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Chapter 1

Introduction

This thesis is composed by three essays and provides empirical and methodological contri-

butions to the Industrial Organization literature. The �rst essay (chapter 2) analyzes the

welfare impacts of the Brazilian Biodiesel law. The second essay (chapter 3) develops an al-

ternative estimator for dynamic games. The third essay (chapter 4) applies the methodology

developed in chapter 3 to build a dynamic oligopoly model for Brazilian banking industry.

Chapter 5 concludes the thesis and provides some directions for future work.

Chapter 1 analyzes market e�ects of Brazilian biodiesel regulations. Biodiesel was intro-

duced in Brazil in 2005, mixed with mineral diesel to produce the BX blend (X stands for

the percentage of biodiesel). Even in small quantities, the percentage of biodiesel has a pos-

itive impact on �nal price of BX because the production costs of biodiesel are higher than

those of mineral diesel. In order to analyze the welfare consequences of this price increase,

I use a static partial equilibrium framework. The results show that the current proportion

of biodiesel in the diesel mixture (5%) increases consumers' price by 1.7% and decreases the

consumption by 1.5% compared to the scenario without biodiesel. Also, an increase in the

biodiesel percentage to 10% would raise the price by 3.5% and reduce the consumption by

3%.

Chapter 3 provides an alternative estimator for dynamic games. Estimation of dynamic

games is a numerically challenging task, in chapter 3 we propose an alternative class of

asymptotic least squares estimators to Pesendorfer and Schmidt-Dengler's (2008). The es-

timator we propose is based on the equilibrium condition of the game when represented in

the space of payo�s - in contrast with Pesendorfer and Schmidt-Dengler's (2008) that work

in the probability space. Our estimator reduces signi�cantly the computational burden.
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This reduction is specially signi�cant under the linear-in-parameter speci�cation where our

estimator has an OLS/GLS closed form that does not require any optimization. Also, we

show that our estimator is asymptotically equivalent to Pesenrorfer and Schmidt-Dengler's

(2008). This implies that there is no theoretical cost of using our estimator. Monte Carlo es-

timations show that our estimator has good small sample properties and provides signi�cant

reduction in the computational time when compared to Pesenrorfer and Schmidt-Dengler's

(2008) estimator.

Chapter 4 applies the methodology developed in chapter 3. We estimate a dynamic

oligopoly model for the Brazilian banking industry. The results are used to build coun-

terfactuals to examine the e�ects of the privatization of public banks on the number of

bank branches in small municipalities. We �nd that public banks are not strategic and their

presence generate positive spillovers on the private banks' pro�ts. The model however, is

not able to disentangle the nature of this spillover. Also, the counterfactual shows that the

number of branches operating in small markets would drop in a privatization scenario.

Chapter 5 is the conclusion, I discuss the limitations of the current work and provide some

directions for future research.
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Chapter 2

Impacts of Biodiesel on the Brazilian

fuel market

The paper is published in Energy Economics 2013 (36) 666-675

Abstract

This paper investigates market e�ects of the Brazilian biodiesel law, which made the use

of biodiesel, blended with petroleum diesel, mandatory in Brazil. The study estimates the

demand curve for diesel fuel (biodiesel and petroleum diesel) and the industry supply curve

of biodiesel. These two pieces of information have been used in a static analysis to draw

scenarios with di�erent biodiesel mandates. The results show that the current proportion of

biodiesel in the diesel mixture (5%) increases consumers' price by 1.7% and decreases the

consumption by 1.5% compared to the scenario without biodiesel. Also, an increase in the

biodiesel percentage to 10% would raise the price by 3.5% and reduce the consumption by

3%.

2.1 Introduction

Recent concerns about the environment, high fossil fuels prices, and energy security led to the

creation of biodiesel programs in several countries (Altho�, Ehmke,and Gray (2003),Lamers,

McCormick, and Hilbert (2008), Ayhan (2007)). In Brazil, biodiesel was introduced in 2005
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(Brazil (2005)), mixed with mineral diesel to produce the BX blend, where X stands for the

percentage of biodiesel.

During a transition period, from 2005 to 2007, a 2% addition of biodiesel to the mineral

diesel (B2) was optional. After that, a certain percentage of biodiesel was required in all the

diesel fuel1 sold in Brazil. The biodiesel mandate has increased over time (Brazil (2005)). In

the �rst six months of 2008 the commercial diesel fuel had to contain 2% of biodiesel (B2).

The biodiesel proportion was required to increase to 3% (B3) on 1 July 2008, to 4% (B4)

one year later, and to 5% (B5) since January 2010 (three years before the initial goal, MME

(2005)).

Brazilian federal government gave ecological, economic and social reasons to introduce

the biodiesel mandate (MME (2005)). From the environmental perspective, the biodiesel is

supposed to have smaller impact on greenhouse gas emissions since it is a renewable fuel pro-

duced mainly from vegetable oils (Ayhan (2007)). From the economic point of view, the fuel

was expected to diminish petroleum diesel importation. In 2005 about 6% of the petroleum

sold in the Brazilian was imported. Also, Brazil could become an exporter of biodiesel since

other countries are adopting similar programs. Finally, the biodiesel production could be an

instrument to reduce regional inequality through income and employment generated by the

biodiesel production chain. Fiscal bene�ts were implemented for all biodiesel producers who

use raw materials from small farmers in poor regions.

However, biodiesel adoption may have negative impacts. First, it could increase the emis-

sions of greenhouse gases if the production causes deforestation (Fargione et al. (2008)).

Secondly, biofuel demand increases feedstock prices (Pfuderer, Davies, and Mitchell) and

may cause land use change. For example, Almeida, Bomtempo, and Silva (2008) show some

evidence of substition of traditonal crops (such as oranges) to sugarcane in São Paulo state.

Also, biodiesel may cause loss of welfare as its current production costs are higher than

petroleum diesel (Altho�, Ehmke,and Gray (2003)). This is a non-exhaustive list as other

problems might be caused by biodiesel use.

Since biodiesel adoption generates bene�ts and problems it is necessary to produce studies

quantifying these e�ects. The need is even more evident when one analyzes the economic

importance of the diesel. The fuel is the base of Brazilian transportation system, used in

trucks, boats, buses, tractors and some power plants � the last mainly in North (Amazon)

1The term �diesel fuel� in this article refers to the biodiesel-diesel mixture. The terms �mineral diesel�,
�petroleum diesel�, and �oil diesel� are used as synonyms.
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region. Even in small proportion, biodiesel may have signi�cant impacts on the Brazilian

Economy.

The present paper contributes to the biodiesel literature by providing a measure of the

welfare impact of biodiesel adoption. The empirical strategy consists in estimating the

demand for diesel fuel and the costs of the biodiesel industry. With these two pieces of

information it is possible to draw scenarios changing the biodiesel mandate. Then, the

scenarios can be used to evaluate the e�ects of the biofuel plan and to predict the impact of

future changes.

The economic impacts quanti�ed in this paper are based on traditional partial equilibrium

analysis: a change in the biodiesel policy changes the market equilibrium (price and quan-

tity), which implies a change in the consumer and producer surplus 2. De Gorter and Just

(2009) provide a general framework for the use of partial equilibrium analysis in the biofuel

context.

The demand estimate is based on Brazilian States' monthly panel data. The period

analyzed spans from January 2003 to December 2009. The data include diesel prices, amount

of diesel sold (pure diesel before 2008 and BX mixture onwards), the �eet of heavy vehicles,

and ICMS (tax on trade of products and services) as a proxy for economic activity.

The biodiesel industry supply curve was approximated with data from the last (17th)

biodiesel auction. This information is combined with the average price of petroleum diesel

in the re�neries, and with wholesale and retail prices of the biodiesel mixture to simulate

the impacts on price and quantity of BX sold caused by changes in the biodiesel mandate.

The results obtained show that the current proportion of biodiesel in the diesel mixture

(B5) increases consumers' price by 1.7% and decreases the consumption by 1.5% when com-

pared to the environment without biodiesel. An increase in the biodiesel percentage to 10%

(B10) would raise the price by 3.5% and reduce the consumption by 3%. These all add up

to considerable welfare loss to consumers, retailers, and wholesalers.

The paper builds on a static approximation of a dynamic process: industry capacity and

marginal costs are held constant over the simulations, and we ignore entry cost, adjustment

costs and strategic price behavior.

The biodiesel industry problem, however, is intrinsically dynamic. Firms have to decide

whether to enter the market or not. Once a �rm has entered, it has to set the capacity, the

2A comprehensive introduction to welfare analysis can be found in Mas-Colell, Whinston,and Green (1995)
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technology, and the location and, in each period of time, it decides to continue or to exit

the market. Firms decisions will a�ect the market competition and consequently the prices.

Therefore, a natural extension of this paper is a dynamic oligopoly model in the tradition of

Ericson and Pakes (1995), and Maskin and Tirole (1988). The model must deal with intrinsic

heterogeneity in the industry regarding capacity, location and technology employed.

The paper is organized as follows. The next section describes the biodiesel market and

shows the dataset used in the paper. Section 2.2 estimates the demand curve for diesel

fuel. Section 2.4 recovers the costs and estimates the supply curve for the biodiesel industry.

Section 2.5 presents the results of the simulations. Finally, section 2.6 concludes the paper,

provides some directions for future work, and discusses some limitations of the approach.

2.2 The Biodiesel Market

Brazil has a long experience in the use of biofuels. During the 1970's the Proalcohol program

(Brazil (1975)) developed bioethanol as a substitute to gasoline in automobiles. Even though

the legislation has experienced several changes over the last four decades, ethanol is still a

very important part of Brazil's energy matrix (ANP (2010)), and in 2006 ethanol represented

17% of Brazilian fuel supply (Almeida, Bomtempo, and Silva (2008)).

Biodiesel, on the other hand, was adopted later in Brazil. Silva César and Batalha (2010)

show that a �rst attempt to implement biodiesel production was made in 1980. However,

it was abandoned in 1986 due to reduction in the petroleum barrel price. During the 2000s

new concerns about renewable energy led to the creation of the National Program for the

Production and Use of Biodiesel (PNPB) (MME (2005)). The main result of the program

was law n°11.097/2005 (Brazil (2005)), which made the use of biodiesel mandatory from

2008.

It is worth noting that ethanol and biodiesel are not market competitors. Ethanol is a

substitute to gasoline, used basically in automobiles. Biodiesel is a substitute to oil diesel,

used mainly in trucks and buses. Since 1976, the use of diesel engines in automobiles has

been forbidden by law (Brazil (1976)). Therefore, ethanol belongs to a di�erent market and

is not analyzed in the present paper.

The recent introduction of biodiesel generated a growing literature about the topic. Silva

César and Batalha (2010) summarize the history of the biodiesel in Brazil. Ayhan (2007)
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discusses some bene�ts of biodiesel and governmental policies regarding biodiesel. Barbosa

(2011) and Pfuderer, Davies, and Mitchell (2009) look at the impacts of biofuels in the

feedstock market. Fargione et al. (2008) analyse the impact of biofuels in the greenhouse

gas emissions.

From the economic perspective, it is possible to use partial equilibrium analysis, a useful

economic tool, to assess market outcomes of the use of biodiesel. De Gorter and Just (2009)

propose a general framework to analyze the impact of di�erent biofuel mandates alongside

taxes. The authors show how di�erent mandates and tax schemes impact prices, and use

data to recover supply elasticities from gasoline and ethanol. Similarly, Altho��, Ehmke, and

Gray (2003) use partial equilibrium analysis to quantify the losses to the Indiana economy

caused by a 2% biodiesel mandate. Their estimative shows a total cost ranging from $ 15.2

to 17.2 million.

In this tradition, the present paper contributes to the literature by using partial equilib-

rium analysis to quantify the impact of the biodiesel mandate on the market equilibrium

outcomes. Due to the rich dataset employed in the paper it is possible to show how equilib-

rium prices and quantities are changed according to the biodiesel mandate, given that other

factors remain constant (see section 2.5). This also provides some quantitative measures of

biodiesel's impact on welfare.

2.2.1 Commercialization

The Brazilian oil and biofuel market is regulated by ANP3 (Brazil (1997)). For biodiesel

speci�cally, the agency is responsible for determining biodiesel standards, inspecting the

market (to assure that the correct biodiesel mandate is sold), and for collecting data. Also,

ANP provides licences to construct new biodiesel plants, to change the capacity of existing

ones, to produce, and to commercialize the biofuel.

ANP also plays a direct role in biodiesel commercialization. Wholesalers are responsible

for mixing biodiesel and oil diesel (ANP (2010)). However, they are not allowed to negotiate

directly with the producers. Instead, they have to buy biodiesel through actions organized

by ANP.

ANP determines the amount of biodiesel that must be sold and the auction rules. The

biodiesel producers are the bidders. They bid a mix of price and quantity according to the

3National Agency of Petroleum, Natural Gas and Biofuels
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speci�c rules of the auction. The winners are those bidders with the lowest prices. The buyers

are oil re�neries4. Each re�nery is assigned a percentage of the total volume of biodiesel by

ANP. After the auction the oil re�neries resell the biodiesel to the wholesalers (ANP (2010)).

Seventeen auctions were performed between 2005 and the �rst quarter of 2010 (ANP

(2010)). From the 12th auction onwards ANP divided each auction in two. The �rst part

of the split auctions were restricted, only the bidders that bought raw material from small

farmers were allowed to participate. In the second part, all registered producers could

participate as bidders (see Silva César and Batalha (2010) for details). Where necessary, the

split auctions have a di�erent notation through the paper: after the ANP number they have

a (i) symbol, where i = 1 means that the auction is restricted and i = 2 means that the

auction is non restricted. Also, they are considered di�erent auctions because they have a

separated dynamics.

Table 2.1 summarizes the results of the biodiesel auctions. It can be seen that the num-

ber of bidders and the volume auctioned increased over time, re�ecting the increase in the

biodiesel mandate. The prices, on the other hand, did not follow this pattern. Both the

ceiling and the average price increased from the 6th to the 12th auctions and then the prices

returned to the initial levels.

Empirical analysis of the biodiesel auctions is virtually impossible due to their peculiarities
5. Firstly, there were drastic changes in the auction format. The �rst eight auctions were

electronic auctions; ANP implemented live auctions for the following eight auctions and

returned to electronic format for the last one. Secondly, the bidding rules, the regularity of

the auctions, the delivery schedule, and the guarantee of producers also changed over time.

Finally, the number of auctions is not large enough for empirical analysis.

However, even without an accurate analysis, the results of the auctions are used in section

2.4 to recover information regarding the supply curve of the biodiesel industry.

2.2.2 Market Data

ANP collects fuel market data on a monthly basis. The information includes the amount

of each fuel sold by state, the total quantity of each fuel produced by oil re�nery, the total

4Technically, the buyers in the auctions are all the producers and importers with market share above 1%. In
practise, the oil re�neries of two companies (Petrobras and Refap ) ful�ll these conditions (ANP (2010)).

5For empirical estimation of auctions see Guerre, Perrigne, and Vuong (2000), La�ont, Ossard, and Voung
(1995), and Donald and Paarsch (1993)
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Table 2.1: Results of Biodiesel Auctions

Auction Date Price (R$ Jan 2003/m3) Volume Auctioned (m3) N°of Bidders
Celing Average

1 23/11/2005 1624.80 1611.97 70000 8
2 30/03/2006 1593.16 1552.78 170000 12
3 11/07/2006 1588.07 1462.13 50000 6
4 12/07/2006 1587.79 1456.19 550000 25
5 13/02/2007 1555.97 1521.36 45000 7
6 13/11/2007 1907.07 1483.61 304000 26
7 14/11/2007 1907.07 1480.52 76000 30
8 10/04/2008 2165.74 2078.10 259000 24
9 11/04/2008 2165.74 2074.01 66000 20
10 14/08/2008 1977.55 1965.95 264000 21
11 15/08/2008 1977.55 1969.77 66000 20
12(1) 24/11/2008 1794.61 1784.83 264000 23
12(2) 24/11/2008 1794.61 1787.96 66000 23
13(1) 27/02/2009 1737.39 1636.30 252000 27
13(2) 27/02/2009 1737.39 1387.99 63000 32
14(1) 25/05/2009 1712.05 1673.58 368000 27
14(2) 25/05/2009 1712.05 1680.81 92000 32
15(1) 27/08/2009 1657.58 1631.36 368000 27
15(2) 27/08/2009 1657.58 1639.82 92000 32
16(1) 17/11/2009 1685.85 1670.46 460000 29
16(2) 17/11/2009 1685.85 1663.75 115000 34
17(1) 12/02/2010 1614.04 1572.47 419900 29
17(2) 12/02/2010 1614.04 1556.73 106000 43

Notes: The data is from National Agency for Oil and Biofuels ANP (2010).
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volume of fuel imported, average fuel prices by state (price collected over a signi�cant sample

of gas stations) and the average price charged by producers and importers of petroleum

products at regional level6.

The data on quantity of fuel sold start in January 2000. All wholesale fuel distributors

have to report to ANP the amount of fuel sold per month in each state. The data, therefore,

cover all Brazilian territory and include all types of liquid fuels used in the market.

Data on prices started being collected by ANP in July 2001 and the number of cities and

gas stations consulted has increased over time. In July 2001 the research covered 411 cities,

the total increased to 555 municipalities in May 2004.

Data on the total �eet of buses (including those used in public transportation), tractors and

trucks by state from January 2003 to December 2009 were also collected. This information is

from Denatran (National Department of Tra�c) and it is available at the state level. Besides,

as a measure of monthly economic activity level, information was gathered on ICMS (Tax

on Trade of Products and Services) for the same period. All prices used in the paper are

adjusted to January 2003 constant reais (Brazilian currency).

To serve as instruments for demand estimation I obtained data on the total value of

petroleum imports and on the average wage of new employees in the wholesale fuel distri-

bution and in the fuel retail industries. The value of imports is from ANP and is available

with a monthly frequency at the national level. The wages are from the Brazilian Ministry

of Labour and Employment; this data have monthly frequency and it is available at the state

level.

Figure 2.1 shows the consumption of the three main liquid fuels used in land transport

in Barrel of Oil Equivalent (BOE) from 2000 to 2009. As said before, gasoline and ethanol

are not substitutes to diesel in the Brazilian market. However, the graph illustrates the

importance of diesel fuel. Diesel is consumed more than gasoline and ethanol put together.

Nevertheless, ethanol has the highest increase in consumption (250% in the period), followed

by the diesel (26%) and gasoline (12%).

Table 2.2 shows the consumption of diesel per Brazilian Region in 2007. In terms of

absolute consumption, the Southeast uses most of the diesel, approximately 43% of the

total consumption. Among the states, São Paulo, in the Southeast region, has the highest

consumption, about 22% of the national consumption. However, considering consumption

6Each region is formed by groups of states with geographical, historical and economic similarities.
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Figure 2.1: Gasoline, Ethanol and Diesel Consumption in BOE
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Source: Elaborated based on data from the National Agency for Oil and Biofuels ANP (2010).

per capita, the Central-West region has the highest use of diesel followed by the South

region. The Southeast region has the second lowest per capita consumption. Table 2.2

provides evidence that the regional e�ects are important for the diesel fuel demand.

Table 2.2: Diesel Consumption by Region

Consumption Consumption
(1000000 BOE) per capita

North 3.87 0.26
Northeast 6.23 0.12
Central-West 4.67 0.35
Southeast 18.10 0.23
South 8.68 0.32

Notes: The data are from National Agency for Oil and Biofuels ANP (2010).

Figure 2.2 shows the diesel fuel price dynamic in Brazil. The left hand side of the �gure

shows the average price charged by retailers, the minimum and the maximum price found

in the survey and the average retail margin (the di�erence between the price charged by the

gas stations and the wholesale price). The right hand side of the �gure shows the standard

deviation of the prices.
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Figure 2.2: Price (R$ January 2003)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2003 2004 2005 2006 2007 2008 2009

Average Minimum Maximum Margin

Figure 2.3: Standard Deviation
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Source: Elaborated based on data from the National Agency for Oil and Biofuels ANP (2010).

One can see that the movements of the average, minimum and maximum price are similar

with a reasonably stable di�erence among them. The variance of the price reinforces this

feature. It is small compared to the average, less than 0.05 most of the time, with a slight

increase at the end of the period.

The average retail margin is stable during the whole analyzed period, indicating that the

gas stations are able to transfer the positive shocks on costs to consumers. Conversely they

do not retain a negative shock on prices. The �gure indicates that the gas stations are

charging a �xed markup over the marginal cost.

If one does not consider the retail margins of the other fuels, the result on stable margins

di�ers from those found by Hosken, McMillan, and Taylor (2008). The authors discovered a

substantial variability in the retail margins. This di�erence, however, may be explained by

data aggregation and might not re�ect the individual behavior of the retailers.

Table 2.3 shows some basic statistics regarding the biodiesel industry. All the indicators

have grown over the period. The number of plants in 2009 is more than nine times the total

number of factories in 2005. The production experienced an even higher increase, more than

2000 times the initial quantity. In 2005 the production by the Brazilian biodiesel industry

was only 756 m3 and it rose to 1.6 million m3 in 2009.

The capacity, on the other hand, had a much slower increase when compared to the

production. The capacity was around 85,000 m3 in 2005 and increased to about 460,000 m3

in 2009 (almost 55 times the initial capacity). The capacity utilization, however, is still low,

12



Table 2.3: Industry Summary Statistics

2005 2006 2007 2008 2009
Production (1000 m3) 0.7 69.0 404.3 1,167.1 1,607.8
Number of Plants 7 18 45 62 64
Capacity (1000 m3) 84.7 638 2,475.1 3,315.3 4,629.8
Capacity Utilization (%) 0.9% 10.8% 16.3% 35.2% 34.7%
Source: Elaborated based on data from the National Agency for Oil and Biofuels ANP (2010).

around 35% in 2009.

This growth in the indicators was expected as the percentage of biodiesel in the BX also

increased. However, the low percentage of the capacity utilization raises questions about

the �rms' strategy and about the future of the industry market structure. The capacity

production of biodiesel is enough to attend levels of BX higher than 5%. Therefore, in

the absence of new increases in the biodiesel mandate, some �rms are expected to exit the

industry.

2.3 Demand Estimation

The demand for diesel is a result of a number of di�erent maximization processes. Diesel is

used as input in several industries: agriculture, land transportation (freight and passengers),

ship transportation and energy generation. In addition to industrial use, diesel can also

be utilized by domestic consumers for idiosyncratic reasons (for example, small boats for

recreational �shing). In this sense, the estimation of demand for diesel cannot rely on a

structural model.

Following the considerations above, the demand for diesel can be seen as a function of

variables such as economic activities and �eet level.

lnQit = f (pit, Xit) + εit (2.3.1)

Where lnQit represents the natural logarithm of the quantity (m3) of diesel sold in state i

in period t, pit is the average price charged by gas stations in state i during the period t. The

vector Xit is composed by covariates that in�uence demand. It includes the logarithm of

ICMS as a measure of economic activity level, the logarithm of the total �eet (the sum of the

buses, tractors and trucks by state) to capture the importance of diesel in transportation,
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and state dummies as regional characteristics may a�ect the demand for diesel fuel. To

mitigate endogeneity problems with the variable ICMS, it does not include fuel taxes. εit is

the error term. f(.) is a demand function.

A similar approach to estimate gasoline demand has been used in many studies as sum-

marized by Basso and Oum (2007). The traditional approach takes the demand for gasoline

as a function of price, income and controls. Also, most of the speci�cations rely on log-

linear forms and Greene (1982) and Dahl and Sterner (1991) support the selection of the

log-linear form. Based on that, the present paper also estimates a log-linear speci�cation for

the demand function. Equation 2.3.1 becomes:

lnQit = α0 + α1ln(pit) +Xitβ
′
+ τi + λt + υit (2.3.2)

ln represents the natural logarithm and the error εi,t is decomposed into three terms: an

individual speci�c term τi, a time speci�c term, λt, and an individual time speci�c term ,υi,t.

In order to assure the consistency of demand parameters estimated, one assumption is

necessary:

D1: Consumers are only interested in the amount of energy the fuel produces.

Assumption D1 says that consumers see any biodiesel mandate as the same product 7.

This assumption assures that the coe�cients of equation 2.3.2 are stable, that they do not

change according to the diesel mandate.

Table 2.4 presents the results of the demand estimation. The �rst column of the table

is the result of the OLS regression with the use of state dummies, which is equivalent to

the �xed e�ects estimator 8. The coe�cient of the price is negative, as expected. The

value is approximately 0.6 indicating that an increase of one percent in the real price of

diesel implies a reduction of 0.6% in the consumption of diesel. The variable �eet has an

unexpected negative signal: an increase in the number of heavy vehicles decreases the use of

biodiesel. However, the coe�cient is statistically insigni�cant. On the other hand, the log

of ICMS has the expected signal. A one percent increase in the total tax collected causes

an increase of 0.03% in the total consumption of diesel. Since ICMS is charged on products

7Tests conducted by the Ministry of Science and Technology indicated that there are no loss of e�ciency
in diesel engines due the use of any BX blend up to B5 (ANP (2010))

8See Greene (2003) and Wooldridge (2002) for details about panel methods
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and services e�ectively traded, the results show a positive relation between economic activity

and diesel consumption.

The second column in table 2.4 shows the results of the random e�ects estimation. One

can see that the price and economic activity e�ects are stronger under the random e�ects

hypothesis. Furthermore, the �eet has the expected sign and it is signi�cant at 5%. However,

the Hausman test rejects the hypothesis of no systematic di�erences between random and

�xed e�ects.

Instrumental variables (IV) are used to control the endogeneity problem caused by simul-

taneous equations. The instruments are supply-side cost shifters: the log of the wholesale

average price, the log of the wage of new employees in the fuel distribution industry (retail

and wholesale), and the log of average import price per m3 of petroleum. All instruments

a�ect the supply of diesel fuel, as they a�ect the marginal cost of the industry. However,

they have no e�ects on the demand side. In other words, the instruments do not alter

the consumers' decisions. Therefore, the instruments can be considered exogenous. The

regression of the retail price on the instruments (table 2.5) has an F-statistic equal to 9496,

considerably higher than the 10 or 20 value pointed by Stock, Wright, and Yogo (2002) to

rule out weak instruments.

The results for the IV with state dummies can be found in the third column of table 2.4.

The price elasticity is considerably higher when compared to OLS regression: the value of

the parameter is now about -0.9, 50% higher than the estimation without instruments. The

log of �eet continues to be insigni�cant and with the wrong sign. The log of ICMS is almost

the same when compared with the OLS regression.

Finally, the fourth column in table 2.4 presents the random e�ects estimation of the

model using instrumental variables. The price elasticity is around one and the log of �eet

is signi�cant and with the right sign. The log of ICMS is close to the value obtained in the

random e�ects estimation with no instruments and higher than the �xed e�ects estimations.

This di�erence between the estimators with instruments is strongly signi�cant according to

the Hausman test (chi-square value of 407.12).

One can draw two conclusions based on the diesel fuel demand estimation. First, the

regional e�ects are important. The Hausman test strongly rejects equality among the �xed

and the random e�ects estimators 9. Second, the use of instrumental variables changed the

9The random e�ects estimator is consistent and e�cient under the hypothesis of independence of the indi-
vidual characteristics. The �xed e�ects estimator does not need this assumption to achieve consistence.
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Table 2.4: Demand Estimation

OLS RE IV RE-IV
Log Price -0.5599* -0.6398* -0.8594* -1.0573*

(0.1701) (0.1760) (0.1998) (0.1998)
Log Fleet -0.0123 0.0535* -0.0109 0.0521*

(0.0171) (0.0171) 0.0170) (0.017)
Log ICMS 0.0394* 0.0730* 0.0417* 0.0748*

(0.0126) (0.0128) (0.0125) (0.0127)
State Dummies Yes No Yes No
Time Dummies Yes Yes Yes Yes
Number of Observations 2259 2259 2257 2257
R-Squared 0.9864 0.6723 0.9866 0.6634
Hausman 402.98 407.12
Notes: The dependent Variable is the log of the total m3 of diesel. Stan-
dard errors in parentheses. *Signi�cant at 5%. Instruments are the log
of the wholesale price, the log of the import expenditure of petroleum
and the log of the wage of new employees in the fuel distributor industry.

Table 2.5: Regression of the Instruments on the Logarithm of the Price

OLS
Ln Wholesale Price 0.9111*

(0.0063)
Ln New wages 0.0020

(0.0004)
Ln Oil Import Price -0.0073*

(0.0027)
F-Statistic 9496
Notes: The dependent variable is
logged diesel price. Standard errors
in parentheses. *Signi�cant at 5%.
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results considerably. The OLS seems to underestimate the price elasticity.

Based on the conclusions above, the coe�cients obtained in the �xed e�ects IV estimation

are used to construct the simulations in section 6.

2.4 The Production Side

Data on the last two auctions (17(1) and 17(2)) was used to approximate the industry

supply curve. The are two reasons for this choice. First, these two auctions are electronic

and therefore have better information regarding the bids; it is possible to access all the bids

of every �rm. Second, the paper relies on a static exercise and to include the past auctions

I should make considerations regarding the capacity adjustments cost and the entry costs of

the �rms.

Since the cost structure of the �rms is not observed, some assumptions are required to

recover the supply curve. First, I assume a strategic interaction among the �rms and a

feature of the non-observed cost structure:

P1: Firms are in perfect competition.

P2: Marginal cost is constant and �rms can produce up to 100% of their capacity.

Assumption P1 is based on the low capacity utilization in 2009, around 36%. The �rms

are obliged to enter into a �erce competition in order to sell their production. The �rst part

of assumption P2, constant marginal costs, is a standard assumption in both theoretical10

and empirical11 economic literature. The second part of assumption P2 refers to the fact

that �rms do not waste money building a capacity that they will not use.

Assumptions P1 and P2 are, however, not enough to characterize the supply curve as

some �rms did not enter in the the last two auctions. To overcome this di�culty, the

�rms are divided in four groups, according to their participation in the auction, and speci�c

assumptions are made for each group.

Therefore the �xed e�ect is a more robust estimator. See Wooldridge (2002) for use of the Hausman test
in the panel context.

10For example, Sutton (1991), Krugman (1979), Dixit and Stiglitz (1977) and Tirole (1988).
11For example, Ryan (2012), Nevo (2001), and Jia (2006).
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2.4.1 Group 1

The �rst group is composed of the �rms that had license to produce but not to commercialize.

They could not have participated in the auctions. For this group the following assumption

is made:

P3: The marginal cost is equal to the auction ceiling price. Therefore, �rms in group 1 can

o�er any amount of biodiesel between zero and their full capacity at the ceiling price.

Formally:

si(b) =


qi = 0 if b < bc

0 ≤ qi ≤ Ci if b = bc

qi = Ci if b > bc

(2.4.1)

Where si(b) is �rm i's supply function, Ci is �rm i's capacity, qi is �rm i's quantity

supplied, bc is the auction ceiling price, and b is a given price.

Equation 2.4.1 may underestimate or overestimate the supply function of the plants in

this group as no information about the price behavior is known. However, this problem is

minimized as a small fraction of �rms belong to this group (see appendix).

2.4.2 Group 2

The second group consists of �rms that could have entered the auction (they have the

commercialization license) but decided not to enter. The assumption made for this group is

exactly equal to P3:

P4: The marginal cost is equal to the auction ceiling price. Therefore, �rms in group 2 can

o�er any amount of biodiesel between zero and their full capacity at the ceiling price.

Formally:

si(b) =


qi = 0 if b < bc

0 ≤ qi ≤ Ci if b = bc

qi = Ci if b > bc

(2.4.2)

Where si(b) is �rm i's supply function, Ci is �rm i's capacity, qi is �rm i's quantity

supplied, pb is the auction ceiling price, and b is a given price.
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For this group the minimum o�er price may be higher than the ceiling price. The ceiling

price can be seen as a lower bound for the minimum o�er price. P3 implies that the lower

bound is actually equal to the minimum o�er price for group 2 and the �rms did not enter

the auction due to entry costs 12.

2.4.3 Group 3

This group incorporates the �rms that entered in the auction but did not win. For group 3

the following assumption is made:

P5: The marginal cost is equal to the �rm's lowest bid. Therefore, �rms in group 3 can o�er

any amount of biodiesel between zero and their full capacity at a price equal to their

lowest bid.

Formally:

si(b) =


qi = 0 if b < bim

0 ≤ qi ≤ Ci if b = bim

qi = Ci if b > bim

(2.4.3)

Where si(b) is �rm i's supply function, Ci is �rm i's capacity, qi is �rm i's quantity

supplied, pim is the �rm i's lowest bid, and b is a given price.

Assumption P3 is a good approximation of the marginal cost as the �rms signaled their

to provide biodiesel at this price level. Also, assumption P2 assures that this marginal cost

is the same for the entire capacity.

2.4.4 Group 4

This group consists of �rms that won the auction. For this group the following assumption

is assumed:

P6: The marginal cost is equal to the �rm's lowest winning bid. Therefore, �rms in group 4

can o�er any amount of biodiesel between zero and their full capacity at a price equal

to their lowest winning bid.

12see Li and Zheng (2009) for entry costs in auctions
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Formally:

si(b) =


qi = 0 if b < biw

0 ≤ qi ≤ Ci if b = biw

qi = Ci if b > biw

(2.4.4)

Where si(b) is �rm i's supply function, Ci is �rm i's capacity, qi is �rm i's quantity

supplied, biw is the �rm i's lowest winning bid, and b is a given price.

For this group the minimum o�er price may be lower than the winning bid. Therefore,

their marginal cost might be overestimated.

In the next subsection we combine the assumptions made above to recover the industry

supply curve.

2.4.5 Industry Supply

The industry (or market) supply curve is the horizontal sum of �rm supply curves (Mas-

Colell, Whinston, and Green (1995)). For the biodiesel industry it can be de�ned as follows:

Si(b) =
J∑
i=1

si(b) (2.4.5)

Where Si(b) is the market supply function, si(b) is �rm i's supply function, b is a given

price, and J is the total number of producers.

Due to the discontinuous characteristics of the �rms' supply, the industry supply function

does not have a closed form. However, under the assumptions assumed, it is possible to

compute the amount of biodiesel o�ered at any given price. Figure 2.4 shows the biodiesel

supply curve.

The supply curve expresses a ceteris paribus condition: it shows the relations between

the price of a good and its quantity supplied, given that the other factors are constant.

Therefore, a change in the these other factors shifts the position of the supply curve. A

linear cost reduction for all �rms, for example, shifts the demand to the left. For any given

price there is a reduction in the quantity o�ered. The opposite happens if the costs increase.

The factors that a�ect the biodiesel supply include the raw material price, the opportunity

cost of the producer, labor cost, and technology. Biodiesel is produced by a chemical reaction

of lipids (vegetable oil or animal fat) with an alcohol (Ayhan (2007)). Therefore, if the price
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Figure 2.4: Biodiesel Industry Supply Curve
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of a feedstock used in biodiesel production increases, the supply curve shifts to the right.

Also, if the producer can use the plant to produce oils for non-fuel purposes, a decrease

in the price of this alternative option would shift the supply curve to the right. A similar

reasoning can be made for all the relevant factors shifting the supply curve.

Even though the factors a�ecting the supply curve are very important, they are not ad-

dressed in this paper for two reasons. First, there is no data available to map the factors

to the cost structure. In other words, the quantitative result of these changes cannot be

determined. Second, the paper makes a short run partial equilibrium analysis. I analyze

how the market outcomes change with a change in the biodiesel mandate given that the

other factors are constant (see section 2.5). The hypothesis of all other factors remaining

constant is not strong in the short run, as the producer of other goods would take time to

adjust prices.
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2.5 Welfare Analysis

Biodiesel producers are part of a broader fuel industry which includes wholesalers, retailers,

oil re�neries and fuel importers. To analyze the impacts of biodiesel mandates on the retail

prices it is necessary to consider the interactions among all these agents. More speci�cally, it

is necessary to know how all the agents in the market react to a change in biodiesel mandate.

It is useful to divide the agents in the market according to their position in the diesel fuel

supply chain. Firms involved in direct production or importation of the fuel (oil re�neries,

fuel importers and biodiesel producers) form the upstream part of the supply chain. On the

other hand, �rms that commercialize the fuel previously produced (wholesalers and retailers)

form the downstream part of the supply chain.

The analysis is done backwards. The �rst step is to see what happens in the downstream

part of the market. In other words, how retailers and wholesalers react to a given change

in the prices of upstream �rms 13. Figure 2.5 shows the average prices of petroleum diesel

charged by retailers, wholesalers, producers and importers in Brazil between January 2003

and December 2007, before the mandatory adoption of biodiesel. The lines of the three

prices show a quite similar pattern, also the distance between the retail and the wholesale

price is stable over the period. It corroborates the points discussed in section 2.2.2 about

the retail markups. The wholesale margin is not so stable; it seemed to increase in the last

months of the analyses.

Figure 2.5 provides the base for the following hypothesis:

S1: (i) Wholesalers and retailers charge a markup (margin) over their acquisition costs; (ii)

wholesalers buy petroleum diesel, while biodiesel and retailers buy the BX blend; (iii)

the markup at a given point in time is composed of a time invariant part and a time

speci�c error, independent and identically distributed (i.i.d.) with zero mean.

Hypothesis S1 provides the best response of retailers and wholesalers to any price chosen

by �rms in the upstream market. It is worth noting that the hypothesis �ts the data and

simpli�es the strategies of the downstream �rms.

For the upstream market the following hypothesis is made:

S2: Oil re�neries and diesel importers do not react (change prices) to a change in the

biodiesel mandate.
13See Tirole (1988) for a more detailed discussion of vertical restraints.
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Figure 2.5: Average Diesel Prices (R$ January 2003)
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Hypothesis S2 is reasonable, as the data does not show any change in the oil diesel

producers' price caused by the introduction of biodiesel. Therefore, it is assumed that the

oil diesel price is constant in all the simulations.

2.5.1 Counterfactuals

Given assumptions S1 and S2, the diesel fuel price paid by the consumers (BX price) in a

given month can be written as:

pit = αbit + (1− α)dit + µrit + µwit (2.5.1)

Where bt stands for the biodiesel producers' price in period t, dt stands for the oil diesel

producers' price in state i in period t, µr,i,t is the retailers' markup in state i in period t, µw,i,t

is the wholesalers' markup in state i in period t, and α is the biodiesel mandate.

Equation 2.5.1 assumes that the one price law holds for biodiesel in all Brazilian territory

and at regional level for oil diesel. Also, it implies that the fuel is not commercialized through
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auctions but directly negotiated between buyers and sellers.

The elements necessary to perform the simulation are given by equations 2.3.2, 2.4.5 and

2.5.1. Basically the exercise consists in �nding a market equilibrium price for each biodiesel

mandate keeping the other factors constant. For a given level of markup, oil diesel price and

α, equation 2.5.1 gives the fuel diesel price as a function of the biodiesel price. Therefore,

for the market equilibrium it is necessary to reach a biodiesel price that equates the quantity

supplied (equation 2.4.5) and the quantity demanded (equation 2.3.2).

The computational details are as follows. First, I used just a month in the simulation

to minimize possible dynamic distortions. The variables �eet, ICMS and petroleum diesel

prices are those observed in November 2009. Second, the markup is the average margin for

the period from January 2003 to December 2007 for the retailers and between January 2007

and December 2007 for the wholesalers. I used only one year to estimate the wholesalers'

margin to capture its increase observed in the data. Finally, the coe�cients for the demand

are those estimated through �xed e�ects with IV (Table 2.4).

The algorithm used for the simulations is simple. It starts with a low biodiesel price and

calculates the demand and supply for this price. If the di�erence between supply and demand

is high, the price increases by a small amount and new values are calculated for demand and

supply. The algorithm continues until the di�erence between the quantity supplied and the

quantity demanded becomes negligible.

2.5.2 Results

The simulation results are shown in Table 2.6. The chart presents the scenarios with di�erent

mandatory percentages of biodiesel. The baseline is the scenario without biodiesel (100% of

petroleum diesel). The second scenario has a 5% biodiesel mandate. For the other scenarios,

the mandate was increased by 1% each scenario, up to a mandate of 15%, and a �nal

simulation was run for a mandate of 20%.. In all simulations the possible loss of e�ciency

in the diesel engines, due to the increase of the proportion of biodiesel, is not considered.

It should be noted that the biodiesel price presented in the table corresponds to the

producer price, free of wholesalers' and retailers' margins. The BX price, on the other hand,

is the consumer's �nal price considering both margins and the proportion of biodiesel and

petroleum diesel in the fuel. Furthermore, the BX price is the Brazilian average price. Since

equation 2.3.2 allows for state e�ects, an equilibrium price and quantity is obtained for each
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state and the equilibrium quantity is used as a weight to calculate the national average price.

Table 2.6: Simulation Results

Biodiesel BX Capacity
% Price * Quantity** Price* Quantity** Utilization (%)
0% - - 1.75 3,459.70 0%
5% 1.57 170.5 1.78 3,409.20 44%
6% 1.58 203.9 1.78 3,398.70 52%
7% 1.58 237.2 1.79 3,388.40 61%
8% 1.59 270.2 1.80 3,377.90 70%
9% 1.59 303.1 1.80 3,367.60 78%
10% 1.59 335.7 1.81 3,357.10 86%
11% 1.59 368.2 1.97 3,347.30 95%
12% 2.14 388.5 2.07 3,237.20 100%
13% 3.47 388.5 2.09 2,988.20 100%
14% 4.62 388.5 2.26 2,774.70 100%
15% 5.64 388.5 2.45 2,589.70 100%
20% 9.33 388.5 3.58 1,942.30 100%

Notes: (*)R$ Jan 2003/L, (**) 1000 m3. Values obtained through simulation based on equilibrium conditions. The �rst

line (B0) presents the petroleum diesel price.

One can see that B5 increases the consumer price by 1.7%, from R$ 1.75 to R$ 1.78.

The raise in price leads to a reduction in consumption of about 50.000 m3, around 1.5%. If

one doubles the current biodiesel mandate, from 5% to 10%, the price e�ect is more than

proportional: fuel diesel price increases 3.6% reaching R$ 1.82. Consumption, on the other

hand, decreases by 3% due to the use of B10.

The simulations also allow understanding of relations among capacity utilization, price

and consumption. The increase in the capacity utilization from 44% (with B5) to 95% (with

B11) increases the producer price by R$ 0.02 (about 1%). Therefore, the supply curve of

the industry seems to be smooth on price up to 95% of its full capacity.

As stated before, B5 drives the capacity utilization to 44%. When one doubles the compul-

sory percentage, the capacity utilization goes to 86%. This less than proportional increase

in the capacity utilization is due to the increase in price that reduces the consumption of

the total mixture.

Further increases in the compulsory proportion of biodiesel increase the capacity utilization

and lead to operation of �rms with higher marginal costs. The e�ects on prices are higher

after 11% of biodiesel. The biodiesel price increases 34% when B11 is substituted for B12.
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It happens because with a 12% biodiesel mandate the industry starts to work to its full

capacity, the price need to go up to equalize the demand and the o�er. Since biodiesel is a

small proportion of the total BX, its price needs a great increase to generate a signi�cant

drop in the BX demand. At a mandatory 20% blend, the price to the consumer is more than

the double of the pure petroleum diesel, and the total consumption falls about 44%.

The impacts of di�erent diesel mandates on consumer surplus, and in the pro�ts14 are also

analyzed. The focus is the di�erence between the baseline scenario (no biodiesel) and the

alternative scenarios with di�erent percentages of biodiesel. Also, as there is no closed form

for the consumers' utility, it is not possible to analyze the equivalent and the compensating

variations. Alternatively, consumer surplus15 is used as a measure of consumers' loss of

welfare due to the change in price of diesel fuel caused by the biodiesel mandates. Finally,

oil re�neries' pro�ts were not considered as no information regarding their costs is available.

The results are summarized in table 2.7.

The second column in table 2.7 shows the total consumer surplus (the sum over Brazilian

states). The current proportion of biodiesel (B5) causes a loss of R$ 104 million to the

consumers. An increase to 10% in the mandatory percentage of biodiesel would cost R$ 212

million to consumers in terms of welfare. The loss increases very fast after 11% and achieves

the impressive number of R$ 2 billion with B15 and R$ 4 billion with B20.

For a proportion of biodiesel up to 10%, the biodiesel industry's pro�ts are quite small

when compared to the consumer loss. At the current percentage (5%) the pro�ts of all

producers are around R$ 5 million. The double of the present percentage of biodiesel would

increase the pro�ts to 10 million. After that, however, one can observe a remarkable increase

in the total pro�ts; they achieve R$ 3.3 billion when one considers the scenario with 20%

of biodiesel. The retailers and wholesalers are also a�ected by the introduction of biodiesel.

Together they have a reduction of R$ 39 million in total pro�t at the current level of biodiesel.

At a 20% level of biodiesel the total pro�t loss to retailers and wholesalers is above one billion.

Altogether, the losses to consumers, wholesalers and retailers outweigh the pro�ts for the

biodiesel producers in any level of biodiesel proportion considered. However, other bene�ts

created by the use of biodiesel could make the adoption of biodiesel a socially optimal

14For biodiesel producers, Fixed costs are not considered. Therefore, pro�t is equal to revenue (price times
quantity) minus marginal costs times quantity. If one consider the presence of �xed costs, the pro�t in
the table becomes producer surplus. For retailers and wholesalers the variations in pro�ts are equal to
the margin times the change in the quantity sold.

15See Varian (1992).
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Table 2.7: Simulation Results

Biodiesel Consumer Biodiesel Producers' ∆ Retailers' ∆ Wholesalers'
Mandate Surplus(*) Pro�t(*) Pro�t(*) Pro�t(*)

5% -104 5 -9 -30
6% -125 7 -11 -36
7% -146 8 -13 -42
8% -168 9 -15 -49
9% -190 10 -16 -55
10% -212 10 -18 -61
11% -233 254 -20 -67
12% -470 801 -40 -133
13% -1042 1272 -84 -281
14% -1579 1682 -122 -408
15% -2077 2044 -155 -519
20% -4241 3365 -271 -905

Notes: (*)R$ Jan 2003/L. Results obtained by simulation.

decision. For example, environmental bene�ts, such as reduction of greenhouse gas emissions,

or improvement of air quality may generate a signi�cant welfare. Also, the income transfer

to small farmers might be socially desirable. These considerations are above the scope of

this paper and may be included in future work.

2.6 Conclusions, Limitations, and Future Research

The compulsory adoption of biodiesel in the Brazilian fuel market can bring many changes

to the economy. Most of these changes are, however, still unknown. This paper addresses

market equilibrium outcomes: the e�ects on price, consumption and welfare in the short run.

The analysis of the demand shows that even though diesel is an important raw material

in the transport and agriculture industries (with almost no substitute in the short run) it

has a considerable high price elasticity when controlled by other factors.

The industry supply estimation was based on the results of the last two auctions in the

dataset. This simpli�cation was adopted to avoid capturing possible dynamic e�ects on the

static analysis done in the paper. The supply curve constructed is considerably smooth up

to the industry total capacity. After that, a change in the compulsory proportion has a huge

impact on prices due to capacity constraints.

The simulations show that the current level of biodiesel raises the �nal price to consumers
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by 1.7% and decreases the consumption by 1.5%. If the government doubles the compulsory

proportion the new price would be 3.5% higher with a decrease in consumption of 3%.

Additionally, the welfare analysis showed that the consumers, wholesalers and retailers have

a huge loss in consumer surplus and in pro�ts due to the adoption of the biodiesel. With a

5% biodiesel blend, the total loss is around R$ 143 million.

The results obtained in this study should be taken with caution as they depend on the set

of assumptions. Some assumptions may be considered controversial and they are required

for two reasons. First, the complexity involved in the adoption of biodiesel (and biofuels

in general). It is impossible for a quantitative study to deal with all the aspects involved

in a biofuel program, which include a large supply chain and political questions. Second,

some hypotheses are necessary due lack of data. For example, no data on the individual

decisions taken by farmers is available. The paper, therefore, should be seen as an indication

of the costs involved in the biodiesel program. More studies are necessary for a better

understanding of the overall impact.

The political implications of the program are not considered in this paper. The price

increase observed in the simulations could not be politically acceptable. Therefore, the price

formation assumption (free negotiation) might not hold. Also it is unknown how the increase

in the oil production and oil re�ning in Brazil would a�ect the biofuel programs (the country

is a net exporter of oil and may become a net exporter of petroleum diesel). This increase

could change the government support to the biodiesel program.

The paper also does not consider the program e�ects in all the parts of the supply chain.

This includes the e�ects of biodiesel in feedstock, land use, employment and the expenditure

in subsidies. For, example the alternative uses of the raw materials involved in the biodiesel

production must a�ect the biodiesel price, and consequently the �nal blended diesel price.

Future work, should look with attention to this important part of the supply chain.

Furthermore, the paper did not apply a dynamic framework. Future work should improve

the analysis in this aspect in order to create more realistic scenarios. Combined, all this

information could be a better guide for energy policy decisions.
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Table 2.8: Groups 1, 2, and 3

Plant Monthly capacity(*) Marginal Cost(**) Group

Biolix 900 1592.92 1
Brasil ecodiesel 1 9000 1592.92 1
Brasil ecodiesel 2 8100 1592.92 1
Coomisa 360 1592.92 1
Cooperfeliz 200 1592.92 1
Ouro verde 510 1592.92 1
Abdiesel 72 1592.92 2
Agrenco 19608 1592.92 2
Big Frango 1200 1592.92 2
Bionorte 2451 1592.92 2
Cooperbio 120 1592.92 2
Fusermann 900 1592.92 2
Granol 7500 1592.92 2
Grupal 300 1592.92 2
Kgb 150 1592.92 2
Nutec 72 1592.92 2
Rondobio 300 1592.92 2
Soyminas 1200 1592.92 2
Taua 3000 1592.92 2
Tecnodiesel 330 1592.92 2
Usibio 600 1592.92 2
Vermoehlen 150 1592.92 2
Araguassu 3000 1533.34 3
Bio Oleo 300 1494.74 3
Brasil Ecodiesel 3 10800 1543.09 3
Clv 3000 1570.53 3
Innovatti 900 1552.78 3
Ssil 150 1396.85 3

Notes: (*) m3,(**)R$ Jan 2003/L. VElaborated based on data from the National Agency for Oil and Biofuels ANP

(2010).

34



Table 2.9: Group 4

Plant Monthly capacity(*) Marginal Cost(**) Group

Abdiesel 180 1402.74 4
Adm 28650 1543.09 4
Agropalma 900 1588.78 4
Agrosoja 2400 1581.55 4
Amazonbio 1350 1402.74 4
B-100 900 1354.39 4
Barralcool 4902 1577.34 4
Beira Rio 360 1400.71 4
Binatural 9000 1480.71 4
Biocamp 4620 1588.78 4
Biocapital 24720 1581.55 4
Biocar 900 1470.53 4
Biopar parana 3600 1583.86 4
Biopar parecis 700 1590.11 4
Biotins 810 1332.92 4
Bioverde 7353 1579.65 4
Bracol 16807 1568.43 4
Brasil Ecodiesel 4 10800 1591.51 4
Brasil ecodiesel 5 13320 1587.30 4
Brasil ecodiesel 6 10800 1592.92 4
Bsbios 13320 1578.95 4
Caramuru 18750 1573.69 4
Cesbra 1800 1396.85 4
Comanche 10050 1535.51 4
Cooperbio 1 10200 1586.18 4
Cooperbio 2 120 1403.86 4
Dvh 1050 1403.86 4
Fertibom 4200 1563.02 4
Fiagril 12299 1578.95 4
Granol 1 18390 1590.11 4
Granol 2 28000 1573.69 4
Oleoplan 19800 1587.30 4
Petrobras 1 9051 1568.43 4
Petrobras 2 9051 1568.43 4
Petrobras 3 9051 1543.79 4
Sp Bio 2082 1400.14 4
Transportadora Caibiense 3000 1402.74 4

Notes: (*) m3,(**)R$ Jan 2003/L. Elaborated based on data from the National Agency for Oil and Biofuels ANP

(2010).
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Chapter 3

An Alternative Asymptotic Least

Squares Estimator for Dynamic

Games

Co-authored with Sorawoot Srisuma (University of Surrey) and Fabio A. Miessi Sanches

(University of São Paulo)

Abstract

The estimation of dynamic games is known to be a numerically challenging task. In this

paper we propose an alternative class of asymptotic least squares estimators to Pesendorfer

and Schmidt-Dengler's (2008), which includes several well known estimators in the literature

as special cases. Our estimator can be substantially easier to compute. In the leading case

with linear payo�s speci�cation our estimator has a familiar OLS/GLS closed-form that does

not require any optimization. When payo�s have partially linear form, we propose a sequen-

tial estimator where the parameters in the nonlinear term can be estimated independently

of the linear components, the latter can then be obtained in closed-form. We show the class

of estimators we propose and Pesendorfer and Schmidt-Dengler's are in fact asymptotically

equivalent. Hence there is no theoretical cost in reducing the computational burden. Our

estimator seem to perform well in a simple Monte Carlo experiment.

37



3.1 Introduction

We consider the estimation problem for a class of dynamic games of incomplete information

that generalizes the single agent discrete Markov decision models surveyed in Rust (1994); for

a recent survey see Aguirregabiria and Mira (2010). The setup is in an in�nite time horizon,

where players' private values enter the payo� function additively and are independent across

players, under the conditional independence framework. A Markov equilibrium of such game

can be represented by a �xed point of nonlinear equations in the space of choice probabilities

and has been shown to exist (e.g. see Aguirregabiria and Mira (2007) and Pesendorfer and

Schmidt-Dengler (2008)). A variety of methods have been proposed by di�erent authors to

estimate the same class of games based on the equilibrium condition in recent years; examples

are given below. However, a common component of these methodologies is a nonlinear

optimization problem that may act as a considerable deterrent for applied researchers to

estimate dynamic games due to involved programming needs and/or long computational

time.

In this paper we propose a class of asymptotic least squares estimators constructed based

on the equilibrium condition of the game when represented in the space of payo�s. Our

work is motivated by the well-received methodology developed in Pesendorfer and Schmidt-

Dengler (2008), who propose an e�cient estimator and provide a unifying framework that

includes the non-iterative pseudo-likelihood estimator of Aguirregabiria and Mira (2007)

and the moment based estimators discussed in Pakes, Ostrovsky and Berry (2007) as special

cases. In contrast to ours, Pesendorfer and Schmidt-Dengler use the choice probability

representation of the equilibrium to construct their estimator. Our goal is to show there

is much to gain computationally using our approach at no cost. Henceforth we use the

abbreviation ALSEPSD when referring to a generic estimator of Pesendorfer and Schmidt-

Dengler.

We claim our estimator can be substantially easier to compute than ALSEPSD. In the

leading case our estimator has a familiar OLS/GLS closed-form expression when the per-

period payo� function takes a linear-in-parameter speci�cation.1 In an intermediate case

1The linear payo�s structure may seem restrictive, but it is in fact quite general as it includes any nonlinear
(basis) functions of observables; albeit perhaps with an atheoretic �avor. However, linear speci�cation
arises naturally in many applications, and/or does not cause much concern in terms of structural inter-
pretability in other situations. A leading example for the latter is when the goal of an empirical analysis
is to study market outcomes, such as competition study of market power. Some notable recent empiri-
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when the payo� function has an additive partially linear form, Frisch-Waugh-Lovell theorem

can be applied so the parameters in the nonlinear part can be estimated �rst (dimensional

reduction), and the linear-in-parameter component can be obtained in closed-form in the

second step.2 Even in a more general nonlinear case, we argue that our estimator is still

generally easier to compute than ALSEPSD. ALSEPSD also provides a good benchmark

for a comparison with other estimators in the literature as it has a well-de�ned e�ciency

property. We establish a duality between our estimator and ALSEPSD, in the sense that

they can always be constructed to have the same asymptotic distribution. Therefore our

e�cient estimator is as e�cient as the e�cient ALSEPSD.

The large sample properties of our estimator (and for asymptotic least squares generally)

are easy to derive for discrete games. Technically, our estimation problem is a least squares

problem with generated regressors and regressands, which are generally smooth functions of

the �nite dimensional �rst stage parameters that are nonparametrically identi�ed. In addi-

tion, the number of square terms in the objective function does not grow with sample size

but is determined by the cardinality of the action and state spaces. Therefore our estimator

belongs to the class of asymptotic least squares estimators as de�ned in Gourieroux and Mon-

fort (1985,1995) in the same sense as ALSEPSD. The close connection between our estimator

and ALSEPSD goes even further given the smooth bijective relation between normalized ex-

pected payo�s and choice probabilities (Hotz and Miller (1993)'s inversion); ALSEPSD is

de�ned to minimize the distance between the probabilities implied by the pseudo-model and

the data. We show that, locally around the true, using the inverse function theorem, our

estimator can be constructed to have the same asymptotic distribution as any ALSEPSD by

choosing an appropriate weighting matrix and vice versa.

There are at least two reasons why the estimation of dynamic games can be non-trivial.

First, as well-known from the single-agent problem, it involves value functions that generally

do not have closed-form and need to be numerically evaluated so it is computationally

demanding (see Rust (1996)). For games, there is also a potential issue of indeterminacy of

multiple equilibria that gives rise to incomplete models (Tamer (2003)). A novel approach

popularized by Hotz and Miller (1993) performs inference on the pseudo-model, generated

cal applications of linear-in-parameter payo�s include Aguirregabiria and Mira (2007), Ryan (2012) and
Collard-Wexler (2013).

2Modeling of additive linear components in the payo�s often appear in games with entry/exit decisions, as
�xed cost or scrap value, or more generally as �xed e�ects.
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from to the observed data, by estimating the (policy) value functions that can signi�cantly

simplify the computational aspect. Pseudo-models are also generally easier to handle in a

strategic environment as they have been shown to be complete for several classes of games

(Srisuma (2013)). Methodologies based on pseudo-models are often referred to as two-step

estimators since they require estimation of value functions in the �rst stage. Many recently

proposed estimators for dynamic games are two-step estimators.

However, despite the simpli�cation of two-step methods, the numerical aspects for im-

plementing existing estimators in the literature appear to remain a concern as they gen-

erally involve solving highly nonlinear optimization problems. It is not uncommon to see

methodology papers using estimation time, amongst other things, as a competing factor.

Furthermore, it is also not unusual that the choice of players' per-period payo� speci�cation

is chosen with the ease of numerical implementation in mind. In particular there can be

substantial bene�ts (in terms of computational time) in specifying player's payo� functions

to be linear-in-parameters. As the action-speci�c expected payo�s can then be written as

a linear transformation of the parameter, following from the linear structure that de�nes

the expected payo�s using stationary Markovian beliefs; examples of such discussions can be

found in Bajari, Benkard and Levin (2007, Section 3.3.1) and Pakes, Ostrovsky, Berry (2007,

Section 3). As a result, a linear parameterization of the payo�s is a leading speci�cation

employed in empirical work (see Footnote 1 for examples).

The objective functions that are used to de�ne many two-step estimators in the literature

are constructed in terms of choice probabilities implied by the pseudo-model. These prob-

abilities can be motivated by the equilibrium condition of the game, which can be stated

in terms of consistent beliefs with probabilities of best responses. Choice probabilities are

used to de�ne traditional criterion functions such as pseudo-likelihood function (Aguirre-

gabiria and Mira (2007), Kasahara and Shimotsu (2012)) or moment and minimum distance

based conditions (Pakes, Ostrovsky, Berry (2007), Pesendorfer and Schmidt-Dengler (2008)).

However, in order to calculate the probabilities implied by the pseudo-model, one must �rst

compute the expected discounted payo�s that determine the region of integration to be in-

tegrated to compute the probabilities. Furthermore, the integral is generally a nonlinear

map of the expected payo�s, and it typically has to be computed numerically outside the

well-known conditional logit framework. The integral, following Hotz and Miller (1993)'s

inversion result, in fact represents a one-to-one mapping between the probabilities and the

40



normalized expected payo�s.

There are also other methodologies that use expected payo�s explicitly to de�ne their

objective functions. The �rst such two-step estimator has been developed by Hotz, Miller,

Sanders and Smith (1994), who estimate the expected payo�s by forward simulation, to

estimate a dynamic decision problem for a single agent. Hotz et al. de�ne their estimator

using conditional moment restrictions. They also recognize it is possible to have a closed-

form estimator when payo� functions have linear-in-parameter speci�cation in the form of

an IV estimator (see equation (5.8) in the Monte Carlo Study section of Hotz et al. (1994)).

In the context of dynamic games we are only aware of two other current methodologies that

base their objective functions explicitly on expected payo�s. First is the two-step estimator

proposed by Bajari, Benkard and Levin (2007), who also use forward simulation like Hotz et

al. However, generally no closed-form estimator is possible with Bajari, Benkard and Levin's

methodology as they compare expected payo�s in the pseudo-model and those generated by

local perturbations. The other is Bajari, Chernozhukov, Hong and Nekipelov (2009), who

provide nonparametric identi�cation results for a more general game with continuous state

space and propose an e�cient one-step estimator.3,4

The rest of the paper is organized as follows. Section 3.2 begins with an illustrative

example that motivates our estimator, and then describes the model and our estimator for

games. Section 3.3 gives the main results. Section 3.4 presents results from Monte Carlo

experiments that compare the statistical performance and relative speed of our estimator

compared to ALSEPSD. Section 3.5 apted or applied to complement other recent results in

the literature. All proofs can be found in the Appendix.

3.2 Methodology

We begin with an illustration that highlights the idea behind computational advantages

of our estimation approach. Section 3.2.1 describes elements of the game. We de�ne the

pseudo-model in Section 3.2.2 and introduce our estimator in Section 3.2.3.

3An earlier version of Bajari et al. (2009), Bajari and Hong (2006), proposes a two-step estimator that can
be seen as the dynamic game version of Hotz et al. (1994).

4Another notable estimator that does not take a two-step approach is Egesdal, Lai and Su (2012). However,
Egesdal et al. construct their objective functions in terms of choice probabilities.
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3.2.1 Least Squares in Probabilities vs Payo�s

Consider a model generated by the following binary choice variable:

at (θ) = 1 [vθ (xt) ≤ εt] for θ ∈ Θ ⊂ Rp,

where xt and εt are independent. Let the cdf of εt be denoted by Q. For all x, let

Pθ (x) = Pr [at (θ) = 1|xt = x], so that Pθ (x) = Q (vθ (x)). Assume the support of xt

is �nite, say {xj}Jj=1 for some J < ∞, so that we can de�ne Pθ = Γ (vθ), where Pθ =

(Pθ (x1) , . . . , Pθ
(
xJ
)
)>, vθ = (vθ (x1) , . . . , vθ

(
xJ
)
)> and Γ (vθ) = (Q (vθ (x1)) , . . . , Q

(
vθ
(
xJ
))

)>.

Suppose: we observe a random sample of {at, xt} where at = at (θ0) for some θ0 ∈ Θ,

which is the parameter value of interest; vθ is nonparametrically identi�ed up to θ, and there

exists a consistent estimator of vθ, say v̂θ, for all θ; and, Q is known and invertible. Let

P = (P (x1) , . . . , P
(
xJ
)
)> be a vector of choice probabilities identi�ed from the data, so

that P = Pθ0 , then one may consider a class of estimators de�ned by

θ̂p (V) = arg min
θ∈Θ

(
P̃− P̂θ

)>
V
(
P̃− P̂θ

)
, (3.2.1)

where P̃ and P̂θ are estimators for P and Pθ respectively, and V be some positive de�nite ma-

trix. Note that P̃ and P̂θ0 are generally di�erent since the former is model-free while the lat-

ter is estimated through v̂θ. Similarly, we can de�ne v = (Q−1(P (x1)), . . . , Q−1(P
(
xJ
)
))>,

which is also identi�ed from the data, so that v = vθ0 by construction. Then one can also

consider an alternative class of estimators:

θ̂v (W) = arg min
θ∈Θ

(ṽ − v̂θ)
>W (ṽ − v̂θ) , (3.2.2)

where ṽ is Γ−1(P̃) and W is a positive de�nite matrix. As described previously, ṽ and v̂θ0

will also generally di�er.

Equations (3.2.1) and (3.2.2) provide two di�erent estimators for θ0. We argue the latter

should generally be easier to compute than the former since it is more convenient to compute

(ṽ, v̂θ) relative (P̃, P̂θ) across di�erent values of θ. This argument is most transparent when

vθ has a linear-in-parameter speci�cation, i.e. vθ (xt) = θ>v (xt) for some p−dimensional vec-

tor v (xt). Then v̂θ can be written as X̂θ, where X̂ is a J by p matrix such that its j−th row

equals v̂ (xj)
>
. The solution to (3.2.2) is unique and has a closed-form,

(
X̂>WX̂

)−1

X̂>Wv̂,
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when X̂>WX̂ is invertible. Even without the linear parameterization of vθ, every evaluation

of P̂θ requires the mapping of vθ (xj) by Q for all j, for every θ, where Q is generally a

nonlinear function that may have to be computed numerically. In contrast, for (3.2.2), the

potentially costly step of applying Q−1 has to be performed only once to estimate v that does

not depend on θ. Regardless of the parameterization in vθ, under some suitable regularity

conditions, and appropriate choices of weighting matrices, the two estimators can be shown

to be asymptotically equivalent near θ0 in the sense that there exists WV and VW such that

for any V and W :

√
N
(
θ̂v (WV)− θ0

)
=
√
N
(
θ̂p (V)− θ0

)
+ op (1) ,

√
N
(
θ̂p (VW)− θ0

)
=
√
N
(
θ̂v (W)− θ0

)
+ op (1) ,

where N denotes the sample size.

The estimator in (3.2.1) is closely related to ALSEPSD and other Hotz and Miller (1993)'s

type estimators that have been widely adopted in the dynamic game setting. In contrast the

estimator based on (3.2.2) is the asymptotic least squares analog to the estimator proposed

in Hotz et al. (1994). For the remainder of this section we develop an estimator based on

(3.2.2) in the context of a dynamic game.

3.2.2 Framework

We consider a game with I players, indexed by i ∈ I = {1, . . . , I}, over an in�nite time

horizon. The elements of the game in each period are as follows:

Actions. For notational simplicity we assume all players have the same action space.

The action set of each player is A = {0, 1, . . . , K + 1}. We denote the action variable for

player i by ait. Let at = (a1t, . . . , aIt) ∈ A = ×Ii=1A. We will also occasionally abuse the

notation and write at = (ait, a−it) where a−it = (a1t, . . . , ai−1t, ai+1t . . . , aIt) ∈ A\A.

States. Player i's information set is represented by the state variables sit ∈ S, where

sit = (xit, εit) such that xit ∈ X is common knowledge to all players and εit ∈ E = RK+1

denotes private information only observed by player i. Note that common state space X

is without any loss of generality. We shall use sit and (xt, εit) interchangeably. We de�ne

(st, s−it, εt, ε−it, E) analogously to (at, a−it, A), and denote the support of st by S = X × E .
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State Transition. Future states are uncertain. Players' actions and states today

a�ect future states. The evolution of the states is summarize by a Markov transition law

P (st+1|st, at).

Per Period Payoff Functions. Each player has a payo� function, ui : A × S → R,
which is time separable. The payo� function for player i can depend generally on (at, xt, εit)

but not directly on ε−it.

Discounting Factor. Future period's payo�s are discounted at the rate βi ∈ (0, 1) for

each player. For notational simplicity we take βi = β for all i.

We impose the following assumptions throughout the paper.

Assumption M1 (Additive Separability). ui,θi (ai, a−i, x, εi) = πi,θi (ai, a−i, x)

+
∑

a′∈A εi (a
′) 1 [ai = a′] for all i, θi, ai, a−i, x, εi, where πi,θi is known up to θi ∈ Θi ⊂ Rpi.

Assumption M2 (Conditional independence). The transitional distribution of the states

has the following factorization: P (xt+1, εt+1|xt, εt, at) = Q (εt+1)G (xt+1|xt, at), where Q is

the cumulative distribution function of εt and G denotes the transition law of xt+1 condi-

tioning on at and xt.

Assumption M3 (Independent private values). The private information is independently

distributed across players, and each is absolutely continuous with respect to the Lebesgue

measure whose density is bounded on RK+1. So that Q (ε) =
∏I

i=1Qi (εi), where Qi denotes

the cumulative distribution function of εit.

Assumption M4 (Discrete public values). The support of xt is �nite so that X ={
x1, . . . , xJ

}
for some J <∞.

M1 - M4 are standard in the modeling of dynamic discrete games in the literature. Note

that M2 implies xt and εt are independent, however, this can be relaxed slightly at the

cost of more notation by changing all of our statements regarding Q and Qi to be taken

conditional on xt. M4 is also not essential for the general idea behind estimation of dynamic

games. Although the complexity of the asymptotic theory and the practical aspects increase

signi�cantly when xt includes continuous random variables; see Bajari et al. (2009) and

Srisuma and Linton (2012).
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At time t every player observes sit, each then chooses ait simultaneously. We consider a

Markovian framework where players' behaviors are stationary across time and players are

assumed to play pure strategies. More speci�cally, for some αi : S → A, ait = αi (sit) for

all i, t, so that whenever sit = siτ then αi (sit) = αi (siτ ) for any τ . The beliefs are also time

invariant. Player i′s beliefs, σi, is a distribution of at = (α1 (s1t) , . . . , αI (sIt)) conditional on

xt for some pure Markov strategy pro�le (α1, . . . , αI). The decision problem for each player

is to solve

max
ai∈Ai
{Eσi [ui,θi (ait, a−it, si) |sit = si, ait = ai] + βEσi [Wi,θi (sit+1;σi) |sit = si, ait = ai]},(3.2.3)

where Wi,θi (si;σi) =
∞∑
τ=t

βτ−tEσi [ui,θi (aτ , siτ ) |sit = si] ,

for any si. The subscript σi on the expectation operator makes explicit that present and

future actions are integrated out with respect to the beliefs σi; in particular, player i forms

an expectation for all players' future actions including herself, and todays actions of opposing

players. Wi,θi (·;σi) is a policy value function since the expected discounted return needs not

be an optimal value from an optimization problem since σi can be any beliefs, not necessarily

equilibrium beliefs. Note that the transition laws for future states are completely determined

by the primitives and the beliefs. Any strategy pro�le that solves the decision problems for

all i and is consistent with the beliefs satis�es is an equilibrium strategy. It is well-known

that players' best responses are pure strategies almost surely and Markov perfect equilibria

for games under M1 - M4 (e.g. see Aguirregabiria and Mira (2007) and Pesendorfer and

Schmidt-Dengler (2008)). However, there may be multiple equilibria.

3.2.3 Pseudo-Model

We now de�ne the pseudo-model that plays a central role in two-step estimation meth-

ods. The starting point is the structural assumption that we observe random sample

of {α∗1 (s1t) , . . . , α
∗
I (sIt) , xt, xt+1} from a single equilibrium, where α∗i = αi,θi0 for some

θi0 ∈ Θi ⊂ Rpi for all i. Let P ∗i (ai|x) = Pr [α∗i (sit) = ai|xt = x] for all ai, x. Then we have:

(i) the equilibrium beliefs for all players is summarized by
∏I

i=1 P
∗
i ; (ii) Pr [ait = ai|xt = x] =

P ∗i (ai|x) and Pr [xt+1 = x′|xt = x, at = a] = G (x′|x, a) for all a, x, x′. For notational sim-

plicity, for this section and the next, we shall: omit ∗; let αi and Pi denote the equilib-
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rium strategy and choice probability function for player i; and, without any ambiguity let

ait = αi (sit) for all i, t. Then the pseudo-model can be de�ned as a collection of joint con-

ditional distributions indexed by θ = (θ>1 , . . . , θ
>
I )> ∈ ×Ii=1Θi = Θ ⊂ Rp. Also let θ0 denote

(θ>10, . . . , θ
>
I0)>.

Definition: The pseudo-model is {Pθ}θ∈Θ such that Pθ =
∏I

i=1 Pi,θi and for all i, θi, ai, x:

Pi,θi (a|x) = Pr [αi,θi (sit) = a|xt = x] a.s., where

αi,θi (sit) = arg max
ai∈A
{E [πi,θi (ai, a−it, xt)|xt] + εit (ai) + βE [Vi,θi (st+1)|xt, ait = ai]} ,

Vi,θi (sit) = E[πi,θi (ait, a−it, xt) +
K∑
a′=0

εit (a′) 1 [ait = a′] |sit] + βE [Vi,θi (sit+1)| sit] .

By construction Pi,θi = Pi for all i when θi = θi0 for all i, and Vi,θi also equals Wi,θi (·;σi)
(as de�ned in (3.2.3)), when σi =

∏I
j=1 Pj. Let vi,θi (ai, x) = E [πi,θi (ai, a−it, xt)|xt = x] +

βE [Vi,θi (st+1)|xt = x, ait = ai], then we can write

Pi,θi (a|x) = Pr [vi,θi (ai, xt) + εit (ai) > vi,θi (a′i, xt) + εit (a′i) for all a′i 6= ai|xt = x] , (3.2.4)

which is familiar from the classical random utility model (e.g. see McFadden (1974)) with

mean utility vi,θi . The numerical advantage in working with the pseudo-model, as opposed

to the actual model, is that vi,θi is relatively straightforward to compute for di�erent θi,

since all expectations that de�ne vi,θi are calculated independent of θi; all with respect to

P (st+1|st, at) for all players that is equivalent to earlier notation using Eσi when σi =
∏I

j=1 Pj

for all i.

We shall heavily exploit the fact that vi,θi is a linear transformation of πi,θi . To see this,

�rst look at the choice-speci�c expected return:

E [Vi,θi (st+1)|xt, ait = ai] = E [E [Vi,θi (st+1)|xt+1]|xt, ait = ai] , and

E [Vi,θi (st)|xt] = E[πi,θi (ait, a−it, xt) +
K∑
a′=0

εit (a′) 1 [ait = a′] |xt] + βE [E [Vθi (st+1) |xt+1] |xt] .

Let mi,θi = E[Vi,θi (sit) |xt = ·] and gi,θi = E[Vi,θi (sit+1) |xt = ·, ait = ·]. Then, using a

46



linear functional notation, we have

gi,θi = Himi,θi ,

mi,θi = ri,θi + ri + Lmi,θi , where for all a, x

ri,θi (x) = E [πi,θi (ait, a−it, xt)|xt = x] ,

ri (x) = E[
K∑
a′=0

εit (a′) 1 [ait = a′] |xt = x],

Lm (x) = βE [m (xt+1) |xt = x] ,

Him (a, x) = E [m (xt+1) |xt = x, ait = a] ,

where L and Hi are linear maps and ri,θi is a linear transformation of πi,θi . Since (I − L)−1

is also generally a well-de�ned linear map, as L is a contraction as its norm is strictly less

than 1, then

vi,θi =
(
Ri + βHi (I − L)−1R

)
πi,θi + vi,

where Ri and R are conditional expectation operators, conditioning on xt, integrating over

a−it and at respectively , and vi = βHi (I − L)−1 ri.

The choice probabilities can also be written in terms of di�erences in choice speci�c ex-

pected payo�s. Let ∆vi,θi (ai, x) denote vi,θi (ai, x) − vi,θi (0, x) for ai > 0, then (3.2.4)

becomes

Pi,θi (a|x) = Pr [∆vi,θi (ai, xt) + εit (ai) > ∆vi,θi (a′i, xt) + εit (a′i) for all a′i > 0|xt = x] .

(3.2.5)

SinceA andX are �nite, the relationship between {∆vi,θi (ai, x)}ai>0,x∈X and {πi,θi (a, x)}a∈A,x∈X
can be represented through a matrix equation. We state this representation as a lemma.

Lemma R: Under M1 - M4 {∆vi,θi (ai, x)}ai>0,x∈X can then be represented by a JK−vector,
∆vi,θi :

∆vi,θi = D (Ri + βHiMR) πi,θi + ∆vi, (3.2.6)

where πi,θi is a J (K + 1)I −vector of {πi,θi (a, x)}a∈A,x∈X so that elements in: Riπi,θi are

{E [πi,θi (ai, a−it, xt)|xt = x]}ai∈A,x∈X ; Rπi,θi are {E [πi,θi (ait, a−it, xt)|xt = x]}x∈X ; M in-

volve

{Pr [xt+1 = x′|xt = x]}; Hi are Pr [xt+1 = x′|xt = x, ait = ai]; and, D is a di�erence matrix
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with respect to the expected payo�s from playing action 0; and, ∆vi is the di�erenced vec-

tor form of the transformation of ri by βiHi (I − L)−1 normalized by action 0. The detailed

constructions of ∆vi,D,Ri,R,Hi and M are provided in the Appendix.

In what follows, we let ∆vi denote ∆vi,θi0 . And, similarly, it shall be convenient to

vectorize the probabilities. In particular, we let Pi,θi and Pi denote the JK−vector that
represent {Pi,θi (ai|x)}ai>0,x∈X and {Pi (ai|x)}ai>0,x∈X respectively.

3.2.4 Estimation

Many objective functions proposed in the literature often can be written directly in terms of

the probabilities from the pseudo-model, such as pseudo-likelihood and GMM, based on the

construction that Pi,θi coincides with Pi when θi = θi0. However, from a numerical perspec-

tive, computing the pseudo-probabilities requires a costly additional step of computation,

namely the integration with respect to the distribution of εit that maps ∆vi,θi into Pi,θi (see

(3.2.5)). These integrals generally do not have closed-form in the expected payo�s outside

the well-known exception when private values are i.i.d. extreme value. Even if the integrals

have closed-form, the integration is generally a nonlinear mapping of ∆vi,θi into Pi,θi . In

order to preserve the linear structure outlined previously, we propose to construct objective

functions based directly on ∆vi,θi .

The validity of such objective functions, to identify θ0, follows from the bijective relation

between ∆vi,θi and Pi,θi for each i. This well-known result follows from Proposition 1 of Hotz

and Miller (1993), which we shall refer to as Hotz and Miller's inversion in this paper (also

see Lemma 8 of Matzkin (1991), Lemma 1 of Pesendorfer and Schmidt-Dengler (2008), and,

for a recent generalization of these results, Norets and Takahashi (2013)).5 In particular, it

immediately follows that for any θi, Pi,θi coincides with Pi if and only if ∆vi,θi coincides

with ∆vi, where ∆vi is identi�able from the data by Hotz and Miller's inversion. Then we

can construct a class of estimators based on minimizing the distance between {∆vi,θi}
I
i=1

and {∆vi}Ii=1.

Using Lemma R, we can write ∆vi,θi = Xi (θi) + ∆vi, where

Xi (θi) = D (Ri + βHiMR) πi,θi . (3.2.7)

5Pesendorfer and Schmidt-Dengler (2008) also show equilibrium condition can be characterized in terms of
expected payo�s; see details of their Lemma 1 for further discussions.
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Note that θi enters Xi (θi) through a matrix transform of the vector πi,θi , where the former

does not depend on θi and the latter is completely known and speci�ed by the researcher.

By Hotz and Miller's inversion, we also have ∆vi = Φi (Pi) for some nonlinear, but known,

function Φi that only depends on the distributional assumption of εit. Then we can de�ne

a JK−vector, Yi, where
Yi = Φi (Pi)−∆vi. (3.2.8)

Note that Yi is de�ned independently of θi. So that, by construction:

Yi = Xi (θi) when θi = θi0.

Let Y =
(
Y>1 , . . . ,Y>I

)>
, θ =

(
θ>1 , . . . , θ

>
I

)>
and de�ne a block diagonal matrix X (θ) =

diag(X1 (θ1) ,

. . . ,XI (θI)). In the next section we analyze the asymptotic properties for a class of es-

timators that are motivated from minimizing

S (θ;W) = (Y − X (θ))>W(Y − X (θ)), (3.2.9)

over Θ, for some weighting matrix W .

It is also worth emphasizing that, through {∆vi}
I
i=1 , {Ri}Ii=1 ,R,L and {Hi}Ii=1, for any

θ: X (θ) and Y are explicit functions, say TX (θ; γ0) and TY (γ0) respectively, of a �nite-

dimensional vector, γ0, that consists of choice and transition probabilities. However, opti-

mization with S (θ;W) is infeasible since X (θ) and Y are not observed, as γ0 is unknown.

Given a sample from a single equilibrium, {α∗1 (s1t) , . . . , α
∗
I (sIt) , xt, xt+1}, γ0 can be identi-

�ed from the data under weak conditions, hence X (θ) and Y can also be estimated directly

from the data for all θ. Consequently we consider a feasible estimation criterion where X
and Y are replaced by X̂ (θ) = TX (θ; γ̂) and Ŷ = TY (γ̂) respectively, for some preliminary

estimator, γ̂, of γ0. We denote the sample counterpart of S by Ŝ, so that

Ŝ(θ; Ŵ) = (Ŷ − X̂ (θ))>Ŵ(Ŷ − X̂ (θ)), (3.2.10)

where Ŵ can be random and depend on the sample size. We de�ne our estimator, θ̂(Ŵ), to
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be the minimizer of Ŝ
(
θ; Ŵ

)
:

θ̂(Ŵ) = arg min
θ∈Θ
Ŝ(θ; Ŵ).

Therefore θ̂(Ŵ) is generally a nonlinear least square estimator with generated regressors and

regressands. Note that Ŝ(θ; Ŵ) is easy to evaluate for di�erent values of θ, following (3.2.7)

and (3.2.8), X̂i (θ) can be computed by a matrix multiplication of πi,θi by the estimator of

D (Ri + βHiMR), which does not depend on θi, and Ŷi is also independent of θi.

3.3 Main Results

We give large sample properties of our estimator in full generality in Section 3.3.1. We

consider special cases when payo�s have linear-in-parameter and partially linear speci�ca-

tions in 3.3.2 and 3.3.3 respectively. We discuss the relationship between our estimator and

ALSEPSD in Section 3.3.4. In what follows we denote the matrix norm by ‖·‖, so that

‖B‖ =
√
trace (B>B) for any real matrix B, and we let �

p→� and �
d→� denote convergence

in probability and distribution respectively.

3.3.1 General Case

From the previous section, we see that TX (θ; ·) and TY (·) are deterministic and smooth

functions in γ for any θ. To analyze the asymptotic properties of θ̂(Ŵ), it will be useful to

keep separate the sampling distribution of the preliminary estimator and the corresponding

generated regressors and regressands. We begin with a preliminary requirement for γ̂.

Assumption P: (i) γ̂
p→ γ0; and, A(ii)

√
N (γ̂ − γ0)

d→ N (0,Ξ).

There are several choices for γ̂ in practice that satisfy P under very weak conditions.

The simplest options are perhaps the empirical choice and transition probabilities, otherwise

kernel estimators can be employed (Li and Racine (2006)). We now present our regularity

conditions and main results in terms of (X (θ) ,Y) and their estimators (X̂ (θ) , Ŷ).

Assumption A1: θ0 ∈ int (Θ) where Θ is a compact subset of Rp, and X (θ) = X (θ0) if

and only if θ = θ0.
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Assumption A2: Ŵ p→W, where W is a non-stochastic positive de�nite matrix.

Assumption A3: supθ∈Θ ‖X (θ)‖ and ‖Y‖ are �nite, and supθ∈Θ

∥∥∥X̂ (θ)−X (θ)
∥∥∥ p→ 0

and Ŷ p→ Y.

Assumption A4: X (θ) is continuously di�erentiable at θ0 and ∇X = ∂X (θ)
∂θ>

∣∣∣
θ=θ0

has full

column rank.

Assumption A5: supθ∈Bδ(θ0)

∥∥∥∂X̂ (θ)
∂θ>
− ∂X (θ)

∂θ>

∥∥∥ p→ 0, where Bδ (θ0) denotes some neighbor-

hood of θ0.

De�ne Û = Ŷ − X̂ (θ0).

Assumption A6:
√
N Û d→ N (0,Σ) for some non-stochastic positive de�nite matrix Σ.

Comments on Assumptions A1 - A3.

These conditions are su�cient for the consistency of our estimator. A1 - A2 constitute to a

high level identi�cation condition as it ensures (3.2.9) has a unique solution at θ0. There has

been little work on more primitive conditions for parametric identi�cation of payo� functions

in dynamic games. Most identi�cation results in the literature are nonparametric that build

on the work of Magnac and Thesmar (2002); see Pesendorfer and Schmidt-Dengler (2008)

and Bajari et al. (2009). However, using Hotz and Miller's inversion, it follows that the

condition for identi�cation of the pseudo-model at θ0, in the sense that Pi,θi = Pi,θi0 for all

i if and only if θi = θi0 for all i, is precisely the identi�cation condition required in A1.

Furthermore, by inspecting Lemma R more closely, for each i, we see that the necessary and

su�cient condition for the unique parameterization of Xi (θi) at θi0 is for the intersection

between the {πi,θi − πi,θi0 : θi ∈ Θi\ {θi0}} and the null space of D (Ri + βHiMR) to

be empty. Although, without any restriction on πi,θi , A1 generally does not hold since

D (Ri + βHiMR) is always rank-de�cient. For a closely related discussion see Srisuma

(2013), who provides constructive conditions for parametric identi�cation results in a single

agent model that can be generalized directly to the games considered in this paper. Also see

the identi�cation condition and comments of B1 in Section 3.3.2 when linear-in-parameter

restriction is imposed. The uniform boundedness and consistency conditions essentially

depend on {πi,θi}
I
i=1. In particular, if D (Ri + βHiMR) is �nite then continuity of {πi,θi}

I
i=1
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ensures supθ∈Θ ‖X (θ)‖ is �nite since Θ is compact. Then uniform consistency also follows if

there exists a consistent estimator for D (Ri + βHiMR), which is implied by P(i).

Comments on Assumptions A4 - A6.

For the distribution theory, additional local conditions around θ0 are required. A4 - A5 are

standard smoothness and regularity conditions for an asymptotic normality of an extremum

estimator that optimizes a smooth objective function. Similar to the discussion of su�cient

conditions for A3, using Lemma R, a su�cient condition for continuous di�erentiability of

X (θ) in A4 is continuous di�erentiability of πi,θi at θi0 for all i, then A5 will also follow if P(i)

holds. Furthermore, if P(ii) holds, so that the elements in X̂ (θ0) and Ŷ have asymptotically

normal distribution, then by applying a delta-method A6 also holds with Σ = ∇γΞ∇>γ , where
∇γ = ∂

∂γ>
(TY (γ)− TX (θ0; γ)) |γ=γ0 .

Our estimators are consistent and asymptotically normal under these assumptions.

Theorem 1 (Consistency): Under assumptions A1 - A3, θ̂(Ŵ)
p→ θ0.

Theorem 2 (Asymptotic Normality): Under assumptions A1 - A6,

√
N
(
θ̂(Ŵ)− θ0

)
d→ N (0,ΩW) ,

where ΩW =
(
∇>XW∇X

)−1∇>XWΣW∇X
(
∇>XW∇X

)−1
.

In large sample, the estimators that uniquely solve (3.2.10) are distinguishable up to the

�rst order by ΩW . The e�cient estimator in this class can be found by choosing the optimal

weighting matrix,W∗, that minimizes ΩW over the set of all possible positive de�nite matrices

(i.e. e�ciency gain in the spirit of Chamberlain (1982) and Hansen (1982) for instance).

Theorem 3 (Efficient Estimator): Under assumptions A1 - A6, (i) the asymptotic

variance of
√
N
(
θ̂(Ŵ)− θ0

)
is bounded below by ΩΣ−1 =

(
∇>XΣ−1∇X

)−1
; and, (ii) if Ŵ p→

Σ−1 then
√
N
(
θ̂(Ŵ)− θ0

)
d→ N (0,ΩΣ−1).

The �rst part of Theorem 3 says that the lower variance bound for the class of estimators

we consider is
(
∇>XΣ−1∇X

)−1
. The second part states that any consistent estimator of Σ−1

is su�cient to produce an e�cient estimator. In practice, consistent estimator for Σ−1 will
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typically require a preliminary consistent estimator for θ0. The simplest choice is to chooseW
to be an identity matrix, Id. In this case the estimator for θi0 can be computed individually

for each player. We state this in the following corollary.

Corollary A (Identity Weighted Estimator): Under assumptions A1, A3 - A6,
√
N
(
θ̂(Id)− θ0

)
d→ N (0,ΩId), where θ̂(Id) =

(
θ̂1(Id)

>, . . . , θ̂I(Id)
>
)>

. Furthermore, for

all i: θ̂i(Id) = arg minθi∈Θi(Ŷi − X̂i (θi))>(Ŷi − X̂i (θi)) such that
√
N
(
θ̂i(Id)− θi0

)
d→

N (0,
(
∇>Xi∇Xi

)−1

∇>XiΣi∇Xi
(
∇>Xi∇Xi

)−1
) with ∇Xi = ∂Xi(θ)

∂θ>i

∣∣∣
θi=θi0

and Σi = limN→∞ V ar(
√
N(Ŷi − Yi −

(X̂i (θi0)−Xi (θi0))).

3.3.2 Linear-in-Parameter Speci�cation

We now consider the leading special case when payo� functions have a linear-in-parameter

speci�cation.

Assumption M5 (Linear-in-parameter payo�s). For all (i, θi, ai, a−i, x),

πi,θi (ai, a−i, x) = θ>i πi (ai, a−i, x) ,

for some p−dimensional vector πi (ai, a−i, x) = (π1
i (ai, a−i, x) , . . . , πpi (ai, a−i, x))

>
.

We assume M1 - M5 hold throughout this subsection. Then, with a slight abuse of notation,

Xi (θi) in (3.2.7) simpli�es to Xiθi, where

Xi = D (Ri + βHiMR) Πi, (3.3.1)

and Πi is a J (K + 1)I by p matrix of {πi (ai, a−i, x)}ai∈A,x∈X . Let X = diag (X1, . . . ,XI).
The limiting and sample objective functions de�ned in (3.2.9) and (3.2.10) respectively be-

come

S lip (θ;W) = (Y − X θ)>W(Y − X θ), and

Ŝ lip(θ; Ŵ) = (Ŷ − X̂ θ)>Ŵ(Ŷ − X̂ θ).

If X̂>ŴX̂ is non-singular, then Ŝ lip(θ; Ŵ) is globally convex. The solution to the minization
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problem has a well-known closed-form expression of a weighted least squares estimator,

namely

θ̂lip(Ŵ) =
(
X̂>ŴX̂

)−1

X̂>ŴŶ . (3.3.2)

Although the large sample properties for θ̂lip(Ŵ) follow immediately from Section 3.3.1, they

can be specialized substantially to incorporate M5. Since the results in this subsection may

be most relevant for empirical applications we provide some details here.

Assumption B1: X has full column rank.

Assumption B2: Ŵ p→W, where W is a non-stochastic positive de�nite matrix.

Assumption B3: ‖X‖ and ‖Y‖ are �nite, and X̂ p→ X and Ŷ p→ Y .

De�ne Û lip = Ŷ − X̂ θ0.

Assumption B4:
√
N Û lip d→ N

(
0,Σlip

)
for some non-stochastic positive de�nite matrix

Σlip.

Comments on Assumptions B1 - B4.

Similar to A1 - A2, B1 and B2 ensure S lip(θ;W) has a unique solution at θ0. In this case,

the full rank condition of X is a necessary and su�cient condition for the identi�cation of the

pseudo-model (for more details see Srisuma (2013)). The sample counterpart of B1, namely

the rank condition of X̂ , also has a �nite sample signi�cance. If Ŵ is positive de�nite,

then the full column rank condition of X̂ is necessary and su�cient for Ŝ lip(θ; Ŵ) to have a

unique solution, which equals to θ̂lip(Ŵ) as de�ned in (3.3.2). Assumptions B3 and B4 are

immediate specializations of A3 - A6.

We state the large sample properties for θ̂lip(Ŵ) as corollaries without proofs.

Corollary 1 (Consistency): Under assumptions B1 - B3, θ̂lip(Ŵ)
p→ θ0.

Corollary 2 (Asymptotic Normality): Under assumptions B1 - B4,

√
N
(
θ̂lip(Ŵ)− θ0

)
d→ N

(
0,Ωlip

W

)
,

where Ωlip
W =

(
X>WX

)−1X>WΣlipWX
(
X>WX

)−1
.
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Corollary 3 (Efficient Estimator): Under assumptions B1 -B4, (i) the asymptotic

variance of
√
N
(
θ̂lip(Ŵ)− θ0

)
is bounded below by Ωlip

Σlip−1 =
(
X>Σlip−1X

)−1

; and, (ii) if

Ŵ p→ Σlip−1
then

√
N
(
θ̂lip(Ŵ)− θ0

)
d→ N

(
0,Ωlip

Σlip−1

)
.

Similarly to the general case, consistent estimator for Σlip−1
requires a preliminary consis-

tent estimator for θ0. We have the counterpart to Corollary A when we choose W to be an

identity matrix I.

Corollary B (Identity Weighted Estimator): Under assumptions B1, B3 and

B4,
√
N
(
θ̂lip(I)− θ0

)
d→ N

(
0,Ωlip

I

)
, where θ̂lip(I) =

(
X̂>X̂

)−1

X̂>Ŷ and

Ωlip
I =

(
X>X

)−1X>ΣX
(
X>X

)−1
. Furthermore, for all i: θ̂lip(I) =

(
θ̂lip1 (I)>, . . . , θ̂lipI (I)>

)>
such that θ̂lipi (I) =

(
X̂>i X̂i

)−1

X̂>i Ŷi and
√
N
(
θ̂lipi (I)− θi0

)
d→ N (0,

(
X>i Xi

)−1X>i Σlip
i Xi

(
X>i Xi

)−1
)

with Σlip
i = limN→∞ V ar(

√
N(Ŷi − Yi − (X̂i −Xi)θi0).

We have shown here that once we have (Ŷ , X̂ ), under some regularity conditions, a con-

sistent estimator for θ0 can be obtained by an OLS estimator, θ̂lip (I) =
(
X̂>X̂

)−1

X̂>Ŷ
(Corollary B), which can be used to construct an e�cient estimator using a familiar a feasi-

ble GLS formulation, θ̂lip
(

Σ̂lip−1
)

=
(
X̂>Σ̂lip−1X̂

)−1

X̂>Σ̂lip−1Ŷ where Σ̂lip−1
is a consistent

estimator of Σlip−1
.

Our closed-form estimators also readily accommodate linear restrictions. For instance,

sometimes there are a priori restrictions one may wish to impose on θ0 such as symmetry.

More formally, suppose θ0 is known to satisfy D>θ0 = δ for some known p by q matrix D
that has full row rank q < p and some q−dimensional vector δ. Then a restricted estimator

θ̃lip(Ŵ) that minimizes (3.2.10) subject to D>θ̃lip(Ŵ) = δ, has the following closed-form

expression

θ̃lip(Ŵ) = θ̂lip(Ŵ)−
(
X̂>ŴX̂

)−1

D
(
D>
(
X̂>ŴX̂

)−1

D
)−1 (

D>θ̂lip(Ŵ)− δ
)
,

where θ̂lip(Ŵ) is the unrestricted estimator de�ned in (3.3.2). The expression above can be

derived using Lagrangean method or through matrix manipulations (see Amemiya (1985,

Section 1.4)). And, since θ̃lip(Ŵ) is an a�ne transformation of θ̂lip(Ŵ), it is easy to verify

that the optimal weighting matrices for θ̃lip(Ŵ) are the same as those described in Corollary

3, i.e. any Ŵ p→ Σlip−1
.
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3.3.3 Partially Linear Speci�cation

One may argue that, in some situations, Assumption M5 is at odds with the spirit of struc-

tural estimation if the functions in the vector πi are interpreted as basis functions. We relax

the linear-in-parameter requirement and instead consider a partially linear structure that

may arise naturally by ways of additive �xed e�ects, or, frequently in modeling of entry/exit

games, as �xed costs or scrap value. Now suppose θi =
(
θA>i , θB>i

)>
for all i.

Assumption M6 (Partially linear payo�s). For all (i, θi, ai, a−i, x),

πi,θi (ai, a−i, x) = θA>i πAi (ai, a−i, x) + πBi,θBi
(ai, a−i, x) ,

for some p−dimensional vector πAi (ai, a−i, x) =
(
πA1
i (ai, a−i, x) , . . . , πApi (ai, a−i, x)

)>
.

We assume M1 - M4 and M6 hold throughout this subsection. Then it is easy to see that

the RHS of equation (3.2.6) in Lemma R becomes

D (Ri + βHiMR) πAi,θi + D (Ri + βHiMR) πBi,θBi
+ ∆vi,

and, we de�ne, analogously to (3.2.7) and (3.3.1), XA
i = D (Ri + βHiMR) ΠA

i , and XB
i

(
θBi
)

=

D (Ri + βHiMR) πB
i,θBi

. Once again, stacking up the vectors from all players, the limiting

and sample objective functions de�ned in (3.2.9) and (3.2.10) respectively become

Spl (θ;W) = (Y − XAθA −XB
(
θB
)
)>W(Y − XAθA −XB

(
θB
)
), and

Ŝpl(θ; Ŵ) = (Ŷ − X̂AθA − X̂B
(
θB
)
)>Ŵ(Ŷ − X̂AθA − X̂B

(
θB
)
),

where the terms in the above display should by now be familiar. In order to avoid repetition

we only provide a brief discussion of how θ can be (e�ciently) estimated.

The structural identifying condition in this setting is:

Y = XAθA + XB
(
θB
)

if and only if
(
θA, θB

)
=
(
θA0 , θ

B
0

)
.

The additively linear structure allows us to use a Frisch-Waugh-Lovell type argument to

estimate θA0 and θB0 sequentially in two stages. In particular, θA0 and θB0 satisfy the following
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identities:

MWAY =MWAXB
(
θB0
)
, (3.3.3)

where MWA = I − XA
(
XA>WXA

)−1XA>W is an oblique projection matrix (e.g. see

Davidson and MacKinnon (1993)), so thatMWAXA is a matrix of zeros, and

Y − XB
(
θB0
)

= XAθA0 . (3.3.4)

An asymptotic least squares estimator that minimizes Ŝpl(θ; Ŵ) can then be constructed

sequentially in two stages. Let

Ŝpl1 (θB; Ŵ) = (MŴAŶ −MŴAX̂
(
θB
)
)>Ŵ(MŴAŶ −MŴAX̂

(
θB
)
),

where MŴA = I − XA(XA>ŴXA)−1XA>Ŵ . In the �rst stage we obtain θ̂plB(Ŵ) =

arg minθB Ŝpl1 (θB; Ŵ). For the second stage, let

Ŝpl2 (θA; Ŵ) = (Ŷ − X̂B(θ̂B)− X̂AθA)>Ŵ(Ŷ − X̂B(θ̂B)− X̂AθA).

Then θ̂plA(Ŵ) = arg minθA Ŝpl2 (θA; Ŵ) = (X̂A>ŴX̂A)−1X̂A>Ŵ(Ŷ − X̂B(θ̂B)). It is easy to

verify the �rst order conditions that θ̂plA(Ŵ) and θ̂plB(Ŵ) individually solve are identical to

the ones obtained from jointly minimizing Ŝpl(θ; Ŵ).

The practical advantage of the sequential approach is purely numerical, in the same spirit

as the well-known partition regression methods described since the work of Frisch and Waugh

(1933). Speci�cally, we only need to perform nonlinear optimization routine to search over

a reduced parameter space for θ̂plB(Ŵ) in the �rst stage, as θ̂plA(Ŵ) has a closed-form

expression in terms of θ̂plB(Ŵ). Note also that the optimal weighting matrix for Ŝpl1 and Ŝpl2

is the same, and is identical to the one described in Theorem 3.

3.3.4 An Equivalent ALSE

Generally it is not possible to directly compare asymptotic e�ciency of di�erent estimators

in the literature, although they estimate the same model, since many of the estimators are

de�ned using non-nesting objective functions. An exception can be found in Pesendorfer and

Schmidt-Dengler (2008), who show ALSEPSD includes some estimators of Aguirregabiria and

Mira (2007) and Pakes, Ostrovsky and Berry (2007) as special cases. Similar to our general
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estimator de�ned in Section 3.2, the class of ALSEPSD is also indexed by a positive de�nite

matrix and optimal weights can be found to de�ne an e�cient estimator (cf. Theorem 3).

As implied by the Proposition E below, our e�cient estimator is asymptotically equivalent

to the e�cient ALSEPSD. In fact, more is true, the class of estimators we consider and

that of Pesendorfer and Schmidt-Dengler are asymptotically equivalent in the sense that one

can choose appropriate weighting matrices so that the two estimators always have the same

asymptotic distribution.

Proposition E. ALSEPSD and our estimator are asymptotically equivalent.

The equivalence follows from the existence of a smooth bijective relation between the choice

probabilities and the normalized expected payo�s, i.e. essentially by Hotz and Miller's in-

version and an application of the inverse function theorem. The precise relationship between

the two estimators are summarized by the equations in display (3.5.3) that can be found in

the Appendix.

We end this section with a remark on the relationship between asymptotic least squares

estimators and GMM estimators. ALSEPSD and our estimator are de�ned using objective

functions that look at the di�erences between the data and pseudo-model implied probabili-

ties and payo�s respectively at every possible actions and observed states. These di�erences

can also be written as moment conditions, thus asymptotic least squares estimators can also

equivalently be de�ned as GMM estimators (see Chamberlain (1987)). As a consequence, it

follows from Proposition E that the GMM estimators of Hotz and Miller (1993) and Hotz et

al. (1994) are also asymptotically equivalent for a stationary single agent decision model (a

special case of our game when I = 1).6

3.4 Monte Carlo Experiments

We illustrate the performance of our closed-form estimator using the Monte Carlo design in

Section 7 of Pesendorfer and Schmidt-Dengler (2008); who also provide further comparison

with other estimators in the literature.

Setup
6The estimator of Hotz et al. (1994) has an additional source of sampling error since they estimate the
discounted expected payo�s, E [Vi,θi (st+1)|xt, ait], by forward simulation. However, under suitable con-
ditions, the error from forward simulation does not a�ect the asymptotic distribution of their estimator.
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Consider a symmetric two-�rm dynamic entry game. In each period t, each �rm i(= 1, 2)

has two possible choices: be active or not active, ait ∈ {0, 1}, where 0 corresponds to �not

active� and 1 to �active� . Publically observed state variable has four elements, and can be

represented by the actions made by both �rms in period t − 1, so that xt = (a1t−1, a2t−1).

The vector of states evolves over time according to the transition st+1 = at. Firm 1′s period

payo�s are described as follows:

π1,θ (a1t, a2t, xt) = 1 [a1t = 1] · [θ1 + θ2a2t]+1 [a1t = 1, a1t−1 = 0] ·F +1 [a1t = 0, a1t−1 = 1] ·W,

where (θ1, θ2, F,W ) denote respectively the monopoly pro�t, duopoly pro�t, entry cost and

scrap value that �rm 1 may obtain. Each �rm also receives additive private shocks that are

i.i.d. N (0, 1). The game is symmetric and �rm's 2 payo�s are de�ned analogously.

We set (θ10, θ20, F0,W0) = (1.2,−1.2,−0.2, 0.1). Pesendorfer and Schmidt-Dengler (2008,

p.920) show that there are three distinct equilibria (�ve if we permute the identity of the

players as there is one symmetric equilibrium). We generate the data using di�erent equilibria

of the game and provide estimates for (θ10, θ20, F0) for each equilibrium. W is taken as

known, since it is not separately identi�ed (see Aguirregabiria and Suzuki (2013)). For

each sample size T = 100, 500, 1000, 5000, we report the same statistics as Pesendorfer

and Schmidt-Dengler (mean and standard deviation of each estimator, and average mean

squared error) from 1000 simulations of four estimators: OLS, GLS, PSD-I and PSD-E,

for each equilibrium. OLS and GLS estimators correspond to our ine�cient and e�cient

estimators that have closed-form (see Corollary B and Corollary 3 respectively). PSD-I and

PSD-E are the ine�cient and e�cient versions of ALSEPSD respectively; the former uses

identity weighting matrix. Our Tables 1 - 3 below correspond respectively to equilibria 1 -

3 in Pesendorfer and Schmidt-Dengler (2008), thus are directly comparable to their Tables

1 - 3 on p.921-922.
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Table 3.1: Monte Carlo results (Equilibrium 1)

T Estimator F θ10 θ20 MSE
100 OLS -0.244 (0.328) 1.071 (0.33) -1.087 (0.385) 0.396

GLS -0.210 (0.136) 1.227 (0.276) -1.23 (0.255) 0.161
PSD-I -0.262 (0.316) 1.083 (0.341) -1.094 (0.390) 0.395
PSD-E -0.175 (0.155) 1.292 (0.303) -1.327 (0.301) 0.231

500 OLS -0.213 (0.151) 1.169 (0.141) -1.161 (0.179) 0.077
GLS -0.197 (0.048) 1.213 (0.133) -1.209 (0.096) 0.029
PSD-I -0.220 (0.148) 1.176 (0.144) -1.167 (0.186) 0.079
PSD-E -0.188 (0.047) 1.232 (0.129) -1.223 (0.102) 0.031

1000 OLS -0.206 (0.105) 1.184 (0.09) -1.182 (0.125) 0.035
GLS -0.200 (0.030) 1.200 (0.081) -1.197 (0.062) 0.011
PSD-I -0.209 (0.102) 1.186 (0.090) -1.185 (0.130) 0.036
PSD-E -0.195 (0.029) 1.212 (0.077) -1.204 (0.064) 0.011

5000 OLS -0.204 (0.079) 1.194 (0.061) -1.190 (0.093) 0.019
GLS -0.206 (0.074) 1.196 (0.059) -1.192 (0.089) 0.017
PSD-I -0.201 (0.079) 1.199 (0.064) -1.196 (0.094) 0.019
PSD-E -0.203 (0.077) 1.198 (0.061) -1.195 (0.092) 0.018

Notes: OLS and GLS are our closed-form estimators that are ine�cient and e�cient respectively. PSD-I and PSD-

E are asymptotic least squares estimators of Pesendorfer and Schmidt-Dengler (2008) that are ine�cient (identity

weighted) and e�cient respectively.
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Table 3.2: Monte Carlo results (Equilibrium 2)

T Estimator F θ10 θ20 MSE
100 OLS -0.317 (0.472) 0.971 (0.38) -0.891 (0.543) 0.822

GLS -0.428 (0.333) 0.998 (0.328) -0.892 (0.438) 0.598
PSD-I -0.264 (0.495) 1.065 (0.434) -1.006 (0.592) 0.843
PSD-E -0.422 (1.098) 1.073 (0.488) -0.976 (0.588) 1.903

500 OLS -0.221 (0.236) 1.147 (0.192) -1.12 (0.28) 0.181
GLS -0.262 (0.210) 1.153 (0.180) -1.116 (0.261) 0.157
PSD-I -0.201 (0.242) 1.192 (0.205) -1.171 (0.284) 0.182
PSD-E -0.232 (0.214) 1.172 (0.182) -1.154 (0.265) 0.153

1000 OLS -0.216 (0.168) 1.166 (0.135) -1.155 (0.196) 0.088
GLS -0.233 (0.144) 1.171 (0.123) -1.157 (0.180) 0.072
PSD-I -0.205 (0.171) 1.189 (0.142) -1.182 (0.201) 0.090
PSD-E -0.220 (0.150) 1.177 (0.126) -1.173 (0.187) 0.075

5000 OLS -0.205 (0.076) 1.192 (0.058) -1.189 (0.091) 0.018
GLS -0.203 (0.037) 1.196 (0.039) -1.195 (0.05) 0.005
PSD-I -0.202 (0.076) 1.197 (0.061) -1.196 (0.092) 0.018
PSD-E -0.200 (0.043) 1.197 (0.040) -1.201 (0.058) 0.007

Notes: OLS and GLS are our closed-form estimators that are ine�cient and e�cient respectively. PSD-I and PSD-

E are asymptotic least squares estimators of Pesendorfer and Schmidt-Dengler (2008) that are ine�cient (identity

weighted) and e�cient respectively.
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Table 3.3: Monte Carlo results (Equilibrium 3)

T Estimator F θ10 θ20 MSE
100 OLS -0.304 (0.475) 0.997 (0.398) -0.895 (0.558) 0.840

GLS -0.436 (0.356) 1.015 (0.352) -0.88 (0.446) 0.641
PSD-I -0.241 (0.514) 1.102 (0.471) -1.023 (0.624) 0.917
PSD-E -0.397 (0.445) 1.081 (0.381) -0.975 (0.526) 0.722

500 OLS -0.225 (0.244) 1.149 (0.187) -1.118 (0.282) 0.184
GLS -0.26 0 (0.229) 1.159 (0.185) -1.122 (0.278) 0.175
PSD-I -0.201 (0.258) 1.200 (0.222) -1.176 (0.304) 0.208
PSD-E -0.23 (0.239) 1.177 (0.189) -1.157 (0.287) 0.178

1000 OLS -0.214 (0.177) 1.169 (0.134) -1.158 (0.204) 0.093
GLS -0.227 (0.170) 1.179 (0.136) -1.166 (0.206) 0.092
PSD-I -0.202 (0.180) 1.193 (0.147) -1.187 (0.211) 0.099
PSD-E -0.207 (0.186) 1.191 (0.148) -1.188 (0.220) 0.105

5000 OLS -0.203 (0.082) 1.194 (0.062) -1.19 (0.093) 0.019
GLS -0.205 (0.076) 1.197 (0.060) -1.192 (0.090) 0.017
PSD-I -0.201 (0.083) 1.200 (0.066) -1.196 (0.095) 0.020
PSD-E -0.201 (0.078) 1.199 (0.061) -1.197 (0.094) 0.018

Notes: OLS and GLS are our closed-form estimators that are ine�cient and e�cient respectively. PSD-I and PSD-

E are asymptotic least squares estimators of Pesendorfer and Schmidt-Dengler (2008) that are ine�cient (identity

weighted) and e�cient respectively.
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The results are as expected from our theory. At smaller sample sizes the estimators are

genuinely di�erent regardless of the choice of weight matrices. Since the model is fully para-

metric both e�cient estimators generally perform better than the ine�cient ones even at

T = 100 across all equilibria. With larger sample sizes the ine�cient and e�cient estima-

tors seem to have similar properties for both methods. Although, in theory, the ine�cient

estimators need not be asymptotically equivalent as both are weighed by the same identity

matrix (see the proof of Proposition E in the Appendix).

Table 3.4: Computation time

M 1 10 20 30 100 200
OLS 0.0021 0.0125 0.0245 0.0366 0.1241 0.2654

(0.0010) (0.0000) (0.0000) (0.0001) (0.0004) (0.0004)
GLS 0.0180 0.1542 0.3091 0.4658 1.8504 5.6084

(0.0038) (0.0001) (0.0013) (0.0002) (0.0023) (0.0069)
PSD-I 0.2084 4.9957 28.6415 73.3173 1171.5137 5657.6393

(0.0089) (0.0351) (0.1805) (0.0846) (1.9478) (0.9183)
PSD-E 0.3564 10.4140 52.0471 109.5519 1607.2349 7621.5963

(0.0079) (0.0359) (0.1824) (0.1049) (2.6654) (1.2093)

Notes: OLS and GLS are our closed-form estimators that are ine�cient and e�cient respectively. PSD-I and PSD-

E are asymptotic least squares estimators of Pesendorfer and Schmidt-Dengler (2008) that are ine�cient (identity

weighted) and e�cient respectively.

We now abstract away from the statistical properties and consider the numerical aspects.

To illustrate the potential for computational advantages of our estimator, we introduce an

additive market �xed e�ect to the per period payo� in the game described above. We use

the number of markets, denoted by M, to control the complexity of the game.7 For each

M, we solve the model once and simulated �ve times using the symmetric equilibrium. We

report in Table 4, the average central processing unit (CPU) times in seconds to compute

our estimators and ALSEPSD that minimize their respective limiting objective functions

(no sampling error, using true choice and transition probabilities); standard errors are in

parentheses.8 Our estimators are substantially faster to compute, and the distinction grows

7There are other ways to vary the complexity of the game, e.g. by changing the number of potential actions
and states. However, the di�culty to solve and estimate such games increases signi�cantly as the games
become more complexed. Our design only requires us to solve a simple game multiple times.

8The simulation was performed using MATLAB (R2012a, 64 bit version), on a standard PC running on an
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exponentially with more parameters in the model. We also expect the computation time for

ALSEPSD to grow at a faster rate with larger action and/or state spaces for any �xed M.

Another, perhaps even more, important numerical property of our closed-form estimators is

they are always global minimizers. In contrast, a numerical solution to a general nonlinear

optimization problem can be sensitive to the search algorithm, initial values, as well as the

nature of the objective function.9

3.5 Conclusions and Possible Extensions

We have shown there can be some non-trivial computational gains in de�ning estimators

that optimize objective functions constructed in terms of expected payo�s instead of choice

probabilities for the estimation of structural dynamic discrete choice problems. The most

transparent advantages of our approach follow from an opportunity to utilize familiar linear

regression techniques, which arise when the period payo� functions are modeled to have

fully or partially linear-in-parameter structure. Since the class of estimators we propose is

asymptotically equivalent to the one developed by Pesendorfer and Schmidt-Dengler (2008),

which includes several well-known estimators in the literature, there appears to be no costs

at the theoretical level. Our estimators also perform well in Monte Carlo exercises in terms

of speed and statistical properties.

The computation advantages we describe in this paper accumulates beyond the proce-

dure to obtain a point estimate. For instance, resampling methods that are often used in

practice to obtain standard errors (or perhaps to improve �nite sample properties) clearly

would bene�t. The type of objective functions we propose also naturally complements other

research in the literature that aims to improve the performance and/or scope of two-step

methodologies. Two traditional criticisms of two-step estimators are large �nite sample bias

(from the �rst stage nonparametric estimation of choice probabilities), and the inability to

accommodate unobserved heterogeneity and state variables that are persistent over time.

For the former, Aguirregabiria and Mira (2002,2007) propose an iteration scheme that can

improve the �nite sample properties by imposing some structure for the �rst stage estima-

Intel Core (TM) 2 Duo 3.16 GHz processor with 4 GB RAM.
9It is easy to construct a game where the (limiting) objective function de�ned using pseudo-probabilities
has multiple local minima such that some popular built-in optimization package, such as fminunc in
MATLAB, produces di�erent minimizers that depend on the initial search value.
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tors; see Kasahara and Shimotsu (2008,2012) for further discussions and some theoretical

justi�cations. At each iteration, the structural estimator can update the choice probabilities

implied by the pseudo-model that are then used to de�ne a new pseudo-likelihood function.

To incorporate our estimator, alternatively one can use the updated probabilities to con-

struct an objective function that de�nes the distance between the (updated) observed and

implied expected payo�s. For the latter, the recent nonparametric identi�cation results of

Kasahara and Shimotsu (2009) and Hu and Shum (2012) show any two-step approach can

also be readily applied to estimate a more general dynamic model than the one considered

in this paper.
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Appendix

Proof of Theorems

Proof of Theorem 1. Under A1 to A3, S (θ;W) has a well-separated minimum at θ0. Let

ψ(θ) = Y − X (θ) and ψ̂(θ) = Ŷ − X̂ (θ). Under A4, it follows that supθ∈Θ ‖ψ(θ)‖ <∞ and

supθ∈Θ

∥∥∥ψ̂(θ)− ψ(θ)
∥∥∥ = op (1). Then through some tedious algebra, of repeatedly adding

nulls and using properties of the matrix norm:

Ŝ
(
θ; Ŵ

)
− S (θ;W) = ψ̂(θ)>Ŵψ̂(θ)− ψ(θ)>Wψ(θ)

= 2ψ(θ)>W
(
ψ̂(θ)− ψ(θ)

)
+ op

(∥∥∥ψ̂(θ)− ψ(θ)
∥∥∥) ,

where the smaller order terms are uniform over Θ under A2 - A3.

Therefore supθ∈Θ

∣∣∣Ŝ (θ; Ŵ)− S (θ;W)
∣∣∣ = op (1), and consistency follows from a standard

argument (e.g. see Newey and McFadden (1994)).�

Proof of Theorem 2. Under our assumptions, θ̂(Ŵ) satis�es the �rst order condition

from di�erentiating (3.2.10) with respect to θ with probability tending to 1, i.e.

0 =

 ∂X̂ (θ)

∂θ>

∣∣∣∣∣
θ=θ̂(Ŵ)

> Ŵ (Ŷ − X̂ (θ̂(Ŵ))
)

holds with probability tending to 1. Since Y − X (θ0) = 0, by adding nulls, we have

Ŷ − X̂ (θ̂) = Û + E1 + E2

= Û − ∇X
(
θ̂(Ŵ)− θ0

)
+ op

(∥∥∥θ̂(Ŵ)− θ0

∥∥∥) ,
where E1 = −

(
X (θ̂(Ŵ))−X (θ0)

)
and E2 = X̂ (θ̂(Ŵ)) − X̂ (θ0) −

(
X (θ̂(Ŵ))−X (θ0)

)
,

and the second equality follows from A5 after applying mean value expansions to the terms

in E1 and E2 around θ0. By adding nulls and using properties of matrix norm, since θ̂(Ŵ) =

θ0+op (1), we also have

∥∥∥∥∥
(

∂X̂ (θ)
∂θ>

∣∣∣
θ=θ̂(Ŵ)

)>
Ŵ − ∇>XW

∥∥∥∥∥ = op (1) under A2 and A5. Therefore
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θ̂(Ŵ) also satis�es

0 = ∇>XW
(
Û − ∇X

(
θ̂(Ŵ)− θ0

))
+ op

(
1√
N

+
∥∥∥θ̂(Ŵ)− θ0

∥∥∥) ,
with probability tending to 1. Then it follows that

√
N
(
θ̂(Ŵ)− θ0

)
=
(
∇>XW∇X

)−1∇>XWÛ + op (1) .

An application of Slutsky's theorem gives the result.�

Proof of Theorem 3. The proof for part (i) is standard (e.g. see Theorem 3.2 of

Hansen (1982)). We claim the optimal weighting matrix converges in the limit to Σ−1. Let

B = W∇X
(
∇X>W∇X

)−1
and C = Σ−1∇X

(
∇X>Σ−1∇X

)−1
, so we have ΩW = B>ΣB

and ΩΣ−1 = C>ΣC. Using simple algebra, it can be shown that B>ΣB − C>ΣC =

(B − C)>Σ (B − C) ≥ 0. For part (ii), it follows from the proof of Theorem 2 that we

did not use any speci�c information on Ŵ beyond the fact that it has a positive de�nite

probability limit.�

Representation Lemma

Proof of Lemma R. First we introduce some additional notations that build on the terms

de�ned in Section 3.2.2. Let vai,θi =
(
vi,θi (a, x1) , . . . , vi,θi

(
a, xJ

))
for all a, and vi,θi =(

v0
i,θi
, . . . , vKi,θi

)>
, so that vi,θi is a J (K + 1)−vector.

Let πa1...aIi,θi
=
(
πi,θi (a1, . . . , aI , x

1) , . . . , πi,θi
(
a1, . . . , aI , x

J
))

for all a1, . . . , aI , and πi,θi =(
π0...0
i,θi

, . . . , πK...Ki,θi

)>
, so that πi,θi is a J (K + 1)I −vector. For any k let: Id denote an iden-

tity matrix of size d; Hi denote a block-diagonal matrix diag
(
H0
i , H

1
i , . . . , H

K
i

)
, where

Ha
i denotes a J × J matrix such that (Ha

i )jj′ = Pr
[
xt+1 = xj

′|xt = xj, ait = a
]
; M =(

I(K+1)I ⊗M
)
where M = (IJ − L)−1 and L denotes a J × J matrix such that (L)jj′ =

β Pr
[
xt+1 = xj

′|xt = xj
]
; R =


P 0...0 · · · PK...K

... · · · ...

P 0...0 · · · PK...K

 be a J (K + 1)I by J (K + 1)I ma-

trix, where P a1...aI = diag(P (a1, . . . , aI |x1) ,

. . . , P
(
a1, . . . , aI |xJ

)
) with P (a1, . . . , aI |x) = Pr[α1,θ1 (sit) = a1, . . . , αI,θI (sIt) = aI |xt =
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x] =
∏I

j=1 Pj (aj|x), and let Ri =


P 0...0
i0 · · · PK...K

i0
... · · · ...

P 0...0
iK · · · PK...K

iK

 be a J (K + 1) by J (K + 1)I ma-

trix, where P a1...aI
ik = diag(Pik (a1, . . . , aI |x1) , . . . , Pik

(
a1, . . . , aI |xJ

)
) with Pik (a1, . . . , aI |x) =

Pr[α1,θ1 (sit) = a1, . . . , αi−1,θi−1
(si−1t) = ai−1, αi,θi (sit) = k, αi+1,θi+1

(si+1t) = ai+1, αI,θI (sIt) =

aI |xt = x] = Pi (k|x)
∏I

j 6=i Pj (aj|x).

De�ne ∆vai,θi =
(
vi,θi (a, x1)− vi,θi (0, x1) , . . . , vi,θi

(
a, xJ

)
− vi,θi

(
0, xJ

))
for all a > 0, and

∆vθ =
(
∆v1

i,θi
, . . . ,∆vKi,θi

)>
. Let D denote the JKI × J (K + 1)J matrix that performs the

transformation Dvθ = ∆vθ. Lastly, let v
a
i =

(
vi (a, x

1) , . . . , vi
(
a, xJ

))
for all a, and de�ne

vi =
(
v0
i , . . . , v

K
i

)>
, so that ∆vi = Dvi is a J (K + 1)−vector. Then (3.2.6) immediately

follows.�

Asymptotic Equivalence of ALSEs

Proof of Proposition E. In the proof of this proposition we shall assume standard

regularity conditions hold throughout (i.e. we assume inverse of matrices exist, expected

payo�s and functions are bounded and continuously di�erentiable etc.). As seen from the

proof of Theorem 2, under standard regularity conditions θ̂(Ŵ) satis�es

θ̂(Ŵ) = θ0 +
(
∇>XW∇X

)−1∇>XWÛ + op

(
1√
N

)
. (3.5.1)

Next we introduce ALSEPSD. It shall be useful to bear in mind the illustrative discussion

in Section 3.2.1. We �rst de�ne some additional notations that build on the terms de�ned

in Section 3.2.3. Let P =
(
P>1 , . . . ,P

>
I

)>
and Pθ =

(
P>1,θ1 , . . . ,P

>
I,θI

)>
. Similarly, let ∆v =(

∆v>1 , . . . ,∆v>I
)>

and ∆vθ =
(
∆v>1,θ1 , . . . ,∆v>I,θI

)>
. Then, by Hotz and Miller's inversion

there exists an invertible and continuously di�erentiable map Γ such that P = Γ (∆v) and

Pθ = Γ (∆vθ). In particular

P =
(

Γ1 (∆v1)> , . . . ,ΓI (∆vI)
>
)>

, and

Pθ =
(

Γ1 (∆v1,θ1)
> , . . . ,ΓI (∆vI,θI )

>
)>

,
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where Γi is the inverse of Φi, which is de�ned in the text. Therefore, in terms of Y and X (θ),

∆v −∆vθ = Y − X (θ) .

Thus P and Pθ are also deterministic functions of the preliminary estimators (that we

denoted by γ0). We denote the estimators of P and Pθ by P̃ and P̂θ respectively, and these

estimators are constructed based on the same γ̂ that de�ne X̂ and Ŷ . Note that, although
P = Pθ0 , P̃ and P̂θ0 are generally di�erent. An ALSEPSD, denoted by θ̂PSD(V̂), is de�ned

as the minimizer of

min
θ∈Θ

(
P̃− P̂θ

)>
V̂
(
P̃− P̂θ

)
,

for some V̂ that converges in probability to positive de�nite matrix V (cf. equation (21)

on page 915 in Pesendorfer and Schmidt-Dengler (2008)). Under appropriate regularity

conditions, it is straightforward to show, analogous to our Theorem 2, that

√
N
(
θ̂PSD(V̂)− θ0

)
d→ N (0,ΨV) .

For a �rst order asymptotic equivalence, it su�ces to only consider the local asymptotic

properties of ALSEPSD around θ0. Let ∇P denote ∂Pθ
∂θ>

∣∣
θ=θ0

. An ALSEPSD satis�es

0 = −∇>PV
(
P̃−P−

(
P̂θ̂PSD(V) −Pθ0

))
+ op

(
1√
N

)
.

As the problem is smooth, it can be shown generally that the condition above simpli�es

further to

0 = −∇>PV
(
P̃−P−

(
P̂θ0 −Pθ0 + Pθ̂PSD(V) −Pθ0

))
+ op

(
1√
N

)
.

So that we have

θ̂PSD (V) = θ0 +
(
∇>PV∇P

)−1∇>PV
(
P̃−P− (P̂θ0 −Pθ0)

)
+ op

(
1√
N

)
.

By chain rule ∇P equals ∇Γ∇X , where ∇Γ denotes the Jacobian of Γ evaluated at ∆v, and
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∂∆vθ
∂θ>

∣∣
θ=θ0

equals ∇X . Thus, we can write

θ̂PSD (V) = θ0 +
(
∇>X∇>ΓV∇Γ∇X

)−1∇>X∇>ΓV
(
P̃−P− (P̂θ0 −Pθ0)

)
+ op

(
1√
N

)
= θ0 +

(
∇>X∇>ΓV∇Γ∇X

)−1∇>X∇>ΓV∇ΓÛ + op

(
1√
N

)
,

where the last equality follows from linearizing P̃−P− (P̂θ0 −Pθ0) in terms of Ŷ − X̂ (θ0).

By de�ning WV = ∇>ΓV∇Γ, we have

θ̂PSD (V) = θ0 +
(
∇>XWV∇X

)−1∇>XWV Û + op

(
1√
N

)
. (3.5.2)

Therefore, by comparing (3.5.1) and (3.5.2), θ̂PSD (V) has the same asymptotic distribution

as θ̂ (WV). In particular, let V∗ denote the e�cient weighting matrix for ALSEPSD so that

ΨV∗ ≤ ΨV for any positive de�nite matrix V . Therefore the e�cient ALSEPSD, denoted by

θ̂∗PSD, has the same asymptotic distribution as θ̂ (WV∗) with WV∗ = ∇>ΓV∗∇Γ. Then it must

hold, by Theorem 3(i), that ΩΣ−1 ≤ ΨV∗ since ΩΣ−1 is the lower variance bound. To complete

the proof, an identical argument can be made in the reverse direction. It is easy to show

that any θ̂ (W) that satis�es (3.5.1) also has the same asymptotic distribution as θ̂PSD (VW),

where VW = ∇>Γ−1W∇Γ−1 (cf. WV), and ∇Γ−1 denotes the Jacobian of Γ−1 evaluated at

P (that equals (∇Γ)−1 by the inverse function theorem). We omit further details to avoid

repetition. Thus, it follows that ΨV∗ ≤ ΩΣ−1 , hence we can also conclude that ΨV∗ = ΩΣ−1 .

In summary:

√
N
(
θ̂(W)− θ0

)
=
√
N
(
θ̂PSD(VW)− θ0

)
+ op

(
1√
N

)
with VW = ∇>Γ−1W∇Γ−1 ,(3.5.3)

√
N
(
θ̂PSD(V)− θ0

)
=
√
N
(
θ̂(WV)− θ0

)
+ op

(
1√
N

)
with WV = ∇>ΓV∇Γ,

and (V ,W) can be replaced by any consistent estimators (V̂ , Ŵ). Therefore our estimator

and ALSEPSD can always be constructed to have the same asymptotic distribution and

achieve the same lower variance bound.�
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Chapter 4

Bank Privatization and the Supply of

Banking Services: Evidence from a

Dynamic Structural Model

Co-authored with Fabio A. Miessi Sanches (University of São Paulo)

Abstract

This paper examines the e�ects of bank privatization on the supply of banking services in

small markets. A dynamic game between the major Brazilian public and private banks is

estimated. We show that pro�ts of private banks are positively a�ected by the number of

public and negatively a�ected by the number of private branches operating in Brazilian small

markets. The structural model is used to examine the e�ects of the privatization of public

banks on the number of bank branches in small markets. The counterfactual shows that the

number of branches operating in small markets drops signi�cantly after the privatization.

4.1 Introduction

The discussion about the existence of public, state owned banks has been prominent in the

banking literature since the 1960's - see Barth, Caprio and Levine (2001) and La Porta,

López-de-Silanes and Shleifer (2002) and Levy Yeyati, Micco and Panizza (2007).
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In favour of public banks the following has been argued: (i) Public banks �nance un-

pro�table but socially valuable investment projects; (ii) they foster �nancial development

and (iii) they provide �nancial access to populations living in areas that are unattractive

for private institutions. Critics of public banks argue that (i) they are used as political

instruments, providing employment, credit, subsidies or other bene�ts in return for political

assistance, and (ii) they crowd-out more e�cient, more competitive private banks, slowing

down the development of the �nancial system.

This paper examines the e�ects of public banks privatization on the supply of banking

services. A dynamic entry game between the major Brazilian public and private banks is

estimated. A counterfactual experiment is used to analyze how the privatization of public

banks a�ects the supply of banking services in small isolated markets.

Three main conclusions emerge. First, public banks generate positive pro�t spill-overs for

private banks; second, private banks crowd-out private competitors. Our estimates show

that the entry of a public bank in a given market increases the return of a private incumbent

by 1.2 percent and the entry of a private bank reduces the return of a private incumbent

by 0.05 to 1 percent. Third, the counterfactual in which public banks are sold to private

players shows that the total number of active branches operating in the long-run in a typical

small market drops from 3 to 0.5 on average. To guarantee that, after privatization, all small

municipalities would have at least one active branch the government should give a subsidy

of approximately 8% on the operational costs of private branches. We can infer that the

present cost of this policy would be approximately US$175,0001 per market.

These �ndings have important policy implications in developing countries. In these coun-

tries a large fraction of the population has no access to the banking market. Yet the access

to �nancial services generates positive e�ects in terms of poverty reduction and economic

growth in disadvantaged areas (Burgess and Pande (2005) and Pascali (2012)).

Our estimates do not allow us to disentangle the details of the spill-over channels. Broadly

speaking, our �ndings are consistent with public banks (i) having a monopoly over a number

of important Federal funds and (ii) being driven by social, as opposed to strategic or market

reasons. The �rst element guarantees a large volume of credit for small markets - see Feler

(2012). The second induces product di�erentiation between public and private banks: Public

and private banks target di�erent clients - see Coelho, Melo and Rezende (2012). In this

1Approximately R$350,000.%
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case, the amount of cheap credit and public transfers poured in by the public banks in small

isolated municipalities shifts the demand for banking services, making these markets more

attractive for private players. This e�ect induces the entry of private players.

There is little prior empirical evidence of the e�ects of public banks on the performance of

the banking market. The evidence is mixed. La Porta, López-de-Silanes and Shleifer (2002)

study a cross section of countries and show that the presence of public banks in the market

is associated with poorly developed �nancial markets. They conclude that the higher the

public ownership in the banking sector, the lower is the average growth of the ratio of private

credit to GDP. Similar �ndings were obtained in Barth, Caprio and Levine (2001) who �nd

that greater state ownership of banks with more poorly developed banks, nonbanks, and

securities markets.

Levy Yeyati, Micco and Panizza (2007) extend the dataset used in La Porta, López-de-

Silanes and Shleifer (2002) by including more controls and a longer period of time. They

�nd that no robust conclusion can be drawn. The �ndings depend strongly on the de�nition

of �nancial development, the estimator and the sample de�nition. They conclude that there

is �(...) no signi�cant correlation between state-ownership of banks and credit to the private

sector� 2. Detragiache, Tessel and Gupta (2008) con�rm the �ndings in Levy Yeyati, Micco

and Panizza (2007).

Cole (2007) �nds that the nationalization of public banks in India increased the amount

of credit in the market. Feler (2012) analyses the privatization of state banks in Brazil. His

�ndings are close to the �ndings in Cole (2007).

This paper builds a dynamic entry game in which the major Brazilian public and private

banks are the players. The dynamic structure of the model is rationalized by the existence of

substantial entry costs in the market. At each period these players have information about

the state variables and decide simultaneously to be active or not active in a given market

by maximizing an inter-temporal pro�t function. Entrants pay a entry cost. We assume

that the pro�t function of the major private players is asymmetrically a�ected by public and

private competitors.

We use data from 1002 isolated markets in Brazil during 1988-2010 to estimate the decision

rules for public and private banks. By relying on micro data from a single market, we are able

to reduce the market heterogeneity present in cross country regressions, which, as reported

2Levy Yeyati, Micco and Panizza (2007).
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by Levy Yeyati, Micco and Panizza (2007), causes important bias in the conclusions obtained

by the existing literature. We recover the primitives of the game that are consistent with

the estimated decision rules. The model is solved for the entry probabilities. The market

equilibrium is evaluated under the counterfactual scenario where public banks are privatized.

We report consistent ex ante estimates of the e�ects of this policy on market outcomes. Our

model is valuable to predict policy changes.

Methodologically our paper is related to the empirical industrial organization literature

that studies the estimation of dynamic games - see Aguirregabiria and Nevo (2010), Bajari,

Hong and Nekipelov (2010) and Pesendorfer (2010) for a rich discussion on the topic. Ap-

plications that are similar to ours are also found in Pesendorfer and Schmidt-Dengler (2003)

for small businesses in Austria, Dunne, Klimek, Roberts and Xu (2013) for dentists and

chiropractors in the US, Gowrisankaran, Lucarelli, Schmidt-Dengler and Town (2010) for

hospitals in the US, Collard-Wexler (2013) for the concrete industry in the US, Ryan (2012)

for the cement industry in the US and Kalouptsidi (2013) for the shipping industry. Other

applications include Maican and Orth (2012), Minamihashi (2012), Lin (2011), Fan and

Xiao (2012), Nishiwaki (2010), Arcidiacono, Bayer, Blevins, and Ellickson (2012), Jeziorski

(2012), Snider (2009), Suzuki (2012), Sweeting (2011) and Beresteanu, Ellickson and Misra

(2010).

To estimate the model we use the alternative Asymptotic Least Squares (ALS) estimator

developed in Sanches, Silva and Srisuma (2013). Sanches, Silva and Srisuma (2013) show that

there can be substantial computational gains when the ALS estimator developed in Pesendor-

fer and Schmidt-Dengler (2008) is speci�ed in terms of expected payo�s instead of choice

probabilities. They also show that under the assumption of linear-in-the-parameters payo�s,

the proposed estimator have the familiar OLS expression3. Di�erently from other popular

estimation procedures for dynamic games (e.g. Hotz and Miller (1993), Aguirregabiria and

Mira (2007), Bajari, Benkard and Levin (2007) and Pesendorfer and Schmidt-Dengler (2008),

among others) this approach allows us to avoid the use of numerical methods. In doing so

the computational burden is greatly reduced.

This paper is organized as follows. The next section describes our dataset and the Brazil-

ian banking market. Section 4.3 shows reduced form evidence of competition between pub-

3Besides, Monte Carlo simulations in Sanches, Silva and Srisuma (2013) show that the closed-form estimator
is much faster and have better small sample properties than the Asymptotic Least Squares estimator
developed in Pesendorfer and Schmidt-Dengler (2008).
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lic/private players. Sections 4.4 and 4.5 describe the theoretical model, the empirical model

and our main results. Section 6 discusses the �tting of the empirical model and our coun-

terfactual analysis. The last section concludes the paper.

4.2 Data and Institutional Background

The data comes from the Brazilian Central Bank and from the Brazilian Ministry of Labour.

The Brazilian Central Bank database has followed the activities of all Brazilian banks since

1900. These data contain the opening and closing dates4 and the name of the chain that

operates each branch for all branches opened since 1900 in all Brazilian municipalities. A

measure of market size is constructed by using data from the Brazilian Ministry of Labour

containing the total payroll in the formal sector 5 for all Brazilian cities since 1985. The

payroll data is de�ated using the o�cial in�ation index, IPCA-IBGE. All the values are in

R$ of 2011. The information about banking and economic activity is annual.

Following Bresnahan and Reiss (1991) our analysis examines small isolated markets. We

select municipalities6 that are at least 20 km away from the nearest municipality. State

capitals and metropolitan areas are excluded. We also excluded municipalities that had

more than 10 bank branches since 1900. This selection leaves us with 1002 isolated small

markets, corresponding, roughly, to 20% of all Brazilian municipalites. Isolated markets

enable us to obtain a clear measure of the potential demand for each branch.

The market size data starts in 1985. We exclude 1986 and 1987 from our sample because

a major macroeconomic shock caused by two heterodox stabilization plans 7 severely dis-

organized the Brazilian economy in those years. Our �nal sample consists of observations

for 1002 isolated municipalities in the period 1988-2010. The vast majority of municipalities

have either one or none branch per chain. Our initial focus of analysis is therefore on entry

and exit patterns. 8

� Sample statistics. The next table illustrates the basic statistics of our sample.

4For the branches that were closed.
5Number and wage of employees in the formal sector of the economy.
6From now on we use municipality/market interchangeably.
7Cruzado Plan in 1986 and Bresser Plan in 1987.
8In the municipalities that had more than one branch operated by the same chain, which correspond to less
than 4% of the total number of municipalities and around 0.2% of our sample, we aggregated the branch
level information for each player that had more than one branch in the same market. The exclusion of
these municipalities does not change our results. Therefore we kept this information in the dataset.
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Table 4.1: Basic Sample Statistics 1988-2010

Average Std

Active Branches (**) 1560.2 142.4

Entry (**) 50.5 49.1

Exit (**) 59.5 55.1

Sample Market Size (*) (**) 10,404.85

Municipalities 1002

Sample Municipalities/Total Number of Municipalities 18%

Municipalities × Periods 22041
Note: * R$ millions of 2011. ** Yearly averages.

Our sample is composed by 1002 isolated markets. This corresponds to approximately 18%

of the total number of municipalities in Brazil. The number of branches in this sample is

1560 per year on average. Entry is observed 50 times per year and exit 59 times. The yearly

market size measured by the annual payroll of the formal workers of all the municipalities in

the sample is of R$ 10.4 billions of 2011. This value is relatively small because by excluding

state capitals and metropolitan regions, the richest cities in the country are left aside.

The Brazilian banking market is dominated by four big institutions: Two of them, Bank

of Brazil, BB, and Caixa Economica Federal, CEF, are public and controlled by the federal

government while the other two, Bradesco and Itau, are privately held. The next �gures

show the number of branches that are controled by these institutions and the market share,

measured in terms of the number of active branches in the sample, of these four players.

Figure 4.1: Number of Branches (left) and Market Share (right) - �Big� Four
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Note: Number of active branches per year (left) and fraction (right) of these branches over the total number of
active branches in our sample.

These four players hold more than 80% of the active branches in our sample. The share of
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Bradesco and Itau increased substantially over time. From 2000 to 2010 Bradesco's market

share measured in terms of active branches increased from 13% to 20%. Itau's share increased

from 1% to 10%. Part of the expansion is explainable by the acquisitions of privatized

smaller public institutions. Bank of Brazil, BB, also experienced an increase in the number

of branches. This expansion is mainly driven by the social policy of Lula's government

(2003-2010), which tried to expand the presence of public banks in small markets.

Table 4.2: Average Monthly Payroll and Number of Public/Private Players

Number of Private Number of Public Mun Payroll Observations

0 0 0.227 4592

0 1 0.478 6496

0 2 0.680 2511

1 0 0.515 1555

1 1 1.333 1696

1 2 1.677 1107

2 0 1.034 149

2 1 2.419 552

2 2 2.202 380
Note: Average market size is the monthly average payroll of the municipal-
ity and is measured in R$ millions of jan/2011 according to the number of
players in the market. Sample period: 1988-2010. Each observation cor-
responds to a municipality in a given year. We showed in the table only
the most frequent market structures. This corresponds to around 90% of
the total number of observations.

Table 4.2 reports (i) the frequency distribution of each market con�guration (number

of observations corresponding to each market structure) and (ii) the average market size

(monthly average payroll of the municipality in R$ millions of 2011) corresponding to each

market structure. These numbers illustrate that:

1. Public players are located more frequently in small markets (as measured by the mu-

nicipality average payroll) than private players; and,

2. Public players are frequently the only providers of �nancial services in these isolated

markets (the frequency of public monopolies - 6496 observations - is the highest in the

sample).

The Brazilian government has launched some programs that aim to �popularize� basic �nan-

cial services in poorer areas, which includes the supply of basic services (current account, for

example) and of credit lines to small farmers and �rms. This feature may explain the fact
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that the frequency of markets where the public player is a monopolist (the only provider of

�nancial services) is quite high in our sample. In addition, the empirical evidence indicates

that public banks are much less productive than their private counterparts (Nakane and

Weintraub (2005)). This means that the presence of public banks in smaller markets is not

explained by cost advantages of public players.

� Institutional background. The Brazilian banking market is large. In 2012 Itau was

considered the 8th largest bank in the world in terms of market value (with a market value

of US$88 billions); Bradesco was the 17th largest (market value of US$64 billions) and Bank

of Brazil was the 31st largest (market value of US$42 billions)9.

As pointed out in Coelho, Melo and Rezende (2012) there are important di�erences in the

objectives of public and private banks. Private banks are essentially pro�t oriented. By legal

mandate, public banks focus their operations on market segments that are not pro�table for

private banks. This suggests the existence of product di�erentiation in the market. In what

follows we describe the �social� role of public banks in Brazil10.

Bank of Brazil (BB) has expanded enormously its operations in smaller and poorer areas

of the country based on central government policies aiming to �popularize� banking services

among poor workers and small businesses. BB plays an important role as the provider of

government funds to the Brazilian agriculture11. Also, to expand its capillarity in isolated

areas, BB created a DSR (Regional Development Program). The DSR provides a set of tools

for small entrepreneurs, including a business plan, technical support and credit 12.

Caixa Economica Federal (CEF) has a monopoly over a number of di�erent government

funds and services, such as the FGTS, Bolsa Família, PIS13 and the Federal Lottery14. FGTS

is a Brazilian fund created in 1966 to provide assistance to unemployed people 15 . These

9http://www.relbanks.com/worlds-top-banks/market-cap. Access: November 12, 2012.
10also present a detailed discussion on the role of Brazilian public banks.
11The total amount of agricultural credit provided by this player in 2010 reached more than US$ 26 billions.

Moreover, BB is the main bank in the Pronaf, a program created to supply credit for small businesses
(agriculture, �shing, turism, and handcraft) in rural areas at a very low interest rate. The total credit
availble for the program increased from US$ 1 billion in 1999 to US$ 7 billions in 2010. All banks in
Brazil are allowed to take part in the program, however, BB distributes around 65% of the total Pronaf
credit.

12In 2007 the program supported 2800 business plans and distributed US$ 1.7 billions in credit.
13PIS is a tax to cover unemployment bene�ts. Their assets were around US$14 billions in December 2010.
14The Federal Lottery provided a gross revenue of US$5.2 billions in 2010. It is used to fund sports.
15The main source of funding is the monthly compulsory deposit that every private employer must do in

the name of each employee. These values constitutes a fund and the worker have access to the money
deposited in his/her name only in some special conditions: Unemployment, chronic disease, and for
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resources are allocated in two main areas: Housing and sanitation. The government gives

the investments guidelines in order to �nance strategic areas with lack of credit. CEF is also

responsible for the distribution of the bene�ts from Bolsa Família16, a program that gives to

poor families a monthly income. It was created to reduce the poverty in the most backward

areas of the country.

Summarizing, the descriptive analysis suggests that the major Brazilian public banks have

been used by the federal government to improve the �nancial access of isolated markets. The

�nancial access includes new branches in smaller and poorer markets and the injection of

cheap credit in these areas. These operations are not pro�table for private banks. This

suggests the existence of product di�erentiation in the market.

4.3 Reduced Form Analysis

We estimate a series of reduced form logit models to explain entry/exit movements of the

biggest public and private players using the sample of isolated municipalities. We focus on

the behavior of the 4 largest players: Bank of Brazil (BB), Caixa Economica Federal (CEF),

Bradesco and Itau.

Two pooled logit models are estimated: One for the public players, BB and CEF; the

other for private players, Itau and Bradesco. Our logit speci�cation is:

P (aimt = 1|aimt−1, n
pub
mt−1, n

pri
mt−1,xmt; ρ, µ) =

Λ(ρ0 + ρ1aimt−1 + ρ2n
pub
mt−1 + ρ3n

pri
mt−1 + ρ4xmt + µt + µm + µmt + µi) (4.3.1)

The dependent variable, aimt, is the action of player i in municipality m, period t. It

assumes 1 if player i was active in that municipality/period and zero otherwise. aimt−1

indicates the action of the same player in that municipality in the prior period. npubmt−1 is the

buying a house (if the worker does not own another house). CEF is responsible for the whole operation
of the fund - from the tax collection to the payments for the bene�ted workers. Since the FGTS universe
includes all formal workes (except public servants) the total size of the fund is considerably high - around
US$90 billions in December 2008.

16In 2006 the program served around 11 million families or approximately 44 thousand individuals. The
public expenditure with the program is around 0.5% of the Brazilian GDP and is growing steadily since
its creation.
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number of public competitors in the previous period in market m17; nprimt−1 is the number of

private competitors in the previous period in market m18; xmt is a vector of municipality

characteristics; µt are time e�ects; µm are market speci�c e�ects; µmt captures market/time

speci�c e�ects and µi are player speci�c e�ects. Λ (·) is the logistic distribution. The greek
letters denote parameters to be estimated. The data include all muncipalities where player

i was active for at least one period 19.

The estimation of dynamic binary response models with market �xed e�ects produces

biased coe�cients - see Carro (2007), Wooldridge (2010). To avoid this bias in our analysis,

instead of including market dummies, 27 state dummies (one for each Brazilian state) were

included in the model. States dummies are used to capture time invariant heterogeneity

across municipalities of di�erent states. Time e�ects are captured by year dummies. Time

varying market e�ects are captured by the interaction of state dummies and a trend variable.

The vector xmt includes municipality payroll, transfers of the Federal and State govern-

ments to the municipality, municipal government expenditure and agricutural production of

the municipality. Municipality payroll is a measure of market size. The inclusion of transfers

and municipal expenditure controls for the fact that entry of public banks can be correlated

with an increase of Federal/State investment in the municipality, which can also a�ect entry

of private banks. Agricultural production is included because a large fraction of the income

in our isolated municipalities comes from agricultural activities. This variable is a di�erent

indicator of market size.

4.3.1 Private players

Table 4.3 reports the estimates of equation (4.3.1) for the private players, Bradesco and

Itau. Only the marginal e�ects of npubmt−1 and nprimt−1 evaluated at the sample means are

reported. The model �t is good, with Pseudo-R2 of 87%-91%. Strikingly, the number of

public banks increases the entry probabilities of the private players by 10%-14%. The e�ects

17Mathematically, npubmt−1 =
∑

j∈ipub,j 6=i
ajmt, where ipub is the set of public players.

18Mathematically, nprimt−1 =
∑

j∈ipri,j 6=i
ajmt, where ipri is the set of private players.

19Our estimation approach is based on the potential markets for each player. The potential market is de�ned
based on the super e�cient estimator described in Pesendorfer and Schmidt-Dengler (2003). We de�ned
that market m is a potential market for player i if max

t
{aimt, t = 1900, 1901, .., 2010} = 1, or, in other

words, market m is a potential market for player i if she entered in that market at least for one period
since 1900.
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are very signi�cant and robust across speci�cations. The inclusion of state dummies and the

interaction between state dummies and the time trend increases this e�ect.

Interestingly, the number of private competitors reduces the entry probabilities of private

players. This e�ect is around -6.4% in the speci�cation with the full set of controls. It is

statistically signi�cant at 5%.

Table 4.3: Marginal E�ects of npubmt−1 and n
pri
mt−1 on the Entry Probabilities of Private Players,

Bradesco and Itau

(I) (II) (III) (IV)

Nº Public 0.10544*** 0.12839*** 0.13829*** 0.13237***

[0.01] [0.02] [0.02] [0.02]

Nº Private -0.03532 -0.01930 -0.06206** -0.06409**

[0.02] [0.03] [0.03] [0.03]

Player Dummy Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes

State Dummies No Yes Yes Yes

Trend*State Dummies No No Yes Yes

Transfers, Expenditure, Agric. Prod. No No No Yes

Observations 15,919 15,229 15,229 15,217

Pseudo R2 0.87 0.87 0.91 0.91
Note: (***) Signi�cant at 1%; (**) signi�cant at 5%; (*) signi�cant at 10%. Marginal e�ects calculated at the
sample means. Clustered standard errors in brackets. All the models have lagged activity, number of public
and private competitors and municipality payroll. Transfers correspond to the total transfers of Federal
and State governments to the municipality. Expenditure corresponds to municipal government expenditure.
Agricultural Production is the total agricultural production of each municipality.

As a robustness check, the model was estimated in a subsample of municipalities that had

(i) at least one public player and (ii) at least one and at most three public players in any

time period. Tables 4.9 and 4.10 in the appendix report the results for each subsample.

The pattern of results remains unchanged when compared to the estimates in Table 4.3.

This strategy is used to control for unobservable characteristics of markets with and without

public players. In the subsample with at least one and at most three public players the

market heterogeneity is reduced. Markets with roughly the same number of public players

have similar observable characteristics.

4.3.2 Public players

Table 4.4 reports the estimates of equation (4.3.1) for the public players, Bank of Brasil

and Caixa Economica Federal. The model �t is good, with Pseudo-R2 statistics around
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85%. Strikingly, entry probabilities of public players are barely a�ected by the number

of public and the number of private competitors in each market. Although signi�cant in

some speci�cations the marginal e�ects of the number of public and the number of private

competitors are very small when contrasted with the estimates in Table 4.3. In all the

speci�cations the marginal e�ects of npubmt−1 and nprimt−1 are small in magnitude, being below

1% and 0.5% respectively. In speci�cation (IV) in Table 4.3 these e�ects were respectively

13% and -6.4%. These estimates imply that the marginal e�ects of npubmt−1 and nprimt−1 are

around 13 times larger for private banks than for public banks. This pattern is robust to the

inclusion of state dummies, the interaction of state dummies and the time trend variable,

public transfers, municipal expenditure and agricultural production.

Table 4.4: Marginal E�ects of npubmt−1 and n
pri
mt−1 on the Entry Probabilities of Public Players,

BB and CEF

(I) (II) (III) (IV)

Nº Public 0.00498*** 0.00871*** 0.00934*** 0.00936***

[0.00] [0.00] [0.00] [0.00]

Nº Private 0.00016 0.00105 0.00455** 0.00455**

[0.00] [0.00] [0.00] [0.00]

Player Dummy Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes

State Dummies No Yes Yes Yes

Trend*State Dummies No No Yes Yes

Transfers, Expenditure, Agric. Prod. No No No Yes

Observations 20,357 20,357 20,357 20,350

Pseudo R2 0.83 0.84 0.87 0.87
Note: (***) Signi�cant at 1%; (**) signi�cant at 5%; (*) signi�cant at 10%. Marginal e�ects calculated
at the sample means. Clustered standard errors by municipality in brackets. All the models have lagged
activity, number of public and private competitors and municipality payroll. Transfers correspond to the
total transfers of Federal and State governments to the municipality. Expenditure corresponds to municipal
government expenditure. Agricultural Production is the total agricultural production of each municipality.

4.4 Theoretical Model

This section sets up and solves a dynamic entry game between the major Brazilian banks.

Motivated by the data, the game considers entry and exit decisions. In the data a chain has

typically at most one branch in each municipality20. We focus on the behavior of two public

20As described above only in 4% of these municipalities one chain had more than 1 branch during the same
period.
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banks, Bank of Brazil and Caixa Economica Federal, and two private banks, Bradesco and

Itau. In 2010, these players had more than 80% of the total number of active branches in

our sample.

The model captures the features documented by the reduced forms. Dynamics can be

rationalized by high entry costs21. Importantly, the model allows for di�erent behavior of

public and private players.

We estimate the primitives that rationalize the behavior of private banks using a dynamic

oligopoly game. We do not structurally model the behavior of public banks. Entry decisions

of public banks are assumed to do not depend on the number of public and the number

of private competitors in the market. There are two explanations behind this assumption.

First, the reduced form analysis suggests that entry probabilities of public banks are barely

a�ected by the number of public and the number of private competitors in the market.

Second, the literature recognizes that public banks are not necessarily pro�t maximizers.

The behavior of public banks can depend on political and social reasons - see Levy Yeyati

et al (2007), La Porta et al (2002) and Barth et al (2001).

At each period private players have information about the state variables and decide

simultaneously to be active or not active in a given market by maximizing an inter-temporal

pro�t function. Private players know that the entry of public banks do not depend on the

actions of public and private competitors. Private entrants pay a entry cost. The pro�t

function of the major private players is assumed to be asymmetrically a�ected by public

and private competitors. This allows us to understand how public banks in�uence the

performance of private players.

Closed related models were applied in Pesendorfer and Schmidt-Dengler (2003), Dunne,

Klimek, Roberts and Xu (2013), Gorisankaran, Lucarelli, Schmidt-Dengler and Town (2010),

Collard-Wexler (2013), Ryan (2012) and Kalouptsidi (2013), among others. Aguirregabiria

and Nevo (2010), Bajari, Hong and Nekipelov (2010) and Pesendorfer (2010) present a rich

discussion on the estimation of dynamic games.

21Market analysts point out that the returns of branches in small markets is quite low. Lower returns in
these markets are explained by high �xed and operational costs and by reduced revenues - see Gonçalves
and Sawaya (2007), Gouvea (2007) and Andrade (2007). This explains why the number of bank branches
is small in the most backward areas of the country.
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4.4.1 Assumptions

� Players. There are two private players, Bradesco and Itau, which are indexed by ipri ∈
{Bradesco, Itau}. There are two public players, Bank of Brazil, BB, and Caixa Economica

Federal, CEF, which are indexed by ipub ∈ {BB,CEF}22.
� Time and markets. Time is discrete, t = 1, 2, ...,∞. There arem ∈M =

{
1, 2, 3, ..,M

}
markets.

� Actions. A player's action in market m, period t is denoted by atim ∈ {0, 1}, where 0

means that a player is inactive; 1 means that a player is active. The 1×N vector at
m denotes

the action pro�le in market m, period t. We sometimes use at
−im to denote the actions of all

players but player i.

� State space. The state space is discrete and �nite. We use stm to denote an element of

the state space in market m. When necessary we use Ns to express the number of di�erent

possible states in market m.

�Transitions. The vector stm evolves according to the transition matrix pm(st+1
m |stm, at

m),

described by next period distribution of possible values for the vector stm conditional on each

possible current state and actions in municipality m. We sometimes use pm to denote the

vector of transitions, pm(st+1
m |stm, at

m), for every possible future state st+1
m given any possible

(stm, a
t
m).

� Unobservables. In each period players draw a pro�tability shock εtim. The shock is

privately observed while the distribution is publicly known.

� Payo�s of private players. Private player's period payo� is:

Π(at
m, s

t
m; Θim) =


πim(at

m,x
t
m)

+1(atim = 1)εtim

+1(atim = 1)1(at−1
im = 0)Fi.

(4.4.1)

Here πim(at
m,x

t
m) denotes player i′s deterministic pro�ts in market m, Fi are entry costs

and εtim is a pro�tability shock, which wil be speci�ed below. Θim denotes the parameters

22We also estimated a version of the model including a fringe of public/private players. The inclusion of
these players does not change our results but increases substantially the state space of our model. This
imposes computational di�culties to solve the model and to make conterfactual analysis. By this reason
we do not include these players in the model.
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in the model.

This speci�cation captures the main aspects of our idea. An incumbent deciding to stay

in the market receives period pro�ts of πim(atim = 1, at
−im,x

t
m)+εtim. An entrant receives the

same pro�t as an incumbent but minus the sunk entry cost Fi. Any player that is outside

and considers re-entering the market has to pay a �xed cost23.

The term πim(at
m,x

t
m) is a linear function of exogenous states and actions24

πim(at
m,x

t
m) =π0i + πpub1i

∑
j∈ipub

atjm

+ πpri1i

 ∑
j 6=i,j∈ipri

atjm

+ π2ix
t
m

 · 1(atim = 1). (4.4.2)

Here πkji ∈ Rk are parameters and xtm is a demand shifter. This speci�cation allows for

di�erent �competition� e�ects of public and private players.

The pro�tability shock εtim is assumed to have three components:

εtim = µim + ηit + ξtim,

where, µim is a term that varies only across markets and players but not over time, ηit is

a time varying player speci�c term and ξtim ∼ EV (0, 1) is an idiosyncratic shock iid across

individuals, time and markets. This is the only source of asymmetric information in the

model. The �rst and the second elements of εtim are known to the players and capture

respectively (i) the correlation of the pro�tability shocks in the same market across time

and (ii) correlation of the pro�tability shock across time in di�erent markets. Both e�ects

are empirically justi�ed by the signi�cance of state and year dummies in the reduced forms

analyzed above.

The time varying shock is included to capture the fact that the decision structure of the

chains can be centralized: First, the �general� conditions of the economy are observed; second

the decision in which municipality(ies) to enter/exit is taken. The model captures the feature

that a better (worse) macroeconomic landscape can increase (decrease) the probability of

23We assume that players leaving the market get a scrap value equal to zero. Aguirregabiria and Suzuki
(2013) discuss identi�cation problems of entry costs, scrap values and �xed costs in dynamic entry games.

24Similar structures were used in Pesendorfer and Schmidt-Dengler (2003, 2008), Ryan (2012) and Collard-
Wexler (2013).
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being active in all available markets.

We impose a structure on the time e�ect by further assuming ηit = ηix̄t, where xt =∑
m xmt, is the total payroll of the municipalities in our sample in a given year. The process

for the shock is:

εtim = µim + ηix̄t + ξtim

The parameters of interest are Θim =
{
Fi, π0i, π

pub
1i , π

pri
1i , π2i, µim, ηi

}
. We sometimes de-

note payo�s as Π(at
m, s

t
m; Θim) = Π̃(at

m, s
t
m)Θim + 1(atim = 1)ξtim, where Π̃(at

m, s
t
m) is a

1×Np vector and Np is the number of parameters in market m.

We do not structurally model the behavior of public banks. Entry decisions of public

banks are assumed to do not depend on the number of public and the number of private

competitors in the market. We do not specify the payo� structure of public players. Our

model accommodates all possible motivations for public banks' actions.

� Sequence of period events. The sequence of events of the game is the following:

1. States are observed by all the players.

2. Each player draws a private pro�tability shock εtim.

3. Actions are simultaneously chosen. Players maximize their discounted sum of period

payo�s given their beliefs on competitors' actions. The total payo� of a private player

is given by the discounted sum of player's period payo�s. The discount rate is given

by β < 1 and is the same for all players.

4. After actions are chosen the law of motion for stm determines the distribution of states

in the next period; the problem restarts.

Next the equilibrium for this game is characterized.

4.4.2 Equilibrium characterization

We restrict attention to pureMarkovian strategies. This means that players' actions are fully

determined by the current vector of state variables. Intuitively, whenever a player observes

the same vector of states it will take the same actions and the history of the game until

period t does not in�uence the player's decisions.
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� Public players. Public players' behavior are exogenously given. Entry probabilities of

public players are known to the private players and do not depend on the actions of other

public/private players.

�Private players. Private player i's best response solves the following Bellman equation:

Max
at
i
=k∈{0,1}


∑

at−im

σim(at
−im|stm)Π(atim=k, at

−im, s
t
m; Θim)+

βzk (st+1
m |stm;σim,pm) EξVim (σim,pm)

 . (4.4.3)

Here Π(·) is player's period payo�; the function σim(at
−im|stm) accounts for i's beliefs on

other players' actions given current states; σim is a vector that contains the beliefs for all pos-

sible combination of players actions given any possible state in marketm; zk (st+1
m |stm;σim,pm)

is a 1 × Ns vector containing the transitions σim(at
−im|stm)pm(st+1

m |atim = k, at
−im, s

t
m) and

EξVim (σim,pm) is a Ns × 1 vector with the expected continuation value for the player,

EξVi(s
t+1
m ;σim,pm,Θim), for all st+1

m .

The conditional value function, conditional on action k ∈ {0, 1} being played, is given by:

V k
im

(
stm;σim,pm

)
=∑

at−im

σim(at
−im|stm)Π̃(atim=k, at

−im, s
t
m)Θim (4.4.4)

+βzk

(
st+1
m |stm;σim,pm

)
EξVim (σim,pm) + 1(k = 1)ξtik.

We also de�ne Ṽ k
im (stm;σim,pm) = V k

im (stm;σim,pm)−1(k = 1)ξtik as the conditional value

function net of the iid pro�tability shock, 1(k = 1)ξtik.

We de�ne EξVim (σim,pm) as the ex-ante value function, that is, EξVim (σim,pm) =

∆im

(
Π̃imΘim + Ẽξim

)
, where ∆im = [INs − βZim]−1; Π̃im is a Ns×Np vector stacking cur-

rent payo� expected values,
∑

at+1
im

σim(at+1
m |st+1

m )Π̃(at+1
m , st+1

m ), for every st+1
m ; Ẽξim is aNs×1

vector stacking Ẽξ (st+1
m ;σim,pm) =

K∑
k=0

σim(at+1
im = k|st+1

m ;σim,pm)E
[
ξt+1
im |at+1

im = k, st+1
m

]
for

every st+1
m ; INs is a Ns×Ns identity matrix; and Zim is a Ns×Ns matrix stacking the 1×Ns

vector z (st+2
m |st+1

m ;σim,pm) containing the transitions σim(at+1
m |st+1

m )pm(st+2
m |at+1

m , st+1
m ) for

every st+1
m .
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The solution to problem (4.4.3) implies that player i's probability of playing action k = 1

when states are stm satis�es the following equilibrium restrictions:

Him(ati = 1|stm;σim,pm) =

1− exp
{
−exp

{
Ṽ 1
im (stm;σim,pm)− Ṽ 0

im (stm;σim,pm)
}}

. (4.4.5)

This holds for all stm ∈ Sm and all i ∈ ipri.
The solution to this problem is a vector of player i's optimal actions when the player faces

each possible con�guration for the state vector stm and has consistent beliefs about other

players actions in the same states of the world.

By stacking up best responses for every player and every state a system of 1 × 2 · Ns

equations can be formed. This system is used to �nd the 1× 2 ·Ns vector of players' beliefs.

A formal proof of the existence of this vector can be found in Pesendorfer and Schmidt-

Dengler (2008). Equilibirum uniqueness, however, is not guaranteed. This is a common

feature of entry games. The estimation procedure is designed to deal with the multiplicity

of equilibria.

4.5 Econometric Model

This section describes identi�cation and the estimation procedure. To estimate the model

we use the estimator developed in Sanches, Silva an Srisuma (2013). Sanches, Silva and

Srisuma (2013) show that there can be substantial computational gains when the ALS ob-

jective function developed in Pesendorfer and Schmidt-Dengler (2008) is speci�ed in terms of

expected payo�s instead of choice probabilities. They also show that under the assumption

of linear-in-the-parameters payo�s, the proposed estimator have the familiar OLS expression.

The estimator is easy to implement and reduces signi�cantly the computational burden.

4.5.1 Identi�cation

Following the CCP approach (Hotz and Miller (1993)) we �rstly identify the vector of entry

probabilities for public and private players and the transitions directly from the data. For

the identi�cation of entry probabilities we need to introduce two assumptions:
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Assumption (i): There are no unobserved common knowledge states.

Assumption (ii): The same equilibrium is played in all available markets.

These identifying assumptions follow Ryan (2012). Pesendorfer (2010), Aguirregabiria and

Nevo (2010) and Bajari, Hong and Nekipelov (2010) discuss the importance of the assump-

tions above.

Arcidiacono and Miller (2011) relax assumption (i). Our reduced form evidence suggests

that our results are robust to the inclusion of market, time and player level unobservables.

This mitigates our concern with unobservables.

Regarding assumption (ii), we could deal with the multiplicity problem by estimating the

model for each market separately, as proposed by Pesendorfer and Schmidt-Dengler (2008).

The main problem is that because we do not observe frequent entry and exit movements

for a given market, we could not accurately identify the reduced form parameters. In our

application it is necessary to pool the data of di�erent markets. Our approach to pool data

follows the earlier literature including Collard-Wexler (2013) and Ryan (2013).

Under these assumptions the identi�cation of Θim follows from Pesendorfer and Schmidt-

Dengler (2008).

4.5.2 Estimator

We use the estimation principle developed in Sanches, Silva and Srisuma (2013) to recover

players' payo�s. We start by representing the equilibrium restrictions (4.4.5) as a linear

function of the payo� parameters. By inverting the function on the LHS of (4.4.5) and

substituting Ṽ 1
im (stm;σim,pm) and Ṽ 0

im (stm;σim,pm) equation (4.4.5) can be written as:

y(stm;σim,pm)−D(stm;σim,pm)Θ
′

im = 0, (4.5.1)

where, y(stm;σim,pm) is a real valued di�erentiable function that depends only on states,

beliefs and state transitions and D(stm;σim,pm) is a real valued 1×Np vector that depends

only on states, beliefs and state transitions. These functions are de�ned in the appendix.

As in Pesendorfer and Schmidt-Dengler (2008) we assume that {(σ̂im, p̂m)}m∈M are consis-

tent and asymptotically normally distributed estimators for the beliefs and state transitions

in all the markets25. We de�ne ŷimt = y(stm; σ̂im, p̂m) and D̂imt = D(stm; σ̂im, p̂m) and sum

25As in Pesendorfer and Schmidt-Dengler (2008) we assume that consistency and asymptotic normality is
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and subtract ŷimt − D̂imtΘ
′

im from (4.5.1) to write:

ŷimt = D̂imtΘ
′

im + ûimt, (4.5.2)

where, ûimt =
(
ŷikmt − D̂imtΘ

′

im

)
−
(
yimt −DimtΘ

′

im

)
, with yimt = y(stim;σim,pm) and

Dimt = D(stm;σim,pm).

By stacking equation (4.5.2) for all the markets, states and players OLS can be used to

recover Θ
′

im. Sanches, Silva and Srisuma (2013) show that the OLS estimator is consistent

and asymptotically normally distributed when the number of observations used to compute

{(σ̂im, p̂m)}m∈M tends to in�nity.

4.5.3 CCPs and the state space

Following the CCP approach the empirical implementation of the model depends on (i) the

estimation of beliefs and actions for each player, respectively, Him(ati = 1|stm;σim(·)) and

σim(at
−im|stm) and (ii) the estimation of a transition process for the exogenous states, psm(·).

Next our estimation procedure for these elements is discussed.

Reduced form estimation of beliefs

We estimated equation (4.3.1) pooling the two private players, Bradesco and Itau. The data

include the markets where Bradesco was active for at least one period and the markets where

Itau was active for at least one period26.

Instead of including year dummies we included xt =
∑

m xmt, the total payroll of the

municipalities in our sample in a given year, to control for the correlation in the decisions of

private players in the same period of time. Instead of including state dummies we constructed

4 categories of markets. These market dummies keep the dimensionality of the state space

low. Our market category de�nition follows the approach in Collard-Wexler (2013).

The market categories are de�ned according to the number of potential competitors in a

given market27. More speci�caly, ifNm is the number of potential competitors in municipality

obtained when the time series dimension of the observations used to compute {(σ̂im, p̂m)}m∈M goes to
in�nity.

26This follows the de�nition of potential markets de�ned in section 4.3.
27Our de�nition of potential competitor is based on the super e�cient estimator in the section 4.3 - i.e. the

number of potential competitors in municipality m is equal to the maximum number of players that were
active for at least one period in municipality m since 1900.
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m then M1m = 1 if Nm ≤ 2; M2m = 1 if 2 < Nm ≤ 4; M3m = 1 if 4 < Nm ≤ 6; and M4m = 1

if Nm ≥ 7. With this de�nition we can substitute µm =
∑4

k=1 γkMkm. The same strategy

was used in Collard-Wexler (2013)28. The vector xmt includes only municipality payroll.

Entry decisions for public players were estimated using the same speci�cation but excluding

npubmt−1 and nprimt−1 from the set of covariates. We pooled the dara for the two public players,

Bank of Brazil and Caixa Economica Federal. The data include all markets where either BB

or CEF were active during at least one period.

We estimated the logits for the samples 1988-2010 and 1996-2010. The sample 1996-2010

excludes the hyperin�ation period and allows us to focus on the more recent market trends.

The logit model coe�cient estimates for the public and private players are reported in the

appendix.

State space and state transitions

Two distinct estimation strategies for the structural model parameters are explored: First,

we exclude time and market e�ects as in Ryan (2013); second we use market dummies and

the sample payroll to control for market and time e�ects. Both strategies are based on the

empirical CCP estimates. Only the structural parameters for the private players, Bradesco

and Itau, are estimated.

� Strategy 1: Model without time and market e�ects. The state space for any

private player, i ∈ ipri, is composed by the following elements:

sti ∈
{
at−1
i ,

{
at−1
j

}
j 6=i , x

t, {I(i = k)}k∈ipri
}

Here {I(i = k)}k∈ipri is a set of private players dummies and xt is the municipality payroll.

The other elements are the actions of player i in period t− 1, at−1
i , and the actions of player

i's competitors in period t− 1,
{
at−1
j

}
j 6=i. The variable x

t is discretized in 10 deciles.

The law of motion for xt is estimated by a simple auto-regressive ordered logit. This

formulation for the law of motion of xt ignores potential e�ects of banks, either public or

private, on municipality income.

The state space of this model is composed by 2 · 23 · 10 · 2 = 320 elements.

� Strategy 2: Model with time and market e�ects. The second model includes

28Collard-Wexler (2013) discusses potential endogeneity problems arising from the de�nition of the market
dummies.
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time and market e�ects. Market e�ects are captured by 4 market dummies. Time e�ects

are captured by the sample payroll. Market dummies and the sample payroll variables were

de�ned above - see section 4.5.3. The state space in this model is:

stim ∈
{
at−1
im ,

{
at−1
jm

}
j 6=i , x

t
m, x̄

t, {I(i = k)}k∈ipri , {I(m = k)}4
k=1

}
Here {I(m = k)}4

k=1 is a set of market dummies for the 4 market types; x̄t =
∑4

m=1 wmx
t
m

is the sample payroll, where, wm is the number of markets of type m and xtm is the average

payroll of type m markets in period t; at−1
im is player i's action in a market of type m in t−1,{

at−1
jm

}
j 6=i are the actions of player i's competitors in the same market in period t − 1 and

{I(i = k)}k∈ipri is a set of dummies for each private player.

The law of motion for xtm is calculated using an auto-regressive ordered logit structure.

The variable xtm is discretized in four percentiles for each market type. A model for each

market type was estimated. Finally x̄t was calculated using x̄t =
∑4

m=1wmx
t
m under the

assumption that wm is �xed over time.

The estimation of the model with market dummies is time consuming because the inclusion

of the sample payroll, which depends on the realization of the payroll variable in every market,

increases exponentially the dimension of the state space. The state space has 2 ·23 ·44 ·2 ·4 =

32768 elements.

4.5.4 Results

We imposed an annual discount factor β = 0.9. To focus on the more recent trends of the

market we used the CCPs and state transitions estimated with the 1996-2010 sample. The

CCPs of the non strategic public players correspond to models I and II in the second block of

Table 4.11 - those estimated using the sample 1996-2010. For the private players the CCPs

are given by models I and II in the second block of Table 4.12. We used the OLS estimator

to estimate the model.

Parameters are estimated in units of the scale factor in the EV distribution and do not have

a level interpretation. Only relative magnitudes matter. Standard errors of the parameters

were calculated by block bootstraping CCPs and state transitions 100 times. The structural

model was estimated 100 times, one for each block bootstrap draw of beliefs and state

transitions. The standard error across this set of parameters was calculated. A similar

procedure was applied in Ryan (2012) and Collard-Wexler (2013).
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Table 4.5 reports the structural parameters estimates. The �rst column corresponds to

the model without market unobservables. The second column shows the model with market

dummies and the sample payroll, estimated according to strategy 2.

Qualitatively, both speci�cations produce similar results. The main di�erence is that

in model I, the market payroll coe�cient is negative but small and not signi�cant. All

models predict that the entry of a new private competitor reduces the pro�ts of the private

incumbent. The entry of a new public player increases the pro�ts of a private incumbent.

The constant term, which measures operational costs, is negative and relatively larger in the

second model. Entry costs are also negative and relatively larger in the second model. The

contribution of the components of the shock in the second model is relatively important. The

coe�cient attached to the sample payroll is positive. This coe�cient estimate means that

increases in the sample income shifts to the right the distribution of the shock and increases

entry rates. Market e�ects are positive.
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Table 4.5: Structural Parameters for Private Players

(I) (II)

Pro�t Components

N Public 0.0605 0.0726

[0.01] [0.00]

N Private -0.0487 -0.0256

[0.01] [0.00]

Market Payroll* -0.0001 0.0019

[0.00] [0.00]

Constant -0.3720 -0.5821

[0.01] [0.05]

Shock Components

Sample Payroll* 0.0004

[0.00]

Market 1 0.2377

[0.04]

Market 2 0.2104

[0.03]

Market 3 0.1176

[0.02]

Entry/Player Costs

Entry Costs -4.9272 -5.7442

[0.09] [0.02]

Dummy Bradesco -0.0270 -0.0245

[0.01] [0.02]

Observations 320 32768
Note: (*) Sample payroll measured in R$ bil-
lions of 2011; market payroll measured in R$
millions of 2011. Standard-errors in brackets.
Standard errors obtained from 100 block boot-
straps of beliefs and transitions. Parameters
are measured in units of standard deviations of
the iid pro�tability shock.

To facilitate the interpretation of these results, the next table reports the estimates as

percentage of entry costs. All the coe�cients are divided by the entry costs.
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Table 4.6: Structural Parameters as Percentage of the Entry Costs

(I) (II)

Pro�t Components

N Public 1.228% 1.264%

N Private -0.988% -0.446%

Market Payroll* -0.002% 0.033%

Constant -7.550% -10.134%

Shock Components

Sample Payroll* 0.007%

Market 1 4.138%

Market 2 3.663%

Market 3 2.047%

Entry/Player Costs

Entry Costs 100.000% 100.000%

Dummy Bradesco -0.549% -0.427%
Note: (*) Sample payroll measured in R$ billions
of 2011; market payroll measured in R$ millions of
2011.

Again, the predictions of both models are quite close. Entry of a new public player

increases pro�ts of the private incumbent in around 1.3% of the entry costs. Entry of a

new private player reduces pro�ts of the private incumbent in around 0.45-0.9% of the entry

costs.

The next table provides pro�t estimates for the private banks using the structural param-

eters. These parameters allow us to estimate a measure of return over entry costs. We also

simulate the number of years necessary to recover entry costs.

Table 4.7: Average Period Pro�ts and Return to Fixed Costs in Private Monopoly Markets

(I) (II)

Period Pro�ts in Std Deviations 0.1936 0.2493

Period Pro�ts as % of Entry Costs 3.930% 4.339%

Years to Recover Entry Costs 26.0 23.0
Note: Average pro�ts of a private monopoly in a small market
(market in the lower market payroll decile). Period pro�ts as %
of entry costs corresponds to the period pro�t in std deviations
divided by the entry cost. To calculate the number of years to
recover the entry costs we assumed a discount rate of 0.9, that
the market payroll is increasing steadily at 3% per period and
a monopoly structure every period.

The average period payo� of the private banks in monopoly markets is computed in the

the �rst line of the table. The results show that the second model predicts larger pro�ts. The
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second line shows that model I predicts returns to the entry investment of 4% in monopoly

markets. Model II predicts that returns over entry costs are slightly larger, around 4.4%29.

The third line shows the number of years necessary to recover the entry costs. We assumed

β = 0.9 and that municipality and sample payroll are growing steadily at 3% per year. We

accumulated the discounted payo�s and computed the number of years that are necessary to

recover the estimated sunk entry costs. Model I predicts that in monopoly markets it takes

on average 26 years for the private player to recover the sunk entry investment. Model II

predicts that a private player needs on average 23 years to cover the sunk entry cost30.

4.5.5 Discussion

Two remarkable facts arise from our analysis:

1. Public players complement private players;

2. Private players crowd-out other private players.

The �rst result shows that pro�t of public banks are positively a�ected by the number of

public branches in the same market. Our estimates do not allow us to disentangle the details

of the spill-over channels. Broadly speaking, our �ndings are consistent with public banks (i)

having monopoly over a number of important Federal funds and (ii) being driven by social,

as opposed to strategic or market reasons. The �rst element guarantees a large volume

of credit for small markets - see Feler (2012). The second induces product di�erentiation

between public and private banks: Public and private banks target di�erent clients - see

Coelho, Melo and Rezende (2012). In this case, the amount of cheap credit and public

transfers poured in by the public banks into small isolated municipalities shifts the demand

29To calculate pro�ts we �xed the sample payroll at its 2010 average value in smaller markets, that is in
markets of type 1. For model II we assumed that the market dummy for markets of type 1 is equal to
one. Thus the results are calculated for markets type 1. The sample payroll is used only to compute
pro�ts in model II and is equal to the sample payroll of 2010.

30This means that entry barriers are quite high. A recent expansion plan of Bank of Brazil illustrates this
point. BB set down R$1 billion to construct 600 new branches in the Brazilian territory. This implies
that on average each new branch costs R$1.66 million.
Notice also that the potential demand of a small market is quite small: The average yearly payroll of

a market in our sample was R$9 million in 2010 and only a small fraction of the population demands
banking services. In 2011 the Institute of Applied Economic Research (IPEA, 2011), an institute of the
Brazilian federal government, estimated that around 40% of the Brazilian population has no access to
any kind of banking services. This percentual can be even large in the markets represented in our sample.
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for banking services, making these markets more attractive for private players. This e�ect

induces the entry of private players.

The second result shows that private banks are competitive.

These �ndings contrast partially with the �ndings in Coelho, Mello and Rezende (2012).

They extend the traditional Bresnahan and Reiss (1991) framework and estimate an entry

model using a cross-section of small and medium Brazilian municipalities. This approach is

related to ours, but in that paper the analysis is static and relies purely on cross-sectional

variation31. They �nd that the presence of a private competitor reduces signi�cantly pro�ts

of private incumbents. In contrast, the presence of a public competitor has a very small,

but signi�cant, negative e�ect on pro�ts of private incumbents. They conclude that public

banks are not competitive.

4.6 Model Fit and Counterfactual

This section uses the structural model to construct a policy experiment. We are interested in

the following question: What happens with the supply of private �nancial services in small

isolated markets when public banks are privatized?

First, we solve the model using the estimated parameters. The solution to the model is

a vector of Ns entry probabilities that solves the system of implicit best responses given by

equation (4.4.5).

For models with a large state space this exercise is not computationally feasible. The

state space of model II has dimension Ns = 32768. Solving this model goes beyond current

computational capabilities. The time to solve the model increases exponentially with the

state space. From now on, we use only model I, that has a reduced state space (Ns = 320),

to compute the counterfactual experiments.

4.6.1 Model �t

We solved the system (4.4.5) for private banks entry probabilities. This system is non linear.

This means that its solution is not necessarily unique.

31The number of municipalities in Coelho, Mello and Rezende (2012) is substantially larger than ours.
In their sample only state capitals and metropolitan areas are excluded. To construct our sample we
select only municipalities that are at least 20 km away from the nearest municipality. State capitals and
metropolitan areas are excluded.
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To check how the multiplicity a�ects our conclusions, we proceed in the following way:

First, we solve model I for the entry probabilities using the logit probabilities as the initial

guess; second, we perturbed the logit probabilities; third we computed again the solution for

the model using the �perturbed� vector of logit probabilities as the initial guess; fourth, we

compared the �perturbed� solution with the original solution32. In doing so we �nd that the

solutions were identical for any initial guess.

We compare the solution obtained from the structural model with the logit probabilities

for all available states. The next table illustrates some statistics of our predictions.

Table 4.8: Fitted vs Sample (Logit) Probabilities

(I)

Correlation Fitted and Logit Probabilities 99.91%

Average Sum of Squared Errors 0.05%

Average Sum of Errors 0.82%
Note: Correlation between the probabilities obtained from the
solution of model I and the logit model (model I, Table 4.12 for
1996-2010) for each state (320 states). Average sum of squared
errors gives the sum of the squared di�erence between the logit
and the model probabilities for each state averaged across states.
The average sum of errors gives the sum of the di�erences be-
tween the logit and the model probabilities averaged across the
320 states.

The �rst line reports the correlation between the logit probabilities and the solution of

the structural model for all states. The second line reports the average squared di�erence

between the logit and the structural probabilities. The third line reports the average sum of

these di�erences. The �tting of the model is very good. The correlation between the logit

and structural probabilities is high. The average error of the structural probabilities is below

1%.

We performed an additional exercise. We took the smallest market in terms of sample

payroll and assumed that in the �rst period all the four banks are out of the market. We used

�rstly the probabilities predicted by the logit models and simulated 1000 paths 100 periods

ahead of private banks actions and then we constructed an average path taking the mean

across the 1000 paths. We did the same using the probabilities predicted by the structural

models. The next �gure compares the paths implied by the logit and by the structural

32Firstly we multiplied the original guesses (calculated from the CCPs showed above) by several factors
between 0 and 1. We also started the model with a ��xed� guess, where the probabilities for all the
states and for all the players are equal to 0.25, 0.5 and 0.75. We used the same procedure to compute
the counterfactuals.
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model.

Figure 4.2: Number of Private Banks 100 Periods Ahead - Model I
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Note: Number of private banks in a small market starting from a state where all the
competitors are out of the market. Paths 100 periods ahead simulated 1000 times using
the structural and the logit probabilities for model I. The �gure shows number of private
branches averaged over 1000 simulations.

The �gure shows that the path obtained from the structural model is close to the path

obtained from the reduced form logit models in the �rst 30 periods. Subsequently the path

of the structural model is below the path produced by the logit model. The structural

model predicts that after 100 years this small market, without any public/private branch in

operation in the �rst period, will have on average 1.32 private branches. The logit predicts

that the same market will have 1.45 branches.

Next we use this model to construct counterfactuals.

4.6.2 Counterfactual: Privatization of public banks

This section analyzes the e�ects of the privatization of both public banks on the total supply

of �nancial services in small isolated markets. We assumed that each public bank is bought

by di�erent players: BB is bought by one player and CEF by the other. We assumed that

the coe�cient attached to the number of public competitors in the structural model is equal

to the coe�cient attached to the number of private competitors. The entry probabilities of

public players, instead of being generated by an exogenous process, are calculated according

to the system of best responses showed in equation (4.4.5).

We calculated the equilibrium probabilities for 4 players. Now, this calculation depends

on the solution of a system of 640 equations and 640 unknown variables. To check how

105



multiplicity a�ects our conclusions we used the procedure described in Section 4.6.1. In

all experiments the resulting equilibrium did not change33. These probabilities are used to

simulate 1000 paths 100 periods ahead. The next �gure shows the path for the total number

of branches, public plus private, after and before the privatization. We computed this path

for a small market where the initial state is characterized by zero active players.

The exercise shows that in the long-run the total number of active branches in small

municipalities drops from 3 to 0.5 on average. This means that with the privatization

around 50% of the Brazilian small municipalities would not be attended by any bank branch.

To assure that all these small municipalities would have at least one bank branch in the

counterfactual world where public banks are bought by strategic players the government

should give a subsidy of 8% over the operational costs of all active branches in the market.

Using the fact that the structural model predicts that operational costs are around 7.55% of

entry costs and an estimate of R$1 million for the entry costs we calculated that the present

cost of this policy is around R$349,463.51 per municipality34.

Figure 4.3: Counterfactual: Privatization of Public Players
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Note: Number of branches (public plus private) in a small market starting from a state
where all the competitors are out of the market (baseline and privatization counterfac-
tual). Paths 100 periods ahead simulated 1000 times using the structural probabilities
for model I. The �gure shows number of private branches averaged over 1000 simula-
tions. Branches privatization shows the total number of branches if public branches are
privatized. Branches baseline is the total number of branches (public plus private) using
the structural model I for private players and the non strategic behavior assumption for
public players (calculated based on the logits in Table 4.11, model I, sample 1996-2010).

33Locally it is expected that the equilibrium is unique as the number of equilibria is generically �nite. Thus
equlibria are isolated points.

34Present values for a time horizon of 100 years and using a discount factor of 0.9 per year.
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4.7 Conclusions

This paper explores microdata of 1002 isolated markets in Brazil to estimate a dynamic

entry game for public and private banks. We recover players' payo�s. The model is solved

for the equilibrium entry probabilities. The market equilibrium is evaluated under the coun-

terfactual scenario where public banks are privatized.

Three main conclusions emerge. First, public banks generate positive pro�t spill-overs for

private banks; second, private banks crowd-out private competitors. Our estimates show

that the entry of a public bank in a given market increases the return of a private incumbent

by 1.2 percent and the entry of a private bank reduces the return of a private incumbent by

0.05 to 1 percent. Third, the counterfactual in which public banks are sold to private players

shows that the total number of active branches operating in the long-run in a typical small

market drops from 3 to 0.5 on average.
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Appendix 1: Proofs

� y(stm;σim,pm) and D(stm;σim,pm) functions.

The functions y(stm;σim,pm) and D(stm;σim,pm) in equation (4.5.1) are de�ned as:

y(stm;σim,pm) =

ln

{
ln

[
1

1−Him(ati = 1|stm;σim,pm)

]}
−

β
[
z1

(
st+1
m |stm;σim,pm

)
− z0

(
st+1
m |stm;σim,pm

)]
∆imẼξim,

which is a real valued di�erentiable function that depends only on states, beliefs and

transitions and,

D(stm;σim,pm) =∑
at−im

σim(at
−im|stm)Π̃(atim = 1, at

−im, s
t
m)+

β
[
z1

(
st+1
m |stm;σim,pm

)
− z0

(
st+1
m |stm;σim,pm

)]
∆imΠ̃im,

which is a real valued 1×Np di�erentiable vector that depends only on states, beliefs and

transitions.
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Appendix 2: Reduced Form Estimates

Table 4.9: Marginal E�ects of npubmt−1 and n
pri
mt−1 on the Entry Probabilities of Private Players

(Bradesco and Itau) - Subsample npub ≥ 1

(I) (II) (III) (IV)

Nº Public 0.11467*** 0.12303*** 0.15040*** 0.14810***

[0.02] [0.02] [0.03] [0.03]

Nº Private -0.04343* -0.02822 -0.07914** -0.07935**

[0.02] [0.03] [0.03] [0.03]

Player Dummy Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes

State Dummies No Yes Yes Yes

Trend*State Dummies No No Yes Yes

Transfers, Expenditure, Agric. Prod. No No No Yes

Observations 9,348 9,164 9,164 9,162

Pseudo R2 0.87 0.88 0.92 0.92
Note: (***) Signi�cant at 1%; (**) signi�cant at 5%; (*) signi�cant at 10%. Marginal e�ects calculated
at the sample means. Clustered standard errors at the municipality level in brackets. All the models have
lagged activity, number of public and private competitors and municipality payroll. Subsample npub ≥ 1
includes all municipalities that had at least one public player in every period.

Table 4.10: Marginal E�ects of npubmt−1 and n
pri
mt−1 on the Entry Probabilities of Private Players

(Bradesco and Itau) - Subsample 1 ≤ npub ≤ 3

(I) (II) (III) (IV)

Nº Public 0.19269*** 0.18806*** 0.20575*** 0.21391***

[0.03] [0.04] [0.04] [0.04]

Nº Private -0.05677* -0.06105* -0.12490*** -0.11986***

[0.03] [0.04] [0.05] [0.05]

Player Dummy Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes

State Dummies No Yes Yes Yes

Trend*State Dummies No No Yes Yes

Transfers, Expenditure, Agric. Prod. No No No Yes

Observations 7,301 7,117 7,117 7,115

Pseudo R2 0.87 0.88 0.92 0.92
Note: (***) Signi�cant at 1%; (**) signi�cant at 5%; (*) signi�cant at 10%. Marginal e�ects calculated
at the sample means. Clustered standard errors at the municipality level in brackets. All the models
have lagged activity, number of public and private competitors and municipality payroll. Subsample
1 ≤ npub ≤ 3 includes all municipalities that had at least one and at most three public players in every
period.
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Appendix 3: CCPs

Table 4.11: CCP Logit for Public Players (BB and CEF)

(I) (II) (I) (II)

Sample:1988-2010 Sample:1996-2010

Lagged Activity 6.75*** 6.73*** 6.88*** 7.22***

[0.09] [0.10] [0.12] [0.14]

Market Payroll 0.03*** 0.02*** 0.04*** 0.02***

[0.00] [0.00] [0.00] [0.00]

Sample Payroll 0.07*** 0.17***

[0.01] [0.01]

Market 1 -1.15*** -1.17***

[0.26] [0.32]

Market 2 -1.09*** -1.45***

[0.23] [0.29]

Market 3 -0.64*** -0.88***

[0.22] [0.26]

Dummy BB 1.35*** 1.68*** 1.82*** 2.22***

[0.11] [0.13] [0.14] [0.17]

Constant -3.70*** -3.56*** -4.55*** -5.58***

[0.12] [0.25] [0.16] [0.33]

Observations 20,357 20,357 13,680 13,680

Pseudo R2 0.793 0.796 0.815 0.827
Note: (***) Signi�cant at 1%; (**) signi�cant at 5%; (*) signi�cant
at 10%. Clustered standard errors in brackets. Model I does not
include sample payroll and market dummies. Model II includes
these variables.
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Table 4.12: CCP Logit for Private Players (Bradesco and Itau)

(I) (II) (I) (II)

Sample:1988-2010 Sample:1996-2010

Lagged Activity 7.44*** 7.32*** 8.05*** 8.17***

[0.12] [0.13] [0.18] [0.20]

N Public 0.25*** 0.25*** 0.46*** 0.63***

[0.05] [0.07] [0.06] [0.08]

N Private -0.42*** -0.40*** -0.57*** -0.35**

[0.10] [0.11] [0.12] [0.15]

Market Payroll 0.02*** 0.01*** 0.01*** 0.01***

[0.00] [0.00] [0.00] [0.00]

Sample Payroll 0.08*** 0.03**

[0.01] [0.01]

Market 1 -0.42 0.98**

[0.32] [0.38]

Market 2 -0.12 0.85***

[0.26] [0.32]

Market 3 0.13 0.51**

[0.21] [0.26]

Dummy Bradesco 0.05 0.04 -0.51*** -0.52***

[0.11] [0.11] [0.13] [0.13]

Constant -3.84*** -4.43*** -3.41*** -4.84***

[0.11] [0.39] [0.13] [0.46]

Observations 15,919 15,919 10,595 10,595

Pseudo R2 0.828 0.831 0.830 0.831
Note: (***) Signi�cant at 1%; (**) signi�cant at 5%; (*) signi�cant at
10%. Clustered standard errors in brackets. Model I does not include
sample payroll and market dummies. Model II includes these variables.
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Chapter 5

Conclusions

The thesis investigates Industrial Organization questions. The �rst essay (chapter 2) uses a

static framework to analyze market e�ects of Brazilian Biodiesel regulation. In the second

essay (chapter 3) we propose an estimator for dynamic games. In the third essay (chapter 4)

we use the estimator developed in the second paper to estimate an dynamic oligopoly model

for the banking industry in Brazil.

To the best of my knowledge, no written work has used the data set I use in the �rst

essay to analyze the welfare impacts of the biodiesel regulation. The results obtained are

important as they show that the positive gains of the biodiesel producers are o�set by the

loss of surplus from consumers, wholesalers and retailers. These results, however, should be

taken with caution. First, due to data constraints it is not possible to study the dynamics

of this industry. Therefore, the results obtained are supposed to hold only in the short run.

Second, the paper does not consider the e�ects of the regulation in the other part of the

production chain. Small farmers, for example, may have welfare gains due to implementation

of the biodiesel regulation. Finally, the environmental bene�ts are also not computed. Future

work should deal with this questions, specially regarding the dynamic nature of this industry.

The estimator proposed in chapter 3 can be very useful in applied work. Monte Carlo

experiments show a signi�cant reduction in the computation time. The gains are specially

important when the payo�s are linear in parameters, the practical leading case. In this

case our estimator assumes a familiar OLS / GLS form. The estimator, however, cannot

accommodate unobserved heterogeneity and su�ers with small sample bias, two common

problems in a two step estimator.

Chapter 4 has an important contribution as it uses a structural model to predict the e�ects
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of privatization policies. To the best of my knowledge, there are no papers using a similar

approach to answer this kind of question. However, even after controlling for all observable

variables, there may be some unobservable heterogeneity biasing the results. Future work

should look for ways to control for these unobservables.
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