
Essays in macroeconomic theory:

informational frictions, market

microstructure and fat-tailed shocks

by

Marco Antonio Ortiz Sosa

A thesis submitted to the Department of Economics
for the degree of

Doctor of Philosophy

at the

LONDON SCHOOL OF ECONOMICS

London, September 2013



Declaration

I certify that the thesis I have presented for examination for the PhD degree of

the London School of Economics and Political Science is solely my own work other than

where I have clearly indicated that it is the work of others (in which case the extent of

any work carried out jointly by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced without

the prior written consent of the author.

I warrant that this authorization does not, to the best of my belief, infringe the

rights of any third party.

I declare that my thesis consists of approximately 54,000 words.

2



Statement of conjoint work

Chapter 1 of this thesis is based on research that I undertook while working as

a Research Specialist at the Central Reserve Bank of Peru. This work was jointly co-

authored with Dr. Carlos Montoro and I contributed a minimum of 50% of the work.

Chapter 2 of this thesis is based on research that I undertook while working as

a Research Specialist at the Central Reserve Bank of Peru. This work was jointly co-

authored with Dr. Carlos Montoro and I contributed a minimum of 50% of the work.

3



Abstract

This thesis is composed by five chapters. Chapter 1 presents a new Keynesian

open economy model that includes risk-adverse foreign-exchange market dealers and

foreign exchange intervention by the monetary authority. In this setup portfolio decisions

made by dealers add an endogenous time variant risk-premium element to the traditional

UIP that depends on FX intervention by the central bank and FX orders by foreign

investors. We use the model to analyse the interactions between monetary policy and

FX interventions.

Chapter 2 introduces information heterogeneity into the model presented in Chapter

1. As in Bacchetta and van Wincoop (2006), the “rational confusion” generated by

the introduction of heterogeneous information magnifies the impact of the unobservable

capital flows shocks on the exchange rate.

Chapter 3 introduces fat-tailed shocks in the model of Kato and Nishiyama (2005).

This is a simple new Keynesian model where the central bank explicitly considers the zero

lower-bound constraint on interest rates. We find that shocks with ‘excess kurtosis’ make

monetary policy relatively more aggressive far away from the zero lower bound region

though, this difference reverts when the economy is close to this constraint. Under our

baseline calibration, the difference between optimal policies under Gaussian and fat-tailed

shocks is not quantitatively significant.

Chapter 4 presents a model in which investors form their expectations in an adaptive

way to price bonds, in the spirit of Adam, Marcet and Nicolini (2011). We follow different

assumptions regarding the learning process followed by agents. In the case of finite

maturity bonds, the knowledge of the pricing of the first maturity will act as an ’anchor,

limiting the price volatility of bonds with short maturities. As the maturity increases,
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the price volatility converges to the one of the consol bond.

Chapter 5 surveys the literature on imperfect information, learning and the yield

curve.
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Chapter 1

Foreign exchange intervention and

monetary policy design: a market

microstructure analysis

1.1 Introduction

Interventions by central banks in foreign exchange (FX) markets have been common

in many countries, and they have become even more frequent in the most recent past, in

both emerging market economies and some advanced economies.1 These interventions

have been particularly large during periods of capital inflows, when central banks bought

foreign currency to prevent an appreciation of the domestic currency. Also, they have

been recurrent during periods of financial stress and capital outflows, when central banks

used their reserves to prevent sharp depreciations of their currencies. For instance, in

Figure 1 we can see that during 2009-12 the amount of FX interventions as a percentage of

FX reserves minus gold was between 30% and 100% in some Latin American countries,

and considerably more than 100% in Switzerland. Also, these FX interventions were

sterilised in most cases, enabling central banks to keep short-term interest rates in line

with policy rates.

1Mihaljek (2005) reports that the typical share of intervention in turnover in EMEs fell from 12% in
2002 to 8% in 2004 as a percentage of the average monthly holdings of FX reserves. Notwithstanding
significant fluctuations over the years, these shares are significantly higher now than they were a decade
ago. Filardo et al. (2011) document how the central banks of Chile and Poland, which were inactive in
the FX market for years, decided to resume FX interventions during the 2010-2011 period.
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Given the scale of interventions in FX markets by some central banks, it should be

important for them to include this factor in their policy analysis frameworks. A variety

of questions need to be addressed, such as: How does sterilised intervention affect the

transmission mechanism of monetary policy? Which channels are at work? Are there

benefits to intervention rules? What should be the optimal monetary policy design in the

context of FX intervention? To analyse these questions we need an adequate framework

of exchange rate determination in macroeconomic models.

There is substantial empirical evidence that traditional approaches of exchange rate

determination (e.g., asset markets) fail to explain exchange rate movements in the short-

run, see Meese and Rogoff (1983) and Frankel and Rose (1995). This empirical evidence

shows that most exchange fluctuations at short- to medium-term horizons are related

to order flows - the flow of transactions between market participants - as in the mi-

crostructure approach presented by Lyons (2006), and not to macroeconomic variables.

However, in most of the models used for monetary policy analysis, the exchange rate is

closely linked to macroeconomic fundamentals, as in the uncovered interest rate parity

(UIP) condition. Such inconsistency between the model and real exchange rate determi-

nation in practice could lead in some cases to incorrect policy prescriptions such as the

overestimation of the impact of fundamentals and the corresponding underestimation of

the impact of liquidity trading. The latter include, inter alia, current account transac-

tions such as trade in good and services, transfers in capital income, remittances, and

tourism related flows, which are not related to traditional macroeconomic fundamentals

(i.a.: the interest rate differential).

Regarding the effectiveness of FX intervention, the empirical evidence remains in-

conclusive. Reviews by Menkhoff (2012) and Chamon et al. (2012) suggest that inter-

ventions in some cases have a systematic impact on the rate of change in exchange rates,

while in other cases they have been able to reduce exchange rate volatility. Intervention

appears to be more effective when it is consistent with monetary policy (Amato et al.

(2005), Kamil (2008)). This evidence suggests that the impact of FX interventions de-

pend on the specific episode and instrument used. Clearly, the effectiveness of central

bank intervention also needs to be evaluated against its policy goal.

Benes et al. (2013) provide a framework for the joint analysis of hybrid inflation
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Figure 1-1: Intervention in the foreign exchange market: 2009 - 20121

targeting (IT) regimes with FX interventions strategies (e.g., exchange rate corridors,

pegged or crawling exchange rates, managed floats.), where the central bank can exercise

control over the exchange rate as an instrument independent of monetary policy and the

policy interest rate.2 Their strategy consists of introducing imperfect substitutability

between central bank securities - used for purposes of sterilization - and private sector

bank loans in a model where banks hold local currency denominated assets and foreign

currency liabilities. An increase in the supply of central bank securities pushes banks

to increase their overall exposure to exchange rate risk. This has an effect on interest

rates as banks charge a higher premium to compensate for the higher risk they bear. In a

related work, which also assumes imperfect substitutability of assets, Vargas et al. (2013)

find that sterilised FX interventions can have an effect on credit supply by changing the

balance sheet composition of commercial banks.

Unlike previous research, we follow a market microstructure approach by intro-

2Chamon et al. (2012) discusses the use of hybrid IT schemes in emerging market economies (EME).
Authors recommend the use of a two-instrument IT framework as a way to reinforce its commitment to
a low inflation rate.
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ducing risk-averse FX dealers and FX intervention by the monetary authority. These

ingredients generate deviations from the uncovered interest parity (UIP) condition. More

precisely, dealers’ portfolio decisions endogenously add a time-variant exchange rate risk

premium element to the traditional UIP that depends on FX intervention by the central

bank and FX orders by foreign investors. Moreover, we explicitly account for the role that

exchange rate volatility plays in the deviation from the UIP, and how FX intervention

rules can impact the economy through their effect on this volatility. Our model shows

how central bank FX intervention can affect exchange rate determination through two

channels: the portfolio balance effect and a volatility effect. In the former, a sterilised

intervention alters the value of the currency because it modifies the ratio between do-

mestic and foreign assets held by the private sector; and according to the latter, central

bank interventions have an impact on the volatility of exchange rates and consequently

on the extent to which liquidity based trades affect the equilibrium exchange rate. Thus,

in our model, the trading mechanism and the players, two of the three key elements in

the microstructure approach according to Lyons (2006), affect the determination of the

exchange rate.3

Our findings show that in general equilibrium, FX intervention can have important

implications for central bank stabilization policies. In some cases, FX intervention can

mute the monetary transmission mechanism through exchange rates, reducing the- im-

pact on aggregate demand and prices, while in others it can amplify the impact. We also

show that there are some trade-offs in the use of FX intervention, in line with the results

in Benes et al. (2013). On the one hand, it can help isolate the economy from external

financial shocks, but on the other it prevents some necessary adjustments of the exchange

rate in response to nominal and real external shocks. Finally, regarding FX intervention

policy design, we show that intervention rules can have stronger stabilisation power in

response to shocks as they exploit the volatility channel.

In the next section we introduce the model, with a special focus on the FX market.

In Section 1.3 we show results from the simulation of the model. In Section 1.4 we present

some robustness exercises. The last section concludes.

3The third element mentioned by the author is information. We present a model where information
across dealers is heterogeneous in Chapter 2.
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1.2 The Model

The model describes a small open economy with nominal rigidities, in line with the

contributions from Obstfeld and Rogoff (1995), Chari et al. (2002), Gaĺı and Monacelli

(2005), Christiano et al. (2005) and Devereux et al. (2006), among others. To maintain

the concept of general equilibrium, we use a two-country framework taking the size of

one of these economies close to zero, such that the small (domestic) economy does not

affect the large (foreign) economy.4

In this setup, dealers in the small domestic economy operate the secondary bond

market. They receive customer orders for the sale of domestic bonds from households

and for the sale of foreign bonds from foreign investors and the central bank. Dealers

invest each period in both domestic and foreign bonds, maximising their portfolio returns.

This is a cashless economy. The monetary authority intervenes directly in the FX market

selling or purchasing foreign bonds in exchange for domestic bonds. The central bank

issues the domestic bonds and sets the nominal interest rates paid by these assets. The

central bank can control the interest rate regardless of the FX intervention, that is we

assume the central bank can always perform fully sterilised interventions.5

We assume the frequency of decisions is the same for dealers and other economic

agents. Households consume final goods, supply labour to intermediate goods producers

and save in domestic bonds. Firms produce intermediate and final goods. Additionally,

we include monopolistic competition and nominal rigidities in the retail sector, price

discrimination and pricing to market in the export sector, and incomplete pass-through

from the exchange rate to imported good prices - characteristics that are important

to analyse the transmission mechanism of monetary policy in a small open economy.

We also consider as exogenous processes foreign variables such as output, inflation, the

4We acknowledge the general equilibrium perspective introduces a series of linear relationships among
the foreign economy variables. The disadvantage of following this modelling strategy is that shocks to
foreign variables will not be observed independently, as only combination of foreign variables will impact
the domestic economy. This would not allow us to analyse the impact of shocks to foreign variables
independently (and the impact would depend as well on the calibration of the foreign economy.) The
literature favours the approach followed here. For examples see Adolfson et al. (2008).

5However, in practice sterilised interventions have limits. For example, the sale of foreign bonds by
the central bank is limited by the level of foreign reserves. On the other hand, the sterilised purchase of
foreign currency is limited by the availability of instruments to sterilise those purchases (e.g., given by the
demand for central bank bonds or by the stock of treasury bills in the hands of the central bank). Also,
limits to the financial losses generated by FX intervention can represent a constraint for intervention
itself.
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interest rate and non-fundamental capital flows.6

1.2.1 Dealers

In the domestic economy there is a continuum of dealers ι in the interval [0, 1]. Each

dealer ι receives $ι
t and $ι,cb

t in domestic bond sale and purchase orders from households

and the central bank, and $ι∗
t and $ι∗,cb

t in foreign bond sale orders from foreign investors

and the central bank, respectively. These orders are exchanged among dealers, that is

$ι
t +$ι,cb

t + St

(
$ι∗
t +$ι∗,cb

t

)
= Bι

t + StB
ι∗
t , where Bι

t and Bι∗
t are the ex-post holdings

of domestic and foreign bonds by dealer ι, respectively.7 Each dealer receives the same

amount of orders from households, foreign investors and the central bank. The exchange

rate St is defined as the price of foreign currency in terms of domestic currency, such

that a decrease (increase) of St corresponds to an appreciation (depreciation) of the

domestic currency. At the end of the period, any profits -either positive or negative- are

transferred to the households.8

Dealers are risk-averse and short-sighted. They select an optimal portfolio allo-

cation in order to maximise the expected utility of their end-of-period returns, where

their utility is given by a CARA utility function. The one-period dealer’s horizon gives

tractability and captures the feature that FX dealers tend to unwind their FX exposure

at the end of any trading period, as explained by Vitale (2011). 9 The problem of dealer

ι is:

max
Bι∗t
−Eιte−γΩιt+1

6There is an extensive empirical literature addressing the determinants of portfolio capital flows to
emerging economies. Moreover, Arias et al. (mimeo) find that lagged FX interventions impact portfolio
capital inflows, however this factor is significantly lower than 1, implying that FX interventions can still
be an effective instrument to counter portfolio capital inflows.

7Recall these are one period bonds, hence the flows and stocks are equivalent. At the beginning of
each period the stock of bonds in possession of dealers is zero.

8Under the present formulation FX transactions carried out for commercial purposes will only affect
the exchange rate through their impact in the domestic interest rate though not through variations in
the order flow faced by dealers.

9Notice that dealers are passive (market makers), as they are willing to accept any trade affecting their
portfolio for the right compensation. They must absorb the aggregate change in their portfolio by the end
of the period as they are not able to recompose their portfolio in the same period. This assumption can
be motivated by the imperfect capital markets integration exhibited by some of the developing countries
which intervene in FX markets.
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subject to:

$ι
t +$ι,cb

t + St

(
$ι∗
t +$ι∗,cb

t

)
= Bι

t + StB
ι∗
t (1.1)

where Et is the rational expectations operator, γ is the coefficient of absolute risk aversion

and Ωι
t+1 is the total investment after returns, given by:

Ωι
t+1 = (1 + it)B

ι
t + (1 + i∗t )St+1B

ι∗
t

≈ (1 + it)
[
$ι
t +$ι,cb

t + St

(
$ι∗
t +$ι∗,cb

t

)]
+ (i∗t − it + st+1 − st)Bι∗

t

where we have made use of the resource constraint of dealers, we have log-linearised

the excess of return on investing in foreign bonds and st = lnSt. Since the only non-

predetermined variable is st+1, assuming it is normal distributed with time-invariant

variance, the first order condition for the dealers is:10

0 = −γ (i∗t − it + Etst+1 − st) + γ2Bι∗
t σ

2

where σ2 = vart (∆st+1) is the conditional variance of the depreciation rate. Then, the

demand for foreign bonds by dealer ι is given by the following portfolio condition:

Bι∗
t =

i∗t − it + Etst+1 − st
γσ2

(1.2)

According to this expression, the demand for foreign bonds will be larger the higher

its return, the lower the risk aversion or the lower the volatility of the exchange rate.

FX market equilibrium

Foreign bonds equilibrium in the domestic market should sum FX market orders

from foreign investors (capital inflows) and central bank FX intervention, that is:11

∫ 1

0
Bι∗
t dι =

∫ 1

0

(
$ι∗
t +$ι∗,cb

t

)
dι = $∗t +$∗,cbt .

10Conditions verified to be satisfied ex-post.
11Similar to other foreign variables in the model, holdings of foreign bonds in the domestic market

are exogenous (i.e., it is not affected by domestic conditions). This is consistent with the small open
economy assumption, meaning that domestic conditions do not affect foreign variables. The second part
of this equation is an accounting relationship.
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Dealers are passive and unable to rebalance their trading with foreigners. This

assumption is in line with Lyons (2006), who explains how the risk that drives the

portfolio balance effect is undiversifiable across dealers.12 Replacing the FX market

equilibrium condition in the aggregate demand for foreign bonds yields the following

arbitrage condition:

Etst+1 − st = it − i∗t + γσ2($∗t +$∗,cbt ) (1.3)

Condition (1.3) determines the exchange rate, and differs from the traditional uncovered

interest parity condition because of an endogenous risk premium component. According

to it, an increase (decrease) in capital inflows or sales (purchases) of foreign bonds by the

central bank appreciates (depreciates) the exchange rate st, ceteris paribus. This effect

is larger, the more risk-averse dealers are (larger γ) or the more volatile the expected

depreciation rate is (larger σ2).13

Equation (1.3) is useful to understand both mechanisms through which FX inter-

vention can affect the exchange rate. The last term on the right hand side captures

the portfolio-balance channel. Given that dealers are risk-averse and hold domestic and

foreign assets to diversify risk, FX intervention changes the composition of domestic and

foreign asset held by the dealers. This will be possible only if there is a change in the

expected relative rate of returns of these assets, which compensates for the change in

the risk they bear. In other words, according to the portfolio-balance channel, a sale

(purchase) of foreign bonds by the central bank augments (reduces) the ratio between

foreign and domestic assets hold by dealers, inducing an appreciation (depreciation) of

the domestic currency because dealers require a greater (smaller) risk premium to hold

a larger (smaller) quantity of this currency.

The second mechanism at work is the volatility channel. When central banks in-

tervene in the FX markets they can affect the conditional volatility of exchange rates,

reducing the impact that shifts in portfolio have over the equilibrium exchange rate.

12These shocks imply that the market as a whole must hold a position that they would not otherwise
hold, which entails an enduring risk premium. See Lyons (2006), Ch. 2.

13Sterilised intervention implies that a sale (purchase) of foreign bonds by the central bank is accom-
panied by purchases (sales) of domestic bonds by the monetary authority, such that the domestic interest
rates are in line with the policy target rate. In our model, the central bank directly exchange domestic
bonds in their balance for foreign ones. In this sense, interventions will have no impact on the interest
rate as households’ aggregate savings remain invariant.
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Notice that the volatility effect, from (1.3), scales the portfolio channel as the variance

of the changes in the exchange rate multiplies the aggregate order flow.

1.2.2 Monetary authority

The central bank in the domestic economy intervenes in the FX market by sell-

ing/buying foreign bonds to/from dealers in exchange for domestic bonds. Each period

the central bank negotiates directly with dealers, such that every dealer receives the same

amount of sales/purchases of foreign bonds from the central bank. Each period any dealer

ι receives a market order$ι∗,cb
t from the central bank, where$ι∗,cb

t > 0
(
$ι∗,cb
t < 0

)
when

the central bank sells (purchases) foreign bonds in exchange of domestic bonds. The total

customer flow of foreign bonds received by dealer ι equals $ι∗
t +$ι∗,cb

t . We assume the

central bank can always perform fully sterilised FX interventions, therefore it maintains

control over the interest rate regardless of the intervention. Moreover, we further assume

the central bank does not have to distribute profits/losses to the households. That is,

the monetary authority is not constrained by its balance sheet to perform interventions

in the FX market.1415

FX intervention

We assume the central bank’s purpose to intervene is to reduce the overall volatility

caused by external shocks. As Mihaljek (2005) documents, central banks that intervene

in foreign markets claim as one of the main reasons the need of stabilizing exchange rate

markets, preventing exchange rate volatility to affect other sectors of the economy.16

14Sterilised intervention implies that a sale (purchase) of foreign currency by the central bank is
accompanied by purchases (sales) of domestic bonds by the monetary authority such that the domestic
interest rates are in line with the policy target rate. We implicitly assume an asymmetry between the
FX market and the domestic currency bond markets. In the latter, non-fundamental sales (purchases)
by the central bank have no impact on the price of the bond. In this way the bank intermediates between
markets with a heterogeneous microstructure.

15The balance sheet of the central bank is the following: StR
cb
t = Bcbt + NW cb

t , where Rcbt , Bcbt
and NW cb

t are the central bank’s reserves in foreign bonds, liabilities in domestic bonds and net
worth, respectively. The first two components evolve according to: Rcbt = (1 + i∗t )R

cb
t−1 − $∗,cbt and

Bcbt = (1 + it)B
cb
t−1 − $cb

t . Also, profits are given by: PtΓ
cb
t =

[
St(1+i∗t )
St−1

− 1

]
St−1R

cb
t−1 − itB

cb
t−1 −(

Stω
∗,cb
t − ωcbt

)
16Mihaljek (2005) presents a survey on 23 central banks from emerging markets. Out of the 18 banks

in the sample which intervened during the 2002-2004 Q3 period, 16 claimed interventions were effective
or sometimes effective calming disorderly exchange rate markets.
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The central bank can have three different FX intervention strategies. First, it can

perform pure discretional intervention:

$∗cbt = εcb,0t (1.4)

where the central bank intervenes via unanticipated or secret interventions. According

to strategy (1.4), FX intervention by the central bank is not anticipated.17

As a second case, the central bank can perform rule based intervention taking into

account the changes in the exchange rate. We call this strategy “the ∆s rule”.

$∗cbt = φ∆s∆st + εcb,1t (1.5)

According to this rule, when there are depreciation (appreciation) pressures on the do-

mestic currency, the central bank sells (purchases) foreign bonds to prevent the exchange

rate from fluctuating. φ∆s captures the intensity of the response of the FX intervention

to pressures in the FX market.

Finally, the monetary authority can take into account misalignments of the real

exchange rate as a benchmark for FX intervention. We call this strategy “the RER

rule”.

$∗cbt = φrerrert + εcb,2t (1.6)

where rert captures deviations of the real exchange rate with respect to its steady

state. In the same vein as the previous case, under this rule the central bank sells

(purchases) foreign bonds when the exchange rates depreciates (appreciates) in real terms

from its long-run value. The ∆s rule is expressed in nominal terms and takes into

account only the change in the exchange rate, whilst the RER rule takes into account

the deviations in the level of the exchange rate in real terms. The difference between

both rules is similar to that between inflation targeting and price level targeting for the

17We contrast (comparable) discretional interventions with rule based interventions in order to gauge
the impact of rules on expectations. The difference between discretional interventions and no intervention
will be given by the effect of the variance of the discretional interventions shock on the overall exchange
rate volatility.
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case of shocks to the price level. Intuitively, under the ∆s rule shocks to the exchange

rate are accommodated, while under the RER rule, they are reversed.

We explicitly leave out a rule according to which intervention responds to liquidity

trading, even though we acknowledge this type of rule will be the most effective against

these shocks. The reason is twofold: (1) in practice it is difficult for central banks to

determine which type of capital flows are affecting the exchange rate - fundamental or

liquidity trading - and (2) the rules under study are in line with the goals some central

banks claim to address through their FX intervention policies.18

Monetary policy

The central bank implements monetary policy by setting the nominal interest rate

according to a Taylor-type feedback rule that depends on CPI inflation. The generic

form of the interest rate rule that the central bank uses is given by:

(1 + it)(
1 + i

) =

(
Πt

Π

)ϕπ
exp

(
εMON
t

)
(1.7)

where ϕπ > 1. Π and i are the levels in steady state of inflation and the nominal

interest rate. The term εit is a random monetary policy shock distributed according to

N ∼
(
0, σ2

i

)
.

1.2.3 Households

Preferences

The world economy is populated by a continuum of households of mass 1, where

a fraction n of them is allocated in the home economy, whereas the remaining 1 − n is

in the foreign economy. Each household j in the home economy enjoys utility from the

consumption of a basket of final goods, Cjt , and receives disutility from working, Ljt .

Households preferences are represented by the following utility function:

Ut = Et

[ ∞∑
s=0

βt+sU
(
Cjt+s, L

j
t+s,

)]
, (1.8)

18We address this and other problems related to informational asymmetry in Chapter 2 of the present
document.
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where Et is the conditional expectation on the information set at period t and β is the

intertemporal discount factor, with 0 < β < 1. In particular we assume the instantaneous

utility is given by:

U (Ct, Lt) =
C1−γc
t

1− γc
− L1+χ

t

1 + χ
, if γc 6= 1. (1.9)

when γc = 1, this function becomes:

U (Ct, Lt) = lnCt −
L1+χ
t

1 + χ
(1.10)

The consumption basket of final goods is a composite of domestic and foreign goods,

aggregated using the following consumption index:

Ct ≡
[(
γH
)1/εH (

CHt
) εH−1

εH +
(
1− γH

)1/εH (
CMt

) εH−1

εH

] εH
εH−1

, (1.11)

where εH is the elasticity of substitution between domestic (CHt ) and foreign goods (CMt ),

and γH is the share of domestically produced goods in the consumption basket of the

domestic economy. In turn, CHt and CMt are indices of consumption across the continuum

of differentiated goods produced in the home country and those imported from abroad,

respectively. These consumption indices are defined as follows:

CHt ≡

[(
1

n

) 1
ε
∫ n

0
CHt (z)

ε−1
ε dz

] ε
ε−1

, CMt ≡

[(
1

1− n

) 1
ε
∫ 1

n
CMt (z)

ε−1
ε dz

] ε
ε−1

(1.12)

where ε > 1 is the elasticity of substitution across goods produced within the home econ-

omy, denoted by CHt (z), and within the foreign economy, CMt (z). Household’s optimal

demands for home and foreign consumption are given by:

CHt (z) =
1

n
γH
(
PHt (z)

PHt

)−ε(
PHt
Pt

)−εH
Ct, (1.13)

CMt (z) =
1

1− n
(
1− γH

)(PMt (z)

PMt

)−ε(
PMt
Pt

)−εH
Ct (1.14)

This set of demand functions is obtained by minimising the total expenditure on con-

sumption PtCt, where Pt is the consumer price index. Notice that the consumption of

each type of goods is increasing in the consumption level, and decreasing in their corre-
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sponding relative prices. Also, it is easy to show that the consumer price indices, under

these preference assumptions, is determined by the following condition:

Pt ≡
[
γH
(
PHt
)1−εH

+ (1− γH)
(
PMt

)1−εH] 1
1−εH (1.15)

where PHt and PMt denote the price level of the home-produced and imported goods,

respectively. Each of these price indexes is defined as follows:

PHt ≡
[

1

n

∫ n

0
PHt (z)1−εdz

] 1
1−ε

, PMt ≡
[

1

1− n

∫ 1

n
PMt (z)1−εdz

] 1
1−ε

(1.16)

where PHt (z) and PMt (z) represent the prices expressed in domestic currency of the

variety z of home and imported goods, respectively.

Households’ budget constraint

For simplicity, we assume domestic households save only in bonds.19 The budget

constraint of the domestic household (j) in units of home currency is given by:

$j
t = (1 + it−1)$j

t−1 −
ψ

2

(
$j
t −$

)2
+WtL

j
t − PtC

j
t + PtΓ

j
t (1.17)

where $j
t is wealth in domestic assets, Wt is the nominal wage, it is the domestic

nominal interest rate, and Γjt are nominal profits distributed from firms and dealers in

the home economy to the household j. Each household owns the same share of firms

and dealer agencies in the home economy. Households also face portfolio adjustment

costs, for adjusting wealth from its long-run level.20 Households maximise (1.8) subject

to (1.17).

19This way the only portfolio decision is made by dealers, which simplifies the analysis.
20This assumption is necessary to provide stationarity in the asset position held by the households.

See Schmitt-Grohe and Uribe (2003).
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Consumption decisions and the supply of labour

The conditions characterising the optimal allocation of domestic consumption are

given by the following equation:

UC,t = βEt

UC,t+1

 1 + it

1 + ψ
(
$j
t −$

)
 Pt
Pt+1

 (1.18)

where we have eliminated the index j for the assumption of representative agent. UC,t

denotes the marginal utility for consumption. Equation (1.18) corresponds to the Euler

equation that determines the optimal path of consumption for households in the home

economy, by equalising the marginal benefits of savings to its corresponding marginal

costs. The first-order conditions that determine the supply of labour are characterised

by the following equation:

−
UL,t
UC,t

=
Wt

Pt
(1.19)

where Wt
Pt

denotes real wages. In a competitive labour market, the marginal rate of

substitution equals the real wage, as in equation (1.19).

1.2.4 Foreign economy

The consumption basket of the foreign economy is similar to that of the domestic

economy, and is given by:

C∗t ≡
[(
γF
)1/εF (

CXt
) εF−1

εF +
(
1− γF

)1/εF (
CFt
) εF−1

εF

] εF
εF−1

(1.20)

where εF is the elasticity of substitution between domestic (CXt ) and foreign goods (CFt ),

respectively, and γF is the share of domestically produced goods in the consumption

basket of the foreign economy. Also, CXt and CFt are indices of consumption across the

continuum of differentiated goods produced similar to CHt and CMt defined in equations

(1.12). The demands for each type of good is given by:

CXt (z) =
1

n
γF
(
PXt (z)

PXt

)−ε(
PXt
P ∗t

)−εH
C∗t (1.21)

CFt (z) =
1

1− n
(
1− γF

)(PFt (z)

PFt

)−ε(
PFt
P ∗t

)−εH
C∗t (1.22)
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where PXt and PFt correspond to the price indices of exports and the goods produced

abroad, respectively. P ∗t is the consumer price index of the foreign economy:

P ∗t ≡
[
γF
(
PXt
)1−εF

+ (1− γF )
(
PFt
)1−εF ] 1

1−εF (1.23)

The small open economy assumption

Following Sutherland (2005), we parameterise the participation of foreign goods in

the consumption basket of home households,
(
1− γH

)
, as follows:

(
1− γH

)
= (1− n) (1− γ),

where n represents the size of the home economy and (1− γ) the degree of openness. In

the same way, we assume the participation of home goods in the consumption basket of

foreign households, as a function of the relative size of the home economy and the degree

of openness of the world economy, that is γF = n (1− γ∗).

This particular parameterisation implies that as the economy becomes more open,

the fraction of imported goods in the consumption basket of domestic households in-

creases, whereas as the economy becomes larger, this fraction falls. This parameterisa-

tion allows us to obtain the small open economy as the limiting case of a two-country

economy model when the size of the domestic economy approaches zero, that is n → 0.

In this case, we have that γH → γ and γF → 0. Therefore, in the limiting case, the

use in the foreign economy of any home-produced intermediate goods is negligible, and

the demand condition for domestic, imported and exported goods can be re-written as

follows:

Y H
t = γ

(
PHt
Pt

)−εH
Ct (1.24)

Mt = (1− γ)

(
PMt
Pt

)−εH
Ct (1.25)

Xt = (1− γ∗)
(
PXt
P ∗t

)−εF
C∗t (1.26)

Thus, given the small open economy assumption, the consumer price index for the home
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and foreign economy can be expressed in the following way:

Pt ≡
[
γ
(
PHt
)1−εH

+ (1− γ)
(
PMt

)1−εH] 1
1−εH (1.27)

P ∗t = PFt (1.28)

Given the small open economy assumption, the foreign economy variables that affect

the dynamics of the domestic economy are foreign output, Y ∗t , the foreign interest rate,

i∗, the external inflation rate, Π∗, and capital inflows, $∗t . To simplify the analysis, we

assume these four variables follow an autoregressive process in logs.

1.2.5 Firms

Intermediate goods producers

A continuum of z intermediate firms exists. These firms operate in a perfectly

competitive market and use the following linear technology:

Y int
t (z) = AtLt (z) (1.29)

Lt (z) is the amount of labour demand from households, At is the level of technology.

These firms take as given the real wage, Wt/Pt, paid to households and choose their

labour demand by minimising costs given the technology. The corresponding first order

condition of this problem is:

Lt (z) =
MCt (z)

Wt/Pt
Y int
t (z)

where MCt (z) represents the real marginal costs in terms of home prices. After

replacing the labour demand in the production function, we can solve for the real marginal

cost:

MCt (z) =
Wt/Pt
At

(1.30)

Given that all intermediate firms face the same constant returns to scale technology, the

real marginal cost for each intermediate firm z is the same, that is MCt (z) = MCt.
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Also, given these firms operate in perfect competition, the price of each intermediate

good is equal to the marginal cost. Therefore, the relative price Pt (z) /Pt is equal to the

real marginal cost in terms of consumption unit (MCt).

Final goods producers

Goods sold domestically Final goods producers purchase intermediate goods and

transform them into differentiated final consumption goods. Therefore, the marginal

costs of these firms equal the price of intermediate goods. These firms operate in a

monopolistic competitive market, where each firm faces a downward-sloping demand

function, given below. Furthermore, we assume that each period t final goods producers

face an exogenous probability of changing prices given by (1 − θH). Following Calvo

(1983), we assume that this probability is independent of the last time the firm set

prices and the previous price level. Thus, given a price fixed from period t, the present

discounted value of the profits of firm z is given by:

Et

{ ∞∑
k=0

(
θH
)k

Λt+k

[
PH,ot (z)

PHt+k
−MCHt+k

]
Y H
t,t+k(z)

}
(1.31)

where Λt+k = βk
UC,t+k
UC,t

is the stochastic discount factor, MCHt+k = MCt+k
Pt+k
PHt+k

is the

real marginal cost expressed in units of goods produced domestically, and Y H
t,t+k(z) is the

demand for good z in t+ k conditioned to a fixed price from period t, given by

Y H
t,t+k(z) =

[
PH,ot (z)

PHt+k

]−ε
Y H
t+k

Each firm z chooses PH,ot (z) to maximise (1.31). The first order condition of this problem

is:

Et

{ ∞∑
k=0

(
θH
)k

Λt+k

[
PH,ot (z)

PHt
FHt,t+k − µMCHt+k

] (
FHt,t+k

)−ε
Y H
t+k

}
= 0

where µ ≡ ε
ε−1 and FHt,t+k ≡

PHt
PHt+k

.

Following Benigno and Woodford (2005), the previous first order condition can be

written recursively using two auxiliary variables, V D
t and V N

t , defined as follows:

PH,ot (z)

PHt
=
V N
t

V D
t
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where

V N
t = µUC,tY

H
t MCHt + θHβEt

[
V N
t+1

(
ΠH
t+1

)ε]
(1.32)

V D
t = UC,tY

H
t + θHβEt

[
V D
t+1

(
ΠH
t+1

)ε−1
]

(1.33)

Also, since in each period t only a fraction
(
1− θH

)
of these firms change prices, the

gross rate of domestic inflation is determined by the following condition:

θH
(
ΠH
t

)ε−1
= 1−

(
1− θH

)(V N
t

V D
t

)1−ε

(1.34)

The equations (1.32), (1.33) and (1.34) determine the supply (Phillips) curve of domestic

production.

Exported goods We assume that firms producing final goods can discriminate prices

between domestic and external markets. Therefore, they can set the price of their exports

in foreign currency. Also, when selling abroad they face an environment of monopolistic

competition with nominal rigidities, with a probability 1− θX of changing prices.

The problem of retailers selling abroad is very similar to that of firms that sell in the

domestic market, which is summarised in the following three equations that determine

the supply curve of exporters in foreign currency prices:

V N,X
t = µ

(
Y X
t UC,t

)
MCXt + θXβEt

[
V N,X
t+1

(
ΠX
t+1

)ε]
(1.35)

V D,X
t =

(
Y X
t UC,t

)
+ θXβEt

[
V D,X
t+1

(
ΠX
t+1

)ε−1
]

(1.36)

θX
(
ΠX
t

)ε−1
= 1−

(
1− θX

)(V N,X
t

V D,X
t

)1−ε

(1.37)

where the real marginal costs of the goods produced for export are given by:

MCXt =
PtMCt

StPXt

=
MCt

RERt

(
PXt
P ∗t

) (1.38)

which depend inversely on the real exchange rate (RERt =
StP ∗t
Pt

) and the relative price
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of exports to external prices
(
PXt
P ∗t

)
.

Retailers of imported goods

Those firms that sell imported goods buy a homogeneous good in the world market

and differentiate it into a final imported good YM
t (z). These firms also operate in an

environment of monopolistic competition with nominal rigidities, with a probability 1−

θM of changing prices.

The problem for retailers is very similar to that of producers of final goods. The

Phillips curve for importers is given by:

V N,M
t = µ

(
YM
t UC,t

)
MCMt + θMβEt

[
V N,M
t+1

(
ΠM
t+1

)ε]
(1.39)

V D,M
t =

(
YM
t UC,t

)
+ θMβEt

[
V D,M
t+1

(
ΠM
t+1

)ε−1
]

(1.40)

θM
(
ΠM
t

)ε−1
= 1−

(
1− θM

)(V N,M
t

V D,M
t

)1−ε

(1.41)

where the real marginal cost for importers is given by the cost of purchasing the goods

abroad (StP
∗
t ) to the price of imports (PMt ):

MCMt =
StP

∗
t

PMt
(1.42)

where MCMt also measures the deviations from the law of one price.21

1.2.6 Market clearing

Total domestic production is given by:

P deft Yt = PHt Y
H
t + StP

X
t Y

X
t (1.43)

21See Gaĺı and Monacelli (2005) for a similar formulation.
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After using equations (1.24) and (1.25) and the definition of the consumer price index

(1.27), equation (1.43) can be decomposed in:

P deft Yt = PtCt + StP
X
t Y

X
t − PMt YM

t (1.44)

To identify the gross domestic product (GDP) of this economy, Yt, it is necessary to

define the GDP deflator, P deft , which is the weighted sum of the consumer, export and

import price indices:22

P deft = φCPt + φXStP
X
t − φMPMt (1.45)

where φC , φX and φM are steady state values of the ratios of consumption, exports

and imports to GDP, respectively. The demand for intermediate goods is obtained by

aggregating the production for home consumption and exports:

Y int
t (z) = Y H

t (z) + Y X
t (z) (1.46)

=

(
PHt (z)

PHt

)−ε
Y H
t +

(
PXt (z)

PXt

)−ε
Y X
t

Aggregating (1.46) with respect to z, we obtain:

Y int
t =

1

n

∫ n

0
Y int
t (z) dz = ∆H

t Y
H
t + ∆X

t Y
X
t (1.47)

where ∆H
t = 1

n

∫ n
0

(
PHt (z)

PHt

)−ε
dz and ∆X

t = 1
n

∫ n
0

(
PXt (z)

PXt

)−ε
dz are measures of relative

price dispersion, which have a null impact on the dynamic in a first order approximation

of the model. Similarly, the aggregate demand for labour is:

Lt =
MCt
Wt/Pt

(
∆H
t Y

H
t + ∆X

t Y
X
t

)
(1.48)

After aggregating household’s budget constraints, firms’ and dealers’ profits, and includ-

ing the equilibrium condition in the financial market that equates household wealth with

the stock of domestic bonds, we obtain the aggregate resources constraint of the home

22Strictly this variable constitutes a first order approximation to the deflator, since weights change
when the economy is outside of the steady-state.
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economy:

Bt
Pt
− Bt−1

Pt−1
+
ψ

2

(
Bt
Pt
− B

P

)2

=
P deft

Pt
Yt − Ct (1.49)

+

{
(1 + it−1)

Πt
− 1

}
Bt−1

Pt−1
+RESTt

Equation (1.49) corresponds to the current account of the home economy. The left-

hand side is the change in the net asset position in terms of consumption units. The

right-hand side is the trade balance, the difference between GDP and consumption

which is equal to net exports, and the investment income. The last term, RESTt

≡ PMt
Pt
YM
t

(
1−∆M

t MCMt
)

is negligible and takes into account the monopolistic prof-

its of retail firms.23

1.3 Results

1.3.1 Calibration

Instead of calibrating the parameters to a particular economy, we set the parameters

to values that are standard in the new open economy literature, as shown in Table 1.1.

The discount factor β is fixed at 0.9975, which implies a real interest rate of 1% in the

steady state. The labour supply elasticity is set at 0.5 implying a relatively inelastic

labour supply, though within the values found in empirical studies.24 The parameter

γ governing households’ risk aversion is fixed at 1, which is the one corresponding to

logarithmic utility. The value for the elasticity of substitution between home and foreign

goods is a controversial parameter. We follow previous studies in the DSGE literature,

which consider values between 0.75 and 1.5.25 The share of domestic tradable goods

in the CPI is set to 0.6, implying a participation of imported final and intermediate

goods of 0.4 in the domestic CPI, in line with other studies for small open economies.26

Regarding price stickiness, we set a higher value for domestic goods over imported and

exported ones. For domestic goods, the assumed stickiness implies that firms keep their

23A complete set of the log-linearised equations of the model can be found in Appendix 1.B.
24See Chetty et al. (2011).
25See Rabanal and Tuesta (2006). Other authors in the trade literature find values for this elasticity

around 5, see Lai and Trefler (2002).
26See Castillo et al. (2009).
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prices fixed for 4 quarters on average.

Table 1.1: Baseline Calibration

Parameter V alue Description

β 0.9975 Consumers time-preference parameter.

χ 0.5 Labour supply elasticity.

γc 1 Risk aversion parameter.

ε 0.75 Elasticity of substitution btw. home and foreign goods.

εF 0.75 Elasticity of substitution btw. exports and foreign goods.

ψ 0.6 Share of domestic tradables in domestic consumption.

θH 0.75 Domestic goods price rigidity.

θM 0.5 Imported goods price rigidity.

θX 0.5 Exported goods price rigidity.

ψb 0.01 Portfolio adjustment costs.

ϕπ 1.5 Taylor rule reaction to inflation deviations.

γ 500 Absolute risk aversion parameter (dealers)

φ$ 0.5 Net asset position over GDP ratio

φC 0.68 Consumption over GDP ratio

σx 0.01 S.D. of all shocks x

ρx 0.5 AR(1) coefficient for all exogenous processes

The parameter for portfolio adjustment costs is set a 0.01 to ensure that the cost

of adjusting the size of the portfolio is small in the baseline calibration. For the central

bank reaction function, we fixed a baseline reaction to inflation deviations of 1.5, which

means that the central bank reacts more than one for one to inflation expectations,

affecting the real interest rate. The coefficient of absolute risk aversion for dealers was

set to 500 as in Bacchetta and Wincoop (2006).27 Finally, The standard deviation of

all exogenous processes was set to 0.01 and the autocorrelation coefficient to 0.5. In the

benchmark case, we calibrate the FX intervention reaction to exchange rate changes and

real exchange rate misalignments to 0.5 for the ∆s rule and 0.3 for the RER rule, and

analyse how results change with those parameters.

27Notice that this parameter must be corrected by the steady state consumption level to make it
comparable with the CRRA case. Additionally, only the product of γ and the equilibrium value of the
exchange rate volatility (of order 10−3)matterforthemodeldynamics.
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1.3.2 Model dynamics

In this section we present our results. We first discuss briefly the existence of equi-

librium.28 Once we confirm the existence of an equilibrium, we study the effectiveness of

different FX intervention strategies in reducing the macroeconomic volatility. We do this

by contrasting the relative volatility of a sample of variables in the absence and under

the presence of intervention. Next, we explore the reaction of the economy to external

shocks under different intervention strategies through the calculation of impulse-response

functions. We close this section studying how FX intervention affects the relative impor-

tance of shocks to fundamentals vis-à-vis liquidity based trading. We present robustness

exercises to the parameters defining the pass-through of exchange rates to prices (ε, εF )

and domestic price rigidity (θH in Section 1.4).

Rational expectations (RE) equilibria

As shown in Section 1.2, the risk premium-adjusted uncovered interest parity con-

dition (equation 1.3) depends, among other things, on the conditional variance of the

change in the exchange rate. This, is an endogenous outcome of the RE equilibrium of

the model. Solving for the RE equilibria entails solving for a fixed point problem in the

conditional variance of the change in the exchange rate. In Figure 1-2, we plot the map-

pings of the conjectured and the implied conditional variance of the depreciation rate for

different parameterisations of the FX intervention reaction function. Intersections with

the 45-degree straight line correspond to fixed points for the conditional variance of the

depreciation rate.

As shown in the left-hand panels, there are two RE equilibria in the case of no

FX intervention, corresponding to a low-variance stable equilibrium and a high-variance

unstable equilibrium.29 This type of multiple equilibria is similar to the one found

by Bacchetta and Wincoop (2006) in a model without FX intervention. However, as

shown in the centre and right-hand panels, FX intervention helps to rule out the second

unstable equilibrium. Under both rules of FX intervention there is only a unique and

28As in Vitale (2011), when solving for the equilibrium variance of the exchange rate, we are unable
to rely on a theorem of existence, nor exclude the presence of multiple equilibria.

29A slope lower (higher) than one of the mapping of the conjectured and the implied conditional
variance of the depreciation rate, evaluated at the intersection with the 45-degree straight line, indicates
a stable (unstable) equilibrium.
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stable equilibrium. Also, the intensity of FX intervention reduces the RE equilibrium

variance of the exchange rate change.30

The RE equilibrium variance of the exchange rate change also affects the direct

impact of FX intervention and capital flows on the exchange rate, as shown in equation

(1.3). Therefore, a more intensive FX intervention strategy also reduces its effectiveness

as the reduction in variance dampens the impact of interventions on the exchange rate.

Transmission of external shocks

In Table 2 we present unconditional relative variances of some main macroeconomic

variables assuming only one source of volatility at the time for different FX intervention

regimes.31 For comparison, relative variances are normalised with respect to the no

intervention case.

As shown, not surprisingly, FX intervention reduces the volatility of the change of

the exchange rate in all cases. However, this exercise highlights some trade-offs in the

use of FX intervention. In particular, the effects of FX intervention on the volatility of

other macroeconomic variables will depend on the source of the shock. FX intervention

helps to isolate domestic macroeconomic variables from financial external shocks, but

amplifies fluctuations in some domestic variables from nominal and real external shocks.

For instance, the volatility of consumption, exports, output and inflation generated

by foreign interest rate and capital flow shocks is reduced under both types of FX inter-

vention regimes. However, the use of FX interventions to smooth the nominal exchange

rate amplifies the volatility of inflation and output generated by foreign inflation shocks.

Similarly, the use of a real exchange rate misalignment rule increases the volatility of con-

sumption, exports, output and inflation generated by foreign output shocks. In this case,

FX intervention prevents the adjustment of the real exchange rate as a macroeconomic

stabiliser.

30This is a novel result, in stark contrast with the findings of Vitale (2011). We consider the author’s
setup different to ours as in his model, central bank FX interventions are always informative and can
potentially increase information dispersion across agents.

31Exercises are simulated using the conditional variance of the depreciation rate in equilibrium in
equation 1.3.

36



F
ig

u
re

1
-2

:
E

x
is

te
n

ce
of

eq
u

il
ib

ri
a

u
n

d
er

F
X

in
te

rv
en

ti
on

ru
le

s

(a
)

∆
s

ru
le

(ϕ
∆
s

=
0
)

0
1

2
3

4
5

6
7

8

x 
10

−
3

012345678
x 

10
−

3

C
on

je
ct

ur
ed

 V
ar

ia
nc

e 
of

 E
x.

 R
at

e 
D

ep
re

ci
at

io
n

Implied Variance of Ex. Rate Depreciation

(b
)

∆
s

ru
le

(ϕ
∆
s

=
0
.2

5
)

0
1

2
3

4
5

6
7

8

x 
10

−
3

012345678
x 

10
−

3

C
on

je
ct

ur
ed

 V
ar

ia
nc

e 
of

 E
x.

 R
at

e 
D

ep
re

ci
at

io
n

Implied Variance of Ex. Rate Depreciation

(c
)

∆
s

ru
le

(ϕ
∆
s

=
0
.5

0
)

0
1

2
3

4
5

6
7

8

x 
10

−
3

012345678
x 

10
−

3

C
on

je
ct

ur
ed

 V
ar

ia
nc

e 
of

 E
x.

 R
at

e 
D

ep
re

ci
at

io
n

Implied Variance of Ex. Rate Depreciation

(d
)
R
E
R

ru
le

(ϕ
r
e
r

=
0
)

0
1

2
3

4
5

6
7

8

x 
10

−
3

012345678
x 

10
−

3

C
on

je
ct

ur
ed

 V
ar

ia
nc

e 
of

 E
x.

 R
at

e 
D

ep
re

ci
at

io
n

Implied Variance of Ex. Rate Depreciation

(e
)
R
E
R

ru
le

(ϕ
r
e
r

=
0
.2

5
)

0
1

2
3

4
5

6
7

8

x 
10

−
3

012345678
x 

10
−

3

C
on

je
ct

ur
ed

 V
ar

ia
nc

e 
of

 E
x.

 R
at

e 
D

ep
re

ci
at

io
n

Implied Variance of Ex. Rate Depreciation

(f
)
R
E
R

ru
le

(ϕ
r
e
r

=
0
.5

0
)

0
1

2
3

4
5

6
7

8

x 
10

−
3

012345678
x 

10
−

3

C
on

je
ct

ur
ed

 V
ar

ia
nc

e 
of

 E
x.

 R
at

e 
D

ep
re

ci
at

io
n

Implied Variance of Ex. Rate Depreciation

S
im

u
la

ti
on

s
in

vo
lv

ed
61

va
lu

es
fo

r
th

e
co

n
je

ct
u

re
d

va
ri

an
ce

s
o
f

th
e

ch
a
n

g
e

o
f

th
e

ex
ch

a
n

g
e

ra
te

.
W

h
en

th
e

in
te

rv
en

ti
o
n

p
a
ra

m
et

er
u

n
d

er
b

o
th

ru
le

s
is

ze
ro

,
w

e
re

p
li

ca
te

th
e

va
lu

es
fo

r
th

e
p

u
re

d
is

cr
et

io
n

a
l

in
te

rv
en

ti
o
n

ca
se

.

37



T
ab

le
1
.2

:
M

a
c
ro

e
c
o
n

o
m

ic
v
o
la

ti
li
ty

u
n

d
e
r

F
X

In
te

rv
e
n
ti

o
n

R
u

le
s

(N
o

in
te

rv
e
n
ti

o
n
≡

1
)

E
n
d
og
en
ou
s
v
a
ri
a
bl
e

R
E
R

∆
E
x
.
R
a
te

C
on
su
m
p
ti
on

E
x
p
or
ts

I
n
t.
R
a
te

P
ro
d
u
ct
io
n

I
n
f
la
ti
on

F
o
re

ig
n

in
te

re
st

ra
te

sh
oc

k
(ε
i∗

)

ϕ
∆
s

=
0.

25
0
.3

1
0.

69
0.

48
0.

92
0
.4

4
0
.1

2
0
.4

1

ϕ
∆
s

=
0.

5
0

0.
1
0

0.
56

0.
26

0.
89

0.
2
1

0
.0

3
0
.1

7

ϕ
r
er

=
0.

2
5

0.
7
6

0.
90

0.
84

0.
97

0.
8
6

0
.6

6
0
.8

4

ϕ
r
er

=
0.

5
0

0.
6
4

0.
85

0.
75

0.
96

0.
7
8

0
.4

9
0
.7

4

C
a
p
it

a
l

fl
o
w

s
sh

oc
k

(ε
ω
∗
)

ϕ
∆
s

=
0.

25
0
.2

5
0.

23
0.

31
0.

28
0
.3

4
0
.3

2
0
.3

1

ϕ
∆
s

=
0.

5
0

0.
1
5

0.
13

0.
21

0.
17

0.
2
4

0
.2

1
0
.2

1

ϕ
r
er

=
0.

2
5

0.
3
8

0.
38

0.
40

0.
38

0.
4
2

0
.3

9
0
.4

0

ϕ
r
er

=
0.

5
0

0.
2
4

0.
23

0.
25

0.
24

0.
2
7

0
.2

5
0
.2

6

F
o
re

ig
n

in
fl

a
ti

o
n

sh
oc

k
(ε
π
∗
)

ϕ
∆
s

=
0.

25
0
.9

0
0.

78
0.

99
0.

92
1
.0

8
1
.0

2
1
.0

6

ϕ
∆
s

=
0.

5
0

0.
8
4

0.
67

0.
96

0.
85

1.
1
3

1
.0

1
1
.0

8

ϕ
r
er

=
0.

2
5

0.
7
6

0.
74

0.
77

0.
75

0.
8
1

0
.7

8
0
.8

0

ϕ
r
er

=
0.

5
0

0.
6
3

0.
62

0.
66

0.
63

0.
7
1

0
.6

6
0
.6

9

F
o
re

ig
n

o
u

tp
u

t
sh

oc
k

(ε
y
∗
)

ϕ
∆
s

=
0.

25
1
.2

8
0.

93
0.

89
0.

99
0
.7

2
0
.9

2
0
.6

3

ϕ
∆
s

=
0.

5
0

1.
4
2

0.
85

0.
85

0.
98

0.
5
9

0
.8

9
0
.4

6

ϕ
r
er

=
0.

2
5

0.
7
2

0.
73

1.
10

1.
02

1.
1
5

1
.0

9
1
.1

8

ϕ
r
er

=
0.

5
0

0.
5
9

0.
62

1.
15

1.
02

1.
2
4

1
.1

4
1
.3

0

N
o
te

:
T

h
e

ta
b

le
sh

ow
s

n
or

m
al

is
ed

u
n

co
n

d
it

io
n

al
re

la
ti

ve
va

ri
a
n

ce
s

o
f

th
e

m
o
d

el
a
ss

u
m

in
g

th
e

o
n

ly
so

u
rc

e
o
f

vo
la

ti
li

ty
is

th
e

sh
o
ck

in
th

e
ta

b
le

h
ea

d
in

g
.

W
e

h
av

e
co

n
si

d
er

ed
ch

an
ge

s
in

va
ri

an
ce

p
ro

d
u

ce
d

b
y

in
te

rv
en

ti
o
n

ru
le

s
th

em
se

lv
es

,
a
n

d
h

ow
th

es
e

a
ff

ec
t

th
e

ov
er

a
ll

vo
la

ti
li

ty
o
f

th
e

ec
o
n

o
m

y.

38



In Figures 1-3, 1-4 and 1-5 we compare the dynamic effects of external shocks under

discretion, the ∆st rule and the case with no intervention.32 Overall, the effectiveness of

intervention rules is confirmed. In other words, given that it is known the central bank

will enter the FX market to prevent large fluctuations in the exchange rate, the amount

of intervention necessary to reduce fluctuations is smaller. This means that the FX sales

and purchases by the central bank necessary to stabilise the exchange rate will be much

higher under discretion because it does not influence expectations as in the case of an

intervention rule.

In Figures 1-3 we show the reaction to a portfolio or non-fundamental capital flow

shock. These inflows generate an appreciation of the exchange rate, that under no in-

tervention affects the whole economy. In the case where the central bank intervenes

through rules or discretion, the effects of these shocks are dampened, stabilising the

economy. For the case of a foreign interest rate shock, in Figure 1-4 we show how inter-

ventions can ease the pressure of capital outflows on the exchange rate. It is interesting

to see how interventions have similar effects when reacting to non-fundamental (order

flow) and fundamental (interest rate) shocks. Finally, in Figure 1-5 we show the reaction

to a foreign inflation shock. In this case, as in the previous ones, interventions provide a

channel to counter the impact of external shocks on the economy. Foreign inflation will

generate an exchange rate appreciation and a current account deficit. An active central

bank is capable of reversing these effects through foreign exchange interventions, since

the combination of a low nominal depreciation under the exchange rate smoothing rule

with higher foreign inflation can generate a depreciation of the real exchange rate.

32The case of the RER rule is presented in figures 1-8, 1-9 and 1-10 in Appendix 1.A.
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Figure 1-3: Reaction to a 1% portfolio shock - ∆st rule.
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Note: Intervention under discretion normalised to the implied intervention path under rules.

Contribution of shocks and FX intervention

Up to now we have shown the effectiveness of FX interventions by the central bank

as a mechanism to cope with the effects of external shocks. To show this we have kept

the variance of the exchange rate constant across regimes, as a way to make results

comparable. However, as shown by Figure 1-2, intervention rules reduce the equilibrium

value of the exchange rate volatility. This is key to understanding an additional effect

of interventions. The impact of portfolio shocks on the exchange rate value is a function

of the risk dealers bear for holding more foreign currency in their portfolio. Hence, a

lower volatility will reduce the risk and consequently the premia they charge for these

holdings. This makes interventions less effective when dealing with most external shocks,

as shown by Table 1.2, while improving the resilience of the economy to portfolio or non-

fundamental capital flow shocks. Specifically, when we assume the only shocks in the
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Figure 1-4: Reaction to a 1% foreign interest rate shock - ∆st rule.
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Note: Intervention under discretion normalised to the implied intervention path under rules.

economy are given by the portfolio capital flows shocks, the volatility of the real exchange

rate and the change of the exchange rate fall up to 85 and 87 percent respectively, in

comparison to the no intervention case. This implies that through FX interventions, it

is possible to reduce significantly the response of the exchange rate to portfolio shocks.33

Thus, our simulations show that intervention rules that reduce the volatility of

the exchange rate affect as well the relative importance that shocks have in explaining

this variance. In Figure 1-6 we show the variance decomposition of the exchange rate

variation under different shocks. Our result is robust to the intensity of intervention,

when the central bank intervenes in the FX market through rules, capital flows shocks

explain a smaller fraction of the fluctuations of the change of the exchange rate, while the

effect of others, such as foreign interest rate shocks, become relatively more important.

33Since discretional interventions work in a similar way as these portfolio shocks, the ability of the
central bank to affect the exchange rate through discretional sales or purchases, diminishes as well.
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Figure 1-5: Reaction to a 1% foreign inflation rate shock - ∆st rule.
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1.4 Robustness

We perform robustness exercises to several parameters related to the transmission

mechanism of FX interventions into prices. Results are presented in Appendix 1.A.

Results are robust to the assumed degree of elasticity between home and foreign goods

(ε), as Tables 1.3 and 1.4 show. Tables 1.5 and 1.6 show results for changes in the

elasticity of substitution between foreign and exports goods, (εF ). This parameter has

strong effects on the capacity of the central bank to reduce the relative volatility of

consumption and production in the face of financial shocks. This result is not surprising

since a lower elasticity of substitution means that shocks to the exchange rate will have a

smaller impact on the quantities exported, but a higher impact on the country’s income.

As we observe, interventions are more effective reducing the volatility of consumption

but less effective in the case of exports. The opposite occurs in the case of a high εF .

Tables 1.7 and 1.8 show results for the case of low and high domestic good price

rigidity, respectively. We observe that price rigidity increases the effectiveness of FX

intervention rules in isolating the economy from foreign interest rate shocks. Under low

domestic good price rigidity, intervention rules imply a volatility of consumption between

43% and 96% of the no intervention benchmark. When price rigidity is high (θH = 0.95),

the relative volatility of consumption with intervention rules is between 12% and 64% of

the no intervention benchmark. However, this result does not hold when the economy is

hit by capital flows shocks. In this case, a central bank aiming to smooth the exchange

rate can actually increase the volatility of variables such as consumption and production.

The presence of high price stickiness, combined with a sluggish exchange rate - due to

an active FX intervention policy - slows down corrections of the real exchange rate,

increasing both consumption and GDP volatility.

1.5 Conclusions

In this chapter, we present a model to analyse the interaction between monetary

policy and FX intervention by central banks, which also includes microstructure funda-

mentals in the determination of the exchange rate. We introduce a portfolio decision of

risk-averse dealers, which adds an endogenous risk premium to the traditional uncovered
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interest rate condition. In this model, FX intervention affects the exchange rate through

both a portfolio-balance and and a volatility channel.

Our results illustrate that FX intervention has strong interactions with monetary

policy. Intervening to smooth real exchange rate misalignments can mute the monetary

transmission mechanism through exchange rates, reducing the impact on aggregate de-

mand and prices, while intervening to smooth nominal exchange rate fluctuations can

amplify the impact. Also, FX intervention rules can be more powerful in stabilising the

economy as they exploit the expectations channel. When we analyse the response to

foreign shocks, we show that FX intervention rules have some advantages as a stabili-

sation tool, because they anchor expectations about future exchange rates. Therefore,

the amount of FX intervention needed to stabilise the exchange rate under rules is much

smaller than under discretion. We also show that there are some trade-offs in the use

of FX intervention. On the one hand, it can help isolate the economy from external fi-

nancial shocks, but on the other it prevents some necessary adjustments of the exchange

rate in response to nominal and real external shocks.
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Chamon, M., J. D. Ostry, and A. R. Ghosh (2012). Two targets, two instruments: Mon-

etary and exchange rate policies in emerging market economies. IMF Staff Discussion

Notes 12/01, International Monetary Fund.

Chari, V. V., P. J. Kehoe, and E. R. McGrattan (2002, July). Can sticky price mod-

els generate volatile and persistent real exchange rates? Review of Economic Stud-

ies 69 (3), 533–63.

Chetty, R., A. Guren, D. Manoli, and A. Weber (2011, May). Are micro and macro

labor supply elasticities consistent? a review of evidence on the intensive and extensive

margins. American Economic Review 101 (3), 471–75.

46



Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005, February). Nominal rigidities

and the dynamic effects of a shock to monetary policy. Journal of Political Econ-

omy 113 (1), 1–45.

Devereux, M. B., P. R. Lane, and J. Xu (2006, April). Exchange rates and monetary

policy in emerging market economies. Economic Journal 116 (511), 478–506.

Filardo, A., G. Ma, and D. Mihaljek (2011). Exchange rate and monetary policy frame-

works in emes. In B. for International Settlements (Ed.), Capital flows, commodity

price movements and foreign exchange intervention, Volume 57 of BIS Papers chapters,

pp. 37–63. Bank for International Settlements.

Frankel, J. A. and A. K. Rose (1995). Empirical research on nominal exchange rates. In

G. M. Grossman and K. Rogoff (Eds.), Handbook of International Economics, Volume 3

of Handbook of International Economics, Chapter 33, pp. 1689–1729. Elsevier.
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1.A Figures and tables

Figure 1-7: Reaction to a 1% FX intervention shock - RER rule.
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Note: Intervention under discretion normalised to the implied intervention path under rules.
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Figure 1-8: Reaction to a 1% portfolio shock - RER rule
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Figure 1-9: Reaction to a 1% foreign interest rate shock - RER rule.
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Figure 1-10: Reaction to a 1% foreign inflation rate shock - RER rule.
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1.B The log-linear version of the model

Aggregate demand

Aggregate demand (yt)

yt = φC(ct) + φX(xt)− φM (mt) + gt (1.50)

GDP deflator
(
tdeft

)
tdeft = φX(rert + tXt )− φM tMt (1.51)

Real exchange rate (rert)

rert = rert−1 + ∆st + π∗t − πt (1.52)

Euler equation (λt)

λt = ı̂t + Et(λt+1 − πt+1)− ψbbt (1.53)

Marginal utility (λt)

λt = −γcct (1.54)

Exports (xt)

xt = −εF (tXt ) + y∗t ; (1.55)

Relative price of exports
(
tXt
)

tXt = tXt−1 + πXt − π∗t ; (1.56)

Imports (mt)

mt = −ε(tMt ) + ct; (1.57)

Relative price of imports
(
tMt
)

tMt = tMt−1 + πMt − πt; (1.58)
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Home produced goods demand
(
yHt
)
yHt = −ε(tHt ) + ct; (1.59)

Relative price of home produced goods
(
tHt
)

tHt = −
(

1− ψ
ψ

)
tMt (1.60)

Aggregate supply

Total CPI (πt):

πt = ψπHt + (1− ψ)πMt + µt (1.61)

Phillips curve for home-produced goods (πHt ):

πHt = κH
(
mct − tHt

)
+ βEtπ

H
t+1 (1.62)

Real marginal costs (mct)

mct = wpt − at; (1.63)

Phillips curve for imported goods (πMt ):

πMt = κMmc
M
t + βEtπ

M
t+1 (1.64)

Marginal costs for imports
(
mcMt

)
mcMt = rert − tMt (1.65)

Phillips curve for exports (πXt )

πXt = κXmc
X
t + βEtπ

X
t+1 (1.66)

Marginal costs for exports
(
mcXt

)
mcXt = mct − rert − tXt (1.67)
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Labour market

Labour demand (lt)

lt = yt − at; (1.68)

Labour supply (wpt)

wpt = γcct + χlt (1.69)

FX markets and current account

Risk premium-adjusted UIP (∆st)

Et∆st+1 = ı̂t − ı̂∗t + γσ2
(
$∗t +$∗,cbt

)
(1.70)

Current account (bt)

φ$
(
bt − β−1bt−1

)
= tdeft + yt − φCct +

φ$
β

(it−1 − πt) (1.71)

Monetary policy

Interest rate (̂ıt)

ı̂t = ϕπ(πt) + εintt (1.72)

FX intervention
(
$∗,cbt

)

$∗,cbt = ϕ∆s∆st + ϕrerrert + εcbt (1.73)

Foreign economy

Foreign output (y∗t ):

y∗t = ρy∗y
∗
t−1 + εy

∗

t (1.74)

Foreign inflation (π∗t ):

π∗t = ρπ∗π
∗
t−1 + επ

∗
t (1.75)
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Foreign interest rates (i∗t ):

i∗t = ρi∗i
∗
t−1 + εi

∗
t (1.76)

Capital inflows-order flows ($∗t )

$∗t = ρ$∗$
∗
t−1 + ε$

∗
t (1.77)

Domestic shocks

Productivity shocks (at):

at = ρaat−1 + εat (1.78)

Demand shocks (gt):

gt = ρggt−1 + εgt (1.79)

Mark-up shocks (µt):

µt = ρµµt−1 + εµt (1.80)

Thus we have in total 31 equations, 24 from the original model and seven auxiliary

equations. We have included two exogenous shock processes - demand (gt) and mark-

up/inflation (µt) shocks - to perform additional analysis. The variables in the model are:

at, yt, ct, xt, mt, y
∗
t , y

H
t , lt, λt, $

∗
t , mct, mc

X
t , mcMt , tdeft , tXt , tMt , tHt , πt, π

H
t , πXt , πMt ,

π∗t , rert, ∆st, it, i
∗
t , wpt, bt, $

∗,cb
t , gt, µt. The minimum state variable (MSV) set is

composed of 12 variables: at, y
∗
t , bt, $

∗
t , t

X
t , tMt , π∗t , rert, it, i

∗
t , gt, µt.

The nine shocks comprise four foreign economy shocks (εy
∗

t , ε
π∗
t , ε

ı∗
t , ε

$∗
t ), three

domestic economy shocks (εat , ε
g
t , ε

µ
t ) and two policy shocks

(
εintt , εcbt

)
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Chapter 2

Information heterogeneity and

the role of foreign exchange

interventions

2.1 Introduction

The microstructure approach to exchange rates literature has given economists key

insights to understand the behaviour of exchange rates. The limited explanatory power

that observed macro fundamentals have on the exchange rate, coined ’the exchange rate

determination puzzle’, has found answers in the microstructure literature. As Evans

and Lyons (2002) found, exchange rate movements can be explained largely by order

flows. As we have seen in the previous chapter, orders received by dealers and the

exchange rate have a direct connection through portfolio balance effects. Nonetheless,

this channel is not the sole one through which order flows affect exchange rate prices.

As Lyons (2006) explains, order flows convey private information. The author identifies

at least three different channels at work. The first one, is related to information about

transitory risk premia, as dealers possess better information about their own inventories

and the inventories of other dealers. Using this information dealers possess an informative

advantage over the general public. The second channel is related to the aggregate position

of dealers, reflected in the portfolio balance, which in the eyes of the dealers, are changes
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in the aggregate position which are undiversifiable across themselves. As Vitale (2011)

explains, heterogeneous information might emerge in relation to this channel as certain

dealers can have superior information regarding the aggregate position of the market,

such as the case when Central Banks intervene through a subset of dealers. The third

one is related to asset payoffs. Dealers could have as well private information regarding

future interest rate differentials or, perhaps closer to reality, dealers could either interpret

this information in a different way or have access to different information regarding other

dealers’ expectations about the future differentials.

As Bacchetta and van Wincoop (2011) explain, typically in macroeconomic models

foreign exchange (FX) market participants are assumed to: i) have identical information;

ii)perfectly know the model; iii) use the available information at all times. Assumptions

that are quite inconsistent with how FX markets operate in reality. The authors show

that relaxing these assumptions allows explaining various exchange rate puzzles, such as

the disconnection between exchange rates and fundamentals and the forward premium

puzzle. In this line, we extend the model introduced in Chapter 1 by relaxing the first

assumption, acknowledging that FX dealers can have access to different sources of infor-

mation and can have different expectations about future macroeconomic variables. As

shown by Bacchetta and Wincoop (2006) in a more tractable model, these characteris-

tics magnify the response of the exchange rate to unobserved variables and generate a

disconnection in the short run between the exchange rate and observed fundamentals. In

a related work, Vitale (2011) extends Bacchetta and Wincoop (2006) model to analyse

the impact of FX intervention on FX markets. The resulting model is useful to anal-

yse how FX intervention influences exchange rates via both a portfolio-balance and an

information related channel.

Thus, the goal of the chapter is twofold. The first one is to introduce information

heterogeneity into a Neo-Keynesian general equilibrium model and verify the role it

plays in the determination of exchange rates and the disconnection puzzle. The second

objective is to understand the role of FX interventions in this setup. Different from

previous research, we treat information heterogeneity in a model where the interest

rate is endogenous and reacts to the exchange rate through the effects the latter has

on inflation. In this way, there is an explicit channel through which the FX market
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microstructure, FX interventions and monetary policy interact; a channel we consider

worthwhile studying in more detail.1

On the technical side, the presence of heterogeneous information poses a challenge

in terms of the solution method. Now, the variance of exchange rate changes will not

only affect the risk premium charged by dealers for holding foreign currency assets in

their portfolio, but will be a key element in the information extraction exercise that

dealers perform. For this reason we follow an approach in line with Townsend (1983)

and Bacchetta and Wincoop (2006). We solve a signal extraction problem of the investors

to calculate the average expected depreciation rate in the modified uncovered interest

parity (UIP) condition with an endogenous risk premium, which feeds from the rational

expectations solution of the model.

We are not the first ones to treat the exchange rate disconnection puzzle from

a general equilibrium perspective. Wang (2007) studies the role that the home-bias

effect in consumption has in the ratio of volatilities between the exchange rate and the

macroeconomic variables, though the results are driven by ad-hoc UIP shocks. Evans and

Lyons (2007) work a two-country general equilibrium model with initially not publicly

observed information that is assimilated by the exchange rate at a slow pace. In this

model dealers form heterogeneous expectations about central bank reactions to changes

in the economy and revise their expectations using the information contained in the order

flow.

The literature presents a few examples of DSGE models with heterogeneous infor-

mation. We find our setup close to the one of Lorenzoni (2009), who presents a model

with a symmetric information structure in which agents confuse noise shocks with fun-

damental ones, as the latter are not perfectly observable. Carboni and Ellison (2011)

present a New Keynesian DSGE model with asymmetric and incomplete information

where the central bank and private sector better information about a different sets of

shocks. The authors show the importance of transparency as a stabilisation mechanism

since not only the private sector benefits from better information, but in addition, the

central bank is able to infer information from the private sector more easily. Finally, this

1In countries with a dollarized financial system and agents with dollarized liabilities an additional
channel is present. In this case exchange rate fluctuations generate balance sheet effects on households
and firms, with consequences for interest rates in the banking sector. For a discussion of this channel,
see Céspedes et al. (2004).
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chapter is connected to some other strands of the literature such as the models of noisy

rational expectations (see Brunnermeier (2001) for a survey) and imperfect information

(see Woodford (2003); Mankiw & Reis(2002), Sims (2003)).

In the next section, the model in Chapter 1 is extended to take into account infor-

mation heterogeneity in the dealers’ market. Section 2.3 discusses the solution method.

In Section 2.4 we present the results of the model. The last section concludes.

2.2 The model

The model describes a small open economy with nominal rigidities, in line with the

contributions from Obstfeld and Rogoff (1995), Chari et al. (2002), Gal and Monacelli

(2005), Christiano et al. (2005) and Devereux et al. (2006), with the key difference

that the exchange rate is determined in a market of risk adverse dealers.2 Different

from the model seen in the previous chapter, now dealers in the FX market will receive

heterogeneous information, as in Bacchetta and Wincoop (2006), raising an information

extraction problem that will affect exchange rate dynamics.

2.2.1 Dealers

As in the baseline model, there is a continuum of dealers in the interval [0, 1]

operating in the domestic economy. Each dealer ι receives $ι
t and $ι,cb

t in domestic bond

sale and purchase orders from households and the central bank, and $ι∗
t and $ι∗,cb

t in

foreign bond sale orders from foreign investors and the central bank, respectively. These

orders are exchanged among dealers, that is $ι
t +$ι,cb

t +St

(
$ι∗
t +$ι∗,cb

t

)
= Bι

t +StB
ι∗
t ,

where Bι
t and Bι∗

t are the ex-post holdings of domestic and foreign bonds by dealer ι,

respectively. The exchange rate St is defined as the price of foreign currency in terms of

domestic currency, such that a decrease (increase) of St corresponds to an appreciation

(depreciation) of the domestic currency. At the end of the period, any profits -either

positive or negative- are transferred to the households.3

2We refer the reader to Chapter 1 for more details on the model.
3Under the present formulation FX transactions carried out for commercial purposes will only affect

the exchange rate through their impact in the domestic interest rate though not through variations in
the order flow faced by dealers.
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Dealers are risk-averse and short-sighted. They select an optimal portfolio allo-

cation in order to maximise the expected utility of their end-of-period returns, where

their utility is given by a CARA utility function. The one-period dealer’s horizon gives

tractability and captures the feature that FX dealers tend to unwind their FX exposure

at the end of any trading period, as explained by Vitale (2011). The problem of dealer

ι is

max
Bι∗t
−Eιte−γΩιt+1

subject to:

$ι
t −$

ι,cb
t + St

(
$ι∗
t +$ι∗,cb

t

)
= Bι

t + StB
ι∗
t (2.1)

where γ is the coefficient of absolute risk aversion and Eιt is the rational expectations

operator conditional on the information that dealer ι possesses at time t, Iιt :

Eιt [·] ≡ E[· | Iιt ]

Ωι
t+1 represents total investment after returns, given by:

Ωι
t+1 = (1 + it)B

ι
t + (1 + i∗t )St+1B

ι∗
t

≈ (1 + it)
[
$ι
t −$

ι,cb
t + St

(
$ι∗
t +$ι∗,cb

t

)]
+ (i∗t − it + st+1 − st)Bι∗

t

where we have made use of the resource constraint of dealers. We have log-linearised

the excess of return on investing in foreign bonds and st = lnSt. Since the only non-

predetermined variable is st+1, assuming it is normal distributed with time-invariant

variance, the first order condition for the dealers is:

0 = −γ (i∗t − it + Eιtst+1 − st) + γ2Bι∗
t σ

2

where σ2 = vart (∆st+1) is the conditional variance of the depreciation rate. Then, the

demand for foreign bonds by dealer ι is given by the following portfolio condition:

Bι∗
t =

i∗t − it + Eιtst+1 − st
γσ2

(2.2)
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2.2.2 FX market equilibrium

Foreign bonds equilibrium in the domestic market should sum FX market orders

from foreign investors (capital inflows) and central bank FX intervention, that is:

∫ 1

0
Bι∗
t dι =

∫ 1

0

(
$ι∗
t +$ι∗,cb

t

)
dι = $∗t +$∗,cbt .

Replacing the FX market equilibrium condition in the aggregate demand for foreign

bonds yields the following arbitrage condition:

Ētst+1 − st = it − i∗t + γσ2($∗t +$∗,cbt ) (2.3)

where Ētst+1 is the average rational expectation of the next period exchange rate

across all dealers. Given that dealers have access to different sets of information, expected

exchange rate depreciation would differ among them as well. Condition (2.3) determines

the exchange rate, and adds three new elements to the traditional uncovered interest

rate parity condition.4 On the right-hand side, we note the presence of central bank

market orders, reflecting the portfolio balance effect of FX interventions. The second

novel element, also studied in the previous chapter, is the presence of the exchange rate

volatility, which scales the impact of interventions and portfolio capital flows shocks in

the exchange rate. We call this the volatility channel.

Finally, on the left-hand side we find the average rational expectation of the next

period exchange rate, reflecting the presence of heterogeneous information. In our model,

dealers will form both conditional moments present in condition (2.3) through a signal

extraction problem. As we discuss, the way in which the central bank intervenes could

affect both in the manner in which information is processed and in the information

available to agents.

4See Obstfeld and Rogoff (1995) for an example of the standard UIP condition.
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2.2.3 Information structure

Two sources of information heterogeneity among dealers are considered: first, we

assume dealers face idiosyncratic shocks in the amount of customer orders from foreign

investors and, second, they will also receive noisy signals about some future shocks. The

later assumption seems reasonable, since regularly dealers form their own forecasts from

different models or own experiences, generating heterogeneity in spite of having access

to the same data.

In particular, we assume the foreign investor exposure for each dealer is equal to

the average plus an idiosyncratic term:

$ι∗
t = $∗t + ειt (2.4)

where ειt has an infinite support, so that knowing one’s own foreign investor exposure

provides no information about the average exposure as in Bacchetta and Wincoop (2006).

$∗t is unobservable and follows an AR(1) process:

$∗t = ρ$∗$
∗
t−1 + ε$

∗
t (2.5)

where ε$
∗

t ∼ N
(
0, σ2

$∗
)
. We consider the case in which this autoregressive process is

known by all agents.

We assume that dealers observe past and current fundamental shocks, while they

also receive private signals about some future shocks. More precisely, we assume dealers

receive one signal each period about the foreign interest rate one period ahead.5 That

is, at time t dealer ι receives a signal

vιt = i∗t+1 + εvιt , ε
vι
t ∼ N

(
0, σ2

v

)
(2.6)

where εvιt is independent from i∗t+1 and other agents’ signals. This idiosyncratic signal

can be reconciliated with the fact that dealers have different models to forecast future

fundamentals, so each can imperfectly observe future variables with an idiosyncratic

5This assumption can be extended to the case where dealers receive each period a vector of signal of
a set of fundamental variables.
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noise. We also assume that the average signal received by investors is i∗t+1, that is∫ 1

0
vιtdι = i∗t+1. The foreign interest rate follows an AR(1) process known by dealers:

i∗t = ρi∗i
∗
t−1 + εi

∗
t (2.7)

where εi
∗
t ∼ N

(
0, σ2

i∗
)
. Dealers solve a signal extraction problem for the unknown

innovations
(
ε$
∗

t , εi
∗
t+1

)
, given the observed depreciation rate and signal (∆st, v

ι
t).

6

As Bacchetta and Wincoop (2006), we consider a common knowledge (CK) bench-

mark. In this case, the signal about future interest rates becomes public, but remains

noisy. Agents only extract information from this signal, since the equilibrium exchange

rate stops being informative. For a detailed description see Section 2.B.3 in the appendix.

FX intervention

We describe two different FX intervention strategies for the central bank, aside of

the no intervention scenario. First, the central bank can perform a rule based intervention

taking into account the changes in the exchange rate. We call this strategy “the ∆s rule”.

$∗cbt = φ∆s∆st + εcb,1t (2.8)

According to this rule, when there are depreciation (appreciation) pressures on the do-

mestic currency, the central bank sells (purchases) foreign bonds to prevent the exchange

rate from fluctuating. φ∆s captures the intensity of the response of the FX intervention

to pressures in the FX market. Second, the monetary authority can take into account

misalignments of the real exchange rate as a benchmark for FX intervention. We call

this strategy “the RER rule”.

$∗cbt = φrerrert + εcb,2t (2.9)

The rest of the model describes the behaviour of households, firms, the external sector

and a monetary policy authority, which participates actively in the FX market through

6As explained by Bacchetta and Wincoop (2006), if the B(L) polynomial in equation (2.15) is invert-
ible, knowledge of the depreciation rate at times t− 1 and earlier and of the interest rate shocks at time
t and earlier, reveals the shocks ε$

∗
at times t− 1 and earlier. That is, ε$

∗
t−s becomes observable at time

t for s ≥ 1.
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discretionary or rule-based interventions. We refer the reader to Chapter 1, for a complete

description of the model and a thorough explanation of the differences among these three

FX intervention strategies.

2.3 Computational strategy

The computational strategy consists of dividing the system of log-linearized equa-

tions into two blocks. In the first block we take into account all the equations but the

risk-premium adjusted UIP, which is included in the second block. Then, we solve for

the rational expectations equilibrium of the first block taking the depreciation rate as

an exogenous variable. This solution feeds into the second block to solve for the policy

function of the depreciation rate. Note that with this computational strategy we are also

eliminating any informational spillovers between dealers and other economic agents, such

as households and firms. However, the segmented information in the FX market seems

a reasonable assumption, since it takes into account that dealers have access to private

information, which is not known by other economic agents.7

Accordingly, in the first block the depreciation rate only appears in the real exchange

rate equation:

rert = rert−1 + ∆st + π∗t − πt (2.10)

This system of equations can be written as:

A0

 Xt

EtYt+1

 = A1

 Xt−1

Yt

+A2∆st +B0εt (2.11)

where Xt = [rert, it, π
∗
t , w

∗
t , i
∗
t , ...]

′ is a size n1 vector of backward looking variables,

Yt = [πt, ...]
′ is a size n2 vector of forward looking variables, such as nT = n1 + n2 + 1 is

the number of endogenous variables. εt is the vector of observable shocks in the model.

A2 = [1, 0..0]′ is a (n1 + n2)× 1 matrix.8

7To further clarify this, agents in the economy are reacting as if the information heterogeneity does
not affect the optimal response to shocks, taking, as a matter of fact, movements in the exchange rate
as shocks. Relaxing this assumption will impose a recursive relationship between the first and second
block of the solutions, complicating the numerical solution. We leave the implementation of an explicit
recursivity between both blocks for future research.

8Since information heterogeneity only enters the model through the exchange rate, the unobservable
shocks are excluded from the first step.
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The second block corresponds to the risk-premium adjusted UIP condition:

Et∆st+1 = it − i∗t + γσ2
(
$∗t +$∗,cbt

)
(2.12)

In the first stage we find the rational expectations solution of the system in (2.11)

using the perturbation method, taking as exogenous ∆st.
9 That is, we find the policy

functions:

Yt = M1Xt−1 (2.13)

Xt = M2Xt−1 +M3∆st +M4εt (2.14)

In the second stage we use the previous solution to find the policy function of ∆st

using Townsend (1983) method. More precisely, we conjecture a solution for ∆st as a

function of infinite lag polynomials of the shocks in the model.

∆st = A(L)εi
∗
t+1 + B(L)ε$

∗
t +D(L)ζt (2.15)

where εi
∗
t+1 is an innovation to the future foreign interest rate (i∗t+1), the fundamentals

over which agents receive a signal, and ε$
∗

t is the shock to the unobservable capital flow

($∗t ), which can be inferred with a lag. A(L) and B(L) are infinite lag polynomials,

while D(L) is a vector of infinite lag polynomials operating ζt, the vector of remaining

shocks. 10

In the second stage we solve for the signal extraction problem of the dealers for

the unobserved innovations
(
ε$
∗

t , εi
∗
t+1

)
, using both the depreciation rate and their pri-

vate signal
(
∆st, v

d
t

)
, which serves to calculate the average expectation of the future

depreciation rate and its conditional variance in equation (2.12) as functions of shocks.11

The next step involves relating the coefficients of (2.12) to those on the conjectured

9We use Dynare to solve for the rational expectations of the first block. More information see: Villemot
(2011) and Adjemian et al. (2011).

10Notice that εt and ζt are not exactly the same, since the latter can also include FX intervention
shocks.

11In turn, given the solution of the first block, we can express the endogenous variables in (2.12) as
function of shocks as well.
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solution (2.15). This yields a system of non-linear equations on the unknown coefficients

of A(L), B(L) and D(L). Although this is an infinite-order set of equations, we can

exploit the recursive pattern present among the coefficients. We are able to solve the

system through a numerical approach that limits the number of lags affecting the solution,

effectively imposing zeros after a certain lag. This lag is determined numerically, through

an iterative process. See appendix B for details on the computational strategy.

2.4 Model Dynamics

Our interest lies in understanding first and foremost, how information heterogeneity

affects the connection between the exchange rates and the “traditional” fundamentals.12

These are the variables that affect the exchange rate determination in traditional mon-

etary models (i.a., interest rate differentials). We follow Bacchetta and Wincoop (2006)

by solving the model for different values for the parameters that govern the inference

problem that dealers face.

2.4.1 Calibration

With respect to the baseline model studied in the previous chapter, this extension

presents an additional parameter which affects the precision of the private signal (σν).

This value is set at 0.08 for the baseline calibration, the same standard deviation assumed

by Bacchetta and Wincoop (2006). There are two key parameters for the signal extraction

problem: the standard deviation of noise in the signal (σν), the standard deviation of

the capital flows shock (σω∗). We study the properties of the simulated series under

different values for these parameters. For a discussion on the calibrated values for the

rest of parameters in the model see Section 1.3.1 in the previous chapter.

12Bacchetta and Wincoop (2006) treat portfolio flow shocks as “non-fundamental” variables. Vitale
(2011) considers that, given the importance of order flows for the determination of exchange rates, these
should be considered fundamentals too.
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Table 2.1: Baseline Calibration

Parameter V alue Description

β 0.9975 Consumers time-preference parameter.

χ 0.5 Labour supply elasticity.

γc 1 Risk aversion parameter.

ε 0.75 Elasticity of substitution btw. home and foreign goods.

εX 0.75 Elasticity of substitution btw. exports and foreign goods.

ψ 0.6 Share of domestic tradables in domestic consumption.

θH 0.75 Domestic goods price rigidity.

θM 0.5 Imported goods price rigidity.

θX 0.5 Exported goods price rigidity.

ψb 0.01 Portfolio adjustment costs.

ϕπ 1.5 Taylor rule reaction to inflation deviations.

γ 500 Absolute risk aversion parameter (dealers)

φ$ 0.5 Net asset position over GDP ratio

φC 0.68 Consumption over GDP ratio

σx 0.01 S.D. of all shocks x

ρx 0.5 AR(1) coefficient for all exogenous processes

σν 0.08 S.D. of noise in signal.

2.4.2 Variance fixed-point problem

As in the previous chapter, the risk premium-adjusted uncovered interest parity

condition (equation 2.3) is a function of the exchange rate variation. In turn, this vari-

able depends on the RE equilibrium of the model. Different from the full information case

studied in the previous chapter, the solution now involves a search for the undetermined

coefficients in the lag polynomials A(L), B(L) and D(L), defined in (2.15). We conjecture

a variance and solve for the unknown coefficients. In Figure 2-1 we plot the mappings

of the conjectured and the implied conditional variance of the depreciation rate for dif-

ferent parameterisations of the FX-intervention reaction function. Intersections with the

45-degree straight line correspond to fixed points for the conditional variance of the de-

preciation rate. The results found under full information carry over to the heterogeneous

information case, as under both rules of FX intervention there is only a unique and stable

equilibrium. Also, the intensity of FX intervention reduces the RE equilibrium variance

of the exchange rate change. The value of the variances is similar as well, although this

model presents an extra shock given by the noise in the public signal.
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2.4.3 The effects of heterogeneous information

Bacchetta and Wincoop (2006) proved that by adding heterogeneous information in

an exchange rate determination model it is possible to account for the short-run discon-

nection between the exchange rate and observed fundamentals. Instead, the exchange

rate becomes closely associated to order flow, which the author associates to the private

information component of total market orders. The mechanism at work is a magnification

effect of unobserved fundamentals, such as portfolio capital flows in our model, on the

exchange rate. Under heterogeneous information, there is rational confusion since when

the exchange rate changes dealers do not know whether this is driven by unobserved fun-

damentals (e.g.: portfolio capital flows) or by information about future macroeconomic

fundamentals held by other dealers (e.g.: foreign interest rates).

The rational confusion magnifies the impact of the unobserved capital flows on the

exchange rate, an effect Bacchetta and Wincoop (2006) called the magnification effect.

As we have explained, agents will have now two different signals. The first is the pri-

vate information about the fundamental. The second is the equilibrium exchange rate

- more precisely the unknown component of this rate. As unobservable fundamental

capital flows impact the exchange rate, agents will confuse them with changes in observ-

able fundamentals and will react to them, amplifying the effect of capital flows. This

magnification effect depends on the precision of the public signal (the exchange rate)

relative to the precision of the private signal (vdt ). Figure 2-2 shows the difference in the

contemporaneous response to capital flow shocks between the HI and CK cases. The

magnification effect increases with σv and decreases with σω∗ . This is in line with our

previous observations. As the private signal becomes noisier, dealers will rely more on

the equilibrium exchange rate as a source of information. Thus, liquidity based capital

inflows and outflows effects in the exchange rate will be amplified. By contrast, an in-

crease in σω∗ will reduce the magnification effect. In this case, the exchange rate loses

power as a signal, since its dynamics will be more affected by capital flows instead of

traditional macro fundamentals.

To show the role of heterogeneous information and the magnification effect in ex-

plaining the disconnection effect in our setup we perform simulations of the model and

the calculate the R2 of the regression between the exchange rate and the observable vari-
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Figure 2-2: Magnification effect for different values of σω∗ and σν
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ables in the model and contrast it with the imperfect common knowledge case. Under

imperfect common knowledge agents will fully observe the aggregate capital flows and

follow the same signal, however, this signal will be a noisy one. Hence, their forecast

error will have an effect on the equilibrium exchange rate. 13

2.4.4 FX intervention under heterogeneous information

FX intervention can affect the magnification effect and the connection of the ex-

change rate with observed fundamentals. We show in figure 2-3 the response on impact

of the exchange rate change to future foreign interest rate shocks (i∗t+1) and unobserved

capital flows shocks ($∗t ) , that is coefficients a1 and b1 respectively. We show in the first

column the responses in a model with common knowledge, defined as one in which all

dealers have access to the same information, and in the second column the responses in

a model with heterogeneous information.14 In the last column we present the differences

between the responses in heterogeneous information and the common knowledge models.

These responses are plotted for different values of the standard deviation of unobserved

13For a detailed explanation of how the model works under imperfect common knowledge see section
2.B.3 in the appendix.

14Therefore, in a common knowledge model capital flows become an observable variable and all dealers
observe signal shock (ευt )
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capital flow shocks
(
σ$∗t

)
, for three degrees of FX intervention intensity under the ∆s

rule (no intervention, φ∆s = 0.25, and φ∆s = 0.25).

The following things are important to notice: i) In both the imperfect common

knowledge and heterogeneous information cases, FX intervention dampens the impact

of both unobserved capital flow shocks and future foreign interest rate shocks. ii) the

standard deviation of unobserved capital flow shocks
(
σ$∗t

)
affects the responses under

heterogeneous information, but not under common knowledge. This is because the re-

sponse of the exchange rate depends on the precision of the signals only in the former

model. iii) There is evidence of a magnification effect. That is, the response to unob-

servable capital flow shocks is much stronger in the heterogeneous information than in

common knowledge model. The opposite is true for the response to future foreign interest

rate shocks. iv) The magnification effect is larger when the intensity of FX intervention

is stronger. The main mechanism for this result is that, when FX intervention reduces

the exchange rate volatility it also increases the precision of the public signal, which

amplify the magnification effect15 16

These results shed light of an additional effect that intervention can have in the FX

market, that is the magnified response of the exchange rate to unobservable shocks, such

as capital flows. However, the magnification effect is not strong enough to increase the

disconnection between the exchange rate and observed fundamentals. Figure 2-4 reports

the R2 of regressions of ∆st on unobserved capital flows shocks ($∗t ) and future interest

rates (i∗t+1). As shown, FX intervention reduces the contribution of unobserved capital

flow shocks to exchange rate changes, and as a counterpart increases the connection

between observed fundamentals and the exchange rate.

15On the other hand, as shown in figure 2-2f, the magnification effect is larger when the unobservable
capital flows are more volatile, because that increases the exchange rate volatility.

16However, this result could change if intervention can bring additional information about future
fundamentals to the FX market, as analysed by Vitale (2011).
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2.5 Conclusions

In this chapter we extend the model of Chapter 1 by introducing heterogeneous in-

formation across dealers in the FX markets in line with Bacchetta and Wincoop (2006).

We confirm that the magnification effect, which amplifies the contemporaneous impact

of capital flow shocks, is still present in our framework. This effect is generated by the

rational confusion emerging as dealers are unable to identify the source of shocks. The

presence of the endogenous response of interest rates to changes in the exchange rate

generates a channel between monetary policy and the information extraction problem of

agents. Moreover, this framework allows us to study the interaction between exchange

rate interventions by the central bank and the magnification effect observed under het-

erogeneous information. We find that FX interventions can reduce the contribution of

unobserved capital flows shocks to the exchange rate, also increasing its connection with

observed fundamentals. Despite these findings, the relationship between the degree of

FX intervention and the connection to fundamentals is not monotonic. Finally, on the

technical side, we propose an extension of Townsend (1983) that can be useful to solve

DSGE models with heterogeneous information.

Further research should introduce richer dynamics in the information setup, such as

central banks operating in a hidden way as in Vitale (2011), increasing the information

dispersion through FX interventions, or central banks that reveal public signals through

interventions. We consider that the setup presented here is capable of handling these

problems. We leave these extensions for future research.
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2.B Details of the computational strategy

The log-linearised system of equations of the model can be written as:

A0

 Xt

EtYt+1

 = A1

 Xt−1

Yt

+A2∆st +B0εt (2.16)

and

Et∆st+1 = it − i∗t + γσ2
(
$∗t +$∗,cbt

)
(2.17)

where A2 = [1, 0..0]′ is a (n1 + n2) × 1 matrix and the definitions of the other matrices

and vectors are in Section 2.3. This is the state space form of the model.

2.B.1 Solving the first block

As an illustration, we will solve the system in (2.16) under some simplifying as-

sumptions. For a more general solution, see Villemot (2011). The system in (2.16) can

be written as:17

 Xt

EtYt+1

 = A−1
0 A1

 Xt−1

Yt

+A−1
0 A2∆st +A−1

0 B0εt

or  Xt

EtYt+1

 = A

 Xt−1

Yt

+

 a11∆st

0(n1+n2−1)×1

+Bεt

after making A = A−1
0 A1, B = A−1

0 B0 and a11 the (1, 1) element of A−1
0 . Using the

Jordan decomposition of A = PΛP−1, it becomes:

P−1

 Xt

EtYt+1

 = ΛP−1A

 Xt−1

Yt

+

 p11a11∆st

0(n1+n2−1)×1

P−1B∆st + P−1Cεt

Making R = P−1B,Λ =

 Λ1 0

0 Λ2

, P−1 =

 P11 P12

P21 P22

 , R =

 R1

R2

 and p11

the (1, 1) element of P−1. Λ1 (Λ2) is the diagonal matrix of stable (unstable) eigenvalues

17Assuming A0 is invertible, otherwise we can generalise this for the case of non-invertible matrix.
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of size n1 (n2). The system of equations become:

 P11 P12

P21 P22


 Xt

EtYt+1


=

 Λ1 0

0 Λ2


 P11 P12

P21 P22


 Xt−1

Yt

+

 p11a11∆st

0(n1+n2−1)×1

+

 R1

R2

 εt.

Making X̃t−1 = P11Xt−1 + P12Yt, Ỹt = P21Xt−1 + P22Yt, the system becomes:

 X̃t

EtỸt+1

 =

 Λ1 0

0 Λ2


 X̃t−1

Ỹt

+

 p11a11∆st

0(n1+n2−1)×1

+

 R1

R2

 εt

According to Blanchard & Kahn, given that Λ2 is the diagonal of unstable eigen-

values, the only stable solution is given by: Ỹt = 0 = P21Xt−1 + P22Yt.

Then, the solution for the forward looking variables is:

Yt = (P22)−1 P21Xt−1. (2.18)

The solution for the system of stable (backward looking) equations is:

X̃t = Λ1X̃t−1 +

 p11a11∆st

0(n1−1)×1

+R1εt (2.19)

2.B.2 Solving the second block

The MA(∞) representation of the first block

Now we change the classification of endogenous variables in the block 1 to focus

in the ones which are part of the minimum state variables (MSV) set. We call these

variables Zt, while the rest of endogenous variables is referred as Z−t . In our case the Zt

is formed by 12 variables as defined in Appendix 1.B, in the previous chapter.
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The transition and policy functions can be written as:

 Zt

Z−t

=

 W

W−

Zt−1 +

 V

V −

 ε∗t (2.20)

where ε∗′t = [ε′t,∆st] appends the depreciation rate in the vector of shocks. Evalu-

ating the transition function in t− 1 and replacing it in (2.20), we have:

 Zt

Z−t

=

 W

W−

(WZt−2 + V ε∗t−1

)
+

 V

V −

 ε∗t
Repeating this process many times, we get:

 Zt

Z−t

=

 W

W−

[(W )n Zt−n−1 + (W )n−1 V ε∗t−n + ...+WV ε∗t−2 + V ε∗t−1

]
+

 V

V −

 ε∗t

Which allows us to write the solution as a MA(∞):

 Zt

Z−t

=

 W

W−

 ∞∑
i=1

(W )i−1 V ε∗t−i +

 V

V −

 ε∗t (2.21)

Given the form of matrix W , the impact of shocks diminish over time, allowing us to

approximate the solution using a fixed number of lags. We focus in the solution for it

in this step and replace it back into (2.17). In our setup i∗t follows an exogenous process

which is easy to express as a function of shocks. Finally, the last term, γσ2
(
$∗t +$∗,cbt

)
is a combination of the conditional volatility term σ2, the first order autoregressive

process of $∗t and other endogenous variables in the policy rule for $∗,cbt , that can also

be expressed as function of shocks.

Conditional moments and solution method

In order to calculate the the conditional volatility of the depreciation rate, we need

to make use of the strategy proposed by Bacchetta and van Wincoop (2006), based on
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Townsend (1983).

First we conjecture a solution for the depreciation of exchange rate of the form:

∆st = A(L)εi
∗
t+1 + B(L)ε$

∗
t +D(L)′ζt (2.22)

where A(L) and B(L) are infinite order lag polynomials, while D(L) is an infinite order

lag polynomials vector operating ζt, the vector all other shocks in the model. Writing

A(L) = a1 + a2L+ a3L
2 + ... (and a similar definition for B(L) and D(L)), we evaluate

forward the conjecture (2.22) to obtain the value in t+ 1.

∆st+1 = a1ε
i∗
t+2 + b1ε

$∗
t+1 + d′1ζt+1 + ϑ′ξt +A∗(L)εi

∗
t + B∗(L)ε$

∗
t−1 +D∗(L)′ζt (2.23)

where ξt =
(
εi
∗
t+1, ε

$∗
t

)′
contains the unobservable innovations, ϑ′ = (a2, b2) stands for the

parameters associated to these shocks, A∗(L) = a3+a4L+... (similar definition for B∗(L))

and D∗(L) = d2 +d3L+ .... The last three terms in 2.23, A∗(L)εi
∗
t +B∗(L)εω

∗
t−1 +D∗(L)′ζt

represent all observable and past known shocks. Taking expectations for dealer ι over

the previous equation yields:

Eιt(∆st+1) = ϑ′Eιt(ξt) +A∗(L)εi
∗
t + B∗(L)ε$

∗
t−1 +D∗(L)ζt (2.24)

while the conditional variance as a function of unobservable innovation is given by:

vart(∆st+1) = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ. (2.25)

Here σ2 ≡ vart(∆st+1) is constant given that vart(ξt) is also constant. In order

to obtain the conditional moments we need to obtain the conditional expectation and

variance of the unobservable component ξt. The computation of the conditional moments

is then obtained following Townsend (1983) and Bacchetta and Wincoop (2006).

FX traders extract information from the observed variation of the exchange rate

∆st and the signal vιt. To focus on the informational content of observable variables, we

subtract the known components from these observables and define these new variables as

∆s∗t and vι∗t . We follow the notation in Bacchetta and Wincoop (2006). The measurement
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equation on this part of the problem is given by:

Y ι
t = H ′ξt + wιt (2.26)

where Y ι
t = (∆s∗t , v

ι∗
t )′ , wιt = (0, εvιt )′ , and

H ′ =

 a1 b1

1 0


The unconditional means of ξt and wιt are zero, while we define their unconditional

variances as P̃ and R respectively. Following Townsend (1983), we can write:

Eιt(ξt) = MY ι
t (2.27)

where:

M = P̃H
(
H ′P̃H +R

)−1
.

For the conditional variance of the unobservable component we have, P ≡ vart(ξt), where

P = P̃ −MH ′P̃ . (2.28)

Substituting (2.26) and (2.27) in (2.24) and averaging over dealers gives the average

conditional expectation of the variation of the exchange rate in terms of the shocks:

Et∆st+1 = ϑ′MH ′ξt +A∗(L)εi
∗
t + B∗(L)ε$

∗
t−1 +D∗(L)ζt. (2.29)

Replacing the FX intervention policy strategy in equation (2.17), the MA (∞) repre-

sentation of the endogenous variables (2.21), and the definition of σ2 from (2.25), we

obtain:

Et∆st+1 = ı̂t − ı̂∗t + γσ2
(
$∗t + ϕ∆s∆st + ϕrerrert + εcbt

)
(2.30)

Et∆st+1 = Fi(L)ε∗t − G(L)εi
∗
t + ...

+ γ
[
(a2

1vart(ε
i∗
t ) + b21vart(ε

$∗
t ) + (d1)′vart(ζt)d1 + ϑ′Pϑ

]
×
[
J (L)εω

∗
t + ϕ∆s∆st + ϕrerFrer(L)ε∗t + εcbt

]
(2.31)
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where Fz(L)ε∗t stands for zt = {it, rert}, G(L)εi
∗
t for i∗t , and J (L)εω

∗
t for ω∗t . This

is the “fundamental equation” MA(∞) representation.

To solve for the parameters of A(L), B(L) and D(L) we need to match the coeffi-

cients from equations (2.29) and (2.31).

Solution of parameters

Now we go through the algebra. Define zy,xj ≡ dyt
dxt−j+1

as the linear impulse response

in the first step of the endogenous variable yt with respect to the exogenous variable

xt−j+1. With this auxiliary variable we identify the parameters multiplying each shock.

For this, we use the method of undetermined coefficients comparing equations (2.29) and

(2.31).

Solution without rule-based FX intervention For simplicity, we solve first for the

parameters assuming first there is no rule-based FX intervention, that is: ϕ∆s = ϕrer = 0.

We start taking derivatives to the right hand side of equations (2.29) and (2.31)

with respect to εi
∗
t , ε

i∗
t−1, ..., ε

i∗
t−s+3, respectively:

a3 =
dit
dεi
∗
t

+

(
dit
d∆st

d∆st
dεi
∗
t

+
dit

d∆st−1

d∆st−1

dεi
∗
t

)
− di∗t
dεi
∗
t

a4 =
dit
dεi
∗
t−1

+

(
dit
d∆st

d∆st
dεi
∗
t−1

+
dit

d∆st−1

d∆st−1

dεi
∗
t−1

+
dit

d∆st−2

d∆st−2

dεi
∗
t−1

)
− di∗t
dεi
∗
t−1

...

as =
dit

dεi
∗
t−s+3

+
s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j

dεi
∗
t−s+3

)
− dit
dεi
∗
t−s

In this case the direct effect is zero, because i∗t only appears in the risk-premium adjusted

UIP condition, that is dit
dεi
∗
t−s+3

= 0. Then the solution for a3, a4, ...is given by:

as =

s−1∑
j=1

zi,∆ss−j aj − ρ
s−3
i∗ for s > 3 (2.32)

Similarly, taking derivatives with respect to ε$
∗

t−1, ε
$∗
t−2, ..., ε

$∗
t−s+2, yields:
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b3 =
dit
dε$

∗
t−1

+

(
dit
d∆st

d∆st
dε$

∗
t−1

+
dit

d∆st−1

d∆st−1

dε$
∗

t−1

)
+ γσ2 d$

∗
t

dε$
∗

t−1

...

bs =
dit

dεω
∗

t−s+2

+
s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j

dεi
∗
t−s+2

)
+ γσ2 d$∗t

dεi
∗
t−s+2

Similarly to the previous case, the direct effect is zero here, that is dit
dε$
∗

t−s+2

= 0. Then

the solution for b3, b4, ... is given by:

bs =

s−1∑
j=1

zi,∆ss−j bj + γσ2ρs−2
ω∗ for s > 3 (2.33)

Using the same approach, we take derivatives with respect to εt, εt−1, ..., εt−s for

ε ∈ ζ:

dε2 =
dit
dεt

+

(
dit
d∆st

d∆st
dεt

)
+ γσ2

(
I
ε=ε$

∗,cb
)

dε3 =
dit
dεt−1

+

(
dit
d∆st

d∆st
dεt−1

+
dit

d∆st−1

d∆st−1

dεt−1

)
+ γσ2

(
ρεIε=ε$∗,cb

)
...

dεs =
dit

dεt−s+2
+

s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j
dεt−s+2

)
+ γσ2

(
ρs−2
ε I

ε=ε$
∗,cb
)

where I
ε=ε$

∗,cb is an indicator value of 1 when the shock ε equals εω
∗,cb

. This system is

summarised by:

dεs = zi,εs−1 +
s−1∑
j=1

zi,∆ss−j dj + γσ2
(
ρs−2
ε I

ε=ε$
∗,cb
)

(2.34)

which is valid for s > 2. Note also that dit
dεt−s+2

= 0 when ε = εω
∗,cb
.

This set of equations (2.32), (2.33) and (2.34) allows us to express the whole system

as a function of parameters a1, a2, b1, b2 and the vector of parameters d1.
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Taking derivatives with respect to the two unobservable shocks
{
εi
∗
t+1, ε

$∗
t

}
we get:

(ϑ′MH ′)1 = zi,∆s1 a1, (2.35)

(ϑ′MH ′)2 = zi,∆s1 b1 + γσ2. (2.36)

By substituting back the values for the matrices, we obtain a non-linear system of equa-

tions on the unknowns:

[a2 b2]M

 a1

1

 = zi,∆s1 a1 (2.37)

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2 (2.38)

Note that considering (2.37) and (2.38) we have two equations and four unknowns,

which impedes us to solve for the system. Bacchetta and Wincoop (2006) overcome this

problem by proving that the coefficients in the lag polynomials follow a recursive pattern.

Assuming non-explosive coefficients, they are able to obtain additional restrictions on

the values of the coefficient in the lag-polynomial. In our case, the interest rate is

endogenous, meaning a feedback is present from the effect of unobservable shocks into

the exchange rate and from there into the interest rate. This feedback effect makes the

relationship across the coefficients in the lag polynomials a function of the solution in the

first block and of the assumed FX intervention strategy. For this reason we follow instead

a numerical approach that limits the number of lags affecting the solution. We set up

the non-linear system of equations on the first elements of both infinite lag polynomials

and search for a numerical solution using the trust-region-dogleg method implemented

by MATLAB. The extra restrictions in our case are given by selecting a limit to the lags

and setting the parameters associated with this lag at zero.18 Since these are functions

of the first parameters (the unknowns), we can solve the system and obtain the solution.

We change sequentially this limit and derive new solutions in each step. The algorithm

stops when a fixed point is achieved, revealing that the inclusion of additional lags has

18Note that Bacchetta and Wincoop (2006) guess a solution for the level of the exchange rate, while
we solve for its first difference. Our method implicitly assumes the first difference of the exchange rate
is stationary. We consider that in our setup our assumption is less restrictive.
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a negligible effect on the result.19

The system of equations: We can represent the system of equations using some

auxiliary matrices.

The A system The set of equations in (2.32) can be written as:



a3

a4

...

an+1

an+2


=



zi,∆s1 0 . . . 0 0

zi,∆s2 zi,∆s1 . . . 0 0

...
...

. . .
...

...

zi,∆sn−1 zi,∆sn−2 . . . zi,∆s1 0

zi,∆sn zi,∆sn−1 . . . zi,∆s2 zi,∆s1





a2

a3

...

an

an+1


−



1

ρi∗

...

(ρi∗)
n

(ρi∗)
n−1


+

+ a1



zi,∆s2

zi,∆s3

...

zi,∆sn

zi,∆sn+1


(2.39)

These equations can be written in the matrix form, after assuming that the value

of an+2 −→ 0:

Z1A = Zi2A−Xi∗ + a1Z
i,∆s
3 (2.40)

where Z1 =

 0(n−1)×1 In−1

0 01×(n−1)

, A = [a2, ..., an+1]′ is a n × 1 vector, Zi2

is the lower triangular matrix that pre-multiplies A, Xi∗ =
[
1, ρi∗ , ..., (ρi∗)

n−1
]′

, and

Zi,∆s3 =
[
zi,∆s2 , zi,∆s3 , ..., zi,∆sn+1

]′
The B system:

Similarly, equations (2.33) can be written as:

Z1B = Zi2B + γσ2ρ$∗X$∗ + b1Z
i,∆s
3 (2.41)

19We set the fixed-point algorithm convergence criterion over the maximum difference in the values of
the coefficients associated with the unobservable shocks.
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where B = [b2, b3, .., bn+1]′ and X$∗ =
[
1, ρ$∗ , ..., (ρ$∗)

n−1
]′

.

The D system

In the same vein, the system for Dε = [dε1, d
ε
2, .., d

ε
n]′ is the following

Z1D
ε = Zi2D

ε + Zi,ε3 when ε 6= ε$
∗,cb

Z1D
$∗,cb = Zi2D

$∗,cb + γσ2X$∗,cb otherwise

where Zi,ε3 =
[
zi,ε1 , zi,ε2 , ..., zi,εn

]′
and X$∗,cb =

[
1, ρ$∗,cb , ..., (ρ$∗,cb)

n−1
]′
.

The complete system of equations.

Then, after making use of Z = Z1 − Zi2, the total system of non-linear equations

becomes:

[a2 b2]M

 a1

1

 = zi,∆s1 a1

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2

A = −Z−1
(
Xi∗ − a1Z

i,∆s
3

)
B = Z−1

(
γσ2ρ$∗X$∗ + b1Z

i,∆s
3

)
Dε = Z−1Zi,ε3

D$∗,cb =
(
γσ2

)
Z−1X$∗,cb

σ2 = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ

(2.42)

Note the system has n×# of shocks +3 equations and unknowns, which only n×2+3 are

non-linear equations (those corresponding to the B and D$∗,cb system and the equations

for a1, b1 and σ2).
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Solution with FX intervention rules

When we allow for FX intervention, the equations (2.32), (2.33), (2.34), (2.37) and

(2.38) are replaced by:

as =
s−1∑
j=1

zi,∆ss−j aj − ρ
s−3
i∗ + γσ2

ϕ∆sas−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j aj

 (2.43a)

bs =
s−1∑
j=1

zi,∆ss−j bj + γσ2

ρs−2
ω∗ + ϕ∆sbs−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j bj

 (2.43b)

dεs = zi,εs−1 +
s−1∑
j=1

zi,∆ss−j dj + γσ2


ρs−2
$∗,cb
I
ε=ε$

∗,cb+

ϕ∆sds−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j dεj

 (2.43c)

[a2 b2]M

 a1

1

 = zi,∆s1 a1 + γσ2
(
ϕ∆sa1 + ϕrerz

rer,∆s
1 a1

)
(2.43d)

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2
(

1 + ϕ∆sb1 + ϕrerz
rer,∆s
1 b1

)
(2.43e)

We can also express this with linear algebra. For example, the A system can be

written as:

Z1A = Zi2A+ γσ2 (ϕ∆sIn + ϕrerZ
rer
2 )A−Xi∗ + a1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)

Then, after making use of ZFX = Z1−Zi2− γσ2 (ϕ∆sIn + ϕrerZ
rer
2 ) , where Zrer2 is

a lower triangular matrix, analogous to Zi2, with zrer,∆s1 as elements of its main diagonal,

the total system of non-linear equations becomes:
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[a2 b2]M

 a1

1

 = zi,∆s1 a1 + γσ2
(
ϕ∆s + ϕrerz

rer,∆s
1

)
a1

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2
(

1 + ϕ∆sb1 + ϕrerz
rer,∆s
1 b1

)

A = −
(
ZFX

)−1
[
Xi∗ − a1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
B =

(
ZFX

)−1
(
γσ2ρ$∗X$∗ + b1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

))
Dε =

(
ZFX

)−1
Zi,ε3

D$∗,cb =
(
γσ2

) (
ZFX

)−1
X$∗,cb

σ2 = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ

(2.44)

where M = 1
(a1)2σ2

i∗σ
2
v+(b1)2σ2

ω∗(σ
2
i∗+σ2

v)

 a1σ
2
i∗σ

2
v (b1)2 σ2

ω∗σ
2
i∗

b1σ
2
ω∗
(
σ2
i∗ + σ2

v

)
−a1b1σ

2
i∗σ

2
ω∗



and P = vart(ξt) =
σ2
i∗σ

2
vσ

2
ω∗

(a1)2σ2
i∗σ

2
v+(b1)2σ2

ω∗(σ
2
i∗+σ2

v)

 (b1)2 −a1b1

−a1b1 (a1)2



2.B.3 The problem with common knowledge (CK)

In the common knowledge benchmark, investors share the same signal about the

future fundamental values. Information is common but incomplete. All investors receive:

vt = i∗t+1 + ευt , ευt ∼ N(0, σ2
υ)

Under common knowledge $∗t becomes observable, because we get rid of the idiosyncratic

shocks. Thus, capital flows shocks will only affect the economy through the portfolio

balance channel, as in Chapter 1. In the signal extraction problem dealers have to infer

information only for ξCKt = εi
∗
t+1. We must assume now that the equilibrium exchange

rate depends directly on the ευt shock, the noise of the signal common to all agents. We
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guess a solution of the type:

∆st = A(L)εi
∗
t+1 + B(L)εω

∗
t +D(L)ζt + Ψ(L)ευt (2.45)

Notice that now the εω
∗

t shock is observable and we have a new term in the solution for

the ‘now relevant’ signal noise.

The only relevant signal for the problem under common knowledge is given by υt.
20

Following Townsend (1983), we obtain:

Et(ε
i∗
t+1) = M̂υ∗t ,

where

M̂ =
σ2
i∗

σ2
i∗ + σ2

υ

and

v∗t = εi
∗
t+1 + ευt (2.46)

is the unknown component of the signal υt at time t. We first obtain an expression for

st+1, using (2.45):

∆st+1 = a1ε
i∗
t+2 + b1ε

ω∗
t+1 + ψ1ε

υ
t+1 + d1ζ

′
t+1 + ϑCKξCKt + ...

...+A∗(L)εi
∗
t + B∗(L)εω

∗
t +D∗(L)ζt + Ψ∗(L)ευt−1 (2.47)

where ϑCK = [a2] and we have grouped the shocks known at t in the lag polynomials

denoted with (∗). Now, taking expectations over (2.47):

E(∆st+1) = a2E(εi
∗
t+1) +A∗(L)εi

∗
t +B∗(L)εω

∗
t +D∗(L)ζt + Ψ∗(L)ευt−1 (2.48)

where we have used the fact that Et(ε
υ
t ) = 0. Now we take the second moment:

vart(∆st+1) = a2
1σ

2
i∗ + b21σ

2
ω∗ + ψ2

1σ
2
υ + (d1)′vart(ζt+1)d1 + ϑ′CKP

CKϑCK

20It is straightforward to verify this. The unknown part of the equilibrium variation of the exchange
rate is given by ∆s∗t = a1ε

i∗
t+1 +ψ1ε

υ
t . Since a1 would be equal to ψ1, it is clear the equilibrium exchange

rate brings no additional information.
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Note that:

E(εi
∗
t+1) = Et(ξ

CK
t ) = M̂Yt

= M̂
(
εi
∗
t+1 + ευt

)

Then, the equation (2.48) becomes:

E(∆st+1) = a2
σ2
i∗

σ2
i∗ + σ2

υ

(
εi
∗
t+1 + ευt

)
+A

∗
(L)εi

∗
t +B

∗
(L)εω

∗
t +D∗(L)ζt + Ψ∗(L)ευt−1

this equation is equivalent to (2.29) in the heterogeneous information case. We compare

the coefficients with respect to (2.31).

Equations (2.43d) and (2.43e) now become:

aCK2

σ2
i∗

σ2
i∗ + σ2

υ

= zi,∆s1 aCK1 + γσ2
CK

(
ϕ∆sa

CK
1 + ϕrerz

i,∆s
1 aCK1

)
(2.49)

aCK2

σ2
i∗

σ2
i∗ + σ2

υ

= zi,∆s1 ψCK1 + γσ2
CK

(
ϕ∆sψ

CK
1 + ϕrerz

i,∆s
1 ψCK1

)
(2.50)

from this equations we obtain that aCK1 = ψCK1 . Since agents only observe the sum

of both the fundamental an noise shock, it stands to reason that the contemporaneous

reaction to both shocks must be the same.

Additionally, we have a set of equations for Ψ∗(L):

ψs =
s−1∑
j=1

zi,∆ss−j ψj + γσ2

ϕ∆sψs−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j ψj

 (2.51)
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The system of equations then becomes:

ACK = −
(
ZFX

)−1
[
Xi∗ − aCK1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
BCK =

(
ZFX

)−1
[
γσ2ρ$∗X$∗ + bCK1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
ΨCK =

(
ZFX

)−1
[
ψCK1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
Dε
CK =

(
ZFX

)−1
Zi,ε3

D$∗,cb
CK =

(
γσ2

) (
ZFX

)−1
X$∗,cb

aCK2

σ2
i∗

σ2
i∗ + σ2

υ

= zi,∆s1 aCK1 + γσ2
CK

(
ϕ∆sa

CK
1 + ϕrerz

i,∆s
1 aCK1

)
ψCK1 = aCK1

bCK2 = zi,∆s1 bCK1 + γσ2
(
1 + ϕ∆sb

CK
1 + ϕrerZ

rer
1 bCK1

)
vart(∆st+1) = a2

1σ
2
i∗ + b21σ

2
ω∗ + ψ2

1σ
2
υ + (d1)′vart(ζt+1)d1 + ϑ′CKP

CKϑCK

Once again, the remaining restrictions come from imposing zeros at a given lag for the

whole model, since the rest of the elements in the lag polynomials can be expressed as a

function of ones associated with the unknowns.
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Chapter 3

Fat-tailed shocks and the central

bank reaction

”[...] we would expect policy-makers to take action when the mean and variance of fore-

cast distributions are likely to stay the same, while the probability of some extreme bad

event increases. [...] even if the variance is unchanged, an increase in the possibility of

a severe economic downturn is likely to prompt action.”

Cecchetti (2000).

3.1 Introduction

According to Mishkin (2011), one of the main lessons from the financial crisis is

that key elements in the “science of monetary policy” need to be revisited. In particular

those related to the non-linearities emerging in presence of the zero lower bound (ZLB),

tail risk, and non-standard utility functions - such as agents’ aversion to very negative

outcomes. As the author points out, previous to the 2008 financial crisis, economists

were aware of the presence of potential negative shocks with ‘excess kurtosis’ hitting

the economy with a higher tail risk probability than the one implied by a Gaussian

distribution.1 In spite of acknowledging the presence of these shocks, little was done to

1A fact reflecting this concern was the emergence of Financial Stability Reports as a regular publication
by Central Banks where the risks that the financial system put into the economy were discussed, see
Mishkin (2011).
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study the importance of excess kurtosis in monetary policy design.

The presence of non-linearities is obvious when monetary policy is affected by the

non-negativity constraint on nominal interest rates. If the policy rate falls below zero,

agents will prefer to keep their resources in cash, which pays a zero interest rate. For this

reason, the space for the policy interest rate is bounded from below, with consequences

for the policy decisions. Moreover, Kato and Nishiyama (2005) and Adam and Billi

(2007) show how the presence of the zero lower bound makes the (discretionary) optimal

monetary policy reaction to be non-linear outside of the constrained region as well. In

particular, central banks should become more expansionary and more aggressive as they

approach the ZLB, compared to what a linear Taylor rule type of policy predicts. This

result is in line with the suggestions in Blinder (2000):

“... make the response function non-linear. In particular, the coefficient a [the

coefficient in the Taylor rule that controls the response of the policy rate to inflation] -

and perhaps b [the coefficient in the Taylor rule that controls the response of the policy

rate to the output gap] as well - could be higher when inflation is low. (...) such a

modification would make monetary policy looser whenever inflation was very low, thus

buying more insurance against getting stuck in the liquidity trap at i = 0.”

Central to the non-linearities generated outside of the ZLB region is the hazard of

falling in it. For this reason, when the economy faces shocks from a fat-tailed distribution

or increased kurtosis, the reaction should be more aggressive. However, it is not clear

how this excess kurtosis impacts optimal policy rules. The present document tackles this

question by introducing fat-tailed shocks in the model of Kato and Nishiyama (2005).

This is a simple Neo-Keynesian model where the central bank reacts in a “pre-emptive”

manner as the probability of falling into the ZLB increases, generating non-linear re-

sponses outside of the zero lower bound region.2

We perform this exercise to gauge the extent to which excess kurtosis affects the

optimal behaviour of central banks outside the zero lower bound and, if this effect is

significant, analyse to what extent excess kurtosis may be behind the reported change in

2In this model the rest of the economy is characterized by a set of linear equations. Introducing agents
that change their behaviour in the presence of the zero lower bound increases greatly the computational
costs. See Fernández-Villaverde et al. (2012).
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the behaviour of central banks before and during the crisis.3

We focus exclusively in the role of excess kurtosis, assuming a time-invariant distri-

bution of shocks. Our main findings are as follows: (1) under fat-tailed shocks, monetary

policy becomes more aggressive further away from the zero lower bound region, compared

to the model under Gaussian shocks. (2) As the economy approaches the ZLB, this pat-

tern reverts and monetary policy is relatively less aggressive under shocks with excess

kurtosis. (3) Quantitatively, these differences are not very significant as the largest dif-

ferential between the optimal rates, under our baseline calibration, is lower than 10 basis

points.

There is a small but growing literature related to the presence of fat-tailed shocks in

macroeconomics. Fagiolo et al. (2008) pursue the hypothesis of non-normal shocks and

fit via maximum likelihood the growth rate distributions for a series of OECD countries

to the exponential-power (EP) family of densities, rejecting the hypothesis of normality

in these series. In related work, Ascari et al. (2012) show that non-normality and fat

tails characterize not only the time-series properties for GDP in the U.S, but also those

for consumption, investment, employment, inflation and real wage.

By contrast, the literature on liquidity traps and the optimal policy at ZLB is

extensive. The theoretical question regarding the effectiveness of monetary policy at

low rates can be found in Keynes (1936). More recently, the subject received a lot of

attention from policy-makers and academics as the lower inflation experienced during the

early 1990s in advanced economies brought with it episodes of near-zero interest rates.4

In October 1995, the Bank of Japan (BOJ) set its policy interest rates at 50 basis points

in the midst of a deflationary crisis. A few years later, the federal funds rate in the US

experienced a sharp fall, going from 6.50 percent in November 2000 to only one percent

on July 2003. To date, both the Federal Reserve and the Bank of Japan maintain their

policy interest rates effectively at zero.

Fuhrer and Madigan (1997) constitute one of the first efforts to analyse the dynamics

3Authors such as Taylor (2007) and Calani et al. (2010) estimate Taylor rules type of policies for
the pre-crisis period and simulate the paths of interests rates provided those rules would have continued
during the years of turmoil, finding very large differences between the actual path of interest rates and
the projected paths. They conclude that the cuts in rates represent “deviations” from the pre-crises
Taylor rules.

4In the advanced economies, the median inflation rate fell from 7% in the 1980s to 2% in the 1990s.
See Kroszner (2007).
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of the economy in a model with forward looking agents and an explicit ZLB constraint.

The authors find that after a negative shock to the economy, the recovery of the inflation

rate and output takes longer when monetary policy becomes ineffective due to the ZLB.

Regarding the optimal policy under the ZLB, Reifschneider and Williams (1999) find

that the standard Taylor rule is suboptimal in this scenario. Orphanides and Wieland

(2000) add to this result by showing that the optimal policy under the ZLB constraint

will become a non-linear function of the inflation rate. The literature considers as well the

idea of monetary policy being affected by the ZLB before the constraint becomes binding

(Hunt and Laxton (2004), Goodfriend (2001)). More recently, Kato and Nishiyama

(2005) studied the importance of this pre-emptive motive, showing how optimal monetary

policy should become more aggressive and expansionary as the economy approaches

the ZLB. Nakov (2006) relaxes the assumption of perfect foresight in the Kato and

Nishiyama (2005) and studies an optimal “censored” Taylor rule, which is the best lineal

response conditional on the presence of the ZLB. Eggertsson and Woodford (2003) study

the implications of the ZLB for monetary policy in a model that assumes a 2-state

Markov chain for an exogenous disturbance. They find support for a price-level targeting

type of policy, though lose the pre-emptive motive that emerges under a more general

distribution for the exogenous disturbance. Finally, Fernández-Villaverde et al. (2012)

adopt a fully non-linear approach in a New Keynesian model with an explicit ZLB and

explore the role of fiscal policy when the economy hits the constraint. Authors relax

the assumption of a time-invariant distribution and study the role of skewness and time-

varying volatility for endogenous variables when the economy hits the ZLB.

The present document is structured as follows: Section 3.2 reviews the model of

Kato and Nishiyama (2005) and explains the mechanism behind the results. In the next

section, we discuss the computational strategy. Section 3.4 discusses the calibration of

parameters and presents the results. Section 3.5 concludes.
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3.2 The Model

In the current section we review the model of Kato and Nishiyama (2005). We

assume the Central Bank minimizes a loss function in the spirit of Svensson (1997),

Svensson (2002) and Ball (1999), namely:

Lt =
1

2
{y2
t + λ(πt − π∗t )2}; (3.1)

here π stands for inflation; y for the output gap and π∗ the inflation target, which we

assume constant. The parameter λ controls the relative importance that the central

bank puts on the inflation rate deviations from the target, relative to the output gap.

Following Woodford (2003), the economy is described by the following IS-AS framework:

yt+1 = ρyt − δ(it − Etπt+1) + νt+1 (3.2)

πt+1 = πt + αyt + εt+1 (3.3)

where ν and ε are random disturbances. ρ stands for the degree of inertia over the

business cycle. δ is a parameter reflecting the impact of real interest rates on the next

period output - thus monetary policy affects the economy with a lag. Finally, α represents

the impact of the output gap on future inflation.

Equations (3.2) and (3.3) represent the investment-savings (IS) and aggregate sup-

ply (AS) equations respectively. We substitute the expectation of inflation by a combi-

nation of the current inflation rate and the output gap, namely:

Etπt+1 = πt + αyt. (3.4)

The inter-temporal problem of the monetary authority will be given by:

min
{it+j}∞j=0

Et

∞∑
j=0

βjLt+j , (3.5)

subject to the laws of motion for inflation and output gap given by equations (3.3) and

(3.2), and an explicit zero lower constraint on the interest rate introduced through the

Karush-Kuhn-Tucker approach. β reflects the time-preference of the central banker, or
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equivalently, the importance they assign to future losses relative to losses in the current

period. This framework allows us to set up a Bellman equation with three Lagrange

multipliers:

V (yt, πt) = min
it

[
1

2
{y2
t + λ(πt − π∗)2} − Etφt+1{(ρ+ αδ)yt − δit + δπt − yt+1}

− Etµt+1(πt + αyt − πt+1)− ψtit + βEtV (yt+1, πt+1)]. (3.6)

where ψt is the Lagrange multiplier in the non-negativity constraint for the policy interest

rate. The first order condition with respect to the interest rate yields:

Etφt+1δ = ψt; (3.7)

which measures the “shadow cost” produced by monetary policy ineffectiveness at the

zero lower bound. The first order conditions with respect to inflation and the output

gap are given by the following two equations:

Etµt+1 = −β [λEt(πt+1 − π∗)− δEtφt+2 − Etµt+2] (3.8)

Etφt+1 = −β [Etyt+1 − (ρ+ αδ)Etφt+2 − αEtµt+2] , (3.9)

By combining equations (3.7), (3.8), and (3.9). It is possible to get some intuition

about the restrictions for monetary policy that the ZLB imposes. In the case the ZLB

is not binding we know that ψt = 0. This means, , from Equation (3.7), that φt+1, the

Lagrange multiplier associated with Equation (3.2) - the IS equation - is zero as well.

Thus, the only restriction that matters for the central bank will be the one associated

with Equation (3.3), which represents the trade-off between stabilizing the inflation rate

deviations and the output gap. In other words, the bank can fully neutralize the shocks

coming from the IS equation. However, when the ZLB is binding, then Etφt+1 > 0,

meaning that the central bank can no longer offset the shocks coming from the IS equa-

tion. In this scenario, the central bank needs to balance the need of offsetting both the

AS and IS shocks.

Kato and Nishiyama (2005) obtain an analytical derivation of the optimal interest
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rate.5

i∗(πt, yt) = πt +

(
α+

ρθ1 + θ1 − 1

δθ1

)
yt +

(
θ1 − 1

αδθ1

)
(πt − π∗) +

(
1

δθ1

) ∞∑
i=0

θi2Etψt+i

(3.10)

Equation (3.10) represents the optimal reaction function outside of the zero lower bound

region. The values of θ1 and θ2 are combinations of the “deep parameters” α, β, and λ.

The first three terms of this expression are linear in the output gap and the inflation rate.

The last term is the one generating the non-linearities, which stem from the shadow cost

represented by the sequence of Lagrange multipliers associated with the non-negativity

restriction {Etψt+i}∞i=0. As we already mentioned, Equation (3.7) tells us that when the

value of this multiplier is different from zero, the central bank is unable to offset the

shocks coming from the IS equation.6 In other words, the non-linearities are associated

with the probability that the ZLB restriction becomes binding in the future. Given the

difficulty of obtaining a closed-form solution for the optimal policy as a function of the

inflation rate deviations and the output gap, the solution is obtained through a numerical

procedure.

3.3 Computational strategy

The numerical strategy follows Kato and Nishiyama (2005). It is based on colloca-

tion methods.7 The Bellman equation in (3.6) imposes a series of restrictions that must

hold in every point of the state-space. This defines an infinite-dimensional fixed-point

problem that can be discretized by approximating the value function as the sum of a

finite set of basis functions. Since it is important to capture the non-linear behaviour

of optimal rates, the value function is approximated through cubic splines. Obtaining

the value function involves the calculation of expectations, for which we use numerical

integration techniques. In particular, a Gaussian quadrature technique is used to ap-

proximate the integrals.8 For the case of Gaussian shocks, we use the Gaussian-Hermite

5We refer the reader to the paper for the derivations.
6It is important to mention that it is possible to express

∑∞
i=0 θ

i
2Etψt+i as a function of the states

(πt, yt). This means that we can still characterize the optimal response as a (potentially non-linear)
function of these two variables.

7See Judd (1998).
8See Press et al. (1992) for a detailed description of this procedure.
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quadrature method, for which tables with the values of nodes and abscissas are easily

found.

For the case of fat-tailed shocks we need the use of a distribution exhibiting “excess

kurtosis”.9 Additionally, this distribution must exhibit finite moments (at least up to the

4th order) that are stable functions of the distribution parameters, such that we are able

to control the lower moments. For this purpose, we use the Exponential Power family

of distributions, attributed to Subbotin (1923). The functional form of this distribution

reads:10

f(x; b, a,m) =
1

2ab
1
bΓ
(
1 + 1

b

)e− 1
b
|x−m
a
|b (3.11)

where the kurtosis depends on a shape parameter (b). An interesting feature of this

family of distributions is that it encompasses both the Gaussian distribution (b = 2)

and the Laplace distribution (b = 1). Whenever b < 2 the distribution will exhibit tails

fatter than the Gaussian ones (or “super-Normal” tails).11 Due to the numerical solution

followed in the present chapter, the use of Gaussian quadrature for approximating the

distribution of shocks would require the calculation of quadrature weights and abscissas

for each value of the shape parameter. In our case, we decided to focus on Laplace shocks,

which exhibit an excess kurtosis of 3, for the following two reasons. First, Fagiolo et al.

(2008) find strong support for this distribution when analysing the distribution of a set of

macroeconomic series in OECD economies. Second, quadrature rules can be calculated

for Laplace distribution weights through a modification of the Laguerre-Quadrature rules.

3.4 Calibration and Results

3.4.1 Calibration

Before moving forward with the numerical exercises, we need to set values for the

model parameters. Table 3.1 shows the baseline calibration, based in Woodford (2003).

9The “excess kurtosis” refers to the case when a distribution exhibits a kurtosis higher than 3, which
is the kurtosis of the normal distribution.

10For instance, a problem we would faced using a t-student distribution is that the one period forward
variables with t-distributed shocks will not follow a t-distribution, due to the non-zero mean. In addition,
low degrees of freedom generate unbounded moments.

11For a detailed discussion of the properties of this family of distributions, see Fagiolo et al. (2008).
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Figure 3-1: Exponential Power family of distributions

Note: Figure shows plots of the exponential power family of distributions for different values of
the shape parameter (β). It includes the Gaussian (β = 2) and Laplace distributions (β = 1).

Source: http://en.wikipedia.org/wiki/File:Generalized_normal_densities.svg.

From there we take values for ρ, δ and α. The parameters for the standard deviations

are taken from Adam and Billi (2007), who estimate these parameters following the ap-

proach of Rotemberg and Woodford (1998). We keep the value of the time-preference

parameter relatively low, at 0.6, for the baseline calibration. This value comes from Kato

and Nishiyama (2005), who find that a lower value of β is needed in order to guarantee

the existence of a stationary optimal policy reaction function. We set the inflation rate

target at 0%. The value of λ is set at 20 which is taken from Rotemberg and Woodford

(1998). We perform robustness exercises on this value since it has been documented that

monetary policy becomes more dovish during periods of low inflation, which is the region

of the state-space associated with the ZLB.12 We perform robustness exercises for the

slope of the Phillips curve (α), the real rate elasticity of output (δ), the central banker’s

time-preference parameter (β), and the standard deviations of the AS and IS shocks (σν

and σε). The results are reported in Section 3.4.4.

12Orphanides and Wilcox (2002) calls this behaviour the opportunistic approach to monetary policy.
Martin and Milas (2007) provide empirical evidence supporting this hypothesis for the case of monetary
policy in the U.S. during the 1983 to 2004 period.
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Table 3.1: Baseline Calibration

Parameter V alue Description

λ 20 Relative weight on inflation-deviations variability.

β 0.6 Central banker’s time-preference parameter.

ρ 1 Persistence of output dynamics.

δ 0.5 Real rate elasticity of output.

α -0.02 Slope of the Phillips curve (negative).

σν 1.5 S.D of AS shock.

σε 0.15 S.D of IS shock.

π∗ 0 Target inflation rate.

3.4.2 Results under Gaussian shocks

We explore first the results under Gaussian shocks. As we can observe from Fig. 3-

2, the value function under the presence of the ZLB will not be quadratic. It can be

noted that when the inflation rate and output gap are negative, the loss for the central

bank increases. In other words, the cost of stabilization that the central bank faces

increases sharply when the economy is in this state, which the literature associates with

a deflationary spiral. The reason can be traced back to Equation (3.6). When the ZLB

constraint is binding, the hazard of remaining in the same region is high. Therefore,

the slackness condition over the non-negativity of interest rates restriction calls for an

expected positive value for ψ, the Lagrange multiplier associated with this constraint.

Thus, inside the ZLB, the central bank would not be able to offset the shocks coming

from the IS equation. Its ineffectiveness to stabilize the economy will be reflected in a

higher variability of aggregate output and inflation rate variations, and consequently, a

higher welfare loss.13

The optimal reaction function ceases to be linear. As we can observe from Fig. 3-3,

the optimal reaction exhibits the pre-emptive motive. Now the interest rate outside of

the ZLB region is non-linear. In Figure 3-4 we can compare the reaction to inflation

rate deviations from the target and the output gap under a standard Taylor rule and

when the ZLB restriction is taken into consideration. Panels 3-4a to 3-4c show how

13Woodford (2003) Ch. 6, explores the problem of monetary policy under the ZLB in a model where the
nonnegativity constraint is replaced by a constraint in the interest rate variability. The author results
follow the same intuition. The constraint (or the additional objective) makes the stabilization of the
inflation rate and the output gap harder to achieve, increasing their variability and, consequently, the
welfare losses.
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the optimal policy deviates from a linear policy rule as the economy approaches the

ZLB region, becoming concave. As the probability of being restricted by the ZLB in

future periods increases, the central bank becomes more aggressive in its response to

inflation deviations. Panels 3-4d to 3-4f show how monetary policy becomes also more

expansionary. As Kato and Nishiyama (2005) explain, this effect is related to the threat

of a deflationary spiral. Under this threat, it is in the interest of the central bank to be

more expansionary in comparison to the standard Taylor rule.
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3.4.3 The role of fat-tailed shocks

Now we study how the optimal monetary policy predicted by the model changes

under the presence of fat-tailed shocks. As previously discussed, we would like to assess

how excess kurtosis, which modifies the probabilities of falling into the ZLB region, affects

the optimal behaviour of central banks.

Figure 3-5: Central Bank’s loss function, (Laplace - Gaussian)
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Note: Figure shows the difference between the central bank’s loss function in Eq. 3.5 under
Laplacian and Gaussian-distributed shocks for different values of inflation deviations, keeping

the output gap constant.

Since we use a global solution method we can obtain the solution to the problem

for the central banker at different points of the state-space. In Figure 3-5 we show the

differences between the loss of the central bank under both assumed distributions for

different values for the inflation deviations, keeping the output gap constant. We find

that, away from the zero lower bound region, the loss under fat-tailed shocks is higher.

As the economy approaches the ZLB, this pattern first increases and then reverts. Inside

the constrained region the difference turns negative, which means that the central bank

is worse off under Gaussian shocks. Notice that for lower values of the output gap, the

difference between value functions reverts faster. In order to explain this result we make

use of Figure 3-6, which presents a simple case of how fat tails interact with the hazard

of falling or staying in the ZLB in the following period.
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From the viewpoint of the central bank there is a reason to become more aggressive

under Laplace shocks far away from the ZLB. As the economy approaches this region,

this result reverts, as the central bank anticipates that getting near to the ZLB will

be more costly under Gaussian shocks. We observe this pattern holds for the optimal

interest rates, presented in Figure 3-7.

Figure 3-7: Difference in optimal monetary policy, (Laplace - Gaussian)
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Note: Figure shows the difference between the optimal interest rates of the problem in Eq. 3.5
under Laplacian and Gaussian-distributed shocks for different values of inflation deviations,

keeping the output gap constant.

The introduction of super-normal tails generates an interesting result as monetary

policy will become relatively less aggressive under fat-tailed shocks near the ZLB. From

a quantitative point of view, the difference between both cases is not significant. Figure

3-4, suggests that the optimal central bank’s reaction is almost unaffected by the change

in the assumed distribution of the shocks. Figure 3-7, shows that the difference between

interest rates, for the cases considered, ranges between 0 and 6 basis points, far from

the 25 basis point step central banks use when monetary policy changes are announced.

Clearly we would require higher excess kurtosis in order to generate effects of a significant

magnitude.14

14Due to the complexity in the construction of quadrature rules for distributions with higher excess
kurtosis we leave these exercises for future research.
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3.4.4 Robustness

Alternative parameterizations are considered. Table 3.2 reports the maximum dif-

ferences found between the optimal (discretionary) monetary policy under Gaussian and

Laplace-distributed shocks. Results are not particularly sensitive to changes in most

parameters. For the case of δ, which is associated with the impact monetary policy

has on aggregate demand, we find a maximum difference between optimal polices of 34

basis points. When δ is low, it is harder for monetary policy to steer the economy away

from the constrained region. For this reason the level of pre-emptive behaviour will be

stronger and the interest rate will be more sensitive to the distribution of shocks. We

confirm that loss functions follow the same pattern observed in Figure 3-5. Similarly, the

results found in Figure 3-4 hold under the parameter values considered in the robustness

exercises, this is, the optimal reaction is barely affected by the change in the assumed

distribution of shocks.

3.5 Conclusions

We introduce shocks with ‘super-normal tails’ into the simple NK model with a

monetary authority that explicitly considers the ZLB in their optimal policy design, as in

Kato and Nishiyama (2005). When the central bank considers this restriction explicitly,

the optimal policy ceases to be linear outside of the ZLB. These non-linearities represent

a pre-emptive motive, as the central bank becomes more aggressive, in an attempt to

avoid falling into a region in which monetary policy becomes ineffective. Central to this

decision is the hazard of falling into the ZLB region, which is affected by the distribution

of the shocks hitting the economy.

Under shocks with higher kurtosis, non-linearities in the reaction function will

emerge further away from the zero interest rate region, relative to the Gaussian shocks

case. However, as the economy approaches the ZLB region, this pattern reverts, as the

central bank anticipates that under Gaussian shocks, it will be harder to leave the ZLB

region, once the economy is inside it. This means monetary policy would actually be

relatively less aggressive near the ZLB under fat-tailed shocks. Nonetheless, the effects of

excess kurtosis are quantitatively very limited as the largest difference in optimal interest
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Table 3.2: Robustness to alternative parameterisations

Parameter V alue Max | i∗Laplace − i∗Gauss |
0.01 6.13

α 0.02 (baseline) 7.27
0.03 10.54

0.10 34.44
δ 0.25 13.08

0.5 (baseline) 7.27

5 6.29
λ 10 6.78

20 (baseline) 7.27

0.5 6.37
β 0.55 6.05

0.6 (baseline) 7.27

0.5 1.60
σν 1 4.17

1.5 (baseline) 7.27

0.1 7.47
σε 0.15 (baseline) 7.27

0.5 6.02

Note: Table shows the maximum distance between discretionary optimal policies under Gaussian and
Laplace-distributed shocks. Values are reported in basis points. In each exercise the indicated

parameter value is changed, keeping the rest at the baseline calibration values in Table 3.1. Optimal
interest rates are calculated for values of inflation and output gap in the range [−15, 15] for both

variables. Approximation is performed for 31 points for the output gap and 31 points for the inflation
rate. α stands for slope of the Phillips curve (negative). δ is the real rate elasticity of output. λ

represents the relative weight on inflation-deviations variability. β is the central banker’s
time-preference parameter. Finally, σν and σε are the standard deviations of the AS and IS shocks,

respectively.
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rates found is of 34 basis points. Changes in the baseline calibration confirm results are

robust to variations in parameter values.

Our findings suggest that, in the current setup, the presence of fat-tailed shocks

does not produce significant effects on the optimal monetary policy design.
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3.A. Numerical Algorithm

For the numerical solution we followed Kato and Nishiyama (2005), using a collo-

cation method for solving the Bellman equation problem. The Bellman equation, given

by Equation (3.6) follows:

V (π, y) = min
i
{f(π, y) + βEV (g(π, y, i, ν, ε))} (3.12)

where f(π, y) represents the instantaneous loss of the Central Bank. The function

g(π, y, x, ν, ε) represent the laws of motion for the state variables {π, y}, which are given

by equations (3.2) and (3.3).

g(π, y, i, ν, ε) =

ρ+ αδ δ

α 1


y
π

+

δ
0

 i+

ν
ε

 (3.13)

After setting the Bellman equation we proceed with the discretization of the state space.

In this case we focus on the interval [−15, 15] for both state variables and set a number

interpolation nodes, which we choose to be equally distributed. We need to find approx-

imate the form of the value function on both sides, hence we will ask the algorithm to

hold the equality in equation (3.12) at every point of the grid. The LHS will be given

by:

LHSnynπ(c) =

Nπ∑
i=1

Ny∑
j=1

cijγ
π
i (πnπ)γyj (yny ) for each (πnπ , yny ) ∈ Node. (3.14)

Here, the functions γπi (πnπ) and γyj (yny) form the basis for the splines. Hence we can

form a continuous function that is a piecewise polynomial, though, smooth over the

connecting points.15

Now, the RHS of the equation has a similar structure, however, the result is affected

by the shocks ν and ε, for which we assume a known distribution. As described above,

we follow two cases, in the first one we assume a Normal distribution for shocks, while in

the second, we follow a Laplace or double-exponential distribution. We follow Gaussian

Quadrature for the treatment of both shocks. In the first case, we use a Gaussian-Hermite

15See Judd (1998), Ch 6 for a thorough description of the use of splines.
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quadrature, which is associated with weights that are normally distributed. In the second,

we modify the Gaussian-Laguerre quadrature, used for exponential distributions. By re-

weighting the quadrature weights we can approximate an exponential distribution, for

an even number of abscissa. Hence, the RHS of equation (3.12), is given by:

RHSnynπ(c) = min
i≥0

f (πnπ , yny ) + β

Mν∑
hν=1

Mε∑
hε=1

Nπ∑
i=1

Ny∑
j=1

whνhεcijγij (g(π, y , i , ν, ε))


(3.15)

where the value function represented by b-splines is the same as in Equation (3.14), for

consistency. Now however, we evaluate its value at the abscissa and nodes generated

by the Gaussian quadrature. We perform a value function iteration looking for a fixed

point. Convergence is attained when:

max | Vk(πnπ , yny)− Vk+1(πnπ , yny) |< τ, (3.16)

where τ is the tolerance parameter, set at 1e − 4 in our exercise. With the values of i

that minimize the solution we construct a cubic spline approximation for the mapping

from the states to the control. This will yield the optimal policy function.
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Chapter 4

Learning Through the Yield

Curve

4.1 Introduction

The adaptive learning approach proposes the modelling of agents as econometri-

cians, who use all the available data to construct forecasting functions, revised over time

as new data becomes available. Adam et al. (2011) use this approach to successfully ex-

plain a series of equity pricing puzzles. Modelling agents who learn about the behaviour

of equity prices is key to their results. This chapter explores whether this particular

mechanism is useful for the study of bond yield dynamics.

Carceles-Poveda and Giannitsarou (2008) provide a thorough analysis of the intro-

duction of self-referential learning general equilibrium framework. Self-referential learn-

ing means that agents’ beliefs affect the behaviour of economic variables, which in turn

affect agents’ beliefs and so on. In the models presented by Carceles-Poveda and Gian-

nitsarou (2008), agents are assumed to know the functional form of the law of motion

relating the variable of interest to the state variables, but they do not know the value of

the coefficients in this law of motion. The authors conclude that the effects of learning

in their setup are modest, providing very little improvements over the rational expecta-

tions (RE) case. Timmermann (1996) analyzes self-referential learning when agents also

learn about the exogenous dividend process. This mechanism is capable of increasing
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the volatility of simulated stock prices but, as in the case of Carceles-Poveda and Gi-

annitsarou (2008), its impact is modest. The key difference between these results and

the ones obtained by Adam et al. (2011) is that in the latter, agents are not endowed

with knowledge of the mapping between dividends and prices. One of the critical im-

plications of this assumption is that agents are unable to express the value of the asset

as a discounted sum of payoffs. Moreover, in a related paper, Adam and Marcet (2011)

show that endowing agents with this knowledge involves a large set of strong assumptions

about agents’ beliefs. This means that agents have to form beliefs about the law of mo-

tion of stock prices directly. These beliefs are used to forecast next period’s stock price.

Since this period’s stock price is affected by expectations of next period’s stock price,

there is a very direct link between beliefs about stock prices and the actual behaviour of

stock prices.

In this chapter, we follow Adam et al. (2011) by presenting a model in which

agents learn about bond prices. Applying the idea of Adam et al. (2011) to bond prices

means that learning is strictly speaking no longer self-referential, unless a consol bond

is considered. That is beliefs about the price of an n-th period bond do not affect the

behaviour of the price of this n-th period bond, but they do affect the behaviour of the

prices of bonds with a higher maturity. We obtain three key results: First, learning about

price dynamics affects the relative volatility of bonds in a heterogeneous way, as the prices

of higher maturity assets become more volatile relative to the rational expectations (RE)

case. Second, as maturity increases, the price volatility converges to the one implied

by the consol bond case, which we treat as a benchmark since, similar to equity, this

instrument has no redemption date.1 Finally, we perform numerical exercises that suggest

this mechanism can be useful for explaining the pattern of volatilities observed in the

term structure.

The present chapter is organized in the following way. In Section 4.2 we present the

baseline model and the proposed cases for study. In Section 4.3 we discuss the learning

rule and contrast analytically the case of consol bonds, in which learning is self-referential

and the case of finite-maturity bonds. In Section 4.4, we present numerical simulations

and report findings regarding the implied behaviour of price and yield volatility in both

1In Chapter 5 we study, through numerical simulations, how the introduction of learning can help
reproducing some of the stylized facts exhibited by consol bonds.
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cases. Section 4.5 presents our conclusions.

4.2 Setup

4.2.1 The Economy

The economy is composed by infinite-lived consumers-investors who face the fol-

lowing problem:

max
ct

Et

∞∑
t=0

δt ln ct, (4.1)

Agents can save their resources in nominal assets. In particular, we assume they have

access to a series of T risk-free bonds with a payoff at maturity and a series of coupons

in each period, denoted by φt. Q
(τ)
t stands for the nominal price of the bond with τ

periods to maturity in period t, while B
(τ)
t+1 is the quantity of bonds. We assume T is an

arbitrary high number. Additionally, agents have access to a consol type bond, which

price we denote by Q∞t , and pays the same coupon as the finite maturity bonds.

The representative investor budget constraint will be given by:

Ptct +

T∑
τ=1

Q
(τ)
t B

(τ)
t+1 +Q∞t B

∞
t+1 ≤ Ptyt +

T∑
τ=1

(
Q

(τ)
t + φt

)
B

(τ)
t + (Q∞t + φt)B

∞
t , ∀t.

The first order conditions over the bonds yield the following set of Euler equations:

Q
(i)
t = δEt

[(
Pt
Pt+1

ct
ct+1

)(
Q

(i−1)
t+1 + φt+1

)]
, ∀i∈[1,T ] (4.2)

Q
(∞)
t = δEt

[(
Pt
Pt+1

ct
ct+1

)(
Q

(∞)
t+1 + φt+1

)]
, (4.3)

where Q0
t is the principal paid by the bond at maturity, in period t. The principal is

given by Q0,I
t = φtQ̄

0,I . Thus, coupons and principal will share the same growth rate.

4.2.2 Cases

The cases we present in this chapter will follow the pricing equations given by 4.2

and 4.3, however they will differ in the assumptions we make regarding the process for
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inflation and the coupon payments, as well as in the way agents form their beliefs, defined

by the perceived law of motion (PLM).

Case I: Stochastic coupon growth and learning about nominal bond price

growth rates.

We begin as close as possible to Adam et al. (2011) to provide a benchmark. This exercise

will show us how the introduction of a finite maturity alters the results obtained by the

aforementioned authors for the case of equity. We make the pay-off structure stochastic

by defining the following process for the coupon and principal:

φt+1 = γφφtεt, εt ∼ N(1, σ2
φ), γφ > 0. (4.4)

Under stochastic coupons, a consol-type bond will have the same pay-off structure as

equity. Since here we focus on the coupon as the main driver of these assets dynamics,

consumption will be parameterized as random walk process, following Cochrane and

Campbell (1999):

ct
ct+1

= µc + εct (4.5)

where εct ∼ N(0, σ2
c ).

2 We assume as well the consumption growth covariance with the

rest of the processes in the model is zero.3 Prices are assumed constant. We follow Adam

et al. (2011) by specifying agents with the following beliefs:

Q
(i,I)
t+1 = βitQ

(i,I)
t ε

(i)
t , ∀i>1 (4.6)

where Q
(i,I)
t+1 stands for the price of the bond with i periods to maturity, in the Case I

setup, and εt ∼ i.i.dN(1, σ2
ε ). Note that agents will hold an individual PLM for each

maturity.4

2The literature has not reached a definitive consensus on the process consumption growth follows.
While some authors find that the implications for consumption growth in the model of Hall (1978) -
consumption follows a random walk - cannot be completely rejected by the data, others claim that the
series fits a process with high serial autocorrelation. For a discussion see Carroll et al. (2011).

3Introducing a covariance would complicate the analysis as the actual growth rate of prices would
stop being constant. Throughout this Chapter we will assume agents only care about first moments.

4We simply follow the proposed learning rule in Adam et al. (2011). Alternatively, we could have
set a model where agents iterate 4.2 forward and obtain a yield curve where all maturities depend on
the same factors. This would be equivalent to the learning mechanism proposed by Carceles-Poveda
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Case II: Stochastic inflation and learning about bond price real growth rates

The case of stochastic coupon payments provides a good approximation to the effects of

different maturities for the learning mechanism in Adam et al. (2011). However, bonds

exhibit a deterministic path for coupons (usually flat). For this reason we change this

assumption and introduce now a deterministic growth rate for coupons.

φt+1 = γφφt; (4.7)

which considers the case of flat coupon-payment schedule when γφ = 1. The processes

for consumption remains the same as in the previous case. However, inflation will now

be stochastic:

Pt
Pt+1

= γπε
π
t , επt ∼ N(1, σ2

π), γπ ≥ 0. (4.8)

We assume inflation is uncorrelated with the rest of the processes in the economy.5

Agents will focus on learning the real growth rate of bonds. For this reason, the PLM

will be given by:

Q
(i,II)
t+1

Pt+1
= βit

Q
(i,II)
t

Pt
ε
(i)
t , ∀i>1 (4.9)

In this case, we have chosen to use inflation as the process behind bond price

dynamics. Assuming similar dynamics for the consumption growth rate will generate

equivalent results.6

and Giannitsarou (2008), which yields modest results. Adam and Marcet (2011) discuss this element of
arbitrariness, which is often present in learning models, and propose a microfounded framework where
the Law of iterated expectations ceases to hold and learning about price dynamics arises as an optimal
behaviour. This type of learning can be rationalized in several ways: (1) as a model where agents possess
short-term buy and sell strategies; (2) as a model where agents do not know they are the marginal pricer;
and (3) as a model of vanishing heterogeneity across agents. For a discussion see Adam and Marcet
(2011).

5As we show in Section 4.A in the appendix, under rational expectations, the inflation rate and bond
prices will be uncorrelated. However the covariance will not be zero along the learning path. For this
reason we need agents who hold linear beliefs as a condition for convergence to the rational expectations
equilibrium.

6In the case consumption growth is chosen as the source of dynamics agents will learn about the
risk-adjusted price growth rate. For an example see Adam et al. (2011).
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4.3 Learning

4.3.1 Analytic results

In this section we study analytically how the introduction of the learning mecha-

nisms proposed in Section 4.2 affects the dynamics of asset prices. This is important

since in order to stay as close to Adam et al. (2011), we restrict our attention to learning

mechanisms that comply with two desirable properties: (1) the laws of motion under a

least-squares learning rule converge to those corresponding to the rational expectations

equilibrium, and (2) learning should be reasonable. To check whether the first condition

is satisfied, we analyse the ordinary differential equations (ODE) associated with the

stochastic recursive algorithm (SRA) that describes the dynamics of the processes under

learning. For this purpose we construct T-maps and check if the rational expectations

equilibrium constitutes an equilibrium of the system of ODE. For the second condition,

we verify that the PLM presented in Section 4.2 are not misspecified, in the sense that

PLMs used cannot possibly converge to a REE.7

We start by defining a general learning function.8 For the case of nominal price

growth learning, beliefs will be updated following:

β̂
(i)
t = β̂

(i)
t−1 + gt

(
Q

(i)
t−1

Q
(i)
t−2

− β̂(i)
t−1

)
, ∀i∈[1,T ],i=∞ (4.10)

where gt(0) = 0 and g′(·) > 0. These conditions define a learning process that adjusts

beliefs in the same direction as the prediction error.9

Since both cases share the same properties, we focus on Case I for our analytical

results.10 First we focus on the consol bond. Substituting assumptions 4.4, 4.5, together

7It is important differentiate this from econometric misspecification. Most learning models are mis-
specified from an econometric viewpoint, since agents fail to recognize the self-referential nature of the
process they estimate. See Evans and Honkapohja (2001), Ch.13.

8We acknowledge it would be possible to use
Qi

t−1

Qi+1
t−2

as an argument for updating. In this case, agents

would learn about the growth rate of an specific asset over time. We leave this case for future research.
9The assumption that agents use lagged information to update their beliefs is standard in the learning

literature as simultaneous updating gives rise to a series of difficulties. For a discussion see Evans and
Honkapohja (2001).

10We refer the reader to Section 4.B in the appendix for derivations for Case II.
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with the PLM for this case into Eq. 4.3, we obtain:

Q
(∞,I)
t = δµcγφφt + δµcβ̂

∞
t Q

(∞,I)
t ,

where β̂∞t is the belief agents hold about β∞. Solving for Q∞t yields:

Q
(∞,I)
t =

δµcγφ

1− δµcβ̂∞t
φt (4.11)

From this result we can derive the actual behaviour of the consol bond growth rate,

which is given by:

Q
(∞,I)
t

Q
(∞,I)
t−1

=
1− δµcβ̂∞t−1

1− δµcβ̂∞t

φt
φt−1

(4.12)

Using 4.4 and collecting terms we obtain:

Q
(∞,I)
t

Q
(∞,I)
t−1

=

(
γφ +

γφδµc∆β̂
∞
t

1− δµcβ̂∞t

)
εt = T

(
β̂∞t ,∆β̂

∞
t

)
εt (4.13)

where:

T
(
β∞,∆β̂∞

)
≡ γφ +

γφδµc∆β̂∞

1− δµcβ̂∞
(4.14)

is the T-mapping, which summarizes the actual behaviour of the infinite-maturity asset

growth rate for given values of β and ∆β. Therefore, the dynamics of consol bond prices

are not only defined by the beliefs agents hold on the growth rate, β̂, but also by the

change in these beliefs. This generates momentum in the consol price dynamics, which

is the key element explaining the low frequency “ups and downs” observed in the data.11

This result is obtained because learning is self-referential. When a positive shock to

beliefs occur, it increases the observed future growth rates, which in turn, pushes up

future beliefs. Notice as well that the specified PLM allows for reasonable learning, since

provided beliefs converge, consol bond prices will follow the behaviour implied by rational

expectations.12

11See Adam et al. (2011). The limiting behaviour is associated with ordinary differential equation
β̇ = gt (T (β)ε− βt). Authors show the conditions for the support of ε needed to guarantee E-stability.

12See Appendix 4.A for derivations.
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For the case of finite-maturity assets, we obtain from Eq. 4.2:

Q
(i,I)
t = δµcγφφt + δµcβ̂

i
tQ

(i−1,I)
t , ∀i∈[2,T ] (4.15)

while the one period to maturity asset price will be given by:

Q1,I
t = δµcγφ

(
φt + φtQ̄

0,I
)

(4.16)

Substituting the actual growth rates for each maturity, it is possible to express the actual

growth rate as:13

Q
(i,I)
t

Q
(i,I)
t−1

=

γφ +
γφ∆β̂

(i−1)
t + γφβ̂

(i−1)
t Ω

(i−1)
t

γφ
φt−1

Q
(i−1,I)
t−1

+ β̂
(i−1)
t

 εt, ∀i∈[2,T ], (4.17)

where:

Ω
(i)
t =

∆β̂
(i−1)
t + β̂

(i−1)
t Ω

(i−1)
t

γφ
φt−1

Q
(i−1,I)
t−1

+ β̂
(i−1)
t−1

, ∀i∈[2,T ]. (4.18)

and:

Ω
(1)
t = 0, (4.19)

Equation 4.17 represents the actual dynamics followed by the price growth rate of

each maturity. We notice several interesting features. First, learning stops being self-

referential. In this case the shocks affecting the beliefs do not have a feedback effect. An

increase in the estimated growth rate for the price of maturity i, (i.e.: ∆β̂
(i)
t > 0), will

affect prices for maturities higher than i but, given the family of learning rules defined

by 4.10, not maturity i. When agents believe the price of the i periods to maturity asset

will increase over the next period, the price of the subsequent maturity (i + 1) would

increase today. This affects the perceived dynamics of this maturity and consequently

the price of the i + 2 periods to maturity asset. In this sense, agents learn through the

yield curve.

Second, we verify that these perceived laws of motion are well specified, as the

13See the appendix, section 4.B for derivations.
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change in the bond price would converge under least squares learning to the predicted

growth rate under rational expectations for all maturities.14 15 If ∆β̂(i) = 0, ∀i, then:

β̂it = γφ, ∀i (4.20)

The third result is related in the way in which pricing errors in previous maturities

affect new ones. As in the case of rational expectations, a shock in the coupon growth rate

will increase the price of all maturities. However, due to the presence of price learning, an

additional effect emerges as higher maturities carry changes in expectations from lower

maturities. This effect will not necessarily push the price of bonds in the same direction

as the shock, since the updating of beliefs occurs using lagged information. Given the

non-linearities and interaction among different maturities, we analyse these dynamics in

Section 4.4 through numerical simulations.

Finally, it is important to stress that when agents learn the growth rate for each

maturity, the growth rates they observe will actually differ across maturities, even if their

priors are the correct ones.16

4.3.2 Learning

In order to complete the characterization of bond price dynamics it is necessary to

define how agents update their beliefs. The literature presents several alternatives. The

most popular ones are: (a) least-squares learning (LSL) and (b) constant-gain learning

(CGL). The former depicts agents who put the same weight on each observation. There-

fore, it is a decreasing-gain learning mechanism. By contrast, under CGL, agents always

put a higher weight on new observations relative to previous ones. As Sargent (1993)

points out, the use of this type of learning may reflect agents’ concerns with regime

changes or a preference for adaptability.17 In this section we consider the CGL case.

14Strictly, we need to define additional conditions for convergence and stability. In specific, we would
have to make use of the Projection Facility, which imposes bounds on the values of the β′s. Some
additional assumptions must be made on the support of ε. For a discussion see Adam et al. (2011).

15See Appendix 4.A. for derivations of the rational expectations equilibrium growth rates.
16This result is related to the self-fulfilled dynamics observed in other applications of learning models.

For an example see Branch and Evans (2013).
17On the other side, the presence of constant-gain learning can give rise to unexpected dynamics. For

discussion see Williams (2001). See Evans and Honkapohja (2001), Ch. 14 for a general discussion of the
properties of models of constant-gain learning.
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Branch and Evans (2006) find ample empirical evidence supporting the use of this type

of learning when modelling agents expectations.18 Now we define the beliefs updating

equations. For the case of simple growth rates, as in Case I:

β̂
(i)
t = β̂

(i)
t−1 + α

[
Q

(i)
t−1

Q
(i)
t−2

− β̂(i)
t−1

]
, ∀i∈[1,T ],i=∞ (4.21)

where α is a constant and positive gain parameter.19 When agents learn about the price

real growth rate, as in Case II, beliefs follow:

β̂
(i)
t = β̂

(i)
t−1 + α

[
Pt−2

Pt−1

Q
(i)
t−1

Q
(i)
t−2

− β̂(i)
t−1

]
, ∀i∈[1,T ],i=∞ (4.22)

4.4 Numerical Exercises

4.4.1 Baseline Calibration

Each model involves five parameters, reported in tables 4.1 and 4.2 for cases I and II.

We set a value of 0.994 for the time-preference parameter, in order to match the United

States ex-post 3-month treasury bill average real return rate for the 1969-2013 period.

The growth rates of consumption and inflation are taken from the Bureau of Economic

Analysis NIPA tables, for the years 1969 to 2013. In the stochastic coupon case we set the

growth rate and standard deviation of coupons to match the behaviour of consumption.

Finally, the gain parameter is set at 0.001 for the case of stochastic coupons and to 0.01

for the case of learning over the real growth rate. We set this parameter to avoid falling

into the projection facility upper and lower bounds, for the simulated maturities. This

means that all dynamics are generated by the learning process and not by additional

constraints. We remind the reader that our emphasis is not into matching any empirical

moments, but simply to analyse how maturity plays a role under the proposed learning

mechanism.

18Even if we assume CGL, we consider PLMs that allow for convergence to the rational expectations’
beliefs when LSL is followed.

19We make use of the standard timing assumption in order to avoid the joint determination of beliefs
and observed prices. For a discussion see Evans and Honkapohja (2001), Ch. 3.
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Table 4.1: Baseline Calibration: Case I

Parameter V alue Description

δ 0.994 consumers time-preference parameter.

µc 0.993 inverse of consumption growth factor.

γφ 1/0.993 growth rate of coupons and principal.

σφ 0.005 standard deviation of coupon growth rate.

α 0.001 gain parameter (fixed).

Table 4.2: Baseline Calibration: Case II

Parameter V alue Description

δ 0.994 consumers time-preference parameter.

µc 0.993 inverse of consumption growth factor.

γπ 0.989 inverse of inflation factor.

σπ 0.007 standard deviation of inflation factor.

α 0.01 gain parameter (fixed).

4.4.2 Results

We perform numerical simulations for both cases. First, we confirm our analyt-

ical results. As the maturity increases, the volatility of the price/coupon ratio under

learning rises. Figure 4-1, shows the results for Case I, the model with stochastic coupon

growth. We report the sample standard deviations for the learning case for both the finite

maturity and consol bonds. We observe a pattern that increases with maturity, approxi-

mating the consol bond. Notice that under rational expectations the price/coupon ratio

is constant.

The numerical results confirm the insights obtained from our analytical derivations.

Learning affects volatilities in a heterogeneous way across maturities. There are two

reasons for this: First, higher maturities carry on pricing errors from previous ones.

Due to the fact that the one period to maturity bond is not subject to pricing errors,

the number of terms to maturity limits the pricing error of a given asset. Second, as

maturity increases, the importance of capital gains, relative to coupon income, rises. The

fact that agents know perfectly how to price next period coupons, makes learning about

prices more important for higher maturities. As maturity increases, this effect vanishes

and the volatility of the asset starts converging to the once implied by the consol bond

case.
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Figure 4-2 shows the evolution of beliefs for three particular maturities. As we can

observe, the behaviour of beliefs for the highest maturity approximates the one of the

infinite-lived asset.

For Case II we observe similar dynamics. This is not surprising since, from our

analytical derivations, we know that the way in which changes in beliefs affect higher

maturities is analogous to the case with an stochastic coupon growth rate. Because

under rational expectations prices would be fixed, we report the price standard deviation

for each maturity. Figure 4-3 shows the results. As we observe, simulated standard

deviations of prices approximate the one of the consol bond as maturity increases. Beliefs

show a similar pattern as the dynamics of the beliefs for the highest maturity approximate

the ones of the consol bond in each simulation. Note that only at very high maturities is

the volatility of bond prices of finite-maturity bonds similar to that of the consol bond.

Learning the price of a one-period bond is simple since it is only involves learning about

an exogenous variable. Learning about a two-period bond involves learning about an

exogenous variable and the law of motion of a one-period bond. As the maturity increases

the learning exercise involves more endogenous variables, but this only gradually leads

to higher volatility.

Finally, we use these prices to calculate the yield to maturity. We report the

simulated statistics for a selection of maturities. The pattern generated is similar to

the one found in the data: yields decrease slowly through the term structure.20 The

volatility for the first maturity is zero since it is priced assuming rational expectations.

Although the purpose of the exercises in this chapter is not to match the empirical data,

the results suggests this learning mechanism can help the model capture the observed

empirical dynamics.

20For a discussion of this stylized fact observed in the behaviour of the yield curve, see Chapter 5,
Section 5.3. It must be noticed that here yields correspond to the ones of non-zero coupon bonds.
Nonetheless, volatility arises from the behaviour of expected capital gains, while coupons are fixed.
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Figure 4-1: Case I: Std. Dev. of price/coupon ratio
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Note: Figure reports the standard deviation of the price/coupon ratio of the simulated prices under
learning. Simulations follow the calibration in Table 4.1. Sample size in each draw is 1000. We report

averages of 20 draws. Simulated values never hit the projection facility.

138



F
ig

u
re

4-
2:

C
as

e
I:

E
v
ol

u
ti

on
of

b
el

ie
fs

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
1.

00
68

1.
00

69

1.
00

7

T
im

e 
(q

ua
rt

er
s)

β(t)

 

 

S
H

O
R

T
 (

1)
LO

N
G

 (
10

00
)

C
O

N
S

O
L

N
o

te
:

F
ig

u
re

re
p

o
rt

s
th

e
b

el
ie

fs
o
f

th
e

p
ri

ce
g
ro

w
th

fo
r

ea
ch

o
f

th
e

re
p

o
rt

ed
m

a
tu

ri
ti

es
u
n
d
er

le
a
rn

in
g
.

S
im

u
la

ti
o
n
s

fo
ll
ow

th
e

ca
li
b
ra

ti
o
n

in
T

a
b
le

4
.1

.
S
a
m

p
le

si
ze

o
f

th
e

d
ra

w
is

1
0
0
0
.

W
e

re
p

o
rt

fi
rs

t
2
0
0

o
b
se

rv
a
ti

o
n
s

139



Figure 4-3: Case II: Standard deviation of bond prices under learning
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Note: Figure reports the standard deviation of the simulated prices under learning and rational
expectations. Simulations follow the calibration in Table 4.1. Sample size in each draw is 1000. We

report first 200 observations.
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4.5 Conclusions

The present paper presents a model in which agents learn about the growth rate

of bonds adaptively, following Adam et al. (2011). The proposed learning mechanism,

when applied to finite-maturity assets, ceases to be self-referential, although, it generates

interesting dynamics. First, changes in beliefs are carried over to higher maturities.

This generates an amplification of shocks through the yield curve. Second, the impact

of learning through the yield curve affects maturities in an heterogeneous way. Higher

maturities exhibit a larger increase in their volatilities relative to the rational expectations

results. Finally, the numerical results suggest that as maturity increases, the volatility

of the asset converges to the one of the consol bond, which is subject to a self-referential

learning mechanism as in Adam et al. (2011).

In addition, we present a model in which coupons are fixed. In this case the volatility

will come from agents updating their beliefs about the real growth rate of bond prices.

Even if under rational expectations the nominal price of these bonds would be fixed,

the introduction of learning is capable of generating a slow decaying volatility pattern

across maturities, similar to the one observed in the data. We confirm that the learning

mechanism presented by Adam et al. (2011) for the case of equity, can help in the

understanding of the behaviour of finite-maturity assets.

Even though these results are promising, we consider that the adaptive learning

literature still has some open issues regarding its microfoundations. Although Adam

and Marcet (2011) address this subject by proposing a model in which the PLM arises

from a well-specified agent-based problem, their formulation still has problems in terms

of determining the existence and uniqueness of equilibrium prices. This is one of the key

topics that must be tackled by future research.
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Figure 4-5: Case II: Yield volatility under learning
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Note: Figure reports the average standard deviation of calculated yield to maturity for simulated
coupon-paying bonds prices under learning. Simulations follow the calibration in Table 4.1. Sample size

in each draw is 1000. We report averages of 20 draws.

Figure 4-6: Case II: Sensitivity to gain parameter
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Note: Figure reports the average standard deviation of calculated yield to maturity for simulated
coupon-paying bonds prices under learning. Simulations follow the calibration in Table 4.1 except for
the value of α, which stands for the constant-gain parameter. Sample size in each draw is 1000. We

report averages of 20 draws.

143



Bibliography

Adam, K. and A. Marcet (2011, May). Internal rationality, imperfect market knowledge

and asset prices. Journal of Economic Theory 146 (3), 1224–1252.

Adam, K., A. Marcet, and J. P. Nicolini (2011, September). Stock market volatility and

learning. CEP Discussion Papers dp1077, Centre for Economic Performance, LSE.

Branch, W. A. and G. W. Evans (2006, May). A simple recursive forecasting model.

Economics Letters 91 (2), 158–166.

Branch, W. A. and G. W. Evans (2013). Bubbles, crashes and risk. Economics Let-

ters 120 (2), 254–258.

Carceles-Poveda, E. and C. Giannitsarou (2008, July). Asset pricing with adaptive

learning. Review of Economic Dynamics 11 (3), 629–651.

Carroll, C. D., J. Slacalek, and M. Sommer (2011, November). International evidence on

sticky consumption growth. The Review of Economics and Statistics 93 (4), 1135–1145.

Cochrane, J. H. and J. Campbell (1999, April). By force of habit: A consumption-

based explanation of aggregate stock market behavior. The Journal of Political Econ-

omy 107 (2), 205–51.

Evans, G. and S. Honkapohja (2001). Learning and Expectations in Macroeconomics.

Frontiers of Economic Research. Princeton University Press.

Hall, R. E. (1978, December). Stochastic implications of the life cycle-permanent income

hypothesis: Theory and evidence. Journal of Political Economy 86 (6), 971–87.

Sargent, T. J. (1993). Bounded Rationality in Macroeconomics: The Arne Ryde Memorial

Lectures. Number 9780198288695 in OUP Catalogue. Oxford University Press.

Timmermann, A. (1996, October). Excess volatility and predictability of stock prices

in autoregressive dividend models with learning. Review of Economic Studies 63 (4),

523–57.

Williams, N. (2001). Escape dynamics in learning models. Technical report.

144



4.A Rational expectations

Here we derive the rational expectations behaviour of assets for each case. For this

we use equations 4.2 and 4.3 together with the assumptions for each case.

Case I: Stochastic coupon growth and learning about nominal bond price

growth rates.

In this case, the euler equation for consol bonds (Eq. 4.3) becomes:

Q
{(∞,I),RE}
t = δµcEt

[
γφφt +Q

{(∞,I),RE}
t+1

]
(4.23)

solving forward, we obtain:21

Q
{(∞,I),RE}
t =

δµcγφ
1− δµcγφ

φt (4.24)

The rational expectations growth rate is be given by:

Q
{(∞,I),RE}
t

Q
{(∞,I),RE}
t−1

=
φt
φt−1

= γφεt (4.25)

For finite-maturity assets:

Q
{(i,I),RE}
t =

 i∑
j=1

(δµcγφ)j + (δµcγφ)iQ̄0

φt (4.26)

The rational expectations growth rate is given by:

Q
{(i,I),RE}
t

Q
{(i,I),RE}
t−1

=
φt
φt−1

= γφεt, ∀i∈[1,T ] (4.27)

Notice that under rational expectations the price of nominal bonds remains constant,

thus, the covariance between bond nominal prices and the actual inflation rate will be

zero, as the expected inflation is the same in every period.

21We assume parameter values guarantee that the price of the consol bond remains positive and finite.
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Case II: Stochastic inflation and learning about bond price real growth rates

The euler equation for consol bonds (Eq. 4.3) becomes:

Q
{(∞,II),RE}
t = δµcγπγφ + Et

[
φ̄+Q

{(∞,II),RE}
t+1

]
(4.28)

solving forward we obtain:22

Q
{(∞,II),RE}
t =

δµcγπγφ
1− δµcγπγφ

φ̄ (4.29)

The rational expectations real growth rate of bonds will be given by:

Pt−1

Pt

Q
{(∞,II),RE}
t

Q
{(∞,II),RE}
t−1

=
Pt−1

Pt
= γπε

π
t (4.30)

For finite-maturity assets:

Q
{(i,II),RE}
t =

 i∑
j=1

(δµcγπγφ)j + (δµcγπγφ)iQ̄0

 φ̄ (4.31)

The rational expectations real growth rate is given by:

Pt−1

Pt

Q
{(i,II),RE}
t

Q
{(i,II),RE}
t−1

=
Pt−1

Pt
= γπε

π
t , ∀i∈[1,T ] (4.32)

4.B Properties of proposed learning mechanisms

Here we study the properties of the proposed learning mechanisms.

Case I: Stochastic coupon growth and learning about nominal bond price

growth rates.

We derive the observed behaviour of finite-maturity bonds. Starting from the one-

period to maturity asset in Eq. 4.16:

Q1,I
t

Q1,I
t−1

= γφεt (4.33)

22As in the previous case, we assume parameter values are such that the price of the consol bond
remains positive and finite.
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now, for the two-period to maturity we have from Eq. 4.4 and our result for the one-period

maturity in Eq. 4.15:

Q2,I
t

Q2,I
t−1

=
γφφt + β̂1

tQ
1,I
t

γφφt−1 + β̂1
t−1Q

1,I
t−1

Substituting the process for the coupon in Eq. 4.4 and our result for the one-period to

maturity asset in Eq. 4.33:

Q2,I
t

Q2,I
t−1

=
γφ(γφφt−1εt) + β̂1

t (γφQ
1,I
t−1εt)

γφφt−1 + β̂1
t−1Q

1,I
t−1

=

γφ +
γφ∆β̂1

t

γφ
φt−1

Q1,I
t−1

+ β̂1
t−1

 εt (4.34)

which yields the actual law of motion for the growth rate of two-period to maturity asset.

Now for the next maturity we have from Eq. 4.15:

Q3,I
t

Q3,I
t−1

=
γφφt + β̂2

tQ
2,I
t

γφφt−1 + β̂2
t−1Q

2,I
t−1

Once again, from the assumed process for the coupon in Eq. 4.4 and our result for the

two-period to maturity asset in Eq. 4.34:

Q3,I
t

Q3,I
t−1

=

γφ(γφφt−1εt) + β̂2
t

γφ +
γφ∆β̂1

t

γφ
φt−1

Q
1,I
t−1

+β̂1
t−1

Q2,I
t−1εt

γφφt−1 + β̂2
t−1Q

2,I
t−1

=

γφ +

γφ∆β̂2
t + γφβ̂

2
t

 ∆β̂1
t

γφ
φt−1

Q
1,I
t−1

+β̂1
t−1


γφ

φt−1

Q2,I
t−1

+ β̂2
t−1

 εt (4.35)

which is the actual law of motion for the growth rate of the three-period to maturity

asset. Following this process we arrive to:

Q
(i,I)
t

Q
(i,I)
t−1

=

γφ +
γφ∆β̂

(i−1)
t + γφβ̂

(i−1)
t Ω

(i−1)
t

γφ
φt−1

Q
(i−1,I)
t−1

+ β̂
(i−1)
t−1

 εt, ∀i∈[2,T ], (4.36)
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where:

Ω
(i)
t =

∆β̂
(i−1)
t + β̂

(i−1)
t Ω

(i−1)
t

γφ
φt−1

Q
(i−1,I)
t−1

+ β̂
(i−1)
t−1

, ∀i∈[2,T ]. (4.37)

which are the equations 4.17 and 4.18 in the main text. Additionally:

Ω
(1)
t = 0, (4.38)

As in the case of Adam et al. (2011) an equilibrium of the model corresponds to the case

of rational expectations.

Case II: Stochastic inflation and learning about bond price real growth rates

We start describing the consol bond equations. Substituting assumptions in 4.7,

4.8 and 4.9 into Eq. 4.3 we obtain:

Q
(∞,II)
t = δγπµcγφφ̄+ δµcβ̂tQ

(∞,II)
t (4.39)

without loss of generality, we assume a flat structure for coupons and normalize their

value to 1. Thus, substituting γφ = 1 and φ̄ = 1 into Eq. 4.39 yields:

Q
(∞,II)
t = δγπµc + δµcβ̂tQ

(∞,II)
t (4.40)

solving for Q
(∞,II)
t :

Q
(∞,II)
t =

δγπµc

1− δµcβ̂t
(4.41)

thus the which is the actual law of motion for the consol bond price. We calculate the

observed real growth rate:

Pt−1

Pt

Q
(∞,II)
t

Q
(∞,II)
t−1

=

(
1 +

δµc∆βt

1− δµcβ̂t

)
γπε

π
t = T (β,∆β)επt (4.42)

where we have used the process for prices given by Eq. 4.8. The T-map shows properties

similar to the ones in the previous case. A change in agents’ beliefs about the real growth
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rate of prices will generate self-exciting dynamics.

Now for the case of finite maturity bonds, we use 4.2.

Q
(i,II)
t = δγπµc + δµcβ̂

(i−1)
t Q

(i−1,II)
t , ∀i∈[2,T ] (4.43)

which is the actual law of motion for the i-period to maturity bond. The behaviour of

the actual real price growth is given by:

Pt−1

Pt

Q
(i,II)
t

Q
(i,II)
t−1

=
δγπµc + δµcβ̂

(i−1)
t Q

(i−1,II)
t

δγπµc + δµcβ̂
(i−1)
t−1 Q

(i−1,II)
t−1

γπε
π
t (4.44)

Now we start from the first maturity:

Pt−1

Pt

Q
(1,II)
t

Q
(1,II)
t−1

=
δγπµc + δµcQ̄

(0,II)

δγπµc + δµcQ̄(0,II)
γπε

π
t = γπε

π
t (4.45)

The growth rate for the price of the second maturity will be given by:

Pt−1

Pt

Q
(2,II)
t

Q
(2,II)
t−1

=
δγπµc + δµcβ̂

(1)
t Q

(1,II)
t

δγπµc + δµcβ̂
(1)
t−1Q

(1,II)
t−1

γπε
π
t (4.46)

Replacing the result in 4.45:

Pt−1

Pt

Q
(2,II)
t

Q
(2,II)
t−1

=
δγπµc + δµcβ̂

(1)
t

(
Pt
Pt−1

Q
(1,II)
t−1 γπε

π
t

)
δγπµc + δµcβ̂

(1)
t−1Q

(1,II)
t−1

γπε
π
t (4.47)

=
δγπµc + δµcβ̂

(1)
t Q

(1,II)
t−1

δγπµc + δµcβ̂
(1)
t−1Q

(1,II)
t−1

γπε
π
t (4.48)

=

1 +
∆β̂

(1)
t

γπ

Q
(1,II)
t−1

+ β̂
(1)
t−1

 γπε
π
t (4.49)

which is similar to the one found for the previous case. Further substitutions leads to:

Pt
Pt−1

Q
(i,II)
t

Q
(i,II)
t−1

=

1 +
∆β̂

(i−1)
t + β̂

(i−1)
t Ω

(i−1,II)
t

γπ

Q
(i−1,II)
t−1

+ β̂
(i−1)
t−1

 γπε
π
t , ∀i∈[2,T ], (4.50)
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where:

Ω
(i,II)
t =

∆β̂
(i−1)
t + β̂

(i−1)
t Ω

(i−1,II)
t

γπ

Q
(i−1,II)
t−1

+ β̂
(i−1)
t−1

, ∀i∈[2,T ]. (4.51)

Agents will carry over forecast errors from shorter maturities.
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Chapter 5

Imperfect information, learning

and the yield curve: a survey

5.1 Introduction

Many of the empirical facts related to the behaviour of the yield curve and long

interest rates in the data are easier to understand once we take into account the processes

through which agents acquire information and form their beliefs. Standard macroeco-

nomic models face difficulties explaining stylized facts such as the volatility of long-term

rates, the size and volatility of the risk premia, the sensitivity of the yield curve, and the

return predictability puzzles.1 As these models demand agents to have a deep knowledge

about the economy, relaxing the information endowment of agents by limiting the infor-

mation set available to them or picturing them as econometricians who learn the model

and parameter values over time, constitute natural alternatives to rational expectations

models with perfect information.

The use of learning mechanisms in macroeconomics and asset pricing has grown

intensively over the last decades.2 Sargent (1993) identifies five areas in which the ap-

plication of bounded rationality can help economists improve their models and under-

standing of reality. These are: (1) equilibrium selection; (2) new sources of dynamics;

(3) analyses of regime changes; (4) re-evaluation of rational expectations models; and (5)

1See Section 5.3 for a detailed discussion of these puzzles.
2See Evans and Honkapohja (2008) for a survey on the use of learning in macroeconomics.
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new optimization and estimation methods. Most of the papers analysed in this survey

are related to the second line of research, namely, analysing new dynamics. Regularly,

these dynamics will occur out of the equilibrium as convergence to the rational expec-

tations (RE) equilibrium is regarded as a positive result. In other models, the use of

constant-gain learning, precludes the convergence to the RE equilibrium, though it can

improve the model-predicted dynamics.

Asset pricing models with imperfect information also provide interesting implica-

tions for yield curve dynamics. For instance, under imperfect information, agents may

confuse transitory shocks with persistent ones. This will increase the reaction of long

interest rates to temporary shocks as agents update their long-term inflation beliefs. Im-

perfect common knowledge is also instrumental in the study of the connection between

forecast errors and the volatility of bond returns.

The models reviewed in the present survey attempt to explain - often simultane-

ously - stylized facts observed in the yield curve that appear puzzling from the (full

information) rational expectations perspective. The literature presents a handful of sur-

vey papers about learning and financial markets, however, none focus explicitly on the

yield curve.3 Our objective is to lay bare important theoretical mechanisms and highlight

the connections and differences across these approaches.

The present chapter is organized as follows. Section 5.2 examines the mechanisms.

In section 5.3 we review a series of stylized facts about the yield curve that represent

a challenge for standard macroeconomic models. Section 5.4 presents models where

imperfect information about a state variable drives the yield curve dynamics. Section

5.5 reviews models where parameter uncertainty and self-referential learning are able to

generate new dynamics outside of the equilibrium. We conclude by presenting the main

avenues in which the literature keeps developing and the challenges that lie ahead.

5.2 A review of the schemes

The imperfect information and learning literature comprises a vast array of schemes

which differ, inter alia, in the information available to agents, the way it is updated

3For example, Pastor and Veronesi (2009) present a thorough survey of Bayesian learning models to
explain a variety of facts found in finance.
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and the “degree of rationality” of agents. Although limited information and learning are

related concepts, the former refers to the case in which agents fully know the structure of

the economy, but are unable to observe a subset of state variables directly. In the learning

literature these assumptions are flipped, allowing agents to observe all realizations, but

with incomplete knowledge about the structure of the economy.4

5.2.1 Learning

In learning models, agents are not endowed with knowledge about certain aspects

of the economy but they are given the tools to learn about it. While agents learn, the

perceived mapping from states to equilibrium values could change over time. In this

literature, the concept of self-referential learning is a key one. It refers to the feedback

that learning introduces into future realizations of endogenous variables. Alternatively,

there are cases in which learning does not present a feedback effect. Here agents will learn

the data-generating process (DGP) of the exogenous process. When agents can learn the

DGP, learning adds little to the dynamics, as the true law of motion of the exogenous

process and prices converge quickly to those of the rational expectations equilibrium.5

The literature presents several alternatives to this setup that preclude agents to learn the

true law of motion. Among them we find cases where agents use a misspecified PLM (e.g.:

Evans (2010)) or do not use information efficiently (e.g.: Piazzesi and Schneider (2006)).

In each case, learning is used with a specific purpose, and its effects vary according to

the way the learning mechanism is introduced.

It is also important to distinguish between fully and boundedly rational learn-

ing.6 Under rational learning, agents regard unknown parameters as random variables.

4Nimark (2010) uses the following example. Suppose we study a model that can represented by the
following set of equations:

Xt = AXt−1 + Cut

Zt = DXt + vt.

Models of imperfect information deal with agents that know the structure of the economy - i.e. the values
for A, C, D and Σvv, the matrix of variances and covariance of the vector of shocks vt. Nonetheless,
agents are unable to directly observe the state variable Xt. In the learning literature agents can observe
Xt, but do not completely know the structure of the economy - i.e. the do not know the matrices A, C, D
and Σvv. Moreover, the learning literature consider models in which this system of equations represents
the beliefs agents hold about how the variables in the model are related. For this reason, when agents
hold a misspecified model, they might never learn the true form (or structure) of the economy.

5See Evans and Honkapohja (2001) for a discussion.
6We refer the reader to Cogley and Sargent (2008) for an extensive discussion of the different types

of learning.
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Namely, agents consider how their beliefs interact with the rest of the model and influ-

ence the generation of new observations. Agents are aware that the unknown parameters

should be treated as (hidden) state variables, meaning their maximization problem is

under a recursive learning path.7 In words of Blume and Easley (1993), “fully rational

learning would require each trader to take into account the effect of his learning (...) on

equilibrium prices.”

Boundedly rational learning deals with agents who learn about laws of motion as if

they are econometricians who do not consider themselves to be part of the model econ-

omy. They estimate the parameters of the model using new data every period. As agents

of the model, they treat these estimated beliefs as non-random when forming expecta-

tions and taking decisions. Consequently, these beliefs are used to form intertemporal

optimal rules without considering that in the very next period these beliefs will vary once

again. As Cogley and Sargent (2008) put it, “their decisions reflect a pretence that this

is the last time they will update their beliefs, a pretence that is falsified at the beginning

of every subsequent period.”8

The cobweb model of Bray (1982) is a useful way to understand this difference.

This is a simple model of self-referential learning where production decisions are made

one period in advance. The market-clearing condition is given by:

pt = a+ bEtpt+1 + ut (5.1)

where Etpt+1 is the price that market participants expect for period t + 1, while ut is

distributed i.i.d with mean zero and variance σ2
u. Bray (1982) assumes agents deter-

mine next period’s price using the simple average of past prices. Thus, agents will set:

E(pt+1) = βt, where:

βt = βt−1 +
1

t
(pt−1 − βt−1),

7Rational learning is closely linked to the concept of Bayesian learning, though, as Guidolin and
Timmermann (2007), rationality imposes some restrictions over the prior beliefs on the probability dis-
tribution of the unknown parameter, which may not be present under Bayesian learning.

8This behaviour is related to the concept of ’anticipated utility’ in Kreps (1998).

154



and the actual law of motion for prices will be given by:

pt = a+ bβt + ut, (5.2)

The key difference between this specification, where agents learn in an adaptive manner,

and one with fully rational agents is that here agents incorrectly believe that prices follow

(5.2) for all subsequent time periods, when actually they should treat βt as a hidden state

variable, which dynamics affect the behaviour of observed prices. As Sargent (1993)

indicates, agents should consider instead a dynamic system like:

pt = a+
b

t
pt−1 +

b(t− 1)

t
βt−1 + ut

βt =
1

t
pt−1 +

(
t− 1

t

)
βt−1

when agents use this system for forecasting the value of pt+1, they actually obtain the

rational expectations forecast, which generates a lower mean-square forecasting error

than the one obtained in the adaptive learning case. By solving forward (5.1), we obtain

a set of expected inflation rates at different horizons. Combined with the assumption of

a constant real interest rate, we would get a model of the yield curve, that is:

iτt = r +
1

τ
(pet+τ/pt)

Note that without a learning mechanism the expected price will be given by a
1−b for

all horizons, yielding a zero expected inflation rate and no volatility in the nominal

yield curve. Bray (1982) shows that when parameter b < 1, the price will converge to

the rational expectations value with probability one, making the rational expectations

equilibrium a learnable equilibrium.9

5.2.2 Imperfect information

Imperfect information models present agents who know the exact form of the econ-

omy but are unable to directly observe a subset of state variables. Instead, agents receive

noisy signals of these states and optimize extracting information through a filtering ex-

9The learnability of an equilibrium is used as a selection criterion in models that exhibit multiple
equilibria. See McCallum (2009) for an application of learning in equilibrium selection.
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ercise.

We present an example, based on Muth (1959), on how we can apply imperfect

common knowledge to study the interest rates and the yield curve. We start from a

simple Fisher equation:

it = πt + r̄ (5.3)

where it is the one-period nominal return on a bond, πt stands for the one period inflation

rate and r̄ is the real return rate. We can regard the inflation and the real return rate

as the fundamentals over which agents form beliefs. For the sake of simplicity, the real

return rate is assumed fixed.10 We characterize the dynamics of inflation as:

πt = π∗t + ut (5.4)

where ut is distributed i.i.d. with mean zero and variance σ2
u, and π∗t is the long run level

of inflation, which can be interpreted as the central bank’s inflation target. Eq. (5.4) is

the observation equation. We assume the following process for π∗t :

π∗t = π∗t−1 + εt (5.5)

where εt is distributed i.i.d. with mean zero and variance σ2
ε . Eq. (5.5) is the state

equation. Thus, the inflation target is characterized by a random walk process with

innovation variance σ2
u. This assumption merits further discussion, as the presence of

a non-stationary process would be sufficient to explain several volatility puzzles for the

yield curve.11 Most of the imperfect information models reviewed in the present survey

introduce non-stationary processes in order to replicate the volatility observed by long

term interest rates.12 Despite this fact, imperfect common knowledge proves to be in-

strumental along other dimensions. As an example, here we show how imperfect common

10We will relax this assumption when we take the model to the data.
11As Flavin (1983) and Marsh and Merton (1986) state, variance bounds tests in LeRoy and Porter

(1981), Shiller (1979) and Singleton (1980) should be reformulated when short rates are non-stationary.
12To be precise, the imperfect information models based in a Cox et al. (1985) production economy,

such as the one proposed in Feldman (1989), assume a Ornstein-Uhlenbeck-process for production, which
is mean-reverting and stationary. Here the assumption of a process with time-varying volatility helps the
model replicate the observed pattern followed by interest rates. As we will see, imperfect information
can improve the fit of the model in other dimensions.
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knowledge can reconcile the high sensitivity of long interest rates to transitory shocks

with the expectations hypothesis of the yield curve.13

In order to construct a yield curve, we first derive the expectations for inflation and

interest rates for different horizons. Under full information we obtain:

πFIt+j/t = π∗,F It+j/t = π∗t , ∀j ≥ 1 (5.6)

where πFIt+j/t denotes the expectation of the inflation in period t + j conditional on

information in period t, under full information. Under the EH of the yield curve, we

obtain the following expression for the conditional expectations on interest rates:

iFIt+j/t = π∗t + r̄, ∀j ≥ 1. (5.7)

Under limited information:

πLIt+j/t = π∗,LIt+j/t = π∗,LIt/t , ∀j ≥ 1

iLIt+j/t = π∗,LIt/t + r̄, ∀j ≥ 1. (5.8)

In this case, agents face an inference problem. The application of the optimal Kalman

filter algorithm yields the following updating process for the unobservable inflation target:

π∗,LIt/t = π∗,LIt−1/t−1 + κ
(
πt − π∗,LIt/t−1

)
(5.9)

where κ = 1− φ and:

φ = φ

(
σ2
ε

σ2
u

)

Eq. (5.9) states that agents will update their beliefs by using the difference between

their prediction for period t − 1 and the actual realization. The parameter κ is the

steady state Kalman gain, which determines the degree of ‘rational confusion’.14 This

is the extent to which changes in the inflation forecast are attributed to changes in the

inflation target. As innovations to the underlying process become noisier relative to

13For a discussion of this stylized fact see Section 5.3.
14See Hamilton (1994), Ch. 13 for a detailed explanation of the Kalman filter.
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Table 5.1: Fisher equation model - maximum likelihood estimation

µy κy σ2
y

r 1.3716 0.4366 1.5828
- (0.0648) (0.0738)

π 0.8279 0.5627 1.4012
- (0.0680) (0.0654)

Note: Yield data is taken from the CRSP Fama-Bliss discount bond files on forward rates for U.S.
Treasury maturities. Inflation data is obtained from the Bureau of Economic Analysis NIPA tables.

Quarterly data sample includes the period 1952:2 to 2010:4. Table contains estimates for the system in
(5.10). Numbers in brackets indicate the maximum-likelihood asymptotic standard errors obtained

from the Hessian matrix. Variances correspond to those of the forecast errors.

shocks to the observables, agents will attribute more of the variations in the observable

variable to changes in the persistent component. As agents are unable to discern between

permanent and transitory shocks, the latter will affect the prediction of the inflation

target, generating an impact in the long term interest rates.

Now we relax the assumption of a fixed real interest rate. Let yt be the 2-dimensional

vector of the observed variables (real rate of return and inflation). They will be a function

of the unobservable variables ξt = [r∗t , π
∗
t ], which form the state vector. The state space

representation of the system defining yt is given by:

ξt = ξt−1 + et

yt = µy + ξt + υt (5.10)

Where υt is a 2 by 1 vector of i.i.d shocks with mean zero and variance-covariance matrix

Q, and et is a 2 by 1 vector of i.i.d shocks with mean zero and variance-covariance matrix

R. We also assume that the disturbances are uncorrelated at all lags. We estimate the

model via maximum likelihood. For simplicity, we use for the ex-post real interest rate the

one-quarter yield minus inflation. For prices we take the index for personal consumption

expenditures reported by the the Bureau of Economic Analysis’ National Income and

Product Account (NIPA) tables. Yield data is taken from the CRSP Fama-Bliss discount

bond files, which provides data on forward rates for U.S. Treasury maturities up to 5

years. Our sample goes from 1952:2 to 2010:4. We use the sample mean and variance as

initial values for the system.

Table 5.1 reports the estimation results for both the Kalman gain parameters and
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Figure 5-1: Yields reaction to transitory and permanent shocks to inflation

(a) Reaction to a permanent shock
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(b) Reaction to a transitory shock
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Note: Simulations correspond to a contemporaneous reaction of yields from two periods to maturity
onwards to a 1 percent transitory (υ2,t) and 1 percent permanent (e2,t) shock under full information
and limited information. For the limited information case a value of 0.5627 for the gain parameter is

used, following the results of the estimation reported in Table 5.1.
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the variance of the forecast errors. For the case of inflation, we obtain a gain-parameter

of 0.5627. In simple terms, when agents observe a change in the inflation rate, they

attribute 56% of this variation to a shift in the inflation target. Figure 5-1 shows the

impulse response functions of forward rates to a transitory (υ2,t) and a permanent shock

(e2,t) to inflation in the full information and the imperfect common knowledge cases.

Under full information, agents can observe changes to the inflation target, which have a

one for one impact on forward rates, causing a parallel shift in the yield curve. Under

imperfect common knowledge, agents are unable to discern between a transitory or a

permanent shock. In this case they will only observe a change in the inflation rate

and attribute a fraction of this variation to a permanent shock. The remainder will be

attributed to a transitory shock. The yield curve will be affected in two ways. First,

all future rates will shift as the inflation target belief is updated. Second, the change

in the inflation rate attributed to a transitory shock will have a decreasing effect as the

maturity increases, since this shock has no effect on future rates.

This simple example highlights how the introduction of imperfect common knowl-

edge helps models of the yield curve to predict a high sensitivity of long rates to transitory

shocks. As we will review, imperfect common knowledge generates as well other effects.

For instance, under imperfect common knowledge, permanent shocks will be slowly re-

flected into agents expectations and, consequently, into the yield curve. Additionally, it

has effects in the volatility of forecast errors. We will review these effects in more detail

in section 5.4.

5.3 Stylized facts

This section presents some of the stylized facts of long-term US treasury bond rates

and why these are hard to explain with a standard consumption-based asset-price model.

We describe four empirical facts found in the data:

1. On average, the yield curve is upward sloping. Thus, yields increase with the

maturity of the bond.

2. The standard deviation of yields decreases slightly with the maturity of the bond.

3. Future expected long yields fall when the yield spread between longer and shorter
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Figure 5-2: U.S. nominal yield curve

Note: Data corresponds to the average nominal rates (monthly basis), obtained from the calculations
for the US Yield curve in Gurkaynak et al. (2007).

maturities rises.

4. The long yields react significantly and frequently to current or “temporary” events.

These four facts are difficult to explain with standard consumption-based asset

pricing models. The first two facts are studied by Backus et al. (1989). Den Haan

(1995) extends the analysis to stochastic general equilibrium models. The third fact,

closely related to the predictability of returns, is analysed by Campbell and Shiller (1991).

Finally, the sensitivity to “news” is documented by Kuttner (2001) and Gurkaynak et al.

(2003), among others.

5.3.1 Fact 1: upward-sloping yield curve

The term structure is upward-sloping on average. Figure 5-2 (left), shows the mean

yield curve for the period 1972-2010 using monthly data. Even this widely known empir-

ical fact poses a challenge for representative consumer asset pricing models. Den Haan

(1995) studies the implications of these models for the yield curve. Here we present some

of his derivations for exposition. Assume an endowment economy where agents maximize

the utility extracted from consumption, given by:

max
{ct}

Et

∞∑
t=0

βt
c1−φ
t

1− φ
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subject to:

ct +
∞∑
t=1

qktB
k
t+1 = yt +

∞∑
t=1

qktB
k
t , ∀t

qkt stands for the price of a bond that pays one unit of consumption in k periods. Bt

represents bond quantities. The endowment yt follows an autoregressive process of the

form:

ln(yt+1/yt) = ln(ȳ) +A(L)εt,

where εt follows a normal distribution with mean zero and variance sigma2
ε. As Backus

et al. (1989) show, the price of bonds will be a function of the endowment growth rate:

qkt = βtEt(yt+k/yt)
−φ.

Following Den Haan (1995), we use the continuous time formula for the yield to maturity:

Rkt = − lnβ − −φEt ln(yt+k/yt) + φ2V AR(ln(yt+k/yt))
ue/2

k
(5.11)

where the term ln(yt+k/yt)
ue stands for the prediction error conditional on period t

information. Assuming homoskedasticity, this variance will not depend on t but can

depend on the bond maturity k.

For the average term structure, we need to calculate the unconditional expectation

of the interest rates in Eq. (5.11):

E(Rkt ) = − lnβ +−φ ln ȳ − φ2V AR(ln(yt+1/yt))
ue/2

k
(5.12)

an increase in k will cause both the numerator and denominator in Eq. (5.12) to increase.

Thus, the slope of the yield curve will depend on which of the two terms increases

faster. The result hinges on the process followed by the endowment. When consumption

growth is positively autocorrelated, the persistence of shocks generates the variance of

the prediction error to increase faster, yielding a negative slope. By contrast, a negatively

autocorrelated process for the endowment generates a positive slope in the yield curve.
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The intuition is related to the insurance effect that a long-term bond provides against

shocks to the endowment. When the consumption is positively autocorrelated, a negative

consumption shock depresses interest rates and increases the price of long-term bonds.

In this sense, long-term bonds are desirable as a hedge against endowment shocks and

command a negative term premium.

Moving from an endowment economy to a production one does not help resolving

this issue. As Den Haan (1995) demonstrates, in the case of a production economy

with i.i.d. shocks to productivity, the persistence of shocks increases through capital

accumulation. This leads to a lower rate of decay of the volatility of interest rates

against maturity, which helps explaining fact 2. However, the introduction of capital

generates a downward-sloping yield curve, which stresses the difficulties of obtaining an

upward-sloping yield curve in equilibrium.

5.3.2 Fact 2: ‘excess’ volatility

In standard consumption-based asset pricing models, long-term interest rates are

calculated as averages of expected short-term rates. As a result, long-term rates are

in fact conditional averages that should only change dramatically when important new

information arrives. Shiller (1979) studied the relationship implied by the Expectations

Hypothesis (EH) between the volatility of one period holding returns (derived from the

long run rates) and the volatility of the short rates in a general class of expectations

models. We follow the author’s derivations, for the consol bond case. Let’s define:

Rt = EtR
∗
t + Φ, (5.13)

where Rt is the return rate of a consol type bond, Φ is a constant liquidity premium and

R∗t represents the ‘ex-post rational rate’, defined as:

R∗t = (1− γ)
∞∑
i=0

γirt+i, (5.14)

where rt is the one period interest rate, and γ = 1/(1 + R̄). In this model, R∗t is in fact

a weighted moving average of the short-term interest rates, with geometrically declining
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weights.15 Provided expectations are rational, we can obtain the forecast error from

(5.13):

R∗t − Et(R∗t ) = R∗t −Rt + Φt (5.15)

This term, under the expectations hypothesis, must be uncorrelated with the information

known at time t. This is:

E[(R∗t + Φ−Rt) ·Rt−τ ] = 0

E[(R∗t + Φ−Rt) · rt−τ ] = 0; ∀ τ ≥ 1. (5.16)

As Shiller (1979) states, it is not possible to test for this relationship by directly regressing

R∗t −Rt onto a constant and the lagged rates. As we can observe in (5.14), the residual

errors of such regressions are serially correlated. For this reason, the author proposes

using the one-period holding return H
(n)
t , given by:

H
(n)
t =

P
(n−1)
t+1 − P (n)

t + C

P
(n)
t

(5.17)

where P
(n)
t stands for the price of n−period bond at time t and C, the coupon payment

ant the end of the period. The price is given by the present value of coupons, discounted

by R
(n)
t , the yield to maturity of an n-period bond:

P
(n)
t =

C

R
(n)
t

+
R

(n)
t − C

R
(n)
t

[
1 +R

(n)
t

]n (5.18)

Replacing (5.17) into (5.18), it is possible to write the an expression for the one-period

holding return in terms of the yield to maturity and the coupon:

H
(n)
t =

C + C

R
(n−1)
t+1

+
R

(n−1)
t+1 −C

R
(n−1)
t+1

[
1+R

(n−1)
t+1

]n−1

C

R
(n)
t

+
R

(n)
t −C

R
(n)
t

[
1+R

(n)
t

]n − 1. (5.19)

15This is due the fact that the bonds studied by Shiller (1979) have non-zero coupons.
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Finally we can relate the expected one-period holding returns to the short rate:

Et[H
(n)
t ] = rt + φ(n), (5.20)

where φ(n) is a constant. Equation (5.20) says that the expected one-period holding

returns should be equal to the one period interest rate plus a constant term, reflecting

a risk premium. Substituting directly (5.20) into (5.19) results in a non-linear expres-

sion relating R(n) and r. Given the author focuses on the linear relationships, a linear

approximation of H
(n)
t is obtained through a Taylor expansion, which yields:

H̃
(n)
t =

R
(n)
t − γnR

(n−1)
t+1

1− γn
(5.21)

where γn = (γ(1 − γ(n−1))/(1 − γn)). The author shows that from (5.16) and the

assumption that the processes for interest rates are stationary:

cov(H̃t − rt, Rt) = 0

Combining this result with (5.21), gives the following expression:

cov(Rt+1, Rt) =
1

γ
var(Rt)−

1− γ
γ

ρrR
√
var(Rt)

√
var(rt),

where ρrR is the correlation coefficient between rt and Rt. The next step is to replace

the value of var(H̃t) into the last equation, then take the derivative of this expression

with respect to var(Rt) to maximize its value and set the left hand side expression equal

to zero. The solution imposes a maximum bound on the variance of the excess period

holding returns as a scalar multiple of the variance of the short-term rate. This maximum

bound is given by:

VH̃ =
var(r)ρ2

r,R

(1− γ2)
, (5.22)

Shiller (1979) tests this upper bound against sample variances of the holding period

returns on a set of corporate bonds. In most data sets the condition in (5.22) is violated,

presenting evidence against models based on the EH. In a related approach, Singleton

(1980) calculates the upper and lower bounds for the variance of long-term rates implied
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by a linear rational expectations model. The author defines:

yt =
∞∑
t=0

β′s(tx
e
t+s)

where tx
e
t+s = Et(xt+s | Φt), β

′
s = (βs1, ..., β

s
K). When K = 1, the system reduces to

(5.14), where yt = Rnt and xt = rt. Now let’s define y∗t to be:

y∗t =

∞∑
t=0

β′sxt+s,

and ŷt as:

ŷt =

∞∑
t=0

β′s(tx̂t+s),

where tx̂t+s = Et(xt+s | xt, xt−1, ...). LeRoy and Porter (1981) show the following result

when K = 1:

var(y∗t ) > var(yt) ≥ var(ŷt). (5.23)

The first part of the of the inequality in (5.23) is explained as follows. Let δt =∑∞
t=0 β

′
s(xt+s −t xet+s). Then, by construction,

y∗t = yt + δt.

Since δt represents innovations happening ‘after’ period-t, both yt and δt are contempo-

raneously uncorrelated which means:

var(y∗t ) = var(yt) + var(δt).

The second inequality in (5.23) is derived from the fact that the covariances of ŷt and

the forecast error (xt+s −t x̂t+s) are zero, so:

var(y∗t ) = var(ŷt) + var(ξt);
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where ξt =
∑∞

t=0 β
′
s(xt+s−t x̂t+s), and var(ξt) ≥ var(δt). Singleton (1980) estimates the

variance of these three indicators. The results show that the first inequality is consistently

violated. The author also confirms the results of Shiller (1979) regarding the excessive

volatility of the expected holding period returns.

It is important to mention that the tests presented were criticized for the implied

assumption of stationarity of financial data, as we will discuss later, results for tests of

stationarity in interest rates and inflation rates remain inconclusive.16

5.3.3 Fact 3: predictability of returns

The Expectations Hypothesis of the term structure implies that the spread between

long and short rates forecasts: (1) the change in yield of the long-term bond over the

life of the shorter term bond and (2) a weighted average of the changes in shorter terms

over the life of the longer term bond. Campbell and Shiller (1991) found that the first

relationship is not present in the data. Focusing on the case of pure discount bonds, we

have:

R
(n)
t = (1/k)

k−1∑
i=0

Et(R
(m)
t+mi) + c

where k = n/m. This simply states that the long rate is a constant plus the weighted

sum of expected future shorter term interest rates. This equation holds true when we

assume that expected continuously compounded yields to maturity on all discount bonds

are equal, up to a constant - the approach taken by Fama (1984) - or if we take it as a

linear approximation to a nonlinear expectations theory of the term structure.

Let’s now define the spread between the n and m-period rate as:

S
(n,m)
t = R

(n)
t −R

(m)
t .

16 Results vary depending on the country, period of analysis and methodology. Cox et al. (1985)
concluded that short term interest rates follow a stationary process, while Campbell and Shiller (1987)
use a non-stationary process to characterize interest rates. Newbold et al. (2001) find evidence for non-
stationary nominal interest rates using US and UK data. Cerrato et al. (2013) find support for the
hypothesis of (break) stationary nominal interest rates for the US and Canada. King et al. (1991) fail
to reject the null hypothesis of a unit root in the nominal interest rate. Regarding real interest rates,
Rose (1988) finds evidence of the presence of a unit root in short-term nominal interest rates using
date for 18 countries in the Organisation for Economic Co-operation and Development (OECD). Others,
such as Rapach and Wohar (2005) and Bai and Perron (2003), contest this result finding support for a
regime-wise stationary process. For a detailed discussion, see Neely and Rapach (2008).
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The spread is a measure of the slope of the yield curve. The EH implies that the spread

is a forecast of changes in future interest rates (plus a constant risk premium.) Therefore,

the exercise consists of evaluating whether the spread resembles an optimal forecast of

the changes in interest rates. According to the EH:

m

n−m
S

(n,m)
t = EtR

(n−m)
t+m −R(n)

t (5.24)

Eq. (5.24) simply states that the spread between two rates at different maturities (with

m being the shorter maturity and n the longer one) should be equivalent to the difference

between the expected rate of the period comprised from m to n and the long rate. In

such a manner both alternatives become equivalent for the investor.

Campbell and Shiller (1991) test this hypothesis by regressing Rn−mt+m − Rnt onto

a constant and its predicted value sn,mt . Theoretically, the slope coefficient should be

one, representing a ‘rational’ prediction error. Their results show that, for the sample

considered, the term structure between almost any two maturities (m and n, where

n > m) gives the wrong direction of the forecast. The authors consider this finding a

resounding failure of the expectations hypothesis of the term structure.

5.3.4 Fact 4: ‘excess’ sensitivity

“While I was at the Fed, I asked the staff to use daily data to compute the corre-

lation between changes in the current one-year interest rate and changes in the implied

one-year forward rate 29 years in the future. Using 1994 as an example, the answer was

0.54! (...) you have to be a pretty devout believer in efficient markets to claim that the

daily flow of news really has that much durable significance.”

Blinder (1999)

The phenomenon dubbed ‘excess sensitivity’ of long-term bonds refers to the fact

that, on average, long-term bond rates react positively and significantly to current events.

In reference to monetary policy innovations, Cook and Hahn (1989) built a database of

monetary policy announcements by the FED during the period of 1974 to 1979. They

found a positive and significant response at all maturities, but smaller at the long end
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of the yield curve. Later on, Roley and Sellon (1995) followed the same approach, but

found a statistical insignificant response of bond rates to changes in the target policy

rate.

Kuttner (2001) claimed that a possible explanation for the negative results was an

improved capacity of agents to predict monetary policy actions, making these changes

an imperfect proxy for the ‘surprise’ component of monetary policy. The author tests

this hypothesis by first deriving a ‘surprise’ type component of monetary policy using

information from the futures markets, and finds a significant response of yields to this

component (from 50.4 at the 3 month maturity to 19.4 at the 30 year one). These results

show that the response of the yield curve over the month prior to the FED’s decision

is significant and larger for both the anticipated and unanticipated component. These

responses are larger than those predicted by the EH, since reactions to surprises vanish

‘slowly’ through the yield curve. Here the hypothesis, also followed by Rudebusch (1998),

is that the high persistence of FED’s reaction generates movements in the short future

rates - because they encompass changes in short-term interest rates in the near future.

However not much is said about the long end of the curve, where unexpected shocks have

effects of 51.9 basis points to 1 percent changes in the short rate.

Gurkaynak et al. (2003) present evidence on the same type of highly sensitive reac-

tion of long run rates to news about inflation and output. In models where it is assumed

that the long-run characteristics of the economy, such as the level of inflation and real

interest rates, are constant over time and perfectly known by all economic agents, ex-

pectations of far enough rates in the future should remain relatively fixed. The authors

present linearized versions of two Neo-Keynesian models. Both can be represented by:

πt = µEtπt+1 + (1− µ)Aπ(L)πt + γyt + επt

yt = µEtyt+1 + (1− µ)Ay(L)yt − β(it − Etπt+1) + εyt

where π denotes the inflation rate, y the output gap, i the short-term nominal interest

rate, and επ and εy are both i.i.d. shocks. When µ = 1 we have the pure New Keynesian

model of Clarida et al. (2000). However, a value of µ = 0.3 has been advocated by

Fuhrer (1997), Rudebusch (2001) and Estrella and Fuhrer (2002), to match the degree

of persistence in inflation present in U.S. data. They use parameter values of Rudebusch
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(2001) for this second model. Both models are closed by a Taylor-type interest rate rule:

it = (1− c) [π̄t + a(π̄t − π∗t ) + byt] + cit−1 + εit

where π̄ represents the trailing four-quarter moving average of inflation, π∗ stands for the

constant inflation target and εi is an i.i.d. shock. The authors use this setup to simulate

impulse response functions of the interest rate (short term) to 1 percent inflation, output

and interest rate shocks. In the pure forward-looking case of Clarida et al. (2000), shocks

disappear after four quarters. However, when the persistence parameter is calibrated

following Rudebusch (2001), these shocks persist for up to ten years in the simulations.

These results suggest that in order to obtain a persistent reaction to innovations, agents

must update their beliefs in an adaptive way.

The authors regress the daily changes in forward rates on the surprise component

of macroeconomic data releases and monetary policy announcements - using a technique

similar to the one in Kuttner (2001). A proxy for expectations is constructed by taking

the median market forecast obtained from Money Market Services. They find significance

at the 5-percent level for the impact of the ‘surprise’ components of 8 indicators (of a

total of 13 studied) on short-term rates up to 10 years after the shock occurs. The

surprises were also consistent with the Taylor rule - in other words, when procyclical

variables had a positive surprise, short interest rates increased and the opposite in the

case of countercyclical variables. Moreover, consistent with Campbell and Shiller (1991)

results, short end rates reacted positively to monetary policy surprises - in line with

a perceived persistent federal funds rate - while long run rates reacted in the opposite

direction.

5.4 Imperfect information and the yield curve

This section discusses models in which agents know the true form of the economy,

but are unable to observe the behaviour of a subset of the model state variables. A key

difference with the models in the learning literature is that even if these variables remain

unobservable, agents are endowed with full knowledge of the economy, this is, they are

aware of the law of motion followed by the unobservable variables.
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The review in Section 5.3, shows how standard macroeconomic models face a series

of problems trying to replicate the observed yield curve dynamics. One of these key

stylized facts relates to the volatility of long term interest rate. One of the approaches to

reconcile this particular feature of the yield curve with the EH is to directly introduce non-

stationary processes into the model. Fuhrer (1997) explains how the introduction of shifts

across different monetary policy regimes can reconcile the EH with the pattern observed

by long-term interest rates. Kozicki and Tinsley (2001) follow this idea by proposing a

model in which agents do not observe the central bank’s inflation target, which is subject

to a series of regime shifts. Agents ignore both the timing and size of these shifts,

which leads to an inference problem. It is important to notice that in the case of an

underlying process subject to structural breaks, imperfect information plays a secondary

role explaining the dynamics of the yield curve, since as we mentioned, it is sufficient to

introduce a non-stationary process for one of the determinants of long-interest rates to

obtain the desired volatility levels. However, as the authors state, the data of long term

inflation rate expectations obtained from the Survey of Professional Forecasters (SPF)

is at odds with the assumption of discrete and perfectly observed regime shifts. In the

case that the policy reaction function or the inflation target of the FED were subject to

perfectly observable discrete changes, these would be immediately reflected into agents’

expectations, and consequently, into the yield curve. As Kozicki and Tinsley (2001)

state: “First, long-horizon expectations are not subject to the dramatic fluctuations in

monthly inflation rates. Second, the downward path of inflation expectations in the 1980s

appears to lag considerably the tend movements in historical inflation.” For these reasons,

introducing imperfect common knowledge helps this model as it allows for a smoother

behaviour of inflation expectations.

The absence of full rationality in the model with structural breaks of Kozicki and

Tinsley (2001) is made evident by the model of Timmermann (2001).17 As Sargent (1993)

points out, models that calculate rational expectations equilibria under different regimes

and then analyse the changes in the behaviour of agents between one regime and the next

fall into ‘a bit of a contradiction’ since agents who are unable to factor in the probability

17Timmermann (2001) follows a non-recurrent regime-switching approach to explain the volatility of
equity prices. A particular feature of this model is the presence of a ’meta-distribution’ for the mean
growth rate of the dividend process. When a new regime arrives the mean growth rate of the dividend
process is drawn from this meta-distribution. Although agents infer its value from observed realizations
of dividend prices, the probability of abandoning the regime is factored in when pricing assets.
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of a regime change are in essence exhibiting boundedly rational behaviour. Kozicki and

Tinsley (2001) presented an alternative model, in which the underlying process is not

subject to low-frequency structural breaks. Instead, they assume a unit root process for

the unobservable inflation target. Once again, the presence of imperfect information will

not be key to explain the volatility of long-term interest rates, but will play the role

explaining the pattern followed by long-run inflation expectations. Dewachter and Lyrio

(2006) follow this idea by introducing imperfect information into an affine-factors term

structure macro-finance model linking macroeconomic dynamics to the yield curve.18

Similar to Kozicki and Tinsley (2001), agents hold subjective expectations for the time-

varying endpoints of exogenous variables. As these are non-stationary processes, the

system is described in terms of a Vector of Error Corrections Model (VECM). Dewachter

et al. (2011) extend this model by relaxing the absence of arbitrage opportunities and the

use of endogenous constant prices of risk. Additionally, they allow for differences between

the beliefs of private agents and those of the central bank. As the use of survey data is

common in this literature, modelling agents who update their long-run expectations on

key macroeconomic variables gradually improves the fit of these models to the data.

Imperfect common knowledge does play a key role helping models explaining the

high-sensitivity of long term rates to transitory shocks. As discussed in the previous sec-

tion, Gurkaynak et al. (2003) present evidence for a significant and persistent reaction of

long term rates to macroeconomic news. The authors elaborate a potential explanation

for this feature, based in imperfect common knowledge. In their setup, agents are unable

to tell when changes to the policy interest rate rule are a product of transitory or per-

manent shocks - i.e., changes in the inflation target. When the central bank changes its

policy rate, agents update their estimate of the (unobservable) inflation target by means

of the Kalman filter. Thus, transitory monetary policy shocks affect agents expectations

of the central bank’s inflation target. Although this mechanism generates a shift in the

long term rates, as we saw in section 5.2, it is not enough to obtain enough persistence.

For this reason the authors introduce a feedback effect from recent values of inflation

into the inflation target. In this manner, transitory shocks to the economy are capable

of generating persistent shifts in long term rates.19

18See Bekaert et al. (2010), Cogley (2005) and Dewachter and Lyrio (2006) for other examples of
macro-finance models of the term structure with unobservable variables and time-varying beliefs.

19Gurkaynak et al. (2003) motivate this assumption by depicting a central bank which finds it easier
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Beechey (2004) develops a similar model, but provides analytical proofs regarding

how the introduction of imperfect common knowledge affects the dynamics of the yield

curve. As the author shows, besides affecting the response of long term rates to transitory

shocks, imperfect information affects long term rates along other dimensions. First, the

variance of forecast errors increases. Second, measures for bond return volatility are

heightened. Lastly, the conditional covariance between short and long rates increases.

In order to explore these findings, we reproduce some of the author’s results with

the simple model presented in Section 5.2. Under full information, we can obtain the

inflation forecast error by combining (5.4), (5.5) and (5.6):

πt+1 − πFIt+1/t = π∗t+1 + ut − π∗t = εt+1 + ut+1. (5.25)

This means, from (5.3):

it+1 − iFIt+1/t = εt+1 + ut+1. (5.26)

The one-period-ahead interest rate forecast variance is given by:

var(it+1 − iFIt+1/t) = σε + σu. (5.27)

Now, let’s consider the case under limited information. Here the inflation forecast error

is given by:

πt+1 − π∗,LIt+1/t = εt+1 + (π∗t − π
∗,LI
t/t ) + ut+1, (5.28)

and:

it+1 − iLIt+1/t = εt+1 + (π∗t − π
∗,LI
t/t ) + ut+1. (5.29)

as we can see, now the inflation target forecast error term (π∗t −π
LI,∗
t/t ) enters the forecast

error of interest rates adding noise. We can obtain the value of this expression by

to change the inflation target after the actual inflation rate has deviated from it over the alternative of
pushing the inflation rate back to the target.
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recursive substitution:

it+1 − iLIt+1/t = εt+1 − ut + φkt, (5.30)

where φkt = πt − π∗t/t, kt − φkt−1 = ε+ ut − ut−1 and:

φ =

√√√√ 1

1 + σ2
ε
σ2
u

(5.31)

Notice that 1 − φ is the steady state Kalman gain, which has a value between 0 and 1.

Substituting recursively, we obtain:

it+1 − iLIt+1/t =
∞∑
τ=0

φτεt+1−τ − (1− φ)
∞∑
τ=0

φτut−τ (5.32)

From which the variance is calculated:

var(it+1 − iLIt+1/t) = σ2
ε

(
1

1− φ2

)
+ σ2

u

(
(1− φ)2

1− φ2

)
. (5.33)

For 1
1−φ2 > 1 and (1−φ)2

1−φ2 > 0, we obtain a higher volatility for the prediction error. It is

also possible to confirm the results regarding the sensitivity of interest rates explored in

Section 5.2. A yield curve obtained following the EH:

iτt =
1

τ

τ−1∑
j=0

it+j/t. (5.34)

where it+j/t is the expected one period interest rate j periods ahead with the information

available at period t. In the case of full information, from (5.7):

iτ,FIt = r̄ + π∗t +
1

τ
ut. (5.35)

where iτ,FIt is the nominal yield of the τ periods to maturity bond, under full information.

As we see, given the process we have assumed for the inflation target, the variance of

interest rate is unbounded as t goes to infinity. Thus, the introduction of imperfect

information is not central for explaining the puzzles related to the volatility of long-term

rates in these models.20 We can calculate the variation of yields over time, by differencing

20Although this is true, Beechey (2004) shows how the introduction of imperfect information increases
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the expression in (5.34):

iτ,FIt − iτ,FIt−1 = εt +
1

τ
(ut − ut−1) (5.36)

Taking derivatives with respect to both the permanent and transitory shock we obtain:

∂(iτ,FIt − iτ,FIt−1 )

∂εt
= 1

∂(iτ,FIt − iτ,FIt−1 )

∂ut
=

1

τ

This result is the one presented in Fig. 5-1. Under full information, a shock to the

inflation target will generate a parallel shift in the yield curve, as yields of all maturities

react one for one to this shock. In turn, the reaction to transitory shocks diminishes as

maturity (τ) increases.

In the limited information case, we obtain the τ -period to maturity yield by replac-

ing (5.4) and (5.8) into (5.34):

iτ,LIt = r̄ +
1

τ

(
π∗t + ut + (τ − 1)π∗,LIt/t

)
(5.37)

Now, the nominal component will be a combination of the actual inflation target π∗t ,

affecting the one period interest rate, and its inferred value π∗,LIt/t . The variation of the

τ -periods to maturity yield is given by:

iτ,LIt − iτ,LIt−1 =
1

τ

(
εt + (τ − 1)(π∗,LIt/t − π

∗,LI
t−1/t−1) + ut − ut−1

)
(5.38)

Using the Kalman equation in (5.9), we can express the previous equation as:

iτ,LIt − iτ,LIt−1 =
1

τ

(
εt + (τ − 1)(1− φ)(π∗t−1 − π

∗,LI
t−1/t−1 + εt + ut) + ut − ut−1

)
(5.39)

where we have substituted the value of the actual inflation using (5.3) and (5.4). The

the period-to-period volatility of returns, measured as the variance of iτt − iτt−1.
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reaction to each type of shock is obtained by taking derivatives to the previous expression:

∂(iτ,LIt − iτ,LIt−1 )

∂εt
= 1− τ − 1

τ
φ

∂(iτ,LIt − iτ,LIt−1 )

∂ut
= 1− τ − 1

τ
φ

Rates will react equally to both transitory and permanent shocks, as agents are unable

to distinguish among the two. Relative to the full information case, the term structure

under-reacts to permanent changes in the target and over-reacts to transitory shocks.

As τ increases, the reaction of yields converges to 1 − φ, the steady state Kalman gain

parameter. Intuitively, agents assign a fraction of the total variation in the inflation

rate to a transitory shock, which impact declines as maturity increases. Thus, long

term interest rates will be mainly affected by the inferred shifts in the inflation target.

When a transitory shock hits the economy, agents will confuse it with a permanent one,

generating the effect observed in long interest rates.

In the case in which transitory and persistent shocks are uncorrelated at all leads,

it is possible to show that the value of the conditional covariance between the one period

interest rate and the rest of yields falls as τ increases under limited information.21

Regarding the slope of the yield curve, the imperfect information literature presents

a handful of studies with varying degrees of success replicating this pattern. As we

reviewed in the previous section, the process followed by consumption, either in an

endowment or production economy, is one of the key determinants of the yield curve

slope. Dothan and Feldman (1986), Detemple (1986), Feldman (1989) and Detemple

(1991) characterize the term structure of interest rates under imperfect information in a

Cox et al. (1985) framework, augmented with an stochastic ‘productivity’ factor affecting

the growth rate of the economy.22 When this factor is unobservable, new information

changes the conditional distribution used by agents to price assets, which impacts the

behaviour of the yield curve.23 Although this is an important result, it hinges in the

21Intuitively, short and long interest rates will be affected by a forecast error component, which increases
the comovement across rates. For a proof, see Beechey (2004).

22Detemple and Murthy (1994) present an extension of this model with heterogeneous beliefs.
23This is one of the ways in which a non-constant dispersion in the filter density is obtained. A time-

varying dispersion on the posterior density, suggests periods of greater or lower confidence about the
value of the state. Detemple (1991) obtains this result by assuming beliefs agents hold are not Gaussian,
even if the state follows a Gaussian diffusion process. This results in interest rates exhibiting a stochastic
variance. David (1997), also in a Cox-Ingersoll-Ross production economy, shows that it is possible to
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assumption of an stochastic growth rate which, in this case, is prevalent even under full

information. This is shown by Riedel (2000), who presents a model where the growth

rate is constant but unknown. In this case, the yield curve becomes downward-sloping.

We conclude that the introduction of imperfect information in the form of imperfect

common knowledge can help models of the yield curve improve in several dimensions.

Nonetheless, in the end, strong assumptions regarding the process followed by the exoge-

nous (unobservable) states are needed in order to explain the yield curve related puzzles.

Moreover, the fact many of these models rely in a non-stationary process in order to

improve the fit to the data could be regarded as an undesirable feature, since the debate

on the stationarity of nominal interest rates and inflation rate remains open.24 25

5.5 Self-referential learning and the yield curve

In this section we present models of self-referential learning. In these models agents

follow a recursive learning algorithm to updated their beliefs. Asset prices dynamics

hinge on the self-referential property of learning. Self-referential learning introduces new

dynamics because expectations will now depend of current realizations of the variables,

which are themselves a product of expectations held on previous periods. By learning

from endogenously-generated observations, the introduction of learning can provide new

dynamics without the need for non-stationary driving processes or structural breaks.

Now, we present an extension of the model of Adam et al. (2011) to the case of

bonds. Different from the exercises in Chapter 4, we focus our attention to consol bonds

and the empirical predictions of the model. We present an economy where infinite-lived

investors with the following problem:

max
Ct

EtΣ
∞
s=0 δ

t+sU(Ct+s)

obtain the same result by assuming a non-Gaussian process for the unobservable state variable. Veronesi
(1999) applies this idea to study equity prices under incomplete information. See Bidarkota et al. (2005)
for a discussion.

24Naturally, results of tests for stationarity of the inflation rate vary from country to country and
depend on the particular statistical methods adopted. Ng and Perron (2001), apply a wide variety
of unit root tests to quarterly inflation data of the G7 countries and are unable to reach a definitive
conclusion on the stationarity of inflation rates.

25Furthermore, assuming it is possible to show that the inflation target or other parameters in the
monetary policy rule shift over time at high frequencies, a natural question arises regarding the reason
for which central banks would behave in such a manner.
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subject to:

PtCt +QtBt +Q∞t B
∞
t = PtYt + (Q∞t + 1)B∞t−1 +Bt−1

where Ct is consumption at time t, δ is the discount factor and U(.) is strictly increasing

and concave. Agents receive an endowment Yt, and can save their resources in two

different assets, a one-period risk free bond, which end-of-period holdings are denoted

by Bt and a infinite-lived consol-type bond, denoted by B∞t . The prices of these assets

are denoted by Qt and Q∞t respectively. We have standardized the coupons paid by

the consol bond to 1. Under rational expectations (RE), the equilibrium prices for both

assets are given by:

QREt = δEt

[
U ′(Ct+1)

U ′(Ct)

Pt
Pt+1

]
Q∞,REt = δEt

[
U ′(Ct+1)

U ′(Ct)

Pt
Pt+1

(Q∞,REt+1 + 1)

]
(5.40)

which defines the mapping asset prices to the consumption and inflation processes. Fol-

lowing the discussion in Chapter 4, we assume that price of consol bonds admits the

following representation.

Et

[
U ′(Ct+1)Pt
U ′(Ct)Pt+1

Q∞,REt+1

]
= βREt Q∞,REt (5.41)

where βREt represents the risk-adjusted real growth rate of the consol price under rational

expectations. Substituting (5.41) into (5.40), we get:

Q∞,REt =
δEt [xt+1]

1− δβREt

where:

βREt = Et

(
xt+1

Q∞,REt+1

Q∞,REt

)
(5.42)

and xt = U ′(Ct)
U ′(Ct−1)

Pt−1

Pt
. Assuming xt is distributed i.i.d with mean µx and variance σ2

x,

we obtain:

Q∞,REt =
δµx

1− δβREt
(5.43)

Provided the price of the consol bond remains bounded, the rational expectation solution
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yields:

βREt = µx ∀t.

Replacing this result in (5.43), we obtain the value for the consol bond price under

rational expectations:

Q∞,REt = Q∞,RE =
δµx

1− δµx
, ∀t.

which is time-invariant.26

Figure 5-3 presents the real price of the United Kingdom (UK) 2.5 percent consol

bond for the 1963 to 2010 period. These bonds, popular during the 18th century, repre-

sent only a small fraction of the current total government outstanding debt in the UK,

however their yields are highly correlated with those of long term bonds.27

Figure 5-3: UK 2.5% consol bond price (nominal, expressed in GBP £)
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Note: United Kingdom 2.5% consol bond clean nominal price for the 1963:Q1 to 2010:Q3 period. Data
obtained from Global Financial Data databases.

As we can appreciate, the observed price of the consol bond exhibits large fluc-

tuations around its sample mean. Now we show how self-referential learning can help

improving the model-predicted dynamics. Under learning, agents will form a linear pre-

26To see this, notice that replacing (5.43) into (5.42), yields the following expression for βREt

βREt = Et

[
xt+1

(
1 +

δ∆βREt
1− δβREt+1

)]
.

where ∆βREt ≡ βREt+1 − βREt . Assuming ∆βt = 0, we obtain the result.
27By 2012, a total of eight perpetual bonds were being traded, with a total worth combined of £2.7

bn., representing less than half percent of the outstanding government debt.
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dictor for the real stochastic discount factor-adjusted consol price growth rate. Following

Cogley and Sargent (2008), we relax the assumption that investors know the true value

of βRE in (5.43). Instead, agents will learn it from the data. The dynamics of prices

under learning are given by:28

Q∞,LEt =
δµx

1− δβ̂t
(5.44)

where β̂t represents the belief agents hold about parameter β at time t. Agents will

learn the value of β from the behaviour of consol bond prices. We assume they follow

a statistical approach to learning, based on an econometric model specification. In this

case, agents will use Recursive Least Squares (RLS) to forecast the future expectations

of the (SDF-adjusted) consol price growth rate.

β̂t = β̂t−1 +
1

αt

[
xt−1

Q∞,LEt−1

Q∞,LEt−2

− β̂t−1

]
(5.45)

We assume agents initiate the learning process with the rational expectations prior (β0 =

µx). The gain parameter, αt, stands for the confidence that agents have on their prior.

Under RLS:

αt = αt−1 + 1 (5.46)

Following Adam et al. (2011) and Evans and Honkapohja (2001), the assumptions about

the learning process guarantee the convergence the rational expectations equilibrium.

Our parameter vector is given by θ ≡ (δ, γ, 1/α1, µx, σx), where δ is the discount

factor, γ the relative risk aversion coefficient, 1/α1 the initial confidence that agents

hold in their priors, and µx and σx are the two parameters defining the distribution of

the real consumption growth rate. We use the two last parameters to match the mean

and variance of consumption and inflation processes. The risk aversion parameter is

calibrated using γ = 3 as an upper bound, in order to keep low levels of risk aversion.

We calibrate the remaining two parameters (δ, 1/α1) to match six statistics related to

the consol bond price. These statistics are: (1) the mean consol bond yield rate, (2)

28For simplicity, we maintain the assumption that agents price correctly the value of the coupons. The
introduction of learning about the stochastic discount factor (SDF) adjusted growth rate value of the
coupon will not change the model predicted dynamics significantly, neither, it will preclude agents for
learning the growth rate of the price as knowledge of the mapping of coupons and prices has not been
endowed to agents. For a discussion see Adam and Marcet (2011).

180



Table 5.2: Learning models - results of simulations

heightStatistics UK Data RLS learning Constant gain
std t− ratio t− ratio

E(rq) 8.52 5.13 8.54 0.00 7.43 0.05
σrq 3.00 2.94 3.00 0.00 2.07 0.05
E(hpr) 9.87 26.13 9.23 0.01 8.32 0.03
σhpr 26.48 24.67 25.85 0.01 29.5 -0.06
ρrq ,−1 0.98 0.79 0.98 0.00 0.97 0.01
E(rs) 7.74 5.53 6.58 0.05 6.58 0.05

Parameters RLS Learning Constant gain
δ 0.991 0.991
γ 2 2

1/α 1/25 1/65
P(pf) 0% 0%

Note: Table show results for simulations of learning models. Data for United Kingdom 2.5% consol
bond clean nominal price for the 1963:Q1 to 2010:Q3 period. Data of yields obtained from Global

Financial Data databases. Data on inflation and consumption obtained from the Office for National
Statistics. Moments reported - (1) E(rq): mean consol bond yield rate, (2) σrq : standard deviation of

the consol yield rate, (3) E(hpr): mean holding period return rate, (4) σhpr: standard deviation of
holding period returns, (5) ρrq,−1: persistence of the consol bond yield, and (6) E(rs): mean short rate.

Column 3 reports the standard deviation for each moment estimated from data, building a sample
statistic function as in Adam et al. (2011). Least-squares learning model selection follows a grid-search

process over the values of α1 and δ for a simulation of 190 observations to minimize the distance
between simulated and observed statistics. We report the average moments of 5000 draws for the xt

process. Learning model is formed by equations 5.44-5.46. δ stands for the stochastic discount factor, α
stands for the initial confidence in the RLS case and for the constant gain parameter in the CG case. γ
is the risk-aversion parameter in assumed CRRA preferences, and P(pf) is the percentage of periods in

which simulated prices are at the projection facility bounds.

the volatility of the consol yield rate, (3) the mean holding period return rate, (4) the

volatility of the holding period returns, (5) the persistence of the consol bond yield and

(6) the mean short rate. We use a distance minimization criterion based on the sample

standard deviation of a set of six statistics, including the standard deviation of the return

rate.29 Here we present the results of the simulations.30

Results are reported in Table 5.2. The model with learning fares considerable well

replicating several of the features found in the data. This is a strong result given the

relatively low degrees of freedom the model has to replicate these moments. In the RLS

29We follow the procedure in Adam et al. (2011) for the construction of a sample statistic function.
30As it is common in the literature, we restrict expectations to the ones that keep the price of the consol

bonds bounded. For this we make use of the Projection Facility, as in Timmermann (1996), Marcet and
Sargent (1989), Adam et al. (2011) and Cogley and Sargent (2008). For this, we define bounds for β
such that the expected return to the consol bond and the price remain positive. For the upper bound we
use the Smoothed Projection Facility (SPF), proposed by Adam and Marcet (2011). The values we use
for the SPF are 85 and 90.The consol bond prices in the sample are between 14.7 and 61.4, with a mean
of 34.1 and a s.d of 12.9. Hence we are placing the SPF at 4 standard deviations away from the sample
mean. The SPF assures us continuity of the consol price along the possible values of the parameter set,
which is desirable given the calibration procedure we follow.
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learning case, an initial confidence level of 96 percent is able to generate a significant

improvement in the model predicted volatility. In this model, beliefs about future growth

of bond prices will influence the current price, reinforcing the initial beliefs and generating

a low frequency boom and bust type of behaviour in prices. For this reason, the main

gains from the use of this learning mechanism come in the form of increased model

predicted volatilities for both the consol yield and the holding period returns.

The self-referential learning literature includes as well models that characterize the

yield curve through the Expectation Hypothesis, similar to the ones reviewed in the

previous section. Sinha (2009) presents a NK model where the presence of learning helps

explaining the predictability puzzle. Under time-varying beliefs, the regression proposed

by Campbell and Shiller (1991), reviewed in Section 5.3, is biased downwards, affecting

the estimated slope coefficient. Although the model is able to capture this feature and

predict an increase in long rates volatility with respect to the full information rational

expectations case, it fails in generating a positive slope in the yield curve.

5.6 Concluding comments

The present survey reviews the role of imperfect information and learning in models

of the yield curve. Models of imperfect information in which agents infer the value of

non-stationary unobservable variables have been proved useful to match the dynamics

of observed asset prices. In these models, volatility is generated by introducing a non-

stationary process in the model (i.e.: unit root or regime shifting process). Imperfect

common knowledge improves these models along other dimensions, such as the sensitivity

of long interest rates to transitory shocks. Despite their apparent empirical success, they

leave unexplained the reason why regimes keep shifting or why agents believe this is the

case. Models of self-referential learning address this problem. In this case, the observed

dynamics are generated in the convergence path towards the equilibrium. This learning

path generates self-reinforcing dynamics that help models improve their empirical pre-

dictions. Nonetheless, these models still need to introduce an arbitrary initial point or

justify why agents follow a particular PLM or use a constant gain learning mechanism.

Recent work in learning presents other interesting approaches that could be applied
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to model yield curve dynamics. Adam and Marcet (2011) develop a framework where

the idea of agents taking asset prices as exogenous is formalized. Cogley et al. (2012)

study the evolution of the market price of risk in models where heterogeneous beliefs

interact with the market structure. In a related paper, Branch and Evans (2010) present

a framework where agents use misspecified models to update their beliefs, which yields

endogenous regime-switching returns and volatility on equity markets. Berardi and Duffy

(2010) present an application of adaptive learning using the parameterized expectations

approach, that could be applied to non-linear learning models of the yield curve. Future

work in the study of the yield curve dynamics can benefit from these advances.
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