S.D.

Argentina -0.27 1.06 10.18 12.15 0.53 0.91

Australia 0.07 0.86 12.02 14.13 0.53 0.60

Brazil -0.34 1.01 10.96 12.58 0.22 0.35

Canada 0.35 0.93 11.71 13.96 0.62 0.83

Chile -0.27 0.94 14.18 13.53 0.77 0.72

China -0.32 0.71 10.33 13.04 0.74 0.76

France 0.12 0.80 13.61 15.56 0.63 0.46

Germany 0.47 0.84 13.91 14.74 0.36 0.22

Greece -0.41 1.24 17.56 16.27 0.46 0.47

India -0.56 1.04 20.62 21.61 0.35 0.47

Italy 0.14 0.90 15.06 14.79 0.59 0.32

Japan 0.44 0.85 32.00 21.61 0.10 0.25

Mexico 0.00 1.05 22.53 21.38 0.17 0.20

New Zealand -0.14 0.83 11.37 14.44 0.40 0.43

Poland -0.04 0.95 20.20 17.83 0.32 0.31

Portugal -0.24 0.91 9.37 9.85 0.29 0.19

Sweden 0.45 0.79 15.37 17.34 0.61 0.48

United Kingdom 0.10 0.97 12.28 15.74 0.42 0.42

United States 0.59 0.92 19.10 18.81 0.31 0.28

Management Z-

score

Degree share 

(percent)

Distance (hours)

Notes: This table shows the country-level means and standard deviations of 

key variables used in the analysis.
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Table B.4: Region-level descriptive statistics

No. of 

regions

No. of plants in 

median region

Management 

Z-score

Degree 

Share

Distance

Argentina 17 3 2.19 10.32 0.10

Australia 7 45 2.06 19.41 1.67

Brazil 5 42 2.56 22.07 0.65

Canada 10 14.5 2.38 18.39 1.25

Chile 15 5 1.74 20.64 0.52

China 28 9.5 1.62 19.16 1.28

France 21 11 2.06 25.39 0.82

Germany 15 11 2.05 30.50 0.50

Greece 10 8.5 2.83 26.10 0.67

India 23 11 2.50 39.00 0.65

Italy 14 6.5 2.41 25.05 0.66

Japan 8 10.5 1.91 45.70 0.01

Mexico 21 4 2.16 35.10 0.18

New Zealand 11 4 1.65 21.64 0.83

Poland 16 12 2.44 43.95 0.74

Portugal 13 8 2.00 18.74 0.37

Sweden 19 9 1.89 32.45 0.87

United Kingdom 13 62 2.51 28.69 0.53

United States 47 9 2.12 35.50 0.48

Difference between 90th and 10th 

percentile plant in median region

Notes: This table shows region-level descriptive statistics by country.
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Table B.5: Additional descriptive statistics

Mean S.D. Min Median Max

Multiunit firm 0.60 0.49 0 1 1

Listed 0.28 0.45 0 0 1

Union (percent) 39.8 39.4 0 30 100

Arts dept 0.71 0.45 0 1 1

Social sciences dept 0.72 0.45 0 1 1

Business dept 0.62 0.48 0 1 1

Law dept 0.31 0.46 0 0 1

Medical dept 0.53 0.50 0 1 1

Science and tech dept 0.62 0.49 0 1 1

All main depts 0.15 0.36 0 0 1

University founding 1941.9 98.2 1088 1968 2011

Missing founding 0.054 0.23 0 0 1

University founded before plant 0.60 0.49 0 1 1

Driving distance ('00km) 0.27 0.55 0 0.12 15.2

Straightline distance ('00km) 0.22 0.59 0 0.093 35.7

No. of universities within 100km 34.3 55.3 0 16 441

No. of universities within 50km 19.3 38.0 0 7 316

Distance to UNESCO world 

heritage site ('00km)

12.9 7.07 1.95 12.7 45.4

Avg pop density within 50km 

radius

1.68 2.51 0 0.82 20.9

Avg pop density nearest centroid 2.99 7.27 0 0.84 84.9

Plant and university share postal 

code

0.11 0.31 0 0 1

Distances are winsorized 0.016 0.13 0 0 1

Notes: N=6,406. Multiunit firm  is a dummy variable indicating more than one production 

plant. Listed  is a dummy for publicly listed. Union  is percent of workforce in unions. 

Details of variable construction are provided in the Data Appendix. 

World Higher Education Database university characteristics describe the nearest university 

from the plant. Arts dept, social sciences dept, business dept, law dept, medical dept, 

science and tech dept are dummy variables for whether the university has that subject 

department. All depts  is a dummy for whether the university has all depts listed. University 

founding  is the foundation year of the university. Missing values or funding and founding 

are imputed and indicated in regressions. The imputation procedures are described in the 

data appendix. University founded before plant is a dummy variable for whether the 

university was founded before the plant.   

Driving distance  is the google driving distance in hundreds of kilometres to the nearest 

university (full description in Data Appendix). Google driving calculations were based on 

the locations of plants and universities. Straightline distance  is the straight line distance in 

hundreds of kilometres between the plant and the nearest university. No. universities within 

100km (50km) is the number of universities within a 100km (50km) radius of the plant. 

Distance to UNESCO world heritage site  is the straightline distance between the plant and 

the nearest site. Avg pop density within 50km radius  is the average population density within 

a 50km radius of the plant calculated using GIS software. Population density data is from the 

Gridded Population of the World, Center for International Earth Science Information 

Network (CIESIN). An indicator is created if the plant and university share a postal code. 

An indicator is created for plants that do not have a university within 100km radius and their 

distances are winsorized to the region maximum.

World Management Survey plant level variables

World Higher Education Database university characteristics

Google maps and GIS calculations



APPENDIX B. APPENDIX TABLES 64

Table B.6: Robustness checks of reduced form regressions

Specification Coefficient on 

instrument

(S.E.)

(1) Table 2.2, panel A, column 5 -0.049*** (0.019)

(2) Cluster at region × industry -0.049** (0.020)

(3) 2-way cluster at region + industry -0.049*** (0.010)

(4) Cluster at university -0.049*** (0.019)

(5) Conley standard errors, 100km -0.049*** (0.018)

(6) log (1 + Driving time) -0.102*** (0.039)

(7) Quadratic in driving time -0.080** (0.035)

(8) Cubic in driving time -0.093* (0.055)

(9) Quartic in driving time -0.113 (0.072)

(10) Including quartic in geography controls (joint p-

value = 3.09e-06)

-0.041** (0.019)

(11) Average population density within 50km (joint p-

value=0.752)

-0.050*** (0.018)

(12) Average population density nearest centroid 

(joint p-value=0.649)

-0.056*** (0.018)

(13) Driving distance ('00km) -0.050* (0.028)

(14) Straight line distance ('00km) -0.029 (0.018)

(15) No. of universities within 100km 0.001 (0.001)

(16) All survey waves, N=9,586 -0.041** (0.018)

(17) Exclude same postal codes, N=5,710 -0.040** (0.019)

(18) Exclude winsorized, N=6,302 -0.065** (0.026)

(19) Capital regions, N=1,884 -0.041 (0.044)

(20) Non-capital regions, N=4,498 -0.046** (0.021)

(continued…)

A. Checking standard errors

B. Non-linearities in distance

C. Checking geography controls

D. Different distance measures

E. Sample selection
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Table B.6: Robustness checks of reduced form regressions (cont.)

Specification Coefficient on 

degree share

(S.E.)

(21) Including 2,283 region × industry fixed effects 

(N=6,406)

-0.056* (0.032)

(22) Including 724 county fixed effects (N=4,553) -0.046 (0.031)

(23) Including 851 city fixed effects (N=2,756) -0.207 (0.296)

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are 

clustered at the region level (313 clusters) except otherwise stated. N=6,406 except 

otherwise stated. The dependent variable is the management z-score and the instrument 

depends on the specification. Each row presents a different robustness check of the 

reduced form specification (same as Table 2.2, panel A, column 5).

F. Fixed effects



Chapter 3

A Question of Degree: The Effects of

Degree Class on Labor Market

Outcomes

Abstract. We estimate the effects of university degree class on initial labor market outcomes.

We employ a regression discontinuity design which utilizes university rules governing the award

of degrees. We find sizeable and significant effects for Upper Second degrees and positive but

smaller effects for First Class degrees on wages six months after graduation. A First Class is worth

roughly 3 percent in starting wages which translates into £1,000 per annum. An Upper Second is

worth more–7 percent in starting wages which is roughly £2,040. We interpret these results as the

signaling effects of degree class and provide evidence consistent with this.

3.1 Introduction

A stable empirical fact observed across countries and over time is that individuals with more

schooling earn more on average. Most theories attribute these earnings differences to variation in

human capital. More contentious is the link between schooling and human capital–does schooling

increase skills or reflect it? The Mincer (1974) explanation is that schooling is an investment in

human capital and more schooling leads to more accumulated skills. Spence (1973) provides an

alternative theory where higher skilled individuals have lower costs of learning and undertake

schooling to “signal” their underlying ability. In the extreme, schooling does not lead to any

66
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improvement in human capital but serves only to reveal it.

Much empirical research has tried to distinguish between the human capital and pure signaling

theories. One branch of this research focuses on credential effects– if two otherwise identical

individuals have the same years of schooling but differ only because one graduated with a certificate

and the other did not, any earnings differences is thought to reflect the signaling effect of the

certificate (Hungerford and Solon 1987). The assumption is that the two individuals have the same

amount of human capital because they have the same years of education. Econometrically, however,

these empirical studies rely on OLS regressions that do not isolate the pure signaling effect of the

certificate as estimates may be confounded by remaining unobserved ability differences. In an

ideal experiment, one would randomly assign certification to identical individuals and observe their

earnings outcomes.1

In this paper, we estimate the effects of university degree class on labor market outcomes. As we

explain below, the degree classification is a system of categorizing performance on university degree

programmes in the United Kingdom (UK) and other Commonwealth nations. The importance of

the system is highlighted by the sizeable fraction of employers who report using the classification

in hiring decisions and by universities that use degree class to screen applicants to postgraduate

programmes. It is not obvious, however, that the classification system is useful because degree

transcripts provide more information about applicant quality.

Identifying the effects of degree class is complicated by the fact that a naive comparison of, say,

students who received a First Class with students who received an Upper Second could be biased

by the differing ability composition of the two groups. To isolate the pure signaling effects we need

to approximate an ideal experiment and randomly assign degree class signals across students. We

adopt a fuzzy regression discontinuity design (RD) which utilizes institutional rules governing the

award of degree class on the basis of marks received on courses taken. This amounts to comparing

students who barely made and barely missed a degree class within a narrow window of the marks

received. We argue that this generates quasi-experimental variation needed for clean identification

1In a separating equilibrium in signaling theory, differences in signals reflect differences in human capital. Thus,
conditioning on human capital, we should not observe differences in signals. This complicates the identification of
signaling effects because in observational data, differences in signals would be consistent with signaling theory, but
could also reflect selection bias. The difference between signaling and selection is that in the former, employers
and econometricians both do not observe underlying ability and make inferences on the basis of observable factors
(Weiss 1995). With selection bias, employers observe characteristics that are not observed by the econometrician and
thus statistical estimates are biased by these omitted factors. An ideal experiment that randomizes signals across identical
individuals eliminates this selection bias. In this sense, the pure signaling effect of a certificate is a causal effect.
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of degree class effects.

We use survey and administrative data from the London School of Economics and Political

Science (LSE). We find sizeable and significant effects for Upper Second degrees and positive but

smaller effects for First Class degrees on wages six months after graduation. A First Class is worth

roughly 3 percent in starting wages which translates into £1,000 per annum. An Upper Second is

worth more– 7 percent in starting wages which is roughly £2,040. These results are robust to a

battery of specification checks.

We use a simple theory of statistical discrimination to interpret these results as evidence of

the signaling effects of degree class. Under this interpretation, groups with higher average scores,

higher variance in scores or lower variance in the noise associated with the degree class signal,

would display stronger effects. In additional results, we show that we indeed find larger effects for

men and mathematical degree programmes as predicted by the simple theory.

3.1.1 Related Literature

Our paper is related to several strands of literature. Broadly, the signaling theory of education

suggests that education provides a signal of unobserved worker productivity (Spence 1973). In

the simplest model there is no productive role of education in human capital acquisition although

this consideration does not alter the basic predictions of the theory: high ability types choose more

education to separate themselves from low ability types (Riley 1979). Both the theory of human

capital investments (Mincer 1974) and signaling theories predict a positive correlation between

ability and education. Complementing the signaling theories are screening models where employers

take actions to separate workers into ability groups (Stiglitz 1975, Wolpin 1977). Weiss (1995)

describes these classes of signaling and screening theories collectively as sorting models.

Empirical testing of signaling models has proceeded in two ways. Indirect evidence comes in

the form of changes in the human capital investment decisions of one ability group from changes in

the decisions made in other groups. Compulsory schooling laws for primary education that affect

higher education groups (Lang and Kropp 1986) or tertiary enrolment changes that affect the high

school margin (Bedard 2001) are seen as consistent with the signaling value of education. More

direct evidence imagines a randomized experiment where randomly selected individuals from the

same ability group get treated with an educational signal. Tyler, Murnane, and Willet (2002) mimic

this experiment by using differences in passing standards for the GED diploma across US states.
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Their finding of significant effects for white males stands in contrast to Clark and Martorell (2010)

who find no effects for receiving the high school diploma.

More recent work has examined the dynamic effects of signaling. The literature on employer

learning argues that any signal used in initial labor market outcomes attenuates over time as

employers discover more about ability (Farber and Gibbons 1996, Altonji and Pierret 2001, Lange

2007, Arcidiacono, Bayer, and Hizmo 2010). Empirically, this means that the effects of schooling

attenuate over time while coefficients on hard-to-observe variables like test scores increase over

time.2

For tertiary education the early literature looked at the credential effects associated the comple-

tion of college degrees (Layard and Psacharopoulos 1974). Hungerford and Solon (1987), Belman

and Heywood (1991) and Jaeger and Page (1996) include dummy variables for college completion

in Mincer (1974) regressions and interpret the coefficients as signaling effects of college certificates.

In papers most closely related to ours, Di Pietro (2010), Ireland, Naylor, Smith, and Telhaj (2009)

and McKnight, Naylor, and Smith (2007) examine the signaling effects of degree classification for

students in the UK. Notably Di Pietro (2010) adopts a regression discontinuity design using final

year marks and finds no effect on employment. We get similar results on employment but extend

the analysis by looking at wage differences. Ireland, Naylor, Smith, and Telhaj (2009) use OLS

regressions and find 4 and 5 percent returns to First Class and Upper Second degrees respectively.

Their sample consists of a much larger dataset of UK students across many universities and years

but does not have the course history information we have to construct finer comparison groups.

The rest of the paper is organized as follows. In Section 3.2 we discuss the institutional setting,

in Section 3.3 we explore the data sources and empirical strategy, in Section 3.4 we present our

results and specification checks. Section 3.5 presents a simple model of statistical discrimination

and additional results to support the signaling interpretation. Section 3.6 discusses our findings and

Section 3.7 concludes.

2Altonji and Pierret (2001) use the AFQT test score reported in the NLSY as a proxy for ability. Test scores are not
available to employers but available to econometricians.
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3.2 Institutional Setting

3.2.1 University Description

Our data come from the London School of Economics and Political Science (LSE). LSE is a

top ranked public research university located in London, UK, specializing in the social sciences.

Admission to LSE is highly competitive and it offers a range of degree programmes. In 2012, LSE

students came top for employability in the UK in the Sunday Times University Guide. Thus, our

results speak to the high end of the skills market.

3.2.2 UK Degree Classification

The degree classification system in the UK is a grading scheme for degrees. The highest

distinction for an undergraduate is the First Class honors followed by the Upper Second, Lower

Second, Third Class, Pass and Fail degrees. While all universities in the UK follow this classification

scheme, each university applies its own standards and rules to determine the distribution of degrees.

A similar system operations in other Commonwealth countries including Australia, Canada, India

and many others. In the US, a system of Latin Honors performs the similar purpose of classifying

degrees. In principle, this implies that our results apply to a broad range of countries.3 Anecdotal

evidence points to the importance of degree class in hiring decisions. One report found that

75 percent of employers in 2012 required at least an Upper Second degree as minimum entry

requirement.4

3.2.3 LSE Degree Classification Rules

In our identification strategy, we use a unique feature of the rules governing the award of degree

class. Undergraduates in the LSE typically take nine courses over three years. Every course is

graded out of 100 marks and fixed thresholds are used to map the marks to degree class. As shown

in Appendix Table C.1, a First Class Honors degree requires 5 marks of 70 or above or 4 marks of

70 or above with aggregate marks of at least 590. This mapping from course marks to final degree

3In the US, the grade point average (GPA) system is also used. This is usually a scale from 0 to 4 with one decimal
accuracy and is a finer measure of performance than the UK system. There have been calls to scrap the UK system in
favor of a GPA system, see “Degree classifications: time for a change?”, the Guardian, July 9th 2012.

4See “Top jobs ’restricted to graduates with first-class degrees’”, the Daily Telegraph, July 4th 2012 and “Most
graduate recruiters now looking for at least a 2:1”, the Guardian, July 4th 2012.

http://www.guardian.co.uk/education/2012/jul/09/degree-classsifications-change
http://www.telegraph.co.uk/education/educationnews/9373058/Top-jobs-restricted-to-graduates-with-first-class-degrees.html
http://www.guardian.co.uk/money/2012/jul/04/graduate-recruiters-look-for-21-degree
http://www.guardian.co.uk/money/2012/jul/04/graduate-recruiters-look-for-21-degree
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class applies to all departments and years.5

We use the discontinuous relationship between degree class and marks received on the fourth

highest mark in a fuzzy regression discontinuity design (RD). We employ a fuzzy, as opposed to a

sharp, regression discontinuity because the receipt of the degree class also depends on aggregate

marks, as shown in Appendix Table C.1. Our strategy is intuitive and amounts to comparing

otherwise similar students who differ only in a critical course mark that determines their final

degree class.

To be specific, let us consider the award of a First Class degree that depends on the receipt of at

least four first class marks. This suggests that the fourth highest mark for any student plays a critical

role in determining the degree class. A student whose fourth highest mark is higher than 70 is much

more likely to obtain a First Class degree than a student whose mark just missed 70, everything

else equal. This is seen clearly in Figure 3.1 which plots the fraction of students who receive a

First Class degree against their fourth highest mark received. There is a jump in the probability of

receiving a First Class after the 70-mark threshold. A similar story is seen in the award of an Upper

Second degree at the 60-mark threshold. To summarize, the fourth highest mark plays the role of

the assignment variable in our RD strategy.

3.3 Data and Empirical Strategy

3.3.1 Student Characteristics and University Performance

From student records we obtain age, gender, nationality and country of domicile information.

Course history includes information on degree programme, courses taken and grades awarded,

and eventual degree classification. Table 3.1 reports the descriptive statistics of the variables used

in our analysis. We have 5,912 students in the population from 2005-2010 of which 2,649 are

included in the Destination of Leavers from Higher Education (DLHE) survey (described in detail

below). Columns (1) and (4) report the mean and standard deviations of variables for surveyed and

non-surveyed students, respectively, while column (5) reports whether the difference is significant.

Surveyed students are less likely to be female, more likely to be UK nationals, more likely to

receive an Upper Second and less likely to receive a Lower Second.

5Four courses are taken each year, however only the average of the best three courses in the first year counts towards
final classification. Undergraduate law students are an exception and follow a different set of rules. We exclude them
from all analyses. Full details of the classification system is available online at the LSE website.

http://www.lse.ac.uk/resources/calendar/academicRegulations/BA-BScDegrees.htm
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To implement our empirical strategy, we create two samples. In column (2), the “First Class

sample” consists of students who received either a First Class or an Upper Second and the “Upper

Second sample” in column (3) consists of students who received either an Upper Second or Lower

Second.6 This provides two discontinuities that we examine separately and narrows our comparisons

to students who are on either side of each threshold. In Table 3.1 First Class, Upper Second and

Lower Second are dummy variables for the degree classes. Among all surveyed students, the

majority of 60 percent received an Upper Second with the remaining 40 percent roughly evenly split

between First Class and Lower Second. 1[4th MARK ≥ 70] and 1[4th MARK ≥ 60] are dummy

variables equal to one if the fourth highest mark is no less than 70 or 60 respectively.

One shortcoming of this database is that we do not have measures of a student’s pre-university

ability. For a typical UK student this might include her GCSE and A-level results. Although

admissions to LSE programmes require A-level or equivalent results to be reported, these data

are not collected centrally but are received by each department separately. To partly address this

shortcoming, in all our regressions we control for department × year fixed effects.7 Furthermore,

our RD strategy does not rely controlling for ability.8

3.3.2 Labor Market Outcomes

Data on labor market outcomes come from the DLHE survey which is a national survey of

students who have recently graduated from a university in the UK. This survey is conducted twice

a year to find out employment circumstances of students six months after graduation.9 Due to the

frequency of the survey and its statutory nature, LSE oversees the survey and reports the results to

HESA (Higher Education Statistics Authority). The survey is sent by email and responded to online

and includes all students including non-domiciled and non-UK nationals. Typically response rates

are higher for domiciled and UK nationals.10 The survey provides us with data from 2005-2010.

Our key variables of interest are industry and employment status. Industry is coded in four digit

SIC codes, although we aggregate to two digits for merging with LFS data (see Section 3.3.3). In

6We dropped Third Class and below because they constituted less than 5 percent of the population. Including them
among the Lower Second population did not change results.

7Results in McKnight, Naylor, and Smith (2007) suggest that controlling for degree programme reduces the
importance of pre-university academic results.

8As noted in Lee and Lemieux (2010) an RD design mimics a natural experiment close to the discontinuity. Hence
there should be no need for additional controls except to improve precision of estimates.

9The surveys are conducted from November to March for the “January” survey, and from April to June for the
“April” survey.

10Formally, LSE is required to reach a response rate of 80 percent for UK nationals and 50 percent for others.
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Table 3.1, “employed” is a dummy variable equal to one if a graduate is employed in full-time work.

11

Table 3.1 shows that 85 percent of students who responded are employed within six months of

graduation. More than one-third are employed in the finance industry although this varies slightly

across the degree classes (see Appendix Table C.2). Given the importance of the finance industry,

we construct a dummy variable for employment in finance as a separate outcome variable and look

at results excluding the finance industry.

Because the survey is conducted six months after graduation, we interpret our analysis as

applying to first jobs. Although we do not observe previous job experience and cannot control

for this in our analysis, 98 percent of our students were younger than 21 years of age when they

started their degrees. Thus, any work experience is unlikely to have been in permanent employment.

Also, we cannot follow students over longer periods of employment to examine the dynamic effects

of degrees. A more worrying concern is that employment six months after graduation may have

been secured before the final degree class is known. Anecdotes suggest that students start Summer

internships, work experience and job applications prior to graduation. Unfortunately, we have no

way of addressing these issues with the current data and leave this for future work.

3.3.3 Labor Force Survey

We merge wage data from the LFS into the DLHE survey at the industry × year × gender

level. We calculate mean log hourly wages for each industry × year × gender cell unconditional

on skills or experience. One concern with this approach is that mean wages are not representative

of the earnings facing undergraduates. To address this concern we also calculate mean log wages

conditional on university and three experience levels. To match the labor market prospects of

undergraduates we chose 1, 3 and 5 years of potential experience.

This gives us five different measures of industry wages– overall mean, university with 1, 3 and 5

years of experience and overall mean for the sub-sample of students in non-finance industries. Our

preferred measure is the overall mean because it provides a clean measure of the industry’s “rank”

compared to other industries. In any case the five measures are highly correlated with pairwise

correlations never less than 0.8. Table 3.1 shows that the mean log wage is 2.45 which is roughly

11Self-employed, freelance and voluntary work is coded as zero along with the unemployed or unable to work. An
annual salary question is included but response is voluntary and less than half report it. The correlation between reported
salary and industry salary is 0.39.
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£11.60 per hour in 2005£. As expected, industry wages increase in years of experience.

Using industry wages implies that we do not have within-industry variation in outcomes.

The lack of a more direct wage measure is an issue for other studies in the literature as well

(Di Pietro 2010, McKnight, Naylor, and Smith 2007). Appendix Table C.2 shows the top 15

industries ranked by total share of employment. Even accounting for the large share in finance,

there is substantial distribution in employment across industries– of the 84 two-digit SIC codes, 66

are represented in our data.

3.3.4 Empirical Strategy

Our unit of observation is a student. For each student we observe her degree classification

and her course grades. In particular, we observe her fourth highest mark taken over three years of

the degree. As described in Section 3.2.3, institutional rules imply that the fourth highest mark

is critical in determining her degree class. When the fourth highest mark crosses the 70-mark or

60-mark cutoff, there is a discontinuous jump in the probability of receiving a First Class and

Upper Second respectively. We use a dummy variable for the fourth highest mark crossing these

thresholds as an instrument for the degree class “treatment”.

Identification in a fuzzy RD setup requires the continuity assumption (Lee and Lemieux 2010).12

Apart from the treatment– in this case degree class– all other observables and unobservables vary

continuously across the threshold. This also means that the assignment variable should not be

precisely manipulated by agents. We cannot test the continuity of the unobservables directly.

Instead we test the continuity of observables. Second we employ the McCrary (2008) test to see if

there is a discontinuity in the probability density of the treatment which may suggest manipulation

of the assignment variable. These are discussed in Section 3.4.2.

In our benchmark specification we use a non-parametric local linear regression with a rect-

angular bandwidth of 5 marks above and below the cutoff (Imbens and Wooldridge 2009). This

means we include the fourth mark linearly and interacted with the dummy variable as additional

controls. A non-parametric approach observes that a regression discontinuity is a kernel regression

at a boundary point (Imbens and Lemieux 2008). This motivates the use of local regressions

12Regression discontinuity was introduced by Thistlethwaite and Campbell (1960) and formalized in the language of
treatment effects by Hahn, Todd, and van der Klaauw (2001). The close connection between fuzzy RD and instrumental
variables is noted in Lee and Lemieux (2010), Imbens and Lemieux (2008) and Imbens and Wooldridge (2009). Instead of
the usual exclusion restrictions, however, we require the continuity assumption and non-manipulation of the assignment
variable.
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with various kernels and bandwidths (Fan and Gijbels 1996, Li and Racine 2007). Although a

parametric function such as a high order polynomial is parsimonious it is found to be quite sensitive

to polynomial order (Angrist and Pischke 2009). In specification checks we vary the bandwidth

and try polynomial functions to flexibly control for the fourth mark. As discussed in Section 3.4.4

these specification checks produce qualitatively similar results.

In theory, identification in an RD setup comes in the limit as we approach the discontinuity

asymptotically (Hahn, Todd, and van der Klaauw 2001). In practice, this requires sufficient data

around the boundary points– as we get closer to the discontinuity estimates tend to get less precise

because we have fewer data. Furthermore, when the assignment variable is discrete by construction,

there is the additional complication that we cannot approach the boundary infinitesimally.13 In

this paper, we choose the 5 mark bandwidth as a reasonable starting point and accept that some

of the identification necessarily comes from marks away from the boundary. We follow Lee and

Card (2008) in correcting standard errors for the discrete structure of our assignment variable by

clustering on marks throughout.

We write the first-stage equation as:

CLASSi =(3.1)

δ0 + δ11[4th MARK ≥ cutoff]i + δ2(4th MARKi − cutoff)+

δ3(4th MARKi − cutoff)× 1[4th MARK ≥ cutoff]i +Xiδ4 + ui

where CLASS is either First Class or Upper Second and the cutoff is 70 or 60 respectively.

1[4th MARK ≥ cutoff] is a dummy variable for the fourth mark crossing the cutoff and our

instrument for the potentially endogenous degree class. X is a vector of covariates including female

dummies, age and age squared, dummies for being a UK national, dummies for having resat or

failed any course, 15 dummies for department, 5 year of graduation dummies and 75 dummies for

department × year of graduation interactions.

13This is also a problem facing designs where age in years or months is the assignment variable, e.g. Carpenter and
Dobkin (2009).
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We use the predicted degree class from our first-stage regression in our second-stage equation:

Yi =β0 + β1CLASSi + β2(4th MARKi − cutoff)+(3.2)

β3(4th MARKi − cutoff)× 1[4th MARK ≥ cutoff]i +Xiβ4 + εi

where Y are various labor market outcomes including employment status, employment in finance

industry and five measures of industry wages.

3.4 Results

3.4.1 First-Stage and Reduced Form Regressions

In this section we report results from the first-stage ?? and the reduced form regressions:

Yi =γ0 + γ11[4th MARK ≥ cutoff]i + γ2(4th MARKi − cutoff)+(3.3)

γ3(4th MARKi − cutoff)× 1[4th MARK ≥ cutoff]i +Xiγ4 + νi

where Y are the various labor market outcomes.

Table 3.2, column (1), reports the first-stage results for the First Class discontinuity (panel A)

and Upper Second discontinuity (panel B). Both first-stage F-statistics are above the rule-of-thumb

threshold of 10 and mitigate any concerns about weak instruments (Staiger and Stock 1997, Stock,

Wright, and Yogo 2002).14 In order to better interpret the first-stage, we look at the relationship

between fourth highest mark and degree class without controlling for any covariates. This also

allows us to do a simple count of the complier population in LSE (Angrist, Imbens, and Rubin

1996, Imbens and Angrist 1994). In Figure 3.2 the schematic shows the breakdown of students into

compliers, always takers and never takers around the discontinuity. For instance, always takers

are students who receive a First Class regardless of their fourth highest mark, while compliers are

students who receiver a First Class because their fourth highest mark crosses the threshold. The

breakdown suggests that the complier population is sizeable at 87 percent. This is expected because

the institutional rules are strictly followed and supports the validity of our results to the rest of the

LSE population.

14The sample size varies over outcome variables but we confirmed that the first-stage and other results are not
sensitive to these sample differences.
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Columns (2) to (3) report the reduced form regressions for the extensive margin of employment.

Both First Class and Upper Second discontinuities show insignificant results. Columns (4) to

(8) report the reduced form results for industry wages. In panel A, the results for the First Class

discontinuity are positive but insignificant. In panel B, we find stronger and significant results for

the Upper Second discontinuity.15

3.4.2 Randomization Checks and McCrary Test

As discussed in Section 3.3.4, identification in an RD setup requires continuity in the observables

(and unobservables) across the threshold as well as non-manipulation of the assignment variable.

To test for continuity in the observables, we regress each covariate on the treatment dummy in

Table 3.3, columns (1) to (5). Apart from age in the First Class sample and gender in the Upper

Second sample, the results are consistent with the lack of discontinuity in the observables. The

apparent discontinuity in age and gender does not worry us because these are non-manipulable

attributes (Holland 1986). In other words, there is less concern that agents could have taken actions

to manipulate these attributes around the discontinuity to improve their degree class.

To test for the manipulation of the assignment variable, McCrary (2008) suggests using the

frequency count as the dependent variable in the RD setup. The idea is that manipulation of the

assignment variable should result in bunching of individuals at the cutoff. In the education literature,

this was shown to be an important invalidation of the RD approach (see for e.g. Urquiola and

Verhoogen (2009)). In our case, we should see a jump in the number of students at the threshold of

70 or 60 marks. In column (6) of Table 3.3 we perform the McCrary test and find large and (in the

case of the Upper Second threshold) significant jumps in the number of students. Prima facie, this

might suggest that students are manipulating their marks in order to receive better degrees.

We argue that this bunching is not the result of manipulation but is a consequence of institutional

features. Figure 3.3 plots the histogram of the highest to the sixth highest marks. In every case there

is a clear bunching of marks at 60 and 70 even for the highest mark which is not critical for eventual

degree class. This is because exam graders actively avoid giving borderline marks (i.e. 59 or 69)

and either round up or down.16 One may still worry that students who received 58 or 68 may appeal

15The coefficients on the slopes in the reduced form wage regression for the Upper Second discontinuity (panel B
column 4) suggests that the visually negative slope in Figure 3.4 is not significant.

16In LSE, exams are taken anonymously and each script is graded by one internal and one external examiner. Having
graded each script separately, graders convene to deliberate on the final mark.
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to have their script re-graded. From discussions with staff, the appeals process is arduous and rarely

successful. Nonetheless we follow the literature in dealing with the potential manipulation of marks

by excluding the threshold in specification checks reported in Section 3.4.4 (see for e.g. Almond

and Doyle (2011), Almond, Doyle, Kowalski, and Williams (2010) and Barreca, Guldi, Lindo, and

Waddell (2011)). Doing so does not change our results.

3.4.3 Effects of Degree Class on Labor Market Outcomes

Table 3.4 reports the results for the effects of receiving a First Class degree compared with an

Upper Second. In panel A, we compare average differences in outcomes without controlling for any

covariates. There are no differences in employment in general or in the finance industry specifically.

However, there are significant differences in industry wages. Using our preferred measure of mean

industry log wages in column (3), a First Class receives 7 percent higher wages. Conditional wage

measures in columns (4) to (7) paint a similar picture. Panel B includes covariates to allow for

closer comparisons of students. This corresponds to estimating ?? using OLS. The employment

outcomes remain insignificant while the wage coefficients halve but remain significant. In panel C

we report our benchmark RD model. We instrument for the First Class treatment using a dummy

variable for the fourth highest mark crossing the 70 mark threshold. Although the difference in

industry mean wages remains significant at 5 percent, the conditional experience measures are

insignificant suggesting that the wage differences for a First Class are not precisely measured.

Table 3.5 reports the same specifications for the Upper Second degree. There are no significant

differences in average outcomes across students without controlling for covariates in panel A. This

is because of inter-departmental comparisons we are making in the absence of department fixed

effects. Once we control for covariates including department by year fixed effects in panel B we

observe that an Upper Second receives 4 percent higher wages than a Lower Second in column

(3). Conditional wage measures in columns (4) to (7) are smaller in magnitude but show similar

positive estimates. An Upper Second also has a 7 percentage point (20 percent) higher probability

of working in finance. Using the dummy variable 1[4th MARK ≥ 60] as an instrument for Upper

Second, panel C reveals that the returns are significant and sizeable at 7 percent for mean wages and

12 percentage points (37 percent) for finance industry employment. Conditional wage measures in

columns (4) to (7) offer a qualitatively similar picture of positive wage effects.

To interpret these results we translate the percentage differences to pounds. Using our preferred
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measure of wages in the specification in column (3) we find that a First Class and Upper Second

are worth around £1,000 and £2,040 per annum respectively in current money.17

3.4.4 Specification Checks

We conduct a battery of specification tests of our RD results. In Table 3.6 we report checks for

the First Class degree while Table 3.7 reports the same for Upper Second. Each row is a different

specification check and the columns are the different dependent variables. We report the coefficient

and standard error on the degree class dummy and the number of observations. Row (1) reports the

benchmark results for comparison.

Rows (2) to (10) report results using different bandwidth sizes (our benchmark is a 5-mark

bandwidth). Rows (11) to (14) report specifications using parametric polynomial controls. In rows

(15) and (16) we include controls for the sum of marks and all other marks separately to show that

our results are not driven by omission of other course grades. In row (17) we address the concern

that our results misrepresent students who are not domiciled in UK by looking only at domiciled

students. In row (18) we deal with the worry that bunching of marks around the threshold reflects

manipulation.

Employment outcomes appear to be sensitive to bandwidth choice. For the First Class some

specifications even suggest a negative effect on employment, e.g. rows (3) and (4). Likewise

for the Upper Second degree, employment outcomes do not display a consistent pattern across

specifications. To be conservative we interpret this as suggesting that the extensive margin is not

affected by degree class. This is similar to Di Pietro (2010) who did not find significant effects on

employment. This may be due to the limited variation we have in employment and requires further

investigation in future work. In the following sections we focus on the industry wage outcomes.

We find consistent results when we look at industry mean wages. Looking at industry means

for First Class degrees, we find effects significant at 5 percent ranging from 2.5 to 6.8 percent with

the benchmark result of 3.3 percent. For Upper Second, the range is 5.7 to 13 percent with the

benchmark of 7.1 percent.

17Assuming a 40 hour week for 52 weeks for a full time worker using 23 percent CPI inflation from 2005-2012. First
Class: exp(2.473)× 40× 52× 1.23× 0.033. Upper Second: exp(2.418)× 40× 52× 1.23× 0.071.
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3.5 Signaling Interpretation and Additional Results

We have shown the effects of degree class on industry wages. We interpret these results as the

signaling effects of degree class. To strengthen this interpretation we present a simple model of

statistical discrimination and show additional results consistent with the theoretical predictions.

3.5.1 Simple Model of Statistical Discrimination

Statistical discrimination is closely related to signaling and screening theories of education

(Phelps 1972, Arrow 1973, Aigner and Cain 1977). In statistical discrimination, employers

differentiate across otherwise identical workers on the basis of observable group membership, for

example race or gender. More recent versions of these models introduce the dynamics of employer

learning (Farber and Gibbons 1996, Lange 2007, Altonji and Pierret 2001, Arcidiacono, Bayer, and

Hizmo 2010). Our exposition follows Aigner and Cain (1977) and Belman and Heywood (1991)

(see also Hungerford and Solon (1987) and Jaeger and Page (1996)).

Suppose employers observe a noisy signal of student ability:

y = q + u

where y is the signal, q is unobserved ability and u is a normally distributed mean zero random

variable uncorrelated with q. Note that on average the signal is unbiased, E[y] = E[q]. Students

know their own ability but employers only see y and know that q is distributed with mean q̄ and

some variance σq. Therefore, employers pay wages that are equal to the expected ability of students

conditional on their signal. That is, employers solve a signal extraction problem:

wages = E[q|y] = (1− γ)q̄ + γy

which is a regression of q on y where linearity follows from the normality assumption. The

regression coefficient is written as:

γ =
σq

σq + σu

where σu is the variance of the noise term.

Additionally, employers observe a student’s group. Suppose there are two groups, A and B,
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with means and variances q̄A, q̄B , σA and σB . For any observed signal y, the difference in predicted

ability between groups is:

E[q|y,A]− E[q|y,B] =(1− γA)q̄A + γAy − (1− γB)q̄B − γBy

=(q̄A − q̄B)(1− γB) + (y − q̄A)(γA − γB)

This formula gives us three predictions. Given some signal y, the wages to group A are higher

than group B, E[q|y,A]− E[q|y,B] > 0, if

1. q̄A − q̄B > 0, average signal is higher in group A than B

2. σAq − σBq > 0 and y > q̄, ability variance is higher in group A than B for a “good” signal

3. σAu − σBu < 0 and y > q̄, noise variance is lower in group A than B for a “good” signal.

We bring this theory to the data by interpreting y as the fourth highest mark. Fourth highest

marks determine degree class and are a noisy signal of students’ abilities. The total variance in

marks, σy, is the sum of the variance in ability, σq, and the noise variance, σu. We can now re-state

our theoretical predictions. At any given mark and resulting degree class, a student from group A

has a higher predicted wage than an otherwise identical student from group B if:

1. group A has higher average marks than group B;

2. group A has higher variance in marks than group B;

3. group A has lower variance in the noise term than group B.

In our context, a positive signal is receipt of the higher degree class. Both First Class and Upper

Second are positive signals because we are always comparing to the next lower class. Note that

we do not actually observe the noise term or its variance, so we cannot exactly decompose the

differences in average wages.

In the next section we define two groups in the data. First, we define groups by gender.

Second, we group degree programmes by their math admissions requirements. Math admissions

requirements are a measure of how mathematical the degree is. Mathematical degrees exhibit

higher means and variances in marks than less mathematical degrees. This may be because less

mathematical degrees have essay based courses which are more subjective in grading. We show that

our estimates by groups are largely consistent with the simple theory of statistical discrimination.
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3.5.2 Statistical Discrimination by Gender and Degree Programmes

The fourth highest mark is our measure of the signal from the theory described in Section 3.5.1.

Appendix Table C.3 presents the means and standard deviations of the fourth highest mark by the

different groups. Males tend to have higher marks on average than females, and they tend to have

higher variance in their marks.

Next we differentiate degree programmes. Appendix Table C.4 lists the degree programmes in

our sample. Using information on the math entry requirements, we distinguish between programmes

which required at least A-level in maths and those which do not. As seen in Appendix Table C.3,

when we split degree programmes by their math requirements, mathematical degrees have higher

average and variance in marks.

Table 3.8 presents our estimates by gender. We estimate our benchmark RD specification for

each group separately. We find that First Class effects are significant and positive for males at 6

percent but insignificant and basically zero for females– this translates into £1,780 a year.18 Upper

Second effects are larger in magnitude for males but imprecisely estimated for both.

Table 3.9 splits the sample by degree programmes. For both First Class and Upper Second,

mathematical programmes display larger and significant effects. A First Class is worth 6 percent

in a mathematical degree compared with an insignificant 4 percent on a non-mathematical degree.

Likewise, an Upper Second is worth 15 percent in a mathematical degree compared to zero in a

non-mathematical degree.

These results by group are consistent with our simple theory of statistical discrimination and

suggestive of the signaling effects of degree class.

3.6 Discussion

The findings of positive effects of degree class and differences in effects across groups are

consistent with a signaling interpretation. The signaling effect is the causal effect in an experiment

where degree class is randomly assigned across individuals. We approximated this experiment using

an RD design where randomness on a critical course mark effectively assigned similar students

different degree classes.

18Assuming a 40 hour week for 52 weeks for a full time worker using 23 percent CPI inflation from 2005-2012,
exp(2.454)× 40× 52× 1.23× 0.06.
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But why would degree class matter if employers could obtain full transcripts of all course

marks? With transcripts, employers should use course marks as finer signals of ability instead of

using the cruder degree class. Our findings of effects from degree class, even after controlling for

course marks, suggests that employers either do not observe transcripts or observe transcripts but

do not fully use the information on them.

If the computational costs of understanding diverse transcripts is too high, employers could

rely on degree class to form rules-of-thumb, or heuristics, in making hiring and salary decisions.

As a rough gauge of the potential computational costs, Appendix Table C.5 counts the number

of modules taken by students across departments. In the department of government, for example,

students took a total of 167 different modules. This suggests that it may be difficult for employers

to compare course level marks to differentiate between candidates if transcripts are too diverse.

On the other hand, heuristics by themselves cannot explain our findings. Suppose employers

thought that degree class was randomly assigned independently of course marks, then they would

no longer use degree class to differentiate candidates. It is the informational content in degree

class coupled with the computational burden of understanding diverse transcripts that could lead

employers to potential use it as an heuristic. This interaction between the signaling effects of degree

class and the use of rules-of-thumb by employers is an interesting avenue for future research.

3.7 Conclusion

In this paper we estimated the effects of university degree class on initial labor market outcomes

using a regression discontinuity design that utilizes university rules governing the award of degrees.

We find sizeable and significant effects for Upper Second degrees and positive but smaller effects

for First Class degrees on wages– we find that a First Class and Upper Second are worth around

£1,000 and £2,040 per annum respectively. However, we do not find significant effects on the

extensive margin of employment. These results are robust to a battery of specification checks.

We interpret these findings using a simple theory of statistical discrimination. Under this

interpretation, groups with higher average scores, higher variance in scores or lower variance in the

noise associated with the degree class signal, would display stronger effects. In additional results,

we show that we indeed find larger effects for men and mathematical degree programmes.

Interesting questions remain for future research. It would be interesting to know if these initial
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differences persist over time. If the degree class were a pure signal, its effects would attenuate over

time as employers learn about workers’ productivities. However, if initial labor market outcomes

persist, we may observe earnings differences over the experience profile.

If employers have access to full transcripts, they should use course marks as finer signals of

ability than degree class. Our findings suggest that employers do not use the full information

available on transcripts and may employ the degree classification to form rules-of-thumb in hiring

and salary decisions. We speculate that this could be due to the computational costs of understanding

heterogenous transcripts across job applicants. We leave these issues for future research.
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Table 3.1: Descriptive Statistics

No. of 

obs

Total First 

Class 

sample

Upper 

Second 

sample

Not 

surveyed

Difference 

significant

(1) - (4)

(1) (2) (3) (4) (5)

Number of 

observations

5912 2649 1136 1406 3263

Female 5912 0.45 0.45 0.48 0.51 ***

Age 5912 22.06 22.03 22.06 22.10

UK national 5912 0.60 0.59 0.66 0.42 ***

Resat any course 5912 0.10 0.03 0.13 0.11

Failed any course 5912 0.06 0.02 0.08 0.06

First Class 5912 0.23 0.39 0.00 0.25

Upper Second 5912 0.57 0.61 0.72 0.53 ***

Lower Second 5912 0.19 0.00 0.28 0.22 **

4th highest mark 5912 65.10 68.63 61.31 65.08

1(4th mark ≥ 70) 5912 0.24 0.41 0.00 0.25

1(4th mark ≥ 60) 5912 0.83 1.00 0.77 0.81 **

Employed 2649 0.85 0.86 0.83

Finance industry 2244 0.38 0.42 0.32

Industry mean 2244 2.45 2.47 2.42

(0.24) (0.23) (0.25)

2244 2.14 2.15 2.11

(0.18) (0.18) (0.19)

2244 2.34 2.35 2.31

(0.18) (0.18) (0.19)

2244 2.48 2.50 2.45

(0.19) (0.18) (0.19)

1389 2.38 2.40 2.35

(0.23) (0.22) (0.24)

Notes: This table shows variable means and standard deviations (in parentheses) where 

applicable. Surveyed students are respondents to the Destination of Leavers from Higher 

Education (DLHE) survey conducted six months after a student graduates. The First 

Class sample includes surveyed students who received either a First Class or Upper 

Second degree and whose fourth highest mark is within 5 marks of 70. The Upper 

Second sample includes surveyed students who received either an Upper Second or 

Lower Second degree and whose fourth highest mark is within 5 marks of 60. First 

Class , Upper Second  and Lower Second  are dummy variables for degree class. 4th 

highest mark  is the fourth highest mark received by the student among all full-unit 

equivalent courses taken. 1(4th mark ≥ 70)  and 1(4th mark ≥ 60)  are dummy variables 

for the fourth highest mark being at least 70 or 60, respectively. Employed  is an 

indicator for whether a student is in employment 6 months after graduation. Self-

employment, voluntary work and further studies are not considered employment. 

Finance industry  is an indicator for working in the finance industry. Industry mean log 

wages are measures of hourly wages in two-digit SIC industry × year × gender cells. 

Two-digit SIC industry wage data is taken from the Labor Force Survey and rebased to 

2005£. ***, **, * significant at the 1, 5 and 10 percent level.

Surveyed

College with 1 year 

experience

College with 3 

years experience

College with 5 

years experience

Industry mean 

excluding finance 

Industry mean log wages (2005£)
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Table 3.6: Specification Checks for First Class Degree Specification

Employed Finance 

industry

Industry 

mean

College 

with 1 

year exp.

College 

with 3 

years exp.

College 

with 5 

years exp.

Industry 

mean 

excl. 

finance

(1) Benchmark 0.011 0.010 0.033** 0.021 0.014 0.018 0.054**

(0.045) (0.074) (0.016) (0.015) (0.015) (0.014) (0.024)

1136 978 978 978 978 978 567

(2) 0.033 0.193 0.018 0.016 0.023 0.006 -0.121

(0.125) (0.211) (0.058) (0.050) (0.052) (0.052) (0.123)

310 270 270 270 270 270 150

(3) 0.146 0.732* 0.199* 0.014 0.037 0.049 -0.206

(0.284) (0.400) (0.106) (0.080) (0.091) (0.085) (1.001)

537 469 469 469 469 469 252

(4) -0.164** 0.251* 0.042** 0.010 0.014 0.006 0.009

(0.065) (0.139) (0.019) (0.017) (0.017) (0.021) (0.071)

730 629 629 629 629 629 345

(5) -0.117*** 0.210*** 0.068*** 0.050*** 0.038** 0.047*** 0.046*

(0.026) (0.057) (0.017) (0.015) (0.015) (0.014) (0.027)

906 774 774 774 774 774 426

(6) -0.017 0.009 0.044*** 0.031*** 0.031** 0.027*** 0.074***

(0.030) (0.053) (0.011) (0.011) (0.013) (0.010) (0.021)

1346 1147 1147 1147 1147 1147 671

(7) -0.012 -0.010 0.025* 0.015 0.015 0.012 0.054***

(0.028) (0.037) (0.013) (0.012) (0.012) (0.010) (0.018)

1552 1322 1322 1322 1322 1322 790

(8) -0.022 0.005 0.038*** 0.032** 0.032** 0.029** 0.061***

(0.024) (0.037) (0.013) (0.013) (0.013) (0.013) (0.017)

1742 1478 1478 1478 1478 1478 884

(9) -0.025 0.038 0.051*** 0.045*** 0.046*** 0.044*** 0.071***

(0.024) (0.043) (0.009) (0.010) (0.010) (0.011) (0.013)

1894 1602 1602 1602 1602 1602 953

(10) -0.018 0.011 0.056*** 0.049*** 0.050*** 0.047*** 0.080***

(0.025) (0.043) (0.007) (0.008) (0.009) (0.009) (0.015)

2048 1735 1735 1735 1735 1735 1045

(11) 0.009 0.054 0.043*** 0.033*** 0.026** 0.030** 0.058**

(0.037) (0.055) (0.013) (0.013) (0.013) (0.012) (0.024)

1136 978 978 978 978 978 567

(12) -0.006 0.108 0.049* 0.032 0.016 0.032 0.010

(0.063) (0.127) (0.026) (0.030) (0.029) (0.027) (0.033)

1136 978 978 978 978 978 567

(13) -0.133*** 0.205** 0.051* 0.029 0.015 0.026 0.011

(0.029) (0.093) (0.029) (0.034) (0.033) (0.032) (0.037)

1136 978 978 978 978 978 567

(14) -0.086* 0.025 -0.002 -0.026 -0.036 -0.024 -0.007

(0.045) (0.144) (0.033) (0.047) (0.044) (0.040) (0.060)

1136 978 978 978 978 978 567

(continued…)

9 marks above and 

below threshold

10 marks above 

and below 

threshold

Industry mean log wages

2nd order 

polynomial

3rd order 

polynomial

4th order 

polynomial

5th order 

polynomial

1 mark above and 

below threshold

2 marks above and 

below threshold

3 marks above and 

below threshold

4 marks above and 

below threshold

6 marks above and 

below threshold

7 marks above and 

below threshold

8 marks above and 

below threshold
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Table 3.6: Specification Checks for First Class Degree Specification (cont.)

Employed Finance 

industry

Industry 

mean

College 

with 1 

year exp.

College 

with 3 

years exp.

College 

with 5 

years exp.

Industry 

mean 

excl. 

finance

(15) Including controls 0.010 0.010 0.032** 0.020 0.013 0.017 0.052**

  for sum of marks (0.044) (0.073) (0.015) (0.015) (0.015) (0.013) (0.022)

1136 978 978 978 978 978 567

(16) Including controls 0.011 0.021 0.034** 0.024 0.017 0.020 0.051**

  for other marks (0.045) (0.073) (0.015) (0.015) (0.015) (0.014) (0.023)

1136 978 978 978 978 978 567

(17) -0.015 0.138 0.031 0.047** 0.035* 0.039** -0.007

(0.063) (0.094) (0.025) (0.021) (0.020) (0.019) (0.040)

701 585 585 585 585 585 367

(18) Excluding marks -0.002 0.008 0.048*** 0.035** 0.036*** 0.028** 0.078***

  around disc. (0.062) (0.094) (0.011) (0.014) (0.012) (0.012) (0.017)

922 791 791 791 791 791 462

UK domicile 

sample

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. 

This table reports specification checks of the benchmark model in Table 3.4, panel C. Each cell reports a 

different regression where the coefficients on First Class  are reported in the first lines, standard errors 

in brackets and number of observations in the third lines.

Industry mean log wages



CHAPTER 3. EFFECTS OF DEGREE CLASS 93

Table 3.7: Specification Checks for Upper Second Degree Specification

Employed Finance 

industry

Industry 

mean

College 

with 1 

year exp.

College 

with 3 

years exp.

College 

with 5 

years exp.

Industry 

mean 

excl. 

finance

(1) Benchmark -0.035 0.118** 0.071*** 0.052*** 0.067*** 0.048** 0.063**

(0.043) (0.058) (0.024) (0.019) (0.019) (0.019) (0.026)

1406 1168 1168 1168 1168 1168 796

(2) -0.004 0.006 0.095** 0.046 0.063 0.042 0.192***

(0.103) (0.117) (0.047) (0.042) (0.042) (0.041) (0.053)

374 310 310 310 310 310 211

(3) -0.144** 0.022 0.054 -0.017 0.008 -0.016 0.142

(0.070) (0.088) (0.053) (0.037) (0.044) (0.034) (0.096)

665 546 546 546 546 546 367

(4) -0.113* -0.014 0.082*** 0.043 0.064** 0.044 0.107**

(0.063) (0.079) (0.031) (0.028) (0.028) (0.029) (0.048)

922 759 759 759 759 759 517

(5) -0.029 0.068 0.093*** 0.061** 0.075** 0.065** 0.100***

(0.060) (0.074) (0.035) (0.031) (0.030) (0.031) (0.030)

1160 954 954 954 954 954 648

(6) -0.018 0.133** 0.080*** 0.059** 0.072*** 0.054** 0.067**

(0.038) (0.064) (0.030) (0.025) (0.025) (0.024) (0.028)

1582 1310 1310 1310 1310 1310 877

(7) -0.002 0.086 0.084*** 0.056*** 0.066*** 0.052*** 0.072***

(0.032) (0.060) (0.026) (0.021) (0.021) (0.020) (0.023)

1750 1448 1448 1448 1448 1448 962

(8) -0.030 0.114** 0.064** 0.042* 0.051** 0.038* 0.035

(0.035) (0.056) (0.028) (0.022) (0.023) (0.021) (0.039)

1925 1602 1602 1602 1602 1602 1047

(9) -0.011 0.095* 0.057** 0.033 0.045** 0.033* 0.033

(0.037) (0.054) (0.026) (0.021) (0.021) (0.020) (0.032)

1964 1637 1637 1637 1637 1637 1069

(10) -0.014 0.055 0.047* 0.021 0.030 0.021 0.024

(0.032) (0.058) (0.024) (0.021) (0.022) (0.020) (0.027)

2003 1672 1672 1672 1672 1672 1092

(11) -0.024 0.081 0.084*** 0.061*** 0.076*** 0.055*** 0.078***

(0.041) (0.075) (0.026) (0.018) (0.019) (0.017) (0.025)

1406 1168 1168 1168 1168 1168 796

(12) 0.006 -0.040 0.125*** 0.090*** 0.106*** 0.080*** 0.138***

(0.053) (0.076) (0.033) (0.023) (0.026) (0.024) (0.028)

1406 1168 1168 1168 1168 1168 796

(13) -0.036 -0.113 0.121*** 0.071** 0.095*** 0.063* 0.158***

(0.066) (0.104) (0.046) (0.033) (0.033) (0.035) (0.042)

1406 1168 1168 1168 1168 1168 796

(14) -0.035 -0.166 0.132*** 0.069** 0.101*** 0.053 0.183***

(0.067) (0.103) (0.045) (0.033) (0.035) (0.033) (0.047)

1406 1168 1168 1168 1168 1168 796

(continued…)

9 marks above and 

below threshold

10 marks above 

and below 

threshold

Industry mean log wages

2nd order 

polynomial

3rd order 

polynomial

4th order 

polynomial

5th order 

polynomial

1 mark above and 

below threshold

2 marks above and 

below threshold

3 marks above and 

below threshold

4 marks above and 

below threshold

6 marks above and 

below threshold

7 marks above and 

below threshold

8 marks above and 

below threshold



CHAPTER 3. EFFECTS OF DEGREE CLASS 94

Table 3.7: Specification Checks for Upper Second Degree Specification (cont.)

Employed Finance 

industry

Industry 

mean

College 

with 1 

year exp.

College 

with 3 

years exp.

College 

with 5 

years exp.

Industry 

mean 

excl. 

finance

(15) Including controls -0.037 0.105* 0.065** 0.047** 0.063*** 0.043** 0.060**

  for sum of marks (0.042) (0.059) (0.026) (0.020) (0.020) (0.020) (0.027)

1406 1168 1168 1168 1168 1168 796

(16) Including controls -0.043 0.117* 0.071*** 0.052*** 0.067*** 0.046** 0.062**

  for other marks (0.051) (0.060) (0.026) (0.020) (0.020) (0.020) (0.027)

1406 1168 1168 1168 1168 1168 796

(17) -0.083* 0.033 0.091*** 0.076*** 0.087*** 0.064*** 0.102***

(0.042) (0.059) (0.023) (0.021) (0.023) (0.022) (0.032)

974 792 792 792 792 792 574

(18) Excluding marks -0.036 0.214*** 0.077*** 0.055*** 0.068*** 0.056*** 0.055*

  around disc. (0.040) (0.033) (0.022) (0.015) (0.014) (0.017) (0.029)

1182 978 978 978 978 978 654

UK domicile 

sample

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. 

This table reports specification checks of the benchmark model in Table 3.5, panel C. Each cell reports a 

different regression where the coefficients on Upper Second are reported in the first lines, standard 

errors in parentheses and number of observations in the third lines.

Industry mean log wages
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Table 3.8: RD Estimates by Gender

(1) (2) (3) (4) (5)

Industry 

mean

College 

with 1 

year 

experience

College 

with 3 

years 

experience

College 

with 5 

years 

experience

Industry 

mean excl. 

finance

First Class 0.059*** 0.048*** 0.048*** 0.048*** 0.054

(0.013) (0.013) (0.013) (0.013) (0.050)

Obs 549 549 549 549 290

First Class -0.022 -0.032 -0.032 -0.028 -0.034

(0.029) (0.024) (0.023) (0.022) (0.057)

Obs 429 429 429 429 277

Upper Second 0.084 0.081 0.089* 0.077 0.082

(0.059) (0.050) (0.049) (0.050) (0.060)

Obs 618 618 618 618 397

Upper Second 0.052 0.034 0.036 0.029 0.062

(0.042) (0.041) (0.037) (0.038) (0.075)

Obs 550 550 550 550 399

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard 

errors are clustered by marks

Female

Male

Panel A: First Class Degree

Female

Male

Panel B: Upper Second Degree
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Table 3.9: RD Estimates by Programme Admissions Math Requirements

(1) (2) (3) (4) (5)

Industry 

mean

College 

with 1 

year 

experience

College 

with 3 

years 

experience

College 

with 5 

years 

experience

Industry 

mean excl. 

finance

First Class 0.063*** 0.045** 0.039** 0.039 0.124***

(0.015) (0.021) (0.019) (0.024) (0.047)

Obs 576 576 576 576 259

First Class 0.038 0.002 -0.002 0.003 0.034

(0.036) (0.038) (0.041) (0.037) (0.031)

Obs 402 402 402 402 308

Upper Second 0.146*** 0.107*** 0.118*** 0.091*** 0.171*

(0.051) (0.030) (0.031) (0.028) (0.100)

Obs 550 550 550 550 304

Upper Second -0.004 -0.011 0.005 -0.004 -0.007

(0.042) (0.032) (0.031) (0.036) (0.031)

Obs 618 618 618 618 492

Notes: ***, **, * significant at the 1, 5 and 10 percent level. Standard errors 

are clustered by marks

No math requirement

Panel A: First Class Degree

Panel B: Upper Second Degree

At least A level maths

No math requirement

At least A level maths
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Figure 3.1: Expected Degree Classification and Fourth Highest Marks

 

 

 (a) Expected First Class degree, 10 marks above and below 70 

 

(b) Expected Upper Second degree, 10 marks above and below 60 
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Figure 3.2: Counting Compliers

 

 

 (a) Schematic 

  
Assignment variable is above 

threshold 

  0 1 

Degree Class 

0 
Never takers + 

Compliers 
Never takers 

1 Always takers 
Always takers 

+ Compliers 

 

(b) First Class sample (N = 1,136) 

  4th highest mark is above 70  

  0 1  

First Class  

0 652 44 
Always Takers = 3% = 

23/(23+652) 

Never Takers = 10% = 

44/(44+417) 

Compliers = 87% 

1 23 417 

 

(c) Upper Second sample (N = 1,406) 

  4th highest mark is above 60  

  0 1  

Upper 

Second 

0 307 87 
Always Takers = 5% = 

16/(16+307) 

Never Takers  = 8% = 

87/(87+996) 

Compliers = 87% 

1 16 996 

 

  

Notes: Compliers are students who received their degree class because their 4th highest marks crossed the relevant threshold.
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Figure 3.3: Histogram of Marks

 

 

(a) Highest marks 

 

(b) Second highest marks 

 

(c) Third highest marks 
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Figure 3.3: Histogram of Marks (cont.)

 

 

(d) Fourth highest marks 

 

(e) Fifth highest marks 

 

(f) Sixth highest marks 
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Figure 3.4: Expected Industry Mean Log Wages on Fourth Highest Marks

 

 

 (a) 10 marks above and below 70 

 

(b) 10 marks above and below 60 
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Table C.1: Mapping From Course Marks to Final Degree Class

Final degree class Course grade requirements

5 marks of 70 or above or 

4 marks of 70 or above and aggregate marks of at least 590

5 marks of 60 or above or 

4 marks of 60 or above and aggregate marks of at least 515

5 marks of 50 or above or 

4 marks of 50 or above and aggregate marks of at least 440

First Class Honors

Upper Second Class

Lower Second Class

Notes: Institutional rules governing award of degree class taken from  

http://www.lse.ac.uk/resources/calendar/academicRegulations/BA-

BScDegrees.htm 
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Table C.2: Top 15 Industries Ranked by Total Share of Employment

Industry (LFS, SIC two-digit) Industry mean 

log wages 

(2005£)

Total First 

Class

Upper 

Second

Lower 

Second 

and 

below

financial ex insurance and pension 2.58 38.10 47.90 36.28 31.00

legal and accounting activities 2.52 16.22 21.21 14.43 15.15

public admin, defence, social sec 2.35 7.44 5.85 8.52 6.29

head offices; management 

consultancies

2.51 6.51 8.04 6.23 5.36

insurance, reinsurance and pension 2.45 4.55 4.75 3.79 6.53

education 2.36 3.88 2.01 4.97 3.03

advertising and market research 2.48 2.01 1.10 2.37 2.10

security & investigation activities 1.99 1.74 0.37 2.05 2.56

office admin, support and other 2.15 1.52 0.18 1.58 3.03

retail trade, except vehicles 1.88 1.47 0.73 1.58 2.10

auxiliary to financial and insuranc 2.55 1.34 1.46 1.50 0.70

other prof, scientific and technical 2.22 1.07 0.73 1.26 0.93

publishing activities 2.40 0.85 0.37 0.87 1.40

employment activities 2.24 0.80 0.18 1.18 0.47

human health activities 2.24 0.80 0.18 0.87 1.40

Share of employment

Notes: This table shows the industry mean log wages for all skills and experience groups. 

Industries are ranked by total share of employment.
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Table C.3: Summary Statistics by Groups

4th Mark 

mean

4th Mark 

S.D.

4th Mark 

mean

4th Mark 

S.D.

Male 67.56 6.00 62.33 4.47

Female 66.60 5.40 62.32 4.32

At least A level maths 68.74 6.57 62.33 4.75

No math requirement 65.39 4.07 62.32 4.06

Notes: This table shows summary statistics by gender and programme 

characteristics.

By gender

By programme math requirements

First Class Sample Upper Second 
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Table C.4: Degree Programmes

department programme No. of 

students

Math 

required

Accounting BSc in Accounting and Finance 367 0

Anthropology BA in Anthropology and Law 20 0

Anthropology BA in Social Anthropology 26 0

Anthropology BSc in Social Anthropology 63 0

Economic History BSc in Economic History 72 0

Economic History BSc in Economic History with Economics 8 1

Economic History BSc in Economics and Economic History 30 1

Economics BSc in Econometrics and Mathematical 

Economics

23 1

Economics BSc in Economics 510 1

Economics BSc in Economics with Economic History 11 1

Employment Relations 

and Organisational 

Behaviour

BSc in Human Resource Management and 

Employment Relations

32 0

Employment Relations 

and Organisational 

Behaviour

BSc in Industrial Relations and Human 

Resource Management

7 0

Geography & 

Environment

BA in Geography 65 0

Geography & 

Environment

BSc in Environmental Policy 12 0

Geography & 

Environment

BSc in Environmental Policy with Economics 12 1

Geography & 

Environment

BSc in Geography and Population Studies 2 0

Geography & 

Environment

BSc in Geography with Economics 53 1

Government BSc in Government 68 0

Government BSc in Government and Economics 96 1

Government BSc in Government and History 48 0

International History BA in History 89 0

International History BSc in International Relations and History 60 0

International Relations BSc in International Relations 132 0

Management Science 

Group

BSc in Management Sciences 78 1

Managerial Economics 

and Strategy Group

BSc in Management 132 1

Mathematics BSc in Mathematics and Economics 126 1

Philosophy BA in Philosophy 2 0

(continued…)
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Table C.4: Degree Programmes (cont.)
department programme No. of 

students

Math 

required

Philosophy BSc in Philosophy 5 0

Philosophy BSc in Philosophy and Economics 70 1

Philosophy BSc in Philosophy, Logic and Scientific 

Method

30 0

Social Policy BSc in Population Studies 1 0

Social Policy BSc in Social Policy 21 0

Social Policy BSc in Social Policy and Administration 5 0

Social Policy BSc in Social Policy and Criminology 11 0

Social Policy BSc in Social Policy and Economics 11 1

Social Policy BSc in Social Policy and Government 2 0

Social Policy BSc in Social Policy and Sociology 11 0

Social Policy BSc in Social Policy with Government 20 0

Social Policy BSc in Social Policy with Social Psychology 1 0

Social Policy BSc in Social Policy, Criminal Justice and 

Psychology

10 0

Sociology BSc in Sociology 77 0

Statistics BSc in Actuarial Science 137 1

Statistics BSc in Business Mathematics and Statistics 93 1

Notes: N=2,649. Taken from 

http://www2.lse.ac.uk/study/undergraduate/degreeProgrammes2013/degreeProgrammes20

13.aspx. Math required  is a dummy variable for whether the programme requires A-level 

maths for admissions. 
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Table C.5: Number of Modules Taken by Students in Department

Department No. of Modules

Accounting 100

Anthropology 90

Economic History 99

Economics 143

Employment Relations and Organisational Behaviour 76

Geography & Environment 84

Government 167

International History 125

International Relations 104

Management Science Group 46

Managerial Economics and Strategy Group 72

Mathematics 54

Philosophy 104

Social Policy 98

Sociology 86

Statistics 77

Notes: Number of different modules taken by students in the department. 

Students can take modules offered by other departments



Chapter 4

Rise of the Machines: The Effects of

Labor-saving Innovations on Jobs and

Wages

Abstract. We study the labor market effects of increased automation. We build a model in

which firms optimally design machines, train workers, and assign these factors to tasks. Borrowing

concepts from computer science and robotics, the model features tasks which are difficult from an

engineering perspective but easy for humans to carry out due to innate capacities for functions like

vision, movement, and communication. In equilibrium, firms assign low-skill workers to such tasks.

High skill workers have a comparative advantage in tasks which require much training and are

difficult to automate. Workers in the middle of the skill distribution perform tasks of intermediate

difficulty on both dimensions. When the cost of designing machines falls, firms adopt machines

mainly in tasks that were previously performed by middle-skill workers. Occupations at both the

bottom and the top of the wage distribution experience employment gains. The wage distribution

becomes more dispersed near the top but compressed near the bottom. As design costs fall further,

only the most skilled workers enjoy rising skill premiums, and an increasing fraction of the labor

force is employed in jobs that require little or no training. The model’s implications are consistent

with recent evidence of job polarization and a hollowing-out of the wage distribution. In addition,

the model yields novel predictions about trends in occupational training requirements that are

consistent with evidence we present.

109
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4.1 Introduction

How does labor-replacing technical change affect the allocation of workers to jobs, and what

are its effects on the wage distribution? To answer these questions, we build a model guided

by two insights. First, when technologies are available that can carry out a wide range of tasks

autonomously, the allocation of workers and machines to tasks will be determined by comparative

advantage.1 Second, there are tasks that seem easy to any worker but building a machine capable

of performing them may be costly if not impossible; occupations such as waiters, taxi drivers, or

housekeepers are intensive in the use of vision, movement, and communication, which are complex

functions from an engineering point of view. The two insights combine to generate an equilibrium

in which workers in the middle of the skill distribution are at the greatest risk of being replaced by

machines.

We model labor-replacing technical change as an exogenous fall in the cost of making machines,

resulting from innovations that facilitate the automation of a wide range of tasks. Examples

include the electrification of manufacturing,2 the information and communication technology (ICT)

revolution, and recent advances in robotics and artificial intelligence.3 Responding to the fall in

machine design costs, firms adopt machines in tasks that were previously performed by middle skill

workers. Low skill workers’ jobs might also be subject to automation, but to a lesser degree. The

reallocation of workers causes occupations at both the bottom and the top of the wage distribution

to experience employment gains—in short, job polarization. The wage distribution becomes more

dispersed near the top but compressed near the bottom. As machine design costs drop further, only

the most skilled workers enjoy rising skill premiums, and an increasing fraction of the labor force

is employed in jobs that require little or no training.

We borrow from organizational economics in modeling the production process. Following

Garicano (2000), we assume that production requires knowledge that must be possessed by workers

or embodied in machines. The knowledge intensity of a task indicates the amount of knowledge

required to attain a given level of productivity. The cost of building a machine capable of performing

a task is determined by knowledge intensity alone. For workers however, the amount of training

required may differ even across two tasks of equal knowledge intensity: in some cases people draw

on innate capabilities, as when driving a car safely through traffic, but in other cases knowledge

must be acquired, as when solving differential equations. The training intensity of a task indicates

the amount of training required for a worker to perform it, holding constant the task’s knowledge

intensity and worker skill.

The distinction between knowledge intensity and training intensity is critical for explaining why

middle skill workers are most affected by increasing automation. Skill in our model refers to the

ease with which workers acquire task-specific knowledge. As workers at the bottom of the skill

distribution have high learning costs, their comparative advantage is in tasks of low training intensity.

These tasks may nevertheless be highly knowledge-intensive, as in the case of communication

1See Simon (1960, pp.23-24).
2Electrification facilitated automation because electric motors could be arranged much more flexibly than steam

engines (Boff 1967, p.513).
3We provide a list of examples for recent progress in these areas in Section 4.2.
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in natural language. Therefore, low skill workers face little competition from machines. High

skill workers’ comparative advantage is in highly training- and knowledge-intensive tasks, where

automation is not impossible but too expensive. Middle skill workers perform tasks that are training

intensive and of intermediate knowledge intensity. It is precisely in these tasks that a fall in machine

design costs increases the incentives for automation the most, inducing firms to substitute machines

for middle skill workers.

Our model features a continuum of worker types as well as a continuous task space, building on

Costinot and Vogel (2010). This allows us to characterize the effects of labor-saving innovations on

the entire wage distribution, and we are able to derive predictions about changes in both between-

and within-group wage inequality.4 Existing task-based models in the wage inequality literature

either assume a small number of worker types and a continuum of tasks, or a continuum of types

and a small number of tasks. The disadvantage of either approach is that by construction, relative

wages within large sub-groups of workers are unaffected by technical change.5 Our assumptions

allow us to characterize the effects of labor-saving innovations on the entire wage distribution, and

we are able to derive predictions about changes in both between- and within-group wage inequality.

At the task level, all factors are perfect substitutes. However, we can still talk about the extent

to which technology complements a given skill type, because tasks are q-complements in the

production of the final good.6 The mechanism works as follows. When it gets cheaper to make

machines, firms respond in two ways. First, they upgrade existing machines. Second, they adopt

machines in tasks previously performed by workers. The first effect on its own would lead to a

rise in wages for all workers, because the increase in machines’ task output raises the marginal

product of all other tasks; moreover, relative wages would remain unchanged. The second effect,

however, forces some workers to move to different tasks, putting downward pressure on their wages.

Since middle skill workers are most likely to be displaced by increased automation, their wages

relative to low skill and high skill workers will decline.7 Thus, whether technology substitutes for

or complements a worker of given skill type (in terms of relative wage effects) will depend on that

worker’s exposure to automation, which is endogenous in our model.

The model’s implications are consistent with a growing empirical literature arguing that recent

technical change has led to polarization of labor markets in the US and Europe.8 Modern ICT

appears to substitute for workers in middle wage jobs, while complementing labor in high and low

wage jobs, thus causing the observed reallocation of employment and the hollowing-out of the wage

distribution.9 Our model provides a precise mechanism explaining these findings. In particular,

4In the wage inequality literature, between-group inequality refers to differences in mean wages across groups
defined by observable characteristics such as education and experience. Within-group inequality refers to wage dispersion
within such groups.

5To see this for the case of a continuum of workers and a discrete set of tasks, consider two distinct workers who are
both assigned to the same task and remain so after a change in technology. The two workers’ relative wage will stay
constant as they both face the exact same change in the price of the task they perform.

6This means that the price of a task increases in the output of all other task.
7But middle skill workers’ wages will not decline absolutely if the first effect dominates.
8Job polarization has first been documented for the US by Autor, Katz, and Kearney (2006), for the UK by Goos

and Manning (2007), and for European economies by Goos, Manning, and Salomons (2009).
9See Autor, Levy, and Murnane (2003), Michaels, Natraj, and Van Reenen (forthcoming), and Goos, Manning, and

Salomons (2011) for evidence favoring the technological explanation.
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the model suggests that the ICT revolution has caused job polarization because it has facilitated a

more wide-ranging automation of tasks. A corollary is that job polarization should not be a unique

consequence of the recent ICT revolution. Indeed, Gray (2011) finds that electrification in the US

during the first half of the 20th century led to a fall in the relative demand for middle skill workers.

Our theory delivers several novel predictions about trends in occupational training requirements.

In the model we distinguish between general skill and task-specific knowledge. The former refers to

the ease with which a worker acquires the latter. We gauge the amount of task-specific knowledge

required in an occupation using measures of training intensity from the Dictionary of Occupational

Titles (DOT) and the O*NET database. This allows us to measure training requirements in the US

at two points in time, 1971 and 2007.

We find empirical support for the model’s prediction of a polarization in training requirements,

i.e. an increase in the employment shares of jobs requiring minimal and very high levels of training.

Furthermore, we show that occupations that initially had intermediate training intensities experi-

enced a fall in training requirements. The model provides a ready explanation: new technologies

induced firms to automate the subset of tasks in a given occupation which required intermediate

training by workers. We also find that almost all occupations experienced an increase in mean

years of schooling, irrespective of changes in training requirements. This is in line with the model’s

prediction about an increase in skill supply. We find that employment growth was less in occupa-

tions that experienced larger decreases in training requirements, as should be the case if automation

causes training requirements to fall. Finally, we show that changes in occupational wage premia are

positively correlated with changes in training requirements, again consistent with the model.

The paper’s main contributions may be summarized as follows. First, we present the first model

of labor-saving technical change that allows firms to choose which tasks to automate, as well as

featuring endogenous machine design and worker training choices. Second, to the best of our

knowledge our model is the first to generate job polarization endogenously. Existing models10

usually assume that technology substitutes for middle skill workers while complementing high and

low skill ones—this is instead a result in our paper. Third, we provide comparative static results

for the entire wage distribution, for instance we derive predictions about the effects of automation

on wage inequality among high skill workers. Finally, we derive and test novel predictions about

trends in occupational training requirements. The connection between technical change and training

seems to have been neglected in the empirical literature (Handel 2000),11 but our model suggests

that the two topics are intimately linked.

The plan of the paper is as follows. The next subsection reviews related literature. Section 4.2

motivates the conceptual framework which underlies our modeling of tasks, and relates our frame-

work to the one used by Autor, Levy, and Murnane (2003). Section 4.3 presents and solves the

model. Section 4.4 discusses comparative statics, in particular how job assignment and the wage

distribution change as a response to increased automation. We also present comparative statics for

a change in skill supplies. Section 4.5 presents two extensions to the model: endogenous capital

10See e.g. Autor, Levy, and Murnane (2003), Autor, Katz, and Kearney (2006), Acemoglu and Autor (2011), Autor
and Dorn (2013), and Cortes (2012).

11Not so in the theoretical literature on wage inequality—see Section 4.1.1.
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accumulation and a fixed cost of technology adoption. Section 4.6 confronts the model’s prediction

with existing empirical evidence and takes novel implications of the model to the data. Section 4.7

concludes. All proofs are contained in the appendix.

4.1.1 Related literature

We build on the literature on labor-saving innovations. Zeira (1998) presents a model in

which economic development is characterized by the adoption of technologies that reduce labor

requirements relative to capital requirements. Over time, an increasing number of tasks can be

produced by new, more capital-intensive technologies. In an extreme example which is closely

related to our paper, new technologies only use capital, while old ones only use labor. We extend

this type of setting by explicitly modeling the characteristics of tasks and thus the direction of

technical change, as well as by allowing for heterogenous workers. Holmes and Mitchell (2008)

present a model of firm organization where the problem of matching workers and machines to

tasks is solved at the firm level. Their model admits a discrete set of worker types and they do not

consider technical change.

The paper is related to a wider theoretical literature that uses assignment models to investigate

the effects of technical change on the role of workers in the production process and on the wage

distribution. One strand of papers analyzes the matching of workers with technologies of different

vintages. Wage inequality results for instance when workers must acquire vintage-specific skills

(Chari and Hopenhayn 1991) or machines are indivisible (Jovanovic 1998). Furthermore, skill

or unskill bias of technical change can arise when new technologies require different learning

investments than old ones, and when learning costs are a function of skill (Caselli 1999). We

abstract from the issue of workers having to learn how to operate new technologies and focus

instead on the problem of assigning workers and machines to tasks, following a recent literature that

has emphasized a task-based approach to labor markets (Autor 2013). The interaction of workers

and machines is nevertheless present in our model: since tasks are assumed to be q-complements,

the efficiency of machines affects the marginal products of all workers in the economy.

We adopt the model of task production developed by Garicano (2000) in his theory of firm

organization and knowledge hierarchies. Garicano and Rossi-Hansberg (2006) use this model to

analyze how hierarchical organizations are affected by a decline in communication and knowledge

acquisition costs, another consequence of the ICT revolution. Our focus is instead on labor-saving

innovations, and we keep the model simple by not allowing hierarchies of multiple layers.

Finally, on the methodological side our paper is in the tradition of Ricardian theories of interna-

tional trade, combining aspects of Dornbusch, Fischer, and Samuelson (1977) and Costinot and

Vogel (2010).12 While these papers characterize equilibrium allocations given factor endowments

and productivity levels, our focus is on endogenizing productivity differences, using modeling

techniques similar to those of Costinot (2009). We shed light on the sources of comparative

advantage between differently-skilled workers and machines.

12Acemoglu and Autor (2011) adopt the model of Dornbusch, Fischer, and Samuelson (1977) to characterize the
wage effects of exogenous job polarization, assuming three distinct skill types.
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4.2 Motivating the Model’s Assumptions

Researchers in artificial intelligence, robotics, and cognitive science have long been aware that

some abilities that humans acquire quickly at an early age rely in fact on highly complex functions

that are difficult if not impossible to reverse-engineer. Steven Pinker notes that “[the] mental

abilities of a four-year-old that we take for granted—recognizing a face, lifting a pencil, walking

across a room, answering a question—in fact solve some of the hardest engineering problems

ever conceived” (Pinker 1994, p.192). In contrast, many abilities that humans must painstakingly

acquire, such as mastery in arithmetic, are trivial from an engineering perspective. This insight

has become known as Moravec’s paradox: “...it is comparatively easy to make computers exhibit

adult-level performance in solving problems on intelligence tests or playing checkers, and difficult

or impossible to give them the skills of a one-year-old when it comes to perception and mobility”

(Moravec 1988, p.15).

Moravec resolves the paradox by considering the objective or intrinsic difficulty of a task, for

instance the amount of information processing required, or the degrees of freedom and dexterity

necessary to carry out a certain physical action. While the average human will find it somewhat

challenging to divide 105 by 14 in his head, he has no trouble crossing a crowded public square on

foot without constantly bumping into people. However, in terms of intrinsic difficulty the latter task

is much harder than the former.13 The reason that we are usually not aware of this fact is that we

rely on innate abilities14 for functions like movement or perception, but have no such advantage

when it comes to abstract tasks like arithmetic.15

In our framework, a task’s intrinsic difficulty is measured by its knowledge intensity.16 For-

mally, more-knowledge-intensive tasks require a larger amount of knowledge for a given level of

productivity. Solving the division exercise mentioned above is a task with low knowledge intensity,

because the required procedure can easily be codified. Crossing the crowded public square, in

contrast, requires a vast amount of knowledge about movement and coordination, not to mention

the ability to correctly anticipate the actions of the people around.

Because machines are made of inanimate matter which is initially devoid of knowledge,17 it is

13On the challenge of making walking robots, to say nothing of visual perception, Spear (2001, p.336) comments that
“[in] practice this is very difficult to achieve as the leg position requires continuous sensing to ensure safe positioning and
large amounts of real time computing to ensure that the robot moves without overbalancing—something the human brain
achieves with ease (when sober anyway!).”

14“Innateness” of a certain skill does not need to imply that humans are born with it; instead, the subsequent
development of the skill could be genetically encoded. For a critical discussion of the concept of innateness, see Mameli
and Bateson (2011).

15Moravec (1988, pp.15-16) provides an evolutionary explanation for this: “...survival in the fierce competition over
such limited resources as space, food, or mates has often been awarded to the animal that could most quickly produce a
correct action from inconclusive perceptions. Encoded in the large, highly evolved sensory and motor portions of the
human brain is a billion years of experience about the nature of the world and how to survive in it. The deliberate process
we call reasoning is, I believe, the thinnest veneer of human thought, effective only because it is supported by this much
older and much more powerful, though usually unconscious, sensorimotor knowledge. We are all prodigious olympians
in perceptual and motor areas, so good that we make the difficult look easy. Abstract thought, though, is a new trick,
perhaps less than 100 thousand years old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems
so when we do it.”

16While in reality the intrinsic difficulty of a task would have to be assessed on multiple dimensions, we adopt a
one-dimensional concept for simplicity.

17Of course, many materials have productive properties—take for instance copper with its electrical conductivity; but
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knowledge intensity alone that determines the difficulty of building a machine capable of performing

a given task. However, the amount of training a human worker requires may differ even across two

tasks of equal knowledge intensity. This is because she can draw on a vast endowment of knowledge

providing her with certain innate capabilities, although for the most part this knowledge may be

unconscious or tacit. The presence of such knowledge endowments (either innate or acquired

early) applicable to a wide range of tasks suggests introducing a second dimension into our task

framework, which we call training intensity: more-training-intensive tasks require more resources

for equipping a human worker with a given level of knowledge specific to the task. In contrast to

knowledge intensity, which refers to an objective understanding of knowledge requirements, the

training intensity of a task is an attribute that only arises in the context of a worker performing a

task.

Table 4.1 gives an overview of our task framework and contains examples. Here we discuss a

subset of these. First, compare the task of driving a train with that of driving a car. The former takes

place in a well-controlled environment, unlike the latter, which has therefore higher knowledge

intensity.18 But to humans, the two tasks may not seem all that different in terms of ‘difficulty’—the

uncertainties of navigating through road traffic do not pose an extraordinary challenge since many

of the key functions they require, such as vision, are innate.

Second, contrast the task of grading an exam consisting of multiple choice questions (MCQs)

with that of marking an essay-based test. MCQs allow only for a limited set of possible answers, and

the recipe for grading them is trivial (but the task is still somewhat training intensive as it requires the

ability to read and add up marks). In contrast, grading an essay may involve assessing a large variety

of approaches to the questions posed. Clearly, the latter is more knowledge-intensive than the former.

But in this case, it is also more training-intensive: most humans will find grading an essay the

more difficult task, perhaps even impossible to complete in the absence of subject-specific training.

Driverless trains and machine-grading of MCQs have been around much longer than driverless

cars and automatic grading of essays, both appearing only recently (Markoff 2010, Shermis and

Hamner 2012). We will show the model to be consistent with this fact.

We are not the first to employ a multi-dimensional task space to analyze the impact of technical

change on jobs and wages. In particular, Autor, Levy, and Murnane (2003, henceforth ALM)

categorize tasks as routine and non-routine on one dimension, and as analytic, interactive and

manual on another. They call a task routine “if it can be accomplished by machines following

explicit programmed rules” (ibid., p.1283). In contrast, non-routine tasks are “tasks for which rules

are not sufficiently well understood to be specified in computer code and executed by machines”

(ibid.). The terms analytic, interactive and manual are used to characterize both routine and

non-routine tasks in more detail.

While ALM’s framework addresses many of the issues that we have discussed here, we believe

that our own framework offers several advantages. First, it is more general, as it avoids specific

attributes such as interactive and manual. Second, it is not context-dependent. Machine capabilities

the ‘knowledge’ contained in materials is usually highly specific and limited.
18We consider only the process of driving the train, not the engineering knowledge and familiarity with railway

infrastructure that train drivers posses in practice.
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Table 4.1: Two-Dimensional Task Framework, Examples

Knowledge intensity
− +

Training intensity − assembly driving a car
driving a train language

waiting tables

+ arithmetic grading essays
bookkeeping research
grading MCQs strategic decision making

constantly expand, so we prefer to avoid a task construct that depends on the current state of

technology.19 Thus, knowledge intensity is an objective, time-invariant measure of the information

required to do a particular task, irrespective of whether a machine or a human does it. Third, the

concept of training intensity is absent in ALM. Finally, ALM’s framework implicitly leaves firms

little choice to automate a given task, as routine tasks are assumed to be automated, and non-routine

tasks are not. Our framework instead allows us to endogenize this choice.

Notwithstanding these differences, it is still possible to interpret ALM’s empirical results in

light of our framework. For instance, their measure of routine-ness might in practice be inversely

related to knowledge intensity. We will return to this issue when discussing how our model matches

up to empirical findings in Section 4.6.

While we believe that our task framework is an improvement over existing literature and that

it generates useful and novel insights, there are some limitations. For instance, technical change

often leads to the introduction of new tasks and activities (flying airplanes, writing software).

While our framework in principle allows for an endogenous task space, it does not suggest in what

way technology might affect the set of tasks in the economy. Furthermore, automation does not

necessarily involve machines replicating exactly the steps that humans carry out in completing a

given task. Instead, a task can be made less knowledge-intensive by moving it to a more controlled

environment.20 Our framework does not explicitly allow for this possibility, but our conclusions

should still be broadly correct if the cost of moving a process to a more controlled environment is

increasing in its knowledge intensity. Finally, technological change tends to cause organizational

change, but to keep the analysis tractable and to be able to focus on a single mechanism, we omit

firm organization from the model.

What we do not view as a limitation is the assumption that machines could in principle perform

any task. There are three reasons. First, comparative advantage ensures that some tasks will

always be performed by humans, so that the model will be consistent with the fact that some

19To give an example, Levy and Murnane (2004) consider taking a left-turn on a busy road a nonroutine task unlikely
to be automated in the foreseeable future. But less than a decade later, the driverless car has become a reality.

20See ALM (p.1283) and Simon (1960, pp.33-35). A recent example is the new sorting machine employed by the
New York Public Library (Taylor 2010).
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tasks are not performed by machines in reality. Second, we can parameterize the model such that

machine productivity levels in some tasks are vanishingly small. Third, and most importantly,

recent technological progress suggests that machine capabilities might be expanding quite rapidly.

Brynjolfsson and McAfee (2011, p.14) argue that machines can potentially substitute for humans in

a much larger range of tasks than was thought possible not long ago, citing recent advances in pattern

recognition (driverless cars), complex communication (machine translation), and combinations of

the two (IBM’s successful Jeopardy contestant Watson). Markoff (2012) provides an account of

the increased flexibility, dexterity, and sophistication of production robots.21 For our model to be

useful as a guide to medium-term future developments in the economy, we deem it prudent to make

the most conservative assumption about what tasks are safe from automation.

4.3 The Model

4.3.1 Overview

The model has one period that we interpret as a worker’s lifetime.22 There is a unique final

good that is produced using a continuum of intermediate inputs, or tasks. These tasks are performed

by workers of different skill levels and machines. Crucially, all factors of production are perfect

substitutes at the task level. Although this may seem a strong assumption, the loss of generality

is not substantial provided all tasks are essential in producing the final good, a condition that we

shall maintain throughout. In fact, when tasks are imperfect substitutes in producing the final good,

factors of production will appear to be imperfect substitutes in the aggregate.

Labor services as well as the economy’s capital stock are supplied inelastically and all firms

are perfectly competitive. Intermediate firms hire workers or capital to produce task output that is

then sold to final good firms. Factors’ productivity is not a given: intermediate firms must train

workers, and must transform generic capital into task-specific machines in order for these factors to

be capable of performing tasks.

Technologies for worker training and machine design are public knowledge. Training levels

and machine quality are choices faced by the intermediate firms which, unlike the decision of what

factor to hire, are made independently of factor prices and task prices. This is because training and

design costs are assumed to be in units of factor inputs and not in units of the final good. Optimal

training and design choices, and hence productivity, result instead from the properties of tasks

and their interplay with attributes of the factors of production. Characterizing these choices is

subject of the Section 4.3.5. The result is a productivity schedule that determines comparative

advantage between factors and across tasks. This then allows us to apply standard results to solve

for the equilibrium assignment of factors to tasks in Section 4.3.6. Thus, we proceed by a kind of

‘backward induction’: first, we solve for factors’ productivity conditional on firms’ hiring these

factors; and second, we characterize hiring choices, using the results of the first step.

21An overview of recent developments in robotics research can be found in Nourbakhsh (2013).
22We discuss a dynamic (multi-period) version of the model in Section 4.5.1.
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4.3.2 The Task Space

Tasks differ along two dimensions, knowledge intensity, denoted by σ ∈ Σ, and training

intensity, denoted by τ ∈ T . The higher is a task’s σ, the more knowledge is required for a worker

or a machine to attain a given level of productivity. The higher is a task’s τ , the more resources are

required to equip a worker with a given level of knowledge. Recall that the concept of knowledge

intensity refers to an objective understanding of knowledge requirements, for instance, the amount

of information processing required to perform a given task. In contrast, the training intensity of a

task is an attribute that only arises in the context of a worker performing a task.

Completion of tasks results in intermediate outputs that are used to produce the final good.

Let Y denote the output of the unique final good, and let task output be denoted by y(σ, τ). For

tractability, we use a Cobb-Douglas production function,

log Y =

∫
Σ×T

[log y(σ, τ)] dB(σ, τ).

The weighting function B(σ, τ) determines the relative importance of each task in final good

production. To ensure constant returns to scale we assume
∫

Σ×T dB(σ, τ) = 1.

Throughout most of our analysis we make the following, simplifying assumption about the

domains of the parameters τ and σ.

Assumption 1 τ ∈ T = {0, 1}, σ ∈ Σ = [σ, σ], σ > 0

Under this assumption, there is a set of tasks for which τ = 0, so that knowledge acquisition

costs are zero, or equivalently, all workers have an innate ability to perform these tasks. We will call

these tasks ‘innate ability tasks’. We will refer to the tasks with τ = 1 as ‘training-intensive tasks’.

Within both these sets of tasks, knowledge intensity varies continuously. We will state explicitly

when Assumption 1 is imposed.

4.3.3 Worker Training, Machine Design, and Technical Change

The technologies for training workers and designing machines are as follows. Intermediate

firms must pay τ/s efficiency units of labor to equip a worker of skill s with a unit measure of

knowledge. Higher skilled workers have lower learning costs. Higher values of τ imply a larger

learning cost, holding knowledge and skill constant.

Similarly, to transform one unit of capital into a machine equipped with a unit measure of

knowledge, intermediate firms must pay cK ≡ 1/sK units of capital. We will refer to cK as the

machine design cost, which is the main exogenous driving force in our model. As a matter of

notation, it will be more convenient to work with sK , ‘machine skill’, instead of cK . Notice that a

tasks’s τ does not affect design costs, by definition.

Workers’ and machines’ productivity depends on their task-specific knowledge as well as a

task-neutral productivity term, which shifts a factor’s productivity proportionately in all tasks. Let

task-neutral productivity of machines be denoted by AK .
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Our model admits exogenous technical change in the form of a decrease in cK or an increase

in AK , although we will mainly be concerned with the former. A fall in cK represents any

technological advance that lowers the cost of automation of a wide range of tasks, typically a

combination of improved software (programming languages, algorithms) and improved hardware

(CPU speed, robotics). A rise in AK represents improved efficiency of existing machinery. In

reality, the forces affecting the two parameters may not always be mutually exclusive. This does

not impair the model’s ability to generate sharp predictions, however, since both parameters give

rise to the same comparative statics.

4.3.4 A Simple Example

To illustrate how task characteristics and factor attributes affect productivity differences across

factors and tasks, we present a simple example. We impose Assumption 1. Let us assume for the

moment that worker training and machine design are exogenously determined by task characteristics.

In particular, suppose that factors are either made capable of performing a task or not, so that there

is no intensive margin for task-specific productivity. Let knowledge intensity σ be the amount of

knowledge required for a factor to be able to perform a given task. A worker with learning cost 1/s

will produce A(1− σ/s) units of task output in training-intensive tasks (τ = 1), where A is the

worker’s task-neutral productivity. The same worker will produce A units in any innate ability task

(τ = 0). A machine will produce AK(1− σ/sK) units regardless of training intensity.23

Now consider two workers with skill levels s, s′ such that s′ > s, and two tasks with equal

training intensity τ = 1 but different knowledge intensities σ, σ′ such that σ′ > σ. (How task-

neutral productivities A and A′ compare is irrelevant for what follows.) Simple algebra establishes

that the higher skilled worker is relatively more productive in task σ′, i.e. she has a comparative

advantage in the more knowledge-intensive task. Machines’ comparative advantage will depend on

the level of design costs cK ≡ 1/sK . For instance, if sK < s, then the machine has a comparative

advantage over both workers in the less knowledge-intensive task.

Next, take an innate ability task and a training-intensive task both with equal knowledge

intensity σ. Machines are equally productive in both tasks but workers are more productive in the

innate ability task. Therefore, machines have a comparative advantage in the training-intensive

tasks. This is why some training-intensive tasks will always be performed by machines, even if

machine design cost exceed the training cost of the least-skilled worker.

Finally, consider again two workers with skill levels s, s′ such that s′ > s and take an innate

ability task and a training-intensive task both with equal knowledge intensity σ. Because the

higher-skilled worker has a higher task-specific productivity in the training-intensive task, she has a

comparative advantage in that task. This is why workers at the bottom of the skill distribution will

generally perform innate ability tasks, and why middle skill workers will compete with machines in

training-intensive tasks of intermediate knowledge intensity.

The simple example illustrates the main forces driving our results about the effects of increased

automation on job assignment and the wage distribution. In fact, the simple model presented here

23We assume parameter values are such that factor productivity is always strictly positive.
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generates an equilibrium assignment and comparative static results that are qualitatively the same

as in the model with endogenous worker training and machine design. However, the simple model

does not explicitly describe the production process, so that it is not clear what precisely drives

the results. Moreover, it does not allow us to assess if the results are robust to allowing firms a

productivity choice (via worker training and machine design). We address these limitations in the

following section.

4.3.5 The Production Process for Tasks and Firms’ Productivity Choices

We model the production process for tasks explicitly, following Garicano (2000). In order

to produce, factors (workers, machines) must confront and solve problems. These problems are

task-specific. There is a continuum of problems Z ∈ [0,∞) in each task, and problems are ordered

by frequency. Thus, there exists a non-increasing probability density function for problems in each

task.

Factors draw problems and produce if and only if they know the solution to the problem drawn.

We assume that a mass A of problems is drawn, and A may vary across factors. Hence, the

task-neutral productivity term introduced in Section 4.3.3 has a more precise interpretation in this

context. Task output per factor unit is equal to A times the integral of the density function over the

set of problems to which the factor knows the solution.

For simplicity, we will assume that all workers draw a unit mass of problems in all tasks, or

A = 1. Equilibrium assignment and comparative statics results are qualitatively the same if we

instead assume that A ≡ A(s) with A′(s) ≥ 0.

The distribution of problems in a task with knowledge intensity σ is given by the cumulative

density function F (Z;σ), which we assume to be continuously differentiable in both Z and the

shift parameter σ. Let ∂F/∂σ < 0, so that σ indexes first-order stochastic dominance. In terms of

the examples discussed in Section 4.3.2, driving a car and grading an essay are more knowledge-

intensive (higher σ) than driving a train or grading an MCQ test since the number of distinct

problems typically encountered in the former set of tasks is higher than in the latter.

The probability density function corresponding to F is f(Z;σ). Because F is continuously

differentiable and Z indexes frequency, f is strictly decreasing in Z. Let εF,σ(Z, σ) denote the

elasticity of F with respect to σ holding Z constant, and similarly for εf,σ(Z, σ). We impose the

following condition on the family of distributions F (Z;σ).

Assumption 2 εF,σ(Z, σ) < εf,σ(Z, σ) for all Z, σ > 0

This assumption will give rise to a set of intuitive comparative advantage properties, for instance

high skill workers will have a comparative advantage in knowledge-intensive tasks. One of the

distributions satisfying Assumption 2 is the exponential distribution with mean σ.

Note that the distribution of problems depends only on σ and not on τ . As discussed above,

training intensity is not an intrinsic property of a task, but arises from the fact that humans have

evolved such that some tasks require less effort to master than others, even holding constant

(objective) knowledge intensity.



CHAPTER 4. LABOR-SAVING INNOVATIONS 121

We now characterize optimal training and design choices and derive equilibrium productivity

of workers and machines. First observe that firms will equip factors with a set of knowledge [0, z],

since it can never be optimal not to know the solutions to the most frequent problems. Assume that

each worker is endowed with one efficiency unit of labor. After incurring learning costs, 1− τz/s
efficiency units are left for production, solving a fraction F (z;σ) of problems drawn. Similarly,

after the design cost, 1− z/sK units of capital are left, and the machine solves a fraction F (z;σ)

of problems drawn. Let the productivity level of an optimally trained worker of skill s in task (σ, τ)

be denoted by αN (s, σ, τ), and similarly let αK(sK , σ) be the productivity level of an optimally

designed machine. For simplicity, we omit the task-neutral productivity term AK here, as it does

not affect optimal machine design. Then we have

αN (s, σ, τ) ≡ supz F (z;σ)
[
1− τ

s z
]
,

αK(sK , σ) ≡ supz F (z;σ)
[
1− 1

sK
z
]
,

A unique interior solution to the worker training problem exists provided τ > 0, while the

machine design problem always admits a unique interior solution.24 The optimal knowledge levels

zN (s, σ, τ) and zK(sK , σ) are pinned down by the first-order conditions

(4.1)

f(z(s, σ, τ);σ)
[
1− τ

s z(s, σ, τ)
]

= τ
sF (z(s, σ, τ);σ),

f(z(sK , σ);σ)
[
1− 1

sK
z(sK , σ)

]
= 1

sK
F (z(sK , σ);σ).

Optimality requires that the benefit of learning the solution to an additional problem—the probability

that the problem occurs times the number of efficiency units left for production, be equal to the

cost of doing so—the number of efficiency units lost times the fraction of problems these efficiency

units would have solved.

We will formalize the concept of innateness by assuming that some tasks feature τ = 0. It is

immediate that in such innate ability tasks, αN (s, σ, 0) = 1. Thus, optimal worker and machine

productivities are given by

αN (s, σ, τ) =


F (z(s, σ, τ);σ)

[
1− τ

s
z(s, σ, τ)

]
if τ > 0

1 if τ = 0

and

αK(sK , σ) = F (z(sK , σ);σ)

[
1− 1

sK
z(sK , σ)

]
.

We impose Assumption 1 for the remainder of the paper. Let the set of worker skills be given

24A unique interior solution to the worker training problem exists if τ > 0 because first, the problem is strictly
concave as f is strictly decreasing; second, the derivative of the objective at z = 0 is strictly positive; finally, the value
of the objective function becomes negative for a sufficiently large z. The same arguments also establish the result for the
machine design problem.
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by S = [s, s] and let s̆ be an element in set S̆ = sK ∪ S. By the above equations, we have that

αN (s̆, σ, 1) ≡ αK(s̆, σ). Thus, workers and machines face the same productivity schedule in

training-intensive tasks. We drop superscripts and define the function

(4.2) α(s̆, σ) = F (z(s̆, σ);σ)

[
1− 1

s̆
z(s̆, σ)

]
s̆ ∈ S̆ = sK ∪ [s, s],

where z(s̆, σ) is implicitly given by (4.1) when τ = 1.

We now turn to the properties of the productivity schedule α(s̆, σ). First notice that α ∈ (0, 1)

by (4.2). Furthermore, from applying the envelope theorem to (4.2) it follows that α is increasing

in s̆ and decreasing in σ. Higher skilled factors are more productive since they face a lower

learning/design cost, and productivity declines in knowledge intensity since a larger cost is incurred

to achieve a given level of productivity. To characterize comparative advantage, we rely on the

following result.

Lemma 1 The productivity schedule α(s̆, σ) is strictly log-supermodular if Assumption 2 holds.

The log-supermodularity of the productivity schedule implies that in training-intensive tasks,

factors with higher skill have a comparative advantage in more knowledge-intensive tasks, or

s̆′ > s̆, σ′ > σ ⇔ α(s̆′, σ′)

α(s̆, σ′)
>
α(s̆′, σ)

α(s̆, σ)
.

For instance, high skill workers have a comparative advantage over low skill workers in more

knowledge-intensive tasks; all workers with s > sK have a comparative advantage over machines in

more knowledge-intensive tasks; and so on. As the proof of Lemma 1 establishes, these comparative

advantage properties hold if and only if optimal knowledge z(s̆, σ) is increasing in σ. Thus, high

skill factors have a comparative advantage in more knowledge-intensive tasks because these tasks

induce a higher level of knowledge, and to high skill factors this comes at a lower cost.

The effect of σ on the optimal knowledge level is in principle ambiguous. A higher σ implies a

lower opportunity cost of learning an additional problem since factors are less productive, ceteris

paribus. However, the marginal benefit may increase or decrease depending on the problem

distribution. Assumption 2 ensures that the fall in marginal costs outweighs any effect on the

marginal benefit.

Comparative advantage properties regarding training intensity are straightforward. Since α

is increasing in s̆, and because all workers have productivity one in all innate ability tasks, high

skill workers have a comparative advantage over low skill workers in any training-intensive task.

Furthermore, because machine productivity is the same in innate ability tasks as in training-intensive

tasks if knowledge-intensity is held constant, it follows that machines have a comparative advantage

over all workers in any training-intensive task relative to the innate ability task with the same

knowledge intensity. This seemingly trivial result has profound implications for the assignment of

factors to tasks, and for the reallocation of factors in response to a fall in cK (a rise in sK). It is at

the root of the job polarization phenomenon, as we will show in Section 4.4 below.
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4.3.6 Competitive Equilibrium

To complete the setup of the model, let there be a mass K of machine capital and normalize the

labor force to have unit mass. We assume a skill distribution that is continuous and without mass

points. Let V (s) denote the differentiable CDF, and v(s) the PDF, both with support S = [s, s].

Let the share of innate ability tasks (τ = 0) in final good production be β. The production function

can now be written as

(4.3) log Y =
1

µ

∫ σ

σ
{β log y0(σ) + (1− β) log y1(σ)} dσ,

where the term µ ≡ σ − σ ensures constant returns to scale. The subscripts 0 and 1 indicate innate

ability (τ = 0) and training-intensive (τ = 1) tasks, respectively.

We have established in Section 4.3.5 that in innate ability tasks, machine productivity is given

by α(sK , σ), while worker productivity equals one. Hence, output of the innate ability task with

knowledge intensity σ is given by

(4.4) y0(σ) = AKα(sK , σ)k0(σ) +

∫ s

s
n0(s, σ)dσ,

where k0(σ) and n0(c, σ) are the masses of machine capital and of worker type s, respectively,

allocated to innate ability task σ. In training-intensive tasks, as we have seen, both machine

and worker productivity depends on the function α(s̆, σ). Hence we can write task output of the

training-intensive task σ as

(4.5) y1(σ) = AKα(sK , σ)k1(σ) +

∫ s

s
α(s, σ)n1(s, σ)dσ.

There is a large number of perfectly competitive firms producing the final good, and buying

task output from perfectly competitive intermediates producers. We normalize the price of the final

good to one and denote the price of task σ in ‘sector’ τ ∈ {0, 1} by pτ (σ). Profits of final good

firms are given by

Π = Y −
∑
τ

∫ σ

σ
pτ (σ)yτ (σ)dσ,

and profits of intermediate producers in sector j and with knowledge intensity σ are

Πτ (σ) = pτ (σ)yτ (σ)− rkτ (σ)−
∫ s

s
w(s)nτ (s, σ)ds

where r is the rental rate of capital and w(s) is the wage paid to a worker with skill s. Recall

that design and learning costs are already included in the α(s̆, σ) terms which enter intermediate

producer’s profits through the task production functions (4.4) and (4.5).

As in Costinot and Vogel (2010), a competitive equilibrium is defined as an assignment of

factors to tasks such that all firms maximize profits and markets clear. Profit-maximizing task
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demand by final good producers is

(4.6) y0(σ) =
β

µ

Y

p0(σ)
, y1(σ) =

1− β
µ

Y

p1(σ)
.

Profit maximization by intermediates producers implies

(4.7)

p0(σ) ≤ w(s) ∀s ∈ [s, s],

p1(σ)α(s, σ) ≤ w(s) ∀s ∈ [s, s],

pτ (σ)α(sK , σ) ≤ r/AK ∀τ ∈ {0, 1};

p0(σ) = w(s) if n0(s, σ) > 0,

p1(σ)α(s, σ) = w(s) if n1(s, σ) > 0,

pτ (σ)α(sK , σ) = r/AK if kτ (σ) > 0.

Factor market clearing conditions are

(4.8) v(s) =
∑
τ

∫ σ

σ
nτ (s, σ)dσ for all s ∈ [s, s]

and

(4.9) K =
∑
τ

∫ σ

σ
kτ (σ)dσ.

A competitive equilibrium in this economy is a set of functions y : Σ× T → R+ (task output);

k : Σ× T → R+ and n : S × Σ× T → R+ (factor assignment); p : Σ× T → R+ (task prices);

w : S → R+ (wages); and a real number r (rental rate of capital) such that conditions (4.1), (4.2),

and (4.4) to (4.9) hold.

The equilibrium assignment of factors to tasks is determined by comparative advantage, which

is a consequence of the zero-profit condition (4.7).25 Because high skill workers have a comparative

advantage in training-intensive tasks (holding knowledge intensity constant), in equilibrium the

labor force is divided into a group of low skill workers performing innate ability tasks, and a group

of high skill workers carrying out training-intensive tasks: there exists a marginal worker with skill

s∗, the least-skilled worker employed in training-intensive tasks. This is formally stated in part (a)

of Lemma 2 below.

We focus on the empirically relevant case in which machines as well as workers perform both

training-intensive and innate ability tasks.26 In this case, machines are assigned to a subset of innate

25To see how comparative advantage determines patterns of specialization, consider two firms, one producing
training-intensive task σ, the other producing training-intensive task σ′. Suppose in equilibrium, firm σ is matched with
workers of type s and firm σ′ is matched with workers of type s′. Then (4.7) implies

α(s′, σ′)

α(s, σ′)
≥ α(s′, σ)

α(s, σ)
,

which shows that type s (s′) has a comparative advantage in task σ (σ′), precisely the task to which she was assumed to
be matched.

26Sufficient conditions for the existence of such an equilibrium are derived Appendix D.1.1. We assume throughout
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Figure 4.1: Assignment of labor and capital to tasks. 

knowledge intensity (𝜎  )

workers with skill 𝑠 ≥ 𝑠  ∗

workers with skill 𝑠 ≤ 𝑠  ∗

 machines

training-intensive (𝜏 = 1  )

innate ability (𝜏 = 0  )

𝜎1  ∗

𝜎0  ∗

ability and training-intensive tasks that are relatively less knowledge-intensive, while low skill

workers perform the remaining innate ability tasks: there is a threshold task σ∗0 , the marginal innate

ability tasks, dividing the set of innate ability tasks into those performed by machines (σ ≤ σ∗0) and

those carried out by low skill workers (σ ≥ σ∗0). Similarly, there is a marginal training-intensive task

σ∗1 that divides the set of training-intensive tasks into those performed by machines (σ ≤ σ∗1) and

those carried out by high skill workers (σ ≥ σ∗1). As in the case of the marginal worker, existence of

these marginal tasks is of course a consequence of the comparative advantage properties discussed

at the end of Section 4.3.5. These properties also imply σ∗0 < σ∗1: the marginal training-intensive

task is always more knowledge-intensive than the marginal innate ability task (recall that machines

are relatively more productive in training-intensive tasks than workers, holding knowledge intensity

constant); and s∗ > sK : it is always cheaper to train (though not to employ) the marginal worker

than to design a machine in any task. These results are formally stated in part (b) of Lemma 2. An

illustration of the equilibrium assignment is given in Figure 4.1.

Lemma 2 (a) In a competitive equilibrium, there exists an s∗ ∈ (s, s] such that

• n0(s, σ) > 0 for some σ if and only if s ≤ s∗, and

• n1(s, σ) > 0 for some σ if and only if s ≥ s∗.

(b) If k0(σ) > 0 for some σ, then s∗ > sK , and there exist σ∗0, σ
∗
1 ∈ Σ with σ∗0 < σ∗1 such that

• k0(σ) > 0 if and only if σ ≤ σ∗0;

• k1(σ) > 0 if and only if σ ≤ σ∗1;

• n0(s, σ) > 0 if and only if s ≤ s∗ and σ ≥ σ∗0; and

• n1(s, σ) > 0 if and only if s ≥ s∗ and σ ≥ σ∗1 .

that these conditions are satisfied. We note however that in general, no innate ability tasks may be performed by machines,
and/or no training-intensive tasks may be performed by workers.
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It remains to determine the assignment of low skill workers (s ≤ s∗) to innate ability tasks

(τ = 0, σ ≥ σ∗0) and that of high skill workers (s ≥ s∗) to training-intensive tasks (τ = 1, σ ≥ σ∗1).

The solution to the matching problem in innate ability tasks is indeterminate as all workers are

equally productive in these tasks. However, knowledge of the assignment is not necessary to

pin down task output and prices, as shown below. High skill workers are assigned to training-

intensive tasks according to comparative advantage, with higher skilled workers carrying out more

knowledge-intensive tasks. Formally, we have:

Lemma 3 In a competitive equilibrium, if s∗ < s, there exists a continuous and strictly increasing

matching function M : [s∗, s] → [σ∗1, σ] such that n1(s, σ) > 0 if and only if M(s) = σ.

Furthermore, M(s∗) = σ∗1 and M(s) = σ.

This result is an application of Costinot and Vogel (2010), with the added complication that domain

and range of the matching function are determined by the endogenous variables s∗ and σ∗1 . The

matching function is characterized by a system of differential equations. Using arguments along

the lines of the proof of Lemma 2 in Costinot and Vogel (2010), it can be shown that the matching

function satisfies

(4.10) M ′(s) =
µ

1− β
w(s)v(s)

Y
,

and that the wage schedule is given by

(4.11)
d logw(s)

ds
=
∂ logα(s,M(s))

∂s
.

The last equation is due to the fact that in equilibrium, a firm producing training-intensive

task σ chooses worker skill s to minimize marginal cost w(s)/α(s, σ). Once differentiability of

the matching function has been established, (4.10) can easily be derived from the market clearing

condition (4.8) given Lemma 2, and using (4.6) and (4.7). In particular, Lemma 2 and (4.8) imply∫ s

s∗
v(s′)ds′ =

∫ σ

σ∗1

n1(M−1(σ′), σ′)dσ′.

Changing variables on the RHS of the last expression and differentiating with respect to s yields

v(s) = n1(s,M(s))M ′(s),

and substituting (4.5) we obtain

(4.12) M ′(s) =
α(s,M(s))v(s)

y(M(s))
.

After eliminating task output and price using (4.6) and (4.7), (4.10) follows. Figure 4.2 illustrates

how the matching function assigns workers to training-intensive tasks.

In order to characterize the equilibrium more fully, and for comparative statics exercises, it

is necessary to derive equations pinning down the endogenous variables σ∗0 , σ∗1 , and s∗. These
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equations are due to a set of no-arbitrage conditions. In particular, firms producing the marginal

tasks are indifferent between hiring labor or capital, and the marginal worker is indifferent between

performing innate ability tasks or the marginal training-intensive tasks. Formally, the price and

wage functions must be continuous, otherwise the zero-profit condition (4.7) could not hold. This

is a well-known result in the literature on comparative-advantage-based assignment models. Hence,

the no-arbitrage conditions for the marginal tasks are

(4.13)
r

AKα(sK , σ∗0)
= w(s) for all s ≤ s∗

and

(4.14)
r

AKα(sK , σ∗1)
=

w(s∗)

α(s∗, σ∗1)
,

and the no-arbitrage condition for the marginal worker is

(4.15) w(s) = w(s∗) for all s ≤ s∗.

The last result implies that there is a mass point at the lower end of the wage distribution. The mass

point is a result of normalizing A, the amount of problems drawn, to one for all workers. To avoid

the mass point, we could instead assume that A ≡ A(s) with A′(s) ≥ 0. Equilibrium assignment

and comparative statics results would be qualitatively the same. We maintain the normalization to

avoid additional notation.

We can now complete the characterization of a competitive equilibrium by eliminating factor

prices from (4.14). A standard implication of the Cobb-Douglas production function is that the mass

of capital allocated to each task is constant within innate ability tasks and within training-intensive

tasks (but not across the two sectors unless β = 0.5). Some algebra shows27 that machines produce

27By (4.6) and (4.7), we have

yτ (σ)

yτ (σ′)
=

α(sK , σ)

α(sK , σ′)
,

y0(σ̃)

y1(σ̃′)
=

β

1− β
α(sK , σ̃)

α(sK , σ̃′)

for any tasks (σ, σ′, σ̃, σ̃′) performed by machines. But (4.4), (4.5), and Lemma 2 imply

yτ (σ)

yτ (σ′)
=

α(sK , σ)kτ (σ)

α(sK , σ′)kτ (σ′)
,

y0(σ̃)

y1(σ̃′)
=

α(sK , σ̃)k0(σ̃)

α(sK , σ̃′)k0(σ̃′)
.

The previous two equations together give kτ (σ) = kτ (σ
′) and k0(σ̃) = β

1−β k1(σ̃
′). By (4.9) and Lemma 2,

k0(σ) =
βK

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
for all σ ∈ [σ, σ∗0 ]

and

k1(σ) =
(1− β)K

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
for all σ ∈ [σ, σ∗1 ].
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task outputs

(4.16)

y0(σ) =
βAKα(sK , σ)K

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
for all σ ∈ [σ, σ∗0],

y1(σ) =
(1− β)AKα(sK , σ)K

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
for all σ ∈ [σ, σ∗0].

Using these equations to solve for the task prices in (4.6), and plugging the obtained expression

into (4.7), yields

(4.17) r =
β(σ∗0 − σ) + (1− β)(σ∗1 − σ)

µ
× Y

K
.

This is of course the familiar result that with a Cobb-Douglas production function, factor prices

equal the factor’s share in output times total output per factor unit. In this case, the factor share is

endogenously given by the (weighted) share of tasks to which the factor is assigned.

We employ similar steps to solve for w(s∗). Since in innate ability tasks, worker productivity

does not vary across tasks nor types, all innate ability tasks with σ ≥ σ∗0 have the same price and all

workers with s < s∗ earn a constant wage equal to w(s∗) (as a result of the no-arbitrage condition

for the marginal worker). As prices do not vary, neither does output, and so by the market clearing

conditions (4.4) and (4.8),28

(4.18) y0(σ) =
V (s∗)

σ − σ∗0
for all σ ≥ σ∗0.

Proceeding as above when solving for r, we obtain

(4.19) w(s∗) =
β(σ − σ∗0)

µ
× Y

V (s∗)
.

With (4.17) and (4.19) in hand, we can eliminate factor prices from the marginal cost equaliza-

tion condition (4.13) to obtain

(4.20)
AKα(sK , σ

∗
0)K

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
=

V (s∗)

β(σ − σ∗0)
.

Also, combining conditions (4.13) to (4.15) yields

(4.21) α(sK , σ
∗
1) = α(sK , σ

∗
0)α(s∗, σ∗1).

28Under Lemma 2, integrating (4.8) yields

V (s∗) =

∫ σ

σ∗
0

∫ s∗

s

n0(s, σ)dsdσ,

but using (4.4) and the fact that task output is a constant y0 results in

V (s∗) = (σ − σ∗0)y0.
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Lastly, (4.10) and (4.19) imply

(4.22) M ′(s∗) =
β(σ − σ∗0)

1− β
v(s∗)

V (s∗)
.

Equations (4.3), (4.10), (4.11), (4.20), (4.21), and (4.22) together with the boundary conditions

M(s∗) = σ∗1 and M(s) = σ, uniquely pin down the equilibrium objects σ∗0 , σ∗1 , s∗, w, and M .

The comparative statics analysis makes extensive use of these expressions.

To conclude this section, we highlight two properties of the wage structure in our model. First,

integrating (4.11) yields an expression for the wage differential between any two skill types that are

both employed in training-intensive tasks,

(4.23)
w(s′)

w(s)
= exp

[∫ s′

s

∂

∂z
logα(z,M(z))dz

]
for all s′ ≥ s ≥ s∗.

This shows that wage inequality is fully characterized by the matching function (Sampson 2012).

Second, adding (4.10) and (4.19) and integrating yields an expression for the average wage,

(4.24) Ew =
β(σ − σ∗0) + (1− β)(σ − σ∗1)

µ
× Y.

Since the labor force is normalized to have measure one, this expression also gives the total wage

bill. It follows that the labor share in the model is given by the (weighted) share of tasks performed

by workers.

4.4 Comparative Statics

Having outlined the model and characterized its equilibrium in the previous section, we now

move on to comparative statics exercises. Our main interest is in investigating the effects of a fall

in the machine design cost, cK . In addition we will analyze the effects of increased skill abundance,

motivated by the large increase in relative skill endowments seen in developed countries over the

previous decades.

4.4.1 Technical Change

Consider a fall in the machine design cost from cK to ĉK , so that ŝK > sK . Let M and M̂ be

the corresponding matching functions, and similarly for σ∗0 and σ̂∗0; σ∗1 and σ̂∗1; and s∗ and ŝ∗. We

now state the main result of the paper.

Proposition 1 Suppose ĉK < cK and so ŝK > sK . Then σ̂∗1 > σ∗1 and M̂(s) > M(s) for all

s ∈ [max{s∗, ŝ∗}, s). If ŝK ≥ s∗, then ŝ∗ > s∗.

A fall in the machine design cost implies a rise in machine productivity and thus a fall in

the marginal cost of employing machines in any task. Crucially, the marginal cost of employing

machines in the threshold training-intensive tasks falls by more than the marginal cost in the
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Figure 4.2: Assignment of workers to training-intensive tasks and the effects of technical change 
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Notes: Knowledge intensity σ is plotted on the vertical axis, while skill level s is plotted on the
horizontal axis. The upward shift of the matching function and the shift of its lower end to the
northeast are brought about by a fall in the machine cost from cK to ĉK as stated in Proposition 1.

threshold innate ability task, since σ∗0 < σ∗1 .29 This means that machine employment in training-

intensive tasks increases by more than in innate ability tasks. In fact, numerical simulations suggest

that the effect of a fall in cK on σ∗0 is ambiguous.

Proposition 1 says that a sufficiently large fall in the machine design cost leads to the marginal

worker becoming more skilled, ŝ∗ > s∗. We are unable to rule out ŝ∗ ≤ s∗ for small decreases in

the machine design cost. However, if machine design costs fall steadily over time, then the skill

cutoff level must rise eventually. Thus, we limit our attention to the case where a fall in cK triggers

a rise in s∗. This implies a reassignment of some workers to innate ability tasks. Importantly,

workers remaining in training-intensive also experience displacement, as they are reassigned to

tasks of higher knowledge intensity due to the upward shift of the matching function.30 In sum,

employment in tasks previously performed by low skill workers s ≤ s∗ increases; employment in

tasks previously carried out by middle skill workers s ∈ (s∗, ŝ∗) decreases; and employment in

tasks formerly performed by high skill workers s ≥ ŝ∗ increases. Thus, a fall in the machine design

cost causes job polarization. These effects are illustrated by Figure 4.2.

The matching function is a sufficient statistic for inequality (Sampson 2012), so that the shift

in the matching function contains all the required information for deriving changes in relative

wages. Intuitively, since the upward shift implies skill downgrading by firms (but task upgrading

for workers), the zero profit conditions imply that relatively low skill workers must have become

relatively cheaper, or else they would have worked for their new employers even before the

29Because σ∗0 < σ∗0 and due to the log-supermodularity of α, the ratio α(sK , σ∗1)/α(sK , σ∗0) is increasing in sK .
30This will always be the case regardless of the magnitude of the decrease in the design cost.
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Figure 4.3: Changes in wages as a result of a fall in the machine design cost from cK to ĉK
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Notes: For each skill level s, the ratio of new to old wages is plotted. Workers with s ∈ [ŝ∗, s] remain
in training-intensive tasks and experience a rise in the skill premium. Workers with s ∈ [s∗, ŝ∗)
switch to innate ability tasks and experience a fall in the skill premium. See Corollary 1 for details.

shift. Hence the skill premium goes up for workers remaining in training-intensive tasks. Similar

reasoning implies that workers who moved to innate ability tasks now earn relatively less than

workers who were already performing these tasks. Thus, wage inequality rises at the top, but falls

at the bottom of the distribution. This is illustrated by Figure 4.3. The formal result is as follows.

Corollary 1 Suppose ĉK < cK and consider the case in which ŝ∗ > s∗. Wage inequality increases

at the top of the distribution but decreases at the bottom. Formally,

ŵ(s′)

ŵ(s)
>
w(s′)

w(s)
for all s′ > s ≥ ŝ∗

and
ŵ(s′)

ŵ(s)
<
w(s′)

w(s)
for all s′, s such that ŝ∗ > s′ > s ≥ s∗.

Although the effect on the marginal innate ability task is uncertain, the overall weighted share

of tasks performed by machines increases. By (4.24), this is equivalent to a decrease in the labor

share.

Corollary 2 Suppose ĉK < cK . The labor share decreases.
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4.4.2 Increase in Skill Abundance

Now consider an increase in the relative supply of skills. Following Costinot and Vogel (2010),

we say that V̂ is more skill abundant relative to V , or V̂ � V , if

v̂(s′)v(s) ≥ v̂(s)v(s′) for all s′ > s.

For simplicity, we restrict attention to distributions with common support, and we assume that

v̂(s) > v(s). Characterizing comparative statics for changes in skill supplies is more challenging

in our model than in the original Costinot-Vogel framework because domain and range of the

matching function are endogenous. We are able to offer a partial result.

Proposition 2 Suppose that V̂ � V and v̂(s) > v(s). If this change in skill endowments induces

an increase in the share of income accruing to labor, then σ̂∗1 < σ∗1 , ŝ∗ > s∗ and M̂(s) < M(s)

for all s ∈ [ŝ∗, s).

Intuitively, such a change to the distribution of skills should raise the labor share, because the

labor share in our model equals the share of tasks performed by workers, and an increase in the

average worker’s productivity should induce more firms to hire labor. While the labor share always

increases in our numerical simulations, we are unable to prove the general result.31

The implications of Proposition 2 are as follows. Firms take advantage of the increased supply of

skilled workers and engage in skill upgrading, which is equivalent to task downgrading for workers.

This can be seen for training-intensive tasks by the downward shift of the matching function. For

innate ability tasks, skill-upgrading is equivalent to the marginal worker becoming more skilled.

Skill upgrading implies that the price of skill must have declined, so that the distribution of wages

becomes more equal.

Corollary 3 Suppose V̂ � V , and that the labor share increases as a result. Then for all s, s′ with

s′ > s ≥ s∗,
ŵ(s)

ŵ(s′)
>
w(s)

w(s′)
.

Proposition 2 says that the marginal training-intensive tasks becomes less knowledge-intensive,

implying a decline in technology use for such tasks. In contrast, our simulations show that the

marginal innate ability task becomes more knowledge-intensive. Thus, skill upgrading appears to

coincide with technology being more (less) widely adopted in innate ability (training-intensive)

tasks.

31The labor share is given by
∫ s
s

w(s)
Y
dV (s). Because V̂ first-order stochastically dominates V and w(s)/Y is an

increasing function, we have
∫ s
s

w(s)
Y
dV̂ (s) >

∫ s
s

w(s)
Y
dV (s). Thus, for the labor share to decrease, there would need

to be a sufficiently large decline in wage-output ratios for a subset of workers.
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4.5 Extensions

4.5.1 Making the Model Dynamic

Up to this point we have treated the economy’s capital stock as exogenously given. To determine

how endogenous capital accumulation would affect our comparative statics results, we assume

that in the long run, the rental rate of capital is a constant pinned down by a time preference

parameter32 and that machines fully depreciate in every period. Furthermore, we assume that

worker’s knowledge depreciates fully in every period, or equivalently, there is an overlapping

generations structure with each generation only working for one period. Suppose that the economy

starts out in a steady state with the interest rate equal to its long-run value. Now recall that a fall in

the machine design cost leads to a rise in the labor share. Furthermore, because the First Welfare

Theorem applies to our model economy, output must not decrease, since the economy’s resource

constraint is less tight. By (4.17), we have that the interest rate increases. Thus, in the long run, the

capital stock must increase to bring the interest rate back down.

It can be shown that a rise in the capital stock K has qualitatively the same effects on the

marginal tasks, the matching function, and wages, as a fall in the machine design cost cK .33

This is because a higher supply of capital makes it cheaper to rent machines and thus encourages

technology adoption. Thus, our predictions about the effects of a fall in cK are not overturned

with endogenous capital accumulation. In fact, the rise in the marginal training-intensive task, the

upward shift of the matching function, the rise in the skill of the marginal worker, and the increase

in wage inequality will be more pronounced in the long run as a result of the higher capital stock.

4.5.2 A Model with Fixed Costs

Our baseline model emphasizes that when a firm automates its production, total costs will

generally be increasing in the firm’s output and in the complexity of the processes required for

production. While this in itself should be uncontroversial, our focus on variable costs with the

implication of constant returns to scale is certainly restrictive. In particular, firms usually face large

one-off expenses when installing new machinery.34 While such expenses would generally depend

on the scale at which the firm plans to operate, it is useful to consider the extreme case of a fixed

setup cost.

In Appendix D.2 we modify our baseline model such that firms wanting to automate production

face a fixed cost (in units of the final good) which is increasing in the complexity (knowledge

intensity) of the task, but does not depend on the scale of production. We derive conditions ensuring

an equilibrium assignment that is qualitatively the same as the one analyzed for the baseline model

(see Figure 4.1). In particular, the marginal cost of using a machine must be sufficiently small, which

can be achieved by making AK very large, a realistic assumption; and the fixed cost must increase

32Alternatively, we could assume that the economy is open to world capital markets, where it is a price taker.
33The proof is along similar lines as the proof of Proposition 1 and is available upon request. Since task-neutral

machine productivity AK enters the relevant model equations in the same way as K, the statement also applies to an
increase in AK .

34For an example relating to recent advances in AI, consider the concept of ‘machine learning’, where a software
requires a considerable amount of initial ‘training’ before becoming operational.
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sufficiently in knowledge intensity. The model is much less tractable than the baseline model, and

we are unable to derive general comparative statics results. Intuitively, when the fixed machine

design cost falls, there is an incentive for firms to adopt machines in more-knowledge-intensive

tasks. This incentive is stronger in training-intensive tasks: as knowledge-intensity increases, the

marginal cost of employing labor increases in training-intensive tasks but not in innate ability tasks.

Thus, we would expect to see an increase in the share of workers performing innate-ability tasks.

We are currently working on a numerical solution to verify the intuition.

4.6 Empirical Support for the Model’s Predictions

Section 4.4.1 has established that any technological advance that facilitates automation of a

wide range of tasks should lead to systematic shifts in task input, job polarization, and a hollowing

out of the wage distribution. In addition, the model also predicts which worker types will be

replaced as more tasks are automated, and to which task a displaced worker gets reassigned. In

this section we briefly review papers that document these patterns for the recent information and

communication technology revolution. We then discuss two studies presenting historical evidence

that we also find to be consistent with the model’s prediction. Finally, we present new evidence

consistent with our model’s predictions about trends in worker training levels.

4.6.1 Existing Evidence

Changes in task input.—In a seminal contribution, Autor, Levy, and Murnane (2003) document

a decline in the fraction of workers performing “routine tasks”, and show that this decline is

larger in industries that more rapidly adopted information technologies. They also find that “non-

routine” interactive and analytic task inputs increased, and more so in industries with more rapid

ICT adoption. Although routine-ness is conceptually distinct from knowledge intensity, ALM’s

empirical measures of routine-ness may in fact be correlated with it. For example, they classify

routine occupations as those that require “finger dexterity” and “adaptability to situations requiring

the precise attainment of set limits, tolerances or standards.” It is likely that these are occupations

with low knowledge intensity (though not necessarily low training intensity). The measured

shift away from routine tasks is then consistent with our prediction of a reallocation towards

more-knowledge-intensive tasks.

Job polarization.—Goos and Manning (2007) were the first to suggest that the “de-routinization”

documented by ALM implies a polarization of employment since routine tasks were traditionally

performed by middle-skill workers. They do find evidence of job polarization for the UK, and

subsequently Autor, Katz, and Kearney (2006) showed this to be the case in the US as well. Goos,

Manning, and Salomons (2009) provide evidence for job polarization in a majority of European

economies, and show that much of it can be attributed to tasks shifts consistent with technical

change being the driving force. Importantly, Michaels, Natraj, and Van Reenen (forthcoming) show

that in a sample of several developed countries it is indeed the case that industries that invested more

heavily in information and communication technologies witnessed a decline in relative middle skill
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employment and wage bills, confirming the link between technical change and job polarization.

Cortes (2012) uses panel data from the US and shows that worker ability is a strong determinant

of the destination occupation for workers exiting from routine occupations. He shows that low

(high) ability workers are more likely to switch to non-routine manual (non-routine) cognitive

occupations. This is consistent with our model if we interpret non-routine manual as innate ability

tasks and non-routine cognitive as high training- and knowledge-intensive tasks.

Wages.—To map the model’s predictions for changes in wage inequality to the data, following

Costinot and Vogel (2010) it is useful to distinguish between observable and unobservable skills. In

particular, our continuous skill index s is unlikely to be observed by the econometrician. Instead,

we assume that the labor force is partitioned according to some observable attribute e, which

takes on a finite number of values and may index education or experience. Suppose further that

high-s workers are disproportionately found in high-e groups. Formally, if s′ > s and e′ > e, we

require v(s′, e′)v(s, e) ≥ v(s, e′)v(s′, e). Costinot and Vogel (2010) show that an increase in wage

inequality in the sense of Corollary 1 implies an increase in the premium paid to high-e workers as

well as an increase in wage inequality among workers with the same e. In other words, the model

predicts that if the machine design cost falls, both between and within (or residual) wage inequality

will rise for the fraction of workers assigned to training-intensive tasks.

Recall that Corollary 1 implies a fall in wage inequality at the bottom of the distribution and

a rise at the top. Consistent with this, Autor and Dorn (2013) document that in the US over the

past three decades, wages in the middle of the distribution have risen more slowly than those at

the top and bottom. Dickens, Manning, and Butcher (2012) show similar evidence for the UK and

argue that the compression of the lower part of the distribution is partly explained by rises in the

minimum wage. We interpret this as leaving room for a technological explanation along the lines

of our model.

Lemieux (2006) shows that in the 1990s increases in within-group inequality were concentrated

in the upper part of the wage distribution. For between-group wage differentials, Lindley and

Machin (2011) document that in addition to a rise in the college premium, there has also been

an increase in the wages of workers with a graduate degree relative to those with college only.

Similarly, Angrist, Chernozhukov, and Fernndez-Val (2006) document a more pronounced rise in

within-group inequality for college graduates than for high school graduates, and an increase in

the effect of an additional year of schooling on the upper tail of the conditional wage distribution,

relative to the effect on lower tail and median. Thus, the evidence on within- and between-group

inequality appears consistent with our model.

Firpo, Fortin, and Lemieux (2011) investigate using US data whether changes in the wage

distribution can be attributed to changes in the returns to tasks that are due to technical change or

offshoring. They find a prominent role of technology, while offshoring has become more important

in the most recent decade. However, their identification assumptions may be viewed as restrictive

from the perspective of our model, so that further research is required. Cortes (2012), in addition to

providing evidence on worker movements, also shows that relative wages of those workers staying

in middle-wage, routine occupations decline. Boehm (2013) uses NLSY data to estimate workers’

selection into occupations based on observed comparative advantage. He finds that workers with a
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comparative advantage in routine occupations saw their wages decline relative to other workers,

and even absolutely. Overall, the evidence on wages appears consistent with our model.

Historical evidence.—Gray (2011) shows that electrification in the US during the first half of the

20th century led to a fall in relative demand for tasks performed by middle skill workers, providing

support for the model’s prediction that job polarization is not a unique consequence of the IT

revolution. Bessen (2011) provides evidence on weavers employed at a 19th century Massachusetts

firm that gradually increased the degree of mechanization during the period studied. Even though

some of workers’ skills were no longer needed as more tasks were automated, the tasks to which

workers were reassigned required substantial on-the-job learning, much like the reassignment of

workers to more-knowledge-intensive, training-intensive tasks in our model. Crucially, worker

productivity in the remaining tasks increased, supporting the assumption of q-complementarity of

tasks that underlies our model. Note that we would not necessarily expect an aggregate phenomenon

like job polarization to occur at the firm level.

4.6.2 Trends in Occupational Training Requirements

In the model, training levels (knowledge) vary systematically with task characteristics. In

particular, tasks with higher knowledge intensity require more training in equilibrium, provided

τ > 0. And holding knowledge intensity constant, tasks with lower training intensity induce a

lower training investment. In the extreme case of our innate ability tasks, the training investment is

zero.

We view occupations as bundles of tasks, so that a given occupation may combine tasks from

across the task space. Measures of occupational characteristics should be informative about which

region of the task space features most prominently in a given occupation. Thus, occupations with

low training requirements should be intensive in innate ability tasks; and occupations with very

high training requirements should feature highly knowledge-intensive, training-intensive tasks.

To measure training requirements of occupations, we use the Fourth Edition Dictionary of

Occupational Titles (DOT) in combination with the 1971 April Current Population Survey (CPS)

(National Academy of Sciences 1981), and the US Department of Labor’s O*NET database in

combination with the 2008 American Community Survey (ACS). The information in the 2008 ACS

refers to the previous year. Hence, our data cover the years 1971 and 2007. Since the 1971 April

CPS lacks information on earnings, we also used the IPUMS 1970 census extract which contains

earnings data pertaining to 1969.35 We use David Dorn’s three-digit occupation codes throughout

(Dorn 2009). Our analysis is based on a sample of all employed persons aged 17 to 65. To see

whether our results are driven by changes in composition, we repeated the analysis using a sample

of white males only. The results, available upon request, are qualitatively identical.

Both the DOT and O*NET contain the variable Specific Vocational Preparation (SVP), which

indicates “the amount of time required to learn the techniques, acquire the information, and develop

the facility needed for average performance in a specific job-worker situation. SVP includes training

35Because we have to merge separate data sets at the three-digit occupation level, we prefer using the census to the
much smaller 1971 March CPS for obtaining earnings data.
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acquired in a school, work, military, institutional, or vocational environment, but excludes schooling

without specific vocational content” (National Academy of Sciences 1981, p.21 in codebook). SVP

is a bracketed variable and we use midpoints to convert it into training time measured in years.

See Appendix D.3 for details. Tables D.2 and D.3 list the twenty most and least training intensive

occupations in 1971 and 2007, respectively.

The definition of SVP matches our concept of task-specific knowledge more closely than

years of education. This is because much of education, at least up to high school graduation, is

general in nature and the skills acquired are portable across occupations. Also, the average level

of education of workers in a given occupation may be affected by the supply of educated workers

independently of actual training requirements—we provide evidence for this below. In professional

occupations such as lawyers and physicians there is a clear mapping between years of schooling and

training requirements, but in general this is not the case. In terms of our model, we think of general

education as affecting the ability to acquire task-specific knowledge. Thus, years of schooling may

proxy for s.

The model delivers several predictions about trends in training requirements. First, as a fall

in the machine design cost triggers a reallocation of workers towards tasks of higher knowledge

intensity on the one hand (the upward shift of the matching function) and towards innate ability

tasks on the other, the model predicts a polarization of job training requirements. Figure 4.4 plots

fitted values from a locally weighted regression of changes in an occupation’s employment share on

its percentile rank in the 1971 distribution of occupational mean wages.36 The pattern is consistent

with the model’s prediction of polarization of training requirements.

Second, the model can potentially help to make sense of changes in training requirements within

occupations. If an occupation consists of a large fraction of tasks with intermediate knowledge

intensity, then we would expect training requirements to decrease as these tasks are automated.

Panel a) of Figure 4.5 shows that indeed, occupations with intermediate initial training requirements

saw the largest declines in training requirements. These occupations include air traffic controllers,

precision makers, insurance adjusters, and various engineering occupations (see Table D.4), which

appears consistent with our automation-based explanation.

Third, our model predicts that an increase in the supply of general skill s should result in skill

upgrading across tasks. Indeed, average years of schooling increased in almost all occupations, as

shown in panel b) of Figure 4.5. Furthermore, changes in occupation average years of schooling do

not follow the same pattern as changes in training requirements, supporting our assertion that the

two measures relate to distinct concepts.

Fourth, if decreases in training requirements are due to increased automation, then employment

growth should have been lower in occupations with larger decreases in training requirements.

This is indeed the case. A regression of changes in log total hours on changes in log training

requirements yields a coefficient of 0.33 (robust standard error 0.08). Raw data and fitted line are

plotted in Figure 4.6. Including changes in log years of education on the right hand side slightly

36We employ the same estimation method as Acemoglu and Autor (2011) and Autor and Dorn (2013) to facilitate
comparison with their plots of employment share changes against initial occupational mean wages.
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decreases the coefficient on training.37

Finally, we consider how changes in training requirements correlate with changes in occupa-

tional mean wages. We obtain adjusted occupational mean log wages as the predicted values from a

regression of log wages on occupation dummies, a quartic in potential experience, region dummies,

and indicators for female and non-white, evaluated at sample means. A regression of changes in

occupation log wages on changes in log training requirements yields a coefficient of 0.07 (standard

error 0.026), see Figure 4.7. Including changes in log years of education on the right hand side

slightly increases the coefficient on training.

The finding is consistent with the model if we interpret falls in training requirements as increased

automation of tasks. For concreteness, consider an occupation whose task bundle initially includes

training-intensive tasks with knowledge intensities between σ∗1 and σ′ > σ̂∗1 . Let s′ be the skill level

of the worker initially performing task σ′. After the fall in machine design costs, all tasks in the

interval [σ∗1, σ̂
∗
1] are newly automated. Workers with skill levels between ŝ∗ and some s′′ < s′ will

remain in the occupation. Figure 4.3 shows that these workers experience wage declines relative to

most other workers.

4.7 Conclusion

In this paper we make four main contributions. First, we present a model of labor-saving

technical change that endogenizes firms’ decisions about what tasks to automate, as well as choices

of machine design and worker training. Second, we generate job polarization endogenously. We

show that job polarization and a hollowing out of the wage distribution result from any technological

advance that facilitates automating a broad range of tasks, and is thus not specific to the recent

information technology revolution. Third, our model allows us to investigate the effects of job

polarization on wage inequality near the top of the distribution, and it generates predictions about

how high skill workers might be affected by further advances in AI and robotics. Fourth, the model

predicts changes in occupational training requirements that are consistent with novel evidence

we present. Our model does not allow for changes in the economy’s task mix or changes in firm

organization resulting from technical change—further research is necessary to determine whether

our results are robust to these extensions.

37A positive and statistically significant relationship also exists between employment growth and changes in the level
of training requirements; and between changes in occupational employment shares and changes in both the level and log
of training requirements.
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Figure 4.4: Changes in occupational shares
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Figure 4.5: Changes in occupational training requirements and average years of schooling

a) Changes in occupational training requirements
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b) Changes in occupational average years of schooling
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Figure 4.6: Growth of occupational labor input against changes in training requirements
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Notes: Fitted line from a regression of changes in log total hours on changes in log training
requirements. The estimated coefficient is 0.33 with a robust standard error of 0.08. Observations
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Figure 4.7: Changes in occupational mean wages against changes in training requirements
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Appendix D

Appendix

D.1 Proofs of Formal Results Stated in the Text

D.1.1 Sufficient Conditions for Existence of an Interior Equilibrium

We derive sufficient conditions ensuring that an interior equilibrium with σ∗0, σ
∗
1 ∈ (σ, σ) and

hence s∗ ∈ (s, s) prevails. These conditions will consist of mild restrictions on the values that the

economy’s endowment of efficiency units of capital AKK may take, given a particular choice of

values (s, σ, σ).

In any equilibrium in which k0(σ) = 0 for all σ ∈ [σ, σ], we have by (4.7)

p0(σ)α(sK , σ) ≤ r/AK

p0(σ) = w(s∗),

which yields α(sK , σ) ≤ r/[AKw(s∗)]. Using (4.17) and (4.19) this inequality is shown to be

equivalent to

α(sK , σ) ≤ (1− β)(σ∗1 − σ)

β(σ − σ)
× V (s∗)

AKK
.

The RHS of the last inequality is strictly less than (1− β)/(βAKK), hence a sufficient condition

to rule out any equilibrium in which k0(σ) = 0 for all σ ∈ [σ, σ] is α(sK , σ) > (1− β)/(βAKK)

or

(D.1) AKK >
1− β
β

1

α(sK , σ)
.

And in any equilibrium in which n1(s, σ) = 0 for all s ∈ [s, s] and σ ∈ [σ, σ] we have by (4.7)

p1(σ)α(cK , σ) = r/AK

p1(σ)α(s, σ) ≤ w(s) = w(s∗),

from which we obtain α(sK , σ)/α(s, σ) ≥ r/[AKw(s∗)]. Using (4.17) and (4.19) this inequality

becomes
α(sK , σ)

α(s, σ)
≥ β(σ∗0 − σ) + (1− β)(σ − σ)

β(σ − σ∗0)
× 1

AKK
.
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The RHS of the last inequality is strictly greater than (1 − β)/(βAKK), hence a sufficient

condition to rule out any equilibrium in which n1(s, σ) = 0 for all s ∈ [s, s] and σ ∈ [σ, σ] is

α(sK , σ)/α(s, σ) < (1− β)/(βAKK) or

(D.2) AKK <
1− β
β

α(s, σ)

α(sK , σ)
.

Combining (D.1) and (D.2), we conclude that if

AKK ∈ S, S ≡ 1− β
β

(
1

α(sK , σ)
,
α(s, σ)

α(sK , σ)

)
,

then the equilibrium is interior with σ∗0, σ
∗
1 ∈ (σ, σ) and hence s∗ ∈ (s, s). Existence of an interior

equilibrium is ensured by choosing parameter values for (s, σ, σ) such that S is a non-empty set.

Our claim that the restrictions on AKK are mild given a particular choice of (s, σ, σ) is justified if

we assume that σ is sufficiently small so that F (Z;σ) is close to one even for very small Z; and

that σ is sufficiently large so that F (Z;σ) is close to zero even for very large Z, while at the same

time s is sufficiently large so that α(s, σ) stays finite. If so, then S → 1−β
β (1,∞).

D.1.2 Proofs of Lemmas Stated in the Text

Proof of Lemma 1 The productivity schedule α is strictly log-supermodular if and only if

∂2

∂s̆∂σ
logα(s̆, σ) > 0.

Applying the envelope theorem to (4.2) yields

∂

∂s̆
logα(s̆, σ) =

z(s̆, σ)

(s̆)2 − s̆z(s̆, σ)
.

The RHS is an increasing function of z(s̆, σ), and so

∂2

∂s̆∂σ
logα(s̆, σ) > 0 ⇔ ∂

∂σ
z(s̆, σ) > 0.

Thus, α is log-supermodular if and only if optimal knowledge levels are increasing in σ. Differenti-

ating the FOC (4.1) yields

∂

∂σ
z(s̆, σ) =

Fσ
1

s̆
− fσ

[
1− 1

s̆
z

]
fz

[
1− 1

s̆
z

]
− 2f

1

s̆

.

The denominator of the RHS is negative as fz < 0, and so, using the FOC we find that

∂

∂σ
z(s̆, σ) > 0 ⇐ εF,σ < εf,σ for all Z, σ > 0.
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Proof of Lemma 2 (a) For any vectors (s, σ) and (s′, σ′) such that n0(s, σ) > 0 and n1(s′, σ′) > 0

we have by the zero-profit condition (4.7) p0(σ) = w(s) and p0(σ) ≤ w(s′), or w(s) ≤ w(s′), and

p1(σ′)α(s′, σ′) = w(s′),

p1(σ′)α(s, σ′) ≤ w(s).

Together these conditions imply α(s′, σ′)/α(s, σ′) ≥ 1. Since α is increasing in s we must have

s′ ≥ s. Furthermore, it must be that s∗ > s, for suppose not. Then market clearing (4.4) implies

that k0(σ) > 0 for all σ (task output must be strictly positive due to the INADA properties of the

Cobb-Douglas production function). By (4.7), for some (s, σ)

p1(σ)α(s, σ) = w(s),

p1(σ)α(sK , σ) ≤ r/AK ,

which yields
w(s)

r/AK
≤ α(s, σ)

α(sK , σ)
.

Furthermore, p0(σ)α(sK , σ) = r/AK and p0(σ) ≤ w(s) . This yields

w(s)

r/AK
≥ 1

α(sK , σ)
.

Together with the previous result this implies α(s, σ) ≥ 1 which is impossible given (4.2).

(b) If k0(σ) > 0, then by the zero-profit condition (4.7)

w(s∗)

r/AK
≥ 1

α(sK , σ)
,

and there is some σ′ such that n1(s∗, σ′) > 0 and hence by (4.7)

w(s∗)

r/AK
≤ α(s∗, σ′)

α(sK , σ′)
.

The previous two inequalities imply

α(s∗, σ′)

α(sK , σ′)
≥ 1

α(sK , σ)
,

but since α(sK , σ) < 1, we have α(s∗, σ′)/α(sK , σ
′) > 1 which is only possible if s∗ > sK .

Next, observe that for any (σ, σ′) and s ≤ s∗ such that k0(σ) > 0 and n0(s, σ′) > 0 we have

by (4.7),
p0(σ)α(sK , σ) = r/AK

p0(σ) ≤ w(s),

and
p0(σ′)α(sK , σ

′) ≤ r/AK

p0(σ′) = w(s),
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which yields α(sK , σ) ≥ α(sK , σ
′) and so σ ≤ σ′. Thus we have established existence of σ∗0 .

Similarly, for any (σ, σ′) and s ≥ s∗ such that k1(σ) > 0 and n1(s, σ′) > 0, we have by (4.7),

p1(σ)α(sK , σ) = r/AK

p1(σ)α(s, σ) ≤ w(s),

and
p1(σ′)α(sK , σ

′) ≤ r/AK

p1(σ′)α(s, σ′) = w(s),

which yields
α(sK , σ)

α(s, σ)
≥ α(sK , σ

′)

α(s, σ′)
,

and so σ ≤ σ′ by the log-supermodularity of α and since s > sK . This establishes existence of σ∗1 .

Now, it must be that σ∗0 < σ∗1 , for suppose not. If σ∗0 > σ∗1 , then there exist (s, σ) such that

k0(σ) > 0, k1(σ) = 0, n0(s, σ) = 0, and n1(s, σ) > 0. By (4.7),

p0(σ)α(sK , σ) = r/AK

p0(σ) ≤ w(s),

and
p1(σ)α(sK , σ) ≤ r/AK

p1(σ)α(s, σ) = w(s).

This yields α(s, σ) ≥ 1 which contradicts (4.2). If σ∗0 = σ∗1 , then similar arguments lead to

α(s, σ) = 1, which also contradicts (4.2).

Proof of Lemma 3 Given Lemma 2, the problem is to match workers of skill levels s ∈ [s∗, s] to

tasks σ ∈ [σ∗1, σ] in a setting identical to that in Costinot and Vogel (2010). Hence, the proof of

Lemma 1 from their paper applies.

D.1.3 Proofs of Propositions Stated in the Text

Proof of Proposition 1 We first show that in the absence of changes to the distribution of

skills, a flattening (steepening) of the matching function at the upper end implies an upward

(downward) shift of the matching function everywhere. Formally, if M̂ ′(s) < M ′(s), then

M̂(s) < M(s) for all s ∈ [max{s∗, ŝ∗}, s). For suppose that M̂ ′(s) < M ′(s) and that there exists

some s′ ∈ [max{s∗, ŝ∗}, s) such that M̂(s′) ≤ M(s′). Then there exists some s′′ ∈ [s′, s) such

that M̂(s′′) = M(s′′), M̂ ′(s′′) ≥ M ′(s′′), and M̂(s) > M(s) for all s ∈ (s′′, s). We will show

that this leads to a contradiction.

Integrating (4.11) yields an expression for the wage premium of the most skilled worker with

respect to any other skill group employed in training-intensive tasks,

w(s)

w(s)
= ω(s;M), s ≥ s∗
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where

(D.3) ω(s;M) ≡ exp

[∫ s

s

∂

∂z
logα(z,M(z))dz

]
.

Because α is increasing in its first argument, ω is decreasing in s. Moreover, by the log-

supermodularity of α, if M̂(z) > M(z) for all z ∈ (s, s) and any s that belongs to the domains of

both M̂ and M , then ω(s; M̂) > ω(s;M).

Plugging (D.3) into (4.10), we obtain

(D.4)
M ′(s)

M ′(s)
= ω(s;M)

v(s)

v(s)
.

Therefore,
M̂ ′(s)

M ′(s)
=
ω(s′′; M̂)

ω(s′′;M)

M̂ ′(s′′)

M ′(s′′)
.

By the above arguments, the right side of the last equation is larger than one, so that we must have

M̂ ′(s) > M ′(s), a contradiction. A similar argument establishes that a steepening at the upper end

leads to a downward shift everywhere.

Proof that σ̂∗1 > σ∗1 First suppose σ̂∗1 ≤ σ∗1 and M̂ ′(s) ≥M ′(s).

By (4.22) and (D.4),

(D.5)
V (s∗)

σ − σ∗0
× M ′(s)

ω(s∗;M)
=
βv(s)

1− β
.

This together with (4.20), implies

(D.6)
AKα(sK , σ

∗
0)K

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
× M ′(s)

ω(s∗;M)
=

v(s)

1− β
.

Suppose that ŝ∗ ≥ s∗. Then (D.5) implies that σ̂∗0 < σ∗0 , while (D.6) implies σ̂∗0 > σ∗0 , a

contradiction. So we must have ŝ∗ < s∗. If σ̂∗0 ≥ σ∗0 , then from (4.21), ŝ∗ > s∗,1 so it must be that

σ̂∗0 < σ∗0 . Then by 4.21, α(ŝK , σ̂
∗
0) > α(sK , σ

∗
0). This implies that the LHS of (4.20) increases,

while the RHS decreases, a contradiction.

Next, suppose that σ̂∗1 ≤ σ∗1 and M̂ ′(s) < M ′(s). We have shown that in this case the matching

function shifts up, so we must have ŝ∗ ≤ s∗. Then σ̂∗0 < σ∗0 from (4.21). But we have just shown

that it is impossible to have σ̂∗1 ≤ σ∗1 , σ̂∗0 < σ∗0 , and ŝ∗ ≤ s∗ at the same time. Thus we have

established that σ̂∗1 > σ∗1 .

Proof that M̂(s) > M(s) Suppose that M̂ ′(s) > M ′(s), which we have shown implies M̂(s) <

M(s) and, by (D.4), M̂ ′(s) > M ′(s) for all s belonging to the domains of both M̂ and M . As we

1To see this, rewrite (4.21) as
α(sK , σ

∗
1)

α(sK , σ∗0)α(s
∗, σ∗1)

= 1.

By the log-supermodularity of α, a rise in sK leads the ratio α(sK , σ∗1)/α(sK , σ∗0) to rise since σ∗1 > σ∗0 . Again due to
log-supermodularity, the fall in σ∗1 raises the ratio α(sK , σ∗1)/α(s∗, σ∗1) since sK < s∗. The rise in σ∗0 raises the LHS
further. Therefore, s∗ must increase.
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have established that σ̂∗1 < σ∗1 , by the properties of the matching function we must have ŝ∗ > s∗. By

(4.10), the wage share of a worker who is always assigned to training-intensive tasks has increased,

ŵ(s)

Ŷ
=

1− β
µ

M̂ ′(s)

v(s)
>

1− β
µ

M ′(s)

v(s)
=
w(s)

Y
∀s ∈ [ŝ∗, s].

But this means that the wage shares of all remaining workers have increased, as well,

ŵ(s)

Ŷ
=
ŵ(ŝ∗)

Ŷ
>
w(ŝ∗)

Y
>
w(s)

Y
∀s ∈ [s, ŝ∗),

where the last inequality is due to (4.23). Therefore, the total labor share has increased,∫ s
s ŵ(s)v(s)ds

Ŷ
>

∫ s
s w(s)v(s)ds

Y
.

By (4.10) and (4.19), this implies βσ̂∗0 + (1− β)σ̂∗1 < βσ∗0 + (1− β)σ∗1 .

Now observe that if M̂(s) < M(s) then ω(ŝ∗; M̂) < ω(s∗;M) since also ŝ∗ > s∗. By (D.5),

we must have σ̂∗0 < σ∗0 . But this means that (D.6) can only hold if also the total labor share has

decreased, βσ̂∗0 + (1− β)σ̂∗1 > βσ∗0 + (1− β)σ∗1 , a contradiction.

Proof that if ŝK ≥ s∗ then ŝ∗ > s∗ Immediate from Lemma 2 which says that ŝ∗ > ŝK .

Proof of Proposition 2 We proceed in three steps.

1. If the labor share increases, then the marginal training-intensive task becomes less knowledge-

intensive. Formally, if βσ̂∗0 + (1 − β)σ̂∗1 < βσ∗0 + (1 − β)σ∗1 , then σ̂∗1 < σ∗1. For suppose

that βσ̂∗0 + (1− β)σ̂∗1 < βσ∗0 + (1− β)σ∗1 , but σ̂∗1 ≥ σ∗1 . Then σ̂∗0 < σ∗0 . By (4.21), ŝ∗ < s∗.

But by (4.20), ŝ∗ > s∗, a contradiction.

2. If the marginal training-intensive task becomes less knowledge-intensive, then the marginal

worker becomes more skilled. Formally, if σ̂∗1 < σ∗1 , then ŝ∗ > s∗. For suppose that σ̂∗1 < σ∗1
but ŝ∗ ≤ s∗. Then (4.21) implies σ̂∗0 < σ∗0 . But since V̂ (ŝ∗) < V (s∗), (4.20) implies

σ̂∗0 > σ∗0 , a contradiction.

3. If at one point the new matching function is flatter and does not lie below the old matching

function, then it lies above the old one everywhere to the left of this point. Formally, if

M̂ ′(s′) ≤M ′(s′) and M̂(s′) ≥M(s′) for some s′ ∈ (max{s∗, ŝ∗}, s], then M̂(s) ≥M(s)

for all s ∈ [max{s∗, ŝ∗}, s′]. For suppose that M̂ ′(s′) ≤ M ′(s′) and M̂(s′) ≥ M(s′), and

that there exists some s′′ ∈ [max{s∗, ŝ∗}, s′) such that M̂(s′′) < M(s′′). Then there exists

some s′′′ ∈ (s′′, s′) such that M̂(s′′′) = M(s′′′), M̂ ′(s′′′) > M ′(s′′′), and M̂(s) ≥ M(s)

for all s ∈ [s′′′, s′]. By (4.10),

M̂ ′(s′′′)

M ′(s′′′)
=
ŵ(s′′′)/ŵ(s′)

w(s′′′)/w(s′)
× v̂(s′′′)/v̂(s′)

v(s′′′)/v(s′)
× M̂ ′(s′)

M ′(s′)
.
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Since V̂ � V , and because the upward shift of the matching function raises inequality and

thus lowers the wage of type s′′′ relative to that of type s′, the right side of the last equation

is no greater than one, so that M̂ ′(s′′′) ≤M ′(s′′′), a contradiction.

Thus, we have shown that if the increase in skill abundance results in an increase in the labor

share, then the lower endpoint of the matching function moves southeast (Steps 1 and 2). This

means that the matching function must shift down everywhere, for if it shifted up at one point, it

would shift up everywhere (Step 3), and it would be impossible for its lower endpoint to move

southeast.

D.1.4 Proofs of Corollaries Stated in the Text

Proof of Corollary 1 Integrating (4.11), the first part of the result is immediate given the shift in the

matching function and the log-supermodularity of α. The second part follows since ŵ(s′)/ŵ(s) = 1

but w(s′)/w(s) > 1 for all such s′, s.

Proof of Corollary 2 Recall that the labor share is proportional to β(σ − σ∗0) + (1− β)(σ − σ∗1).

As σ̂∗1 > σ∗1 , the result is immediate if σ̂∗0 ≥ σ∗0 . Then consider the case σ̂∗0 < σ∗0 . Rewrite (4.20) as

AKα(sK , σ
∗
0)K =

β(σ∗0 − σ) + (1− β)(σ∗1 − σ)
β(σ−σ∗0)
V (s∗)

.

The LHS increases. If the denominator of the RHS increases, then so must the numerator, which is

proportional to the capital share. Hence the labor share decreases. If the denominator of the RHS

decreases, then the wage share of all workers falls, again implying a fall in the labor share.

Proof of Corollary 3 Analogous to the proof of Corollary 1.
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D.2 A Model with Fixed Costs

We begin by simplifying the modeling of the task production process. Assume that the set of

potential problems encountered in each task is given by [0, σ]. Moreover, suppose that machines and

workers can only be employed in a given task if they can solve all problems in this interval. Thus,

we abstract from training and design choices. Nevertheless, the concept of knowledge intensity is

still present in the model and is captured by the parameter σ. The technologies for training workers

and designing machines in the modified model are as follows. Intermediate firms must pay σ/s

units of the final good to train a worker in training-intensive task σ, but face no learning cost in

innate ability tasks. Maintaining the normalization that task-neutral productivity of workers equals

one, we have that the marginal cost of employing labor is given by w(s) + σ/s.

To design a machine in a task with knowledge intensity σ, be it a training-intensive or an

innate ability task, firms pay a one-off cost ϕσ and a variable cost cKσ. Thus, the marginal

cost of employing machines is r/AK + cKσ/AK , where r is the rental rate of capital and AK is

task-neutral productivity of machines.

We assume that each task is produced by a single monopolistic firm.2 In contrast, final good

firms are perfectly competitive just as in the baseline version of the model. The final good production

function is now

Y =

[∫ σ

σ

{
βy0(σ)

ε−1
ε + (1− β)y1(σ)

ε−1
ε

}
dσ

] ε
ε−1

,

with ε > 1. Given profit maximization by final good firms, the CES production function yields the

standard isoelastic input demand curve, inducing the well-known constant-markup pricing rule.

Standard arguments establish that the profits of the firm that supplies training-intensive task σ

are given by

π1(σ, s|N) = a1(ε) [w(s) + σ/s]−(ε−1)

if employing workers of type s, and

π1(σ|K) = a1(ε) [r/AK + cKσ/AK ]−(ε−1) − ϕσ

if employing machines, where a1(ε) ≡ ε−ε(ε − 1)ε−1(1 − β)εY . In innate ability tasks, the

corresponding expressions are

π0(σ, s|N) = a0(ε)w(s)−(ε−1)

and

π0(σ|K) = a0(ε) [r/AK + cKσ/AK ]−(ε−1) − ϕσ

with a0(ε) ≡ ε−ε(ε− 1)ε−1βεY . Unlike in the baseline model, incentives for employing machines

depend both on knowledge intensity and training intensity. This is because of a market size effect

that is present whenever the share of innate ability tasks β is different from one half.

2Holmes and Mitchell (2008) present a more complex model where labor and machines are optimally assigned to
tasks within monopolistic firms. We suspect that our results would hold in a version of that model as well.
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The equilibrium assignment of machines and labor to intermediate firms is qualitatively the

same as in the baseline model if the marginal costs of employing machines are lower than those

of employing workers. In particular, if for all s, w(s) > r/Ak and 1/s > cK/AK , and if σ is

close to zero, then π0(σ, s|N) < π0(σ|K) and π1(σ, s|N) < π1(σ|K) for all s. Thus, the least

knowledge-intensive innate ability and training-intensive tasks are performed by machines. Now

observe that profits of firms employing labor approach zero, but stay strictly positive, as σ goes to

infinity. In contrast, profits of firms employing machines will be negative for sufficiently large σ

due to the fixed cost. Therefore, if σ is large, then there exist σ∗0 such that innate ability tasks with

σ ≤ σ∗0 (σ > σ∗0) are performed by machines (workers). Similarly, there exists such a marginal

training-intensive task σ∗1 . If β is not too large, then σ∗1 > σ∗0 , so that machines are more widely

adopted in training-intensive tasks. We have thus established the conditions under which technology

adoption in the model with fixed costs follows the same patterns as in the baseline model (Lemma

2, part b).

Now consider the assignment of skill types to training-intensive tasks. If the firm supplying

training-intensive task σ employs type s in equilibrium, then its profits are equal to π(σ, s|N) =

a1(ε) [w(s) + σ/s]−(ε−1). For this to be optimal, the first-order-condition

w′(s)− σ/s2 = 0

and the second-order condition

w′′(s) + 2σ/s3 > 0

must hold. For firms supplying more-knowledge-intensive tasks to hire more highly skilled workers,

it must be that ds/dσ > 0. It is easy to check that this condition is satisfied under the first- and

second-order conditions above. Thus, the matching function is increasing and there is positive

assortative matching as in the baseline model. Since the wage function is increasing, there must

exist an s∗ such that all workers with s < s∗ (s ≥ s∗) are assigned to innate ability tasks (training-

intensive tasks). The assignment of skill types to tasks is thus equivalent to that in the baseline

model (Lemma 2, part a, and Lemma 3).

To solve for the matching function, follow similar steps as in the derivation of (4.10) to obtain

the differential equation

M ′(s) =

(
ε

(ε− 1)(1− β)

)ε
× v(s) [w(s) +M(s)/s]ε

Y
.

Together with the FOC (setting σ = M(s)) and the boundary conditions M(s∗) = σ∗1 and M(s) =

σ, one can solve for the matching function, given a guess for s∗, σ∗1 , and Y . The model is closed

by the usual market clearing conditions and the no-arbitrage equations π(σ∗0, s
∗|N) = π(σ∗0|K),

π(σ∗1, s
∗|N) = π(σ∗1|K), and w(s) = w(s∗) for all s < s∗.
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Table D.1: Measuring Training Requirements Based on SVP and Job Zones

SVP Job Zone Training time

1 short demonstration 1 1.5 months
2 up to 30 days 1 1.5 months
3 30 days to 3 months 1 1.5 months
4 3 to 6 months 2 7.5 months
5 6 months to 1 year 2 7.5 months
6 1 to 2 years 3 1.5 years
7 2 to 4 years 4 3 years
8 4 to 10 years 5 7.5 years
9 over 10 years 5 7.5 years

D.3 Data Sources and Measurement of Training Requirements

Data sources.—Our 1971 training measure comes from the Fourth Edition Dictionary of

Occupational Titles (DOT), which is made available in combination with the 1971 April Current

Population Survey (CPS) (National Academy of Sciences 1981). We obtain contemporaneous

wage data from the IPUMS 1970 census extract (the processing of this data follows the procedure

of Acemoglu and Autor (2011)). Our 2007 training measure comes from the Job Zones file in

the O*NET database available at http://www.onetcenter.org/database.html?p=2.

For contemporaneous micro data we use the IPUMS 2008 American Community Survey (ACS).

Measuring training requirements.—SVP (see definition in Section 4.6.2) is measured on a

nine-point scale in the DOT. In the O*NET database, Job Zones are measured on a five-point scale

which maps into the nine-point SVP scale. See Table D.1 for the interpretation of the SVP scale and

the mapping between SVP and Job Zones. In the DOT data, we convert SVP into Job Zones. We

assign midpoints to consistently measure training requirements over time. We assign a conservative

value to the highest category. See the last column in Table D.1 for details.

The DOT variables, including SVP, in the 1971 April CPS extract vary at the level of 4,528

distinct occupations. For the occupation-level analysis, we collapse the CPS micro data to the three-

digit occupation level using David Dorn’s classification of occupations (Dorn 2009), weighting by

the product of sampling weights and hours worked. The Job Zones variable in the O*NET database

is available for 904 distinct occupations of the Standard Occupational Classification System (SOC).

In the 2008 ACS data there are 443 distinct SOC occupations. We collapse the O*NET data to

these 443 occupations and then merge it to the ACS data. For the occupation-level analysis, we

collapse the ACS micro data to the three-digit occupation level in the same way as the CPS data.

Table D.2 lists the twenty least and most training-intensive occupations (using David Dorn’s

classification) in 1971. Table D.3 does the same for 2007. Table D.4 lists the twenty occupations

experiencing the largest declines and increases in training requirements.

http://www.onetcenter.org/database.html?p=2
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Table D.2: Least and Most Training-Intensive Occupations, 1971

Training requirements
Occupation (occ1990dd grouping) in years (1971)

a) least training-intensive
Public transportation attendants and inspectors 0.1
Packers and packagers by hand 0.2
Waiter/waitress 0.2
Mail carriers for postal service 0.3
Garage and service station related occupations 0.4
Bartenders 0.4
Messengers 0.4
Parking lot attendants 0.4
Cashiers 0.5
Child care workers 0.6
Misc material moving occupations 0.6
Taxi cab drivers and chauffeurs 0.7
Baggage porters 0.7
Housekeepers, maids, butlers, stewards, and lodging quarters cleaners 0.7
Typists 0.7
Mail and paper handlers 0.7
Proofreaders 0.7
Bus drivers 0.7
File clerks 0.7
Helpers, surveyors 0.8

b) most training-intensive
Musician or composer 6.8
Mechanical engineers 6.8
Aerospace engineer 6.8
Electrical engineer 6.9
Biological scientists 6.9
Chemical engineers 7.0
Chemists 7.0
Managers in education and related fields 7.0
Petroleum, mining, and geological engineers 7.1
Architects 7.1
Subject instructors (HS/college) 7.1
Dentists 7.2
Veterinarians 7.2
Lawyers 7.2
Civil engineers 7.2
Clergy and religious workers 7.3
Psychologists 7.3
Physicians 7.3
Geologists 7.5
Physicists and astronomers 7.5
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Table D.3: Least and Most Training-Intensive Occupations, 2007

Training requirements
Occupation (occ1990dd grouping) in years (2007)

a) least training-intensive
Waiter/waitress 0.1
Misc food prep workers 0.1
Ushers 0.1
Parking lot attendants 0.1
Kitchen workers 0.1
Furniture and wood finishers 0.1
Pressing machine operators (clothing) 0.1
Fishers, hunters, and kindred 0.1
Textile sewing machine operators 0.1
Graders and sorters of agricultural products 0.1
Garage and service station related occupations 0.1
Taxi cab drivers and chauffeurs 0.1
Animal caretakers, except farm 0.2
Butchers and meat cutters 0.3
Janitors 0.4
Sales demonstrators / promoters / models 0.4
Housekeepers, maids, butlers, stewards, and lodging quarters cleaners 0.4
Miners 0.4
Cashiers 0.4
Stock and inventory clerks 0.4

b) most training-intensive
Other health and therapy 7.5
Psychologists 7.5
Physicians 7.5
Economists, market researchers, and survey researchers 7.5
Lawyers 7.5
Managers of medicine and health occupations 7.5
Physicians’ assistants 7.5
Biological scientists 7.5
Medical scientists 7.5
Physical scientists, n.e.c. 7.5
Podiatrists 7.5
Veterinarians 7.5
Subject instructors (HS/college) 7.5
Dietitians and nutritionists 7.5
Urban and regional planners 7.5
Pharmacists 7.5
Librarians 7.5
Optometrists 7.5
Dentists 7.5
Physicists and astronomers 7.5
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Table D.4: Largest Decreases and Increases in Training Requirements, 1971-2007

Change in training Training
requirements (years) requirements

Occupation (occ1990dd grouping) 1971-2007 in 1971 (years)

a) largest decreases in training requirements
Carpenters -5.7 6.4
Musician or composer -5.1 6.8
Air traffic controllers -5.0 6.5
Production supervisors or foremen -4.7 5.4
Dental laboratory and medical appliance technicians -4.7 5.9
Geologists -4.5 7.5
Precision makers, repairers, and smiths -4.4 5.9
Insurance adjusters, examiners, and investigators -4.4 5.7
Civil engineers -4.2 7.2
Recreation and fitness workers -4.1 6.4
Chemical engineers -4.0 7.0
Masons, tilers, and carpet installers -3.9 4.7
Heating, air conditioning, and refigeration mechanics -3.9 5.4
Electrical engineer -3.9 6.9
Petroleum, mining, and geological engineers -3.8 7.1
Aerospace engineer -3.8 6.8
Mechanical engineers -3.8 6.8
Explosives workers -3.8 4.4
Patternmakers and model makers -3.7 5.2
Molders, and casting machine operators -3.6 4.2

b) largest increases in training requirements
Primary school teachers 1.2 1.8
Operations and systems researchers and analysts 1.3 4.6
Agricultural and food scientists 1.3 4.7
Archivists and curators 1.5 4.5
Managers of medicine and health occupations 1.5 6.0
Public transportation attendants and inspectors 1.9 0.1
Therapists, n.e.c. 2.3 2.9
Proofreaders 2.3 0.7
Vocational and educational counselors 2.5 4.1
Registered nurses 2.7 3.1
Social workers 2.7 3.3
Social scientists, n.e.c. 3.0 4.2
Economists, market researchers, and survey researchers 3.2 4.3
Optometrists 3.9 3.6
Pharmacists 4.3 3.2
Librarians 4.4 3.1
Podiatrists 4.5 3.0
Physical scientists, n.e.c. 4.5 3.0
Other health and therapy 4.5 3.0
Dietitians and nutritionists 4.6 2.9
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