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Abstract

This thesis concerns itself with optimal learning through experimentation by mi-

croeconomic agents.

The first part presents a model of a search process for the best outcome of many

multi-stage projects. The branching structure of the search environment is such

that the pay-offs to various actions are correlated; nevertheless, it is shown that the

optimal strategy is given by a simple reservation price rule. A simple model of R&D

is provided as an example.

These general results are then applied in a model of job search and occupational

choice in which jobs are grouped into occupations in a natural way. Before getting a

job, the agent must first become qualified in the chosen occupation, at which point

his general aptitude for jobs in this occupation is revealed. The search environment

is such that the returns of jobs are correlated within a given occupation, but the

optimal strategy is given by the above reservation value rule. One implication of

this is that young inexperienced workers prefer to try riskier jobs/occupations first.

Issues of job turnover and expected returns are addressed.

The second part studies optimal experimentation by a monopolist who faces

an unknown demand curve subject to random changes, and who maximises profits

over an infinite horizon in continuous time. Two qualitatively very different regimes

emerge, determined by the discount rate and the intensities of demand curve switch-

ing, and the dependence of the optimal policy on these parameters is discontinuous.

One regime is characterised by extreme experimentation and good tracking of the

prevailing demand curve, the other by moderate experimentation and poor tracking.

Moreover, in the latter regime the agent eventually becomes ‘trapped’ into taking

actions in a strict subset of the feasible set.
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Introduction

In many areas of human activity, an agent has to choose from a number of actions,

each with a cost and an uncertain reward. Some of these actions are highly likely to

produce a short-term gain, while others, such as gathering information to eliminate

some of the uncertainty, may result in only a long-term benefit. A firm engaging

in R&D is unsure about the products which might emerge, and what the demand

for those products might be. Even after product launch, consumer tastes are likely

to change, and competitors enter the market. An individual may be unclear where

his talents lie – should he look for another job, or maybe pursue a different career?

These are examples of the sorts of question addressed in this thesis.

The classic multi-armed bandit problem is one formalisation of such a situation: in

each period the agent pays a unit cost to pull one of a fixed number of arms, different

arms having different and unknown pay-offs. When projects are equated with arms,

there is no ambiguity about how to engage a project: with just one arm per project

the only available action is to pull it; further, taking an action leaves the number

of possible actions unchanged: with still just one arm per project the only available

action is to pull it again. However, many decision environments are more complex.

Consequently, in Part I we introduce a model of a more general sequential search

process in which, when an action is taken in one period, several new actions become

available in the next period. The set of projects and the actions available within

them depend on the previous choices of the agent.

Even the classic multi-armed bandit problem resisted any general solution until

Gittins and his co-workers showed, in a very general setting, that if the arms are in-

dependent then the optimal strategy is given by an index policy, or reservation price

rule. Calculating the indices, however, can be a formidable task.1 Models in which

the independence assumption is dropped have no simplifying result comparable to

that of Gittins to help in determining the optimal strategy. Indeed, subsequent to

1Two notable applications in the economics literature of bandit problems with independent
arms are Weitzman [1979] and Roberts & Weitzman [1981], in which the examples focus on cases
where the reservation price is not so difficult to calculate.
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the paper by Rothschild [1974] which introduced bandit problems into the economics

literature, work on similar pricing problems has abandoned the bandit terminology

altogether, and the usage of the term ‘bandit’ now appears to be reserved for cases

where the different arms are independent.

Part I introduces a general sequential search process in which the possible ac-

tions belong to branching projects. This process generalises a standard multi-armed

bandit in a number of significant ways: an action can reveal information about more

than one reward; the pay-offs to various actions are correlated; and there is a natu-

ral way to talk about the diversity of rewards. We give a simple characterisation of

when the independence assumption can be relaxed, but with the problem retaining

the analytical convenience of the optimal strategy being determined by an index

policy or reservation price rule.

A branching project is special case of a multi-action project, a project in which

there may be several alternative actions which the agent can take at any one time,

and where this set of available actions depends on the agent’s previous choices.

A Gittins index can be attached to a multi-action project in much the same way

as to a single-action project, but generally, when the index policy is optimal, it

does not specify the optimal action, only the project to which the action belongs.

In the special case where the multi-action projects are branching projects we give

a condition under which the Gittins index policy picks out not only the optimal

project to engage but also the optimal action within that project. (Essentially, this

condition is that taking one action gives no information about actions which do not

emanate from it.)

The optimality of the Gittins index policy for a class of branching projects con-

siderably reduces the problem of characterising the optimal search strategy, and in

Chapter 1 we use a simple model of R&D in order to demonstrate the usefulness of

our result, deriving the optimal strategy in a generalised way and discussing some

of its features.

In Chapter 2, we particularise the general model to one of job search and oc-

cupational choice, and extend the detailed analysis to incorporate discounting and

‘earn-as-you-go’. Here, a job is treated as an experience good, that is, the agent

finds out about the value to him of a particular job only after being hired.2 How-

ever, before looking for a job in a particular occupation, the agent must first become

2Contrast this with models of Job Matching that treat jobs as inspection goods, where the value
of the match is revealed prior to the match being proposed, in, for example, Diamond [1982] and
Pissarides [1990].

Other matching models of job search which treat jobs as experience goods are to be found in
Jovanovic [1979], Miller [1984], and Felli & Harris [1996].
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qualified for that sector/ profession/ trade, which is also an experience good – the

training stage reveals the agent’s general aptitude for jobs in the given occupation.

The precedence constraints and costly information revelation at each stage make the

underlying model appropriate, as does the correlation of the returns to the agent

within an occupation.

Accordingly, we can determine the optimal behaviour of the agent, i.e. which

occupation to acquire skills in first, when to change jobs, whether or not to retrain.

Further, we can address questions such as: How many jobs will the typical agent

try before settling down? What return stream can the agent expect to end up

with? What is the probability of the agent finding the most suitable job in a given

occupation?

It will transpire that new entrants to the job market will rationally launch them-

selves into professions in which the returns are more risky, where the average return

is on the low side and where turnover is high, whereas those with more experience

will have found themselves jobs that are suitable enough so that it is not worth their

while to look elsewhere. So, we offer an alternative explanation of this behaviour: it

need not be that the young are impetuous, have a presumption of success, or that

they are overoptimistic and have unrealistic expectations.

Part II consists of a single chapter. The problem which the agent faces is still the

one of trading-off the short-term opportunity cost of his action against the long-

term informational benefits, but it differs from the problem analysed in Part I in

a number of ways. First, the action space is continuous and it is not a bandit

problem. Secondly, the costs are implicit and noisy, not explicit and known; also,

the informational benefits are noisy. Finally, the underlying environment is not

fixed, in that we allow it to change over time.

In Chapter 3, we consider an economic agent whose per-period rewards depend on

an unobservable and randomly changing state. Owing to noise, the reward observed

after taking an action provides only an imperfect signal of the prevailing state, and

the agent can improve the information content of this signal by experimenting, that

is, by deviating from the myopically optimal action that just maximises current pay-

off. The long-term benefits of experimentation are more informed decisions in the

future; its short-term opportunity cost is the pay-off forgone in the current period.

We are interested in a number of issues. How does the agent’s optimal action

differ from what is myopically optimal, and is this difference large or small? How

well does the agent track the prevailing state? We address these questions in a

setting where the agent can finely control the information content of the signals he
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receives, over a range from zero to some natural upper bound.

Our main result is the identification of two qualitatively very different experi-

mentation regimes. One regime is characterised by large deviations from myopic

behaviour, guaranteeing that the signals observed by the agent always contain at

least a certain amount of information. This allows him to track the state well, in

the sense that his beliefs can come arbitrarily close to the truth. The other regime is

characterised by small deviations from myopic behaviour, resulting in signals whose

information content can become arbitrarily small. In this regime, the prevailing

state is tracked poorly: the agent eventually becomes ‘trapped’ in a strict subset of

actions such that, in one of the states, beliefs always stay bounded away from the

truth.

Specifically, the agent in the model of Chapter 3 is a monopolist facing an un-

known and changing demand function and maximising expected profits over an in-

finite horizon. There are two possible states, each characterised by a linear demand

curve, and the transitions between these states are governed by a Markov process.

The monopolist knows the slope and intercept of each demand curve and the transi-

tion probabilities, but he does not know which demand curve he faces at any given

time. At each instant, he chooses from a given interval of feasible quantities, and

observes a price which is the ‘true’ price (derived from the prevailing demand curve)

plus noise. Given this noisy signal of the underlying state, the monopolist updates

his belief in a Bayesian fashion.

The monopolist can increase the information content of the price signal by mov-

ing away from the confounding quantity, that is, the quantity at which the two

demand curves intersect; setting the confounding quantity itself leads to a com-

pletely uninformative signal. Focusing on the most interesting case, we assume that

the confounding quantity lies between the quantities which are myopically optimal

in each of the two states. This implies that there is a unique belief – the confounding

belief – at which the confounding quantity would be chosen by a myopic agent. The

two experimentation regimes are distinguished by the optimal behaviour near this

belief.

For a given level of noise, when the discount rate and the intensity of state

switching are both low, then experimentation is extreme: for beliefs in an interval

encompassing the confounding belief, the optimal action is to choose a quantity at

the boundary of the feasible set, and the optimal quantity (as a function of the

belief) exhibits a jump from one boundary to the other. In this regime, the agent’s

belief tracks the true state well.

When, for the same level of noise, either the discount rate or the switching
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intensity is high, then experimentation is moderate: the monopolist chooses the

confounding quantity at the confounding belief, and quantities relatively close to

the myopic ones everywhere else. In this regime, the monopolist eventually becomes

trapped into choosing quantities on just one side of the confounding quantity. Then,

the continually changing state entails his belief sometimes being on the ‘wrong’ side

of the confounding belief, in which case it can never get closer to the true state than

the confounding belief.

Thus, in this scenario, optimal behaviour depends qualitatively on the switching

intensities, and a small change in the likelihood of switches can trigger a discontin-

uous change in the optimal policy. Thus, a small increase in the variability of the

environment may not just lead to a moderate reduction in information gathering

activities – in fact it could provoke a near cessation of these activities, with drastic

consequences for the process of information aggregation.

We build upon several strands of the literature on optimal Bayesian learning.

First, a number of authors have identified situations where it is optimal to experi-

ment, and have characterised the agent’s strategy as a function of his beliefs.3 These

papers do not consider confounding actions, so the different experimentation regimes

described here do not arise.

Working in an infinite-horizon setting where the unknown reward function is fixed

over time, other authors have focused on the agent’s limiting behaviour.4 A common

result of these papers is that the agent’s beliefs and actions converge. In the limit,

the agent learns everything that is worth knowing, so experimentation ceases and

no further information is gathered. If there is a confounding action and the agent is

impatient, however, beliefs need not converge to a one-point distribution at the true

reward function, i.e. learning can remain incomplete. Our moderate experimentation

trap extends this incomplete learning result to a changing environment.

Allowing the reward function to change randomly adds more realism in that new

data continues to be pertinent, so beliefs continue to evolve, and the agent is not

doomed to take the same action for evermore. Moreover, the prior with which the

agent starts becomes irrelevant in the long run. Here, we follow Kiefer (1989b),

Bala and Kiefer (1990), Balvers and Cosimano (1990, 1993, 1994), Rustichini and

Wolinsky (1995) and Nyarko and Olson (1996). However, these authors have either

3Examples include Prescott (1972), Grossman, Kihlstrom and Mirman (1977) and, more re-
cently, Bertocchi and Spagat (1993), Leach and Madhavan (1993), Mirman, Samuelson and Urbano
(1993) and Trefler (1993).

4The first such model in the economics literature is due to Rothschild (1974), and has subse-
quently been extended in a number of different directions; see, for example, McLennan (1984),
Easley and Kiefer (1988), Kiefer (1989a), and Aghion, Bolton, Harris and Jullien (1991).
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focused on different aspects of the problem, or used frameworks that lent themselves

to only limited analytical investigation. The two papers closest to ours are Kiefer

(1989b)5 and Balvers and Cosimano (1990),6 both studying a monopolist learning

about changing linear demand curves, but see also Rustichini and Wolinsky (1995).7

We depart from the above papers by formulating the problem in continuous time.

The advantage of this approach is that it allows us to derive sharp analytical results.

We are able to establish key properties of the value function and the optimal policy;

we obtain some analytical comparative statics results; and it is straightforward to

characterise the sample path properties of beliefs and optimal actions in each of the

two experimentation regimes.

Continuous-time models in the economics literature on Bayesian learning have

been pioneered by Smith (1992) and Bolton and Harris (1993), and pursued by Felli

and Harris (1996). Building on a bandit structure as in Karatzas (1984) and Berry

and Fristedt (1985), these authors examine multi-agent learning problems with a

fixed distribution of rewards.8 We follow these three papers with our specification

of Brownian noise and the reliance on the filtering techniques from Liptser and

Shiryayev (1977). There are two major differences, however: the problem we study

is not of the bandit type, and we allow for a changing environment.

5In a framework with two possible demand curves, Kiefer calculates the value function numer-
ically, illustrates two types of optimal policy (one continuous, one with a jump) and simulates the
corresponding sample paths of beliefs and actions.

6In Balvers and Cosimano’s framework, both intercept and slope of the unknown demand curve
are given by stochastic processes, so there is in fact a continuum of possible demand curves. The
added complexity makes it very hard to obtain analytical results, and moreover, the absence of a
confounding action means that their result of sluggish price adjustments has no direct comparison
with our main findings.

7Rustichini and Wolinsky use a two-armed bandit framework to study monopoly pricing when
the buyers’ reservation value changes randomly. Their focus is on non-negligible pricing errors even
when the frequency of change is negligible. For certain parameter combinations, learning will cease
completely even though the state keeps changing. This can be seen as the analogue in a discrete
action space of our moderate experimentation trap.

8Smith considers agents that enter sequentially and learn by observing a ‘snapshot’ of the
actions taken by previous generations. He shows that the incomplete learning result going back to
Rothschild (1974) is not robust to this form of market learning.

Whereas Smith’s model precludes strategic behaviour (agents do not observe each other once
they have entered), Bolton and Harris focus on the informational externality arising when several
agents experiment simultaneously and observe each other’s actions and outcomes.

Felli and Harris use a variant of the continuous-time bandit framework to study equilibrium
wage dynamics in a setting where two firms and a worker learn about the worker’s aptitude to
perform firm-specific tasks.
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Chapter 1

A Bandit Problem with

Correlated Pay-offs

Introduction

In many areas of human activity, an agent has to choose from a number of actions,

each with a cost and an uncertain reward. Some of these actions are highly likely to

produce a short-term gain, while others, such as gathering information to eliminate

some of the uncertainty, may result in only a long-term benefit. The classic multi-

armed bandit problem is a formalisation of such a situation: in each period the

agent pays a unit cost to pull one of a fixed number of arms, different arms having

different, unknown, and possibly interdependent pay-off probabilities; the agent’s

problem is to maximise the expected discounted sum of pay-offs.

In bandit problems currently in the economics literature, projects are equated

with arms. There is no ambiguity about how to engage a project: with just one

arm per project the only available action is to pull it. Further, taking an action

leaves the number of possible actions unchanged: with still just one arm per project

the only available action is to pull it again. However, many decision environments

are more complex. Here we introduce a model of a more general sequential search

process in which, when an action is taken in one period, several new actions become

available in the next period. The set of projects and the actions available within

them depend on the previous choices of the agent.

Even the classic multi-armed bandit problem resisted any general solution until

Gittins and his co-workers showed, in a very general setting, that if the arms are

independent (that is, pulling one arm is uninformative about other arms) then the

15



optimal strategy is given by an index policy.1 To each arm attach an index (known

variously as a reservation price, dynamic allocation index or Gittins index) which

depends on the current state of only that arm; the strategy is to pick the arm

which currently has the highest index. Calculating the indices, however, can be

a formidable task. In the economics literature, two notable applications of bandit

problems with independent arms are Weitzman [1979]2 and Roberts & Weitzman

[1981],3 in which the examples focus on cases where the reservation price is not so

difficult to calculate.

Models in which the independence assumption is dropped have no simplifying

result comparable to that of Gittins to help in determining the optimal strategy.

Nevertheless, the paper by Rothschild [1974]4 which introduced bandit problems

into the economics literature centres on an example of such a model, and he derives

strong results on how much a monopolist learns about a stochastic demand function.

Subsequent work on similar pricing problems5 has abandoned the bandit terminology

altogether, and indeed the usage of the term bandit now appears to be reserved for

cases where the different arms are independent.

In this chapter, we introduce a general sequential search process in which the

possible actions belong to branching projects. This process generalises a standard

multi-armed bandit in a number of significant ways: an action can reveal information

about more than one reward; the pay-offs to various actions are correlated; and there

is a natural way to talk about the diversity of rewards. We give a simple character-

isation of when the independence assumption can be relaxed, but with the problem

retaining the analytical convenience of the optimal strategy being determined by an

index policy or reservation price rule.6

1See the references to papers by Gittins, Glazebrook, Jones and Nash here and in Whittle
[1980].

2Weitzman considers a problem where there are several substitutable single-stage projects,
which can be sampled sequentially. When the agent decides to stop searching, only one option is
selected, namely the one with the maximum sampled reward.

3Roberts & Weitzman look at an application to R&D in which there is a single multi-stage
project. Costs are additive (pay-as-you-go), benefits are received only at the end, and the choice
facing the agent at each stage is whether to pay to resolve more of the uncertainty and bring the
project closer to completion, or to abandon the project.

4In this well-known paper, Rothschild models the pricing decision of a monopolist facing an
unknown stochastic demand as a two-armed bandit problem. No assumption is made that the
parameters governing demand at the two prices are independently drawn and Rothschild does not
derive the optimal strategies. The main result is that optimal experimentation may not result in
adequate learning, that is, there is a positive probability that after some finite period the agent
will settle for the inferior arm for ever more.

5See, for example, Aghion, Bolton et al. [1991, §6], and the references in their introduction.
6Gittins [1989] uses the example of job scheduling with precedence constraints to motivate an

abstract model which is a finite horizon version of that which we present in this chapter, but
without the information revelation aspects or the reward correlation which we have here. Our
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A branching project is special case of a multi-action project, a project in which

there may be several alternative actions which the agent can take at any one time,

and where this set of available actions depends on the agent’s previous choices. A

Gittins index can be attached to a multi-action project in much the same way as to

a single-action project. In an extension of his proof of the original result (see Gittins

& Jones [1974] and Gittins [1979]), Whittle [1980] gives a condition under which the

Gittins index policy is optimal for multi-action projects; note that it does not specify

the optimal action, only the project to which the action belongs. In the special case

where the multi-action projects are branching projects we give a condition under

which the Gittins index policy picks out not only the optimal project to engage but

also the optimal action within that project. Essentially, this condition is that taking

one action gives no information about actions which do not emanate from it.

The optimality of the Gittins index policy for a class of branching projects con-

siderably reduces the problem of characterising the optimal search strategy. We use

a simple model of R&D in order to demonstrate the usefulness of our result, deriving

the optimal strategy in a generalised way and discussing some of its features.

In the next section, we present the example of R&D in order to illustrate some of

the features which branching projects possess and introduce some notation. Then

in Section 2 we give a formal description of the general model, and the central

theoretical result as a corollary of Whittle’s theorem. In Section 3, we apply it to

the model of R&D and provide some results and examples. We conclude with a

discussion and some remarks. Proofs of the main technical results are to be found

in the appendices.

1 Example: a simple model of R&D

A simple branching project is represented in Figure 1.1 by a tree, with node 1 as its

root and nodes 4 through 7 as its terminal nodes. When there is an arc from node

p down to node q we say that node p is a parent of node q and that node q is a child

of node p. The terms ancestor and descendant have the obvious meanings.

The nodes correspond to possible actions, a subset of which are available in any

given period. There are two sorts of possible action: one is to pay a cost cn to

explore node n and then continue; the other is to collect a prize whose value is yn

and which is located at an explored terminal node n, and stop. The actions which

are available in any period depend on previous actions and can be summarised using

proof of the optimality of the Gittins index policy in this set-up was arrived at independently and
adopts what we believe is a self-contained and accessible approach.

17



4
j��
��

5
jBB

BB

6
j��
��

7
jBB

BB
2

j��
��

3
j@

@
@@
1

j

Figure 1.1: No nodes explored

the tree. We assume that initially no node has been explored, and now in any period

the agent can (a) explore any node that has not yet been explored, provided that

either it is the root or its parent has been explored, and then continue, or (b) collect

the prize at a terminal node that has been explored and stop.

We shall often consider there being an additional fall-back option available in

any period, and if it is chosen the agent collects a prize of value m and stops. For

example, suppose that the situation is as illustrated in Figure 1.2, in which filled

nodes have been explored and empty ones have not, and there is a fall-back. The

available actions are: explore node 3, explore node 4, take y5, or take the fall-back

m.
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Figure 1.2: Some nodes explored, & a fall-back

In an R&D setting, node 1 might represent a feasibility study, and nodes 2 and

3 would represent two different avenues of basic research, each of which leads to

two development opportunities. One would then think of nodes 4 through 7 as

representing substitutable technologies to produce a product. To take the fall-back

option is to use the existing technology, and abandon R&D. Note that ‘production’
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is also a terminating action – it corresponds to stopping R&D and commercially

exploiting the know-how that has been gained.

Exploring a node not only imposes costs on the agent and affects which actions

are available in future periods, but also reveals information about the prizes at

all its descendent terminal nodes: when the agent explores node n she receives a

random signal zn, which is independent for each node. The value of the prize at

a terminal node is the sum of the signals at that node and its ancestors, so, for

example, y5 = z1 + z2 + z5. (Because the signals contribute additively to the prize,

we sometimes refer to them as increments.) The implication of this for the model of

R&D is that each piece of basic research is informative only about products which

embody that research, and that developing one product is uninformative about the

value of other products. This means that, whenever the agent updates the expected

value of any product, she uses only what has been learnt at its explored ancestors.

The agent’s problem is to choose a strategy which maximises the expected value

of the prize that she collects when she stops, net of the expected costs from exploring

nodes before she collects the prize.

Note that the way in which actions become available leads to a natural measure

of the diversity of prizes: those with a common parent are closer than those with

only a common grandparent. Moreover, as a result of the specification of the prizes

themselves, the values of closer prizes are more correlated.7 Two features of this ex-

ample worth stressing are that in any period each available action can be considered

as the root of its own separate and independent sub-tree. Reconsider the situation

illustrated in Figure 1.2.

We can in fact represent the agent’s choice as between the projects shown in

Figure 1.3 in which each project now contains only one available action: explore

an unexplored root and continue, or collect a prize and stop. This representation

is legitimate because all the ancestors of currently available actions have been ex-

plored, and we can use the state of each project to effectively summarise the signals

received at the ancestors of its root (and at the root itself, if it has in fact been

explored). Further, these separate projects are independent: nothing that is subse-

quently learnt in one project reveals anything about the prizes available elsewhere,

an inherited property that follows from the fact that the signals received at one node

are informative about the prizes only at terminal nodes which descend from it.

7At the start, before the agent has received any signals, the values of all prizes are correlated
random variables: they all depend on the realisation of z1. The values y4 and y5 are closely
correlated because Cov(y4, y5) = Var(z1) + Var(z2), and even when z1 has become known they
are still correlated. Contrast this with y5 and y6: Cov(y5, y6) = Var(z1), and once z1 has become
known they are uncorrelated.
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With regard to an index policy, were the agent to be in the above situation

and treat the whole tree as a single project as in Figure 1.2, then a rule which

selected the project with the highest index would simply tell the agent whether to

proceed with the project or to take the fall-back. However, if she views the process

with the perspective provided by Figure 1.3, and applies the rule to these separate

projects, the strategy is completely characterised because just one action is picked

out. Further, as we shall show, the fact that these separate projects are independent

ensures that the Gittins index policy is optimal.

2 The General Model – Optimality of the Gittins

Index Policy

In this section we develop more formally the central model of the chapter: a se-

quential decision process in which the alternative projects are branching projects.

We introduce our definition of a branching project and state our result (Claim 2.1)

that if the agent is choosing an action from among a set of independent branching

projects then the optimal action in each period is given by the Gittins index policy.

This is shown to be a corollary of a more general result on stationary Markov de-

cision processes (Theorem 2.1) which gives the conditions under which the Gittins

index policy picks out the optimal multi-action project to engage in each period.

2.1 Branching Projects

Borrowing some notation from graph theory, we represent a branching project by an

out-tree,8 in which the number of nodes may be infinite, but such that the out-degree

8Consider a directed graph, which is a set of nodes and a set of arcs, each arc being an ordered
pair of nodes. An out-tree is a connected directed graph with a single root, no circuits and in
which each node has no more than one parent.
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of any node is finite, i.e. the tree can have infinite depth but only finite branching.

The nodes are the actions within the project, and the arcs represent precedence

constraints: an action (other than the root) can be taken only if its parent action

has previously been taken. An action is available if it has not previously been taken,

and either it is the root or it is the child of an action which has previously been

taken.

We shall consider a family of branching projects, and in each discrete period, a

risk neutral agent chooses one project and an available action within it. We first

note that the set of alternative projects need not be the same in every period.

Lemma 2.1 Consider a family of N branching projects. In every period, there is a

partition of the actions which have not yet been taken into a set of branching projects

in which only the root action is available.

Proof: That such a partition exists initially is clearly the case, so assume that such a

partition exists at time t. If the agent engages project k by taking its root action then

each of the children of that root is an action available at time t+ 1 and is the root action

of a distinct sub-tree, none of whose actions have been taken. Also, each of the projects

which was not engaged at time t is still a branching project in which only the root action

is available. Hence such a partition exists at time t + 1, and the lemma is proved by

induction.

When project k is engaged by taking action u, the agent receives a reward and

observes a signal, the signal affecting what the agent knows about the rewards

associated with actions that may be available in later periods. The state of the

project, denoted by xk, is a sufficient statistic for the observational history. It

summarises what has been learnt from past signals about future rewards, availability

of actions, etc. and both the reward, Rk(xk, u), and the signal, Sk(xk, u), depend

on the current state and the action taken. The new state of a project depends only

on the old state and the action taken, both directly and indirectly via the signal.

If signals are informative only about the rewards at descendent actions,9 then the

branching projects are independent, i.e. the state of unengaged projects remains

unchanged.

Lemma 2.2 Consider a family of N independent branching projects. If, after each

period, the actions which have not yet been taken are repartitioned as in Lemma 1,

then the branching (sub-)projects remain independent.

9Let u be the action taken, and u′ be any action which is not a descendant of u. The agent’s
expectation of the reward to be obtained from taking action u′ is unchanged by the signal received
from taking action u.
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Proof: Consider the partition at time t, and observe that no action in one project is a

descendant of the root action of another. So when taking an action is uninformative about

actions which do not descend from it, engaging any project by taking its root action is

uninformative about other projects, and the lemma follows.

The importance of the above two lemmas lies in the fact that when an action in

a project is taken, the state of the project changes but thereafter the action does

not affect the agent’s choices or pay-offs, so that in each period we need consider

only those actions which have not yet been taken. The lemmas then imply that, if

we start with independent branching projects, in each period we can view the agent

as choosing between actions in a family of branching (sub-)projects which are still

independent and in each of which there is just one action available, namely the root

action. This is at the heart of Claim 2.1 below.

The agent’s problem

Rewards are additive and discounted in time by a factor β, so the agent’s problem

is to choose a strategy to maximise the expected discounted sum of rewards from

this process, whose state at time t is written as x(t) = 〈x1(t), x2(t), . . . , xN(t)〉. The

maximal expected reward over feasible policies π, denoted by the value function

F (x), is given by:

F (x(0)) = sup
π

Eπ

[ ∞∑
0

βtR(x(t), u(t)) | x(0)
]
,

where R(x, u) is the immediate reward realised when action u is taken in state

x. When the rewards are uniformly bounded, standard assumptions from dynamic

programming are sufficient to establish that the value function is the unique bounded

solution to the associated dynamic programming equation and that an optimal policy

exists.10

2.2 Gittins Index Policy

Following the approach of Gittins and his co-workers, it can be shown that, under

certain conditions, all optimal policies are contained in a simple class of policies,

and the optimal action is that recommended by the Gittins index.

10Given that the rewards are additive, discounted in time by a factor β, and are uniformly
bounded, the assumption that the agent is facing a stationary Markov process, for example, is
sufficient.
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Suppose that we can attach an index to any project k, that is a value mk(xk)

which is a function only of the project and its current state. When the agent selects

the project with the currently highest index, she is said to be following an index

policy. The specific index we shall look at is the Gittins index, whose definition

makes use of a fall-back option. When there is a fall-back option m, then the agent

has a stopping problem in which in each period (given that the fall-back option m

has not yet been taken) the agent can either take the fall-back and stop, or continue

the project for another period (the option of taking the fall-back remaining open

in subsequent periods). The smallest value of m which makes the agent indifferent

between stopping and continuation is the Gittins index of the project.

Denote the value function for the modified problem consisting of a fall-back M

together with N projects by Φ(M,x). Since the rewards are bounded, we see that

Φ(M,x) = M when M is large, and that Φ(M,x) = F (x) when −M is large, and

so the Gittins index is well-defined. The usefulness of this index is shown in the

following result.

Optimality of the index policy for branching projects

Claim 2.1 Consider a family of N independent branching projects in which the

rewards are uniformly bounded.

Then the Gittins index policy selects not only the best project to engage but also the

optimal action within that project.

Proof: Using Lemmas 2.1 and 2.2, after each period we can repartition the actions

which have not yet been taken into independent sub-projects in each of which just the

root action is available. The claim then follows as a corollary of the more general result

for super-processes which we present in the next sub-section, because the two sufficient

conditions for the theorem hold. Essentially these are: (a) the state of unengaged projects

remains unchanged (because signals are informative only about descendent actions); and

(b) the optimal action within the engaged project is independent of the size of the fall-back

(because repartitioning after each period ensures that there is only one action available in

each sub-project). The theorem then tells us that the project to which the optimal action

belongs is the one with the highest Gittins index, and so the optimal action is the root

action of the sub-project picked out by the Gittins index policy.

The above proof highlights the dual role of repartitioning actions into projects

with only root actions available: it provides a key condition for the theorem, and it

allows us to move immediately from ‘best project’ to ‘optimal action’.
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2.3 Bandit Super-processes

The proof of the above result relies on a theorem for super-processes which we

present here.11

A super-process12 is defined by the following collection:

(1) a set of projects, indexed by k = 1, . . . , N ;

(2.1) a state space, with generic element denoted by x;

(2.2) a set of available actions for each project when in state x, denoted by Uk(x);

(2.3) a bounded real-valued reward function Rk(x, u) which describes the instanta-

neous reward from taking action u in project k when in state x;

(2.4) a state transition rule giving the probability of next period’s state, conditioned

on this period’s state, the action taken & the project it is in;

(3) a discount factor β.

The agent discounts the future by a factor β and aims to maximise the expected

discounted sum of rewards from this process.

It is a bandit super-process when the state transition rule refers to each project

rather than the process as a whole, and also when the action set and the reward are

functions not of the process state but of the project state. (So, items (2.1) through

(2.4) above would be for each project, and x should be replaced by xk.)

Thus, given a bandit super-process, if project k is engaged in period t by choosing

action u ∈ Uk(xk(t)), the agent receives a reward of Rk(xk(t), u); states of unengaged

projects do not change and the state of the engaged project changes by a Markov

transition rule: if j 6= k then xj(t + 1) = xj(t), and the value of xk(t + 1) is

conditioned only by xk(t), u & k.

We assume that the Markov process is stationary or time-homogeneous, i.e. the

available action set, the reward, the state transition rule and the discount factor do

not depend explicitly on time. (To give this some force, we do not allow time to be

incorporated into the state.)

When the agent is maximising the expected reward from a super-process she

must choose both which project to engage and which action to choose within that

project. The theorem below shows that the Gittins index policy is optimal if two

conditions are met: (a) projects are independent (i.e. it is a bandit super-process);

(b) when there is a fall-back available, the optimal action within the engaged project

is independent of the size of the fall-back.

11For a fuller treatment, see the appendices and the references cited there.
12The terminology is due to Gittins [1979], though the notion is due to Nash [1973]. However,

Glazebrook [1982] uses ‘super-process’ to mean a multi-action project and so discusses a family of
alternative super-processes.
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Theorem 2.1 (Whittle) Consider a super-process consisting of N alternative multi-

action projects. Assume:

(a) the projects are independent, i.e. the states of unengaged projects do not change;

(b) when there is a fall-back option available, the optimal action within the engaged

project is independent of the size of the fall-back.

Then the Gittins index policy is optimal, in that it selects the best project to engage.

Moreover, writing φk(m,xk) as the analogue of Φ(M,x) when only project k is

available, the following identity holds:

Φ(M,x) = B −
∫ B

M

∏
k

∂φk(m,xk)

∂m
dm

where B is the bound on the reward functions.

Proof: The proof is outlined in the appendices. Appendix A gives the proof for simple

bandit processes (for which the second condition is vacuous), and Appendix B generalises

it to bandit super-processes for which the second condition is crucial. The approach is

essentially due to Whittle [1982] and the proof elaborates on that in Whittle [1980].

It should now be clear from the definitions that a branching project is a super-

process, and that a family of independent branching projects constitutes a bandit

super-process, so the first condition for the theorem is met. Moreover, the lemmas

show that it is legitimate to reorganise the available choices in a convenient way,

so that not only is the second condition for the theorem met, but also the result is

strengthened from the Gittins index selecting the best project in a general bandit

super-process to it picking out the optimal action from a family of independent

branching projects.

Notes

Given that a branching project can have only finite branching (although it can have

infinite depth), after any finite number of periods there will be only a finite number

of actions available. Thus a branching project here is not an infinite-armed bandit

(as in, for example, Banks & Sundaram [1992]).

Also, the number of available actions does not increase spontaneously (in a Pois-

son stream, for example), but only after a deliberate action by the agent. Thus

a branching project is not an arm-acquiring bandit (as in Whittle [1981, 1982]),

and it may be more convenient not to think of a branching project as an “open”

process (Whittle’s terminology) even though the number of available (sub-)projects

increases with time.

25



Further, irrespective of independence, we make the traditional assumption that

a project is static in its passive phase, i.e. unengaged projects do not deteriorate nor

improve, for example. This means that branching projects are not restless bandits

(in the sense of Whittle [1988]).

2.4 Discussion

The index result reduces the original problem significantly: the index is calculated

without reference to any other outside option or project, and the optimal action

emerges from a comparison of the indices mk(xk) attached to the various projects;

further, the index of any unengaged project does not change, and so need not be

recalculated. We should stress that the index is used to determine which project to

engage next when the other projects will still be available in the next period. It is

not the expected value of the project. A brief example will illustrate this point.

Consider two projects A and B. You must decide which project to engage first,

and then whether you want to stop, or to engage the other project and take the

larger pay-off. The cost of project A is 20 and it results in a pay-off of either 200 or

zero, each outcome being equally likely. The cost of project B is 10 and it results

in a pay-off of 170 or 130, again with each outcome being equally likely. So, the net

expected value of project A is 80, and that of project B is 140. However, the Gittins

indices for the projects are 160 and 150 respectively, so it is optimal to engage

project A first, and only then engage project B if the low outcome prevails.13

It is to the calculation of the indices, or reservation prices, that we turn in the

next section, after a few remarks on processes consisting of projects with variable

length project stages, and on finite versus infinite horizon problems with discounting.

Variable length project stages

If projects have stages whose length can vary, we assume that when the agent

engages a project she is committed to it for a possibly random number of periods,

that number being dependent on the current state of the project but not on the

actual period in which the stage was begun. As is indicated in the appendices, the

proof of the optimality of the Gittins index policy continues to hold.

13This also demonstrates the principle that you should engage the riskier project first – the
down-side is unimportant because you will never end up taking the low outcome from project A.
This is shown more formally in Result 3.1 of the next section.
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Finite versus infinite horizon, and discounting

There are two ways of looking at the fall-back m. The first is: in any period, either

select from the available projects, or settle for a once-and-for-all lump sum pay-off

of m and abandon selection for ever. The second is: in any period, either select from

the available projects, or take a fixed reward of (1− β)m this period and continue

selection next period. In the latter case, if it is optimal to take the fixed reward of

(1− β)m this period, the agent learns nothing about the other projects, and so it is

optimal to take the fixed reward of (1−β)m in all subsequent periods, and the total

discounted reward from this period forward is just m. Thus, in the infinite horizon

case with discounting, the two views are equivalent.

Similarly, in the case when some projects have a terminating action,14 if the

agent selects such a project which is in a terminal state, this can be viewed as either

settling for the associated lump sum reward, say y, and abandoning selection for ever,

or as taking a fixed reward of (1− β)y now (with the state of all projects remaining

unchanged) and continuing selection next period. If we take the former view, this

may seem to imply that the selection of a project which is in a terminal state

affects the state of other projects because they are no longer available. However, if

we redefine the fall-back as the maximum of m and y whenever a project reaches a

terminal state with an associated lump sum reward of y, then once more the choice is

between selecting from the available projects which have not yet reached a terminal

state and taking the fall-back.

In the finite horizon case when all projects have terminating actions and there

is no discounting, we are forced to take the former view (i.e. to take the fall-back

is to settle for a lump sum pay-off of m and abandon selection for ever) and the

last remark (i.e. redefinition of the fall-back whenever a project reaches a terminal

state) applies.

3 Reservation Prices – Results and Examples

This section returns to the example of the project that was introduced in Section 1

and employs the interpretation of it as a model of R&D. Using the results just

derived, we characterise the optimal strategy, and then discuss some implications of

this strategy. Figure 1.4 illustrates the project. It differs from Figure 1.1 in that, to

be more consistent with the exposition of Section 2, the new figure also shows the

14This corresponds to the notion of stoppable super-processes in Glazebrook [1982]. The simple
model of R&D presented in Section 1 is an example of such a process.
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actions of costless production (nodes 4′ through 7′). Also, although the figure only

ever shows two branches, we may wish to assume that in the project itself there are

more, and denote the number of branches by γ.
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Figure 1.4: The project

3.1 Characterising the Optimal Strategy – Gittins Indices

The project is clearly an independent branching project, in which the only action

initially available is the root, and the out-tree which describes the structure is the

set of arcs illustrated in Figure 1.4. As noted after Theorem 2.1 in the previous

section, this means that a Gittins index policy selects the optimal action, and so

to characterise the optimal strategy we need to determine the Gittins indices for

the possible branching projects which may arise. Then, if the value of the best

available product is greater than the highest Gittins index of the available (sub-)

projects, the agent stops experimenting and makes that product; else she works on

the (sub-)project with the currently highest index, and continues.

The possible projects can be classified into four types: either a project contains

just a terminal action (making a product), or it is a branching project of depth 1, 2,

or 3 (corresponding to a development project, a research project, and a feasibility

study respectively). These are illustrated in Figure 1.5. The rest of the analysis

of this section concerns representative projects, and we adopt the convention that

a representative project of type d corresponds to production if d = 0, and is a

branching project of depth d if d > 0.15 The initial state of a such project is the

15Subscripts on parameters, variables and functions, etc. will henceforth indicate the project
depth and no longer the node, but when discussing generic properties we omit the subscript.
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Figure 1.5: Four types of branching project

state when only the root action is available, and is a summary of everything known

about the products which may emerge from that project. The sum of the signals

received on taking actions which are ancestors of the root is such a summary, which

we denote by y. Consider a project of type d > 0 and suppose that it is in its initial

state y at time t. If the agent takes the root action then she learns zd and updates

the expected value of the products in the project accordingly. The root action can

now be ignored, being no longer available, and the products can be considered as

being in one of the γ (sub-)projects of type d− 1, each of which is in its initial state

y + zd at time t+ 1.

To find the Gittins index for a project, consider the process which consists of just

that project and a fall-back m, and let φ(m, y) denote the value of this process when

the initial state of the project is y. Denote the Gittins index, or reservation price,

of the project by r(y). By definition, if m > r(y) the agent stops with the fall-back

m, otherwise she pays c to learn the increment z and then continues. Denoting the

continuation value by φ̃(m, z+ y), we have the general formula for the continuation

region:

φ(m, y) = −c+ E
[
φ̃(m, z + y) | y

]
.

As the Gittins index is the minimal fall-back which makes the agent indifferent

between stopping and continuation, we see that r(y) = φ(r(y), y), so r(y) satisfies:

r(y) = −c+ E
[
φ̃(r(y), z + y) | y

]
.

For the rest of the section we will make the following simplifying assumption.
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Assumption

(a) there is no discounting, i.e. β = 1;

(b) the number of branches emanating from the root of any project of type d > 0

is the same, namely γd−1, with γ0 = 1;

(c) the cost of visiting the root of any project of type d > 0 is the same, namely cd;

(d) the signal zd received at the root of any project of type d > 0 is independently

drawn from the same continuous distribution with support [ad, bd], CDF Gd(·) and

pdf gd(·).

It will transpire that r(y) = r(0) + y, which is intuitively plausible: if the agent

is indifferent between an project with initial value y and a fall-back of r(y), she

will also be indifferent between that project with initial value 0 and a fall-back of

r(y)− y.

The implication of the above remark, together with the assumption, is that the

optimal policy in our example will be fully characterised by just four quantities,

namely r0, r1, r2 and r3, the index for each of the four types of project when the

initial state is zero. We now derive expressions for these.

Production

As we have assumed that production is costless and its value is known, in this case

c is zero, z is the degenerate random variable equal to zero, and so the continuation

pay-off is simply the larger of m and y, i.e. φ̃(m, z + y) = m ∨ y. So, subscripting

the variables and functions by 0:

r0(y) = r0(y) ∨ y

and the minimal r0(y) which satisfies this is clearly given by r0(y) = y. For consis-

tency with what follows, we define r0 as r0(0), and then we have:

r0 = 0

r0(y) = r0 + y.

Development

In the continuation region for production (m ≤ r0 + y):

φ0(m, y) = m ∨ y
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and indeed in general:

φ0(m, y) = m ∨ y.

For development, we subscript the variables and functions by 1. If the agent

reveals z1 she will be facing a single production project, the value of which will be

φ0(m, z1 + y). So, in the continuation region for development:

φ1(m, y) = −c1 + E
[
m ∨ (z1 + y) | y

]
= −c1 +

∫ b1

a1
m ∨ (z1 + y) dG1(z1)

= −c1 +m+
∫ b1

a1
0 ∨ (z1 + y −m) dG1(z1)

= −c1 +m+
∫ b1

m−y
(z1 + y −m) dG1(z1)

= −c1 +m+
∫ b1

m−y
(1−G1(z1)) dz1

the last line following from integrating by parts. So, from indifference:

r1(y) = −c1 + r1(y) +
∫ b1

r1(y)−y
(1−G1(z1)) dz1

c1 =
∫ b1

r1(y)−y
(1−G1(z1)) dz1.

This implicitly defines the value of r1(y)− y in terms of c1 and the CDF G1(·),
and this value is therefore independent of y. As above, we define r1 as r1(0), and

then we have:

c1 =
∫ b1

r1
(1−G1(z1)) dz1

r1(y) = r1 + y.

Research

In the continuation region for development (m ≤ r1 + y):

φ1(m, y) = −c1 +m+
∫ b1

m−y
(1−G1(z1)) dz1

= m+
∫ b1

m−y
(1−G1(z1)) dz1 −

∫ b1

r1
(1−G1(z1)) dz1

= m+
∫ r1

m−y
(1−G1(z1)) dz1
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and in general:

φ1(m, y) = m ∨
(
m+

∫ r1

m−y
(1−G1(z1)) dz1

)
.

In the case of a research project, if the agent reveals z2 she will be facing several

development projects, the value of each of which will be φ1(m, z2 +y). Let Φ1(M, y)

denote the value of these γ1 projects when the fall-back is M and the state of each

of them is summarised by y. Using the formula given in Theorem 2.1, we have:

Φ1(M, y) = B −
∫ B

M

( ∂

∂m
φ1(m, y)

)γ1
dm

where B is the bound on the reward functions. In the stopping region (m > r1 + y),

the partial derivative is 1, otherwise, in the continuation region, ∂φ1(m, y)/∂m =

G1(m− y). Thus:

Φ1(M, y) = M ∨
(
M +

∫ r1

M−y
(1−G1(z1)γ1) dz1

)
.

So, in the continuation region for the research project:

φ2(m, y) = −c2 + E
[
Φ1(m, z2 + y) | y

]
= −c2 +

∫ b2

a2
m ∨

(
m+

∫ r1

m−y−z2
(1−G1(z1)γ1) dz1

)
dG2(z2)

= −c2 +m+
∫ b2

a2
0 ∨

( ∫ r1

m−y−z2
(1−G1(z1)γ1) dz1

)
dG2(z2)

= −c2 +m+
∫ b2

m−y−r1

( ∫ r1

m−y−z2
(1−G1(z1)γ1) dz1

)
dG2(z2)

= −c2 +m+
∫ b2

m−y−r1

[
1−G1(m− y − z2)γ1

]
(1−G2(z2)) dz2

the last line again following from integrating by parts. Again using r2(y) = φ2(r2(y), y),

we obtain:

c2 =
∫ b2

r2(y)−y−r1

[
1−G1(r2(y)− y − z2)γ1

]
(1−G2(z2)) dz2

This time, it is not as obvious that this equation uniquely determines the value

of r2(y) − y. However, having observed that, say, an increase in r2(y) − y would

decrease both the integrand and the range of integration whilst leaving the LHS

unchanged, we conclude as before that r2(y) − y is independent of y and so we
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define r2 as r2(0) to give:

c2 =
∫ b2

r2−r1

[
1−G1(r2 − z2)γ1

]
(1−G2(z2)) dz2

r2(y) = r2 + y.

Feasibility study

In the continuation region for research (m ≤ r2 + y):

φ2(m, y) = −c2 +m+
∫ b2

m−y−r1

[
1−G1(m− y − z2)γ1

]
(1−G2(z2)) dz2

= m+
∫ b2

m−y−r1

[
1−G1(m− y − z2)γ1

]
(1−G2(z2)) dz2

−
∫ b2

r2−r1

[
1−G1(r2 − z2)γ1

]
(1−G2(z2)) dz2

= m+
∫ r2−r1

m−y−r1

[
1−G1(r2 − z2)γ1

]
(1−G2(z2)) dz2

+
∫ b2

m−y−r1

[
G1(r2 − z2)γ1 −G1(m− y − z2)γ1

]
(1−G2(z2)) dz2.

The derivation of the Gittins index for a feasibility study follows the same steps

as above for a research project. As the calculations are somewhat laborious (see

Chapter 2, Appendix), we simply note that r3(y) = r3 +y, state the implicit formula

for r3, and collect the results together.

Reservation prices

0: r0 = 0

1: c1 =

∫ b1

r1
(1−G1(z1)) dz1

2: c2 =

∫ b2

r2−r1

[
1−G1(r2 − z2)γ1

]
(1−G2(z2)) dz2

3: c3 =

∫ b3

r3−r2

(
1−

[
1−

∫ b2

r3−z3−r1
(1−G1(r3 − z3 − z2)γ1)g2(z2) dz2

]γ2)
(1−G3(z3)) dz3

3.2 Implications of the Optimal Strategy

Much of the intuition underlying the determinants of the index and so of the follow-

ing result is illustrated by considering how r1, the index for a development project,

depends on the ‘riskiness’ of the pay-offs. In a development project (with an initial

value of zero) there are two actions: the root action is to observe a signal z1, and

its child is to make the product whose value is z1. The Gittins index is given by

the formula c1 =
∫ b1
r1

(1−G1(z1)) dz1. Notice that the Gittins index does not depend
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on the distribution of low values of z1, because when deciding how to proceed the

agent always has the option, exercised if z1 is low, of taking the fall-back rather

than making the new product. The idea that the Gittins index depends just on the

likelihood of high outcomes is captured by the result that r1 increases if we consider

a mean-preserving spread of the distribution of z1.16

Result 3.1 Let H(·) and G(·) be two CDFs such that H(·) is a mean-preserving

spread of G(·) with the ‘single-crossing property’. The Gittins index of the single

stage project whose pay-off is distributed according to H(·) is greater than that of a

similar project whose pay-off is distributed according to G(·).17

Proof: When H and G have the same mean:∫ b

a
(1−H(z)) dz =

∫ b

a
(1−G(z)) dz.

When H(·) is a spread of G(·) with the single-crossing property:∫ x

a
(H(z)−G(z)) dz ≥ 0

with equality at x = a and x = b and strict inequality for some a < x < b. Together,

∫ b

x
(H(z)−G(z)) dz ≤ 0.

Denoting the two reservation prices by rH and rG, we have by definition:

c =

∫ b

rH

(1−H(z)) dz =

∫ b

rG

(1−G(z)) dz,

so

0 =

∫ b

rH

(1−H(z)) dz −
∫ b

rG

(1−G(z)) dz

=

∫ b

rH

(G(z)−H(z)) dz −
∫ rH

rG

(1−G(z)) dz.

The first integral is non-negative, and so
∫ rH
rG

(1−G(z)) dz ≥ 0.

This implies that rH ≥ rG, and if there is some difference in H and G towards the

upper end of their support then the inequality is strict.

Thus if there is a choice between two development projects in which the expected

value of the product from each project is the same, but with different variance, then

it is optimal to do the more risky development first.

16This is another illustration of the difference between the Gittins index of a project and its
expected value.

17This point is explored in Weitzman [1979].
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Figure 1.6: Reservation prices v. cost

Example 3.1 Reservation prices as a function of cost

The above result can be used to understand the relative behaviour of the Gittins indexes

r1 and r2 as the cost of experimentation increases. For the case with two-way branching,

equal costs of research & development, and where the distribution is uniform on [−1, 1],

the reservation prices vary with costs as shown in Figure 1.6.

The indexes r1 and r2 are calculated assuming that the initial states of the projects

are zero.18 Also note that the expected value of any signal is zero. Since the value of a

product in a project is the sum of that project’s initial state and the signals about the

product that are subsequently observed, then initially the expected value of any product

in both the research project and the pure development project is zero. However, the values

of products in the research project have a higher variance. When the cost of search is low,

this difference in the variance is the main consideration, and as we would expect from

Result 3.1, the Gittins index for research is higher than that for development. As the

18It is easy to show that r1 satisfies c1 = [(1− r1)/2]2, giving r1 = 1− 2
√
c1 for 0 ≤ c1 ≤ 1.

Determining r2 is a little more complicated. For 0 ≤ c1, c2 ≤ 1, it is the positive root which is
less than 2 of

m4 − 24m2 + 32(2− 3c1 + c1
√
c1)m− 48(1− 4c1 + 4c1

√
c1 − c21) + 96c2 = 0

and it is the negative root which is greater than −2 of

− 24m2 + 32(2− 3c1 + c1
√
c1)m− 48(1− 4c1 + 4c1

√
c1 − c21) + 96c2 = 0.
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search cost rises, however, a new consideration becomes increasingly important: the agent

must spend more before production if the product is at the end of a research project than

if it is in a development project. Thus as the cost rises, the Gittins index for development

becomes higher than that for research. ♦

The main focus of this section is on how branching affects the way that agents

pursue R&D. The example above shows that as costs rise, the balance tips in favour

of pursuing development before engaging in more research, and this remains quali-

tatively the case if we allow the amount of branching to vary. In the example below,

we shall see that as branching increases the agent tends to do more initial research

before embarking on any development. First, note that the expected value of a

project consisting of γ1 identical development opportunities is r1 −
∫ r1
a1
G1(z1)γ1 dz1,

which is increasing in γ1, the number of branches from their common research par-

ent.19 Next, consider the effect of the amount of branching on the Gittins index for

research (it has no effect on the Gittins index for development).

Result 3.2 As the amount of branching increases, r2 increases and r1 is unchanged.

Proof: The expression giving r2 implicitly is

c2 =

∫ b2

r2−r1

[
1−G1(r2 − z2)γ1

]
(1−G2(z2)) dz2

If we hold r2 fixed and increase γ1, then the right-hand side increases. To restore the

equality with c2, we must increase r2 thereby decreasing the range of integration and also

the term [1−G1(r2 − z2)γ1 ].

The expression for r1 is independent of the amount of branching.

Now, what is the probability that, having explored one research avenue, the

agent prefers to explore a second research avenue before pursuing any development

of the first? Assume, without loss of generality, that the signal received from the

feasibility study was zero. If the signal received from the first piece of research is z,

then the Gittins index for developments of that research is r1 + z. Thus the agent

will undertake a second piece of research if r2 > z + r1 so that the probability of

doing the second piece of research first is given by Pr(r2 > z + r1), which is just

G(r2−r1). As we would expect, this is increasing in the reservation price of research

19This leads to the final illustration of the difference between the reservation price for a project
and its expected value. The reservation price for a project consisting of γ1 identical development
opportunities is simply the reservation price for just one development opportunity, namely r1. This
is strictly greater than the project’s expected value noted above, which approaches the reservation
price as the amount of branching tends to ∞.
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and decreasing in the reservation price of development. The final example presented

here is a direct consequence of Result 3.2.

Example 3.2 As the number of ways of developing a single piece of research in-

creases, the agent is more likely to do a second piece of research before pursuing any

development of the first.

The intuition behind this is that the larger the number of development opportunities from

a single research avenue, the higher are the expected rewards from after the development

phase, and so it becomes more attractive to learn about these expected rewards before

pursuing existing development opportunities. ♦

4 Conclusion

The central innovation of the chapter is the introduction of a sequential search pro-

cess which can be represented as a family of trees, and the central theoretical result

is that the optimal action to take in this process is given by a Gittins index pol-

icy. This result extends the existing work on multi-armed bandits in the economics

literature in two important ways. In existing models, either projects are fully inde-

pendent and the Gittins index policy is optimal, or they are not independent and the

models have no such simplifying result. In our process the stochastic specification

means that actions can have correlated rewards, so that independence is relaxed,

yet the index policy remains optimal.

The second generalisation is that in existing multi-armed bandit models there is

just one action available in each project in any one period, whereas in our process,

the agent constantly faces choices about the direction in which to advance a project.

The technical device which allows us to do this, while maintaining the result that the

Gittins index policy identifies the optimal action and not just the optimal project,

is to recognise that the way that actions are grouped into projects need not be the

same in every period.

The final part of the chapter turns to economic applications. The representation

of the process as a family of trees reflects the notion of precedence: some actions fol-

low on from others; and it gives a measure of the diversity of rewards: close rewards

have a nearer common ancestor than distant ones. The process also generates the

feature that close rewards are more highly correlated than distant ones. This struc-

ture is clearly a natural one within which to study R&D and technological change20

20Vega-Redondo [1993] independently develops a similar model, though there the author’s focus
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and we investigate a very simple model of R&D in order to illustrate the main tech-

nical result. We find that as costs rise the agent expects to pursue development

before engaging in more research, but that as the amount of branching increases,

the agent expects to do more research before embarking on any development.

There are several ways in which this work could be extended. As mentioned

in the introduction, modelling R&D as searching a branching structure provides a

means of investigating the diversity of products that are developed and marketed,

and how this depends on the nature of competition in R&D. Branching projects

also provide a framework within which to examine the dual role of patents as not

simply conferring monopoly rights over some products, but simultaneously revealing

information about related products not covered by the patent. Some of these topics

will be addressed in follow-up research.

is on industry turnover rather than optimal search. Furusawa [1994] also employs a branching
structure to aid a game-theoretic analysis of the costs and benefits of Research Joint Ventures.
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Appendix

A Optimality of the Gittins index policy for

simple bandit processes

We give an outline of the proof of the optimality of the Gittins index policy for

multi-armed bandits; it is essentially from Whittle [1982], and also used in Berry

and Fristedt [1985]. It is included here for accessibility, and contains some notational

changes and expository material due to the present authors.

There are N projects21 and in each discrete period you can work on only one project. The

state of project k at time t is denoted by xk(t), and the project engaged at time t is denoted

by k(t). The state variable at time t is written as x(t) = 〈x1(t), x2(t), . . . , xN (t)〉, and the

information at time t, namely past and current states and past actions, is written as I(t).

If project k is engaged at time t then you get an immediate expected reward of Rk(xk(t)).

Rewards are additive and discounted in time by a factor β. States of unengaged projects

do not change and the state of the engaged project changes by a Markov transition rule:

if k(t) 6= k then xk(t+1) = xk(t), and if k(t) = k then the value of xk(t+1) is conditioned

only by k & xk(t).

Assume that rewards are uniformly bounded:

−∞ < −B(1− β) ≤ Rk(x) ≤ B(1− β) <∞.

Writing R(t) for the reward Rk(t)(xk(t)(t)) realised at time t, the total discounted

reward is then
∑∞

0 βtR(t) with a maximal expected reward F (x) over feasible policies π

given by:

F (x(0)) = sup
π

Eπ
[ ∞∑

0

βtR(t) | I(0)
]
.

F will be the unique bounded solution to the dynamic programming equation:

F = max
k

LkF

where Lk is the one-step operator if k is the project engaged:

LkF (x) = Rk(xk) + β E
[
F (x(t+ 1)) | x(t) = x, k(t) = k

]
.

Introduce a fall-back M , where the option of taking the fall-back remains open at all

21Here, we are dealing with single-action projects. At any stage, each of the fixed number of
projects has a single action (i.e. there is no branching) so that the notions of engaging a project
and selecting an action are interchangeable.
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times. The maximal expected reward of the modified process, conditional on x(0) = x, is

Φ(M,x) and solves

Φ = M ∨ max
k

LkΦ. (A.1)

Let φk(m,xk) be the analogue of Φ(M,x) when only project k is available; φk solves

φk = m ∨ Lkφk. (A.2)

(Lk changes only xk, so Lkφk is well-defined.)

The Gittins index, denoted by mk(xk), is the infimal value of m such that m =

φk(m,xk), namely the alternatives of stopping with mk and of continuing project k (with

the option of taking the fall-back staying open) are equitable, and so mk = Lkφk.

It is fairly easy to show that Φ(M,x), as a function of M , is non-decreasing & convex

(convexity following from the fact that we are dealing with the supremum of expressions

which are linear in M), and that Φ(M,x) = M when M ≥ B. Also Φ(M,x) = F (x) when

M ≤ −B.

Similarly, φk(m,xk), as a function of m, is non-decreasing & convex, and φk(m,xk) =

m when m is large, certainly if m ≥ B, and more precisely for m ≥ mk, so mk ≤ B. Note

that, since φk(m,xk), as a function of m, is convex, the derivative ∂φj(m,xj)/∂m exists

almost everywhere.

We “guess” the form of the value function:

Θ(M,x) = B −
∫ B

M

∏
k

∂φk(m,xk)

∂m
dm,

and proceed to verify it by showing two things:

• Θ satisfies (A.1), that is Θ = M ∨ maxk LkΘ;

• the action recommended by the Gittins index maximises the RHS of the above

equation, i.e. whenM > maxk LkΘ it selects the fall-back, and whenM < maxk LkΘ

it selects the project which maximises LkΘ.

So, define Pk(m,x) and m¬k by

Pk(m,x) =
∏
j 6=k

∂φj(m,xj)

∂m

and m¬k = max
j 6=k

mj .

Pk(m,x), as a function of m, is non-negative and non-decreasing, and Pk(m,x) = 1 for

m ≥ m¬k. (These follow directly from the properties of φj .) Note that

dmPk(m,x) ≥ 0 ∀ m, and dmPk(m,x) = 0 for m ≥ m¬k.
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Rewrite Θ(M,x) as

Θ(M,x) = B −
∫ B

M

∂φk(m,xk)

∂m
Pk(m,x) dm

and use integration by parts to obtain

Θ(M,x) = B −
[
φk(m,xk)Pk(m,x)

]B
M

+

∫ B

M
φk(m,xk) dmPk(m,x)

= φk(M,xk)Pk(M,x) +

∫ B

M
φk(m,xk) dmPk(m,x)

noting that φk(B, xk) = B because mk ≤ B, and Pk(B, x) = 1 because m¬k ≤ B. Also,

dmPk(m,x) = 0 when m ≥ B, so we can amend the range of integration:

Θ(M,x) = φk(M,xk)Pk(M,x) +

∫ ∞
M

φk(m,xk) dmPk(m,x). (A.3)

Now fix x, so we can focus on the dependence of various function on m or M . We

want to show that:

Θ(M) ≥ M for any M, (A.4)

and Θ(M) = M iff M ≥ max
j
mj ; (A.5)

and that Θ(M) ≥ LkΘ(M) for any M, (A.6)

and Θ(M) = LkΘ(M) iff mk = max
j
mj and M ≤ mk. (A.7)

• (A.5) ‘if’ & part of (A.4):

Consider M ≥ maxjmj . In this case, φk(M) = M , Pk(M) = 1; and dmPk(m) = 0 for

m ≥M . So from (A.3):

Θ(M) = M.

• (A.5) ‘only if’ & rest of (A.4):

Consider M < maxjmj . Let k = arg maxjmj . So M < mk, and we have φk(M) > M .

When M ≤ m < mk, φk(m) > M , and when m ≥ mk, dmPk(m) = 0. So from (A.3):

Θ(M) > M

(
Pk(M) +

∫ mk

M
dmPk(m)

)
= MPk(mk)

= M, because Pk(mk) = 1.

So from (A.4) and (A.5):

M < max
j
mj ⇒ Θ(M) > M

M = max
j
mj ⇒ Θ(M) = M (A.8)

M > max
j
mj ⇒ Θ(M) = M.
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Now, define δk(m,xk) by

δk(m,xk) = φk(m,xk)− Lkφk(m,xk).

Fixing x again, note that δk(m) ≥ 0 ∀ m, and δk(m) = 0 for m ≤ mk and that

Θ(M)− LkΘ(M) = δk(M)Pk(M) +

∫ ∞
M

δk(m) dmPk(m) (A.9)

which follows from applying the one-step operator Lk to each side of (A.3), subtracting

the result from (A.3), and applying the definition of δk to the RHS.

• (A.6):

δk(m) ≥ 0, and Pk(m) is non-negative and non-decreasing, so from (A.9) we have

Θ(M) ≥ LkΘ(M).

• (A.7):

When mk ≥M , δk(M) = 0, so the first term on the RHS of (A.9) is 0.

When mk ≥M and mk = maxjmj , the integral on the RHS of (A.9) is 0, because either

δk(m) = 0, or dmPk(m) = 0, or both. So we have

Θ(M) = LkΘ(M).

(If either mk < M or mk < m¬k, then at least one term on the RHS of (A.9) is positive.)

Now using (A.6) & (A.7) with the implications from (A.8), and with k = arg maxjmj :

M < max
j
mj = mk ⇒ Θ(M) = LkΘ(M) and Θ(M) > L¬kΘ(M)

⇒ max
j
LjΘ = LkΘ = Θ > M, so {M ∨ max

j
LjΘ} = LkΘ;

M = max
j
mj = mk ⇒ Θ(M) = LkΘ(M) and Θ(M) > L¬kΘ(M)

⇒ max
j
LjΘ = LkΘ = Θ = M, so {M ∨ max

j
LjΘ} = M ≡ LkΘ;

M > max
j
mj = mk ⇒ Θ(M) > LkΘ(M) and Θ(M) > L¬kΘ(M)

⇒ max
j
LjΘ < Θ = M, so {M ∨ max

j
LjΘ} = M.

So Θ satisfies (A.1), that is Θ = M ∨ maxj LjΘ, and the Gittins index policy is

optimal.
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Thus, Θ = Φ and the following identity holds:

Φ(M,x) = B −
∫ B

M

∏
k

∂φk(m,xk)

∂m
dm. (A.10)

Whittle [1982, §9] indicates that the proof can be modified to incorporate variable

length project stages.

Assume that when one engages project k in state xk then one is committed to it for a

stage of length s = s(k, xk). We shall suppose that s and xk(t+s) are conditioned only by

k and xk, and not by t. The dynamic programming equations become recursions between

discrete stages instead of between discrete periods, and we modify the definition of the

one-step operator Lk:

LkF (x) = Rk(xk) + E
[
βsF (x(t+ s)) | x(t) = x, k(t) = k

]
where Rk(xk) is now the reward from the stage starting from state xk.

The single project return φk(m,xk) defined in (A.2) is now in terms of the modified

Lk, and the identity (A.10) after the end of the proof of the main result still holds between

Φ and the φk; the Gittins index policy is optimal.

B Optimality of the Gittins index policy for

bandit super-processes

We now show how Whittle’s proof (outlined above) of the optimality of the Git-

tins index policy for simple processes (consisting of single-action projects) can be

generalised to cover super-processes (consisting of multi-action projects).

Remember, a super-process is one in which, after a project has been chosen,

there is a further decision to be made as to how to proceed, and this affects both the

reward and the state transition of the chosen project. The proof of the optimality

of the Gittins index policy for super-processes fails except in one special case, which

is when the following condition holds: the optimal subsidiary decision as to how

to proceed with the chosen project is independent of the size of the fall-back. (In

other words, if a project is the only one available then your optimal action does not

change when the fall-back varies over the range in which you prefer to continue with

the project.) The proof below that this condition is sufficient elaborates on that in

Whittle [1980]. That this condition is also necessary can be found in Glazebrook

[1982].

43



There are N projects, each project having possibly more than one available action when

in a given state, and in each discrete period you can take only one action and thus work

on only one project. The state of project k at time t is denoted by xk(t) and the state

variable at time t is written as x(t) = 〈x1(t), x2(t), . . . , xN (t)〉. The set of available actions

for project k in state xk is denoted by Uk(xk), and the set of all available actions is

the union over k of these, denoted by U(x). Let κ(·) be the indicator function mapping

available actions to projects, i.e. κ(u) = k for u ∈ Uk. The action taken at time t is

denoted by u(t), and thus the project engaged at time t is κ(u(t)). If action u is taken

at time t then you get an immediate expected reward of Rκ(u)(xκ(u)(t), u). Rewards are

additive and discounted in time by a factor β. States of unengaged projects do not change

and the state of the engaged project changes by a Markov transition rule: if κ(u(t)) 6= k

then xk(t+ 1) = xk(t), and if κ(u(t)) = k then the value of xk(t+ 1) is conditioned only

by u(t), k & xk(t).

Continue to assume that rewards are uniformly bounded:

−∞ < −B(1− β) ≤ Rk(x, u) ≤ B(1− β) <∞.

When m is the available fall-back, φk(m,xk) now solves

φk = m ∨ sup
u∈Uk

Lk,uφk (B.1)

where

Lκ(u),uΦ(M,x) = Rκ(u)(xκ(u), u) + β E
[
Φ(M,x(t+ 1)) | M,x(t) = x, u(t) = u

]
.

As usual, the Gittins index of project k, denoted by mk(xk), is the infimal value of m

such that m = φk(m,xk), namely the alternatives of stopping with mk and of embarking

on project k (with the option of taking the fall-back staying open) are equitable, and so

mk = supu∈Uk Lk,uφk.

Θ(M,x) is defined as before, and we still have (A.3):

Θ(M,x) = φk(M,xk)Pk(M,x) +

∫ ∞
M

φk(m,xk) dmPk(m,x)

so, having fixed x, the following ((A.4) & (A.5)) still hold:

Θ(M) ≥ M for any M,

and Θ(M) = M iff M ≥ max
j
mj .

The function δ(·) is now action-specific not merely project-specific, so, for u ∈ Uk,

define

δk,u(m,xk) = φk(m,xk)− Lk,uφk(m,xk).

44



Fixing x as before, to focus on m or M , note that

Θ(M)− Lk,uΘ(M) = δk,u(M)Pk(M) +

∫ ∞
M

δk,u(m) dmPk(m)

so Θ(M) − sup
u∈Uk

Lk,uΘ(M)

= inf
u∈Uk

(
δk,u(M)Pk(M) +

∫ ∞
M

δk,u(m) dmPk(m)
)
. (B.2)

We want to show that:

Θ(M) ≥ sup
u∈Uk

LkΘ(M) for any M, (B.3)

and Θ(M) = sup
u∈Uk

LkΘ(M) iff mk = max
j
mj and M ≤ mk. (B.4)

It is still the case that, for any u ∈ Uk, δk,u(m) ≥ 0 for all m, so inequality (B.3) still

holds, and if we are able to assert that, for some u ∈ Uk, δk,u(m) = 0 for m ≤ mk, then

equality (B.4) also holds, by considering the RHS of (B.2). The assertion that such an

action u ∈ Uk exists is the same as saying that in the continuation region for the single

project the optimal action is unique.

However, if there is not a unique optimal action u ∈ Uk when m ≤ mk, then the RHS

of (B.2) might be strictly positive for some M ≤ mk, in which case equality (B.4) would

not hold, and the remainder of the proof would not go through.22 To see this, suppose

that a switch of actions occurs when the fall-back is m̂, i.e. when m is such that m ≤ m̂

it is optimal to take action u′, and when m is such that m̂ ≤ m ≤ mk it is optimal to

take action u′′. For action u′ this implies that δk,u′(m) = 0 when m ≤ m̂, & δk,u′(m) > 0

when m̂ < m ≤ mk, and for action u′′ this implies that δk,u′′(m) > 0 when m < m̂, &

δk,u′′(m) = 0 when m̂ ≤ m ≤ mk. Consider M < m̂, and suppose that the other projects

under consideration are such that Pk(M) > 0 and dmPk(m) > 0 for M ≤ m < mk.

Looking at the RHS of (B.2) for the two actions in turn we see that (a) the first term

is zero because δk,u′(M) = 0, but the integral is non-zero because neither δk,u′(m) nor

dmPk(m) is zero over [m̂,mk], and (b) δk,u′′(M) > 0 and also the integral is non-zero (over

[M, m̂]). So the expression in parentheses on the RHS of (B.2) is strictly positive for either

action, hence the infimum over the two actions is positive.

As in Appendix A, when the number of periods required to complete an action in a

22As an informal example of the second condition failing, consider a project with two actions:
one leads to a state with a low mean value and a high variance; the other one leads to a state with
a high mean value and a low variance. Taking either action renders the other unavailable. When
the fall-back is high enough, it is optimal to take it. When the fall-back is lowered, it becomes
optimal to take the more risky action, because if a poor outcome is realised there is always the
fall-back. However, as the fall-back is lowered even further, it is no longer a good enough guarantee
and so the optimal action switches to the less risky one.
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project is different for different actions and different projects, the definition of the

action of Lk can be suitably modified so that the above result remains valid.

Assume that when one takes action u in project k = κ(u) in state xk then one is committed

to it for a stage of length s = s(k, xk, u). We shall suppose that s and xk(t + s) are

conditioned only by k, xk, and u, and not by t. The definition of the one-step operator

Lk becomes:

Lκ(u),uF (x) = Rκ(u)(xκ(u), u) + E[βsF (x(t+ s)) | x(t) = x, u(t) = u]

where Rκ(u)(xκ(u), u) is now the reward from the stage starting from state xk when action

u is taken.

As before, the single project return φk(m,xk) is now defined in terms of the modified

Lk, and the identity (A.10) still holds between Φ and the φk; the Gittins index policy is

optimal.
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Chapter 2

Young Turks and Old Stagers

Introduction

There is a “stylised fact” that young inexperienced workers are attracted by jobs and

occupations that exhibit risky returns, where the average return is on the low side

and where turnover is high. On the other hand, older more experienced workers will

have settled into jobs in occupations where turnover is lower, returns are on average

higher and are more bunched around that mean.1 One can put forward a variety of

explanations for this behaviour: the young are impetuous, they have a presumption

of success, they are overoptimistic and have unrealistic expectations, and so on. The

aim of this chapter is to offer an alternative explanation, in which such behaviour

is the rational outcome of an optimising agent.

In the model presented here, a job is treated as an experience good, that is, the

agent finds out about the value to him of a particular job only after being hired.

However, before looking for a job in a particular occupation (which is costly), the

agent must first become qualified for that sector/ profession/ trade, which also has an

associated cost and which is also an experience good – the training stage reveals the

agent’s general aptitude for jobs in the given occupation. So, there are precedence

constraints, and costly information revelation at each stage; also, the returns to the

agent are correlated within any occupation.

Despite this correlation, it can be shown that the agent is facing a multi-armed

bandit problem and a simple ‘reservation value’ rule applies. By comparing various

reservation values, we can determine the optimal behaviour of the agent, i.e. which

1Some of this is captured in the following extract from a study by Warwick Business School,
reported in The Independent, Wednesday 15-Jan-97: “Wise, experienced 50 to 55-year-olds are
more likely to survive in business than young, thrusting would-be entrepreneurs in their early
twenties.”
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occupation to acquire skills in first, when to change jobs, whether or not to retrain

for a different occupation, and so on. Further, we can address questions such as:

How many jobs will the typical agent try before settling down? What return stream

can the agent expect to end up with? What is the probability of the agent finding

the most suitable job in a given occupation? It will transpire that new entrants to

the job market (the ‘Young Turks’) will rationally launch themselves into professions

in which the returns are more risky, whereas those with more experience (the ‘Old

Stagers’) will have found themselves jobs that are suitable enough so that it is not

worth their while to look for an alternative.

The chapter is organised as follows. In the next section, we introduce the general

model. Then, in Section 2, we describe the optimal policy of the agent, and the

implications for an agent who acts according to the reservation value rule. Section 3

is devoted to job turnover, expected returns, and related issues. The final section

concludes, and indicates possible extensions. Technical derivations can be found in

the appendix.

Related literature

The majority of models of Job Matching have treated jobs as inspection goods, where

the value of the match is revealed prior to the match being proposed. (See, for ex-

ample, Diamond [1982] and Pissarides [1990].) A major concern there is equilibrium

wage determination, unemployment and unemployment duration, and how these

vary with the business cycle. Here, we consider an unchanging search environment,

and so will have little or nothing to say on those issues.

Other matching models of job search which treat jobs as experience goods are

to be found in Jovanovic [1979], Miller [1984], and Felli & Harris [1996]. Jovanovic

is concerned with wage determination in equilibrium and with exploring the rela-

tionship between tenure and turnover. Felli & Harris are also concerned with wage

dynamics and turnover, and address the role of firm-specific human capital. Here,

we treat wages as given, just ‘out there’ waiting to be discovered by the agent, and

there is no strategic interaction unlike in Felli & Harris where two firms repeatedly

compete for the services of a single worker. This chapter is more closely related to

Miller’s work in allowing for different job types, but with a less ad hoc notion of

occupation. Miller’s definition of ‘occupation’ is a collection of job prospects which

are ex ante identical; all that we require is that the returns of jobs in any given occu-

pation have a common component. If we were to adopt Miller’s definition, and also

his assumption of costless search and no prerequisite training, the analysis would be

somewhat simpler and the results stronger (see Section 2.2).
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With regard to the Learning literature, if the agent were to be constrained by

having to choose a job from a specific occupation (for which he had already become

qualified) and if the value of the match were perfectly revealed in the first period,

then the agent would be facing Pandora’s problem analysed in Weitzman [1979].

The more general underlying model of a sequential search process with precedence

constraints was introduced in the previous chapter. It was shown there that, under

certain conditions which obtain here, an index policy (specifically the Gittins in-

dex policy) recommends the action which is optimal, despite the returns to various

actions being correlated. In this chapter, we extend that analysis to incorporate

discounting and ‘earn-as-you-go’, and particularise the model to one of job search

and occupational choice.

1 The Model

The general model of a sequential search process with precedence constraints can

best be pictured as a collection of trees (each with the root at the top) in which you

can explore a node only when you have already explored its parent (except for a

root itself, of course, which by definition has no parent). Associated with any node

is the cost of (or the reward from) exploring it, together with information about

other nodes, for instance the returns available there.

To fix ideas, consider the choices available (now and in the future) as depicted

in Figure 2.1. There are three occupations, each represented by a tree. The one on

the left has 3 job opportunities in it, and the other two each have 2 jobs.

Occupation I

Iu Iv Iw
j j j
I′u I′v I′w

j��
��

j j@
@

@@
I′′

j

Occupation J

Ju Jv
j j
J ′u J ′v

j��
��

jBB
BB
J ′′

j

Occupation K

Ku Kv
j j
K′u K′v
j��
��

jBB
BB
K′′
j

Figure 2.1: Three occupations
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Precedence constraints and Information

At the outset, the agent is not qualified to work in any of the occupations, but

say, for example, that he chooses occupation I. At some cost, the agent acquires

the skills necessary to get any job in this occupation and he also learns about the

expected returns from those jobs, that is, he explores node I ′′. Now, he can either

find a job in this occupation (i.e. explore one of the nodes I ′u . . . I
′
w), or retrain for

a different occupation (i.e. explore either J ′′ or K ′′), the choice depending on what

he learnt about his expected returns. Let us say that he takes the former action

and explores I ′u. Then in this case, he will pay another one-off cost and his return

in this job will be revealed2 and received, and now he has three choices: (1) stay

in this job (i.e. explore Iu) and get the known return forever;3 (2) try to find a

different job in this occupation (i.e. explore either I ′v or I ′w) with as yet unknown

return; (3) train for a different occupation (i.e. explore either J ′′ or K ′′) in which

the expected returns are not even known. And so on.

Note that training for one occupation (i.e. exploring node I ′′, for example), tells

the agent nothing about his general aptitude for jobs in the other occupations.

Further, subsequently getting a particular job in this occupation (i.e. exploring node

I ′u, for example), tells the agent nothing about what his particular return would be in

the other jobs in this occupation, and certainly not about jobs in other occupations.

Costs, Returns and Correlation

Consider the situation when the agent has learnt the return from working in a

particular job in a given occupation, and that the return stream has a net present

value (NPV) of w = y + z say. Then the agent can stay in this job forever and

receive (1− β)w each period at no cost, where β is the discount factor.

The return stream w has two components, so consider the situation when the

agent is looking for a job in a given occupation. As a result of becoming qualified,

he has learnt the common component, with NPV y say, that the returns to him from

jobs in this occupation have. An arbitrary job will cost say c1 to find, and it is only

then that the NPV of his actual return stream in this particular job is revealed, that

is he gets −c1 + (1− β)(y + z) in the first period of employment, where z is drawn

2For simplicity, we assume that the return is perfectly revealed in the first period of work. We
shall indicate how things would change if this were not the case.

3Think of node Iu as representing the net present value of the return stream from this job. As
such, it is shorthand for an infinitely long non-branching chain of nodes, each of which represents
the per-period return.
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from a probability distribution with CDF G1(·), pdf g1(·), and support [a1, b1],4 and

he receives (1− β)(y + z) in each subsequent period that he works in this job.

Finally consider the situation before the agent has become qualified. The training

for an arbitrary occupation will cost say c2, and it is at this stage that he finds out

about how suited he is to jobs in this occupation, that is, he learns the common

component with NPV y which is drawn from a probability distribution, CDF G2(·),
pdf g2(·), and support [a2, b2].

We assume that once the agent has become qualified for an occupation, jobs

within that occupation are available to him in any future period, even if he has

retrained for a different occupation and/or tried a job in a different occupation in

the meantime. Also, once the agent has found a job, then, if he quits, he may go

back to that job in any future period without paying the search cost again.

Note that the returns from working in jobs within any given occupation are

correlated – they share a common component which is revealed at the earlier quali-

fication/ training stage; but the returns from working in jobs in different occupations

are not correlated.5

The agent’s problem

More formally, we represent an occupation by an out-tree which can have infinite

depth but only a finite number of branches emanating from any node.6 A node has

either been explored or not; apart from a root node, any unexplored node can be

explored only once its parent has been explored; once a node has been explored,

there is no need, and indeed no possibility, to explore that node again. Associated

with the exploration of a node is a reward whose expectation is bounded (and which

may be positive or negative, i.e. a cost), and a signal containing information only

about descendant nodes.7 The rewards and signals do not depend on the time at

which the action is taken. Time is discrete, and rewards are additive and discounted

4The subscript 1 indicates that parameters, variables and functions, etc., refer to the job search
level. A subscript 2 will refer to the occupation choice level.

5We could of course precede the whole process described above by a requirement that the agent
must first obtain some basic education, at which point his aptitude for work in general would be
revealed. This is like preceding nodes I ′′, J ′′ and K ′′ by a new common root node. In this case,
the agent’s returns across occupations would also be correlated.

6Miller [1984] discusses the results of his analysis in the case where the number of jobs in an
occupation is infinite (roughly corresponding to infinite branching here). It is unclear whether
his results (for finite numbers) extend trivially to the infinite case. That such an extension is
non-trivial can be seen in Banks & Sundaram [1992].

7In principle, this information could be about the number of branches at descendant nodes, the
distribution of returns/costs there, etc. In practice, we will restrict ourselves to the information
being solely about actual returns at descendant nodes.
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in time by a factor β. The agent is facing a finite number of occupations and his

problem is to choose a strategy which maximises his expected discounted sum of

rewards, net of costs incurred, i.e. he is risk neutral. The maximal expected reward

over feasible policies π, denoted by the value function V (x), is given by:

V (x(0)) = sup
π

Eπ

[ ∞∑
0

βtR(x(t), u(t)) | x(0)
]
,

where R(x, u) is the immediate reward realised when action u is taken in state x

and x(t) is the state of the process at time t, t = 0, 1, . . ..

It was shown in the previous chapter that, under the conditions which obtain

here, importantly

• the signal received when a node is explored is informative only about descen-

dant nodes,

• the (bounded) rewards and signals do not depend on the time at which the

action is taken,

the agent is facing a bandit super-process, the problem can be reformulated as

a dynamic programming one, and an index policy (specifically the Gittins index

policy) exists which recommends the optimal action, despite the pay-offs to various

actions being correlated.

Note that the two conditions essentially guarantee that the state evolves in a

Markovian fashion which is stationary or time-homogeneous. Loosely, the first con-

dition (relating to the informativeness of the signals) brings with it a sufficient

element of independence, without which the Gittins index policy would not be op-

timal; the second condition (time-homogeneity) also rules out switching costs, the

presence of which would also entail the sub-optimality of the Gittins index policy

(see Banks & Sundaram [1994]).

2 Optimal Policy

2.1 Gittins index

Consider just one of the actions available to the agent at time t, and assume there

is a fall-back option which has a NPV of m. The agent is facing a stopping problem

in which he can either opt for the fall-back (now and forever) or take the available

action this period and then once again choose between the fall-back and the action(s)
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available at time t + 1. The smallest m which makes the agent indifferent between

stopping and continuation is the Gittins index of the action available at time t.

In the current setting, the Gittins index policy is optimal (see Chapter 1), i.e.

to each available choice attach an index which depends on the current state of only

that choice, then select the choice which currently has the highest index.

Clearly, if a job has a known return stream with NPV w, the Gittins index (reser-

vation value) of that job is simply w. Given a straight choice between two jobs with

known return streams, the agent would prefer the job with the higher reward.

2.2 Reservation value – job search

Once the agent has become qualified in a given occupation, he has learnt the com-

ponent with NPV denoted by y that the returns to him from jobs in this occupation

have in common. It is shown in Appendix A that the NPV of the reservation return

stream for an arbitrary job in this occupation which costs c1 to find is given by r1 +y

where

(1− β)r1 = −c1 + (1− β)E[z] + β
∫ b1

r1
(1−G1(z)) dz

and, when you have a fall-back whose NPV is m, the value of having the job oppor-

tunity is

φ1(m, y) = m+
(

0 ∨
(

(1− β)(r1 + y −m) + β
∫ r1

m−y
(1−G1(z)) dz

))

(where m ∨ w means the larger of m and w). That is, when m > r1 + y you

take the fall-back m; otherwise you pay the cost to find the job and expect a net

improvement over the fall-back consisting of two terms: one coming from the return

you expect in the first period of employment, and one from the NPV of the larger

of the fall-back and the revealed return.8

Implications

We can derive some comparative statics results by looking at the above formula for

r1.

• ‘Cheaper’ is preferred –

Consider two job opportunities with different search costs, the same mean

8The above expression for φ1(m, y) simplifies to m + (0 ∨
∫ r1
m−y 1 − βG1(z) dz); however, the

former expression is more convenient if we wish to make the comparison of choosing among two or
more jobs with choosing among two or more occupations.
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return, and the same distribution for the return about that mean. Then the

agent prefers to try the job with the lower search cost first.

• ‘More’ is preferred –

Consider two job opportunities with the same search cost, different mean re-

turns, but the same distribution for the return about that mean. Specifically,

G1(z) = H1(z+ d) for some positive constant d. Then the agent prefers to try

the job with the higher expected return first.

• ‘Riskier’ is preferred –

Consider two job opportunities with the same search cost, the same mean

return, but different CDFs for the return about that mean. Specifically, let

H1 be a mean-preserving spread of G1 (with the ‘single-crossing property’).

Then the agent prefers to try the ‘riskier’ job first.

• ‘Patience’ is preferred –

Consider individuals with different discount factors who are facing the same job

opportunities. Then the more patient the agent, the higher is his reservation

value for each job. However, the preferences of one agent are not necessarily

echoed by the others.

The first two results are immediate (and not surprising).

Informally, the third result follows from the following argument: H1 has more

weight in the tails, and so it is lower than G1 in the upper part of the range of

integration. Therefore the integrand involving H1 (for fixed r1) is greater, so r1

must rise to compensate.9 So, given a straight choice between a risky job and a safe

job, the worker tries the risky job first – he is a ‘Young Turk’ and if there is a bad

outcome, he can always try the safe job (and become an ‘Old Stager’).

As to the fourth result, the derivative of r1 with respect to β is

∂r1

∂β
=

(r1 + c1 − E[z]) / β

1− β G1(r1)
=

∫ r1
a1
G1(z) dz

1− β G1(r1)
≥ 0 .

However, it is easy to construct examples in which an impatient agent tries a safer

job first (rejecting only the worst outcomes), whereas a patient agent tries a riskier

9Formally, subtract the expression defining rG from that defining rH and rearrange to give

(1− β)(rH − rG) + β

∫ rH

rG

(1−G1(z)) dz = β

∫ b1

rH

(G1(z)−H1(z)) dz

The RHS is non-negative for the stated CDFs, implying rH ≥ rG.
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job first (accepting only the best outcomes); a third (intermediate) agent will either

try the safer job first, but accept only the best outcomes, or try the riskier job first,

but reject only the worst outcomes. (See Section 2.4 for another example relating

higher discount factors with a preference for riskier opportunities.)

The next two results are for the special case in which all the jobs in the given

occupation are ex ante identical, i.e. the search cost is the same for each one, and

the actual return is drawn from the same distribution.

• Little retraining –

Once a worker has selected a job in one occupation, he will not switch to a

second occupation before having tried all the other jobs in the first occupation.

• Little returning –

Once a worker has selected a job in one occupation and rejected it, he will not

return to that job before having tried all the other jobs in that occupation.

The first result holds because if it is optimal for the worker to select a job in

one occupation, then the reservation value for that job must be greater than the

reservation value for other occupations and jobs in other occupations. As all the

jobs in one occupation are ex ante identical, the reservation value for the other jobs

in this occupation must also be greater, therefore he would try them first.

The second result holds for a similar reason. If the worker rejects a job after

having selected it, it must be because the revealed return is less than the reservation

value for the other jobs in this occupation. Therefore he would never return to this

job while other jobs in this occupation are untried.

Note that when the number of (ex ante identical) job opportunities in the chosen

occupation becomes arbitrarily large, the agent will spend at most one spell in any

job, and this will last either one period or forever.10 This is an extreme form of the

tenure/ turnover relationship, or duration persistence.

2.3 Reservation value – occupational choice

Now that we have analysed what the agent would do after having selected an occu-

pation, we consider what factors will affect his choice of occupation.

If there are γ identical jobs available in this occupation, then the reservation

value (at the job level) is unchanged, but, as is shown in Appendix A, the value of

10If the return were not perfectly revealed in the first period of work, then the ‘one spell’ result
would continue to hold, but the ‘one period’ result would not.
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having many opportunities when there is a fall-back whose NPV is M becomes

Φ1(M, y) = M +
(

0 ∨
∫ r1

M−y
1− [βG1(z)]γ dz

)
.

(The expression is much more cumbersome if the jobs are not identical;11 it was

not thought that the analytical complexity of dealing with non-identical jobs would

yield additional insights at this level. Thus, for the rest of this section we shall

assume that the jobs in any given occupation are ex ante identical.)

The NPV of the reservation value stream for embarking on the training for any

given occupation can now be calculated. It is r2, defined implicitly by

(1− β)r2 = −c2 + β
∫ b2

r2−r1
(1− [βG1(r2 − y)]γ) ((1−G2(y)) dy

and, when you have a fall-back whose NPV is m, the value of having the occupation

opportunity is

φ2(m, 0) = m+ (1− β)(r2 −m)

+ β
∫ r2−r1

m−r1
(1− [βG1(r2 − y)]γ) (1−G2(y)) dy

+ β
∫ b2

m−r1
([βG1(r2 − y)]γ − [βG1(m− y)]γ) (1−G2(y)) dy

when m ≤ r2 (and you take the opportunity), and m otherwise (when you don’t).

Implications

Before the worker has become qualified for an occupation, there is the same prefer-

ence for lower search costs and higher mean returns, as in the previous subsection,

and the same ambiguity regarding the discount factor. Additionally, we have the

following results.

• ‘More choice’ is preferred (comparative statics with respect to γ) –

Consider two occupations with the same CDF for the common (occupation)

component, the same CDF for the particular (job) component, but a different

11For example, if there are three jobs with CDFs F (·), G(·) and H(·) and reservation values
rF < rG < rH , then the above expression for Φ1 becomes

Φ1(M,y) = M +

(
0 ∨

∫ rH

M−y
(1− βH(z)) dz

)
+

(
0 ∨

∫ rG

M−y
βH(z)(1− βG(z)) dz

)
+

(
0 ∨

∫ rF

M−y
βH(z)βG(z)(1− βF (z)) dz

)
and the formula for r2 becomes correspondingly more complicated.
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number of job opportunities. Then the worker trains for the occupation with

the greater number of job opportunities first.

• ‘Riskier’ is preferred (I) (comparative statics with respect to G1) –

Consider two occupations with the same number of job opportunities, the

same CDF for the common component, but different CDFs for the particular

component. Specifically, let H1 be a mean-preserving spread of G1 (with the

‘single-crossing property’), while H2 = G2. Then the worker trains for the

‘riskier’ occupation first.

• ‘Riskier’ is preferred (II) (comparative statics with respect to G2) –

Consider two occupations with the same number of job opportunities, the

same CDF for the particular component, but different CDFs for the common

component. Specifically, let H2 be a mean-preserving spread of G2 (with the

‘single-crossing property’), while H1 = G1. Then the worker trains for the

‘riskier’ occupation first.

These results follow from looking at the expression for r2. The first result is

quite intuitive and follows from observing that r2 is increasing in γ.

In the third case, as H2 has more weight in the tails it is lower than G2 in the

upper part of the range of integration. Therefore the integrand involving H2 (for

fixed r2) is greater, so r2 must rise to compensate.

In the second case, as already noted, given a straight choice between a risky

job and a safe job, the worker prefers to try the risky job first. The second result

then follows from a similar argument to the last, arguing that the integrand and the

range of integration involving H1 (for fixed r2) is greater, so again r2 must rise to

compensate.

Reason: Trying the riskier opportunity first increases the option value of being able to

‘back out’ of a poor outcome; this follows from the established fact that increased volatility

raises option values (see, for example, Dixit & Pindyck [1994]). ♦

2.4 Value of information

In an attempt to determine whether it is simply option values that are driving

the agent’s apparent preference for trying riskier opportunities first, we look at the

following situation.

Consider two occupations: in the first, the common component of the return is

very high or very low, but the variance of returns about that common component
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is small; in the second, the common component of the return is only quite high

or quite low, but the variance of returns about that common component is large.

Which occupation should the agent train for first? Does the choice switch as we vary

the number of jobs in the occupations? Does the optimal behaviour differ across

agents with different discount factors?

Specifically, let us consider two occupations characterised by CDFs G1 and G2

on the one hand, and H1 and H2 on the other, with a common γ, such that G1 = H2

(with common search cost) and G2 = H1 (again with common search cost). Thus,

the combined mean and variance is the same in each occupation. In the absence of

discounting, and when γ = 1, we might expect the worker to be indifferent as to

which occupation to train for first. If we increase the number of job opportunities,

we might then expect the worker to prefer the occupation with the larger variance

at the job level. However, in the presence of discounting, the worker may prefer

to resolve the major uncertainty first, i.e. prefer the occupation with the smaller

variance at the job level.

This problem is very difficult to analyse analytically, but we can fix on represen-

tative distributions and simulate the outcome numerically. The chosen distributions

were as follows and the results we report were obtained under a broad range of pa-

rameter values. The safe action was a draw from the discrete distribution on {−1, 1}
with the outcomes being equally likely; similarly, the risky action was a draw from

the discrete distribution on {−d, d} for some d > 1, specifically 4. A cost of less

than 1
3

was deemed quite low, and a cost of more than 1
3

was deemed quite high (see

below).

In Figure 2.2, the decreasing discount factor is represented on the horizontal axis,

and on the vertical axis is the amount by which the reservation value for embarking

on ‘risky-safe’ first exceeds that for embarking on ‘safe-risky’ first. Thus, there is a

clear preference for resolving the major uncertainty first in the following scenario:

the costs of each action are the same, and are quite high; there is only one job in

each occupation. So, in the absence of discounting, and when γ = 1, the worker is

not indifferent as to which occupation to train for first. (However, indifference does

obtain in the undiscounted single-job case if the costs remain the same as each other

but are quite low.)

Reason: Following either strategy (‘safe-risky’ or ‘risky-safe’), if the agent gets a

high realisation at the occupation level, then he will look for a job, but if he gets a low

realisation at the occupation level, then he will retrain, in which case the continuation

costs and benefits are comparable between the two strategies. In the former case, if he

gets a high realisation at the job level as well he will stop; the important difference arises
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Figure 2.2: Resolve major uncertainty first

if a high realisation at the occupation level is followed by a low realisation at the job level

– if he is following a ‘safe-risky’ strategy, he will train for the other occupation, but if he

is following a ‘risky-safe’ strategy, he will stop if costs are quite high (foregoing a possibly

better job in the other untried occupation but incurring no further costs), only training

for the other occupation if the costs are quite low. ♦

If we increase the number of job opportunities, the curve does fall in general

as we would expect, indicating a weaker preference for embarking on ‘risky-safe’

first, but remains above the axis unless we increase the cost of the risky action to

be greater than that of the safe action, in which case the worker does prefer the

occupation with the larger variance at the job level but only at very high or quite

low discount factors.

Reason: Again, the important difference arises if a high realisation at the occupation

level is followed by a low realisation at the job level.

When the costs of the safe action are low, he will train for the other occupation under

either strategy when β is close to 1: the benefits from either strategy are the same, but

the costs of ‘risky-safe’ are higher.

For intermediate values of β, he will stop sooner if he follows the ‘risky-safe’ strategy –

benefits will be slightly lower than if he were to follow the ‘safe-risky’ strategy, but costs
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are a lot less.

For values of β closer to 0, again he will stop sooner if he follows the ‘risky-safe’ strategy –

benefits will actually be higher than if he were to follow the ‘safe-risky’ strategy, but this

time costs are a lot more. (Remember: the agent trains one period, then finds a job and

gets his return the next; when β is small, the training costs dominate.) ♦

So, the suggested conclusion is that in the presence of discounting, the worker

does indeed prefer to resolve the major uncertainty first, i.e. prefer the occupation

with the smaller variance at the job level, for a broad range of discount factors.

Having attempted to control for the impact of option values, the agent clearly places

a value on information – sooner is better, in general.

2.5 Reservation value – basic education

As indicated in an earlier footnote, we could require that the agent first obtain

some basic education and find out his aptitude for work in general. The interested

reader is referred to Appendix A for the derivation of the reservation value for such

preliminary education.

3 Job Turnover and Expected Returns

A complete characterisation of job turnover and expected returns is a formidable

task, depending as it does on the distributions of expected returns in each occupation

and the distributions of actual returns in each job. However, we can say something

if we focus on the case when the agent has chosen a particular occupation in which

to search for a job. Accordingly, for the most part, we address ourselves to the job

level and omit the subscript 1.

Assume the agent is in an occupation consisting of γ identical job opportunities,

each of which costs c to sample, and each of which results in a return whose NPV

is independently drawn from a distribution with support [a, b] and CDF G(·). We

want to find the expected number of jobs he samples, the expected return of the job

he actually settles on, and also the probability of his finding the best job.

We know that from the previous section that the reservation return stream for

each job opportunity (and for remaining in this occupation as a whole) is given by

(1− β)r = −c+ (1− β)E[z] + β
∫ b
r (1−G(z)) dz and that he will stop whenever he

finds a job with NPV r or better.
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3.1 Job Turnover

Let p be the probability of success with any one job, i.e. p = 1 − G(r), and let

q = 1 − p, i.e. q = G(r). The probability of stopping after n searches is qn−1p for

n < γ, and the probability of stopping only at the end is qγ−1. (When there is the

possibility of retraining, then it is with probability qγ that the agent will consider

switching and compare the best wage he has been offered so far with the reservation

value of embarking on a new occupation.) The expected number of searches can

then be calculated to be (1− qγ)/(1− q) or (1−G(r)γ)/(1−G(r)). With arbitrarily

many job opportunities, this approaches 1/p or 1/(1−G(r)).

This clearly has implications for job turnover within an occupation. Take, for

example, two occupations (‘actors’ and ‘accountants’) with the following character-

istics:12 it costs a budding star 15 to find an acting job, and with equal probability

of 1
3

he can become a star and earn 200, play a supporting role and earn 100, or be an

extra and receive nothing; or he can find a job as an accountant at a cost of 10, and

receive either 170, 150, or 130, again each with probability 1
3
. The reservation value

for becoming an actor is 155, and that for an accountant is 145, so, given an agent

who is qualified for both occupations, he tries a job in the acting profession first –

despite the higher search cost and lower mean return. A simple observation reveals

that the probability of failing in any acting job is 2
3
, whereas that the probability of

failing in any accounting job is 1
3
. So, if he turns out to be a star, he stays, otherwise

he tries other acting jobs. If, say, there are four jobs in each profession, it is not

unlikely that he will eventually give up on acting, and settle for accountancy. (There

is a small probability that he will do poorly in all the jobs as an accountant and,

with slightly different pay-offs, would revert to playing a supporting acting role.)

The number of acting jobs he expects to sample is nearly 21
2
, whereas the number

of accounting jobs he expects to sample, conditional on selecting this occupation, is

just less than 11
2

– the acting profession exhibits much higher turnover.

We shall return to this example in the next subsection, after a word of caution.

The derivative of the expected number of searches w.r.t. the probability of failure is

d

dq

(
1− qγ

1− q

)
> 0.

If we were able to say that H(rH) > G(rG) whenever rH > rG for CDFs characteris-

ing the jobs in two different professions, we could then infer that riskier occupations

12We consider the undiscounted case for simplicity. This means that the returns are lump-sum
as opposed to per-period.
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always exhibit greater turnover. However, counter-examples can be constructed:

let G(·) be uniformly distributed on the interval [0, 200], and let H(·) be discretely

distributed on {0, 200} with each outcome having probability 1
2
; assume common

costs of 16. Then H is a mean-preserving spread of G and is therefore preferred

(rH = 168, rG = 120); however, H(rH) = 0.5 < 0.6 = G(rG), and so the safer

occupation exhibits greater turnover.

Note that unemployment is always voluntary in this model; the only time that the

agent is not working is when he is training.

3.2 Expected Returns

Let us first consider the undiscounted case.

If we write the probability of stopping only at the end as qγ−1p + qγ, then we

can say that with probability qγ all the jobs were worth less than r and the agent

is left with the best of those (if he cannot retrain), and with probability 1 − qγ he

settled in a job worth r or more. The expected value of the maximum of γ draws,

given that they are each less than r is

∫ r
a z d(G(z)γ)∫ r
a d(G(z)γ)

= r −
∫ r
a G(z)γ dz

G(r)γ

and the expected value of a job worth r or more is

∫ b
r z dG(z)∫ b
r dG(z)

= r +

∫ b
r (1−G(z)) dz

1−G(r)

so the expected revenue is

qγ
{
r −

∫ r
a G(z)γ dz

G(r)γ

}
+ (1− qγ)

{
r +

∫ b
r (1−G(z)) dz

1−G(r)

}
.

Remembering that q = G(r) and c =
∫ b
r (1−G(z)) dz this can be simplified to

r −
∫ r

a
G(z)γ dz + c (1− qγ)/(1− q).

The last term can clearly be seen as the expected search cost, and so the expected

net return is given by the first two terms. (This net return might also be obtained

from Section 2.3 by simplifying the expression for Φ1(a, 0) with β = 1.)

As the number of opportunities becomes arbitrarily large, you are almost indif-

ferent at the outset between the occupation and a fall-back of r so the expected value
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of the occupation approaches r itself. Your expected revenue approaches r + c/p,

with c/p being the cost of search.

Returning to our example of accountants and actors, we see that the expected

net return to an accountant is just less than the reservation value of 145. However,

the expected net return to an actor is 120, 135, 143 for γ = 2, 3, 4. After that it

exceeds that of an accountant, showing the value of increased opportunities within

an occupation.

However, in the counter-example, as long as γ > 1, the expected net return in the

risky occupation is always greater than the reservation value of the safe occupation

which is an upper bound on the expected net return there.

The case which incorporates discounting and ‘earn-as-you-go’ is only a little more

complicated. The expected number of searches is unchanged, but the expected

search cost becomes c (1− [βq]γ)/(1− βq) in the presence of discounting. As noted

above, the net return can be obtained from the expression for Φ1(a, 0) in Section 2.3.

So the expected revenue is

r −
∫ r

a
[βG(z)]γ dz + c (1− [βq]γ)/(1− βq)

with the same decomposition as in the undiscounted case.

This device, namely equating the expected net return with the reservation value

of the opportunity, can be exploited at other levels, for example when the agent

is facing the decision to train for one of two or more occupations, each with its

associated range of jobs.

This involves reworking the expression for Φ2(M, y) given in Appendix A in

a style similar to that offered for Φ1(M, y) in the footnote in Section 2.3. For

example, assume two occupations characterised by G ≡ 〈G1(·), γG1 , G2(·)〉 and H ≡
〈H1(·), γH1 , H2(·)〉 with rG2 < rH2 . (For simplicity, for either occupation, consider

its job opportunities to be identical.) Then we have

Φ2(M,y) = M +

(
0 ∨

∫ rH2

M−y
(1− βJ(H, z)) dz

)
+

(
0 ∨

∫ rG2

M−y
βJ(H, z)(1− βJ(G, z)) dz

)

where

J(F , z) = 1−
∫ bF2

z−rF1
(1− [βF1(z − z2)]γF1 ) f2(z2) dz2

and, writing a = aG2 ∧ aH2 , the agent’s expected net return is given by Φ2(a, 0):

rH2 −
∫ rH2

rG2

βJ(H, z) dz −
∫ rG2

a
βJ(H, z)βJ(G, z) dz.
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3.3 Incomplete Learning

While it is maybe less important to the agent than his expected net return, the

probability of finding the best job within an occupation is nevertheless worth a brief

investigation.

Complete learning about the chosen occupation, i.e. finding the best job, occurs

when either (a) the first draw z is less than r and complete learning about the

remaining jobs occurs, or (b) the first draw z is greater than or equal to r and

the remaining draws would each be less than or equal to z. So, let π(n) be the

probability of complete learning when there are n as yet unexplored jobs:13

π(n) =
∫ r

a
π(n− 1) dG(z) +

∫ b

r
G(z)n−1 dG(z)

= π(n− 1)G(r) + (1−G(r)n) /n

for n > 1, with π(1) = 1. A calculation reveals that π(2) = 1 − 1
2

(1−G(r))2, and

so π(1) > π(2). Observing that

π(n)− π(n+ 1) = (π(n− 1)− π(n))G(r) +
∫ b

r

(
G(z)n−1 −G(z)n

)
dG(z)

= (π(n− 1)− π(n))G(r) +
∫ b

r
(1−G(z))G(z)n−1 dG(z)

allows us to conclude, by induction, that π(·) is monotonically decreasing.14 We can

now show formally that limn→∞ π(n) = 0: π(·) is bounded below (by 0) and so must

have a finite limit which satisfies limn→∞ π(n) = limn→∞ π(n− 1)G(r).

As noted in the introductory paragraph to this section, a similar analysis of Incom-

plete Learning across occupations would be very difficult, and also probably not very

fruitful.

Further, it might be interesting to determine the nature of the relationships

between Job Turnover, Expected Returns, and Incomplete Learning. However, such

an investigation is beyond the scope of this section.

13Note that π(1) = 1 and limn→∞ π(n) = 0; i.e. if there is only one job, you will take it and it
will be the “best”, and if there are arbitrarily many jobs you will find one worth at least r in a
finite number of searches, and leave a better job untried, almost surely.

14In fact, for n > 1 and writing q for G(r), it can be shown that

π(n) =

(
q0

n
+

q1

n− 1
+

q2

n− 2
+ . . .+

qn−1

1

)
−
(

1

n
+

1

n− 1
+ . . .+

1

2

)
qn.
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4 Conclusion

In this chapter we have developed a model of costly search for an experience good, in

which returns are correlated ex ante. The main results are that newcomers prefer to

try riskier ventures first, in which returns are modest and turnover is high, whereas

more experienced workers have found a good match – returns are on average greater

and turnover is less.

There are two main reasons underlying this behaviour. This first is the option

value of being able to reverse out of a poor outcome. The second can be seen as

a demand for information – the resolution of a major source of uncertainty has a

higher information content than the resolution of a minor source of uncertainty.

These two factors combine to ensure that an occupation with low mean returns

might nevertheless be an enticing proposition. If the cost of finding out whether or

not he is a ‘star’ is not too high, then the agent will.

To paraphrase Marshall: “Adventurous young people are more attracted by

prospects of success than they are deterred by the fear of failure” – what we have

shown here is that this is not necessarily because they are behaving irrationally.

We should mention a recent paper by Prendergast & Stole [1996] with a similar

title: “Impetuous Youngsters and Jaded Old-Timers . . . ”. They indeed are putting

forward a possible explanation for the sort of individual behaviour discussed here.

However, in their model, the agent knows his ability and uses his actions to signal

this ability to the market; in this chapter, the agent is effectively learning about his

ability as he goes on.

Finally, what our agent is learning at the job level is his firm-specific human

capital and at the occupation level is something between his general human capital

and his firm-specific human capital. (He would learn his general human capital

at the ‘basic education’ level.) Were we to make the firms active players in this

matching model (as in Felli & Harris [1996]), then we would be able to address

issues such as returns to occupation- and firm-specific human capital, and how the

cost of training should be met – by the worker, the firms, or shared. This is a subject

for future research.
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Appendix

A Derivation of Gittins Indices with Discounting

Throughout this section, m denotes the fall-back, the variable y denotes what the

agent has already learnt, and the subscripted variables z denote what the agent is

about to learn; r(y) denotes the reservation value given that the agent has learnt y,

r = r(0), and φ(m, y) denotes the value of having a fall-back m and having learnt

y. M and Φ correspond to m and φ when there are many opportunities stemming

from the current option of continuing.

We cover the general case, mentioned in the main text, where the agent must first

obtain some basic education, and receives a corresponding return whilst training for

an occupation.15 The Gittins index for the choice at the occupation level which is

used in the main text is obtained from the ‘Level 2’ analysis here by setting y = 0

and ignoring the term (1 − β)E[z2], i.e. he has learnt nothing yet, and does not

receive any corresponding return whilst training.

Level 0 – ‘stay in a job’

At level 0, the agent has learnt the actual return (1− β)y with NPV y; the (NPV of the)

fall-back is m. As usual

φ0(m, y) = m ∨ y

and r0(y) = r0 + y with r0 = 0.

Level 1 – ‘search for a job’

At level 1, the agent can either (a) take the fall-back forever, or (b) pay c1, get the return

today (with expected value (1−β)E[z1 + y | y]), reveal z1, then tomorrow he is at level 0

with φ0(m, z1 + y): he takes the fall-back or the known return forever. So, if he continues:

φ1(m, y) = −c1 + (1− β)E[z1 + y | y] + βE[φ0(m, z1 + y) | y]

= −c1 + (1− β)E[z1] + (1− β)y + β

∫ b1

a1
m ∨ (z1 + y) dG1(z1)

= −c1 + (1− β)E[z1] + (1− β)y + βm+ β

∫ b1

m−y
(1−G1(z1)) dz1

15This implies that r(y) = r+y; if we were to include the basic education stage, but exclude the
agent’s receiving an associated reward whilst training, the index rule would remain optimal but
the reservation value r(y) would no longer increase one-for-one with y at ‘Level 2’.
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From indifference, i.e. r1(y) = φ1(r1(y), y):

r1(y) = −c1 + (1− β)E[z1] + (1− β)y + βr1(y)

+ β

∫ b1

r1(y)−y
(1−G1(z1)) dz1

(1− β)(r1(y)− y) = −c1 + (1− β)E[z1] + β

∫ b1

r1(y)−y
(1−G1(z1)) dz1

An increase in r1(y)− y makes the LHS increase and the RHS decrease, and the opposite

for a decrease in r1(y) − y, so we conclude that r1(y) − y is constant and r1(y) = r1 + y

where

(1− β)r1 = −c1 + (1− β)E[z1] + β

∫ b1

r1
(1−G1(z1)) dz1 (A.1)

So, when m > r1 +y, you stop with φ1(m, y) = m, and when m ≤ r1 +y, you continue;

by subtracting (A.1) from the equation giving φ1(m, y) we see that

φ1(m, y)− (1− β)r1 = (1− β)y + βm+ β

∫ r1

m−y
(1−G1(z1)) dz1

φ1(m, y) = m+ (1− β)(r1 + y −m) + β

∫ r1

m−y
(1−G1(z1)) dz1

and in general

φ1(m, y) = m ∨
(
m+ (1− β)(r1 + y −m) + β

∫ r1

m−y
(1−G1(z1)) dz1

)
= m+

(
0 ∨

(
(1− β)(r1 + y −m) + β

∫ r1

m−y
(1−G1(z1)) dz1

))
(A.2)

Level 2 – ‘qualify for an occupation’

In the continuation region for level 1 (m ≤ r1 + y), ∂φ1(m, y)/∂m = βG1(m − y), and

in the stopping region φ1(m, y) = m as usual, and the partial derivative is 1. Using the

formula relating the value of many opportunities to a single opportunity16

Φ1(M,y) = B −
∫ B

M

(
∂

∂m
φ1(m, y)

)γ1
dm

we have Φ1(M,y) = M in the stopping region, and in the continuation region (M ≤ r1+y):

Φ1(M,y) = B −
∫ B

r1+y
1γ1dm−

∫ r1+y

M
[βG1(m− y)]γ1 dm

= B −
∫ B

r1+y
dm−

∫ r1+y

M
dm+

∫ r1+y

M
1− [βG1(m− y)]γ1 dm

= M +

∫ r1

M−y
1− [βG1(z)]γ1 dz

16B is the bound on the rewards; γ1 is the number of opportunities, assumed to be identical.
See Theorem 2.1 of the previous chapter.
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Thus

Φ1(M,y) = M +

(
0 ∨

∫ r1

M−y
1− [βG1(z)]γ1dz

)
(A.3)

So, in the continuation region for level 2:

φ2(m, y) = −c2 + (1− β)E[z2 + y | y] + βE[Φ1(m, z2 + y) | y]

= −c2 + (1− β)E[z2] + (1− β)y

+ β

∫ b2

a2
m+

(
0 ∨

∫ r1

m−y−z2
1− [βG1(z)]γ1 dz

)
dG2(z2)

= −c2 + (1− β)E[z2] + (1− β)y

+ βm+ β

∫ b2

m−y−r1

(∫ r1

m−y−z2
1− [βG1(z)]γ1 dz

)
dG2(z2)

= −c2 + (1− β)E[z2] + (1− β)y + βm

+ β

∫ b2

m−y−r1
(1− [βG1(m− y − z2)]γ1) (1−G2(z2)) dz2

From indifference, i.e. r2(y) = φ2(r2(y), y):

r2(y) = −c2 + (1− β)E[z2] + (1− β)y + βr1(y)

+ β

∫ b2

r2(y)−y−r1
(1− [βG1(r2(y)− y − z2)]γ1) (1−G2(z2)) dz2

(1− β)(r2(y)− y) = −c2 + (1− β)E[z2]

+ β

∫ b2

r2(y)−y−r1
(1− [βG1(r2(y)− y − z2)]γ1) (1−G2(z2)) dz2

Arguing that an increase in r2(y) − y would decrease both the integrand and the range

of integration whilst increasing the LHS and vice versa, we see that r2(y)− y is constant

and r2(y) = r2 + y where

(1− β)r2 = −c2 + (1− β)E[z2] + β

∫ b2

r2−r1
(1− [βG1(r2 − z2)]γ1) (1−G2(z2)) dz2 (A.4)

So, when m > r2 +y, you stop with φ2(m, y) = m, and when m ≤ r2 +y, you continue;

by subtracting (A.4) from the equation giving φ2(m, y) we see that

φ2(m, y) = m+ (1− β)(r2 + y −m)

+ β

∫ r2−r1

m−y−r1
(1− [βG1(r2 − z2)]γ1) (1−G2(z2)) dz2

+ β

∫ b2

m−y−r1
([βG1(r2 − z2)]γ1 − [βG1(m− y − z2)]γ1)

× (1−G2(z2)) dz2 (A.5)
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Level 3 – ‘acquire basic education’

In the continuation region for level 2 (m ≤ r2 + y):

∂φ2(m, y)/∂m = β

(
1−

∫ b2

m−y−r1
(1− [βG1(m− y − z2)]γ1) g2(z2) dz2

)

and in the stopping region φ2(m, y) = m as usual, and the partial derivative is 1.

Once again using the formula relating the value of many opportunities to a single

opportunity, in the stopping region we have Φ2(M,y) = M , and in the continuation

region (M ≤ r2 + y):

Φ2(M,y) = B −
∫ B

r2+y
1γ2 dm

−
∫ r2+y

M

[
β

(
1−

∫ b2

m−y−r1
(1− [βG1(m− y − z2)]γ1) g2(z2) dz2

)]γ2
dm

= M +

∫ r2

M−y
1−

[
β

(
1−

∫ b2

z−r1
(1− [βG1(z − z2)]γ1) g2(z2) dz2

)]γ2
dz

Thus:

Φ2(M,y) = M +

(
0 ∨

∫ r2

M−y
1−

[
β

(
1−

∫ b2

z−r1
(1− [βG1(z − z2)]γ1) g2(z2) dz2

)]γ2
dz

)
(A.6)

So, in the continuation region for basic education:

φ3(m, y) = −c3 + (1− β)E[z3 + y | y] + βE [Φ2(m, z3 + y) | y]

φ3(m, y) + c3 − (1− β)E[z3]− (1− β)y − β
∫ b3

a3
mdG3(z3)

= β

∫ b3

a3

(
0 ∨

∫ r2

m−y−z3
1−

[
β

(
1−

∫ b2

z−r1
(1− [βG1(z − z2)]γ1) g2(z2) dz2

)]γ2
dz

)

× dG3(z3)

φ3(m, y) + c3 − (1− β)E[z3]− (1− β)y − βm

= β

∫ b3

m−y−r2

(∫ r2

m−y−z3
1−

[
β

(
1−

∫ b2

z−r1
(1− [βG1(z − z2)]γ1) g2(z2) dz2

)]γ2
dz

)

× dG3(z3)

= β

∫ b3

m−y−r2

(
1−

[
β

(
1−

∫ b2

m−y−z3−r1
(1− [βG1(m− y − z3 − z2)]γ1) g2(z2) dz2

)]γ2)

× (1−G3(z3)) dz3
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the last line following from integrating by parts as usual. So, from indifference, i.e. r3(y) =

φ3(r3(y), y), we obtain an expression implicitly defining r3(y) − y, the RHS of which is

just like the undiscounted case (see Chapter 1, Section 3) except that anything raised to

a power γ is first multiplied by β as is the entire integral (cf. the last line above). That

being the case, we can argue as before that r3(y) − y is constant and define r3 as r3(0)

where:

(1− β)r3 + c3 − (1− β)E[z3]

= β

∫ b3

r3−r2

(
1−

[
β

(
1−

∫ b2

r3−z3−r1
(1− [βG1(r3 − z3 − z2)]γ1) g2(z2) dz2

)]γ2)

× (1−G3(z3)) dz3 (A.7)

Similar to above, subtracting (A.7) from the equation giving φ3(m, y) now gives:

φ3(m, y) = m+ (1− β)(r3 + y −m)

+ β

∫ r3−r2

m−y−r2

(
1−

[
β

(
1−

∫ b2

r3−z3−r1
(1− [βG1(r3 − z3 − z2)]γ1) g2(z2) dz2

)]γ2)

× (1−G3(z3)) dz3

+ β

∫ b3

m−y−r2

([
β

(
1−

∫ b2

r3−z3−r1
(1− [βG1(r3 − z3 − z2)]γ1) g2(z2) dz2

)]γ2

+

[
β

(
1−

∫ b2

m−y−z3−r1
(1− [βG1(m− y − z3 − z2)]γ1) g2(z2) dz2

)]γ2)

× (1−G3(z3)) dz3 (A.8)
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Part II

Optimal Experimentation
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Chapter 3

Optimal Experimentation in a

Changing Environment∗

Introduction

In this chapter, we consider an economic agent whose per-period rewards depend on

an unobservable and randomly changing state. Owing to noise, the reward observed

after taking an action provides only an imperfect signal of the prevailing state. The

agent can improve the information content of this signal by experimenting, that is,

by deviating from the myopically optimal action that just maximises current pay-off.

When choosing an action, therefore, he has to weigh the long-term informational

benefits of experimentation against its short-term opportunity cost.

We are interested in a number of issues. How does the agent’s optimal action

differ from what is myopically optimal? Is this difference large or small (in a sense

to be made precise)? And how well does the agent track the prevailing state? We

address these questions in a setting where the agent can finely control the informa-

tion content of the signals he receives, over a range from zero to some natural upper

bound.

Our main result is the identification of two qualitatively very different experi-

mentation regimes. One regime is characterised by large deviations from myopic

behaviour, guaranteeing that the signals observed by the agent always contain at

least a certain amount of information. This allows him to track the state well, in

the sense that his beliefs can come arbitrarily close to the truth. The other regime is

characterised by small deviations from myopic behaviour, resulting in signals whose

information content can become arbitrarily small. In this regime, the prevailing

∗An edited version of this chapter is forthcoming in the Review of Economic Studies.
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state is tracked poorly: the agent eventually becomes ‘trapped’ in a strict subset of

actions such that, in one of the states, beliefs always stay bounded away from the

truth.

Specifically, the agent in our model is a monopolist facing an unknown and changing

demand function and maximising expected profits over an infinite horizon. The time

parameter is continuous. There are two possible states, each characterised by a linear

demand curve, and the transitions between these states are governed by a Markov

process. The monopolist knows the slope and intercept of each demand curve and

the transition probabilities, but he does not know which demand curve he faces

at any given time. At each instant, he chooses from a given interval of feasible

quantities, and observes a price which is the ‘true’ price (derived from the prevailing

demand curve) plus noise.1 Given this noisy signal of the underlying state, the

monopolist updates his belief in a Bayesian fashion.

The monopolist can increase the information content of the price signal by mov-

ing away from the confounding quantity, that is, the quantity at which the two

demand curves intersect; setting the confounding quantity itself leads to a com-

pletely uninformative signal. Focusing on the most interesting case, we assume that

the confounding quantity lies between the quantities which are myopically optimal

in each of the two states. This implies that there is a unique belief – the confounding

belief – at which the confounding quantity would be chosen by a myopic agent. The

two experimentation regimes are distinguished by the optimal behaviour near this

belief.

For a given level of noise, when the discount rate and the intensity of state

switching are both low, then experimentation is extreme: for beliefs in an interval

encompassing the confounding belief, the optimal action is to choose a quantity at

the boundary of the feasible set, and the optimal quantity (as a function of the

belief) exhibits a jump from one boundary to the other. In this regime, the agent’s

belief tracks the true state well in the sense explained earlier.

When, for the same level of noise, either the discount rate or the switching

intensity is high, then experimentation is moderate: the monopolist chooses the

confounding quantity at the confounding belief, and quantities relatively close to

the myopic ones everywhere else. In this regime, the monopolist eventually becomes

trapped into choosing quantities on just one side of the confounding quantity (the

1Although we do not pursue such an interpretation in this chapter, we invite the reader to think
of the two states as representing fads and fashions, or aggregate income fluctuations that affect the
elasticity of demand for the monopolist’s output. The noise could represent idiosyncratic taste or
income shocks, or small fluctuations in the size of the population served by the monopolist.
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side which contains the myopic action corresponding to the long-run average state).

In fact, when the monopolist chooses the confounding quantity at the confounding

belief, his updating is driven exclusively by the possibility of a change in demand,

which pulls his belief in the direction of the long-run average state and prevents

it from ever crossing back again. Then, the continually changing state entails his

belief sometimes being on the ‘wrong’ side of the confounding belief, in which case

it can never get closer to the true state than the confounding belief – the true state

is indeed tracked poorly.

The key to the two regimes is that, of the agent’s two conflicting objectives

(current reward versus information), one is concave in the choice variable, the other

convex. Experimentation is extreme if for some beliefs the combined objective is

convex, implying corner solutions – this happens when the frequency of change of

the environment and the discount rate are low, so the agent values information

highly. When either of these parameters increases, current reward becomes more

important; eventually, the combined objective is concave at all beliefs, and we have

interior solutions, hence moderate experimentation. At the parameter values where

the combined objective just becomes concave throughout, we have a discontinuous

change in the optimal policy. Thus, a small increase in the variability of the envi-

ronment can provoke a near cessation of experimentation, with drastic consequences

for the process of information acquisition.

If we make the assumption that the confounding quantity does not lie between

the two myopically optimal quantities, then the direction of widening spreads be-

tween the two demand curves is unambiguous, and the monopolist deviates from

the myopic action by moving away from the intersection. Experimentation is now

moderate for all parameter values, and the optimal policy function is continuous

and monotonic.

We build upon several strands of the literature on optimal Bayesian learning. A

number of authors have identified situations where it is optimal to experiment, and

have characterised the agent’s strategy as a function of his beliefs. Examples in-

clude Prescott (1972), Grossman, Kihlstrom and Mirman (1977) and, more recently,

Bertocchi and Spagat (1993), Leach and Madhavan (1993), Mirman, Samuelson and

Urbano (1993) and Trefler (1993). These papers do not consider confounding ac-

tions, so the different experimentation regimes described here do not arise.

Working in an infinite-horizon setting where the unknown reward function is

fixed over time, other authors have focused on the agent’s limiting behaviour. The

first such model in the economics literature is due to Rothschild (1974), and has
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subsequently been extended in a number of different directions; see, for example,

McLennan (1984), Easley and Kiefer (1988), Kiefer (1989a), and Aghion, Bolton,

Harris and Jullien (1991). A common result of these papers is that the agent’s

beliefs and actions converge. In the limit, the agent learns everything that is worth

knowing, so experimentation ceases and no further information is gathered. If there

is a confounding action and the agent is impatient, however, beliefs need not converge

to a one-point distribution at the true reward function, i.e. learning can remain

incomplete. Our moderate experimentation trap extends this incomplete learning

result to a changing environment.

Allowing the reward function to change randomly adds more realism in that new

data continues to be pertinent, so beliefs continue to evolve, and the agent is not

doomed to take the same action for evermore. Moreover, the prior with which the

agent starts becomes irrelevant in the long run. Here, we follow Kiefer (1989b),

Bala and Kiefer (1990), Balvers and Cosimano (1990, 1993, 1994), Rustichini and

Wolinsky (1995) and Nyarko and Olson (1996). However, these authors have either

focused on different aspects of the problem, or used frameworks that lent themselves

to only limited analytical investigation.

The two papers closest to ours are Kiefer (1989b) and Balvers and Cosimano

(1990), both studying a monopolist learning about changing linear demand curves.

In a framework with two possible demand curves, Kiefer calculates the value function

numerically, illustrates two types of optimal policy (one continuous, one with a jump)

and simulates the corresponding sample paths of beliefs and actions. In Balvers and

Cosimano’s framework, on the other hand, both intercept and slope of the unknown

demand curve are given by stochastic processes, so there is in fact a continuum

of possible demand curves. This seems more realistic than a two-state model, but

the added complexity makes it very hard to obtain analytical results. Moreover, the

absence of a confounding action means that their result of sluggish price adjustments

has no direct comparison with our main findings.

Rustichini and Wolinsky (1995) use a two-armed bandit framework to study

monopoly pricing when the buyers’ reservation value changes randomly. Their focus

is on non-negligible pricing errors even when the frequency of change is negligible.

For certain parameter combinations, learning will cease completely even though the

state keeps changing. This can be seen as the analogue in a discrete action space of

our moderate experimentation trap.

We depart from the above papers by formulating the problem in continuous time.

The advantage of this approach is that it allows us to derive sharp analytical results.

We are able to establish key properties of the value function and the optimal policy;
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we obtain some analytical comparative statics results; and it is straightforward to

characterise the sample path properties of beliefs and optimal actions in each of the

two experimentation regimes.2

Continuous-time models in the economics literature on Bayesian learning have

been pioneered by Smith (1992) and Bolton and Harris (1993). Building on a ban-

dit structure as in Karatzas (1984) and Berry and Fristedt (1985), these authors

examine multi-agent learning problems with a fixed distribution of rewards. Smith

considers agents that enter sequentially and learn by observing a ‘snapshot’ of the

actions taken by previous generations. He shows that the incomplete learning re-

sult going back to Rothschild (1974) is not robust to this form of market learning.

While Smith’s model does not allow agents to observe each other once they have

entered, and thus precludes strategic behaviour, Bolton and Harris focus on the in-

formational externality arising when several agents experiment simultaneously and

observe each other’s actions and outcomes. Felli and Harris (1996) use a variant

of the continuous-time bandit framework to study equilibrium wage dynamics in a

setting where two firms and a worker learn about the worker’s aptitude to perform

firm-specific tasks. We follow these three papers with our specification of Brownian

noise and the reliance on the filtering techniques from Liptser and Shiryayev (1977).

There are two major differences, however: the problem we study is not of the bandit

type, and we allow for a changing environment.3

The chapter is organised as follows. After presenting the model in Section 1, we

proceed to analyse the monopolist’s decision problem as an optimal control problem

with his belief as the state variable: we describe the evolution of this belief over

time (Section 2), then introduce the corresponding Bellman equation and use it to

characterise the value function and optimal quantities (Section 3). The main results

of the chapter are in Section 4 where we show that, because there is a confounding

belief, the parameter space splits into two regions: one in which experimentation is

extreme, the other in which it is moderate. We give a sufficient condition for each

regime, and we consider the limiting cases of no state switching and no discounting.

Section 5 then briefly discusses the simpler scenario when there is no confounding

belief: experimentation is moderate for all parameter values, and the comparative

2In particular, it is straightforward to obtain the incomplete learning result from McLennan
(1984) in the special case of our model where the state transition rates are zero.

3Since the first version of this work was circulated, more authors have adopted the continuous-
time setting. Bergemann and Välimäki (1996, 1997) use a bandit framework to study situations
where two producers and a continuum of consumers learn about the unknown quality of a new good.
Moscarini and Smith (1997) study a single-agent problem of costly sequential experimentation and
optimal stopping.
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statics results are particularly sharp. A summary and concluding remarks follow in

Section 6. Technical results are collected in a series of appendices.

1 The Model

We consider a monopolist producing a non-storable good in continuous time. There

are two possible states of demand for this good, k = 0 or 1. In state k, the expected

per-period demand curve (expected price as a function of quantity) is

p = αk − βkq

where αk and βk are positive constants. The price which the monopolist actually

obtains for his output is the expected price plus some noise term, specified below.

The state changes according to a continuous time Markov process with the transition

probabilities

Pr(kt+∆t = 0 | kt = 0) = 1− λ0∆t+ o(∆t), Pr(kt+∆t = 1 | kt = 0) = λ0∆t+ o(∆t),

Pr(kt+∆t = 0 | kt = 1) = λ1∆t+ o(∆t), Pr(kt+∆t = 1 | kt = 1) = 1− λ1∆t+ o(∆t)

where λk ≥ 0 (k = 0, 1). In particular,

Pr (ks = k ∀s ∈ [t, t+ ∆t] | kt = k) = exp(−λk∆t) ;

see Karlin and Taylor (1981, p.146). During production, the monopolist knows the

parameters αk, βk and λk (k = 0, 1), but not the state of demand; furthermore, the

noise in realised prices prevents him from directly inferring the true state.

We assume that production has constant marginal cost, normalised to zero with-

out loss of generality, so revenue equals profit. At each time t, the monopolist

chooses an output level qt from an exogenously given interval Q = [qmin, qmax] of

feasible quantities.4 The resulting increment in total revenue is

dRt = qt [(αkt − βktqt) dt + σdZt]

4We impose non-negativity constraints on quantities, but not on prices. For reasons of tractabil-
ity, the noise in realised prices will have full support, so negative prices are possible even if we
impose q̄ = min{α0/β0, α1/β1} as the maximal feasible quantity. However, this is still a natu-
ral choice for qmax in many situations. In fact, if q̄ ≥ max{α0/2β0, α1/2β1}, we can interpret
the expected demand curves in the usual way as meaning p = max{αk − βkq, 0}, and argue that
the monopolist will never produce more than q̄ since beyond this quantity, the expected current
revenue and the information content of the price signal decrease.
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where Z is a standard Wiener process independent of the process k, and σ > 0 is a

constant known to the monopolist.5 Thus, dRt = qt dPt where dPt is the increment

of a cumulative price process P given by

dPt = (αkt − βktqt) dt + σdZt .

The monopolist derives all his information about the state of demand from observing

this price process. Consequently, he is restricted to strategies q = {qt} such that the

action taken at time t depends only on the price history up to that time. The set of

all admissible strategies is denoted by Q. (See Appendix A for a formal definition.)

The monopolist’s initial belief about the state of demand is characterised by π,

his subjective probability that k0 = 1. Given this belief, his objective is to choose q

so as to maximise

uq(π) = Eπ

[∫ ∞
0

r e−r t dRt

]
where r > 0 is the monopolist’s discount rate.6 Up to the multiplication by r, which

expresses the pay-off in per-period terms, uq(π) is the expected present value of the

revenue flow from strategy q. Substituting for dRt, we obtain

uq(π) = Eπ

[∫ ∞
0

r e−r t qt [(αkt − βktqt) dt + σdZt]
]

= Eπ

[∫ ∞
0

r e−r t qt [αkt − βktqt] dt
]

since the stochastic integral with respect to the Wiener process Z has zero expec-

tation.

2 Beliefs

Following a strategy q ∈ Q and observing the associated cumulative price process P ,

the monopolist updates his beliefs about the state of demand in a Bayesian fashion.

Let πt denote the subjective probability he assigns to state 1 at time t, that is, the

conditional probability that kt = 1 given the history of the process P up to t.

By the law of iterated expectations, we have

uq(π) = Eπ

[∫ ∞
0

r e−r t Eπt [qt (αkt − βktqt)] dt
]

5This is the continuous-time limit of a revenue equation ∆Rt = qt [(αkt −βktqt) ∆t+ σ
√

∆t εt]
(t = 0,∆t, 2∆t, . . .) with εt ∼ IIN(0, 1). A model of this type is examined in Kiefer (1989b).

6Later, we also consider the limiting case where r = 0.
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where

Eπt [qt (αkt − βktqt)] = qt [(1− πt)α0 + πtα1 − ((1− πt)β0 + πtβ1)qt]

is the expected revenue, given the observed price history, for quantity qt. To simplify

the notation, we introduce the functions

α(π) = (1− π)α0 + πα1,

β(π) = (1− π)β0 + πβ1

which describe the expected intercept and slope of the demand curve given the belief

π, and

R(π, q) = q [α(π)− β(π)q]

which is the corresponding expected revenue from setting quantity q. Thus, we have

the representation

uq(π) = Eπ

[∫ ∞
0

r e−r t R(πt, qt) dt
]

(1)

which does not involve the stochastic variable kt any more; instead, expected total

pay-off is described as a function of beliefs alone.

This suggests looking at strategies based exclusively on the information contained

in beliefs. In the next section we show that optimal strategies are in fact stationary

Markov strategies, namely ones where the quantity chosen at time t is a (time-

invariant) function of the belief at that time, that is, qt = q(πt). However, first we

have to investigate how beliefs evolve over time.

To this end, we define

λ(π) = (1− π)λ0 − πλ1

and

Σ(π, q) = σ−1π(1− π)(∆α−∆β q)

where ∆α = α1 − α0 is the difference in intercepts and ∆β = β1 − β0 the difference

in slopes between the two expected demand curves. Then, it follows from Liptser

and Shiryayev (1977, Chapter 9) that given a strategy q ∈ Q, the beliefs evolve

according to the filtering equation

dπt = λ(πt) dt+ Σ(πt, qt) dZ
q
t (2)

where dZq
t is the increment of a Wiener process. In other words, the change in
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beliefs dπt is normally distributed with mean λ(πt) dt and variance Σ2(πt, qt) dt.

Equation (2) emphasises the two separate forces which drive the updating. The

drift term λ(πt) dt takes account of the possibility that the state may change over the

next infinitesimal period of time. Given the current belief π, the monopolist assigns

probability 1 − π to state 0, hence probability (1 − π)λ0 to a transition from state

0 to state 1 over the next instant dt; in the same way, he assigns probability πλ1 to

a transition from state 1 to state 0. The first possibility increases the probability of

being in state 1 after the time dt has elapsed, the second reduces it, and the combined

effect leads to the drift term in (2). If at least one of the transition intensities λ0, λ1

is nonzero, the linear function λ is downward sloping and vanishes at the invariant

belief

π̃ =
λ0

λ0 + λ1

.

In view of this, we let Λ = λ0 + λ1 and rewrite this function as

λ(π) = −Λ (π − π̃) .

This representation shows that state switching introduces mean reversion into the

evolution of beliefs. Throughout the chapter, we shall fix an invariant belief π̃ and

use the parameter Λ to measure the intensity of demand curve switches, and hence

the instability of the environment in which the monopolist operates.

The diffusion term Σ(πt, qt) dZ
q
t captures the influence of the observed price

signal on the evolution of beliefs. Zq being a Wiener process, this part of the

updating is completely unpredictable. Intuitively, this expresses the fact that the

current belief already incorporates everything that there is to know, so any change

must come as a surprise. The representation

dZq
t = σ−1

(
(αkt − βktqt) dt + σdZt − [α(πt)− β(πt)qt] dt

)
(3)

from Liptser and Shiryayev (1977, Chapter 9) confirms this, showing that the change

in beliefs depends on the difference between the realised price, (αkt−βktqt) dt + σdZt,

and the expected price, [α(πt) − β(πt)qt] dt. The greater the spread ∆α − ∆β qt

between the two demand curves, and the lower the noise level σ, the more informative

is the price signal, and the more pronounced is the change of beliefs after the signal

is observed. There is the possibility of a completely uninformative signal if q̂ =

∆α/∆β is a feasible quantity – the expected price for this quantity is always the

same, regardless of the current state of demand or the current belief. Accordingly,

Σ(π, q̂) = 0 for all π. On the other hand, for π = 0 or 1 the agent is subjectively
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certain of the current state and ignores the price signal: Σ(0, q) = 0 and Σ(1, q) = 0

no matter which action is taken.

Finally, note that we can simplify the expression on the right-hand side of (3) to

σ−1(kt − πt)(∆α−∆β qt) dt + dZt and use this to replace dZq
t in (2):

dπt =
{
λ(πt) + σ−2πt(1− πt)(kt − πt)(∆α−∆β qt)

2
}
dt+ Σ(πt, qt) dZt . (4)

Looking at the term which contains the factor kt − πt, we see that whenever the

signal is informative and the agent is not already subjectively certain, his belief is

pulled towards the truth.

3 The Bellman Equation

The representation (1) for the pay-off uq(π), the filtering equation (2) for the evo-

lution of beliefs and the fact that Zq is a Wiener process allow us to consider the

monopolist’s decision problem as a problem of optimal control of a diffusion pro-

cess, the diffusion in question being the process of beliefs. Following the standard

approach to this type of control problem,7 we now turn to the corresponding value

function and Bellman equation.

As usual, the value function is defined as

u∗(π) = sup
q∈Q

uq(π) (5)

for π ∈ [0, 1]. It is clearly bounded and, being the upper envelope of linear pay-off

functions uq, it is also continuous and convex, convexity expressing the fact that

information is valuable to the agent.8 (See Appendix B for details.)

Standard results imply that the value function has further regularity properties,

principally that it has a continuous first derivative on [0, 1], and a non-negative

locally bounded second derivative almost everywhere on ]0, 1[. Moreover, u∗ is a

solution of the Bellman equation

max
q∈Q

{
1
2

Σ2(π, q)u′′(π) + λ(π)u′(π)− r u(π) + r R(π, q)
}

= 0 (6)

7See for instance Fleming and Rishel (1975) and Krylov (1980).
8Suppose that new information could shift the monopolist’s prior to π1 with probability η and to

π2 with probability 1−η. Then he obtains the expected pay-off u∗(ηπ1+(1−η)π2) if he must choose
a strategy without the new information, while he can expect the pay-off ηu∗(π1) + (1 − η)u∗(π2)
if he is allowed to choose after the information is revealed. The latter dominates the former if and
only if u∗ is convex.
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almost everywhere; see Appendix C for details.

We give a brief, heuristic derivation of the Bellman equation. From the Principle

of Optimality, we see that u∗ satisfies

u(π) = max
q∈Q

{
r R(π, q) dt + e−r dt Eπ [u(π + dπ)]

}
(7)

where the first term is the expected current pay-off, and the second term is the dis-

counted expected continuation value. With regard to the latter, we can approximate

e−r dt by 1− r dt, and, when u is sufficiently differentiable, Itô’s lemma gives us

Eπ[u(π + dπ)] = u(π) + u′(π) Eπ[dπ] + 1
2
u′′(π) Eπ[(dπ)2] .

From equation (2), we see that Eπ[dπ] = λ(π) dt and Eπ[(dπ)2] = Σ2(π, q) dt. The

discounted expected continuation value is therefore

(1− r dt)
(
u(π) + λ(π)u′(π) dt+ 1

2
Σ2(π, q)u′′(π) dt

)
.

Substituting this into (7) and ignoring terms of order (dt)2, we obtain

u(π) = max
q∈Q

{
r R(π, q) dt+ u(π)− r u(π) dt+ λ(π)u′(π) dt+ 1

2
Σ2(π, q)u′′(π) dt

}
which, after simplifying, yields the Bellman equation (6).

The Bellman equation is our main tool for constructing optimal strategies which

will in fact be stationary Markov strategies. Such a Markov strategy is derived from

a policy function q : [0, 1] → Q by selecting the quantity qt = q(πt) when πt is

the belief at time t. A policy function is admissible if this procedure leads to an

admissible strategy q ∈ Q for any given initial belief π0; in Appendix A, we present

some regularity conditions which ensure that a given policy function is admissible,

principally that either it is Lipschitz continuous, or that it is measurable and the

information content of the price signal, as given by ∆α−∆β q(π), is bounded away

from zero.

We can now state the following version of the standard verification theorem.

Suppose that u : [0, 1] → IR solves the Bellman equation (subject to boundary

conditions which we shall discuss in the next subsection); suppose further that

q : [0, 1]→ Q is an admissible policy function such that

q(π) ∈ arg max
q∈Q

{
1
2

Σ2(π, q)u′′(π) + λ(π)u′(π)− r u(π) + r R(π, q)
}

for all π. Then u is the value function and q an optimal policy; see Appendix C.
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Next, we discuss the economics behind the Bellman equation.

3.1 Information and Experimentation

Some economic insights can be gained from rewriting the Bellman equation as

u(π) = λ(π)
u′(π)

r
+ max

q∈Q

{
Σ2(π, q)

u′′(π)

2r
+ R(π, q)

}
(8)

where the maximisation problem immediately indicates the fundamental trade-off

between information gathering and myopic profit maximisation. We look at the

three terms on the right-hand side of (8) in turn.

The first term, λ(π)u′(π)/r, represents the contribution purely owing to state

switching. According to (2), λ(π) indicates the magnitude and direction of the likely

change in belief due to possible state switching, and this (passively acquired) element

has the shadow price u′(π)/r. The resulting contribution to the value function is

positive if the belief is expected to move in the direction which increases value.

The next term, Σ2(π, q)u′′(π)/2r, represents the value of information actively

acquired by the agent. Indeed, the discussion after equation (3) above shows that

Σ2(π, q) provides a measure of the informativeness of the price signal, taking into

account the precision of the current belief. This informativeness is valued with

the shadow price u′′(π)/2r. Note that for ∆β 6= 0 and u′′(π) > 0, the value of

information at π 6= 0, 1 is a strictly convex quadratic in q with a global minimum

of 0 at q̂ = ∆α/∆β. In particular, it increases strictly with the distance between q

and q̂.

The last term, R(π, q), represents the myopic pay-off. Note that R(π, q) is a

strictly concave quadratic in q with a global maximum of

m(π) = max
q
R(π, q) =

α(π)2

4β(π)

at the quantity

qm(π) = arg max
q
R(π, q) =

α(π)

2β(π)
.

We call the functions m and qm the myopic optimum pay-off and the myopic policy

function, respectively. As

R(π, q) = m(π)− β(π)[q − qm(π)]2 , (9)

the myopic pay-off decreases strictly as the distance between q and qm(π) increases.
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So, the agent’s problem is to choose a quantity that maximises the sum of the

value of information actively acquired and the myopic pay-off. This sum is also a

quadratic in q and its convexity/concavity depends on whether or not the convexity

of the value of information term dominates the concavity of the myopic pay-off. If it

does, then an extreme quantity (qmax or qmin) will be chosen; otherwise, the optimal

choice can be an interior solution. This is the key to the discontinuity in optimal

behaviour which we will find in Section 4.

Throughout the chapter, we assume that Qm, the range of the myopic policy

function qm, is contained in Q, so the myopically optimal quantity is always in the

monopolist’s choice set. Evaluating the maximand in (8) for the value function u∗
at the quantity q = qm(π), we thus obtain the inequality

u∗(π)− λ(π)
(u∗)′(π)

r
≥ m(π) . (10)

The monopolist is said to experiment at the belief π if he deviates from the quan-

tity qm(π). This might render the price signal more informative, but it entails an

opportunity cost as is evident from (9). The Bellman equation shows that such a

deviation is profitable at a belief π if and only if the inequality (10) is strict at that

belief.

Economic intuition suggests that the monopolist will not experiment when he

is subjectively certain of the current state of demand. For π tending to 0 or 1, we

therefore expect that the value of information Σ2(π, q) (u∗)′′(π)/2r tends to zero for

all possible quantities q. If this is the case, then the myopic quantity qm(0) or qm(1)

will be optimal in (8) for π = 0 or 1, respectively, and formally taking limits in (8),

we obtain the following boundary conditions for the value function:

u∗(0)− λ(0)
(u∗)′(0)

r
= m(0) , u∗(1)− λ(1)

(u∗)′(1)

r
= m(1) .

This intuition is confirmed in Appendix C where we show that these boundary

conditions are indeed satisfied by the value function. Hence the agent does not

experiment at the beliefs 0 and 1. We will see that there is at most one non-

degenerate belief at which the inequality (10) might fail to be strict; this belief is

identified next.

3.2 The Confounding Quantity and Belief

The quantity at which the demand curves intersect is ∆α/∆β, denoted by q̂, and

the corresponding price is (α0β1−α1β0)/∆β, denoted by p̂. Unless stated otherwise,
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Figure 3.1: The two demand curves

we will make the following

Assumption The quantity q̂ lies strictly between qm(0) and qm(1).

To be more concrete, we will assume without loss of generality that the demand

curve in state 1 is steeper than the demand curve in state 0, that is, ∆β > 0.

With this convention, the assumption amounts to the inequalities ∆α > 0 and

qm(0) > q̂ > qm(1), which implies that p̂ 6= 0; see Figure 3.1.

We saw in Section 2 that choosing the quantity q̂ leads to a completely uninfor-

mative price signal – the expected price for this quantity is p̂ regardless of the state

of demand or the current belief. As this constitutes a confounding action in the

sense of Easley and Kiefer (1988), we shall refer to q̂ as the confounding quantity.

If the monopolist were to choose q̂, then he would acquire no information, and so

for this action to be optimal it must maximise his myopic pay-off; that is, given the

belief π, q̂ can be optimal only if q̂ = qm(π). Straightforward algebra shows strict

monotonicity of the myopic policy function,9 so there is a unique belief, denoted by

π̂ and called the confounding belief, such that qm(π̂) = q̂.10

For future reference, we define m̂ = p̂q̂. Clearly, m̂ = R(π, q̂), so we can interpret

9Differentiating qm leads to (qm)′(π) = − 1
2 p̂∆β/β(π)2 and hence qm is strictly monotonic

whenever p̂ 6= 0.
10A simple calculation reveals that π̂ = α0/∆α− 2β0/∆β.
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it as the expected revenue, given any belief π, from choosing the quantity q̂. In

particular, m̂ = m(π̂), and it is easy to verify that this is the global minimum of

the myopic pay-off function m; in fact, m is strictly decreasing on [0, π̂] and strictly

increasing on [π̂, 1].

We noted in the previous subsection that for any current belief π, the agent

maximises the sum of two quadratics, one convex centred on q̂ and one concave

centred on qm(π). At the belief π̂, these quadratics are thus centred on the same

quantity, as is their sum. Therefore, at the confounding belief we expect either

extreme experimentation (as usual when the combined quadratic is convex) or no

experimentation (when the combined quadratic is concave). As noted above, which

of these two possibilities arises will depend on whether (10) is a strict inequality at

π̂ (extreme experimentation), or holds with equality at π̂ (no experimentation).

Note that under our assumption, the situation faced by the monopolist satisfies the

two necessary conditions for experimentation identified by Mirman, Samuelson and

Urbano (1993) in a two-period framework: experimentation is informative since a

change in quantity affects the informativeness of the price signal (∆β 6= 0); and

information is valuable in the sense that different quantities are optimal in the two

states (qm(0) 6= qm(1)). We briefly look at the two special cases of our model where

one or other of the conditions is violated.

The case of uninformative experimentation. If we suppose that the two

demand curves have the same slope parameter, β0 = β1, then the monopolist is

facing an unknown and possibly changing intercept.11 As the demand curves are

parallel, a change in output does not affect the spread between the two possible

price distributions, so the quantity choice has no impact on the informativeness of

the price signal. This renders experimentation uninformative, so the agent has no

incentive to deviate from the myopic optimum. Indeed, for ∆β = 0, equation (8)

reduces to

u(π) = λ(π)
u′(π)

r
+
(
σ−1π(1− π) ∆α

)2 u′′(π)

2r
+ max

q∈Q
R(π, q),

implying that qm(π) is optimal for all π.

The case of worthless information. If we suppose that one and the same

quantity is optimal under either demand curve, then qm(0) = qm(1), which we denote

by q‡. (This happens if and only if the two demand curves intersect exactly on the

quantity axis, that is, p̂ = 0 or, equivalently, α0/β0 = α1/β1.) In this situation,

11Of course, we assume α0 6= α1 to avoid trivialities.
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information is clearly worthless, and we expect the optimal policy to be q(π) = q‡,

which is constant over time and across beliefs. To verify this, note that the myopic

optimum pay-off function m is linear in this case, so we can find a linear solution u to

the Bellman equation.12 As u′′(π) = 0 throughout, there is no value to information,

hence again no incentive to experiment.

In fact, the two conditions that experimentation is informative (∆β 6= 0) and that

information is valuable (qm(0) 6= qm(1)) are sufficient for experimentation to occur

at almost all beliefs π. To see this, note that qm(0) 6= qm(1) implies strict convexity

of the myopic pay-off function m, which in turn implies strict convexity of the value

function u∗.13 In particular, we have (u∗)′′ > 0 almost everywhere. As ∆β 6= 0,

this means that the myopic quantity qm(π) violates the first order condition for the

maximisation problem in (8) at almost all π. At the same time, this shows that the

inequality (10) is strict almost everywhere.

3.3 A Differential Equation for the Value Function

The next step in solving the agent’s problem is to use the Bellman equation to

derive an ordinary differential equation for the value function. The obvious way to

do this is in two stages: first calculate optimal quantities in terms of π, u(π), u′(π)

and u′′(π); then insert these back into the Bellman equation and solve for u′′(π).

However, starting with a simple reformulation of the Bellman equation enables us

to get to the desired ODE more directly.

Introducing the notation

τ(π) = ∆β2 σ−2 π2(1− π)2

so that Σ2(π, q) = τ(π) [q − q̂]2, we can rewrite (8) as

u(π)− λ(π)
u′(π)

r
= max

q∈Q

{
τ(π) [q − q̂]2 u

′′(π)

2r
+R(π, q)

}
. (11)

As R(π, q̂) = m̂, q̂ is suboptimal in (11) as long as u(π)− λ(π)u′(π)/r > m̂. Under

12In fact, m itself solves the Bellman equation if Λ = 0.
13If we assume that u∗ is not strictly convex, i.e., there is some interval where it is linear, then,

in this interval, (u∗)′ is constant and (u∗)′′ is 0. Referring to the maximisation problem in (8), we
see that on the one hand, (u∗)′′(π) = 0 implies that the maximum is m(π) for all π in this interval,
while on the other hand, (u∗)′ being constant implies that both the other two terms are linear,
which contradicts the strict convexity of m.
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this condition, (11) is then easily seen to be equivalent to

τ(π)
u′′(π)

2r
= min

q∈Q−{q̂}

u(π)− λ(π)u′(π)/r −R(π, q)

[q − q̂]2
, (12)

and a quantity q∗ ∈ Q − {q̂} attains the maximum in (11) if and only if it attains

the minimum in (12).14

With v being a generic variable standing for u(π)−λ(π)u′(π)/r, this observation

effectively reduces the analysis of the Bellman equation to the analysis of the function

G(π, v) = min
q∈Q−{q̂}

v −R(π, q)

[q − q̂]2
(13)

and the correspondence

O(π, v) = arg min
q∈Q−{q̂}

v −R(π, q)

[q − q̂]2

for (π, v) lying in the set

A = {(π, v) ∈ ]0, 1[ ×IR : v ≥ m(π) and v > m̂} .

Note that the condition v > m̂ rules out exactly the point (π̂, m̂), i.e. the lowest

point on the graph of the myopic pay-off function m; see Figure 3.2.

The function G is well-defined on A, that is, O is nonempty-valued, and we shall

see below that G is continuous on A.15 This implies that the value function u∗ is

twice differentiable and solves the ODE

τ(π)
u′′(π)

2r
= G

(
π, u(π)− λ(π)

u′(π)

r

)
(14)

at least on ]0, 1[ −{π̂}, and on the whole of ]0, 1[ if u∗(π̂)− λ(π̂)(u∗)′(π̂)/r > m̂.16

Conversely, we can rephrase the verification theorem as follows. Suppose the

function u has a continuous first derivative on [0, 1] and solves (14) on ]0, 1[ −{π̂}
with the boundary conditions u(0)− λ(0)u′(0)/r = m(0) and u(1)− λ(1)u′(1)/r =

14A detailed derivation of this equivalence is given in Appendix D.
15We shall give an explicit expression for G which makes continuity obvious. Alternatively, we

could show continuity by applying standard arguments which are used in the proof of Berge’s
Maximum Theorem.

16As G(π, u∗(π)−λ(π)(u∗)′(π)/r is continuous in π as long as u∗(π)−λ(π)(u∗)′(π)/r > m̂, this
statement follows directly from Corollary C.1 in the Appendix.
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Figure 3.2: The four regions

The convex curve is the myopic pay-off v = m(π).

m(1); moreover, suppose that there is an admissible policy function q∗ such that

q∗(π) ∈ O
(
π, u(π)− λ(π)

u′(π)

r

)

for all π 6= π̂. Then u = u∗, and the policy function q∗ is optimal. (This follows

directly from Proposition C.2 in the Appendix.)

3.4 Optimal Quantities

We turn now to a more explicit analysis of the function G and the optimal quan-

tity correspondence O. We just outline the general structure; details are given in

Appendix D. The area A can be divided into four regions by rays emanating from

(π̂, m̂), as in Figure 3.2. The regions which border on the curve v = m(π) are as-

sociated with the minimisation problem in (13) having an interior solution, and the

other two are associated with it having a corner solution. In brief, moving clockwise

from the left, we shall have: interior solution, corner solution qmax, corner solution

qmin, interior solution.

The leftmost ray which separates the first two regions goes up and to the left

from (π̂, m̂) and is determined by the borderline case where the first order condition
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for the minimisation problem in (13) holds for q = qmax. Similarly, the rightmost

ray which separates the last two regions goes up and to the right and is determined

by the borderline case where the first order condition holds for q = qmin. Interior

solutions are obtained in the regions (denoted by Aint,` and Aint,r) which lie below

these rays, and are given by17

O(π, v) = qm(π) +
v −m(π)

m(π)− m̂
[qm(π)− q̂] . (15)

Note that this is the myopic quantity plus an adjustment away from q̂, i.e. in the

direction of more informative price signals. Evaluating the minimand in (13) at

these quantities, we find

G(π, v) = β(π)
v −m(π)

v − m̂
(16)

in the two regions associated with interior solutions.

Corner solutions are obtained in the area between the leftmost and rightmost

rays. This area splits into two regions along a third, central ray (denoted by Rc)

which is determined by the borderline case when qmax and qmin are both optimal and

so give the same value in (13). We have O(π, v) = qmax between the left and the

central ray, O(π, v) = {qmax, qmin} along the central ray, and O(π, v) = qmin between

the central and the right ray. The corresponding expressions for G are

G(π, v) =
v −R(π, qmax)

[qmax − q̂]2
and G(π, v) =

v −R(π, qmin)

[q̂ − qmin]2
. (17)

Given the representations (16) – (17) on the respective regions, it is now straight-

forward to verify that G is continuous on A.18

3.5 The Adjusted Value Function

The above results show that optimal quantities depend only on the graph of the

function

v∗(π) = u∗(π)− λ(π)
(u∗)′(π)

r
(18)

which we call the adjusted value function (adjusted for the contribution of state

switching). Since knowing the adjusted value function will be enough to determine

optimal policies, our next step is to transform the ODE (14) for u∗ into an ODE for

17When O(π, v) is a singleton, we write O(π, v) = q rather than O(π, v) = {q}.
18Note, however, that it cannot be extended continuously into the point (π̂, m̂) that we excluded

from the set A. For a sequence of points (πn, vn) in A converging to (π̂, m̂) along the graph of
the myopic pay-off function m, for example, limn→∞G(πn, vn) = 0; for a sequence converging to
(π̂, m̂) along the central ray, on the other hand, this limit is β(π̂).
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v∗. Note that the boundary conditions become very simple: v∗ and m coincide at

the beliefs 0 and 1. Note also that once we know v∗, we can recover u∗ by integrating

(18), that is, by solving a linear ODE.19

We formally differentiate the equation v(π) = u(π) − λ(π)u′(π)/r twice, each

time using the relationship τ(π)u′′(π)/2r = G(π, v(π)) to replace u′′ with an expres-

sion that involves only π and v. This yields the following second-order ODE for the

adjusted value function:

τ(π)
v′′(π)

2
= r G(π, v(π)) + Λ

{
f(π)G(π, v(π)) + (π − π̃)

d

dπ
G(π, v(π))

}
(19)

with

f(π) = 2− (π − π̃)
τ ′(π)

τ(π)
= 2

(
π̃(1− π)

π
+

(1− π̃)π

1− π

)
.

As for differentiability of G, it is easy to check that G is continuously differen-

tiable in the interior of A with the exception of the central ray separating the regions

where qmax or qmin is optimal. We will therefore consider the ODE (19) separately

to the left and to the right of that ray.

Summarising the developments so far, we can say that the adjusted value function

solves (19) on ]0, 1[ with the possible exception of the confounding belief π̂ or any

belief where the graph of v∗ crosses the central ray. Conversely, if we have a solution

(in the sense of the previous sentence) v of (19) with the above boundary conditions

and such that q∗(π) = O(π, v(π)) defines an admissible policy function, then v = v∗

and the policy q∗ is optimal. It is mainly this version of a verification theorem that

we will use below.

When the optimisation problem in the Bellman equation has an interior solution,

G(π, v) is given by (16), so the ODE (19) becomes

τ(π)
v′′(π)

2
= β(π)

{(
r + Λ

[
f(π) + (π − π̃)

∆β

β(π)

])
v(π)−m(π)

v(π)− m̂

+Λ (π − π̃)

[
v(π)−m(π)

v(π)− m̂

]′}
(20)

in this case. Many of the results obtained in the following sections are based on a

detailed investigation of this particular differential equation.

19In fact, the method of variation of constants shows that for Λ > 0 and a continuous function
v,

u(π) = (r/Λ) |π − π̃|−r/Λ sign(π − π̃)

∫ π

π̃

|ξ − π̃|r/Λ−1 v(ξ) dξ

is the unique bounded solution of the ODE u(π)− λ(π)u′(π)/r = v(π).
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While we have derived the above statements for a discount rate r > 0 only, they

continue to be valid in the limiting case of no discounting (r = 0) once we use a

definition of the adjusted value function that corresponds to the so-called catching-

up criterion; we refer the reader to Appendix E for details.20 The undiscounted case

provides a useful benchmark; in fact, economic intuition suggests that the optimal

experimentation strategy of an agent with discount rate r > 0 will be ‘in between’

the two extremes given by myopic behaviour (corresponding to r =∞), on the one

hand, and the behaviour of an infinitely patient agent (r = 0), on the other hand.21

4 Experimentation Regimes

Our assumption that the confounding quantity q̂ lies in the interior of Qm brings

with it two complications. A first complication arises from the fact that it might be

optimal to choose q̂ at π̂. As we have already seen, choosing q̂ leads to a completely

uninformative price signal, makes the diffusion coefficient in the updating equation

(2) vanish and thereby causes a singularity in the Bellman equation and the related

ODEs. Moreover, there is a ‘break’ in the ODE for the adjusted value function along

the central ray.

A second complication arises from the fact that the direction of increasing infor-

mativeness of the price signal is ambiguous. Assume for example that the current

belief is slightly higher than π̂, so the myopically optimal quantity is slightly below

q̂. The true optimum will usually involve some deviation from the myopic quantity,

motivated by the desire to render observed prices more informative, and näıve in-

tuition suggests that the monopolist might wish to move further away from q̂ by

reducing quantity. However, it could also make sense to increase quantity beyond q̂

and thus achieve a wider spread between the two possible price distributions there.

For beliefs close to the boundaries of the unit interval, on the other hand, we do

expect the näıve intuition to be borne out. Thus, we expect optimal experimenta-

tion to involve quantity expansion for beliefs π close to 0, and quantity reduction

for beliefs π close to 1. The optimal policy as a function of beliefs will then have to

move downward past q̂ as π increases, and, in doing so, will either select q̂ at π̂, or

avoid q̂ altogether by jumping past it.

Confirming this intuition, we shall find two different regimes of optimal exper-

20See Dutta (1991) for a discussion of undiscounted decision criteria in a discrete time framework.

21Moreover, it is well known that the undiscounted case tends to be mathematically more
tractable than the discounted case. See for instance Bolton and Harris (1993) and Harris (1988).
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imentation. In the moderate experimentation regime, the optimal policy selects

quantities only in Qm, the range of the myopic policy, and it selects q̂ at π̂. In the

extreme experimentation regime, each of the quantities qmax and qmin is chosen on

a set of beliefs of positive measure; in particular, qmax or qmin will be chosen at π̂,

and the optimal policy will exhibit a jump past q̂ from one extreme quantity to

the other. These regimes are further distinguished by the sample path behaviour

of posterior beliefs and optimal quantities. While extreme experimentation implies

that any posterior belief can be reached with positive probability, moderate exper-

imentation restricts posterior beliefs to lie on one side of π̂ in the long run, so the

monopolist ends up producing quantities from only part of Qm.

After characterising the adjusted value function and the optimal policy in the

two regimes, we will show that extreme experimentation arises for low values of r, Λ

and σ, and moderate experimentation for high values. Near the boundary between

the corresponding parameter regions, a small change in any of these parameters can

trigger a change in the experimentation regime, hence a large discontinuous change

in the monopolist’s strategy and the resulting sample path behaviour of beliefs and

quantities produced. These results are particularly clear in the limiting cases where

at least one of the parameters r and Λ is zero. In the undiscounted case with state

switching (r = 0 and Λ > 0) we will establish the existence of a critical switching

intensity that separates moderate from extreme experimentation. Similarly, we will

find a critical discount rate in the discounted case without state switching (r > 0 and

Λ = 0). Finally, the simple benchmark where the monopolist is infinitely patient

(r = 0) and the environment does not change (Λ = 0) allows a closed-form solution

for the optimal policy.

Throughout this section, we fix demand curve parameters α0, α1, β0 and β1

such that the confounding quantity q̂ lies in the interior of Qm; an invariant belief

π̃ ∈ ]0, 1[ −{π̂} is also held fixed.

4.1 Moderate versus Extreme Experimentation

The discussion in Section 3.2 suggests that the monopolist’s behaviour will depend

crucially on whether the inequality v∗(π̂) ≥ m̂ for the adjusted value function at

the confounding belief is strict or holds with equality. The following theorem char-

acterises the adjusted value function in either case. It is the first step towards a

description of the corresponding optimal behaviour.

Let (Dπ̃v)(π̂) denote the one-sided derivative of a function v at π̂ in the direction

of π̃, and (Dov)(π̂) the one-sided derivative in the opposite direction. Recall the
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structure of the ODE (19) for the adjusted value function, and in particular its

special case (20) associated with interior solutions of the optimisation problem in

the Bellman equation.

Theorem 4.1 If v∗(π̂) > m̂, then the adjusted value function is the unique differ-

entiable function which solves the ODE (19) on {π ∈ ]0, 1[ : (π, v∗(π)) 6∈ Rc} subject

to v∗(π) = m(π) at π = 0, 1 and v∗ > m on ]0, 1[.

If v∗(π̂) = m̂, on the other hand, then the adjusted value function is the unique

solution of the ODE (20) on ]0, 1[ −{π̂} subject to v∗(π) = m(π) at π = 0, π̂, 1,

v∗ > m on ]0, 1[ −{π̂}, and (Dπ̃v
∗)(π̂) = 0; moreover, it is strictly convex with

(v∗)′′ > 0 on ]0, 1[ −{π̂}.

Note that the statement for v∗(π̂) = m̂ does not say anything about

the one-sided derivative (Dov
∗)(π̂). This allows for the possibility that

(Dov
∗)(π̂) 6= 0 and hence for the adjusted value function to have a kink

at π̂.

Proof: For v∗(π̂) = m̂, the statements on convexity and the one-sided derivative

(Dπ̃v
∗)(π̂) are shown in Appendix F; see Proposition F.2. Given v∗(π̂) = m̂ and the

boundary conditions, convexity entails (π, v∗(π)) ∈ Aint,` ∪ Aint,r for all π ∈ ]0, 1[ −{π̂}.
Sections 3.3 and 3.5 therefore imply that v∗ solves (20) on ]0, 1[ −{π̂} subject to the stated

conditions. If v is another solution of (20) on ]0, 1[ −{π̂} with v(π) = m(π) at π = 0, π̂, 1

and (Dπ̃v)(π̂) = 0, then the construction of optimal strategies in the proof of Proposi-

tion 4.2 below and our verification theorem imply that v = v∗. Finally, if there were a

π 6= 0, π̂, 1 such that v∗(π) = m(π), then v∗ − m would have a local minimum there,

hence (v∗)′′(π) ≥ m′′(π) > 0. But v∗(π) = m(π) would imply (u∗)′′(π) = 0 by ODE (14)

(or its undiscounted variant), hence (u∗)′′ would have a local minimum at π. This would

require (u∗)′′′(π) = 0 and, since (v∗)′′(π) is a linear combination of (u∗)′′(π) and (u∗)′′′(π),

we would have (v∗)′′(π) = 0 – a contradiction.

For v∗(π̂) > m̂, Sections 3.3 and 3.5 imply that v∗ is once continuously differentiable

and solves the ODE (19) on {π ∈ ]0, 1[ : (π, v∗(π)) 6∈ Rc}. Given another solution v with

this property and the same boundary conditions, the arguments in the proof of Proposition

4.1 below together with the verification theorem imply again that v = v∗. Finally, the

same argument as above shows v∗ > m for all beliefs π 6= 0, 1 with (π, v∗(π)) 6∈ Rc; this

implies v∗ > m on the whole of ]0, 1[.

The following two propositions describe the optimal behaviour for v∗(π̂) > m̂

and v∗(π̂) = m̂, respectively.

Proposition 4.1 (Extreme Experimentation) If v∗(π̂) > m̂, then the optimal

policy function prescribes each of the extreme quantities qmax and qmin on a set of
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beliefs of positive measure, one of which contains π̂, and it is continuous except for a

jump from one extreme quantity to the other at any belief π such that (π, v∗(π)) ∈ Rc.

The corresponding process of posterior beliefs is regular on ]0, 1[, that is, starting

from any point in this interval, any other point in it may be reached with positive

probability.

Proof: The policy function q∗ obtained by extending O(π, v∗(π)) continuously into

π = 0 and 1 and selecting either qmax or qmin at any π where (π, v∗(π)) ∈ Rc is piecewise

continuous with q∗(π) − q̂ bounded away from zero, hence admissible. Optimality now

follows from the verification theorem in Section 3.5. Clearly, q∗(π) = qmax on a set of

positive measure, and the same is true for qmin. It is also clear that one of these sets

contains π̂. The fact that q∗(π) − q̂ is bounded away from zero also implies regularity of

the process of posterior beliefs.

Whenever v∗(π̂) > m̂, we thus find extreme experimentation in the sense that

the quantities qmax and qmin are optimal for non-negligible sets of beliefs. Moreover,

optimal quantities are always some distance away from the confounding quantity, so

the information content of the price signal observed by the monopolist is bounded

away from zero. The resulting process of posterior beliefs can therefore reach any

point in the open unit interval with positive probability.

An example of extreme experimentation is shown in Figure 3.4 which has been

calculated for r = 0.1 and Λ = 0.05.22 The bold line in the upper panel is the

graph of the adjusted value function v∗, the thin line that of the myopic pay-off

function m, and the thick grey line that of the value function u∗. (The upper panel

also shows the three rays introduced in Section 3.4.) In the lower panel, the bold

line is the optimal policy function q∗, while the thin line is the myopic policy qm.

The adjusted value is strictly higher than the myopic pay-off at all non-degenerate

beliefs, and as v∗ crosses each ray in turn, q∗ first reaches qmax, then jumps to qmin,

and finally moves away from qmin; the jump occurs after π̂ because the central ray

goes up and to the right for the demand curve parameters and the range of feasible

quantities used in this example. Note that for beliefs between π̂ and the jump, the

monopolist generates a more informative price signal by choosing q∗ on the side of

q̂ opposite to where qm lies.

22In this and all the subsequent figures at the end of the chapter, the demand curve parameters
are α0 = 40, β0 = 2/3, α1 = 60 and β1 = 3/2, implying qm(0) = 30, qm(1) = 20, q̂ = 24
and π̂ = 0.4. The range of feasible quantities is defined by qmin = 40/3 and qmax = 40, the
noise parameter is σ = 5, and the invariant belief is π̃ = 0.5. Only r and Λ vary across figures.
The adjusted value function is calculated as a numerical solution to the ODE (19) subject to the
boundary conditions v∗(0) = m(0) and v∗(1) = m(1), and optimal quantities are then determined
through the optimal policy correspondence. Details of the numerical procedure are reported in
Appendix H.
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The corresponding sample path behaviour is illustrated in Figure 3.5. The upper

panel shows the evolution of the agent’s belief starting from the prior π0 = 0.25,

the lower panel the associated quantities. The bold dashed line in either panel

represents the true state, the initial state being k0 = 0. By the time of the first

state change, the agent’s belief has predominantly been between 0 and 0.2. After

the state change, the belief moves relatively quickly in the direction of the new

state and eventually reaches π̂. This starts a phase of intense experimentation with

frequent jumps between qmax and qmin. At the end of this phase, the belief leaves

the neighbourhood of π̂ to move closer to the true state. This pattern is repeated

each time the state switches, and the true state is tracked quite well. Observe that

the relatively stable environment induces high variability in the agent’s actions.

Next, we turn to the case where v∗(π̂) = m̂. This is the more complicated case

since it involves the ‘singularity’ at (π̂, m̂) of the ODE for v∗. We formulate the next

result for Λ > 0; we shall obtain the analogous result for Λ = 0 later, in Section 4.3.

Proposition 4.2 (Moderate Experimentation) Let Λ > 0 and v∗(π̂) = m̂.

Then the optimal policy assumes values in Qm only and selects q̂ at π̂. With prob-

ability one, the resulting process of posterior beliefs is, in the long run, confined to

the subinterval ]0, π̂[ or ]π̂, 1[ which contains π̃, and the monopolist ends up choosing

quantities in either ]q̂, qm(0)[ or ]qm(1), q̂[ only.

More precisely, the proof will show that the optimal policy function is

differentiable if v∗ is differentiable at π̂, while it has a single jump at π̂

if v∗ has a kink.

Proof: For π ∈ ]0, 1[ −{π̂}, we have (π, v∗(π)) ∈ Aint,` ∪ Aint,r by convexity of v∗ and

hence

O(π, v∗(π)) = qm(π) +
v∗(π)−m(π)

m(π)− m̂
[qm(π)− q̂] = q̂ +

v∗(π)− m̂
m(π)− m̂

[qm(π)− q̂]

from (15). Strict convexity of v∗ also implies that v∗ < m` on ]0, π̂[ and v∗ < mr on

]π̂, 1[ with m` and mr being the functions whose graphs are the straight lines joining the

point (π̂, m̂) with the points (0,m(0)) and (1,m(1)), respectively. It is straightforward

to verify that O(π,m`(π)) = qm(0) on ]0, π̂[ and O(π,mr(π)) = qm(1) on ]π̂, 1[. Since

v∗ > m on ]0, 1[ −{π̂}, we conclude that qm(π) < O(π, v∗(π)) < qm(0) on ]0, π̂[ and

qm(π) > O(π, v∗(π)) > qm(1) on ]π̂, 1[. In particular, O(π, v∗(π)) assumes values in Qm

only.

Straightforward algebra shows that

O(π, v∗(π)) = q̂ − 2

∆α

v∗(π)− m̂
π − π̂

,
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so O(π, v∗(π))→ q̂ as π → π̂± iff (D±v
∗)(π̂) = 0.

If (v∗)′(π̂) = 0, O(π, v∗(π)) can therefore be extended to a continuous policy func-

tion q∗ : [0, 1] → Qm with q∗(π̂) = q̂. In fact, the policy is differentiable with bounded

derivative, hence Lipschitz continuous. This is obvious for beliefs different from π̂; differ-

entiability at π̂ follows from the representation

q∗(π)− q̂
π − π̂

=
v∗(π)− m̂
m(π)− m̂

qm(π)− q̂
π − π̂

and the fact that the ratio [v∗(π) − m̂]/[m(π) − m̂] tends to a finite limit as π → π̂

(see Proposition F.2). The policy q∗ is admissible by Proposition A.1, hence optimal by

the verification theorem from Section 3.5. Turning to the belief process resulting from

this policy, let us assume π̃ > π̂ for concreteness. Starting from a prior belief π0 in the

subinterval [π̂, 1], all posterior beliefs πt will remain in the open subinterval ]π̂, 1[ because

the inequality λ(π̂) > 0 makes the belief π̂ an entrance boundary. (Since λ(1) < 0 for

π̃ 6= 1, the right boundary of the unit interval is always an entrance boundary.) If π0 < π̂,

on the other hand, the process of beliefs will, with probability one, reach π̂ in finite time

and then move into the subinterval ]π̂, 1[.

Next, suppose that v∗ has a kink at π̂. To be concrete, we assume again that π̃ > π̂, so

(D−v
∗)(π̂) < 0 and (D+v

∗)(π̂) = 0. Let q∗ be the policy function obtained by extending

O(π, v∗(π)) continuously into π = 0 and 1 and setting q∗(π̂) = q̂; again, this function takes

values in Qm only. By Proposition F.2, the ratio [v∗(π)− m̂]/[m(π)− m̂] tends to a finite

limit as π → π̂+. As above, this implies that the restriction of the policy function q∗ to

the interval [π̂, 1] is Lipschitz continuous, hence admissible. Moreover, if the prior belief

π0 lies in this subinterval and the monopolist uses the policy q∗, then all posterior beliefs

πt will remain in ]π̂, 1[ by the same argument as above. By the verification theorem, the

policy q∗ is thus optimal for all prior beliefs π0 ≥ π̂.

From the above expression for O(π, v∗(π)), we see that q∗ approaches the limit

q∗(π̂−) = q̂ − 2

∆α
(D−v

∗)(π̂) ∈ ]q̂, qm(0)]

from the left of π̂. On the subinterval [0, π̂[, the function q∗ is (locally) Lipschitz contin-

uous, so the existence result underlying Proposition A.1 implies that, starting from any

prior belief π0 < π̂, the policy q∗ generates a unique stochastic process of beliefs up to the

first time π̂ is reached; with probability one, this happens in finite time. From then on, the

process of beliefs is uniquely determined by the restriction of q∗ to [π̂, 1]. This establishes

admissibility of the policy q∗ on the whole of the unit interval,23 and optimality follows

23The technical details required to make this argument fully rigorous are beyond the scope of
this chapter. One can avoid these complications altogether without affecting the main results by
constructing ε-optimal policies. Given an arbitrary ε > 0, define δ = ε/(1 + maxq∈Qm [q − q̂]2).
Since (D−v

∗)(π̂) < 0, τ(π)(u∗)′′(π)/(2r) converges to β(π̂) as π → π̂−. (We only deal with the
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from the verification theorem.

The proposition shows that optimal experimentation is moderate whenever v∗(π̂) =

m̂, meaning that the monopolist restricts himself to quantities in Qm. The optimal

policy function approaches the confounding quantity from at least one side of π̂, the

side where π̃ lies. In a changing environment, this implies that starting from any

prior belief lying on the same side of π̂ as π̃, the process of posterior beliefs will stay

on this side forever; starting from a prior belief on the other side of π̂, the process

of posterior beliefs will cross π̂ almost surely in finite time and then be confined to

the side where π̃ lies. Eventually, the monopolist’s beliefs will thus be ‘trapped’ on

one side of π̂, although he knows that the state of demand will continue to switch

from time to time. This result is the analogue, in a changing environment, of the

possibility of cessation of learning in an unchanging environment as identified by

Rothschild (1974), McLennan (1984), Easley and Kiefer (1988), Aghion, Bolton,

Harris and Jullien (1991) and others; cf. our discussion of the case Λ = 0 below.

Figure 3.6 shows an example of moderate experimentation, calculated for r = 0.1

and Λ = 0.2. Again, the bold line in the upper panel is the adjusted value function

v∗, the thin line the myopic pay-off function m, and the thick grey line the value

function u∗. In the lower panel, the bold line is the optimal policy function q∗,

and the thin line the myopic policy qm. The adjusted value function v∗ touches

the myopic pay-off at its lowest point. Consequently, the optimal policy q∗ never

selects quantities outside the range of the myopic policy, spanned by qm(0) = 30

and qm(1) = 20. (For this reason, the vertical axis is scaled differently from that in

Figure 3.4.) Note that q∗ always lies on the same side of q̂ as qm, but further away.

Furthermore, it appears that v∗ is differentiable at π̂ = 0.4, and q∗ moves smoothly

through q̂ = 24.

Figure 3.7 illustrates the corresponding sample path behaviour. The upper panel

shows how the belief process is trapped after its transit through π̂; in particular,

the true state (again represented by a bold dashed line) is tracked poorly. As a

case r > 0 here; a similar argument can be given for the undiscounted case.) Next, the continuity
of v∗ implies that R(π, q) − v∗(π) converges to −β(π̂)[q − q̂]2 as π → π̂, and this convergence
is uniform in q ∈ Qm. So we can find ρ > 0 such that τ(π)(u∗)′′(π)/(2r) ≥ β(π̂) − δ and
R(π, q)− v∗(π) ≥ −β(π̂)[q− q̂]2− δ for all π ∈ [π̂− ρ, π̂] and all q ∈ Qm. The Lipschitz continuous
(hence admissible) policy function qε : [0, 1]→ Qm which coincides with q∗ on [0, π̂−ρ]∪ [π̂, 1] and
whose graph joins the points (π̂ − ρ, q∗(π̂ − ρ)) and (π̂, q̂) by a straight line satisfies

τ(π)
(u∗)′′(π)

2r
[qε(π)− q̂]2 +R(π, qε(π))− v∗(π) ≥ −ε

on [π̂ − ρ, π̂], hence is ε-optimal by Proposition C.2. The resulting long-run behaviour of beliefs
and actions is as in the proposition.
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consequence, the resulting path of optimal quantities in the lower panel remains in

the range from qm(1) = 20 to q̂ = 24 after its first passage through the confound-

ing quantity. (Again note that the vertical axis is scaled differently from that in

Figure 3.5.) Observe that with a more unstable environment, the agent’s actions

become less variable.

The moderate experimentation scenario where v∗ has a kink at π̂ is particularly

interesting.24 If π̃ > π̂, say, and (D−v
∗)(π̂) > 0, the optimal policy approaches a

limit different from q̂ as π → π−; see the proof of Proposition 4.2. This is due to the

fact that to the left of π̂, (v∗)′ is bounded away from zero, so (u∗)′′ is relatively high,

implying a high value of information. Intuitively, we can interpret this as follows.

With a posterior belief slightly to the left of π̂, the agent anticipates that once his

belief crosses π̂, he will not find it profitable to experiment in a way that would

allow his belief to cross π̂ from the right to the left again. Therefore, he experiments

relatively strongly so as to give his belief a chance to avoid the trap for now and

move away from π̂ to the left, should the true state currently be k = 0.

In Figure 3.8, there is an example of moderate experimentation when r = 0.1

and Λ has the intermediate value 0.15. While the kink in the adjusted value func-

tion is difficult to detect visually, the shape of the graph of the optimal policy25

immediately to the left of π̂ is clearly somewhat different from that in Figure 3.6.

The corresponding sample path behaviour illustrated in Figure 3.9 is quite similar

to that in Figure 3.7 once the belief has transited π̂, but, prior to that, there is a

noticeable difference.

Whether experimentation is moderate or extreme depends on the underlying param-

eter combination (r,Λ, σ). In fact, the parameter space IR+× IR+× IR++ splits into

two sets, one where v∗(π̂) = m̂ and experimentation is moderate, and another where

v∗(π̂) > m̂ and experimentation is extreme. The above numerical examples suggest

(and we shall prove below) that neither set is empty. Thus, the optimal strategy

and the resulting long-run behaviour of beliefs and actions depend qualitatively on

the parameters r, Λ and σ. Moreover, a small change in one of these parameters can

trigger a large discontinuous change in the monopolist’s strategy and the resulting

stream of quantities that he produces. We will see this particularly clearly in the

special cases which we study below.

24Note that this is the only case where the value function u∗ fails to be twice continuously
differentiable on the whole of ]0, 1[.

25Because of the inherent smoothing nature of the numerical procedure, the data has been
slightly re-adjusted and the graph should be thought of as illustrating an ε-optimal policy.
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4.2 Sufficient Conditions and Critical Parameter Values

We would naturally expect moderate experimentation for high values of r, Λ and

σ, and extreme experimentation for low values. As the discount rate increases, for

example, the future becomes less important to the agent, the value of information

falls, and with it the agent’s willingness to sacrifice current revenue for potential

future gains from experimentation. A higher level of noise, on the other hand, ren-

ders the price signal less informative, which reduces the expected gain from any

given deviation from the myopic optimum, and thus the incentive to experiment.

Last, a higher frequency of state switches increases the risk of information becoming

obsolete, so the trade-off between current revenues and potential gains from experi-

mentation again shifts in favour of the former. For high values of these parameters,

therefore, the monopolist rationally assesses the loss in current revenue from experi-

menting strongly near π̂ to be higher than the loss in future revenues resulting from

sometimes being trapped on the ‘wrong’ side of π̂. Before formulating a result to

this effect, we first note that the choice of the interval Q of feasible quantities is

irrelevant here.

Corollary 4.1 Given a parameter combination (r,Λ, σ), experimentation is mod-

erate (extreme) for some Q ⊇ Qm if and only if it is moderate (extreme) for all

Q ⊇ Qm.

Proof: This follows directly from Theorem 4.1 since the ODE (20), which characterises

v∗ when experimentation is moderate, does not involve the quantities qmax and qmin.

We are therefore free to choose the interval Q in a convenient way when we look

for sufficient conditions for either type of experimentation. This is exploited in the

proof of the following result.

Proposition 4.3 There are positive constants ρm ≥ ρe and `m ≥ `e such that

optimal experimentation is moderate with a differentiable policy function for all r ≥
0, Λ ≥ 0 and σ > 0 satisfying

r

ρm
+

Λ

`m
≥ 1

σ2
,

and extreme for all r ≥ 0, Λ ≥ 0 and σ > 0 satisfying

r

ρe
+

Λ

`e
≤ 1

σ2
.
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Proof: By Proposition G.3, there are positive constants c1 and c2 such that for all

r ≥ 0, Λ ≥ 0 and σ > 0 satisfying r + c1Λ ≥ c2/σ
2, there exists a continuous function

v : [0, 1]→ IR which solves (20) on ]0, 1[ −{π̂} with v(π) = m(π) at π = 0, π̂, 1 and v > m

everywhere else; in particular, v is differentiable at π̂ with v′(π̂) = 0. The uniqueness part

of Theorem 4.1 for v∗(π̂) = m̂ implies that v = v∗. Experimentation is therefore moderate

with a continuous optimal policy for all these parameter combinations. We can thus set

ρm = c2 and `m = c2/c1.

Turning to extreme experimentation, we assume without loss of generality that Q is

centred on q̂. (This makes the central ray Rc vertical and simplifies the construction of

solutions to the ODE (19) via the techniques of Appendix G.) For this case, Proposition

G.4 shows that there are positive constants c3, c4 and c5 such that for all r ≥ 0, Λ ≥ 0 and

σ > 0 satisfying c3r+ c4Λ ≤ c5/σ
2, there exists a continuous function v : [0, 1]→ IR which

is once continuously differentiable and which solves (19) on ]0, 1[−{π̂} with v(π) = m(π) at

π = 0, 1 and v > m everywhere else. By the uniqueness part of Theorem 4.1 for v∗(π̂) > m̂,

we have v = v∗, so experimentation is extreme for these parameter combinations, and we

can take ρe = c5/c3 and `e = c5/c4.

Note that the constructive approach used in the proof (based on Propositions

G.3 and G.4) yields explicit formulae for the constants ρm, `m, ρe and `e. The

proof also shows that under the stated condition for moderate experimentation, the

adjusted value function is always differentiable at π̂. In particular, a kink in v∗ can

only occur in an ‘intermediate’ range of parameter combinations.

Using the fact that v∗ is strictly convex whenever v∗(π̂) = m̂, we can derive a

more precise characterisation of the boundary between the parameter regions asso-

ciated with moderate and extreme experimentation. Before formulating this result,

we note from the ODE (19) that v∗ depends on r, Λ and σ only through the two

products ρ = rσ2 and ` = Λσ2. This reduces the parameter space effectively to the

non-negative orthant IR2
+, which splits into a region of moderate experimentation

and a region of extreme experimentation. As the following result shows, the bound-

ary between these two regions cuts each ray through the origin in a single point; see

Figure 3.3. Thus, we can ‘trace’ this boundary by varying the slope of the ray.

Proposition 4.4 Let R be a ray in IR2
+ emanating from the origin (0, 0). Then,

there is a unique point (ρ†, `†) ∈ R − {(0, 0)} such that experimentation is extreme

for all (ρ, `) ∈ R with (ρ, `) < (ρ†, `†), and moderate for all (ρ, `) ∈ R with (ρ, `) ≥
(ρ†, `†).

Proof: Fixing a point (ρ0, `0) ∈ R − {(0, 0)}, we can parameterise the ray R by the

mapping µ 7→ (µρ0, µ`0) where µ ≥ 0. We write v∗[µ] for the adjusted value function

associated with the parameters (µρ0, µ`0), and ODE[µ] for the corresponding differential
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Figure 3.3: Critical parameter values

equation (19). Define M = {µ ≥ 0 : v∗[µ](π̂) = m̂} and µ† = inf M . By Proposition 4.3,

M is non-empty, and µ† is finite and positive.

Now fix µ1 ∈ M and µ2 > µ1; we want to show that µ2 ∈ M . By Proposition F.2,

the second derivative of v∗[µ1] is positive on ]0, 1[ −{π̂}. Being a solution of ODE[µ1],

v∗[µ1] is thus a strict supersolution of ODE[µ2]. (See Appendix G for a definition of

supersolution, and compare the proof of Theorem 5.2 below.) By Corollary G.1, therefore,

there exists a continuous function v : [0, 1]→ IR which solves ODE[µ2] withm < v < v∗[µ1]

on ]0, 1[ −{π̂}. The uniqueness part of Theorem 4.1 implies v = v∗[µ2]. So we have

v∗[µ2](π̂) = m̂, hence µ2 ∈M .

Combined with a standard continuity argument, this shows that M = [µ†,∞[. We can

thus set (ρ†, `†) = (µ†ρ0, µ
†`0).

We have the following corollary to the above proposition for the limiting cases

where either Λ or r is zero. Given σ, we find thresholds for r (when Λ = 0) and Λ

(when r = 0) which separate extreme from moderate experimentation as in Figure

3.3.
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Corollary 4.2 When Λ = 0, there exists a unique real number ρ‡ > 0 such that

optimal experimentation is extreme if r < ρ‡/σ2, and moderate if r ≥ ρ‡/σ2.

When r = 0, there is a unique real number `‡ > 0 such that optimal experimen-

tation is extreme if Λ < `‡/σ2, and moderate if Λ ≥ `‡/σ2.

Proof: Apply Proposition 4.4 to the rays IR+ × {0} and {0} × IR+, respectively.

We mentioned above that constants as in Proposition 4.3 can be calculated ex-

plicitly. This yields explicit upper and lower bounds for each of ρ‡ and `‡.

Thus, the boundary between the regions of moderate and extreme experimen-

tation links ρ‡ on the ρ-axis with `‡ on the `-axis, and lies between the lines

ρ/ρe + `/`e = 1 and ρ/ρm + `/`m = 1. Furthermore, given any point (ρ†, `†) on

the boundary, the set
{

(ρ, `) : ρ ≥ µρ†, ` = µ`†, µ ≥ 1
}

can be shown to lie within

the region of moderate experimentation (cf. the comparative statics results men-

tioned in Section 4.5 below).

Note that within the L-shaped region
{

(ρ, `) : ρ < ρ‡ or ` < `‡
}

, that is, below or

to the left of the dotted lines in Figure 3.3, there is a potential trade-off between the

discount rate and the switching intensities, given a noise level σ: for any r < ρ‡/σ2,

moderate experimentation can be avoided if Λ is sufficiently low, and similarly, for

any Λ < `‡/σ2, moderate experimentation can be avoided if r is sufficiently low.

4.3 No State Switching (r > 0, Λ = 0)

The discounted case with Λ = 0 is simpler since we do not have to make the

transformation from u∗ to v∗, but can work with u∗ itself. Our next result provides

a detailed characterisation of the optimal experimentation behaviour.

Proposition 4.5 Let Λ = 0.

In the case of extreme experimentation (u∗(π̂) > m̂), the optimal policy is con-

tinuous except for a single jump between qmax and qmin, and selects one of these

quantities at π̂. The process of posterior beliefs, if started from a prior belief in

]0, 1[, can reach any other point in this interval, and converges almost surely to the

true state of demand.

In the case of moderate experimentation (u∗(π̂) = m̂), the optimal policy is

continuous and selects q̂ at π̂. Given a prior belief π0 6= 0, π̂, 1 and the true state

of demand k, the process of posterior beliefs is confined to the subinterval ]0, π̂[ or

]π̂, 1[ which contains π0, and it exhibits the following long-run behaviour: if π0 lies

between π̂ and k then beliefs converge almost surely to π̂ or k (each limit having

positive probability); otherwise, beliefs converge almost surely to π̂.
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Proof: For u∗(π̂) > m̂, we obtain the optimal policy exactly as in the proof of Proposition

4.1. Since u∗ is strictly convex, its graph crosses Rc only once, so this policy has indeed

just one jump.

If u∗(π̂) = m̂, on the other hand, we have (u∗)′(π̂) = 0 and τ(π)(u∗)′′(π)/2r =

β(π)[u∗(π) −m(π)]/[u∗(π) − m̂] < β(π) on ]0, 1[−{π̂}. For all π 6= π̂, there are ξ and ζ

strictly between π̂ and π such that [u∗(π) − m̂]/[m(π) − m̂] = (u∗)′′(ξ)/m′′(ζ); as (u∗)′′

is bounded on ]0, 1[−{π̂}, so is the quotient on the left-hand side. Therefore, O(π, u∗(π))

extends to a Lipschitz continuous policy function which is optimal by the verification

theorem from Section 3.3.

The updating equation (4) shows that the process of posterior beliefs generated by

the optimal policy is a supermartingale if the true state is k = 0, and a submartingale if

k = 1. Since the process is bounded, this implies almost sure convergence. The stated

long-run behaviour is now established by means of the standard boundary classification

for diffusion processes; cf. Karlin and Taylor (1981, Chapter 15, Sections 6–7).

Combined with Corollary 4.2, the proposition shows that for sufficiently high

discount rates, there is a positive probability that beliefs will settle down at a point

where the agent has not learnt the true state. This is a particular case of the

general incomplete learning result obtained in the literature on optimal learning in

an unchanging environment and referred to after Proposition 4.2. Our setup with

continuous time and a one-dimensional state space makes this result particularly

stark: if the prior belief lies on the ‘wrong’ side of π̂, moderate experimentation will

cause beliefs to converge to π̂ with probability one!

Figure 3.10 shows u∗ (= v∗) and q∗ for r = 0.1 and Λ = 0. Now that there

is no state switching, the (adjusted) value function is much higher and extreme

experimentation is optimal over a wider range of beliefs. Three sample paths are

shown in Figure 3.11 where the true state is kt = 0: the bold one is for π0 = 0.25;

the faint one is also for π0 = 0.25 but with less ‘benign’ shocks; the other one is

for π0 = 0.75, i.e., the ‘wrong’ side of π̂. In each example, the process of beliefs

converges to the truth.

Contrast this with graphs for a higher discount rate, r = 0.5 and Λ = 0: in

Figure 3.12 neither u∗ (= v∗) nor q∗ is very different from its myopic counterpart;

and the sample paths in Figure 3.13 illustrate the possible limits of the process of

beliefs in the case of moderate experimentation, depending on the prior belief π0.

Finally, note that the case of a changing environment is richer in that it allows

for a form of moderate experimentation where the monopolist experiments much

more on one side of π̂ than on the other. This asymmetry reflects the fact that

state switching introduces mean reversion into the updating equation (2), thereby
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destroying the martingale property of beliefs.

4.4 Maximum Experimentation (r = 0, Λ = 0)

For given σ, an agent who uses the catching-up criterion in an unchanging envi-

ronment clearly has the strongest possible incentive to experiment. Consequently,

if extreme experimentation is to occur at all, it must occur for r = 0 and Λ = 0,

and we have seen above that this is indeed the case. Further, we know from Ap-

pendix E.1 that the (adjusted) value function u∗ (= v∗) coincides with the ex ante

full-information pay-off function m, given by m(π) = (1 − π)m(0) + πm(1). This

enables us to derive the optimal policy in a simple closed form, below. Recall the

construction of the left, central and right rays in Appendix D, and that qc denotes

the centre of the interval [qmin, qmax].

Proposition 4.6 Let r = 0 and Λ = 0. Let π`, πc and πr be the beliefs where the

graph of the full-information pay-off function m intersects the left, central and right

rays, respectively, that is,

m(π`) = m̂− 1
2

∆α [qmax − q̂] (π` − π̂),

m(πr) = m̂+ 1
2

∆α [q̂ − qmin] (πr − π̂),

and

πc = π̂ +
2

∆α

qc − q̂
[qmax − q̂][q̂ − qmin]

(m(πc)− m̂).

Then the policy function q : [0, 1]→ Q defined by

q(π) =



qm(π) + m(π)−m(π)
m(π)−m̂ [qm(π)− q̂] for 0 ≤ π < π`, or πr < π ≤ 1,

qmax for π` ≤ π ≤ πc,

qmin for πc ≤ π ≤ πr,

which is continuous except for a jump at πc, is optimal.

Proof: q is measurable with q(π) − q̂ bounded away from zero, hence admissible by

Proposition A.1. Optimality follows from the undiscounted variant of the verification

theorem from Section 3.3 and the fact that q(π) ∈ O(π,m(π)) for 0 < π < 1.

Note that this result holds independently of the value of the parameter σ. The

reason for this is simple. In the absence of state switching, a change in σ amounts to
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a mere rescaling of the time axis. As the objective of an agent using the catching-up

criterion is invariant to such a rescaling, the optimal policy remains the same.

4.5 Further Findings

Beyond the results reported above, our numerical simulations suggest additional

properties of the adjusted value function and the optimal policy when r > 0 or Λ > 0.

While Theorem 4.1 establishes strict convexity of the adjusted value function in the

moderate experimentation regime, v∗ appears to be strictly convex in the extreme

experimentation regime as well; see for example Figure 3.4. This implies in particular

that the graph of v∗ crosses the central ray only once, so extreme experimentation

entails just a single jump in the optimal policy function.

Granted strict convexity of v∗, we also have the strict inequality v∗ < m on

]0, 1[. This inequality reflects the intuitive fact that the incentive to experiment is

highest for an infinitely patient agent who operates in an environment which does

not change.

Further, our numerical results suggest that v∗ is strictly decreasing (on ]0, 1[

for extreme experimentation, on ]0, 1[ −{π̂} for moderate experimentation) in each

of the parameters r, Λ and σ. As a consequence, the extent to which the agent

experiments, measured by the distance |q∗(π)− qm(π)|, is strictly decreasing in each

of these parameters as long as q∗(π) 6∈ {qmin, q
m(1), q̂, qm(0), qmax}. In the extreme

experimentation regime, moreover, the set of beliefs at which qmax or qmin is optimal

shrinks in response to an increase in any of the parameters. (The intuition behind

these comparative statics has been given at the beginning of Section 4.2.) For the

moderate experimentation regime, we can use the techniques of Appendix G to prove

analytically that v∗(π), and hence |q∗(π) − qm(π)|, is always strictly decreasing on

]0, 1[ −{π̂} in r and σ, and strictly decreasing in Λ in the undiscounted case (r = 0);

cf. the proof of Theorem 5.2 below.

5 No Confounding Belief

We now turn briefly to the simpler case of optimal experimentation when the two

demand curves do not intersect in the interior of Qm, and so there is no longer a

belief π̂ ∈ ]0, 1[ such that qm(π̂) = q̂.26 That is, we drop the standing assumption

made in Section 3.2, and instead make the following

26To avoid cumbersome case distinctions, we will ignore the border-line cases q̂ = qm(0) and
q̂ = qm(1) in what follows. It is easy to check, though, that the results given below remain valid
in these two scenarios.
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Assumption The quantity q̂ does not lie strictly between qm(0) and qm(1); qm(0) 6=
qm(1).

We continue to assume without loss of generality that the demand curve in state 1

is steeper than the demand curve in state 0, that is, ∆β > 0. As in Section 3.2, this

new assumption is sufficient for experimentation to occur at almost all beliefs.

It turns out that under the new assumption, experimentation is always moderate

and in one direction. That is, the monopolist never chooses any quantities outside

Qm, and q∗ always lies on the same side of q̂ as qm, but further away. In other words,

the optimal behaviour in the absence of a confounding belief looks exactly like the

long-run behaviour in the moderate experimentation regime of the previous section.

In particular, the relevant ODE for the adjusted value function will be given by (20),

and optimal quantities by (15).

When r = 0 and Λ = 0, the optimal policy can again be derived in closed form:

q(π) = qm(π) +
m(π)−m(π)

m(π)− m̂
[qm(π)− q̂] ;

since q(π) = O(π,m(π)) for 0 < π < 1, optimality of this policy function follows

exactly as in the proof of Proposition 4.6.

When r > 0 or Λ > 0, we have the following.

Theorem 5.1 (Moderate Experimentation, One Direction) Let r > 0 or Λ >

0. Then the adjusted value function v∗ is the unique solution of the ODE (20) on

]0, 1[ subject to v∗(π) = m(π) at π = 0, 1 and v∗ > m on ]0, 1[; moreover, it is

analytic, strictly convex, and satisfies v∗ < m on ]0, 1[.

The optimal policy function,

q∗(π) = qm(π) +
v∗(π)−m(π)

m(π)− m̂
[qm(π)− q̂] ,

is analytic, takes values in Qm only, and satisfies the following inequalities on ]0, 1[ :

if q̂ < Qm then qm < q∗ < q, and if q̂ > Qm then qm > q∗ > q.

Proof: Applying Proposition G.2, we obtain a continuous function v : [0, 1] → IR which

solves (20) with m < v < m on ]0, 1[. This function is analytic on ]0, 1[ by the Cauchy-

Kowalewski theorem.

Using the verification theorem from Section 3.5 (and its undiscounted variant), we see

that v = v∗ and the policy q∗ is optimal. This also establishes the uniqueness part of the

theorem. Moreover, we have (v∗)′′ > 0 on ]0, 1[ by Proposition F.1.
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The stated inequalities for q∗ follow directly from the fact that m < v∗ < m on ]0, 1[.

The derivative of the function q is

q′(π) = − [qm(0)− q̂] [qm(1)− q̂]
[qm(π)− q̂]2

p̂∆β

2β(π)2
=

[qm(0)− q̂] [qm(1)− q̂]
[qm(π)− q̂]2

(qm)′(π) ;

as either q̂ < Qm or q̂ > Qm, this is either strictly positive or strictly negative throughout

and of the same sign as the derivative of qm. As q and qm coincide at either end of the

unit interval, the range of q and hence the range of q∗ equals Qm.

Thus, experimentation is indeed in one direction for q̂ 6∈ Qm: if q̂ lies to the

left of Qm, then q∗ > qm on ]0, 1[, which means that the agent experiments by

increasing quantity; if, on the other hand, q̂ lies to the right of Qm, then q∗ < qm on

]0, 1[, so the agent experiments by decreasing quantity. The intuition behind this

quantity expansion or reduction is straightforward: the monopolist deviates from

the myopic quantity by moving away from q̂ in the (now unambiguously defined)

direction of widening spreads between the two possible demand curves, thus making

price observations more informative.27 Note also that the process of posterior beliefs

is now always regular since the difference q∗(π)− q̂, and hence the informativeness

of the price signal, is bounded away from zero.

Convexity of v∗ turns out to be crucial for the comparative statics of optimal

experimentation, to which we turn next.

Theorem 5.2 Given fixed demand curve parameters α0, α1, β0, β1 such that q̂ 6∈
Qm and a fixed π̃, the distance |q∗(π)− qm(π)| is

strictly decreasing in r;

strictly decreasing in σ;

strictly decreasing in Λ if r = 0

for all π ∈ ]0, 1[.

Proof: Let v∗[r,Λ, σ] denote the adjusted value function for any given combination of

parameters r ≥ 0, Λ ≥ 0 and σ > 0, and let ODE[r,Λ, σ] be the differential equation (20)

for these parameter values.

Consider discount rates r1 < r2. Since v∗[r1,Λ, σ] > m on ]0, 1[, the right-hand side of

(20) with v = v∗[r1,Λ, σ] is strictly increasing in r at each π ∈ ]0, 1[. Being a solution of

ODE[r1,Λ, σ], v∗[r1,Λ, σ] is thus a strict supersolution of ODE[r2,Λ, σ]. (See Appendix

G for a definition of supersolution.) As in Proposition G.2, therefore, there exists a

27It is less intuitive, though, that experimentation should always be moderate.
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continuous function v : [0, 1] → IR which solves ODE[r2,Λ, σ] with m < v < v∗[r1,Λ, σ]

on ]0, 1[. As v∗[r1,Λ, σ] < m on ]0, 1[, the uniqueness part of Theorem 5.1 implies v =

v∗[r2,Λ, σ]. The comparative statics result with respect to the discount rate now follows

from the observation that optimal quantities are increasing in adjusted values.

The other comparative statics results follow in the same way. In fact, since the second

derivative of the adjusted value function is strictly positive on ]0, 1[, v∗[r,Λ, σ1] is a strict

supersolution of ODE[r,Λ, σ2] for σ1 < σ2, and v∗[0,Λ1, σ] is a strict supersolution of

ODE[0,Λ2, σ] for Λ1 < Λ2.

Again, the intuition behind these comparative statics results has already been

discussed in Section 4.2.28

6 Conclusion

We have studied the behaviour of a monopolist who learns about randomly changing

demand by choosing a stream of quantities, observing the prices they generate, and

updating his beliefs accordingly. As the action space is continuous, a small amount

of information can be obtained at a small opportunity cost. Given the changing

environment, therefore, experimentation will occur even in the long run although,

as we have seen, the scope of actions may become restricted.

We formulated the problem in continuous time, which lead us via the Bellman

equation to an ordinary differential equation for the adjusted value function. The

advantages of this approach are three-fold: (a) key properties of the value function

and optimal policy can be established analytically, as can some comparative stat-

ics results, even though a closed-form solution is generally not obtainable; (b) the

sample path properties of beliefs and optimal actions are easy to characterise; (c) it

is straightforward to solve the differential equation of interest numerically, enabling

us to illustrate the analytical results and suggest further plausible properties of the

solution.

Our analysis focused on the more interesting case where the confounding quantity

lies between the myopically optimal quantities for the two possible demand curves.

28Clearly, the comparative statics with respect to Λ should also pertain when r > 0. Our
numerical simulations confirm this conjecture, but we have not been able to provide an analytical
proof so far. Note that by the same argument as in the proof of Theorem 5.2, it would be sufficient
to show that [

f(π) + (π − π̃)
∆β

β(π)

]
v∗(π)−m(π)

v∗(π)− m̂
+ (π − π̃)

[
v∗(π)−m(π)

v∗(π)− m̂

]′
> 0

on ]0, 1[, which is equivalent to (v∗)′′ > (u∗)′′ on the open unit interval. All the numerical solutions
that we have calculated satisfy this condition.
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We found two qualitatively different experimentation regimes. For low discount rates

and low probabilities of a demand curve switch, optimal experimentation is extreme:

the maximal and minimal feasible quantities are chosen a non-negligible fraction of

time; the optimal policy function exhibits a jump from one extreme quantity to the

other; and the true state is tracked fairly well. For high discount rates or high prob-

abilities of a demand curve switch, on the other hand, experimentation is moderate:

the quantities chosen are bounded away from the extremes; the monopolist behaves

like a myopic agent at the confounding belief; and he eventually restricts his choices

to a subset of the space of feasible quantities.

A transition from one regime to the other in response to a change in the model

parameters involves a discontinuous change of optimal policy. This suggests that

agents in a changing environment may reduce their investment in information dras-

tically if the frequency of change (or the interest rate) passes a critical threshold.

However, there is a region in which a trade-off between interest rates and stability

can be exploited: a moderately high interest rate need not trigger sluggish invest-

ment provided that the underlying environment is sufficiently stable; conversely, the

low-investment effect of a changing environment can be overcome by a sufficiently

low interest rate.

In the case where the confounding quantity does not lie between the two myopi-

cally optimal quantities, the agent deviates from myopic behaviour by experimenting

towards wider spreads between the demand curves, where the price observations are

more informative. This experimentation remains moderate in a well-defined sense

and is qualitatively the same for all parameter values.

As to the robustness of our results, the existence of a confounding action is obvi-

ously necessary for the emergence of two regimes and the moderate experimentation

trap, in the same way as it was necessary for the incomplete learning results of

the previous literature on unchanging environments. Here, the linearity of demand

curves is inessential.

With non-linear demand curves, on the other hand, the monopolist would not

necessarily go all the way to the boundaries of the interval of feasible quantities when

experimenting at the confounding belief, i.e. when jumping past the confounding

quantity. Moreover, this jump could unfold gradually as parameters change.

Replacing continuous time by discrete time, we would have a less clear-cut be-

haviour of posterior beliefs under moderate experimentation since discrete adjust-

ments could allow the belief to jump back and forth past the confounding belief.

However, adjustments towards the long-run average state become stronger and more

frequent the further the current belief is away from the long-run average state, so
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excursions out of the trap could be expected to be infrequent and short. With

shrinking period length, the resulting sample path behaviour would become very

close to that in our model.

Finally, some might think that the agent in our model knows an unrealistic

amount at the outset – the demand curve parameters, the switching intensities,

the noise level. This abstraction has allowed us to focus clearly on the role of

discounting, instability and noise in determining optimal behaviour, but it does not

drive our results. The crucial condition is the existence of a confounding action and

of a posterior belief at which that action is myopically optimal. As long as this

condition holds, the emergence of qualitatively different experimentation regimes

and incomplete learning are possible.
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Appendix

A Admissible Strategies and Policy Functions

We first provide a precise definition of the set Q of admissible strategies. Assume

that the Brownian motion Z and the Markov process k are given on some complete

probability space and are both adapted to the filtration {Ft}. Let Q0 denote the set

of all processes q = {qt} which take values in Q, the interval of feasible quantities,

and are adapted to the aforementioned filtration. Each q ∈ Q0 gives rise to a unique

cumulative price process P q. The information contained in prices is summarised by

{Fq
t }, the filtration generated by P q. A process q ∈ Q0 is an admissible strategy if

qt is adapted to the filtration {Fq
t }.

Admissible policy functions can now be defined as follows. The function q :

[0, 1]→ Q is an admissible policy function if for any given initial belief π0, there is a

unique strategy q ∈ Q (with associated process of beliefs {πt}) such that qt = q(πt)

for all t.

The following result provides conditions under which a given policy function is

admissible.

Proposition A.1 A policy function q : [0, 1] → Q is admissible if at least one of

the following conditions holds:

(a) q is Lipschitz continuous;

(b) q is measurable, and there exists a δ > 0 such that [∆α − ∆β q(π)]2 > δ for

all π.

Proof: Suppose that (a) holds. Then an extension to a standard existence theorem

implies that the stochastic differential equation

dπt =
{
λ(πt) + σ−1 Σ(πt, q(πt))

(
αkt − βktq(πt) − [α(πt)− β(πt)q(πt)]

)}
dt

+ Σ(πt, q(πt)) dZt (A.1)

which is obtained from combining (2) and (3) has a unique solution π for any given

starting value π0 ∈ [0, 1]; cf. Liptser and Shiryayev (1977, p.330).29 Define the strategy

q by qt = q(πt) and consider the associated price process dPt = (αkt − βkt qt) dt + σ dZt.

Section 2 implies that the corresponding process of beliefs πqt = E[kt | Fq
t ] also solves (A.1)

with initial value π0. By the uniqueness part of Liptser and Shiryayev (1977, Theorem

29This is in fact a strong solution. A weak solution would be enough for our purposes.

112



9.2), the processes π and πq coincide, so π is indeed the process of beliefs associated with

the strategy q. The policy function q thus generates a unique strategy in Q.

Now suppose (b). Given any initial value π0, Krylov (1980, Theorem 2.6.1) implies

that the stochastic differential equation

dπt = λ(πt) dt+ Σ(πt, q(πt)) dZt

has a weak solution (π, Z0) with Z0 a Wiener process. We extend the corresponding

filtered probability space in such a way that it supports an independent Markov process

{kt} taking values in {0, 1} with transition probabilities as in Section 1. Consider the

bounded process

ηt = σ−1
(
αkt − βktq(πt) − [α(πt)− β(πt)q(πt)]

)
.

By Girsanov’s theorem, there is a new measure under which

Zt = Z0
t −

∫ t

0
ηs ds

is a Wiener process; cf. Revuz and Yor (1991). In other words, (π, Z) is a weak solution

to the stochastic differential equation (A.1). Admissibility of the policy function q is now

shown in exactly the same way as in the first part of this proof.

B Some Properties of the Value Function

Consider the value function u∗ as defined in (5).

Proposition B.1 The value function u∗ is continuous and convex.

Proof: For fixed q ∈ Q, uq is linear in π. Indeed,

uq(π) = π Ek0=1

[∫ ∞
0

r e−r t qt [αkt − βktqt] dt
]

+ (1− π) Ek0=0

[∫ ∞
0

r e−r t qt [αkt − βktqt] dt
]
.

For π = η π1 + (1− η)π2 with 0 ≤ η ≤ 1, we therefore have

uq(π) = η uq(π1) + (1− η)uq(π2)

≤ η u∗(π1) + (1− η)u∗(π2)

by the definition of the value function. Taking the supremum on the left-hand side proves

convexity. A convex function is continuous on the interior of its domain, so we only have

to show continuity at π = 0 and π = 1. Suppose for example that the value function is not

113



continuous at π = 0. Due to convexity, this can only mean u∗(0) > u∗(0+). By definition

of the value function, there exists a policy q ∈ Q such that uq(0) > u∗(0+). But then

uq(π) > u∗(π) for small π > 0, which is a contradiction. The right boundary π = 1 is

dealt with in the same way.

Convexity implies the existence of a left-hand derivative D−u
∗ on ]0, 1] and a

right-hand derivative D+u
∗ on [0, 1[, both being non-decreasing functions, the former

left-continuous, the latter right-continuous, with D−u
∗ ≤ D+u

∗ on their common

domain.

Lemma B.1 The one-sided derivatives D−u
∗ and D+u

∗ are bounded.

Proof: We see from the representation of the pay-off function uq in the previous proof

that there is a constant K > 0 such that |(uq)′(π)| ≤ K for all q ∈ Q and all π. Now,

suppose that (D−u
∗)(π1) < −K for some belief π1 > 0. Then there is a π2 < π1 such that

u∗(π1)− u∗(π2) < −K (π1 − π2), i.e., u∗(π2) > u∗(π1) +K (π1 − π2). By definition of the

value function, we can find a strategy q ∈ Q with u∗(π2) ≥ uq(π2) > u∗(π1)+K (π1−π2).

But then the linearity of uq implies uq(π1) ≥ uq(π2) − K (π1 − π2) > u∗(π1), which

is a contradiction. Using a similar argument for the right-hand derivative, we obtain

−K ≤ D−u
∗ ≤ D+u

∗ ≤ K on ]0, 1[. Due to left- and right-continuity, respectively, this

also proves that (D−u
∗)(1) and (D+u

∗)(0) are bounded in absolute value by K.

C The Value Function as a Solution of the

Bellman Equation

Proposition C.1 The value function u∗ has a continuous first derivative on [0, 1],

and possesses a locally bounded generalised second derivative u∗2 ≥ 0 such that

(u∗)′(π2)− (u∗)′(π1) =
∫ π2

π1
u∗2(π) dπ (C.1)

for all π1 and π2. Moreover,

max
q∈Q

{
1
2

Σ2(π, q)u∗2(π) + λ(π) (u∗)′(π)− r u∗(π) + r R(π, q)
}

= 0 (C.2)

almost everywhere on ]0, 1[.

Proof: Krylov (1980, Theorem 6, p.289) implies that u∗ has two locally bounded gen-

eralised derivatives, u∗1 and u∗2. By definition, this means that

∫ 1

0
φ(π)u∗1(π) dπ = −

∫ 1

0
φ′(π)u∗(π) dπ
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and ∫ 1

0
φ(π)u∗2(π) dπ =

∫ 1

0
φ′′(π)u∗(π) dπ

for all functions φ that are infinitely differentiable and of compact support in ]0, 1[. On

the other hand, u∗ is convex by Proposition B.1. As its left-hand derivative D−u
∗ is

left-continuous and non-decreasing, one can define a measure µ on ]0, 1[ via µ[π1, π2[ =

(D−u
∗)(π2) − (D−u

∗)(π1). This measure represents the second derivative of u∗ in the

sense of a distribution: ∫ 1

0
φ′′(π)u∗(π) dπ =

∫ 1

0
φ(π) dµ(π)

for every function φ that is infinitely differentiable and of compact support in ]0, 1[. More-

over, this property characterises µ uniquely; cf. Krylov (1980, p.49). Comparing it with

the definition of the generalised second derivative u∗2, we conclude that dµ = u∗2 dπ. In

particular,

(D−u
∗)(π2)− (D−u

∗)(π1) =

∫ π2

π1
u∗2(π) dπ

for all π1, π2 ∈ ]0, 1[. This implies that D−u
∗ is continuous, so u∗ is continuously differ-

entiable on the open unit interval with (u∗)′ = D−u
∗. By Proposition B.1, (u∗)′(π) has a

continuous extension to the whole of [0, 1].

As to the last part of the proposition, Krylov (1980, Theorem 6, p.289) implies that

max
q∈Q

{
1
2 Σ2(π, q)u∗2(π) + λ(π)u∗1(π)− r u∗(π) + r R(π, q)

}
= 0

almost everywhere on ]0, 1[. The proof is completed by replacing u∗1 with (u∗)′.

The representation (C.1) implies

Corollary C.1 u∗ is almost everywhere twice differentiable, and (u∗)′′ = u∗2 almost

everywhere. Moreover, u∗ is twice continuously differentiable on any open set where

u∗2 has a continuous version, i.e., coincides with a continuous function almost ev-

erywhere.

Applying (C.2) with q = qm(π) and dividing through by r, we see immediately

that

u∗(π)− λ(π)
(u∗)′(π)

r
≥ m(π)

almost everywhere. By continuity of u∗ and (u∗)′, we can conclude that this inequal-

ity holds in fact on the whole of [0, 1]. As to the boundary of the unit interval, we

have the following result.
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Corollary C.2 The value function satisfies the boundary conditions

u∗(0)− λ(0)
(u∗)′(0)

r
= m(0) , u∗(1)− λ(1)

(u∗)′(1)

r
= m(1) .

Proof: We first note that (C.2) implies

1
2 max
q∈Q

Σ2(π, q)u∗2(π) + λ(π) (u∗)′(π)− r u∗(π) + rm(π) ≥ 0

and hence

u∗2(π) ≥ 2rσ2

π2(1− π)2

u∗(π)− λ(π)(u∗)′(π)/r −m(π)

maxq∈Q[∆α−∆β q]2

for almost all π. Now suppose that u∗(0) − λ(0)(u∗)′(0)/r > m(0). Using the continuity

of u∗(π) − λ(π)(u∗)′(π)/r and the inequality just derived, we can find K > 0 and ε > 0

such that u∗2(π) ≥ Kπ−2 almost everywhere on [0, ε]. But then

(u∗)′(π) = (u∗)′(ε)−
∫ ε

π
u∗2(ξ) dξ ≤ (u∗)′(ε)−K

∫ ε

π

dξ

ξ2
= (u∗)′(ε)−K

[
1

π
− 1

ε

]
−→ −∞

as π → 0, which contradicts the boundedness of (u∗)′. The boundary condition at π = 1

follows by the same argument.

The next result is a so-called verification theorem, providing sufficient conditions

for a given solution of the Bellman equation to be the value function, and for a given

policy function to be optimal or ε-optimal.

Proposition C.2 Let u be a once continuously differentiable function on [0, 1] with

a generalised second derivative u2 ≥ 0 on ]0, 1[ such that

u′(π2)− u′(π1) =
∫ π2

π1
u2(π) dπ

for all π1 and π2, and π2 (1− π)2 u2(π)→ 0 as π → 0 and π → 1, respectively. If

max
q∈Q

{
1
2

Σ2(π, q)u2(π) + λ(π)u′(π)− r u(π) + r R(π, q)
}

= 0

on ]0, 1[, then the following statements hold true:

(a) u(π) ≥ uq(π) for all q ∈ Q and all π, that is, u ≥ u∗.

(b) Let ε > 0. If q : [0, 1]→ Q is an admissible policy function satisfying

1
2

Σ2(π, q(π))u2(π) + λ(π)u′(π)− r u(π) + r R(π, q(π)) ≥ −ε r (C.3)

for all π, then the strategy qπ obtained by following this policy from any given

initial belief π is ε-optimal, i.e., uqπ(π) ≥ u(π)− ε. In particular, u∗ ≥ u− ε.
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(c) If there is an admissible policy function as in (b) for any ε > 0, then u is the

value function: u = u∗.

(d) If q∗ : [0, 1] → Q is an admissible policy function such that for every π,

the quantity q∗(π) attains the supremum in (C.2), then this policy function is

optimal. For any π,

u(π) = u∗(π) = max
q∈Q

uq(π) = uq
∗
π(π)

where q∗π is the strategy obtained by following this policy from the initial belief

π.

Proof: Let the initial belief be π0 = π. For an arbitrary strategy q ∈ Q consider the

stochastic process Mq given by

Mq
T =

∫ T

0
r e−r t R(πt, qt) dt + e−r T u(πT ) .

By a generalisation of Itô’s lemma,

Mq
T = Mq

0

+

∫ T

0
e−r t

{
1
2 Σ2(πt, qt)u2(πt) + λ(πt)u

′(πt)− r u(πt) + r R(πt, qt)
}
dt

+σ−1
∫ T

0
e−r tπt(1− πt)(∆α−∆β qt) dZ

q
t ;

cf. Rogers and Williams (1987, Lemma IV.45.9, p.105). Now, (C.2) implies that the

expression under the first integral is non-positive, so Mq is a supermartingale. In other

words, Eπ[Mq
T ] ≤Mq

0 or

u(π) ≥ Eπ

[∫ T

0
r e−r t R(πt, qt) dt

]
+ e−r T Eπ[u(πT )] .

Letting T go to infinity, we see that the first term on the right-hand side becomes uq(π),

while the second term tends to zero. This proves part (a). Next, let ε ≥ 0, and consider

a policy function q : [0, 1] → Q satisfying (C.3) on the whole of its domain. If q is the

strategy obtained by following this policy from the initial belief π, then

Eπ[Mq
T ] ≥Mq

0 − ε
∫ T

0
r e−r t dt .

Letting T →∞ yields uq(π) ≥ u(π)− ε. Parts (b), (c) and (d) follow immediately.
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D Analysing the Bellman Equation

In Section 3.3 of the main text we initially rewrote the Bellman equation in the form

v = max
q∈Q

{
τ(π) s [q − q̂]2 +R(π, q)

}
where the variable v is standing in for u(π) − λ(π)u′(π)/r and s is representing

u′′(π)/2r. The first task here is to show that this problem can be reformulated as

τ(π) s = min
q∈Q−{q̂}

v −R(π, q)

[q − q̂]2

for triplets (π, v, s) with s ≥ 0 and (π, v) lying in the set

A = {(π, v) ∈ ]0, 1[ ×IR : v ≥ m(π) and v > m̂} .

(As noted in the main text, the condition v > m̂ only bites if q̂ lies in the interior of

Qm, in which case it rules out exactly the point (π̂, m̂), which in turn excludes the

possibility of q̂ being optimal.)

To derive the reformulation, define the functions

B[π, v, s, q] = τ(π) s [q − q̂]2 +R(π, q)− v

and

B∗[π, v, s] = max
q∈Q

B[π, v, s, q] ,

and rewrite the Bellman equation as

B∗[π, v, s] = 0 .

Then, for all triplets (π, v, s) with s ≥ 0 and (π, v) ∈ A, the equation B∗[π, v, s] = 0

is equivalent to maxq∈Q−{q̂}B[π, v, s, q] = 0. Now, we have [q − q̂]2 > 0 on Q− {q̂},
so maxq∈Q−{q̂}B[π, v, s, q] = 0 if and only if

max
q∈Q−{q̂}

B[π, v, s, q]

[q − q̂]2
= 0 ,

which in turn is equivalent to

τ(π) s = min
q∈Q−{q̂}

v −R(π, q)

[q − q̂]2
. (D.1)
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Moreover, a quantity q∗ ∈ Q−{q̂} satisfies B[π, v, s, q∗] = B∗[π, v, s] = 0 if and only

if (D.1) holds and q∗ minimises [v − R(π, q)]/[q − q̂]2. Thus, the original problem

and its reformulation are equivalent on A.

Next we shall prove the claim made in Section 3.4 that, when q̂ lies in the interior

of the interval Qm, the area A can be subdivided into four regions by the following

rays emanating from (π̂, m̂):

R` =
{

(π, v) ∈ A : v = m̂− 1
2

∆α [qmax − q̂] (π − π̂)
}
,

Rr =
{

(π, v) ∈ A : v = m̂+ 1
2

∆α [q̂ − qmin] (π − π̂)
}
,

Rc =

{
(π, v) ∈ A : π = π̂ +

2

∆α

qc − q̂
[qmax − q̂] [q̂ − qmin]

(v − m̂)

}
,

the regions being associated with cases in which the above optimisation problems

have interior or corner solutions.

Before proceeding, we use equation (9) to replace R(π, q) in the optimisation

problems to obtain

v −m(π) = max
q∈Q

{
τ(π) s [q − q̂]2 − β(π) [q − qm(π)]2

}
(D.2)

and its reformulation

τ(π) s = min
q∈Q−{q̂}

{
β(π) [q − qm(π)]2 + v(π)−m(π)

[q − q̂]2

}
. (D.3)

We first provide a preliminary lemma showing the regions of A where the ap-

propriate second order condition for the above equivalent problems is satisfied.

Note that the relationships m(π) = m̂ + β(π) [qm(π)− q̂]2 and β(π) [qm(π)− q̂] =

−1
2

∆α (π − π̂) are used in a number of the algebraic manipulations.

Lemma D.1 Let q̂ lie in the interior of Qm. For (π, v, s) ∈ A × IR+, the second

order condition for the minimisation problem in (D.3) is satisfied if and only if (π, v)

lies below R2` or below R2r, where

R2` = {(π, v) ∈ A : v = m̂−∆α [qmax − q̂] (π − π̂)}

and

R2r = {(π, v) ∈ A : v = m̂+ ∆α [q̂ − qmin] (π − π̂)} .

Proof: The second order condition for the minimisation problem in (D.3) is satisfied

wherever the second order condition for the maximisation problem in (D.2) is satisfied,

and it is clear from (D.2) that the latter holds if and only if τ(π) s− β(π) < 0.

119



Using the inequality v < m̂−∆α [qmax− q̂] (π− π̂) in (D.2) leads, after some manipu-

lation, to

max
q∈Q

{
[τ(π) s− β(π)] [q − q̂]2 − 2β(π) [qm(π)− q̂] [qmax − q]

}
< 0.

Evaluating the maximand at q = qmax gives us [τ(π) s − β(π)] [qmax − q̂]2 < 0 and so

τ(π) s− β(π) < 0.

On the other hand, using the inequality v ≥ m̂ −∆α [qmax − q̂] (π − π̂) for π ≤ π̂ we

arrive at

max
q∈Q

{
[τ(π) s− β(π)] [q − q̂]2 − 2β(π) [qm(π)− q̂] [qmax − q]

}
≥ 0.

The term 2β(π) [qm(π)−q̂] [qmax−q] is non-negative for π ≤ π̂ so in this case τ(π) s−β(π) ≥
0.

This proves the assertion concerning R2`. The case for R2r is proved in the same way

simply by replacing qmax by qmin and π ≤ π̂ by π ≥ π̂.

The next lemma shows that the above optimisation problems have an interior

solution if and only if (π, v) lies below R` or below Rr.

Lemma D.2 Let q̂ lie in the interior of Qm. For (π, v, s) ∈ A × IR+, the minimi-

sation problem in (D.3) has an interior solution if and only if (π, v) ∈ Aint,`∪Aint,r,

where

Aint,` =
{

(π, v) ∈ A : v < m̂− 1
2

∆α [qmax − q̂] (π − π̂)
}

and

Aint,r =
{

(π, v) ∈ A : v < m̂+ 1
2

∆α [q̂ − qmin] (π − π̂)
}
.

Moreover, the minimising quantity is given by

qm(π) +
v(π)−m(π)

m(π)− m̂
[qm(π)− q̂]

and the corresponding minimum is

β(π)
v(π)−m(π)

v(π)− m̂
.

Proof: In light of the preceding lemma, the minimisation problem in (D.3) has an

interior solution if and only if the first order condition is satisfied when (π, v) lies below

R2` or below R2r. Note that Aint,` lies below R2` and Aint,r lies below R2r.

The first order condition for the minimisation problem in (D.3) is satisfied by the
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quantity

q = qm(π) +
v −m(π)

β(π) [qm(π)− q̂]
. (D.4)

In the borderline cases, this first order condition holds for q = qmax or qmin. With q†

denoting either qmax or qmin this can be characterised by

q† = qm(π) +
v −m(π)

β(π) [qm(π)− q̂]

rearranged to give

v = m(π) + β(π) [qm(π)− q̂] [qmax − qm(π)] > m(π) iff π < π̂

and

v = m(π)− β(π) [qm(π)− q̂] [qm(π)− qmin] > m(π) iff π > π̂

where the inequalities are obvious if one notes that qm(π) − q̂ has the opposite sign to

π − π̂.30 We have the alternative formulations

v = m̂− 1
2 ∆α [qmax − q̂] (π − π̂)

and

v = m̂+ 1
2 ∆α [q̂ − qmin] (π − π̂) .

Now, the first order condition holds for some q ∈ ]qmin, qmax[ if and only if

qmin < qm(π) +
v −m(π)

β(π) [qm(π)− q̂]
< qmax ;

the first inequality is equivalent to (π, v) ∈ Aint,r, and the second to (π, v) ∈ Aint,`.

The expression given for the minimising quantity is simply a manipulation of the

right-hand side of (D.4), which when substituted into (D.3) yields the expression for the

corresponding minimum.

Finally, we show that the optimisation problems have the unique corner solution

qmax if (π, v) lies on or above R` but to the left of Rc, and the unique corner solution

qmin if (π, v) lies on or above Rr but to the right of Rc; for (π, v) ∈ Rc both corner

solutions are optimal.

Lemma D.3 Let q̂ lie in the interior of Qm. For (π, v, s) ∈ A×IR+, the minimisa-

tion problem in (D.3) has the corner solution qmax if and only if (π, v) ∈ Amax ∪Rc,

30Using these two inequalities, it is easy to see that R` cuts the axis π = 0 above m(0), and that
Rr cuts the vertical line π = 1 above m(1).
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and the corner solution qmin if and only if (π, v) ∈ Amin ∪Rc, where

Amax =

{
(π, v) ∈ A : v ≥ m̂− 1

2
∆α [qmax − q̂] (π − π̂)

and π < π̂ +
2

∆α

qc − q̂
[qmax − q̂] [q̂ − qmin]

(v − m̂)

}

and

Amin =

{
(π, v) ∈ A : v ≥ m̂+ 1

2
∆α [q̂ − qmin] (π − π̂)

and π > π̂ +
2

∆α

qc − q̂
[qmax − q̂] [q̂ − qmin]

(v − m̂)

}
.

Proof: In light of the previous lemma, we know that corner solutions will prevail in the

regions under consideration. Also, it is easy to see from the alternative parameterisation

of the central ray, namely

v = m̂+ 1
2 ∆α

[qmax − q̂] [q̂ − qmin]

qc − q̂
(π − π̂)

for qc 6= q̂, where qc = 1
2 (qmin + qmax), that Rc lies between R` and Rr.

In this region, the borderline case arises when qmax and qmin are both optimal and give

the same value of τ(π) s in (D.3). This is the case if and only if

β(π) [qmax − qm(π)]2 + v −m(π)

[qmax − q̂]2
=
β(π) [qmin − qm(π)]2 + v −m(π)

[qmin − q̂]2

and simplification leads to

π = π̂ +
2

∆α

qc − q̂
[qmax − q̂][q̂ − qmin]

(v − m̂) .

Thus both extreme quantities are optimal for (π, v) ∈ Rc.

It follows immediately that qmax is uniquely optimal for (π, v) ∈ Amax, to the left of

Rc, and qmin is uniquely optimal for (π, v) ∈ Amin, to the right of Rc.

E The Undiscounted Case

In the absence of discounting, the monopolist uses the catching-up criterion to

choose amongst admissible strategies: given a prior belief π, he looks for a strategy

q∗ ∈ Q which, in the long run, does at least as well as any other strategy in the
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sense that lim infT→∞ Eπ[Rq∗

T −R
q
T ] ≥ 0 for all q ∈ Q, where

Rq
T =

∫ T

0
qt [(αkt − βktqt) dt + σdZt]

is the process of cumulative revenues. The agent achieves this goal by maximising

the transient pay-off, that is, total expected revenue net of the highest possible

long-run average pay-off. Indeed, it can be shown that a strategy which achieves

the maximum transient pay-off is catching-up optimal.

E.1 No State Switching (r = 0, Λ = 0)

Let Λ = 0, so the state of demand is fixed over time. Then, the monopolist can

achieve a long-run average pay-off arbitrarily close to the full-information pay-off,

that is, m(0) if the true state is k = 0, and m(1) if the true state is k = 1. In fact,

it suffices to follow any admissible policy which coincides with the myopic policy

qm for beliefs close to 0 and 1, and is bounded away from the confounding quantity

q̂ in case the latter lies in the interior of Qm, the range of the myopic policy. By

the martingale convergence theorem and the standard boundary classification for

diffusion processes, beliefs will converge to the truth with probability one,31 and the

quantity chosen will approach the quantity which is optimal for the true demand.

Given the initial belief π, the agent’s objective is therefore to maximise the transient

pay-off

uq(π) = Eπ

[∫ ∞
0

[R(k, qt)−m(k)] dt
]

where k is the unknown state of demand. By the law of iterated expectations,

uq(π) = Eπ

[∫ ∞
0

[R(πt, qt)−m(πt)] dt
]

where

m(π) = (1− π)m(0) + πm(1)

is the ex ante full-information pay-off.

Standard results imply that the value function u∗(π) = supq∈Q u
q(π) solves the

Bellman equation

max
q∈Q

{
1
2

Σ2(π, q)u′′(π)−m(π) +R(π, q)
}

= 0 (E.1)

31We are assuming here that the agent does not assign prior probability zero to the true state.
See Karlin and Taylor (1981) for the classification of boundary points.
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subject to the boundary conditions u(0) = u(1) = 0. Moreover, if a function u solves

(E.1) with these boundary conditions, and there is an admissible policy function

q : [0, 1]→ Q such that

q(π) ∈ arg max
q∈Q

{
1
2

Σ2(π, q)u′′(π)−m(π) +R(π, q)
}

(E.2)

for all π, then u = u∗ and the given policy is optimal.

In view of the results of Section 3.3, property (E.2) is equivalent to q(π) ∈
O(π,m(π)). Moreover, the affine function m trivially solves the ODE (19) for r = 0

and Λ = 0 with m(0) = m(0) and m(1) = m(1) as boundary values. We can

therefore simply define the adjusted value function as v∗ = m.

E.2 State Switching (r = 0, Λ > 0)

We now assume Λ > 0. Let θ∗ be the highest long-run average pay-off achievable

with a strategy q ∈ Q. According to the introductory remarks to this section, the

monopolist’s objective is then to maximise

uq(π) = Eπ

[∫ ∞
0

[R(kt, qt)− θ∗] dt
]

= Eπ

[∫ ∞
0

[R(πt, qt)− θ∗] dt
]
,

the transient pay-off as measured against the benchmark θ∗.

It can be shown that θ∗ and the value function u∗(π) = supq∈Q u
q(π) solve the

Bellman equation

max
q∈Q

{
1
2

Σ2(π, q)u′′(π) + λ(π)u′(π)− θ +R(π, q)
}

= 0 (E.3)

almost everywhere subject to the boundary conditions θ − λ(0)u′(0) = m(0) and

θ− λ(1)u′(1) = m(1).32 Conversely, if a real number θ and a function u solve (E.3)

with the stated boundary conditions, and there is an admissible policy function

q : [0, 1]→ Q such that

q(π) ∈ arg max
q∈Q

{
1
2

Σ2(π, q)u′′(π) + λ(π)u′(π)− θ +R(π, q)
}

(E.4)

for all π, then θ = θ∗, u is the value function up to a constant of integration, and

the given policy is optimal.

32Moreover, u∗ possesses the same regularity properties as the value function in the discounted
case; arguments similar to those given in Appendices B and C apply. The discussion in Sections 3.1
and 3.2 regarding conditions for experimentation and the confounding quantity carries over as well.
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Given the above boundary conditions and the fact that (E.4) is equivalent to

q(π) ∈ O(π, θ − λ(π)u′(π)), we define the adjusted value function by v∗(π) = θ∗ −
λ(π) (u∗)′(π). As the analysis in Sections 3.3 and 3.4 remains valid for r = 0 with

v now standing for θ − λ(π)u′(π) and u′′(π)/2r being replaced by u′′(π)/2, we can

argue as in Section 3.5, and show that this v∗ is indeed a solution (with the caveats

stated there) of the ODE (19) for r = 0 and Λ > 0.

F Convexity of the Adjusted Value Function

Fix π̃ ∈ ]0, 1[, Λ > 0 and r ≥ 0. For k > 0, let wk : ]0, 1[ −{π̃} → IR be the function

defined implicitly by the equation

G(π,wk(π)) = k τ(π) |π − π̃|−2−r/Λ

with G as in Section 3.3. Then we have the following facts:

• wk ≥ m, with equality at π = 0 and 1, and a strict inequality everywhere else;

• wk has a pole at π = π̃;

• w′′k(π) > 0 unless (π,wk(π)) ∈ Rc (see Lemma F.2 below);

• r G(π,wk(π)) + Λ
{
f(π)G(π,wk(π)) + (π − π̃) d

dπ
G(π,wk(π))

}
= 0 for all π 6=

π̃.

This last property explains our interest in the family of functions wk, and leads to the

following characterisation for the curvature of v∗ on the set {π : v∗(π) > m(π)}.33

Lemma F.1 Let π be such that v∗(π) > m(π) and (π, v∗(π)) 6∈ Rc. If π = π̃, then

(v∗)′′(π) > 0. If π 6= π̃, let w be that function wk which coincides with v∗ at π;

then (v∗)′′(π) > 0 if and only if either π < π̃ and (v∗)′(π) < w′(π), or π > π̃ and

(v∗)′(π) > w′(π).

Proof: The case π = π̃ is trivial. At π 6= π̃, v∗ solves the ODE (19), so the fourth

property above implies

τ(π)
(v∗)′′(π)

2
= Λ (π − π̃)

{
d

dπ
G(π, v∗(π))− d

dπ
G(π,w(π))

}
.

The lemma follows since d
dπG(π, v(π)) is strictly increasing in v′(π).

33Note that if v∗(π) = m(π) with π 6= π̂, then trivially (v∗)′′(π) > 0 since m′′(π) > 0.
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We shall use this to prove that the adjusted value function is strictly convex

whenever experimentation is moderate.

Proposition F.1 If q̂ is not in the interior of Qm, then (v∗)′′ > 0 on ]0, 1[.

Proof: Suppose that (v∗)′′(π†) ≤ 0 with 0 < π† < 1; without loss of generality, we

assume that π† < π̃. Let k† > 0 be such that the function w† = wk† coincides with v∗ at

π†. By the above lemma, (v∗)′(π†) ≥ (w†)′(π†). Now, the strict convexity of the functions

wk implies that (v∗)′(π) > w′k(π) for π < π† sufficiently close to π† and k < k† sufficiently

close to k†. So (v∗)′′ is strictly negative immediately to the left of π†. On the other hand,

v∗ cannot be strictly concave on the whole of ]0, π†[ since this would imply (v∗)′ > w′ on

]0, π†[ and hence v∗(0) < w†(0) = m(0). Therefore, there must be positive π < π† such

that (v∗)′′(π) = 0 again; let π‡ be the biggest such π, and w‡ that function wk which

is tangent to v∗ at π‡. On [π‡, π†], w‡ and w† are strictly convex, while v∗ is strictly

concave. This implies w‡(π‡) < w†(π‡) and w‡(π†) > w†(π†), so w‡ and w† must intersect

somewhere on ]π‡, π†[ – a contradiction. The same argument can be used to the right of

π̃.

Proposition F.2 Suppose that q̂ lies in the interior of Qm and v∗(π̂) = m̂. Then

v∗ is strictly convex with (v∗)′′ > 0 on ]0, 1[ −{π̂}, and at most one of the one-sided

derivatives (D−v
∗)(π̂) and (D+v

∗)(π̂) can be different from zero. In fact, if π̂ < π̃,

then (D+v
∗)(π̂) = 0 and (D−v

∗)(π̂) ≤ 0; and if π̂ > π̃, then (D−v
∗)(π̂) = 0 and

(D+v
∗)(π̂) ≥ 0. If v∗ is differentiable at π̂, then the ratio [v∗(π) − m̂]/[m(π) − m̂]

converges to a finite limit as π → π̂. If v∗ has a kink at π̂, then [v∗(π)−m̂]/[m(π)−m̂]

converges to a finite limit as π approaches π̂ from the direction of π̃.

Proof: We first convince ourselves that we can assume qc = q̂ without loss of generality.

In fact, suppose we have shown the stated properties for the adjusted value function v∗ in

this particular case. Then the boundary conditions and strict convexity of v∗ imply that

v∗ < m` on ]0, π̂[ and v∗ < mr on ]π̂, 1[ with m` and mr being the functions whose graphs

are the straight lines joining the point (π̂, m̂) with the points (0,m(0)) and (1,m(1)),

respectively. In particular, the graph of v∗ lies entirely in the closure of Aint,` ∪ Aint,r.

Arguing exactly as in the proof of Proposition 4.2, we see that v∗ is the adjusted value

function for any qmax and qmin such that [qmin, qmax] ⊇ Qm. So we have the stated

properties of the adjusted value function for qc 6= q̂ as well.

Suppose therefore that qc = q̂, implying that the central ray Rc is vertical. This

simplifies the following analysis since it rules out intersections between the graph of v∗

and Rc, so we do not have to worry about the ‘break’ in (19) along Rc.
Below, we will make repeated use of the following observation:

(v∗)′(π)− 2Λ (π − π̃)G(π, v∗(π))/τ(π) converges to a finite limit as π → π̂. (F.1)
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In fact, the definition of the adjusted value function in (18) and the ODE (14) together

with its undiscounted variant imply that this expression equals (1 + Λ/r)(u∗)′(π) if r > 0,

and Λ(u∗)′(π) otherwise. So (F.1) follows from continuity of (u∗)′.

We can now turn to the proof of convexity of v∗. For the sake of concreteness, we

assume that π̂ < π̃. Again, this is without loss of generality, since we could always relabel

the demand curves.

We consider the subinterval left of π̂ first. Suppose that (v∗)′′ ≤ 0 on ]0, π̂[. Fix

any π in this interval and let w be the function wk that satisfies w(π) = v∗(π). Then,

w′(π) ≤ (v∗)′(π) by the above lemma. In fact, the equality w′(π) = (v∗)′(π) is precluded

since it would imply convexity of v∗ immediately to the right of π (v∗ would cross a nearby

function wk from above). So w′(π) < (v∗)′(π). Since w(π̂) > m̂ = v∗(π̂), there must be a π′

in ]π, π̂[ such that w(π′) = v∗(π′) and w′(π′) > (v∗)′(π′) (equality is again precluded). But

this means (v∗)′′(π′) > 0, a contradiction. Thus, we must have inf{π ∈ ]0, π̂[: (v∗)′′(π) >

0} < π̂.

Now suppose that this infimum is positive, so there is a belief π† with 0 < π† < π̂ and

(v∗)′′(π†) ≤ 0. Let k† > 0 be such that the function w† = wk† coincides with v∗ at π†.

By the above lemma, (v∗)′(π†) ≥ (w†)′(π†). Now, the strict convexity of the functions wk

implies that (v∗)′(π) > w′k(π) for π < π† sufficiently close to π† and k < k† sufficiently

close to k†. So (v∗)′′ is strictly negative immediately to the left of π†. On the other hand,

v∗ cannot be strictly concave on the whole of ]0, π†[ since this would imply (v∗)′ > w′

on ]0, π†[ and hence v∗(0) < w†(0) = m(0). Therefore, there must be a positive π < π†

such that (v∗)′′(π) = 0 again; let π‡ be the biggest such π, and w‡ that function wk which

is tangent to v∗ at π‡. On [π‡, π†], w‡ and w† are strictly convex, while v∗ is strictly

concave. This implies w‡(π‡) < w†(π‡) and w‡(π†) > w†(π†), so w‡ and w† must intersect

somewhere on ]π‡, π†[ – a contradiction. This proves that (v∗)′′ > 0 on ]0, π̂[.

Using the same argument as in the previous paragraph, we also see that (v∗)′′ > 0

on ]π̃, 1[. Now let π = inf{π > π̂ : (v∗)′′(π) > 0}. We know that (v∗)′′(π̃) > 0, so

π̂ ≤ π < π̃. Suppose π > π̂. Arguing once more as in the previous paragraph, we can

show that (v∗)′′ < 0 immediately to the left of π. Moreover, (v∗)′′ must be negative on

the whole of ]π̂, π[ since the existence of a π in this interval with (v∗)′′(π) ≥ 0 would

again lead to a contradiction. Thus, the one-sided derivatives of v∗ at π̂ are well defined,

and we must have (D−v
∗)(π̂) ≤ 0 and (D+v

∗)(π̂) > 0 since v∗ ≥ m, m′(π̂) = 0 and

v∗ is strictly concave immediately to the right of π̂. In view of (F.1), we conclude that

G(π, v∗(π)) has one-sided limits at π̂ with limπ→π̂−G(π, v∗(π)) > limπ→π̂+G(π, v∗(π)).

The explicit representation for G in (16)–(17) shows that these limits lie in the interval

[0, β(π̂)]. However, (D+v
∗)(π̂) > 0 implies limπ→π̂+G(π, v∗(π)) = β(π̂) by L’Hôpital’s

rule, and hence limπ→π̂−G(π, v∗(π)) > β(π̂) – a contradiction. This proves that π = π̂

and (v∗)′′ > 0 on the whole of ]0, 1[ −{π̂}.
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In particular, the one-sided derivatives of v∗ at π̂ exist and satisfy (D−v
∗)(π̂) ≤ 0 ≤

(D+v
∗)(π̂). Repeating the argument given in the previous paragraph, we would again get

a contradiction if (D+v
∗)(π̂) > 0. So (D+v

∗)(π̂) = 0.

Observation (F.1) now implies the existence of one-sided limits limπ→π̂−G(π, v∗(π)) ≥
limπ→π̂+G(π, v∗(π)) in the interval [0, β(π̂)], the inequality being strict iff (D−v

∗)(π̂) <

0. Having established convexity of v∗, we also know that its graph lies entirely in the

region associated with interior quantities. So the relevant expression for the function G is

G(π, v) = β(π)[v −m(π)]/[v − m̂]. We can now prove the rest of the proposition.

If (D−v
∗)(π̂) < 0, then limπ→π̂+G(π, v∗(π)) < limπ→π̂−G(π, v∗(π)) = β(π̂) where the

equality follows again by L’Hôpital’s rule. Since [v−m̂]/[m(π)−m̂] = β(π)/[β(π)−G(π, v)],

this proves that [v∗(π)− m̂]/[m(π)− m̂] tends to a finite limit as π → π̂+.

If (D−v
∗)(π̂) = 0, on the other hand, then G(π, v∗(π)) approaches the same limit from

both sides of π̂. If this limit is strictly smaller than β(π̂), then the quotient [v∗(π) −
m̂]/[m(π) − m̂] has a finite limit, as in the previous paragraph. Suppose therefore that

limπ→π̂ G(π, v∗(π)) = β(π̂). Then the function h(π) = G(π, v∗(π))/β(π) = [v∗(π) −
m(π)]/[v∗(π) − m̂], which is strictly smaller than 1 for π 6= π̂, tends to 1 as π → π̂. For

every π 6= π̂, we can find a ξ between π and π̂ such that m(π)−m̂ = 1
2m
′′(ξ)(π−π̂)2, hence

1 − h(π) = [m(π) − m̂]/[v∗(π) − m̂] = 1
2m
′′(ξ)(π − π̂)2/[v∗(π) − m̂]. Since (v∗)′(π̂) = 0,

the ratio [1 − h(π)]/(π̂ − π) is unbounded above as π approaches π̂ from the left and,

by the mean value theorem, so is h′(π). As G(π, v∗(π)) = β(π)h(π), we conclude that

(d/dπ)G(π, v∗(π)) is also unbounded above. But given that π̂ < π̃, (19) now implies that

(v∗)′′ is unbounded below – a contradiction.

We still have to show that the functions wk are themselves convex.

Lemma F.2 For k > 0, the function wk is strictly convex at all π ∈ ]0, 1[ −{π̃}
such that (π,wk(π)) 6∈ Rc.

Proof: We fix a k > 0 and simply write w for the corresponding function wk.

We first consider π such that (π,w(π)) lies in one of the regions associated with an

interior quantity. It is straightforward to show that in these regions, w satisfies the first-

order ODE

w′(π) =
w(π)− m̂
m(π)− m̂

[
m′(π)−K(π) (w(π)−m(π))

]
with

K(π) =
2 + r/Λ

π − π̃
+

∆β

β(π)
− 2(1− 2π)

π(1− π)
.

Differentiating both sides and using the ODE to replace w′(π), we find that w′′(π) is a

quadratic in w(π)−m(π) multiplied by a positive factor:

w′′ =
[
a (w −m)2 + b (w −m) + c

]
d
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with

a = 2K2,

b = (K2 −K ′)(m− m̂)− 2Km′,

c = (m− m̂)m′′,

d = (w − m̂)/(m− m̂)2,

where we have suppressed the dependence of the functions K, m and w on π. Clearly

a > 0 and, since m > m̂ and m is convex, we also have c > 0. Thus, if b ≥ 0, then w′′ > 0

and we are done.

Suppose therefore that b < 0. We have to show that the above quadratic in w−m has no

real roots. This is the same as showing b2−4ac < 0, or equivalently (b+2
√
ac)(b−2

√
ac) <

0. Since we are dealing with the case b < 0, the second factor is negative, so all we have

to show is that b+ 2
√
ac > 0, i.e.,

(K2 −K ′)(m− m̂)− 2Km′ + 2
√

2K2(m− m̂)m′′ > 0

when (K2 −K ′)(m− m̂)− 2Km′ < 0.

First, we can show that K2−K ′ > 0. Indeed, K2−K ′ = [(r/Λ)2 +(r/Λ)f1 +2f2]/(π−
π̃)2 with

f1(π) = {π̃(1− π) [(1− π) (β0 + β(π)) + (1− π)β0 + β(π)]

+ (1− π̃)π [π (β1 + β(π)) + πβ1 + β(π)]}/{π(1− π)β(π)}

and

f2(π) =

(
β0π̃(1− π)2 + β1(1− π̃)π2

)2
+ 2π̃(1− π̃)π(1− π)β(π)2

(π(1− π)β(π))2

which are positive by inspection. This leads to the further simplification that the only

possibility we need consider is when Km′ > 0.

It will be more convenient to rewrite m(π) and its derivatives in terms of qm(π) and

q̂ as follows:

m− m̂ = β (qm − q̂)2 , m′ = −∆β qm (qm − q̂) , m′′ =
∆β2

2β
(2qm − q̂)2

where again we have suppressed the dependence of the functions β, m and qm on π. Having

made these substitutions, the expression which we wish to show is positive becomes

β (K2 −K ′) (qm − q̂)2 + 2 ∆β {Kqm (qm − q̂) + |K| |qm − q̂| |2qm − q̂|} ,

and we need consider only the possibility that K (qm − q̂) < 0.

129



(1) K < 0, qm − q̂ > 0. The expression in braces becomes

− |K| qm (qm − q̂) + |K| (qm − q̂) (2qm − q̂) = |K| (qm − q̂)2 ,

so we are done.

(2) K > 0, qm − q̂ < 0. This time the expression in braces becomes

−Kqm |qm − q̂|+K |qm − q̂| |2qm − q̂| = K |qm − q̂| (|2qm − q̂| − qm) ,

and we have two subcases.

(2i) 2qm ≥ q̂. The above expression becomes

K |qm − q̂| (2qm − q̂ − qm) = −K (qm − q̂)2

and the whole expression which we wish to show is positive becomes

β (K2 −K ′) (qm − q̂)2 − 2 ∆β K (qm − q̂)2 =
[
β (K2 −K ′)− 2 ∆β K

]
(qm − q̂)2 .

(2ii) 2qm < q̂. Now the expression for case (2) becomes

K |qm − q̂| (−2qm + q̂ − qm) = K (q̂ − qm) (q̂ − 3qm)

and the whole expression which we wish to show is positive becomes[
β (K2 −K ′) + 2 ∆β K

q̂ − 3qm

q̂ − qm
]

(qm − q̂)2 .

But qm− q̂ < 0 and 2qm < q̂ imply that (q̂− 3qm)/(q̂− qm) > −1, and so the above

expression is greater than

[
β (K2 −K ′)− 2 ∆β K

]
(qm − q̂)2

which is just the expression that we found in case (2i). Therefore, case (2) comes

down to showing that the term in square brackets is positive. In fact, it can be

written as

2β(π)
[
π̃2(1− π)4 + (1− π̃)2π4 + 2π̃(1− π̃)π(1− π) (1 + π(1− π))

]
π2(1− π)2(π − π̃)2

+
β(π)(r/Λ) [π̃(1− π) (1 + 3(1− π)) + (1− π̃)π (1 + 3π)]

π(1− π)(π − π̃)2

+
β(π)(r/Λ)2

(π − π̃)2

which is positive by inspection.
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Thus w′′(π) > 0 in the regions associated with interior solutions.

We still have to consider π such that (π,w(π)) lies in a region associated with exactly

one of the extreme quantities. This quantity, which can be either qmax or qmin, will be

denoted by q†. It is straightforward to show that in such a region, w satisfies

w′(π) = q† (∆α−∆β q†)− L(π)
(
w(π)−R(π, q†)

)
with

L(π) =
2 + r/Λ

π − π̃
− 2(1− 2π)

π(1− π)
,

and that

w′′(π) =
[
L2(π)− L′(π)

] (
w(π)−R(π, q†)

)
.

As w(π) > R(π, q†) by construction, we only have to show that L2 − L′ > 0. This follows

from the representation L2 − L′ = [(r/Λ)2 + (r/Λ)g1 + 2g2]/(π − π̃)2 where

g1(π) =
π̃(1− π) [3(1− π) + 1] + (1− π̃)π [3π + 1]

π(1− π)

and

g2(π) =

(
π̃(1− π)2 + (1− π̃)π2

)2
+ 2π̃(1− π̃)π(1− π)

π2(1− π)2

are clearly positive; this representation is obtained by setting ∆β = 0 in the above expres-

sion for K2 −K ′.

G Two-Point Boundary Value Problems

Consider a second-order differential equation of the form

π2(1− π)2 v′′ = F [π, v, v′] (G.1)

on some open interval I = ]π`, πr[ ⊆ ]0, 1[. We are interested in finding a solution

to this ODE which assumes prespecified values at the two boundary points of the

interval.

The existence theorem presented below requires the concept of a sub- or super-

solution to this ODE. Let v be a real-valued continuous function on I = [π`, πr] with

a continuous first derivative on I. Define functions Dv′, Dv′ : I → IR ∪ {±∞} by

(Dv′)(π) = lim inf
h→0

v′(π + h)− v′(π − h)

2h
, (Dv′)(π) = lim sup

h→0

v′(π + h)− v′(π − h)

2h
.

(Note that for twice differentiable v, the functions Dv′ and Dv′ coincide with v′′.)

The function v is called a subsolution of the ODE (G.1) if π2(1−π)2Dv′ ≥ F [π, v, v′]
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on I. Similarly, v is called a supersolution if π2(1 − π)2Dv′ ≤ F [π, v, v′] on I. We

speak of a strict subsolution or supersolution if the respective inequality is strict on

I.

Fix functions v, v : I → IR satisfying v ≤ v on I. Given any subinterval J ⊆ I,

we say that the function F on the right-hand side of (G.1) is regular on J with

respect to v and v if it is continuous on

DJ = {(π, v0, v1) ∈ J × IR× IR : v(π) ≤ v0 ≤ v(π)}

and there is a constant CJ depending only on J such that |F [π, v0, v1]| ≤ CJ (1 +|v1|)
on DJ .

Proposition G.1 Let 0 < π` < πr < 1. Assume that v : I → IR is a subsolution

of (G.1), v : I → IR a supersolution, and v ≤ v. If F is regular with respect to v

and v on I = [π`, πr], then for any v` ∈ [v(π`), v(π`)] and vr ∈ [v(πr), v(πr)], there

is a continuous function v : I → IR which solves (G.1) on I with v ≤ v ≤ v and

satisfies the boundary conditions v(π`) = v` and v(πr) = vr. Moreover, if v is a

strict subsolution, then v > v on I, and if v is a strict supersolution, then v < v on

I.

Proof: The existence of such a solution v follows directly from Bernfeld and Laksh-

mikantham (1974, Theorem 1.5.1). Now assume that v is a strict subsolution and that

there is a belief π̆ ∈ I such that v(π̆) = v(π̆). Then the function v−v has a local minimum

at π̆, so v′(π̆) = v′(π̆) and v′′(π̆) ≥ (Dv′)(π̆). Yet π̆2(1 − π̆)2 v′′(π̆) = F [π̆, v(π̆), v′(π̆)] =

F [π̆, v(π̆), v′(π̆)] < π̆2(1−π̆)2 (Dv′)(π̆) – a contradiction. The case of a strict supersolution

v is dealt with in the same way.

We will need the following corollary of this result.

Corollary G.1 Given π` < πc < πr in ]0, 1[, consider the ODEs

π2(1− π)2 v′′ = F`[π, v, v
′] (G.2)

on ]π`, πc[ and

π2(1− π)2 v′′ = Fr[π, v, v
′] (G.3)

on ]πc, πr[. Let v` : [π`, πc] → IR be a subsolution of (G.2), v` : [π`, πc] → IR a

supersolution of (G.2), vr : [πc, πr]→ IR a subsolution of (G.3) and vr : [πc, πr]→ IR

a supersolution of (G.3) such that v` ≤ v`, vr ≤ vr, v`(πc) = vr(πc) < v`(πc) =

vr(πc), v′`(πc−) ≤ v′r(πc+) and v′`(πc−) ≥ v′r(πc+). Assume that F` is regular with
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respect to v` and v` on each closed interval contained in ]π`, πc], and Fr is regular

with respect to vr and vr on each closed interval contained in [πc, πr[. Then there is

a differentiable function v : ]π`, πr[ → IR which solves (G.2) on ]π`, πc[ and (G.3) on

]πc, πr[ such that v` ≤ v ≤ v` on ]π`, πc] and vr ≤ v ≤ vr on [πc, πr[.

Proof: Piecing together v`, vr and v`, vr in the obvious way, we get continuous functions

v, v : [π`, πr]→ IR. Let ε > 0 be such that π`+ε < πc < πr−ε. We shall construct numbers

an, an ∈ [v(πc), v(πc)] and functions vn, vn with the following properties for all n = 1, 2, . . . :

(i) an < an ;

(ii) an+1 ≥ an and an+1 ≤ an ;

(iii) vn, vn : [π` + ε, πr − ε] → IR are continuous and solve (G.2) on ]π` + ε, πc[ and

(G.3) on ]πc, πr − ε[ subject to vn(π` + ε) = vn(π` + ε) = v(π` + ε), vn(πr − ε) =

vn(πr − ε) = v(πr − ε), vn(πc) = an, vn(πc) = an ;

(iv) v′n(πc−) ≤ v′n(πc+) and v′n(πc−) ≥ v′n(πc+) ;

(v) v ≤ vn < vn ≤ v on ]π` + ε, πr − ε[ ;

(vi) vn+1 ≥ vn and vn+1 ≤ vn .

For n = 1, we set a1 = v(πc) and a1 = v(πc), so (i) holds. Using Proposition G.1 separately

to the left and right of πc, we find a function v1 satisfying (iii) and v ≤ v1 ≤ v, and a

function v1 satisfying (iii) and v1 ≤ v1 ≤ v. Property (iv) is then obvious, and a simple

argument similar to the one given at the end of the previous proof shows (v). Suppose

we have constructed an, an, vn and vn with (i) and (iii)–(v). If v′n(πc−) = v′n(πc+) or

v′n(πc−) = v′n(πc+), we simply set an+1 = an, an+1 = an, vn+1 = vn and vn+1 = vn.

Otherwise, we consider a = (an+an)/2 and a continuous function v : [π`+ ε, πr− ε] → IR

which satisfies vn ≤ v ≤ vn and solves (G.2) on ]π` + ε, πc[ and (G.3) on ]πc, πr − ε[

subject to v(π` + ε) = v(π` + ε), v(πr − ε) = v(πr − ε), v(πc) = a. Such a function

exists by Proposition G.1, and it is again straightforward to see that vn < v < vn on

]π`+ε, πr−ε[. If v′(πc−) ≤ v′(πc+), we set an+1 = a, an+1 = an, vn+1 = v and vn+1 = vn;

if v′(πc−) > v′(πc+), we set an+1 = an, an+1 = a, vn+1 = vn and vn+1 = v. This

procedure clearly implies (i)–(vi).

If none of the functions vn or vn is differentiable at πc, then the sequences (an) and (an)

converge to a common limit a∞, and by Bernfeld and Lakshmikantham (1974, Corollary

1.5.1), the sequences (vn) and (vn) have subsequences converging uniformly to functions

v∞ ≤ v∞ which solve (G.2) and (G.3) on the respective open intervals, with the cor-

responding subsequences of (v′n) and (v′n) converging to v′∞ and v′∞, respectively. As

v∞(πc) = v∞(πc) = a∞, we have v′∞(πc−) ≥ v′∞(πc−) and v′∞(πc+) ≤ v′∞(πc+). On the

other hand, v′∞(πc−) ≤ v′∞(πc+) and v′∞(πc−) ≥ v′∞(πc+), hence v′∞(πc−) ≥ v′∞(πc−) ≥
v′∞(πc+) ≥ v′∞(πc+) ≥ v′∞(πc−), implying equality throughout.

133



For any small ε > 0, we can therefore always find a function vε on [π`+ ε, πr− ε] which

solves (G.2) on ]π` + ε, πc[ and (G.3) on ]πc, πr − ε[, is differentiable at πc, and satisfies

vε(π` + ε) = v(π` + ε), vε(πr − ε) = v(πr − ε), and v ≤ vε ≤ v everywhere else.

Finally, consider a sequence vk : [π`+ εk, πr− εk]→ IR of such functions for small posi-

tive numbers (εk)k=1,2,... converging monotonically to 0. By Bernfeld and Lakshmikantham

(1974, Theorem 1.4.1), there is an Nk > 0 such that |v′| ≤ Nk on [π` + εk, πr − εk] for any

solution lying between v and v on this interval. Thus for any fixed integer K ≥ 1 and all

k ≥ K, vk is a solution satisfying v ≤ vk ≤ v and |v′k| ≤ NK on [π` + εK , πr − εK ], so

the sequences (vk)k≥K and (v′k)k≥K are both uniformly bounded and equicontinuous on

that interval. Employing the standard diagonalisation argument, we obtain a subsequence

which converges uniformly on all compact subintervals of ]π`, πr[ to a function v with the

desired properties.

Our analysis of the Bellman equation lead us to the following second-order dif-

ferential equation for the adjusted value function v∗:

τ(π)
v′′(π)

2
= r G(π, v(π)) + Λ

{
f(π)G(π, v(π)) + (π − π̃)

d

dπ
G(π, v(π))

}
(G.4)

with the positive function

f(π) = 2

(
π̃(1− π)

π
+

(1− π̃)π

1− π

)

and G defined by equation (13). We saw that G is continuously differentiable in the

area A with the exception of the central ray in case q̂ lies in the interior of Qm; if

this is the case, we consider the ODE separately to the left and to the right of the

central ray. Throughout, we will assume that at least one of the parameters r and

Λ is strictly positive.

Lemma G.1 The myopic pay-off function m is a strict subsolution of (G.4) on

]0, 1[ if q̂ is not in the interior of Qm, and on ]0, 1[ −{π̂} otherwise.

Proof: m′′ > 0, and we have G(π,m(π)) = 0 on the stated sets of beliefs.

Recall that the full-information pay-off function is defined by m(π) = (1 −
π)m(0) + πm(1). Its graph is the straight line joining (0,m(0)) and (1,m(1)).

Lemma G.2 The full information pay-off function m is a strict supersolution of

(G.4).

Proof: m′′ = 0, so we have to show that the right-hand side of (G.4) with v(π) replaced

by m(π) = (1− π)m(0) + πm(1) is positive.
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Suppose first that (π,m(π)) lies to the left of R` or to the right of Rr. Then that

right-hand side becomes

r β(π)H(π) + λ0 (1− π)

[
β0 + β(π)

π
H(π)− β(π)H

′
(π)

]
+ λ1 π

[
β1 + β(π)

1− π
H(π) + β(π)H

′
(π)

]

with H(π) = [m(π) −m(π)]/[m(π) − m̂]. The first term is clearly positive. The expres-

sions in square brackets associated with λ0 and λ1 simplify to h0(π)/(m(π) − m̂)2 and

h1(π)/(m(π)− m̂)2 respectively, where h0 and h1 are quadratics in π:

h0(π) = K
[
m(1)− m̂+ [m(0)−m(1)] (1− π)2

]
,

h1(π) = K
[
m(0)− m̂+ [m(1)−m(0)]π2

]
with K = β0 β1 [qm(0)− qm(1)]2. Thus, h0(0) = h1(0) = K [m(0) − m̂] and h0(1) =

h1(1) = K [m(1)−m̂], so h0 and h1 are both non-negative at each end of the unit interval.

As the two quadratics are strictly monotonic on [0, 1], they are both non-negative over the

entire unit interval.

Next consider π such that (π,m(π)) lies between the rays R` and Rr. In such a region,

the right-hand side for m can be written as

r G(π) + λ0 (1− π)

[
2

π
G(π)−G′(π)

]
+ λ1 π

[
2

1− π
G(π) +G

′
(π)

]

where G(π) = (m(π) −m(π) + β(π)[q† − qm(π)]2)/[q† − q̂]2 and the quantity q† is either

qmax or qmin. Again, the first term is clearly positive. The expressions in square brackets

associated with λ0 and λ1 simplify to `0(π)/(π [q† − q̂]2) and `1(π)/((1 − π)[q† − q̂]2)

respectively, where `0 and `1 are the following linear functions:

`0(π) =
(
β0 [q† − qm(0)]2 + β1 [q† − qm(1)]2

)
+
(
β0 [q† − qm(0)]2 − β1 [q† − qm(1)]2

)
(1− π) ,

`1(π) =
(
β1 [q† − qm(1)]2 + β0 [q† − qm(0)]2

)
+
(
β1 [q† − qm(1)]2 − β0 [q† − qm(0)]2

)
π .

By inspection, these functions are positive on the unit interval.

Define

m`(π) =
π̂ − π
π̂

m(0) +
π

π̂
m̂

for 0 ≤ π ≤ π̂, and

mr(π) =
1− π
1− π̂

m̂+
π − π̂
1− π̂

m(1)
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for π̂ ≤ π ≤ 1. The graphs of these functions are the rays joining (π̂, m̂) with

(0,m(0)) and (1,m(1)), respectively.

Lemma G.3 Let q̂ lie in the interior of Qm. Then the functions m` : [0, π̂] → IR

and mr : [π̂, 1]→ IR are strict supersolutions of (G.4).

Proof: The functions m` and mr are linear, so m′′` = 0 and m′′r = 0, and their graphs

lie entirely in the sub-regions of A associated with interior solutions. A slightly more

complicated variant of the algebra in the first part of the previous proof shows that the

right-hand side of (G.4) is positive for these functions.

Lemma G.4 If q̂ does not lie in the interior of Qm, then the right-hand side of the

ODE (G.4) is regular with respect to m and m on each closed interval contained in

]0, 1[. Otherwise, the right-hand side of the ODE is regular with respect to m and

m` on each closed interval contained in ]0, π̂[, and regular with respect to m and mr

on each closed interval contained in ]π̂, 1[.

Proof: This follows directly from the fact that in the regions associated with interior

solutions, the ODE (G.4) is equivalent to the equation τ(π)v′′(π)/2 = F [π, v(π), v′(π)]

where

F [π, v0, v1] = β(π)

{(
r + Λ

[
f(π) + (π − π̃)

∆β

β(π)

])
H(π, v0) + Λ (π − π̃)H1[π, v0, v1]

}

with

H(π, v0) =
v0 −m(π)

v0 − m̂
, H1[π, v0, v1] =

m(π)− m̂
(v0 − m̂)2

v1 −
m′(π)

v0 − m̂
.

In particular, v1 enters linearly.

Proposition G.2 Suppose that q̂ does not lie in the interior of Qm. Then there is

a continuous function v : [0, 1] → IR which solves (G.4) on ]0, 1[ with v(0) = m(0),

v(1) = m(1), and m < v < m on ]0, 1[.

Proof: This follows from Lemmas G.1, G.2 and G.4 and Corollary G.1 applied with

π` = 0, πr = 1 and F` = Fr = F as given in the proof of Lemma G.4.

Proposition G.3 Suppose that q̂ lies in the interior of Qm, and fix π̃ ∈ ]0, 1[−{π̂}.
Then there are positive constants c1 and c2 such that for all r ≥ 0, Λ ≥ 0 and

σ > 0 satisfying r + c1Λ ≥ c2/σ
2, there exists a continuous function v : [0, 1] → IR

which solves (G.4) on ]0, 1[ −{π̂} with the following properties: m < v < m` on

]0, π̂[, m < v < mr on ]π̂, 1[, and v − m̂ ≤ 2 (m − m̂) in a neighbourhood of π̂. In

particular, v(π) = m(π) at π = 0, π̂, 1 and v > m everywhere else; moreover, v is

differentiable with v′(π̂) = 0.
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Proof: Consider the function m̆ defined by m̆(π) = 2m(π) − m̂. Let π̆` be the belief

where the graph of m̆ intersects the graph of m`, and π̆r the belief where the graph of m̆

intersects the graph of mr. Define

c1 = min
π̆`≤π≤π̆r

[f(π) + (π − π̃)∆β/β(π)] , c2 = 2 ∆β2 max
π̆`≤π≤π̆r

π2 (1− π)2m′′(π)

β(π)
.

While c2 is clearly positive, the positivity of c1 follows from the identity

f(π) + (π − π̃)
∆β

β(π)
=
π̃(1− π)2 (β0 + β(π)) + (1− π̃)π2 (β1 + β(π))

π(1− π)β(π)
.

Now let r + c1Λ ≥ c2/σ
2, implying that m̆ is a supersolution of (G.4).

Clearly, the right-hand side of (G.4) is regular with respect to m and m̆ on each closed

subinterval of [π̆`, π̆r]−{π̂}. Since m̆′(π̆`) < m′`(π̆`) and m̆′(π̆r) > m′r(π̆r), Lemma G.3 and

Corollary G.1, applied separately to the left and right of π̂, yield a continuous function

v :]0, 1[→ IR which solves (G.4) on ]0, 1[ −{π̂} with m ≤ v ≤ m` on ]0, π̂], m ≤ v ≤ mr on

[π̂, 1[, and m ≤ v ≤ m̆ on [π̆`, π̆r]. This function extends continuously to the boundaries

of [0, 1], and the same argument as in the proof of Proposition G.1 shows that the first

and second of these inequalities are strict on ]0, 1[ −{π̂}.

Proposition G.4 Suppose that q̂ lies in the interior of Qm and equals qc = (qmax +

qmin)/2. Then there are positive constants c3, c4 and c5 such that for all r ≥ 0,

Λ ≥ 0 and σ > 0 satisfying c3r+ c4Λ ≤ c5/σ
2, there exists a continuous function v :

[0, 1]→ IR which solves (G.4) on ]0, 1[ −{π̂} with the following properties: v is once

continuously differentiable and m < v < m on ]0, 1[. In particular, v(π) = m(π) at

π = 0, 1 and v > m everywhere else.

Proof: Choose a strictly convex function m : [0, 1] → IR with the following properties:

m(0) = m(0) and m(1) = m(1); m = m on some intervals [0, π`] and [πr, 1] with 0 <

π` < π̂ < πr < 1; m > m on ]π`, πr[; m has a continuous first derivative on [0, 1] and a

continuous second derivative on [1, 0]− {π`, πr}.34 Define G(π) = G(π,m(π)). Next, set

c3 = max
π

G(π), c4 = sup
π∈[π`,πr]−{π̂}

[
f(π)G(π) + (π − π̃)G′(π)

]
and

c5 = ∆β2 min
π`≤π≤πr

π2 (1− π)2m′′(π)

2β(π)
.

The constants c3 and c5 are clearly positive. As to c4, there is at least one belief π† in

]π`, πr[ such that (π† − π̃)G′(π†) ≥ 0, hence c4 ≥ f(π†)G(π†) > 0. Moreover, c4 is finite

since G has finite one-sided derivatives at π̂.

34For example, define φ(π) = (π − π`)2(π − πr)2 on ]π`, πr[ and φ(π) = 0 everywhere else; then
m(π) = [1 + δ φ(π)]m(π) will have the desired properties for δ > 0 sufficiently small.
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Now let r ≥ 0, Λ ≥ 0 and σ > 0 be such that c3r+ c4Λ ≤ c5/σ
2. By construction, this

implies that m is a subsolution of (G.4) both to the left and to the right of the central ray

Rc. As q̂ = qc, this ray is vertical at π = π̂. Arguing as in the proof of Lemma G.4, we see

that the right-hand side of the ODE is regular with respect to m and m on each closed

interval contained in ]0, π̂] or [π̂, 1[, where it is understood that the appropriate one-sided

limit is used to calculate the right-hand side of the ODE at π̂. The result thus follows

from Lemma G.2 and Corollary G.1.

H Numerical Simulations

The adjusted value function can be calculated approximately as a numerical solu-

tion to a two-point boundary value problem, namely the ODE (19) subject to the

boundary conditions v∗(0) = m(0) and v∗(1) = m(1). We used the method of relax-

ation35 to do this. Beliefs were discretised with a step size of 10−3, decreasing to 10−5

around the confounding belief. The iterative procedure was deemed to have con-

verged when the maximum pointwise difference between successive approximations

to the value function and its first derivative were less than 0.0001%. Convergence

was quite rapid, varying from 5 iterations for a high discount rate without switch-

ing, to 18 iterations for a low discount rate with an intermediate switching intensity

close to the critical level. The procedure was implemented on a VAX minicomputer

under VMS v5.4. Each iteration took approximately 19 seconds of CPU time, so

the numerical solutions each took between only 1.5 and 6 minutes to calculate.

Given a numerical approximation to the adjusted value function, the optimal

policy correspondence immediately yields an approximately optimal policy function.

To generate sample paths of posterior beliefs and optimal quantities, we first chose

an initial state and an initial belief. One iteration then consisted of the following

steps: (a) calculate the optimal quantity given the current belief (using the above

numerical results); (b) introduce a shock; (c) update the belief using equation (4)

in its discrete form, namely

δπt = λ(πt) δt + σ−2πt(1− πt)(kt − πt)(∆α−∆β qt)
2 δt

+ σ−1πt(1− πt)(∆α−∆β qt) δZt ;

(d) update the state if required (depending on the transition probabilities λ0 and λ1).

These four steps are then repeated to generate a succession of beliefs and quantities.

State switching was implemented by repeatedly drawing a number from the uniform

35See Press et al. (1986), Chapter 16.
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distribution on the unit interval (all the examples reported in the chapter have

π̃ = 0.5, that is λ0 = λ1 = Λ/2). If the number drawn is less than 1 − exp(−Λ/2),

then the state remains unchanged, else it switches. Over a time interval of 100, we

expect to see 10 switches for Λ = 0.2. For other values of Λ, the time interval is

‘stretched’ accordingly, so for Λ = 0.05, for example, we expect these 10 switches to

occur by the time t = 400.

The shocks were generated by repeated draws from the standard normal distri-

bution. For given time increment δt, the shock δZ was taken to be
√
δt times the

draw from the standard normal distribution.

In order to maintain a reasonable approximation to the continuous case that we

are modelling, we must ensure that each δπ is not so large that the agent’s belief

can jump to (or past) 0, 1, or π̂. To achieve this, the time variable was incremented

by 0.05 in each discrete period, i.e. δt = 0.05. (This means that in the cases without

state switching there are several hundred iterations, and in those with state switching

there are a few thousand.)
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