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Abstract

This thesis is on inequity-averse decisions in operational research, and draws on concepts

from economics and operational research such as multi-criteria decision making (MCDM)

and mathematical modelling. The main focus of the study is developing systematic meth-

ods and modelling to help decision makers (DMs) in situations where equity concerns are

important. We draw on insights from the economics literature and base our methods on

some of the widely accepted principles in this area.

We discuss two equity related concerns, namely equitability and balance, which are

distinguished based on whether anonymity holds or not. We review applications involving

these concerns and discuss alternative ways to incorporate such concerns into operational

research (OR) models. We point out some future research directions especially in using

MCDM concepts in this context. Specifically, we observe that research is needed to design

interactive decision support systems.

Motivated by this observation, we study an MCDM approach to equitability. Our in-

teractive approach uses holistic judgements of the DM to refine the ranking of an explicitly

given (discrete) set of alternatives. The DM is assumed to have a rational preference rela-

tion with two additional equity-related axioms, namely anonymity and the Pigou-Dalton

principle of transfers. We provide theoretical results that help us handle the computational

diffi culties due to the anonymity property. We illustrate our approach by designing an

interactive ranking algorithm and provide computational results to show computational

feasibility.

We then consider balance concerns in resource allocation settings. Balance concerns

arise when the DM wants to ensure justice over entities, the identities of which might affect

the decision. We propose a bi-criteria modelling approach that has effi ciency (quantified by

the total output) and balance (quantified by the imbalance indicators) related criteria. We

solve the models using optimization and heuristic algorithms. Our extensive computational

experiments show the satisfactory behaviour of our algorithms.
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thanks also to İdil Erte, Barbaros Yet, Boran, Bilge (Çelik) Aydin for all the good times we had

and their effort to keep me on the optimistic side. I want to thank my friends Bilgen Katipoğlu,
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Chapter 1

Introduction

Many real life settings involve equity concerns. It is of great importance to address these

concerns because a solution which fails to handle equity concerns is often abandoned by

the stakeholders on the grounds of unfairness.

Various real-life applications exist where equity concerns play a significant role. The

problems considered so far in the literature include but are not limited to allocation, as-

signment, location, vehicle routing, scheduling and transportation network design settings.

Addressing equity concerns in operational research (OR) is interesting and challenging

because:

• Equity is an ethical concept, on which many discussions exist in various areas such

as philosophy, sociology and economics. Engineering applications tend to “quan-

tify” equity using some inequality measures but this approach requires suffi cient

knowledge on the underlying theory of different measures.

• The underlying motivation for equity and the specifics of the problem may result

in different equity-related concerns, such as equitability and balance. These two

concerns are substantially different from each other and hence may require different

methods. Moreover, what is considered as fair depends on the context and the

decision maker (DM)’s understanding of a fair allocation. Different settings may

require different methods to handle equity concerns.
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CHAPTER 1. INTRODUCTION

• Equity rarely appears as the sole concern in applications. Real life applications

often involve considering tradeoffs between equity and other relevant criteria such as

effi ciency. Therefore, many mathematical modelling approaches to equity use multi-

criteria decision making problems, which are considerably more challenging than

their single objective counterparts in terms of both computational and cognitive

effort needed.

The challenge to address equity concerns in mathematical modelling approaches raises

many stimulating questions some of which are addressed in this work. We mainly aim

to develop good decision support tools for decision makers in such settings by finding

solutions that would be acceptable to many inequity-averse decision makers.

Research Questions:

• What are the mostly used equity-related concepts in OR? How can we incorporate

equity concerns in decision making models? What are the approaches that have

been used so far in the OR literature? What are the advantages and limitations of

these approaches?

We attempt to address this question in the paper called “Inequity-averse optimisation

in operational research”, which is under review at the European Journal of Operational

Research an invited review. As we will discuss later in detail, there is a broad range of

applications where equity concerns are discussed and incorporated into the mathemati-

cal models in an explicit way. The equity discussions are mostly on two equity-related

concepts: equitability and balance. The key difference between these two concepts is the

anonymity assumption: equitability concern arises in settings where the recipients are in-

distinguishable (hence anonymity holds) whereas balance concern occurs in settings where

the recipients are distinguishable based on for example claims, needs or preferences (hence

anonymity may not hold).

From a modelling point of view, three main approaches are used to handle equitability

concerns:

12



CHAPTER 1. INTRODUCTION

• —The first is a Rawlsian approach, where the focus is only on the worst-off entity.

—The second is based on using inequality indices in mathematical models.

—The third is a holistic (multi-criteria decision making) approach where eq-

uity is addressed by imposing person anonymity and Pigou-Dalton principle

of transfers (PD) conditions on the model of the DM’s preferences. We call the

corresponding utility functions representing such preference models equitable

aggregations.

Balance concerns are handled in similar ways, either by using an imbalance indicator

in the model or by converting the problem to an equitability problem by scaling the

alternatives in an appropriate way.

The simplest and crudest of the equitability-handling approaches is the Rawlsian ap-

proach, which assesses equity by the amount allocated to the worst-off entity in a distrib-

ution. In another approach to equitability, one uses well defined inequality indices (based

on relatively restrictive assumptions), which are able to provide a DM with a single al-

ternative that is the “best” in terms of equity. When equity is the only concern, such

approaches present the DM with a single solution. However, using such inequality indices

in multicriteria decision making environments would involve tradeoffs between multiple

criteria and selecting the “best” solution would require using appropriate decision sup-

port. The third approach is a more general approach to equitability, based on commonly

accepted convexity and symmetry axioms (equitable effi ciency) but is a more complicated

method and may remain inconclusive since the resulting models always involve multiple

criteria. In such cases one would call for decision support to find the “best”solution unless

there is a single alternative that is better than others in all criteria.

The problem of obtaining many inconclusive comparisons in multicriteria decision mak-

ing settings can be mitigated by taking into account value judgements which the DM has

provided. That is, we can incorporate information which the DM gives us (for example

that she prefers one distribution to another) into the preference model. Our attempt to op-

erationalise this idea of incorporating DM’s preference information for the third approach

13



CHAPTER 1. INTRODUCTION

to equitability, where we assume anonymity and PD axioms on the preference model of

the DM, led to the following question:

• How can one assist a decision maker who is able to provide limited preference in-

formation in terms of holistic judgements when there are equitability concerns and

hence anonymity property holds in the preference model?

The second part of the thesis focuses on incorporating preference information from

the DM for the methods where equity is addressed using anonymity and quasi-concavity

(convexity) conditions on the model of the DM’s preferences. This addresses the problem

of obtaining many inconclusive comparisons and can be used to find the best alternative,

or a set of “good”alternatives, to sort the alternatives into some predefined groups, or to

rank the alternatives.

Our attempt to answer this research question led to the following two papers:

• — “Using Holistic Multicriteria Assessments: The Convex Cones Approach”, which

has been published in Wiley Encyclopedia of Operations Research and Man-

agement Science. In this article, we discuss the convex cones approach, a well-

known approach in the multi-criteria decision making literature that uses holis-

tic preference information in the decision support process. We discuss this

approach within the classical setting, i.e. for problems where there is no equity

concern.

— “Incorporating Preference Information in Multi-criteria Problems with Equi-

tability Concerns”, where we suggest an approach for problems with equitability

concerns that takes into account value judgements which the DM has provided.

We extend the theory of convex cones discussed in the previous paper so that

it is applicable to problems where there is anonymity. We also provide a rank-

ing algorithm to illustrate the computational significance of these ideas in a

practical setting.

Taking our motivation from resource allocation settings, where the DM has equity

14



CHAPTER 1. INTRODUCTION

(mostly balance) and effi ciency concerns we try to address the following question in the

third paper:

• How can we design models for resource allocation problems where balance is a con-

cern alongside effi ciency and address the tradeoff between these two concerns?

One possible answer to this question is provided in the paper “Incorporating balance

concerns in resource allocation decisions: A bi-criteria modelling approach”. In this paper

we propose a means to handle balance concerns alongside effi ciency concerns in allocation

problems and hence provide a bi-criteria framework to think about trading balance off

against effi ciency. This article is published in Omega.

Our contributions are the following:

• Providing a comprehensive review of the recent OR literature along with a thor-

ough discussion of equity-related concepts considered in this area

• Providing a classification of the approaches that are used to address equity con-

cerns in optimisation settings and discussing advantages and limitations of these different

approaches

• Proposing a novel interactive approach, which involves substantial theoretical

results that can be used to find the best alternative, rank or sort the alternatives in

settings where equitability concerns hold

• Designing an interactive ranking algorithm for the settings where the DM has

equitability concerns and providing computational results. To the best of our knowledge,

this is the first multi-criteria ranking algorithm designed in the literature for the problem

settings we consider.

• Defining and classifying balance line-based imbalance indicators

• Proposing a bicriteria modelling approach for handling effi ciency and balance

concerns in various resource allocation settings

• Performing computational experiments on the epsilon constraint approach and

a TS algorithm, which are suggested to solve the resulting bicriteria and multicriteria

models

15



CHAPTER 1. INTRODUCTION

To sum up, the main body of the thesis is composed of the following chapters, which

are based on the papers discussed above:

Chapter 2: Inequity-averse decisions in operational research

Chapter 3: Using holistic multicriteria assessments: the convex cones approach

Chapter 4: Incorporating preference information in multi-criteria problems with equi-

tability concerns

Chapter 5: Incorporating balance concerns in resource allocation decisions: A bi-

criteria modelling approach

We conclude the thesis in Chapter 6.

Individual chapters are intended to be read as self-contained papers: as such, decisions

about the optimal notation to use have been made individually within chapters. Notation

is reintroduced in each individual chapter and notations may subtly differ between different

chapters. The definition of commonly used terms will be repeated.

16



Chapter 2

Inequity Averse Optimisation in

Operational Research

2.1 Introduction

There are various real life applications where equity concerns naturally arise and it is

important to address these concerns for the proposed solutions to be applicable and ac-

ceptable. As a result, there exist many articles cited in the operational research (OR)

literature that consider classical problems, such as location, scheduling or knapsack prob-

lems, and extend available models so as to accommodate equity concerns. These models

are used across a broad range of applications including but not limited to airflow traffi c

management, resource allocation, workload allocation, disaster relief, emergency service

facility location and public service provision. This broad range of applications indicates

that considering these classical models with an emphasis on equity is practically relevant

in addition to being technically interesting.

In this paper we present a literature review on inequity aversion in operational research

and a classification of the modelling approaches used to incorporate concerns about equity

in optimisation problems. The equity concept is often studied in an allocation setting,

where a resource or good is allocated to a set of entities. The concern for equity involves

treating a set of entities in a “fair”manner in the allocation. The allocated resource or

17
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RESEARCH

outcome can be a certain good, a bad or be a chance of a good or bad. The entities can be

for example organizations, persons or groups of individuals which are at different locations

or are members of different social classes.

At this point it may be helpful to look at three small examples. Let us start with a

simple example in which we have two people who are allocated some money. Consider the

following two allocations to these people, who are no different in terms of claim: (100,50)

and (80,70). Common sense suggests that the second allocation is more equitable than the

first one. The Pigou-Dalton principle of transfers (PD) formalizes this intuition. The PD

states that any transfer from a richer person to a poorer person, other things remaining

the same, should always lead to a more equitable allocation.

PD allows us to compare allocations that have the same aggregate amount as is the case

in our simple example. However, things get more complicated when we have allocations

that differ in terms of the aggregate amount. In many situations an increase in equity

results in a decrease in effi ciency, which is usually measured by the total amount of the

good (bad) that is allocated. As an example, consider a case where an emergency service

facility is going be located. Suppose that a number of potential sites for the facility is

already determined and the problem is to choose one of them. The facility will be serving

different customers and it is important for the decision maker (DM) to ensure an equitable

service to them. The DM evaluates how good a service is by the distance the customers

have to travel to reach the facility: the shorter the distance between a customer and

the facility, the better it is. One can consider choosing an alternative that minimizes

the total distance that all the customers travel to the facility to evaluate how good each

potential site is. However, in such a solution some of the customers may be significantly

under-served. Figure 2.1 shows a small example with 3 customers located at the nodes

of a network (C1, C2 and C3). Suppose that there are two alternative locations for the

emergency service facility (P1 and P2, respectively). We will represent the two alternative

locations using distance distributions that show the distance that each customer has to

travel. The first location (P1) results in distance distribution (3,4,4) and the second one

(P2) results in distribution (0,5,5). We see that the second alternative is more effi cient in
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Figure 2.1: Two alternative locations for an emergency service facility

the sense that the total distance travelled is less. However, this effi ciency is obtained at

the expense of customers C2 and C3 who have to travel 5 units of distance. In the first

alternative, the total distance travelled is larger but the distance travelled by the customers

C2 and C3 is reduced. This is a typical example of the trade-off between effi ciency and

equity, which occurs in many real life situations. The DM’s preferences would determine

the better alternative in such cases: there is no “objective” way to determine which

distribution is better, and reasonable people may take different views. For example the

DM may argue that the first alternative is better claiming that the maximum distance

travelled is smaller, or s/he may argue that the second alternative is better as it saves on

total distance travelled.

The above examples show cases where anonymity holds; that is, the identities of the

entities are not important. However, as we will see in the next example, there may be

situations where the entities have different characteristics and hence anonymity may not

make sense. Suppose that you are the head of an academic department and you have to

decide on the allocation of the next year’s studentship budget to the PhD students. Which

of the following rules would you use as a base for your decisions?

-Allocate every student the same amount regardless of any other factor

-Allocate the budget proportional to the students’declared needs, which are measured

as the shortfall from target income (students that need more get more)

Different people would give different answers to this question. The first rule respects
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person anonymity and hence is equitable. However, there are other sensible arguments

that would favor other rules, as anonymity may be inappropriate when we have entities

with different characteristics, such as different needs. These two rules involve two different

dimensions of equity, “horizontal” and “vertical” equity. Horizontal equity is concerned

with the extent to which entities within a class are treated similarly ([1]); hence giving equal

amounts to the students with the same need would satisfy concerns on horizontal equity.

Vertical equity is concerned with the extent to which members of different classes are

treated differently. Giving different amounts to students with different needs is a decision

regarding vertical equity.

As seen in this example, a reasonable equity concept might involve “unlike treatment

of unlikes”, such as giving different amounts to students with different needs. We call this

equity concept that involves entities which are distinguished by an attribute such as need,

claim or preferences balance.

2.1.1 Review Methodology

The search methodology we use for this review is as follows: We used the “Web of Science”

database for our search and used the keyword “equit*” to be able to include the words

such as “equity”, “equality”, and “equitable”. We narrowed down the search by area

(Operational Research/Management science) and we limited the search to “Journal Arti-

cles”. We note that the results of the search highly depend on which journals are classified

as Operational Research or Management Science journals. For example many articles in

the telecommunications area dealing with equity are not included since those appear in

journals not classified as OR/MS. As our focus is on current practice we surveyed the 10

years from 2003 to the time of analysis and mid way through 2013. We have identified 392

articles. Screening by title, we eliminated the irrelevant ones, most of which use “equity”

as a financial term, and obtained 181 articles. We further screened them by abstract. We

focused on the studies that either report a modelling approach that incorporates equity

concerns or discuss equity measures that have been used in the OR literature. We obtained

89 articles this way. Scanning the references of these articles we added 27 articles to our
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review list. In Table 2.1 we report the the journals that contribute to the literature with

2 or more publications. Around 16% of the articles were published in European Journal

of Operational Research, followed by 9% and 8% in Computers and Operations Research

and Transportation Science, respectively. In total there were 40 journals, which shows

that equity considerations arise in various settings and are discussed in publications in a

variety of journals with different audiences and scopes.

Table 2.1: Number of articles by journal
Journal Frequency
European Journal of Operational Research 17
Computers and Operations Research 10
Transportation Science 9
Annals of Operations Research 7
Interfaces 6
Journal of the Operational Research Society 6
Operations Research 6
Transportation Research Part B 5
Networks 4
Omega 4
Naval Research Logistics 3
Transportation Research Part E 3
Discrete Applied Mathematics 2
IIE Transactions 2
INFORMS Journal on Computing 2
International Journal of Production Research 2
International Transactions in Operational Research 2
Management Science 2
Mathematical Methods of Operations Research 2
Networks and Spatial Economics 2

The rest of the paper is as follows: Section 2.2 discusses the two main equity related

terms, which are equitability and balance. We mention some of the applications involving

equity concerns cited in the OR literature. For such problems, we summarize the moti-

vation for equity, the outcome distribution used in assessing equity and the entities for

which equity is sought. In this section we do not attempt to give technical details on how

the equity concerns are incorporated into mathematical models; we rather want to show

that there is a wide range of applications and that equity is regarded as an important

concern in the modelling process. Section 2.3 includes a more detailed discussion of dif-
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ferent approaches taken in the literature to incorporate equitability and balance concerns

in mathematical models. We conclude the discussion in section 2.4, where we point out

future research directions that would be interesting to explore.

2.2 Equitability and Balance

In this section we discuss two equity related concepts, namely equitability and balance.

Equitability is used for comparing allocations across a set of indistinguishable entities.

Balance concerns occur when we allocate goods over entities with different needs, claims

or preferences. In such situations, ensuring justice might require treating different entities

differently. We discuss these concepts in an order based on the frequency of appearance

in our review.

2.2.1 Equitability Concerns

Around two thirds of the articles in this review deal with equitability concerns. Equitability

concerns occur when the set of entities are indistinguishable and hence anonymity holds.

The first two examples used in the introduction (Section 2.1) show two important settings

in which equitability can be a concern. The first setting is where a fixed amount of resource

is being allocated and distributions can be quasi-ordered using PD. The second setting is

where we have allocations with different total amounts which are not comparable using

PD. This second setting makes things more interesting and complicated as there is often

a tradeoff between effi ciency and equitability.

We also gave an example regarding horizontal and vertical equity, which we relate to

equitability and balance concepts, respectively. Alongside horizontal and vertical equity,

equity can be quantified in other dimensions such as spatial equity and temporal equity

([1]). Spatial equity is concerned with the extent to which the good is distributed equally

over space, i.e. over the entities at different locations. Temporal equity, which is also

referred to as longitudinal or generational equity, is the extent to which the good is

distributed to the present or future recipients, i.e. to entities are distinguished by temporal
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aspects such as different generations who are the beneficiaries of a road investment or

entities that use an emergency service system at different times.

Let us introduce some notation that will be used throughout the paper. Suppose that

we have an outcome distribution (allocation) y = (y1, y2, ..., ym) where yi is the outcome

level of entity i ∈ I, I being the entity set. Without loss of generality, we assume that

the more the outcome level, the better, i.e. the problem is a maximization problem.

Note that it is possible to define the outcome distribution in multiple ways using different

scales. For example, in a resource allocation problem two possible outcome definitions are

the following: one can define the outcome distribution in terms of the absolute resource

amounts allocated to different entities (yi) or as the shares of the total resource allocated

to different entities (yi/
∑

i∈I yi). An inequality index can be defined for either of the two

distributions. The difference stems from the outcome definition rather than the index itself

as seen in the example. In this work we do not distinguish the inequality indices based on

how the distributions are scaled (see [2] for detailed information and a categorization of

the inequality indices used in location theory).

We now provide a list of some of the many applications cited in the literature along

with a discussion of the motivation for equity in such cases. We classify the applications

based on the underlying technical problem. This classification is summarized in Table 2.2.

Allocation Problems: An equitable allocation of the good or resource over multiple

entities is sought in such problems ([3]). Applications include bandwidth allocation ([4], [5],

[6], [7], [8], [9], [10], [11], [12]), water rights allocation ([13]), health care planning ([14], [15],

[16]), WIP (Kanban) allocation ([17]) in production systems, fixed cost allocation ([18],

[19], [20]), and public resource allocation such as allocating voting machines to election

precincts ([21]). There are also studies that consider general resource allocation settings

such as [22], [23], [24] and [25].

One classical problem in this group is the discrete knapsack problem. The discrete

knapsack problem selects a set of items such that the total value of the set is maximized

subject to capacity constraints. In some applications equity is a concern as well as effi ciency

(total output maximization). A linear knapsack problem with profit and equity objectives
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is considered in [26]. [25] introduce the lexicographically minimum and maximum load

linear programming problems in order to achieve equitable resource allocations.

In resource allocation problems equity may be defined as spatial equity but other

definitions are also possible such as space-time equity across members of the public in

terms of the allocated amount. In water distribution problems, spatial and temporal equity

across demand points is considered. One example of temporal equity concerns is averting

high variation in water deficits in a region over multiple periods to avoid extreme deficits

[13].

[22] discuss different fairness concepts that are used to ensure fair allocation of resources

in an abstract environment. The authors derive bounds for the price of fairness, which

is the loss in effi ciency when a “fair” resource allocation is pursued. [23] also focus on

balancing effi ciency and equity in resource allocation settings.

Another classical OR problem is the assignment problem which involves allocation of

workload over agents. These problems may involve concerns on fairness among agents.

Equity can be sought in terms of the assigned workload as in [27]. In air traffi c manage-

ment, when a foreseen reduction in a destination airport’s landing capacity is anticipated,

ground delay programs (GDP) are used as the primary tool for traffi c flow management.

In a GDP, the departure times of the affected flights are coordinated and hence the air-

craft is delayed on ground. [28] and [29] model the GDP as an assignment problem and

incorporate equity concerns.

Location Problems: One of the main concerns in facility location models is ensuring

an equitable service to the population. Especially in essential public service facility location

models, geographic equity of access to the service facilities is considered as one of the main

requirements for an applicable solution. The access level can be measured in different terms

such as the distance between demand points (customers) and the facilities (as in [30], [31],

[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45]) or the time required

to access the facility from the demand points as in [46], [47], and [48]. [49] considers the

generic location problem from a multicriteria perspective and formulates a model where

each individual access level is minimized.
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[32] define equity over demand points in different groups, which are not aggregated

based on geographic location and which may be scattered in the whole area. The de-

mand points are categorized based on a common attribute value and equity across these

categories is sought. An example would be ensuring equitable service to different wealth

classes.

If the facilities are not essential service facilities, which can serve customers within

a limited distance, the amount of population covered at each facility can be used as an

indicator for which an equitable distribution is sought [33]. A related problem is the

equitable load problem, where ensuring an equitable service load distribution over the

service facilities is of concern ([50], [51], [52], [53], [54]).

Other problems include location-price setting problems, where equitable profit sharing

between competing firms is addressed [55]. [56] consider the problem of locating ware-

houses and try to ensure equity in holding inventory among all supply chain members,

because equity in inventory is argued to have a great impact on the future throughput of

the company through competitiveness issues. Realizing that the solution which minimizes

the total inventory often treats some retailers in an inequitable way, the authors seek

equity across retailers in terms of the amount of inventory.

Vehicle Routing Problems: Vehicle routing problems are used in many applications

such as pick-up and delivery service, disaster relief, hazardous material shipment and

reverse logistics (e.g. waste collection).

One of the outcomes over which equity is sought in vehicle routing problems is vehicle

workload ([57]). In an effort to ensure an equitable workload distribution among vehicles

in a multi vehicle pick-up and delivery problem, the expected length of the longest route

is minimized in [58]. Similarly, [59] consider a routing problem, and propose a model that

guarantees that lottery sales representatives travel roads of similar length on different days.

This ensures an equitable distribution of workload over a time period. Workload balance

is also considered in [60] in a periodic vehicle routing model used to optimize periodic

maintenance operations. [61] deals with an equitable partitioning problem that ensures

a balanced workload distribution to vehicles. [62] consider a reverse logistics network
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problem in which the service areas for multiple depots are defined. Equitable workload

distribution to depots is considered in one of the objectives of their model. The workload

of a depot is measured in terms of the hours needed to serve the service area it is assigned

to.

Equity concerns naturally arise in vehicle routing problems arising in disaster relief

contexts ([63]). In such problems, one of the concerns of the decision makers is ensuring

equitable service distribution to different affected areas (nodes). Equity of service to

demand nodes is defined in various ways. For example, if all the demand is satisfied when

a node is visited then the arrival time is used to measure service ([64]).

[65] develop a multiobjective location-routing model, to model a home-to-work bus

service, and try to achieve an equitable extra time distribution across customers. Extra

time is defined as the difference between the bus transport time and the time of a direct

trip from home to work.

An interesting variation on this sort of problem is provided by [66], who introduce

the so called balanced path problem in acyclic networks, which finds paths from an origin

to a destination in an acyclic network such that the cost difference between the longest

and shortest paths is minimized. Similarly, [67] consider the balanced travelling salesman

problem, which finds a Hamiltonian cycle (a spanning cycle in a graph, i.e. a cycle through

every vertex [68]) with the minimum cost range over its edges.

Scheduling: In personnel scheduling, equitable systems attempt to distribute the

workload fairly and evenly among employees [69]. As an example of this, [70] formulate

a bidline scheduling problem as a set partitioning problem and consider workload equity

over pilots in their model.

Fairness across patients is one of the factors considered while designing appointment

systems ([71]). For appointment scheduling for clinical services [72] introduce a model

which includes equity related constraints in order to find uniform schedules for the patients

assigned to different slots. The proposed unfairness measures are based on the expected

waiting times at each slot and the number of patients in the system at the beginning of

each slot.
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[73] propose bicriteria models to schedule ambulance crews, the two criteria being the

aggregate expected coverage and the minimum expected coverage over every hour. The

second criterion is included to incorporate temporal equity concerns into the model.

Other examples include [74] who consider reentrant hybrid flow shop scheduling prob-

lem, which allows the products to visit certain machines more than once. In this paper,

the equity concept is used with a different underlying motive. The authors propose a

bi-criteria model and use equity in order to generate solutions which are good enough in

both criteria. That is, solutions that perform very well in one criterion while performing

very badly in the other are avoided. This idea is explained in Section 2.3.

Transportation Network and Supply Chain Design Problems: In transporta-

tion network design, equity over network users is considered (as in [75], [76], and [77]).

Equity over users is considered while designing access control policies, in which meters

are installed at on-ramps to control entry traffi c flow rates. Different equity concepts are

reported such as temporal equity and spatial equity: “The temporal equity measures the

difference of travel time, delay and speed among users who travel on the same route but

arrive at the ramp at different times while the spatial equity concerns the difference among

users arriving at difference ramps at the same time”[78].

Equitable approaches are also used in congestion pricing schemes to ensure “fair”treat-

ment of the travelers that are categorized for example by income or geographic locations

([79], [1]). [79] consider a pricing scheme more equitable if it leads to a more uniform

distribution of wealth across different groups of population.

Equitable capacity utilizations among the participating warehouses and manufacturers

is considered in collaborative supply chain design ([80]).

Other Integer/Linear Programming Problems, Combinatorial Optimization

Problems and Stochastic Models: In an effort to form equitable student case study

teams, [81] proposes an integer programming model which ensures that each team has

similar a priori academic performance. By creating teams that are as equally capable as

possible (i.e. by equitably distributing capability over teams) the author seeks to ensure

that final grades of the students are not influenced by the assignment system.
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Punnen and Aneja [82] introduce the lexicographic balanced optimization problem.

Given a finite set E of elements e : e ∈ E each with a certain cost value ce, it is assumed

that a a family of subsets of E are defined as feasible solutions and denoted as F (F is

assumed to have a compact representation and the members of F are not listed explicitly).

The problem finds a feasible subset S ∈ F that lexicographically minimizes the absolute

difference between maxe∈S ce and the kth minimum of {ce : e ∈ S}. This problem is a

lexicographic extension of the balanced optimization problem that minimizes the range

(maxe∈Sce − mine∈Sce). Solution algorithms and generalizations for the problem are

discussed. Turner et al. [83] consider the generalized balanced optimization problem,

which involves finding the feasible subset S that minimizes maxe∈S |ce−kmax(S)|, where

kmax(S) is the kth largest cost coeffi cient in S. This problem reduces to the balanced

optimization problem, which minimizes the range, for k = 1 and k = |S|.

[84] study the dispersion problem with equity based objectives, i.e. the equitable

dispersion problem. The dispersion problem selects a subset (of a certain cardinality m)

of items from a given set such that a function of the interelement distances (dij for any

two elements i and j) of the selected elements is maximized. The equitable dispersion

problem focuses on equity-based objectives in this context, which are argued to achieve

an equitable dispersion among the elements in the selected subset. This approach is an

alternative to the studies that consider effi ciency-based objectives such as maximizing the

total dispersion.

[85], [86], [87], [88] approach equity from a multicriteria perspective and hence formu-

late multicriteria decision making models.

Markov decision process (MDP) models can also be considered with additional equity

concerns. [89] develop an LP model with side constraints on equity to model the dispatch of

emergency medical servers to patients in an MDP framework. Different equity constraints

are used to ensure both service and resource allocation equity over patients and workload

and job satisfaction equity over servers.
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2.2.2 Balance Concerns

About one third of the articles in our review deal with balance concerns. Balance is a

special type of equity concern in which the entities are not necessarily treated anonymously

since they differ in some equity-relevant characteristics such as needs, claims or preferences.

Such problems do not have anonymity and an ideal solution may not give each entity the

same proportion of the total allocation.

Heterogeneity of Needs (or size)

The social equity concept quantifies equity based on the extent to which any good

received is proportional to the need ([1]).

As an example, [90] considers equity related concerns in a public policy problem faced

by a municipality which has to select a portfolio of foreclosed homes to purchase to stabilize

vulnerable neighborhoods. A spatial equity based objective is incorporated into the corre-

sponding knapsack model, which minimizes the maximum disparity between the fraction

of all purchased homes in a neighborhood and the number of available foreclosed houses in

that neighborhood across all neighborhoods. In this example, the need of a neighborhood

is quantified by the number of available foreclosed houses in that neighborhood.

In disaster relief settings the demand points have different needs. If partial satisfaction

of demand is possible, the proportion of demand satisfied is used as a measure of service.

Such measures are used by [91] in an inventory management model and by [92] and [93]

in multi-objective transportation/distribution models. [91] propose a stochastic program-

ming model for placing commodities and distributing supplies in a humanitarian logistics

network. There are studies that use more complicated service functions combining tim-

ing and proportion of demand satisfied (see e.g. [94], which consider vehicle routing and

supply allocation decisions in disaster relief). Similarly [95] and [96] consider a drug allo-

cation setting and provide each clinic with a fraction of drug supply which is proportional

to their demand. [97] propose an integer programming model to optimize siding rosters

and ensure that growers with different amounts of cane maintain approximately the same

percentage of cane harvested throughout the harvest season.
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In locating undesirable facilities such as waste disposal facilities, geographic equity

in the distribution of nuisance effects or social rejection is one of the concerns that is

incorporated into the models [98], [99]. In such problems the towns have different nuisance

parameters since they have different sizes. A tenant-based subsidized housing problem is

considered in [100], where subsidy recipients are allocated to regions and equity across the

potential host communities, which differ in size, has to be considered.

Heterogeneity of Claims

In some settings the entities are distinguishable based on their claims for a resource.

The claims may be as a result of a previous legal agreement or on agreed upon rules.

For example, in GDPs spreading delay or delay-related costs equitably among multiple

airlines (flights or flight types) is one of the main concerns while assigning landing slots to

airlines. In such settings the schedule which is generated before the disruptions is taken

as a reference solution and hence may provide airlines with a basis to construct claims

regarding the new schedule. For example a flight which was supposed to land first in the

previous schedule would find it unfair if assigned as the last one in the new schedule.

[101], [102] develop an airspace planning and collaborative decision making model,

which is a mixed integer programming model. The model is developed for a set of flights

and selects a flight plan for each flight from a set of proposed plans. Each alternative

plan consists of departure and arrival times, altitudes and trajectories for the flight. The

suggested model addresses the equity issues among airline carriers in absorbing the costs

due to rerouting, delays, and cancellations. [103] extends this model by integrating slot

exchange mechanisms that allow airlines to exchange the assigned slots under a GDP. [104]

propose an air traffi c flow management model that assigns ground and air-borne delays

to flights subject to both en route sector and airport constraints. The model is described

as a macroscopic version of a previous model by [105], with a different objective function,

which is argued to “spread”the delay in an equitable way across affected flights. Similarly,

[106] propose integer programming models that are based on the models discussed in [105]

and [107]. The models assign ground holding delays to flights in a multiresource traffi c

flow environment that also take equity in delay distribution into account. By considering
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the en route sector capacity constraints, these models differ from the GDP models that

only consider arrival airport capacity. [108] consider the runway scheduling problem in

airport transportation, which finds a schedule and corresponding arrival and departure

times for aircraft. Equity among aircraft is ensured by the constraint position shifting

approach. This approach requires that there is no significant deviation between positions

of the aircraft in the optimized sequence and the first-come-first-served sequence. A similar

approach is used in [109]. [110] use a stochastic programming model that assigns ground

delays to flights under uncertainty. The model minimizes expected delay and incorporates

balance concerns among flights using a balance-related constraint.

Another application is scheduling commercials in broadcast television, in which balance

concerns over clients are incorporated into a mathematical model in [111]. Similarly,

[112] propose a bicriteria modelling framework that considers both effi ciency and balance

concerns in resource allocation problems.

Heterogeneity of Preferences

In some problems entities have different preferences which make them distinguishable

from each other. For example, [113] considers (as they call it) the minimum-envy location

problem, where the customers have ordinal preference orderings for the candidate sites.

The problem is opening a certain number of facilities to which the customers will be

assigned. Each customer is assigned to his most preferred facility among those which are

open and the envy between a pair of customers is measured as the difference between the

ranks of the facilities.

Diversity Concerns

Another concept which is related to equity but in an indirect or orthogonal way is

diversity. Around 4% of the reviewed papers use the diversity concept. To see the mo-

tivation for this concept, suppose that you are going to select a set of candidates for a

degree programme. You have concerns on diversity in the sense that you want certain

population groups to have a certain degree of representation in the selected set. These

groups may, for example, consist of people with an inferior socioeconomic background. A

common way of achieving this is to use quotas or proportion targets, i.e. ensuring that a
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certain proportion of the selected people will be from the specific group of concern. This

approach involves treating people with different characteristics differently such that the

selected team is diversified enough. For example, in an applicant selection model [114]

ensure diversity in the selected team in order to represent certain population groups.

[115] consider the problem of forming teams of service personnel with different skills.

To treat customers served by different teams equitably, the author introduces a diversity

measure and ensures that the diversity is above a threshold for all the teams. To take an-

other example of diversity, in hazardous material shipment, spreading risk over population

groups in an equitable way is one of the main concerns [116], [117], [118]. In some studies

the concept of equity of risk is handled by determining spatially dissimilar paths. These

studies incorporate equity concerns by selecting a set of paths to carry the hazardous ma-

terial, which are as dissimilar as possible. Two examples are due to [116] and [118], who

consider the problem of selecting of k routes in multiobjective hazardous material route

planning. They use a measure of spatial dissimilarity and obtain an equitable distribution

of risk over the related region by choosing spatially dissimilar paths to ship the hazardous

material.

We do not devote a separate section to diversity and discuss it in this section under

balance concerns. That is because although these studies address equity in a relatively

indirect way which is based on creating diversity, it is possible to conceptualize diversity

as a balance concern in such settings. For example when selecting candidates for a degree

program, the underlying problem can be considered as allocating admission to the degree

program to population subgroups. Although there is no way in which degree admission

can be allocated equally across people - out of N people, only n can be accepted onto

the programme, and the remaining N − n will have to be rejected- admission can be

allocated in a balanced way across the population subgroups by ensuring that the set of

admitted candidates is diverse. Similarly, when selecting routes in hazardous material

shipment settings, the membership of the selected route(s), i.e. being a node on the route,

is allocated to different population centres. Diversity ensures an equitable allocation of

membership over different nodes avoiding inequitable solutions such as a solution in which
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Table 2.2: Classical problems in OR re-considered with equity concerns
Problem Examples
Allocation [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [112], [90], [26], [27], [28], [29], [114], [119],
[115], [120], [121], [95], [96], [94],

Location [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [113], [98], [99], [55], [100],
[56], [122]

Vehicle Routing [58], [59], [60], [62], [61], [64], [92], [94], [65], [66],
[67], [116], [117], [118]

Scheduling [70], [72], [111], [97], [108], [73], [74], [109]
Transportation Network Design [75], [76], [77], [78], [79]
Other [81], [80], [101], [102], [103], [104], [106], [82], [83], [84],

[85], [86], [87], [88], [93], [123], [124], [110], [125], [91],
[89], [126]

most of the routes pass through the same set of nodes exposing these nodes to much higher

risk than the rest.

2.3 Different Approaches to Handle Equity Concerns

2.3.1 Different Approaches to Incorporate Equitability

Equity has been widely discussed in the economics literature where it is generally ac-

cepted that there is no one-size-fits-all solution and that special methods are required

to handle equity concerns in particular cases (see e.g. Sen [127], and Young [128], who

discusses different concepts of equity). Nevertheless, using transparent and explicit rules

that determine what is equitable and what is not or how equitable a given distribution is

on a cardinal or sometimes ordinal scale can be useful in ensuring that the decisions are

applicable and acceptable.

Similarly, in operational research there are many different ways of incorporating eq-

uitability in the decision process since its precise interpretation depends on both the

structure of the problem at hand and the decision maker’s understanding of a “fair”dis-

tribution. In this section, we discuss the operational research approaches that incorporate

equitability concerns in mathematical models.
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One of the most common and simplest ways to incorporate equitability concerns is

focusing on the min (max) level of outcomes across persons. This approach is called the

Rawlsian principle ([129]). The Rawlsian principle is justified using a veil of ignorance

concept, which assumes that the entities do not know what their positions (the worst-off,

the second worst-off etc.) will be in the distribution. To illustrate, suppose that you are

given two distributions over two people generically named A and B, such as (5,50) and

(30,25). You have to choose one of the allocations and then will learn whether you are A

or B. You would seriously consider choosing (30,25) as you might be the worse-off person

in a distribution and would get only 5 units if you choose (5,50). This ignorance is a

reason to consider the worst-off entities in the distribution as any entity should find the

distribution acceptable after learning its position. This approach, however, fails to capture

the difference between distributions that give the same amount to the worst-off entity: two

distributions such as (1,1,9) and (1,5,5) are indistinguishable in terms of inequity from a

Rawlsian point of view although the latter is significantly more equitable from a common

sense point of view. This drawback can be avoided by using a lexicographic extension,

which will be discussed later in detail.

A more sophisticated approach to incorporate equitability concerns would be using

summary inequality measures in the model. We call such approaches inequality index

based approaches. These approaches can be further categorized based on whether the

index is employed in a constraint while defining the feasible region or is used as one of the

criteria in the objective function.

A more general, and hence more complicated approach would be to use a (inequity-

averse) aggregation function and to maximize it. We refer to such approaches as aggrega-

tion function based approaches. Some studies optimize a specific function of the distribu-

tion and obtain a single equitable solution while others use a multi-criteria approach and

obtain a set of equitable solutions.

The above classification is summarized in Table 2.3. We will discuss these approaches

further in the following sections.
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The Rawlsian Approach (mini yi)

These methods represent equity preference by focusing on the worst-off entity, hence the

minimum outcome level in a distribution ([129]). Some studies try to maximize the min-

imum outcome while others restrict it in a constraint that makes sure that it is above a

predefined value. The studies encountered that use a Rawlsian approach to equitability

are [44], [43], [45], [51], [91], [64], [31], [55], [98], [36], [50], [47], [100], [99], [51], [41], [93],

[65], [77], [17], [15], [13], [90], [56], [58], [84], [14], [73], [39], [22], [21], [89], [20] and [30].

Clearly, this is an easy to implement and popular approach.

The Rawlsian approach is the one of the oldest approaches in OR used to incorpo-

rate a fairness concept into the models. Many classical OR problems such as assignment,

scheduling and location have also been studied with “bottleneck”objectives. For exam-

ple, the facility location problems that locate p facilities such that the maximum distance

between any demand point and its nearest facility is minimized are known as p-center

problems. These models assign each demand point to its nearest facility, hence full cover-

age of customers is always ensured. p-center location problems are widely considered in

location theory, especially in public sector applications ([130]).

The Rawlsian approach can be extended to a lexicographic approach, which in addition

to the worst outcome maximizes the second worst (provided that the worst outcome is as

large as possible), third worst (provided that the first and second worst outcomes are as

large as possible) and so on [87]. Lexicographic maximin approach is a regularization of

the Rawlsian maximin approach such that it satisfies strict monotonicity and PD principle

of transfers. Lexicographic approaches are used in [28], [11], [7], [25], [12], [8], [120], [121],

[6], [5], [4] and [24]. Lexicographic approaches are very inequality averse and considered

by some studies as the “most equitable”solution.

Inequality Index Based Approaches

In many studies equitability concerns are incorporated into the model through the use of

inequality indices I(y) : Rm → R, which assign a scalar value to any given distribution
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showing the degree of inequality. Many inequality measures are studied in the economics

literature (see Sen [127]). Some of them are also used in the operational research literature

when dealing with problems that involve equity concerns alongside effi ciency concerns. As

inequality indices are used to assess the disparity in a distribution, they are related to

several mathematical concepts of dispersion and variance. They respect the anonymity

property ([131]) and have a value of 0 when perfect equity occurs. They assign a scalar

value to the distribution ([131]) and are “complete”in the sense that every pair of distri-

butions can be compared under these measures ([127]).

The indices are used to address equitability concerns and do not incorporate any con-

cerns on effi ciency. When effi ciency concerns are also relevant, the corresponding models

that use an inequality index to handle equity concerns are either designed as multicriteria

models (two of the criteria usually being effi ciency and equity related, respectively) or as

single objective models that maximize an effi ciency metric and use the index in a con-

straint. For example, Ogryczak [49] works on location problems and develops bicriteria

mean/equity models as simplified approaches. These models deal with the equity concern

by adapting the inequality measures to the location framework and trying to minimize

them. He discusses different ways to find effi cient solutions to these bicriteria models.

Other bi(multi)-criteria examples include [98], [26], [72], [62], [59], [54], [80], [60], [79] and

[37]. There are also single objective models where equity is handled via constraints which

set minimum levels of allocation for each entity and an effi ciency metric is maximized

([89]).

The examples that use an inequality index as the only criterion are [53], [19], [67], [84],

[34], [46], [82], [83], [18], [40], [38], [32], [35], [42], [113] and [81]. [70] minimize a weighted

sum of two inequality measures.

Using an explicit inequality measure has some advantages such as bringing trans-

parency to the decision making process, making the equitability concept computationally

tractable, and hence making it possible to optimize the system with respect to these equal-

ity measures once a suitable measure is agreed upon or to tradeoff equity and effi ciency.

On the other hand, using an inequality index to incorporate equitability concerns implies
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a certain approach to fairness dictated by the axioms underlying the selected index and

sometimes may result in oversimplification of the discussion on equity. Moreover, different

indices are based on different concepts of equity, hence may provide different rankings for

the same set of alternatives. Selecting an index in line with the DM’s understanding of

fairness requires some extra knowledge on the underlying theoretical properties of different

indices.

Recall that the widely-accepted Pigou-Dalton principle of transfers (PD) states that

any transfer from a poorer person to a richer person, other things remaining the same,

should always increase the inequality index value. That is, for any inequality index I(y) :

Rm → R satisfying PD the following holds: yj > yi ⇒ I(y) < I(y + εej − εei), for all y

∈ Rm,where ε > 0, where ei, ej are the ith and jth unit vectors in Rm. A weak version

of this principle requires such a transfer not to decrease the inequality index value. This

weak version can be considered as the minimal property to be expected from an inequality

index. All the indices discussed below satisfy the weak PD. We will indicate the indices

that additionally satisfy (the strong version of) PD.

We now discuss the most commonly used inequality indices. All the indices except the

last one are familiar from the economics literature.

1) The range between the minimum and maximum levels of outcomes (maxi yi−mini

yi): This is the difference between the maximum and minimum outcomes in a distribution.

This index is used in [98], [53], [19], [67], [26], [72], [84], [89], [66], [34], and [46]. [62]

minimize the function (maxi yi−miniyi
miniyi

) ∗ 100, hence use a range function normalized by the

minimum outcome.

In this method the equity level of an allocation is assessed by considering the two

extremes; hence this index fails to distinguish allocations that have same level of extremes

but different levels of the other values. In that sense, this index is rather crude but is used

in many applications owing to its being simple and easy to understand.

[82] consider the lexicographic extension of the range measure, hence in addition to the

difference between the maximum and the minimum outcome (range), they minimize the

difference between the maximum and the second minimum outcome (given that the range
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is as small as possible) and so on. [83] consider a generalization of the range measure in

the sense that |maxi yi − kth mini yi| is minimized, where kth mini yi is the kth minimum

outcome value.

2) (Relative) Mean Deviation: This is the deviation from the mean. Note that in many

cases the mean of the distribution is not known beforehand and is derived endogenously in

the model. It is possible to use the total absolute deviations from the mean (
∑

i∈I |yi−y|,

where y =
∑
i∈I yi
m |) ([18], [46], [49], [27]) or to use the positive or negative deviations only,

as in [49]. The mean deviation does not satisfy strong PD because it is not affected by

transfers between two entities which are both above the mean or both below it.

[59] use the mean square deviation (
∑

i∈I(yi − y)2). [46] and [54] use the maximum

componentwise deviation from average as a measure of inequity (Maxi∈I |yi − y|).

3) Variance (
∑

i∈I(yi − y)2/m): [46], [40], [34], [70], [38], and [72] use variance as

a measure of fairness in their models. Variance satisfies PD. Equivalently, the standard

deviation is also used in some studies ([80], [60]).

4) Gini Coeffi cient : One of the widely used income inequality measure used by the

economists is the Gini coeffi cient owing to its respecting the PD ([132]). The Gini coef-

ficient has the following formula:
∑
i∈I

∑
j∈J |yi−yj |

2m
∑
i∈I yi

. Two examples are [35] and [79], who

use the Gini coeffi cient in location of service facilities and in design of more equitable

congestion pricing schemes, respectively.

5) Sum of pairwise (absolute) differences (
∑

i∈I
∑

j∈J |yi−yj |): Sum of absolute differ-

ences between all pairs is considered in [46], [42], [37] and [113]. Like the Gini coeffi cient

and variance, this measure satisfies the PD. A closely related measure is the sum of square

deviations between all pairs which is used in [76]. [32] consider facility location prob-

lems where they classify demand points into different demand groups over which equity is

sought. They use the (weighted) sum of squares of differences between service distances to

different demand groups to measure inequality. This formulation allows demand groups to

include multiple demand points and service distances between any two demand point that

belong to the same group are not considered in the measure. They show that minimizing

this measure is equivalent to minimizing variance when each demand point is a group by
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itself.

The measures discussed so far are also discussed in the economics literature especially

for assessing income inequality. The first two measures (range and relative mean deviation)

are relatively crude measures and hence not as popular as the others for assessing income

inequality. However, they are used in OR models arguably because these indices have

simpler formulations than the others and so lead to more tractable optimisation problems.

Some other examples that minimize deviation from a point of perfect equality are due

to [81] and [61]. [81] propose an integer programming model to form student teams to

undertake a case study. For equity purposes the teams are required to have similar a priori

academic performance, hence the maximum deviation of a team’s academic performance

from the class average is minimized in the proposed model. The squared deviation func-

tions are also used ([52]). [61] partitions a region into subregions such that a subregion is

served by a vehicle. He ensures that the workload distribution to the vehicles is equitable,

i.e. all vehicles have (asymptotically) equal load.

As discussed above, there are many different inequality indices and selecting one implies

certain assumptions on the decision maker’s attitude to equity. For example, in a resource

allocation environment, if the range is used then the focus is on the most and least deprived

parties.

Inequity-averse Aggregation Function Based Approaches

One natural way to achieve an equity-effi ciency trade-off without specifying an inequity

index is to use an aggregation function of the distribution vector in the model that would

encourage equitable distributions. An example would be a symmetric function under

which a convex combination of two distributions which have the same functional value

would achieve a higher value than these distributions (e.g. if the function is symmetric

(40,50) has a higher value than (30,60) or (60,30)). Such a function is inequity averse in

the sense that the averaging operation improves the distribution. By maximizing such

aggregation (value) functions, we can avoid distributions that give some entities too much

while depriving some others.
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We call these approaches aggregation function based approaches. Unlike an inequality

index which only focuses on the inequity in a distribution, an inequity-averse aggregation

function reflects concerns for both equity and effi ciency. There are several approaches

to how the equity should be captured. There are studies that use value functions which

are Schur-concave, (symmetric) quasi-concave or concave with the aim of obtaining equi-

table solutions. Note that when allocating a bad, a Schur-convex, quasi-convex or convex

aggregation (cost) function is minimized.

In these approaches, one uses an aggregation function U : Rm → R, and modifies the

original problem as follows: max{U(y) : y ∈ Y } where Y ∈ Rm is the feasible outcome

space. For a specified function form to be inequity-averse, it has to satisfy some properties.

First of all, such a function should be symmetric to respect anonymity and should reflect

concerns in terms of inequity-aversion and the equity-effi ciency trade-off. We call the set

of symmetric functions that satisfy the strict Pigou-Dalton principle of transfers and strict

monotonicity equitable aggregation functions.

Definition 1 An equitable aggregation function is a function U : Rm → R for which the

following hold:

y1 < y2 then U(y1) < U(y2), for all y1, y2 ∈ Y , i.e. U is strictly increasing with respect

to every coordinate.

U(y) = U(Πl(y)), where Πl(y) is an arbitrary permutation of the y vector, i.e. U is

symmetric.

yj > yi ⇒ U(y) < U(y − εej + εei), for all y ∈ Rm, where 0 < ε < yj − yi, where ei,

ej are the ith and jth unit vectors in Rm, i.e. U satisfies PD.

All equitable aggregation functions are strictly Schur-concave [87]. Similarly, in a

minimization environment, for example in cost distribution, equitable aggregations are

Schur-convex functions. We now give the definition of Schur-concave functions. Let us

first give the definition of a bistochastic matrix.

Definition 2 A bistochastic (doubly stochastic) matrix (Q) is a square matrix which has

all nonnegative entries and each row and column of the matrix adds up to 1.
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Permutation matrices, which reorder the elements of a vector, are special cases of

bistochastic matrices.

The well-known Birkhoff—von Neumann theorem [133] states that the set of doubly

stochastic matrices of order m is the convex hull of the set of permutation matrices of the

same order. Moreover, the vertices of this polytope are the permutation matrices. That

is, a bistochastic matrix of order m is a convex combination of the set of permutation

matrices of the same order.

Definition 3 A function f is strictly Schur-concave (Schur-convex) if and only if for all

bistochastic matrices Q that are not permutation matrices, f(Qx) > f(x) (f(Qx) < f(x)).

Schur-concave functions are symmetric by definition. Schur-concavity relates to more

familiar concavity concepts in the following way: All symmetric (strictly) quasi-concave

and symmetric (strictly) concave functions are (strictly) Schur-concave.

Maximizing (minimizing) a specific (strictly) Schur-concave (convex) function that

aggregates the outcomes is discussed in a number of papers in the literature. Ball et al.

[29] investigate a class of models for assigning flights to slots in ground delay problems

and discuss the use of Schur-convex aggregation functions as a way of obtaining equitable

solutions within this setting.

Marin et al. [122] use “ordered median functions” as objective functions of discrete

location problems. Ordered median functions are weighted total cost functions, in which

the weights are rank-dependent. As the weights are rank dependent, these functions are

symmetric and if the weights are chosen appropriately, ordered median functions can be

inequity-averse in the sense that they are strictly concave. They show that both the range

and sum of pairwise differences functions can be modeled using this approach, hence are

particular cases of their model.

In communication engineering, one of the commonly used fairness concepts is pro-

portional fairness, which can be obtained by maximizing
∑

i∈I log(yi). An allocation y

is proportionally fair if for any other feasible allocation y′ the total proportional change

(
∑

i∈I(y
′
i−yi)/yi) is zero or negative when all outcomes are nonnegative. The proportional
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fairness concept can be advocated from a game theoretic point of view as a proportionally

fair allocation is also the Nash bargaining solution, satisfying certain axioms of fairness

([22], [134], [135]). Proportional fairness is a specific case of a more general fairness scheme

called α−fairness, which maximize the following parametric class of utility functions for

α ≥ 0 ([23]):

Uα(y) =


∑m

i=1
y1−αi
1−α for α ≥ 0, α 6= 1∑m

i=1 log(yi) for α = 1
.

Lexicographic maximin approach, which is a regularization of the Rawlsian maximin

approach such that it satisfies strict monotonicity and PD, is another example.

There are also approaches that use a Schur-concave function and hence respect the weak

version of the PD only while failing to satisfy the strong version. For example, Hooker

and Williams [16] consider allocation of utilities to individuals (or classes of individuals)

and propose a weakly Schur-concave aggregation function to be maximized. The function

is based on the idea of combining objectives of equity -they use a Rawlsian approach- and

effi ciency. The authors provide a mixed integer linear programming formulation of the

allocation problem and apply the formulation to a healthcare planning example.

A diffi culty with equitable aggregation functions is that the decision maker or modeller

has to select a specific aggregation function. In most settings there may not be a natural

choice of equitable aggregation. A set of approaches based on the concept of a unanimity

order have been developed to address this issue. Given a set F of functions f ∈ F , the

unanimity order with respect to F is the binary relation <∗over outcome vectors and

defined as follows: for any two allocation vectors y1 and y2 ∈ Y , y1 <∗ y2 ⇐⇒ f(x) <

f(y) for all f ∈ F .

Note that unanimity order is a quasiorder. The approaches discussed so far in this

section maximize a particular concave, quasi-concave and Schur-concave function in their

models. We note that rather than using specific functions, if we consider the unanimity

order for the set of all concave, quasi-concave or Schur-concave functions, there is no dif-

ference between the resulting order. This important result is summarized in the following

theorem.
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Theorem 4 For two allocation vectors y1 and y2, the following cases are equivalent:

1. U(y1) ≤ U(y2) for all U : U is increasing and Schur-concave [136]. (Note that [136]

uses a strict version of the PD; hence strictly Schur-concave functions)

2. U(y1) ≤ U(y2) for all U : U is symmetric, increasing and quasi-concave ([137])

3. U(y1) ≤ U(y2) for all U : U is symmetric, increasing and concave ([137])

4. U(y1) ≤ U(y2) for all U : U is additive. That is, U(g) =
∑

i∈I
u(yi) where u is

increasing and concave ([136], [137])

Parts of Theorem 4 for the special case where
∑

i∈I y
1
i =

∑
i∈I y

2
i are proven by Atkin-

son [138] and Dasgupta, Sen and Starrett [139] based on the results by Hardy, Littlewood,

and Polya [140] on majorization (see also [141]). The results for the more general case

(
∑

i∈I y
1
i 6=

∑
i∈I y

2
i ) can be found in Rothschild and Stiglitz [137] and Shorrocks [136].

This theorem states that the unanimity ordering of a given set of alternatives under the

set of all Schur-concave functions is equivalent to the unanimity ordering under the set of

all quasiconcave, concave functions or additive functions of concave functions.

A multicriteria perspective: Equitable Effi ciency and Schur-concavity

The above approaches use particular functions in order to capture equity concerns.

The specific functional forms used are context dependent and different forms are adopted

in different studies. Two common properties of these functions are that they are increasing

or nondecreasing (in a maximization problem) and inequity-averse in the sense that they

satisfy PD, though sometimes in a weak way as in [16]. Considering the aggregation

function approach from a multicriteria perspective, one can relate such functions to the

DM’s preferences and specify a set of properties that an equity-averse DM’s preference

model should satisfy. [142] and [87] take this point of view and introduce the concept

of equitable effi ciency. Given two distributions, the “more equitable”one is distinguished

based on a set of axioms defined on the DM’s preference model. They call a social welfare

function which is in line with this specific set of axioms an equitable aggregation function

and a solution which maximizes an equitable aggregation function equitably effi cient. This
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multicriteria decision making perspective is based on defining each element of the outcome

vector as a separate criterion to be maximized as explained below. This discussion is based

on the theory introduced in [142].

Consider the following problem: max{f(x) : x ∈ Q} where X ∈ Rn is the decision

space, Y ∈ Rm is the outcome space and f(x) is a vector function that maps X to Y

and Q is the feasible set. A typical outcome vector is yk = (yk1 , y
k
2 , ..., y

k
m), where yki is

the outcome value corresponding to entity i ∈ I (i = 1, 2, ...,m) and k is the index of the

alternative.

We denote the weak preference relation of the DM as � (the corresponding strict and

indifference relations are denoted by ≺ and ∼, respectively). Assume that the DM has a

preference model in which the preference relation satisfies the following axioms [87]:

1.Reflexivity (R): y � y for all y ∈ Y .

2.Transitivity (T): (y1 � y2 and y2 � y3)⇒ y1 � y3, for all y1, y2, y3 ∈ Y.

3.Strict monotonicity (SM): y1 < y2 then y1 ≺ y2, for all y1, y2 ∈ Y .

4.Anonymity (A): (y) ∼ Πl(y) for all l = 1, ...,m!, for all y ∈ Rm, where Πl(y) stands

for an arbitrary permutation of the y vector.

5.Pigou-Dalton principle of transfers (PD): yj > yi ⇒ y ≺ y − εej + εei, for all y

∈ Rm,where 0 < ε < yj − yi, where ei, ej are the ith and jth unit vectors in Rm.

The anonymity axiom states that the corresponding preference relation should treat

all the permutations of a vector as indifferent. That is, the identities of the entities are

irrelevant. This is in contrast to what we have called balance problems. The preference for

equity is stated by the PD axiom. The preference relations that satisfy R, T, SM, A and

PD are called equitable rational preference relations. Using equitable rational preference

relations, the relations of equitable dominance, equitable indifference and equitable weak

dominance can be defined as follows:

Definition 5 For any two outcome vectors y1 and y2,

y1 ≺e (/ �e / ∼e) y2 (y2 equitably dominates/ equitably weakly dominates/is equitably

indifferent to y1) iff y1 ≺ (/ � / ∼) y2 for all equitable rational preference relations �.
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Note that "rational dominance", i.e. the normal dominance concept, which is the

intersection relation of all preference relations satisfying R, T and SM, implies equitable

dominance but not vice versa. This is clear from the fact that the set of axioms used

to define rational dominance, which is the standard multicriteria dominance concept, is a

subset of the axioms used to define equitable dominance.

Equitable dominance is also called generalized Lorenz dominance (see [136]). General-

ized Lorenz dominance is an extension of the well-known Lorenz dominance concept used

in the economics literature to the cases where the means of the distributions are not nec-

essarily equal. An alternative is equitably effi cient if there is no alternative that equitably

dominates it. Note that the set of equitably effi cient solutions is a subset of the Pareto

effi cient set.

We have already defined (see definition 1) equitable aggregation functions. It so happens

that the equitable aggregations, i.e. Schur-concave functions are the functions that respect

axioms 1-5. That is, if an equitable rational preference relation is representable by a

utility function, the function has to be increasing strictly Schur-concave in a maximization

problem [87]. The equitably effi cient set is the set of alternatives each of which maximizes

at least one increasing strictly Schur-concave function.

There are two possible equity modelling approaches using such aggregations: The first

approach is choosing a suitable equitable aggregation function (Schur-concave function)

and optimizing it in the model. Optimizing a predefined aggregation function will return

one of the (possibly many) equitably effi cient solutions. The aggregation function based

approaches discussed previously, which optimize a strictly Schur-concave (Schur-convex)

function are in this category.

The second approach is finding the set of equitably effi cient solutions without specifying

the aggregation function further. This way one would obtain a set of alternatives that is

guaranteed to include the DM’s most preferred alternative as long as her utility function

is (strictly) Schur-concave. This approach is discussed in ([142], [85]) and [87] for multiple

criteria linear problems and nonlinear problems, respectively. Baatar and Wiecek [88]

define the equitable preference structure using a cone-based approach and propose a two
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step method including two single objective nonlinear programs in order to find equitably

effi cient solutions.

As an application example, Ogryczak et al. [10] consider equitable optimization in

bandwidth allocation. For practical purposes, they consider a restricted set of criteria and

find equitable solutions for the restricted model using the reference point approach. A

similar approach is taken in [9].

Mut and Wiecek [86] generalize the concept of equitability. They define two different

relations which are more general than �e and investigate the axioms that these new

relations satisfy. They derive the conditions under which the new preferences satisfy the

original and modified axioms of equitable preference.

In most of the above approaches the whole set of nondominated points or a subset of

it is found; hence the algorithms return multiple alternatives without using an interactive

setting. The studies we encountered that consider interactive approaches are [87], [9]

and [10], which use a reference point approach and Karsu et al. [143], which use the

convex cones approach to incorporate DM’s preference information to guide the selection

or ranking process.

The classical multicriteria decision making problem settings include criteria that do

not have the same range, hence it is not appropriate to use equitable aggregation over

the original criteria values. However, in the reference point method, the outcome vectors

are converted to achievement vectors using scalarizing functions. The scalarizing function

transforms the outcomes into a uniform scale, which makes it possible to apply an equi-

table aggregation on the transformed achievement scores. Kostreva et al. [87] make this

observation and discuss the use of equitable aggregations for the reference point method.

Using the same idea, Dugardin et al. [74] use the equitable dominance concept in a

well-known multi-criteria solution approach (Non-Dominated Sorting Genetic Algorithm

2) to discard the alternatives which are competitive in only one criterion. The authors

introduce a function which scales different components of the objective vector. This is an

application where the equity concept is used in order to choose “good”alternatives in a

multi-criteria problem that does not have the impartiality property. These applications
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show the two way link between the Pareto effi ciency and the equitable effi ciency concept.

In addition to generating equitably effi cient solutions using the classical MCDM solution

methods designed to generate Pareto effi cient solutions, one can also use the equitable

effi ciency concept to come up with Pareto effi cient solutions once the outcome vectors are

modified using appropriate scalarizations.

2.3.2 Handling Balance

Most of the approaches handle balance concerns by using an imbalance indicator, which

measures deviation from a predefined level, which is chosen e.g. based on claims, needs or

preferences. This approach is similar to an inequality index based approach to equitability,

however an imbalance indicator does not necessarily achieve its minimum at a distribution

where each entity receives the same amount.

Examples of applications handling the balance concept using this approach are as

follows. In a heterogeneous server system model, [126] consider equity over servers with

different service rates. They formulate the problem as a Markov decision process and solve

a related LP model, in which the customer waiting time is minimized along with a fairness

constraint on the workload division over servers with different skill levels. Specifically, they

use a constraint set that controls the fraction of the idle time that the server groups with

different paces have. These fractions are ensured to have pre-determined values, which are

set by the decision maker. Cook and Zhu [119] allocate a fixed cost among the existing

Decision Making Units (DMU). In order to treat the DMUs in an equitable way, the

authors ensure that the effi ciencies of the DMUs remain unchanged after the allocation.

[48] and [33] incorporate balance concerns over users of a public service provision system

by minimizing weighted negative and positive deviations from a standard service level

specified by the DM.

In ground delay programs, the ration-by-schedule (RBS) rule is used as a reference.

This rule assigns the landing slots to unassigned flights on a First Scheduled First Served

(FSFS) basis based on the arrival times submitted at the beginning of the daily opera-

tions. The studies that use the deviation from the FSFS solution as a measure of inequity
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(imbalance) in arrival slot allocations are [110], [108], [106], and [125]. Karsu and Mor-

ton [112] propose a two dimensional framework to trade balance off against effi ciency in

resource allocation problems motivated by problems in R&D project selection. They use

imbalance indices which measure the deviation of an allocation from an ideally balanced

allocation the DM provides.

The deviation (cost) function, i.e. the imbalance indicator, can be the total absolute

deviation ( [125]) or the sum of negative or positive deviations. There are also studies that

minimize the maximum componentwise deviation ([110], [92]) or use a constraint which

ensures that maximum componentwise deviation is below a pre-defined level ([109], [108]).

In some models designed to improve an existing system (e.g. the current transportation

network) any negative deviation from the status quo is forbidden by constraints as in

[75]. They propose a transportation network improvement model, which ensures that no

origin-destination pair gets worse than the status quo in terms of consumer surplus, i.e.

the difference between what travelers would be willing to pay for travel and what they

actually pay. There are also studies that use a weighted total deviation from the weighted

mean such as [101], [102], [103] (
∑

i∈I wi|yi −
∑

i∈I wiyi|, where
∑

i∈I wi = 1).

The above studies focus on keeping the total deviation from a predefined level at

minimum, which may result in some componentwise deviations to be significantly larger

than others. Similar to equitable aggregation functions, convex functions are optimized in

some models to handle balance concerns. Such convex functions encourage fairness in the

distribution of deviation (cost) and hence avoid some entities deviate significantly for the

sake of minimizing total deviation. In that sense, convex functions can be considered as

special types of imbalance indicators, which measure deviation using a convex function.

Exponential (cost) functions and squared deviation functions are examples of such convex

functions ([124], [52]). Mukherjee and Hansen [124] propose a dynamic stochastic integer

programming model for the GDP that allows one to revisit the assignment in case of a

change in airport operating conditions. They use a convex ground delay cost function in

their objective in order to ensure a uniform spread of ground delay across different flight

categories. Kotnyek and Richetta [123] consider the stochastic GDP and ensure that the
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FSFS holds by using convex ground-hold cost functions. [104] use the same idea in an

Air Traffi c Flow Management model, where an equitable distribution of delay is achieved

by using objective function cost coeffi cients that are a convex function of the tardiness

of a flight. Similarly, Barnhart et al. [106] use an exponential delay penalty function.

For each flight a worst-case FSFS delay is calculated and each interval delay beyond this

worst-case FSFS delay is penalized by an exponentially increasing amount. Similarly,

[111] minimizes a piecewise linear penalty function of deviations from goals. In an access

control policy design problem, Zhang and Shen [78] incorporate spatial equity into the

model by using the weighted square sum of the average delay over different entry points.

[94] use convex disutility functions of unsatisfied demand percentages of each node in a

relief routing model. Hence, the whole demand of each node is not necessarily supplied so

as to save supply for other nodes.

It is also possible to use a scaling approach and define the outcome distribution as the

per capita allocation, i.e. yi/ni where ni is an attribute value, such as a measure showing

the size or need of an entity. For example in disaster relief models, the proportion of

demand satisfied in different demand nodes is used as a measure of service. This scaling

approach allows one to assume anonymity over the scalarized outcome distribution and

hence handle the balance concerns in an equitability environment. Examples that use this

scaling approach are used in different settings including public policy ([90], [100]), disaster

relief ([91], [92], [93]), drug allocation to clinics ([95], [96]), water resources allocation

([120], [121]), transportation network design ([76]) and scheduling ([97]).

2.4 Conclusion

Although most (of the early) attempts in operational research focused on effi ciency con-

cerns, there is a vast amount of applications where equity is an additional, sometimes

the sole, concern. The need for equity is appreciated by the OR practitioners and acad-

emicians as can be observed by the recent increase in the number of OR papers, which

re-consider some of the well-known problems such as knapsack, assignment and location
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problems with an effort to incorporate equity concerns. The applications that require

explicit consideration of equity appear in a broad range of situations both in the public

and private sector.

In this paper, we provide a review of the approaches that are used to handle equity

concerns by optimizing mathematical models. We first discuss two equity related concepts:

equitability, and balance. We discuss the differences between these two concepts along with

their applications. Most of the approaches in our review can be classified as either being

concerned with equitability, i.e. assuming anonymity or with balance, i.e. distinguishing

entities with respect to an attribute indicating for example need, claim or preference.

Handling equity by promoting diversity is an indirect approach which is discussed only in

a few papers and it is possible to define such diversity concerns as a special case of balance

concerns.

We provide a detailed discussion of the solution approaches designed to incorporate

equitability and balance concerns. We categorise the solution approaches to problems

involving equitability concerns into three categories. The first and the crudest approach

is the Rawlsian (maxmin) approach, which compares alternative distributions based on

the amount the worst-off entity receives. In the second approach, an inequality measure is

used either in a constraint or as a criterion so as to quantify equity. When the inequality

index is used in a constraint in the model, inequity is kept below a certain threshold

by this constraint. The inequality measure can also be defined as a separate criterion

alongside other effi ciency related criteria, resulting in a multi-criteria model. Bicriteria

equity/effi ciency models defined this way are easy to solve. Inequality indices are useful as

summary measures but should be used with caution as they may lead to oversimplification

of the equity concept. Understanding the strengths and weaknesses of each index and

choosing the most appropriate one requires some knowledge of the underlying theory of

inequality measurement.

The last approach to equitability is based on using inequity-averse aggregation func-

tions of the outcome distributions. Some studies using this approach maximize specific

inequity-averse functions in their models. Multicriteria decision making concepts provide
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us with a means to relate a set of inequity-averse functions with a set of axioms on the

underlying preference relation of a DM. Two equity-related axioms are additionally as-

sumed for a rational DM’s preference relation: anonymity and the Pigou-Dalton principle

of transfers. The set of functions that represent such preference relations are called equi-

table aggregations and all such functions are Schur-concave in a maximization problem.

These aggregations can be used as scalarizing functions to obtain the set of nondominated

(equitably effi cient) solutions or as the single objective function to be optimized to obtain

a specific nondominated solution.

Balance concerns are handled in two main ways. The first one is based on using

imbalance indicators, which measure the deviation from a reference solution which is

considered as balanced. These indicators can be functions of various forms including

convex deviation functions, which distribute deviation in an equitable way across the

entities. The second way to handle balance concerns is to convert balance problems into

equitability problems by normalising allocations, hence making it possible to use any of

the equitability-handling approaches.

Among the approaches used to handle equitability concerns, finding the set of equitably

effi cient solutions can be used as a “gold standard” for other approaches owing to its

reasonably weak assumptions on the underlying preference relation (the DM can have any

type of Schur-concave function). This multicriteria approach is more attractive than an

inequality index based approach as specifying an inequality index may be diffi cult for the

DM. On the other hand, the approaches that find the set of equitably effi cient solutions are

computationally complex. One way to choose from these two extremes would be relying

on the equitable aggregation concept when the underlying optimization problem at hand

is relatively simple and easy to solve; and using an inequality index when the problem is

less tractable.

We see great potential for further research in improving the decision support process

in multicriteria problems where equity is a concern. Further research on guiding the DM

through the set of candidate alternatives (e.g. the nondominated alternatives) could be

usefully performed. This applies to multicriteria models in both inequality (or imbalance)
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index based and aggregation function based approaches. Selecting the “best”alternative

requires information on the tradeoff between the criteria unless there is a single alternative

which is better than the others in terms of all criteria, which is unlikely. Hence, in most of

the multicriteria mathematical modelling approaches which address equity concerns using

inequality or imbalance indices, a single alternative is obtained by maximizing a weighted

sum of the criteria with predetermined weights. A more robust approach would be pre-

senting the DM with a subset of solutions or using an interactive procedure rather than

predefined weights. Which approach is more appropriate depends on the problem context.

In some cases, presenting the DM a subset of “good”solutions for further evaluations may

be required from the analyst whereas in some others decision support may be required

until the decision maker makes the final selection. Similarly, in equitable aggregation

based multicriteria models, even if some or all the equitably effi cient solutions are found

and presented to the DM, it may be diffi cult for him to choose from this set. Appropriate

decision support would be required if the decision maker wants to obtain a single solution.

This renders interactive approaches relevant and necessary in such settings.

Most of the problems in OR can be categorized into one of three classes based on what

is required from the decision support. These are finding the best solution (or a subset of

good solutions), ranking and sorting ([144], [145]). All the papers in our review of the

operational research literature consider the first type although there may be ranking or

sorting problems in which equity should be considered. An example of a ranking problem

involving equity concerns arises naturally in intercountry comparisons based on income

inequality and social welfare. This is one of the classical topics in the theory of equity

as it has been discussed in economics. MCDM optimisation tools can be relatively easily

adapted for ranking and sorting problems that involve equity concerns: See Sen [127] for

a discussion and Karsu et al. [143] for an interactive ranking algorithm that is based on

the equitable effi ciency concept. An interesting application would be finding ways to sort

different countries in terms of social welfare, or to sort different policy decisions in terms

of the resulting social welfare.

In many cases addressing fairness concerns results in a decrease in effi ciency. A relevant
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question is how much one sacrifices from effi ciency when a “fair”solution is adopted. Ob-

serving the tradeoff between effi ciency and equity would make the DMs more comfortable

when making decisions and communicating the decisions to the stakeholders. For exam-

ple, if the effi ciency loss is negligible, the DM would find it easier to support a solution

that ensures fairness. On the other hand if the effi ciency loss is significant, a compro-

mise solution can be selected. There are studies in the literature that analyze the price

of fairness, i.e. the effi ciency difference between the following two cases: selecting a very

aggressive inequality averse approach and not using an inequality averse approach [22],

[23]. This concept can be generalized to see the extend to which selecting the “wrong”

inequality approach affects the solutions. Analyzing robustness of solutions with respect

to different inequity-averse approaches awaits further attention. There are some initial

attempts to explore the similarities of different inequality measures used in the location

context (see e.g. [146], [42] and other references therein) but there is still more research to

be done. As pointed out in [42] an axiomatic introduction of the equality (and imbalance)

measures could throw some light on the question of how similar different measures are.

Even when an inequality or imbalance index is chosen and used in a constraint, which

controls its value by a threshold, sensitivity analysis can be performed to see the effect of

the threshold value on the optimal solution. Such an analysis would help us to suggest

more robust solutions but was not discussed in most of the studies (see Batta et al. [30] for

an analysis in the context of a p-median problem on a network, where the authors try to

find how bad a locational choice can be provided that the decision makes use dispersion,

population and equity criteria).

To sum up, we believe that being a practically relevant and theoretically challenging

concept, equity can stimulate a number of research questions for operational researchers

especially in the areas of decision support, different problem types, and robustness.
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Chapter 3

Using Holistic Multi-criteria

Assessments: the Convex Cones

Approach

3.1 Introduction

Consider a general multi-criteria decision making (MCDM) problem which can be formu-

lated as follows:

“Max”z = f(x) = (f1(x), ..., fp(x)) (3.1)

s.t. x ∈ X

where x is the decision vector, X ⊆ Rn is the feasible decision space, fj(.) is the jth

criterion (objective) function and z is the criterion vector. The above formulation uses

the decision space representation of an MCDM problem. One can also formulate MCDM

problems in the criterion space as follows:
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“Max”{z1, ..., zp} (3.2)

s.t. z ∈ Z

where Z = {z ∈ Rp : z = f(x) : x ∈ X} is called the (feasible) criterion space. That

is, Z is the image of the feasible decision set (X ) in the criterion space. Throughout the

text we refer to both x and z as the solutions (alternatives) of the MCDM problem.

A classification of the MCDM problems can be made based on whether the solutions

(alternatives) are explicitly or implicitly defined. Problems where a finite set of alterna-

tives is explicitly given are called multiple-criteria evaluation problems (or multi-criteria

evaluation problems) and problems where the set of alternatives is implicitly defined by

constraints are called multiple-criteria design problems or multiple objective (mathematical

programming) problems (MOPs) [147]. When the problem considered is an MOP, X ∈ Rn

can be discrete or continuous.

Note that the maximization of a vector in models 3.1 and 3.2 is not a well defined

operator. Therefore, solving an MCDM model may refer to different things depending on

the context. Most MCDM approaches try to identify the best alternative, i.e. to find the

alternative that is most preferred by the decision maker (DM). Some other cases are also

possible. For example, three kinds of problematiques are reported to be generally used in

practice in order to support decision makers in multi-criteria evaluation problems ([144],

[145]). These are as follows:

1) Identify the best alternative or a small subset of good alternatives

2) Rank the alternatives from the best to the worst

3) Classify / sort the alternatives into predefined homogeneous groups

If the MCDM problem is an MOP, i.e. the set of solutions is implicitly defined by

constraints, the number of solutions can be infinite (in the continuous case) or prohibitively

large (in the discrete case) hence the ranking and sorting problematiques are not typically

considered. In such cases one may want to identify the best alternative or a small subset
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of good alternatives.

Unless there is a single alternative which is better than the others in terms of all

the criteria, which typically is not the case when there are conflicting objectives, the

need to distinguish different solutions from each other makes some information on the

DM’s preferences necessary. This makes MCDM theory closely connected to the theory

on preference relations and utility. Basic notation and definitions used in the theory of

preference relations are provided in the next section.

In this chapter we provide a review of the literature on interactive MCDM approaches

which use convex cones as a means of representing the DM’s preference structure. In the

next section we discuss the relation between preference relations and value (utility) func-

tions. Specifically, we provide the assumptions made on the DM’s underlying preference

relation by the MCDM solution methods using the convex cones approach. In Section

3.3 we cover the basic theory on the convex cones approach and show how the cones can

be used to obtain the best solution in a given set. We also discuss a related concept:

the use of polyhedra whose vertices are the cone generators in MCDM ranking or sorting

problems. We then provide a review of the MCDM approaches that use the convex cones

and we conclude the discussion in Section 3.4.

3.2 Preference Relations and Value Functions

We first define and discuss the properties of a weak preference relation, denoted by �,

which completely characterizes the preference model in the criterion space. Next, we

introduce the term rational preference along with its underlying properties and discuss

the relation between preference relations and value functions. We then provide the as-

sumptions on the DM’s preference relation that allow us to use convex cones in MCDM

approaches.

For two alternatives z1 and z2 the statement z1 � z2 is used to symbolize that z2 is

weakly preferred to z1 .

Definition 6 Given a relation of weak preference, the corresponding relations of strict
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preference and indifference are defined as follows:

z1 ≺ z2 (z2 is strictly preferred to z1)⇔ (z1 � z2 and not z2 � z1)

z1 ∼ z2 (z2 is indifferent to z1)⇔ (z1 � z2 and z2 � z1).

We now define some properties for a preference relation.

Definition 7 A preference relation � is complete if either z1 � z2 or z2 � z1, for all

z1, z2 ∈ Z.

A preference relation � is transitive if (z1 � z2 and z2 � z3) ⇒ z1 � z3, for all

z1, z2, z3 ∈ Z.

Preference relation ≺ satisfies strict monotonicity if z1 < z2 then z1 ≺ z2, for all

z1, z2 ∈ Z.

The relation � is called a rational preference relation if it is complete, transitive and its

strict part (≺) is strictly monotonic. Based on rational preferences we can define (rational)

dominance, which is the intersection relation of all rational preference relations [142].

Definition 8 For any two alternatives z1 and z2,

z1 ≺r z2 (z2 (rationally) dominates z1) if z1
i ≤ z2

i for all i ∈ {1, 2, ..., p} where at least

one strict inequality holds.

z1 �r z2 (z2 weakly dominates z1) if z1
i ≤ z2

i for all i ∈ {1, 2, ..., p}.

Having defined these preference relations we can now discuss their relation with value

functions.

Definition 9 The preference relation � is said to be represented by a value function v(.)

if ∀z1, z2, v(z1) ≤ v(z2) if and only if z1 � z2.

A preference relation is not necessarily representable by a value function. However, one

can derive the conditions under which a preference relation is representable by a specified

form of value function. We provide below one of the well-known results on representability

by Debreu [148], [149].
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Definition 10 A set A is closed if and only if it contains all of its limit points. A

preference relation is continuous if for all z ∈ Z, {y ∈ Z | y � z} and {y ∈ Z | z � y} are

closed.

The well-known representation theorem by Debreu [148], [149] is as follows.

Theorem 11 If a preference relation on a set Z ⊆ Rp is complete, transitive and contin-

uous, then it is representable by a continuous utility (value) function.

In an MCDM problem, if the DM has a rational preference relation representable by

a value function, then this function is strictly increasing. Further structural assumptions

on the value function imply further assumptions on the underlying preference relation of

the DM.

MCDM solution strategies under the value maximization approach assume that the

DM’s preferences are representable by an underlying value function (v : Z → R) and

involve maximizing this value function. Different forms of value functions have been

studied such as linear ([150], [151]), quasiconcave [152], and monotonicly increasing [153].

There are also algorithms for partially ranking [154] or sorting [155] alternatives based on

an implicit quasiconcave value function assumption.

The MCDM approaches can also be categorized based on when the information is

taken from the DM as follows (see [145], Chapter 16):

• Methods based on the prior articulation of preferences: In such methods, the prefer-

ence information from the DM is taken at the beginning.

• Methods based on the progressive articulation of preferences: These approaches are

called interactive approaches. In such methods we iteratively reduce the solution

space and approach the best solution (or a subset of good solutions), eliciting pref-

erence information from the DM at each iteration. Interactive value maximization

strategies assume an implicit value function and employ an interactive search process

that makes use of the structural assumptions on the value function (see [156] and

[157] for two reviews).
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• Methods based on the posterior articulation of preferences: These methods try to

find a good approximation of the nondominated frontier and present it to the DM.

Preference information can be gathered in different forms. The DM can be asked

to provide pairwise comparisons of alternatives, provide reference points [158], reference

directions, trade-offs, information on strength of preferences [159] etc.

A review of the literature on interactive MCDM approaches using convex cones as a

means of representing the DM’s preference structure is provided in this study. A convex

cone is a convex polyhedral set in the objective function (criterion) space that contains

solutions that are less preferred by the DM than a given set of solutions [152].

In most of the approaches using convex cones, the DM’s preference model is assumed

to be representable by a value function which is (strictly) quasiconcave and increasing.

A function g(.) is strictly quasiconcave if for all z1, z2 : z1 6= z2 and α ∈ (0, 1) we have

g(αz1 +(1−α)z2) > min{g(z1), g(z2)}. Similarly g is quasiconcave if g(αz1 +(1−α)z2) ≥

min{g(z1), g(z2)}.

The quasiconcavity assumption of the DM’s value function implies that the DM’s

rational (i.e. complete, transitive and strictly monotonic) preference relation also satisfies

an additional convexity assumption.

Definition 12 A preference relation � satisfies (weak) convexity if for all z1, z2, z3 ∈ Z

such that z1 � z2 and z3 ∈ (z1, z2], we have z1 � z3. ( z3 ∈ (z1, z2] means that there

exists a real α, 0 < α ≤ 1 such that z3 = αz1 + (1 − α)z2. That is, z3 is a convex

combination of z1 and z2).

The quasiconcavity assumption for the value function corresponds to requiring the

indifference curves (contours) to be convex to the origin. This assumption is quite reason-

able since it corresponds to decreasing marginal rate of substitution, which is a commonly

accepted property underlying consumer preferences in economics literature [160]. As the

name implies, marginal rate of substitution, is the maximum amount of one good a con-

sumer would be willing to give up in order to obtain an additional unit of another. The
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marginal rate of substitution between two goods usually depends on the amount of goods

the consumer currently has. For example, consider a case where the consumer has two

types of goods: Good 1 and Good 2. When the consumer has a large amount of Good

1 and a very small amount of Good 2, she would probably be willing to give up quite a

large amount of Good 1 (as she already has plenty) to obtain one more unit of Good 2

(as Good 2 is scarce). In the opposite case where the consumer has a small amount of

Good 1 and plenty of Good 2, s/he would probably be willing to give up only a very small

amount of Good 1 to obtain more of Good 2. This is called the decreasing marginal rate

of substitution (DMRS). As seen in the example, DMRS implies that, as the consumption

of one good increases and the other decreases, the consumer would be willing to give up

smaller quantities of the latter in exchange of a further unit of the former [160].

3.3 Convex Cones and Polyhedra

We now provide a review of relevant results and studies from the literature on the use of

convex cones in solving MCDM problems.

3.3.1 Basic Theory

We start with a discussion of two studies by Korhonen et al. [152] and Hazen [161], who

introduce the basic theoretical results underlying the convex cones approach in indepen-

dent works. The two results slightly differ in the underlying assumptions; hence, we will

consider them separately. The main difference is that, the first assumes a value function

exists whereas the second one relaxes this assumption. We start with the first results by

[152] and then provide the more general case which is given by [161].

Assuming an implicit value function

Given a set of k vectors such that z1, ..., zk ∈ Rp and an increasing quasiconcave function

f(.) defined on Rp such that f(zk) < f(zi) for all i 6= k the following definitions are made:
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Definition 13 We define the cone C(z1, ..., zk−1; zk) where zi : i 6= k are the upper gen-

erators and zk is the lower generator as follows:

C(z1, ..., zk−1; zk) = {z | z = zk +
∑

i 6=k µi(z
k − zi), µi ≥ 0}.

The cone dominated region of C(z1, ...zk−1; zk) is denoted by CD(z1, ..., zk−1; zk) and

defined as follows:

CD(z1, ..., zk−1; zk) = {z′ | z′ ≤ z where z ∈ C(z1, ..., zk−1; zk)}.

Lemma 14 For any z ∈ C(z1, ..., zk−1; zk), f(z) ≤ f(zk).Moreover, for any z′ ∈ CD(z1, ..., zk−1; zk),

f(z′) ≤ f(zk).

Definition 15 We define the polyhedron spanned by the vectors z1, ..., zk as follows:

P (z1, ..., zk) = {z | z =
∑
µiz

i,
∑
µi = 1, µi ≥ 0 for all i}.

The upper side of P (z1, ..., zk) is denoted by UP (z1, ..., zk) and defined as follows:

UP (z1, ..., zk) = {z′ | z ≤ z′ where z ∈ P (z1, ..., zk)}.

Lemma 16 For any z ∈ P (z1, ..., zk), f(zk) ≤ f(z). Moreover, for any z′ ∈ UP (z1, ..., zk),

f(zk) ≤ f(z′).

Assume that we have k points such that z1, ..., zk ∈ Rp and zk ≺ zi for all i 6= k,

where ≺ is the DM’s preference relation. We assume that ≺ is a rational preference

relation. If the DM has a quasiconcave value function f(.), by Lemma 14, for any z ∈

C(z1, ..., zk−1; zk) we have f(z) ≤ f(zk), hence z � zk. Moreover, for each point z′ : z′ ≤ z

where z ∈ C(z1, ..., zk−1; zk), z′ � zk, i.e., the points in the cone dominated region will

be at most as preferred as zk. We will call each such point z′ ∈ CD(z1, ..., zk−1; zk) cone

dominated. Note that if we assume strict quasiconcavity we have z ≺ zk for z 6= zk and

z′ ≺ zk for z′ 6= zk .

Similarly, by Lemma 16, for any z ∈ P (z1, ..., zk−1, zk), f(zk) ≤ f(z), hence zk � z.

Moreover, for each point z′ : z ≤ z′ where z ∈ P (z1, ..., zk), zk � z′, i.e. the points lying

on the upper side of the polyhedron spanned by the k points will be at least as preferred

as the lower generator, zk. If we assume strict quasiconcavity we have zk ≺ z and zk ≺ z′.
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Figure 3.1: Illustration of a 2-point cone in R2
+

Figure 3.1 shows an example of a 2-point cone in R2
+. The thick solid line is the cone

C(z1; z2) and the area with diagonal grey lines is the cone dominated region, CD(z1; z2).

The line segment between z1 and z2 is the polyhedron P (z1, z2) and the region above this

line segment is the upper side of the polyhedron, UP (z1, z2).

Figure 3.2 shows an example of a 3-point cone in R2
+. The region filled with the

diagonal lines is C(z2, z3; z1) and the grey region including the dark grey part and the

diagonal lines is the cone dominated region. We refer the interested reader to Figure 1.b

in [162] for an illustration of a 3-point cone in R3.
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Figure 3.2: Illustration of a 3-point cone in R2
+

We will visualize the additional information implied by the quasiconcavity using an

example. Recall that a quasiconcave value function implies the convexity assumption on

the DM’s preference relation. See Figure 3.3 for the criteria space of a bicriteria example

where two of the alternatives (z1 and z2) are seen. Suppose that the DM has a rational

preference relation which can be represented by a value function and prefers z2 to z1

(z1 ≺ z2). By strict monotonicity one can say that the points in region A are less preferred

to z1. By convexity (quasiconcavity), we gain information about region B, which is cone

dominated; hence the points in that region are less preferred to z1.

Similarly, using monotonicity, we can conclude that any alternative in regions C and D

are preferred to z1. Since z1 ≺ z2, transitivity ensures that the points in region E, which

are vector dominating z2, are also preferred to z1. Using convexity (quasiconcavity),

we are able to say that the points in region F are preferred to z1. Therefore, we gain

information about regions F and B by assuming a quasiconcave value function. Observe

that the amount of the additional information gained depends on the two alternatives

selected. One line of research in convex cones theory in MCDM focuses on finding smart
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Figure 3.3: Using quasiconcavity

ways of selecting the sets of alternatives to ask the DM.

A more general result

Hazen [161] discusses the same results by showing that consideration of explicit responses

(preference information) in the presence of increasing quasiconcave utility yields a stronger

order than the strict componentwise vector order (<). He directly works on the DM’s

preference relation defined over the set of alternatives rather than assuming that it is

represented by a value function.

Hazen assumes the following axioms for the DM’s preference relation.

For a relation ≺:

1. Irreflexivity (I): not z ≺ z , for all z ∈ Rp.

2. Transitivity (T): (z1 ≺ z2 and z2 ≺ z3)⇒ z1 ≺ z3, for all z1, z2, z3 ∈ Rp.

3. Strict Monotonicity (SM): z1 < z2 ⇒ z1 ≺ z2, for all z1, z2 ∈ Rp.

4. Weak convexity (WC): z1 � z2 and z3 ∈ (z1, z2] =⇒ z1 � z3, for all z1, z2 ∈ Rp.

5. Convexity (C) : z1 ≺ z2 and z3 ∈ (z1, z2] =⇒ z1 ≺ z3, for all z1, z2 ∈ Rp.

6. Preference Data (P): z1 ≺ z2 ≺ ... ≺ zm is provided by the DM.
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Note that if the binary relation ≺ is representable by a value function, weak convexity

and convexity axioms correspond to the quasiconcavity and strict quasiconcavity of the

function, respectively.

The preference data axiom stands for the preference information provided by the DM,

which is in the form of ranking m alternatives.

Hazen uses the concept of unanimity order which is analogous to the dominance con-

cept in MCDM and defines it as follows.

Definition 17 Assume that the decision maker’s preference relation satisfies I, T, SM,

WC, C and P; and denote the set of binary relations satisfying these properties with B.

The unanimity order with respect to B is the binary relation <∗ over outcome vectors x

and y and defined as follows: x <∗ y ⇐⇒ x ≺ y for all ≺∈ B.

Note that rational dominance is another unanimity order where B is the set of binary

relations satisfying axioms reflexivity, transitivity and strict monotonicity.

The concept of unanimity order is important in MCDM as it allows us to infer results

without knowing the exact preference relation of the DM over the whole decision space. If

we know that the preference relation of the DM satisfies a set of properties, any result that

holds for the corresponding unanimity order will hold for the DM’s preference relation.

Hazen’s main result is the following theorem. Note that we changed the terminology

to ensure consistency in presentation. (See the original paper for the original notation and

the corresponding proof).

Theorem 18 Suppose z1, z2, ..., zm : z1 ≺ z2 ≺ ... ≺ zm are distinct elements of Rp.

Define the binary relation ≺mon Rp as follows:

x ≺m y ⇐⇒ x < y or ∃j < m such that x ∈ CD(zj+1, zj+2, ..., zm; zj) and y ∈

UP (zj+1, zj+2, ..., zm; x) and y 6= x.

Then <∗= ≺m unless zj ∈ P (zj+1, zj+2, ..., zm) for some j, in which case, <∗= Rp×Rp.

(In which case, the DM is inconsistent).
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This theorem is valid for any case where we replace the componentwise strict vector

partial order < by any irreflexive conical order (see the original paper [161]). For an

arbitrary vector space A, ≺ is a conical order if it is a binary relation on A represented

by a convex cone K. That is, for all x, y ∈ A; x ≺ y ⇐⇒ y − x ∈ K.

Given preference data z1 ≺ z2 ≺ ... ≺ zm and the assumptions on the DM’s preference

relation, Theorem 18 provides a necessary and suffi cient condition to conclude that a

solution y is strictly preferred to solution x by the DM (without any further information):

Either x < y or there is an alternative zj in the given preference set, for which x lies in

CD(zj+1, zj+2, ..., zm; zj) and y lies UP (zj+1, zj+2, ..., zm; x).

When the DM is consistent we have x <∗ y ⇐⇒ x < y or ∃j < m such that x ∈

CD(zj+1, zj+2, ..., zm; zj) and y ∈ UP (zj+1, zj+2, ..., zm; x) and y 6= x.

It is easy to see that the suffi ciency part of this proof holds as follows:

• If x < y then x <∗ y (hence x ≺ y). This is trivial from strict monotonicity.

• If z ∈ CD(zj+1, zj+2, ..., zm; zj) for some zj then x ≺ z.j by convexity, hence x ≺ zj+k

for k = 1, ...,m−j by transitivity. Therefore any point y : y ∈ UP (zj+1, zj+2, ..., zm;

x) and y 6= x will be strictly preferred to x due to convexity.

The necessary part of the statement is not obvious. By proving the necessary con-

dition, Hazen shows that under given assumptions on the DM’s preference relation, for

any two solutions x and y we cannot state that x ≺ y; unless at least one of the two

conditions is satisfied (x < y or ∃j < m such that x ∈ CD(zj+1, zj+2, ..., zm; zj) and

y ∈ UP (zj+1, zj+2, ..., zm; x) and y 6= x). This implies that under stated assumptions,

by checking whether the conditions hold for two alternatives, a decision analyst will be

making maximum use of the preference information available and if the conditions do not

hold, s/he can be sure that it is not possible to conclude that one is preferred to the other

without additional information.

This result is more general than the results provided in Lemmas 14 and 16 since the

transitivity axiom allows indifference to be nontransitive, i.e. it includes some cases where

the DM’s preference relation is not representable by a value function. Moreover, Theorem

67



CHAPTER 3. USING HOLISTIC MULTI-CRITERIA ASSESSMENTS: THE
CONVEX CONES APPROACH

Figure 3.4: Example case

18 applies to any irreflexive conical order. Therefore, Lemmas 14 and 16 are special cases

of Theorem 18.

An example

We will illustrate the results discussed so far using an example. We will show that under the

same set of assumptions, the results provided in Lemmas 14, 16 and Theorem 18 provide

us the same information. In the example, we assume that the DM’s preference structure is

representable by a strictly quasiconcave value function and use the componentwise strict

vector partial order < for Theorem 18.

Figure 3.4 shows the criteria space of a bicriteria problem where the DM strictly prefers

y to x, i.e., x ≺ y.

By Lemmas 14 and 16 we have the following:

1. t ∈ CD(y;x) so t ≺ x.

2. k ∈ UP (y, x) hence x ≺ k. We have t ≺ x ≺ y and t ≺ x ≺ k. Based on the first

ranking one can generate P (y, x, t).

3. Observing that h ∈ P (y, x, t) we say that h is preferred to t. So we have t ≺ x ≺ y,

t ≺ x ≺ k and t ≺ h.
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According to Theorem 18, given x ≺ y;

1. t ∈ CD(y;x) and x ∈ UP (y; t) hence t ≺ x. Now we have t ≺ x ≺ y.

2. x ∈ CD(y;x) and k ∈ UP (y; x) hence x ≺ k. We have t ≺ x ≺ y and t ≺ x ≺ k.

3. Finally, t ∈ CD(y; x) and h ∈ UP (y; t) hence t ≺ h. We obtain the same results:

t ≺ x ≺ y, t ≺ x ≺ k and t ≺ h.

3.3.2 Operationalizing the Theory

In this section we discuss how to operationalize the theory of convex cones. The research

seeking to operationalize the convex preference cone ideas originated from the team Ko-

rhonen, Wallenius and Zionts, and their students and co-workers.

Checking cone dominance

The MCDM methods using convex cones gather preference information from the DM,

usually in terms of pairwise comparisons. Using this information, more information is

extracted about the other feasible alternatives which are not in the preference subset the

DM provided. Given preference information, one can generate cones and check for each

candidate point whether it is in a cone dominated region. If the objective is finding the

best alternative out of a set, the cone dominated alternatives can be eliminated from

further consideration. If we have a ranking or sorting problem, the information that an

alternative is inside or in the upper side of the corresponding polyhedron is also useful.

Therefore, one can also check the status of an alternative with respect to the generated

polyhedra based on the preference information.

We can perform these checks using Linear Programming (LP) problems as follows.

Suppose that we want to check whether alternative z is dominated by C(z1, ..., zk−1; zk).

Then we solve the following LP:
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Max ε (LP1)

s.t.
k−1∑
i=1

µi(z
k − zi)− ε ≥ z − zk

µi ≥ 0 for i = 1, ..., k − 1.

Let us rewrite the first constraint set as follows: zk +
∑k−1

i=1 µi(z
k − zi) ≥ z + ε.

For each feasible µi value, the left hand side of the constraint corresponds to a point in

the cone. If z is not dominated by any of the points in the cone, the maximum value

that ε can take should be negative. Otherwise, if ε∗ ≥ 0, the first constraint set implies

zk +
∑k−1

i=1 µi(z
k − zi) ≥ z. Then for any nondecreasing quasiconcave function f(.), we

have f(zk +
∑k−1

i=1 µi(z
k − zi)) ≥ f(z). That is, z is at most as preferred as a point in the

cone, i.e., z ∈ CD(z1, ..., zk−1; zk) and f(zk) ≥ f(z) by Lemma 14.

To check whether x ∈ UP (z1, ..., zk) we solve the following LP:

Max ε (LP2)

s.t.

k∑
i=1

µiz
i + ε ≤ x

k∑
i=1

µi = 1

µi ≥ 0 for i = 1, ..., k.

One can see that if ε∗ ≥ 0 then x ∈ UP (z1, ..., zk).

In each iteration we gain new information leading to new cones and polyhedra.

Tree representation of preferences and size of cones

Interactive approaches are based on gathering preference information from the DM through-

out the process. Hence, such algorithms must keep track of the preference information

gathered so far and generate the corresponding cones. A tree representation for preferences
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Figure 3.5: Tree representation

is suggested for this purpose in [163]. An example tree is given in Figure 3.5 where each

node represents an alternative and each arc represents the preference relation between

these alternatives. Using the tree representation it is possible to identify all distinct cones

and polyhedra that can be generated given preference information.

Note that, the size of each cone as well as the number of total cones generated will affect

the number of alternatives eliminated by the cones and hence the amount of information

required from the decision maker. The computational time will also be affected. Different

strategies can be used as follows:

• One might choose to generate all the possible cones with maximum number of gen-

erators. That is, for each alternative which is a candidate to be a lower generator

(less preferred to at least one solution in the tree) one can generate a cone using all

the alternatives preferred to that alternative as the upper generators. By doing so,

one will be making maximum use of the information provided by the DM and hence

less information is required from the DM ([152], [164]). In the example given in

Figure 3.5 this corresponds to generating C(z1, z2, z3, z4, z5; z6), C(z1, z2, z3, z4; z5),

and C(z1, z2; z3). This is called the minimal set of cones.
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• As the above method may be cumbersome and may result in high computational

effort, one might choose to generate smaller cones ([152],[163]). In the literature

in most cases only 2-point cones are used. In the example case in Figure 3.5 the

distinct 2-point cones are C(z1; z3), C(z2; z3), C(z3; z5), C(z4; z5), and C(z5; z6).

Note that it is also possible to generate more 2-point cones using transitivity: e.g.

C(z1; z5), C(z1; z6), C(z2; z5), C(z2; z6). [152] report that in their experiments the

computation time saved in using 2-point cones instead of the minimal set of cones

was minimal and suggest using the the minimal set of cones. The use of cones

with the most number of generators possible is suggested also in [162] owing to the

decrease in the preference information required from the DM in that case.

Selecting the candidate solutions

Another issue to be considered in any interactive algorithm using convex cones is selecting

the candidate solutions to be asked to the DM. The method used to select the alternatives

depends on the characteristics of the problem. There are studies that use an estimated

value function in an effort to select good candidates. At each iteration the parameters of

the value function are updated and a solution that maximizes this value function (see e.g.

[152]) is found and the DM is asked to compare this solution with its adjacent effi cient

alternatives (for an alternative z in the criterion space, adjacent effi cient alternatives

are the ones whose convex combinations with z are not dominated by any other convex

combination generated by the rest of the alternatives). There are also studies selecting

the candidates based on their distance to an ideal point (see e.g. [165]).

Interaction type

The interaction type refers to the type of the questions asked to the DM.

In the solution frameworks designed to select the best alternative, the DM is usually

asked for pairwise comparisons of alternatives. Other strategies are also possible like

providing the DM with m alternatives and ask him to select the best/ worst alternative

in the set or rank these alternatives.
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In the solution frameworks designed for sorting alternatives, the DM can also be asked

to assign some alternatives to the predetermined groups. These alternatives are then used

to generate cones and polyhedra.

3.3.3 Related Works in Literature

Many interactive MCDM methods using convex cones are proposed in the literature. Al-

though not as common as convex cones, polyhedra are also used in sorting and partial

ranking. The studies mainly differ in terms of the nature of the problem and the nature

of the solution procedure, i.e, based on the way to elicit the preference information, the

way to select the alternatives that will be presented to the DM for information gathering

and the size of the generated cones.

The first problems considered are mostly multi-criteria evaluation problems where there

is a finite set of alternatives. A series of papers that extend the application of convex cones

to other problem types e.g. Multi-criteria Linear Problems (MCLP), Multi-criteria Integer

Problems (MCIP) follow. There are also studies on increasing the effi ciency of the solution

procedures by finding ways to increase the region eliminated by cones and determining the

number of the cone generators to be used. Recently, there has been an interest in using

convex cones and polyhedra to sort and partially rank a finite set of alternatives.

We now review these applications of convex cones and polyhedra reported so far for

MCDM problems.

Korhonen et al. [152] design an interactive algorithm for finding the best alternative

in multi-criteria evaluation problems. They use convex cones to represent the preference

structure. They generate cones and eliminate the alternatives which are inferior to these

cones. By doing so, they successively restrict the solution space and try to obtain the best

alternative after a number of iterations. In order to determine the alternatives to be asked

to the decision maker, they use a composite linear value function of the form
∑
δjxij where

δj > 0 are multipliers and xij is the performance score of alternative i in criterion j. They

find the alternative that maximizes this function and ask the DM to compare it with other

selected alternatives (the adjacent effi cient alternatives). They start with an arbitrary set
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of multipliers and use the DM’s responses to update the (feasible) set of multipliers. Note

that this method approximates a nonlinear value function by a composite linear value

function, hence it is possible that there are no set of multipliers consistent with the DM’s

preferences. This is handled by deleting the restriction on multipliers that correspond to

the oldest information from the DM. In the proposed algorithm the information from the

DM is gathered in terms of pairwise comparisons. The authors conduct experiments and

report statistics on the number of pairwise judgements the DM has to make for various

problem sizes. They first try generating all the cones and then repeat the experiments

using only 2-point cones. Based on the results they conclude that the savings in the

computational time when one is using only 2-point cones does not justify the increase the

judgements DM has to make and hence suggest generating the minimal set of cones.

A few variations of the above algorithm is proposed by Köksalan et al. [166], Köksalan

and Taner [167] and Köksalan and Sagala [168]. These studies address the same problem as

in [152] and propose improvements in the solution algorithm. They suggest using dummy

alternatives as one of the cone generators in order to increase the region eliminated by

the convex cones. They discuss different ways to generate and select appropriate dummy

alternatives. The authors report improvements in results compared to the algorithm used

in [152] in terms of the total number of pairwise comparisons required to find the best

alternative. In [168], which generalizes the results of the previous two papers ([166], [167]),

two dummy alternatives are used simultaneously, one of which is (hopefully) less preferred

to a real alternative so that it can be used as an upper generator of the cone. Another

dummy alternative is generated as a potential lower generator. The dummy points are

selected with the help of an estimated value function which is updated at each iteration.

Malakooti [169] also discusses different ways to select the cone generators as in [166],

including the idea of using dummy alternatives to increase the area that is eliminated by

the cone. He also discusses the use of local gradients, i.e., tradeoff information, at a point

to eliminate worse alternatives and find better ones.

Ramesh et al. [163] study the underlying theory of the convex cones and the repre-

sentation structure for the DM’s preferences based on convex cones. They define rules to
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detect redundant cones, the cones which are already implied by other existing cones, in

order to avoid unnecessary computations. They discuss two ways to represent the DM’s

preferences. The first one is an explicit representation, which is used in methods that use a

single composite function of the multiple objectives. In these methods the preferences are

represented using linear inequalities on the weights of this composite function thus the set

of feasible weights is successively reduced. The second representation scheme is based on

the convex cones. They conclude that representation via cones is more accurate than rep-

resentation via linear constraints on weights of the objectives. This is due to the fact that

by using a composite objective function one fails to accurately represent nonlinear value

functions. The authors conduct experiments on the use of convex cones in solving both

multi-criteria design (MCLP, MCIP (in the experiments bicriteria problems are solved))

and multi-criteria evaluation problems and report the percentage of questions saved using

convex cones.

Ramesh et al. [164] incorporate the convex cones representation method into the

algorithm of Zionts and Wallenius [170] for multicriteria linear programming problems.

The authors assume that the DM has a pseudoconcave value function. Convex cones are

used to obtain an accurate and robust representation of the DM’s preferences. The DM is

asked for pairwise comparisons of alternatives, one of them is an alternative that maximizes

a composite linear value function and the other is an adjacent effi cient alternative. Only

2-point cones are generated.

Ramesh et al. [171] develop an algorithm for the multi-criteria integer problems where

the underlying value function of the DM is assumed to be pseudoconcave. They use the

method previously proposed by Zionts and Wallenius [170] for MCLP in a branch and

bound framework and use convex cones for the preference structure representation. The

cones are used for fathoming candidate nodes in the branch and bound tree. They only

generate 2-point cones and report computational results for bicriteria problems with up

to 80 variables and 40 constraints.

Köksalan [165] proposes an interactive method using convex cones to identify and

rank a most preferred subset of alternatives in multi-criteria evaluation problems. The

75



CHAPTER 3. USING HOLISTIC MULTI-CRITERIA ASSESSMENTS: THE
CONVEX CONES APPROACH

DM is asked for pairwise comparisons. Initially, candidate solutions are selected based on

their distance to an ideal point and throughout the algorithm new candidate solutions are

generated using a weighted quadratic value function as in [166].

Taner and Köksalan [172] conduct an experimental study on how to determine the

number of cone generators, to select the cone generators and determine the order of pair-

wise comparisons to ask the DM. They also propose an algorithm based on the results of

the experiments. In the proposed algorithms, m(m = 1, 2..., 7) alternatives are selected

by three methods, which use equal weighted linear, estimated linear and quadratic value

functions, respectively. Then the least/most preferred alternative in the selected set is

found by asking the DM a number of pairwise comparisons. Based on the preference in-

formation elicited from the DM, all the possible cones are generated. They conclude that

the version where m = 3 and the least preferred alternative is found provides the best

results in terms of the average number of comparisons the DM has to make. They point

out that the results of the experiments are not very conclusive hence a more elaborate and

detailed study awaits further attention.

Prasad et al. [162] observe that in the computations, although most of the solutions

are not cone dominated, quite a few of them are nearly cone dominated. Motivated by this

observation, they introduce the concept of “near cone dominance”or “p cone effi ciency”.

A p value is used to show how close an alternative is to being dominated by the generated

cone. They suggest using this measure to choose the challengers of the incumbent that will

be presented to the DM for pairwise comparison. That is, the alternatives are presented

to the DM for comparison in an order based on how close they are to be inferior. This

heuristic extension is suggested to accelerate the search by reducing preference information

requirement. Another use of this idea is for early termination. That is, for an incumbent

solution, the p cone effi ciencies of its adjacent solutions are calculated and the algorithm

is terminated if maximum of these p cone effi ciencies is below a given threshold. They

illustrate the idea by incorporating it within a solution framework for solving MOLP

problems.

Ulu and Köksalan [155] propose interactive approaches to partition a set of discrete
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alternatives into acceptable and unacceptable sets. Assuming the DM has a quasiconcave

value function they use the convex cones and polyhedra in a sorting algorithm. Note that

the proposed sorting algorithm is for the special case where the number of classes is two,

rather than for the general case with more than two classes.

Another study that includes a sorting approach based on convex cones is Fowler et

al. [173]. They propose an evolutionary algorithm, a genetic algorithm, for MCDM

problems assuming that the DM has a quasiconcave preference function. Genetic algorithm

is a widely studied method for approximately solving NP-hard problems. In a genetic

algorithm the output is obtained by evolving an initial population of solutions through

multiple generations by breeding and mutation. Hence, how the parents are selected

becomes a critical issue to ensure offspring with good quality. The authors suggest partially

sorting the population with the help of convex cones and polyhedra. The information taken

from the DM is in terms of finding the best and worst in a given set of six solutions. Using

this information they generate four 2-point cones (consisting of the best as the upper

generator and each of the other points except the worst) and one 6-point cone (having the

worst as the lower generator and the others as upper generators). They report that using

convex cones in sorting is effective and improves the output solution.

Recently, Dehnokhalaji et al. [154], propose an approach which uses convex cones and

polyhedra to partially order a finite set of alternatives. Similar to the p cone effi ciency

concept discussed in [162], an alternative is classified as surely better than, surely worse

than, or possibly better/possibly worse than the lower generator of the cone. This makes

the suggested approach flexible in the sense that it can be used as an exact or approx-

imate approach by adjusting some parameters. They generalize the idea used in [162]

and employ it to obtain a strict partial order. This approach is suggested to be used to

partially rank alternatives or as a supplementary method in other solution approaches

such as Evolutionary Multi-Objective Optimization as discussed in [173]. Developing an

interactive solution algorithm based on the approach is pointed out as a subject of future

research.
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3.4 Conclusion

In this paper we consider the use of convex cones in interactive MCDM approaches, which

is based on the DM’s holistic assessments. We describe the assumptions on the DM’s

preference relation and the value function that allow us to implement the convex cones

approach in solution algorithms for MCDM problems. We summarize the basic theoret-

ical results from the literature, which show that convex cones can be used to iteratively

approach the most preferred solution(s) by eliminating the ones that are less preferred.

The results also show that, in multi-criteria evaluation problems, polyhedra can be used

alongside the convex cones for sorting or obtaining a quasiordering of the alternatives.

We provide a review of the studies that implement the convex cones approach over the

last three decades. A large body of literature exists that use the convex cones approach

in various algorithms designed to solve both multi-criteria evaluation and multi-criteria

design problems. There are also studies on how to select good candidate solutions (cone

generators) to be asked to the DM. We mention below a few challenges regarding convex

cones approach awaiting further research.

• Further research can be performed on using convex cones to solve more diffi cult

problems, like Multi-Objective Combinatorial Optimization (MOCO) problems.

• Asking too many or relatively diffi cult questions increase the cognitive burden on

the DM and may make the decision support system less attractive. Therefore, one

needs to choose the type of interaction with the DM carefully. Further research

can be conducted on finding the best way to minimize the cognitive burden while

ensuring an effective decision support. Different types of questions can be asked to

the DM. These include making pairwise comparisons, determining the best (worst)

alternative in a given subset, or ranking a small subset of alternatives. Experimental

studies that compare these different interaction modes and discuss their advantages

and disadvantages in different problem settings can be performed.

• As the size and number of cones used in an algorithm increase, more alternatives are
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eliminated but the computational time may increase as well. By generating merely

two-point cones one may not be utilizing the available information fully. To the best

of our knowledge, it is not studied in detail how well this approach works compared

to generating the minimal set of cones in terms of the information required from the

DM throughout the procedure. In other words, it is still an open question how to

determine the cone sizes that best balance the computational time with the amount

of information required from the DM for different problem settings.

• Using the information provided by the polyhedra in ranking and sorting environ-

ments is also a promising area. More research on the use of polyhedra as well as

convex cones for sorting and ranking purposes awaits further attention.
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Chapter 4

Incorporating Preference

Information in Multicriteria

Problems with Equitability

Concerns

4.1 Introduction

Multicriteria Decision Making (MCDM) problems deal with evaluation of alternatives

based on a number of criteria. In most of the MCDM problems that have been studied

so far, we do not measure the criteria using the same type of measure. We will call

such criteria unlike and the MCDM problems with heterogenous criteria classical MCDM

problems.

In this study we discuss a special type of multicriteria decision making problem where

we have equitability concerns. These problems are motivated by the cases where we are

concerned with finding an equitable allocation of a good or bad among multiple parties

who are anonymous. That is, the identities of the parties are irrelevant and do not affect

the decisions. In these problems, we have a single type of good (or bad), and the multiple
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parties receive an amount of this good (bad). For example, we may define a location

problem where the parties are location points and the good is distance or time. Similarly,

we may have a problem where the parties are individuals or groups of individuals and the

allocated good is income, service etc. One can define such problems as MCDM problems.

In an alternative, each criterion value corresponds to the amount of good allocated to a

party. Hence, unlike a classical MCDM problem, the criteria in these problems are like,

i.e., each criterion is measured in the same scale with the same measure.

Problems with equity concerns are encountered especially in the public sector. The

problems include location problems where we try to find the best location of public service

facilities such as hospitals or fire stations. In these location problems, the good is usually

taken as the distance of the service facility to the demand points and we try to reach a

feasible solution in which the demand points are treated as equitably as possible [174].

Income distribution problems are another example. In such income distribution problems

the decision maker (DM) is faced with different policies that will result in different income

distributions among the population. These income distribution profiles are analogous to

the allocation profiles used in the health economics literature, where the outcome is mea-

sured in terms of the Quality Adjusted Life Years (QALY) that an individual is expected

to live as a result of a health policy [175]. Other application areas include distribution of

funds [176] and financial portfolio optimization [177], where the rate of return for each se-

curity considered is given by a finite discrete distribution and the investor has a risk-averse

attitude.

Since those problems have different properties than a classical MCDM problem, they

require different approaches than the classical methods. In this study, we discuss an

approach that is appropriate for such problems.

The rest of the paper is organized as follows. In Section 4.2 we introduce the basic con-

cepts and discuss the existing theory. We especially discuss the case where equity concerns

are incorporated in the preference relation. Next, we present our problem formulation and

discuss relevant results and methods from the literature. In Section 4.3, we discuss our

contributions and present our work on how to extend the convex cones theory for problems
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that have the anonymity property. The results we provide in this section are general in

the sense that they can be used in different settings where the objective is finding the best

out of a set, ranking or sorting. We present an interactive ranking algorithm in Section

4.4 and report the results of our computational experiments in Section 4.5. Section 4.6

concludes the study with our main findings and future research plans.

4.2 Problem Definition

In a typical multicriteria evaluation problem we have a (finite) set of alternatives (defined

in the criteria region) denoted by Z with a typical member as zi = (zi1, ..., z
i
p), where z

i
j

is the performance score of solution zi on criterion j and p is the number of criteria. We

evaluate the alternatives based on these criteria. Different problematiques can be defined

depending on the desired outcome: finding the best alternative or a limited set of the best

alternatives, ranking the alternatives or sorting them into predefined groups [145].

In this study we focus on multicriteria problems with like criteria. In our setting,

each alternative zi ∈ Z shows a distribution of a good among p parties and hence zij is

the amount of good that party j gets in alternative i. Although our theoretical results

on convex cones are applicable to any type of problematique (selecting the best, ranking

or sorting), we will focus on the ranking problematique. This is because ranking can be

considered as a generalization of finding the best: once you rank the alternatives, you

obtain the best alternative in the set. Moreover, if we have a ranking of the alternatives,

it may be easier to sort them into groups.

4.2.1 Equity and Effi ciency

We consider the problem settings where we try to rank the alternatives considering both

effi ciency and equity (fairness). For a problem where we have a desirable good, equity

and effi ciency preferences are our preferences for having a more equitable allocation and

a higher mean, ceteris paribus. We will try to explain the effi ciency and equity concepts

and the tradeoff between them by using a small example. Note that, although we have a
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general problem formulation which is applicable to different settings with different types

of goods and parties, from now on, we will be giving examples of income distribution

problems to explain our ideas.

Example 19 Suppose that we have a 2-person population and we have a set of alterna-

tives, each corresponding to an income distribution between these two people. Assume that

equity is taken into account by obtaining an index by using inequality measure.

If we increase effi ciency while keeping the inequality level the same, we obtain a better

distribution. For example if we have (3, 3) and (4, 4) as two alternatives, we can directly

say that (4, 4) is preferred to (3, 3), since both alternatives have complete equality while in

(4, 4) the total amount of income is higher. This corresponds to our effi ciency preference.

If we have a more equitable alternative while keeping the effi ciency level constant,

we obtain a better distribution. For two distributions that have the same total income,

the effi ciency levels are the same. Hence, we will base our decisions on the inequality

levels. For example alternative (3, 5) is preferred to (2, 6) since it is more equitable. This

corresponds to our equity preference.

One cannot make such judgements when the distributions concerned do not have the

same level of (in)equality or effi ciency. Moreover, even the measurement of inequality is

a problem in itself; so when we use inequality measures to incorporate equity preferences,

we will get different results for different types of measures. For instance, we cannot say

anything about how the preference should be between (4, 4) and (3, 6). In this example the

alternative with the higher total income, (3, 6), is also more unequal. We can observe the

tradeoff between equity and effi ciency here.

There are different ways to incorporate both of these preferences into a decision model.

Throughout this work we assume that an increase in any individual’s income is desirable

as long as none of the other individuals is worse off. This assumption will allow us to draw

conclusions about the alternatives that are vector dominating each other. For example,

when faced with alternatives (4, 4) and (4, 5); (4, 5) should be preferred to (4, 4). While this

may seem as a simplifying assumption ignoring or undermining the effect of the increase
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in the envy of the people whose incomes did not increase on the choice made, this is

a standard assumption used in many solution approaches. This assumption helps us to

compare some alternatives where the inequality level is not the same. By increasing the

number of comparisons that we can make, this assumption will help us to come up with

a practical solution procedure as discussed in Shorrocks [136].

The equitability concern is usually considered using the well-known Pigou-Dalton (PD)

principle in inequality theory, which ensures that transferring a small amount of money

from a person to a relatively worse off one without changing their relative positions to

each other, results in a more preferred alternative. To illustrate, if we have z = (3, 5)

transferring 1 unit of income from the second person to the first one, we obtain (4, 4),

which is equally effi cient but more equitable, thus is considered as a better alternative.

Those ideas will give shape to the axioms of the preference model that we will assume.

4.2.2 Equity and Impartiality in Preference Relations

In the problems that we study, dealing with uniform criteria brings the property of

anonymity to the preference model, i.e. the corresponding preference relation should treat

all the permutations of a vector as indifferent. The rational preference relations satisfying

anonymity (impartiality) are called impartial rational preference relations by [142].

The equity preference can be taken into account by an axiom based on the Pigou-

Dalton principle of transfers.

We assume that the DM has a preference model in which the preference relation

satisfies the following axioms [87]: Reflexivity (R), Transitivity (T), Strict Monotonicity

(SM), Anonymity (Impartiality) (A) and Pigou-Dalton principle of transfers (PD).

1.Reflexivity (R): z � z for all z ∈ Z.

2.Transitivity (T): (z1 � z2 and z2 � z3)⇒ z1 � z3, for all z1, z2, z3 ∈ Z.

3.Strict monotonicity (SM): z1 < z2 then z1 ≺ z2, for all z1, z2 ∈ Z.

4.Anonymity (Impartiality, Symmetry) (A): (z) ∼ Πl(z) for all l = 1, ..., p!, for all

z ∈ Rp, where Πl(z) stands for an arbitrary permutation of the z vector.

5.Pigou-Dalton principle of transfers (PD): zj > zi ⇒ z ≺ z − εej + εei, for all z
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∈ Rp,where 0 < ε < zj − zi, where ei, ej are the ith and jth unit vectors in Rp.

The preference relations that satisfy R, T, SM, A and PD are called equitable rational

preference relations and the relation of equitable dominance (�e) is the intersection rela-

tion of all equitable rational preference relations. Equitable dominance implies rational

dominance, which is the intersection relation of all rational preference relations (satisfying

R, T and SM), but not vice versa. This is clear from the fact that the axioms used to

define rational dominance is a subset of the axioms used to define equitable dominance.

Following Kostreva and Ogryczak [87], we can introduce the ordered vector and cu-

mulative ordered vector for an alternative z as follows:

Definition 20 Given z ∈ Rp, let −→z denote the permutation of z such that −→z : −→z 1 ≤
−→z 2 ≤ ... ≤ −→z p. −→z is called the ordered vector of z and

−→
R p = {−→z : z ∈ Rp} is called the

ordered space.

Definition 21 Given z ∈ Rp, let Θ : Rp → Rp be the cumulative ordering map defined as

follows:

Θ(z) = (θ1(z), θ2(z), ..., θp(z)) where θi(z) =
∑i

j=1
−→z j for i = 1, 2, ..., p. Θ(z) is called

the cumulative ordered vector of z.

The following result is proved by [142]:

Theorem 22 For any two alternatives z1 and z2,

z1 ≺e z2 ⇐⇒ θi(z
1) ≤ θi(z2) for all i ∈ {1, 2, ..., p} where at least one strict inequality

holds.

z1 �e z2 ⇐⇒ θi(z
1) ≤ θi(z2) for all i ∈ {1, 2, ..., p}, that is Θ(z1) ≤ Θ(z2).

This relation will allow us to use rational dominance concept, hence vector inequality,

on the cumulative ordered vectors to check equitable dominance relation for two alterna-

tives.

Note that the PD axiom is an axiom of convexity, but defined only for the alternatives

that have the same total amount. One can define a convex preference by replacing the
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PD axiom with the convexity axiom that involves alternatives with different sums. We

use the following convexity axiom:

6.Convexity (C): z1 � z2 and z3 ∈ (z1, z2) =⇒ z1 ≺ z3. Here z3 ∈ (z1, z2) means

that there exists a real α, 0 < α < 1 such that z3 = αz1 + (1− α)z2.

We will call relations satisfying R, T, SM, A and C impartial convex rational preference

relations. The corresponding dominance relation, impartial convex dominance, will be

implied by rational dominance and equitable dominance. That is because the axioms used

for rational dominance is a subset of the axioms used for impartial convex dominance and

C is a more general (restrictive) condition than PD. In fact, given impartiality, C reduces

to PD for the alternatives with the same total.

If an equitable rational preference relation is representable by a utility function, the

function has to be increasing strictly Schur-concave. If we assume that the DM has an

impartial convex rational preference relation which is representable by a utility function,

then the function has to be symmetric increasing strictly quasiconcave.

Definition 23 A function f is quasiconcave if for all z1, z2 : z1 6= z2and α ∈ [0, 1]

we have f(αz1 + (1 − α)z2) ≥ min{f(z1), f(z2)}. Similarly f is strictly quasiconcave if

f(αz1 + (1− α)z2) > min{f(z1), f(z2)} for all f(z1) 6= f(z2) and α ∈ (0, 1).

Each symmetric quasiconcave function is a Schur-concave function. On the other

hand a Schur-concave function is not necessarily a symmetric quasiconcave function. For

example, the following function:

f(z1, z2) = z1z2 is Schur-concave although it is not quasiconcave in R2 [141].

Note that, if we assume monotonicity rather than strict monotonicity then the corre-

sponding utility function is nondecreasing rather than increasing. Moreover, if we relax

the convexity condition, PD or C, and replace the term “strictly better than”with “at

least as good as”, the corresponding function does not have to be strictly Schur-concave

(strictly quasiconcave) but Schur-concave (quasiconcave).
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4.2.3 Problem Definition

We consider the following problem:

Given Z ⊆ Rp, provide a ranking for all z ∈ Z based on �, where � is an impartial

convex rational preference relation representing DM’s preferences. Recall that equitable

preference implies impartial convex preference.

� is a relation of weak preference, satisfying A and C axioms and we will denote the

corresponding strict preference and indifference relations as ≺ and ∼, respectively. In this

study, we do not require that � is represented by a utility function but if it is so, the

function is symmetric increasing strictly quasiconcave.

4.3 Convex Cones in MCDM Problems with Equitability

Concerns

A large body of literature dealing with classical multi-criteria problems is based on the

use of convex cones to incorporate preference information in the model. However, all the

problems discussed are classical MCDM problems, hence do not consider equity issues. To

the best of our knowledge, the concept of equitability in multi-criteria problems is relatively

new. Kostreva and Ogryczak [142] are the first ones who introduce the equitability concept

in the MCDM environment. Other studies are due to Ogryczak [174], Kostreva et al. [87],

Baatar and Wiecek [88], and Mut and Wiecek [86]. These studies do not provide us with

a direct way to incorporate DM’s preference information in the model. To the best of our

knowledge, there are not many approaches that incorporate DM’s preference information in

the model for an MCDM problem with equitability concerns. There are a few studies that

mention the possibility of using the reference point method (e.g. [10]) with very limited

computational experiments and discussion. Moreover, to the best of our knowledge there

are no studies that apply the convex cones approach in a symmetric environment. We try

to fill this gap by analyzing the use of convex cones in that context.

In this section we discuss the use of convex cones in multicriteria problems where we
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have equitability concerns, hence anonymity and convexity properties. We extend the

current theoretical framework for convex cones by introducing the anonymity property.

4.3.1 Definitions and Notations

Definition 24 Given z ∈ Z define Πs(.) as the permutation function : Πs(z) = Isz,

s = 1, ..., p! where Is is a matrix rearranging elements of a vector.

Note that each vector of size p will have p! permutations and the DM is indifferent to

all these permutations. If a utility function exists, each will have the same utility value.

Definition 25 We will define the lower section of z as follows: L(z) = {y | y ≺e z} and

the upper section of z as U(z) = {y | z ≺e y}.

We have U(Πs(z)) = U(z) and L(Πs(z)) = L(z), ∀s.

See Figure 4.1 for a two dimensional (2D) example. The green and blue regions include

the alternatives that equitably dominate (4, 3)/(3, 4) and are dominated by (4, 3)/(3, 4);

respectively.

z2 = z1

U

L
(4,3)

(3,4)

0 2 4 6 8 10
0

2

4

6

8

10

z1

z2

Figure 4.1: Upper and lower sections of (3, 4)/(4, 3)
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Given a set of k vectors z1, ..., zk ∈ Rp such that zi � zk for all i 6= k , where �

denotes an impartial convex rational preference relation, we will define the following:

We define the cone C(z1, ...; zk) where zi : i 6= k are the upper generators and zk is

the lower generator as follows:

C(z1, ...; zk) = {z | z = zk +
∑

i 6=k µi(z
k − zi), µi ≥ 0 ∀i 6= k}.

We define the corresponding cone dominated region CD(z1, ...; zk) as follows:

CD(z1, ...; zk) = {z′ | z′ �e z where z ∈ C(z1, ...; zk)}.

Note that CD(z1, ...; zk) includes C(z1, ...; zk). Let us denote the set of all impartial

convex rational preference relations consistent with the given preference information as IC

(Impartial Convex). For any z ∈ CD(z1, ...; zk), z � zk for all preference relations in set

IC. Each such point is equitably dominated by C(z1, ...; zk) and will be called as equitably

cone dominated. Note that we use weak dominance here, i.e. when we say an alternative

is equitably cone dominated, that means it is equitably weakly dominated.

Let I = {1, 2, ..., k}.The polyhedron spanned by the vectors z1, ..., zk is defined by the

following expression:

P (z1, ..., zk) = {z | z =
∑

i∈I µiz
i,
∑
µi = 1, µi ≥ 0 for all i ∈ I}.

We define its upper side as follows:

UP (z1, ..., zk) = {z′ | z �e z′ where z ∈ P (z1, ..., zk)}.

We again note that UP (z1, ...; zk) includes P (z1, ...; zk). For any z ∈ UP (z1, ..., zk),

zk � z for all weak preference relations in set IC. This is a direct result of the convexity

axiom.

Figures 4.2 and 4.3 below show a 2-point cone, C((2, 6); (3, 4)) with its equitably dom-

inated region and P ((2, 6); (3, 4)) with its upper side, respectively. In Figure 4.2 the line

between points A and B is C((2, 6); (3, 4)) and the blue region with diagonal lines is the

equitably cone dominated area. In Figure 4.3 the black line is P ((2, 6); (3, 4)) and the

upper side is the green region with diagonal lines.
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Figure 4.2: C((2, 6); (3, 4)) and its equitably dominated region
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Figure 4.3: P ((2, 6); (3, 4)) and its upper side
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Based on the reported satisfactory performance of the convex cones approach in non-

symmetrical MCDM settings, we propose using convex cones and polyhedrons in solving

MCDM problems with equitability concerns, i.e. in a symmetrical setting. The main idea is

the same: we obtain some preference information from the DM, generate the corresponding

cones and use them to determine the alternatives that are equitably dominated by the cone,

hence less preferred than the cone generators. Similarly, by using the polyhedron, we can

determine the alternatives that are preferred to the lower generator of the polyhedron.

However, the impartiality property brings computational diffi culties. This is because once

we get preference information about a set of alternatives, we have information on the

relation of all permutations of these alternatives, each leading to a different cone. To

illustrate, given z1, z2 ∈ Rp such that z1 � z2 , we can generate p! ∗ p! 2-point cones such

that C(Πr(z1); Πs(z2)) ∀r = 1, ..., p! and ∀s = 1, ..., p!. We call each C(Πr(z1); Πs(z2)) a

permutation cone.

Table 4.1 below illustrates the complexity that anonymity brings.

Table 4.1: Computational complexity due to impartiality

pD 2-point cones pD k-point cones
# of binary comparisons # of cones # of k-ary comparisons # of cones

1 p!p! 1 (p!)k

n n ∗ p!p! n n ∗ (p!)k

Example: Suppose that we have only two people in our population (that is, p = 2)

and suppose that the DM has an impartial convex rational preference relation.

We have a number of possible income distributions for these two people, two of which

are (6, 2) and (3, 4). Note here that (6, 2) is more unequal than (3, 4) in the sense that

the gap is bigger between the two income levels, but the total income in this distribution

is larger than the latter one. Hence, these two distributions are not equitably dominating

one another. We need some extra information about the DM’s preferences and we will

gather it by asking him/her to choose one of the alternatives. Based on the preference

information that the DM provides, we can generate the corresponding cones.
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Suppose that the DM prefers (6, 2) to (3, 4). Thanks to our anonymity (symmetry,

impartiality) axiom, this preference is valid for all the permutations of our alternatives.

That is we have, (6, 2) � (3, 4); (6, 2) � (4, 3); (2, 6) � (3, 4) and (2, 6) � (4, 3). Figure 4.4

below shows the four 2-point cones that are generated based on this information.

z1

z2
z2=z1

(6,2)

(2,6)

(4,3)

(3,4)
B

A

C D

E

Figure 4.4: Cones generated based on (6, 2) � (3, 4)

C((6, 2); (3, 4)) is the purple line connecting (3, 4) and point A. C((6, 2); (4, 3)) is the

yellow line connecting (4, 3) and point B etc.

In this 2D example, one can easily see that C((2, 6); (3, 4)) and C((6, 2); (4, 3)) are

symmetric with respect to the equality line (z2 = z1). The same holds for C((2, 6); (4, 3))

and C((6, 2); (3, 4)).

In the next part we provide some theoretical results that will help us to deal with the

computational complexity due to symmetry. We start by analyzing the case where we

only generate 2-point cones. Next, we provide some results for the case where we have

k-point cones where k > 2.
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4.3.2 Results for the 2-point Cones Case

Recall our PD axiom which is also called Pigou-Dalton principle of transfers. In an al-

ternative, we call a transfer that takes an amount of good from a party and gives it to a

poorer party without changing their relative positions to each other a Pigou-Dalton (P-D)

transfer.

Lemma 26 If z �e z′ then there is a z′′ ∈ Rp such that z′′ ≤ z′, and z′′ is obtainable from

z by a finite number of P-D transfers.

Proof. See Ok [178], Lemma 1 for the proof.

Lemma 27 Let z and z′ ∈ Rp such that zi = z′i ∀i 6= h, h+ 1. Then z �e z′ if and only if

Min{zh, zh+1} ≤Min{z′h, z′h+1} and zh + zh+1 ≤ z′h + z′h+1.

Proof. In this proof, we use the basic axioms that define our preference model. Recall

that we assume A, SM and C, which implies PD.

Necessity:

This proof comes from the definition of equitable dominance. Min{zh, zh+1} ≤Min{z′h, z′h+1}

and zh + zh+1 ≤ z′h + z′h+1 imply Θ(z) ≤ Θ(z′), hence z �e z′.

Suffi ciency:

From Lemma 26, if z �e z′ then there is a z′′ ∈ Rp such that z′′ ≤ z′, and z′′

obtainable from z by a finite number of P-D transfers. Suppose that we have obtained a

z′′ such that z′′ ≤ z′ holds. Without loss of generality suppose that Min{zh, zh+1} = zh

and Min{z′h, z′h+1} = z′h. If this is not the case, we can arrange them accordingly since we

have anonymity.

Suppose that at least one of the following holds:

zh > z′h or zh + zh+1 > z′h + z′h+1 (A1)

z′i = zi ∀i 6= h, h+ 1, so for z′′ ≤ z′ to hold, the P-D type transfer in distribution z to

obtain z′′ should be from zh+1 to zh.
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That is, z′′h = zh + ε, z′′h+1 = zh+1 − ε, where 0 ≤ ε ≤ zh+1 − zh.

z′i = zi = z′′i ∀i 6= h, h+1 and z′′ ≤ z′ ⇒ z′h ≥ z′′h = zh+ ε and z′h+1 ≥ z′′h+1 = zh+1− ε.

That is, z′h ≥ zh and z′h + z′h+1 ≥ zh + zh+1, which is a contradiction to our initial

assumption A1.

Lemma 28 Given z1, z2 ∈ Rp+, if z ∈ C(z1;
−→
z2) then z ∈ CD(

−→
z1;
−→
z2) (i.e. z is equitably

dominated by C(
−→
z1;
−→
z2)).

Proof. Let z1 6=
−→
z1 (Otherwise, the result is immediate). Let h be the minimum value

for which z1
h > z1

h+1 holds. Define z
1′ as the permutation obtained from z1 by swapping

z1
h and z

1
h+1. That is, z

1 = (z1
1 , z

1
2 , ..., z

1
h, z

1
h+1, ..., z

1
p) and z1′ = (z1

1 , z
1
2 , ..., z

1
h+1, z

1
h, ..., z

1
p)

where z1
h > z1

h+1. We will show the following holds:

If z ∈ C(z1;
−→
z2) then z ∈ CD(z1′;

−→
z2).

Suppose for an arbitrary µ ≥ 0 we have a point z : z =
−→
z2 + µ(

−→
z2 − z1), that is z

∈ C(z1;
−→
z2). Define z

′ ∈ C(z1′;
−→
z2) : z

′
=
−→
z2 + µ(

−→
z2 − z1′).

One can easily show that z and z′ have the same elements except the hth and h+ 1th

elements, which are as follows:

zh =
−→
z2
h + µ(

−→
z2
h − z1

h);

zh+1 =
−→
z2
h+1 + µ(

−→
z2
h+1 − z1

h+1);

z′h =
−→
z2
h + µ(

−→
z2
h − z1

h+1);

z′h+1 =
−→
z2
h+1 + µ(

−→
z2
h+1 − z1

h)

From Lemma 27 we know that z �e z′ if Min{zh, zh+1} ≤ Min{z′h, z′h+1} and zh +

zh+1 ≤ z′h + z′h+1. Let us check (Recall that z
1
h > z1

h+1):

Min{zh, zh+1} = Min{[
−→
z2
h + µ(

−→
z2
h − z1

h)], [
−→
z2
h+1 + µ(

−→
z2
h+1 − z1

h+1)]}

=
−→
z2
h + µ(

−→
z2
h − z1

h) = zh.

We do not know what Min{z′h, z′h+1} is, hence we will compare zh with both z′h and

z′h+1.

zh =
−→
z2
h + µ(

−→
z2
h − z1

h) ≤
−→
z2
h + µ(

−→
z2
h − z1

h+1) = z′h
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zh =
−→
z2
h + µ(

−→
z2
h − z1

h) ≤
−→
z2
h+1 + µ(

−→
z2
h+1 − z1

h) = z
′
h+1. Hence,

Min{zh, zh+1} ≤Min{z′h, z′h+1} (4.1)

zh + zh+1 =
−→
z2
h + µ(

−→
z2
h − z1

h) +
−→
z2
h+1 + µ(

−→
z2
h+1 − z1

h+1)

= z′h+1 + z′h. That is,

zh + zh+1 ≤ z′h + z′h+1 (4.2)

From 4.1 and 4.2 the conditions of Lemma 27 is satisfied so z �e z′. Since µ is arbitrary,

this result is valid for every z ∈ C(z1;
−→
z2).

We showed that if z ∈ C(z1;
−→
z2), then z ∈ CD(z1′;

−→
z2), where z1′ is the permutation

obtained by a single swap of two consecutive elements of z1 as defined above. Note that

any permutation of vector z1 will result in
−→
z1 if we apply a finite number of such binary

contiguous swaps. Starting from the first element which is higher than its consecutive

element, these type of swaps will eventually result in
−→
z1. Hence, we have the following

result:

For any z1, z2 ∈ Rp+, if z ∈ C(z1;
−→
z2) then z is equitably dominated by C(

−→
z1;
−→
z2).

Let us show this result on our simple example. We claim that if z ∈ C((6, 2); (3, 4))

then z is equitably dominated by C((2, 6); (3, 4)). In this example this can be verified by

simple observation since we can see from Figure 4.5 below that C((6, 2); (3, 4) ∈ L((3, 4))

so any z ∈ C((6, 2); (3, 4)) is equitably dominated by (3, 4) itself.
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z2=z1

(6,2)

(2,6)

(4,3)

O 0 2 4 6 8 10
0

2

4

6

8

10

z1

z2

Figure 4.5: Relation between permutation cones

Theorem 29 For any z1, z2, z ∈ Rp+, if z ∈ CD(z1; z2) then z ∈ CD(
−→
z1;
−→
z2).

Proof. If z ∈ CD(z1; z2) there exists a z′ ∈ C(z1; z2) : z �e z′.

Let z1 = Πs(
−→
z1) and z2 = Πq(

−→
z2). Then z′ = Πq(

−→
z2) + µ(Πq(

−→
z2) − Πs(

−→
z1)). Let the

inverse permutation of Πq be Πr and let Πr(Πs) = Πt. Then Πr(z′) ∈ C(Πt(
−→
z1);
−→
z2).

If Πr(z′) ∈ C(Πt(
−→
z1);
−→
z2) then Πr(z′) is equitably dominated by C(

−→
z1;
−→
z2) ∀t, implied

by Lemma 28 proved above. Then from transitivity, z ∈ CD(
−→
z1;
−→
z2). Recall that equitable

dominance is the intersection relation of all equitable rational preference relations hence

it satisfies the transitivity axiom.

For our example, this means that if an alternative is equitably dominated by any of the

other permutation cones it will also be equitably dominated by C((2, 6); (3, 4)). Note here

that the reverse condition does not hold. That is, not all the points equitably dominated

by C((2, 6); (3, 4)) are also equitably dominated by C((6, 2); (3, 4)). See Figure 4.6, the

region ADFE which is in CD((2, 6); (3, 4)) is not in CD((6, 2); (3, 4)).

Theorem 29 shows that we can check the status of any point z with respect to any

C(z1; z2) by checking the status of it with respect to C(
−→
z1;
−→
z2). So instead of generating
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z2=z1

(6,2)

(2,6)
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Figure 4.6: Inferior regions of permutation cones

all the permutation cones, it is suffi cient to generate this single cone.

It is possible to provide similar results for the polyhedrons. See Appendix A Section

4.A.

4.3.3 Checking Equitable Dominance in 2-point Cones Case

In MCDM problems without impartiality property the common practise is to solve Linear

Programming (LP) models to check the status of an alternative with respect to a cone or

a polyhedron. These LPs are for the rational dominance check, i.e. checking whether an

alternative is rationally dominated by a cone, hence we should make some modifications

in these LP formulations to check equitable dominance. We now discuss a mathematical

model that can be used to check equitable dominance by a cone.

Remark 30 Equitable dominance is symmetric, hence if z ∈ CD(
−→
z1;
−→
z2) then −→z ∈

CD(
−→
z1;
−→
z2).
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Define P = {1, 2, ..., p!}. From Theorem 29 we know that if z ∈
⋃
i∈P
j∈P

CD(Πi(
−→
z1),Πj(

−→
z2))

then z ∈ CD(
−→
z1;
−→
z2). And by Remark 30 z ∈ CD(

−→
z1;
−→
z2) =⇒ −→z ∈ CD(

−→
z1;
−→
z2).

Based on the above results we suggest working on
−→
R p, i.e. the space where all the

alternatives are ordered from minimum to maximum. Recall that we refer to this space

as the ordered space.

Working on
−→
R p involves mapping all the alternatives in Rp to

−→
R p. That is, the

cone (polyhedron) generators and the points that we check with respect to the cones

(polyhedrons) will be the ordered vectors. For each alternative z we check whether

−→z ∈ CD(
−→
z1;
−→
z2), i.e. there exists z′ ∈ C(

−→
z1;
−→
z2) : −→z �e z′.

Before proposing our method we introduce a few models discussed in [85]:

Proposition 31 For any z ∈ Rp, −→z n (nth minimum) is the optimal value of the following

LP problem:

MOD-N-MIN (Model nth Minimum)

−→z n = Max rn

subject to

rn − zi ≤Mtni for i = 1, ..., p
p∑
i=1

tni ≤ n− 1

tni ∈ {0, 1} for i = 1, ..., p

The above model can be extended to find the cumulative sum of the first n terms of

−→z as follows.

Proposition 32 [85]For any z ∈ Rp,Θn(z) ( =
∑n

i=1
−→z i) is the optimal value of the

98



CHAPTER 4. INCORPORATING PREFERENCE INFORMATION IN
MULTICRITERIA PROBLEMS WITH EQUITABILITY CONCERNS

following LP problem:

MODCUM-1(Model Cumulative-1)

Θn(z) = maxnrn −
p∑
i=1

dni (4.3)

subject to

rn − dni − zi ≤ 0 for i = 1, ..., p (4.4)

dni ≤Mtni for i = 1, ..., p (4.5)
p∑
i=1

tni ≤ n− 1 (4.6)

dni ≥ 0, tni ∈ {0, 1} for i = 1, ..., p (4.7)

Proof. Denote the optimal rn value as r∗n. From the model MOD-N-MIN we know that

r∗n = −→z n. Note that at most n − 1 of the tni variables can be 1 in a feasible solution.

Minimizing
∑p

i=1 dni with the constraint sets 4.5 and 4.6 ensure that at optimality the

following hold:

d∗ni = 0 for all i : zi ≥ −→z n

d∗ni > 0 and d∗ni = −→z n − zi for all i : zi <
−→z n.

Hence at optimality Θn(z) =
∑n

i=1
−→z i = n−→z n −

∑n−1
i=1 (−→z n − −→z i) = nr∗n −

∑p
i=1 d

∗
ni.

Theorem 33 [85] For any z ∈ Rp,Θn(z) is the optimal value of the following LP problem:

MODCUM-2

Θn(z) = maxnrn −
p∑
i=1

dni

subject to

rn − dni − zi ≤ 0 for i = 1, ..., p

dni ≥ 0 for i = 1, ..., p
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Proof. The proof is based on showing that the model MODCUM-2 has the same optimal

value with the model MODCUM-1. First of all, ignoring the tni variables, it is clear that

each feasible solution to MODCUM-1 is also a feasible solution to MODCUM-2. The

feasible solutions to MODCUM-2 which have less than n positive dni variables are feasible

for MODCUM-1 as well. In MODCUM-2 we do not restrict the number of positive dni

variables to n − 1. However, one can show that for any feasible solution (rn,d) to this

problem with s ≥ n positive dni variables, another feasible solution (r′n,d
′) can be found

with s− 1 positive dni variables as follows:

Set α = Min{dni : dni > 0}. d′ni = dni − α for dni > 0.

Set d′ni = dni for dni = 0.

Set r′n = rn − α.

Then nr′n −
∑p

i=1 d
′
ni = n(rn − α) − (

∑p
i=1 dni − sα) = nrn −

∑p
i=1 dni + (s − n)α ≥

nrn −
∑p

i=1 dni.

Based on this result we propose the following model to check whether z ∈ CD(
−→
z1;
−→
z2):

(LP3)

Max 0

subject to

z′i − µ(
−→
z2
i −
−→
z1
i ) =

−→
z2
i for i = 1, ..., p (4.8)

nrn −
p∑
i=1

dni ≥
n∑
j=1

−→z j for n = 1, ..., p (4.9)

rn − dni − z′i ≤ 0 for i, n = 1, ..., p (4.10)

µ ≥ 0 (4.11)

dni ≥ 0 for i, n = 1, ..., p (4.12)

This model checks whether there exists z′ ∈ C(
−→
z1;
−→
z2) such that Θ(z) ≤ Θ(z′). Con-

straint sets 4.8 and 4.9 ensure that z′ ∈ C(
−→
z1;
−→
z2) and Θ(z) ≤ Θ(z′), respectively. Con-

straint set 4.10 is used to ensure that Θn(z′) =
∑n

i=1

−→
z′ i = nr∗n −

∑p
i=1 d

∗
ni, where r

∗
n and
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d∗ni are the optimal values of these decision variables based on Theorem 33.

This is an LP problem with p2 + 2p+ 1 variables and p2 + 2p constraints excluding the

set constraints.

4.3.4 Results for the k-point Cones Case

In this section we provide some results for k-point cones case, where k > 2. We first

show that the previous result given in Theorem 29 is not generalizable to cases where

k > 2 by providing a counter example. That is, for any k vectors z1, ..., zk ∈ Rp+ such

that zi � zk for all i 6= k and z ∈ Rp+ we cannot claim that if z ∈ CD(z1, z2, ...; zk) then

z ∈ CD(
−→
z1,
−→
z2, ...;

−→
zk).

Example 34 Suppose that we have a case where k = 3 and p = 3, that is we have 3-point

cones and we work in R3
+. Suppose that the DM has the following utility function:

f(x) = x1x2x3.

Suppose that we present the following alternatives to the DM for him to compare:

z1 = (25, 4, 15)

z2 = (7, 11, 27)

z3 = (6, 7, 33)

The corresponding utility values are f(z1) = 1500, f(z2) = 2079, f(z3) = 1386. Hence

the DM will provide us with the information that z2 � z3 and z1 � z3. Based on this we

can generate the corresponding 3-point cones.

We will show that there exists a point z : z ∈ C(z1, z2; z3) and z /∈ CD(
−→
z1,
−→
z2;
−→
z3).

z = (4.82, 4.65, 37.2) is such an example.

z ∈ C(z1, z2; z3) since z = z3 +
∑2

i=1 µi(z
3 − zi) where µ1 = 0.03 and µ2 = 0.62.

Let us check whether z ∈ CD(
−→
z1,
−→
z2;
−→
z3). We solve the following LP which is the LP3

discussed in the previous section.

Max 0

subject to

z′1 − 2µ′1 + 1µ′2 = 6
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z′2 + 8µ′1 + 4µ′2 = 7

z′3 − 8µ′1 − 6µ′2 = 33

r1 − d11 − d12 − d13 ≥ 4.65

2r2 − d21 − d22 − d23 ≥ 9.47

3r3 − d31 − d32 − d33 ≥ 46.67

rn − z′i − dni ≤ 0 i, n = 1, 2, 3

µ′1, µ
′
2 ≥ 0

dni ≥ 0 i, n = 1, 2, 3

The above problem is infeasible, which shows that there is no z′ ∈ C(
−→
z1,
−→
z2;
−→
z3) : z �e z′

(i.e., Θ(z) ≤ Θ(z′)). Hence z /∈ CD(
−→
z1,
−→
z2;
−→
z3).

Having shown this counterexample, it is clear now that we have to find another way

to deal with symmetry in k-point cones case. We try to do it by defining a region which

encompasses all the information provided by the equitably dominated region of all the

permutation cones. First, let us discuss some observations.

Given the information zi � zk for i ∈ I r {k}, for each permutation of
−→
zk, say Πs(

−→
zk),

we can generate a permutation cone of the form

C(Π1(
−→
z1), ...,Πp!(

−→
z1), ...,Π1(

−−→
zk−1), ...,Πp!(

−−→
zk−1),Π1(

−→
zk), ...,Πp!(

−→
zk); Πs(

−→
zk))

Note that this cone contains all permutations of the lower generator as upper generators

as we have Πs(
−→
zk) � Πl(

−→
zk) ∀s, k ∈ P = {1, 2, ..., p!}.

For notational simplicity from now on we denote the above cone as follows

C(Πl(
−→
zi ),Πl(

−→
zk); Πs(

−→
zk)) ∀l ∈ P and i ∈ I r {k}

This is the largest cone that we can generate for Πs(
−→
zk) as the lower generator given

this preference information. We have p! such cones each having a different permutation of
−→
zk as the lower generator. The following remark shows that all these cones have the same
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equitably dominated region since they are reflections of each other.

Remark 35 CD(Πl(
−→
zi ),Πl(

−→
zk);
−→
zk) = CD(Πl(

−→
zi ),Πl(

−→
zk); Πs(

−→
zk)) for any s ∈ P , ∀l ∈ P

and i ∈ I r {k}.

Proof. CD(Πl(
−→
zi ),Πl(

−→
zk);
−→
zk) = {z : z �e z′ and z′ ∈ C(Πl(

−→
zi ),Πl(

−→
zk);
−→
zk)}.

z′ =
−→
zk +

∑p!
j=1

∑k−1
i=1 µji(

−→
zk −Πj(

−→
zi )) +

∑p!
j=1 βj(

−→
zk −Πj(

−→
zk)) for µji > 0 and βj > 0

by definition.

Apply Πs so that

Πs(z′) = Πs(
−→
zk) +

∑p!
j=1

∑k−1
i=1 µji(Π

s(
−→
zk)−Πj(

−→
zi )) +

∑p!
j=1 βj(Π

s(
−→
zk)−Πj(

−→
zk)).

That is, Πs(z′) ∈ C(Πl(
−→
zi ),Πl(

−→
zk); Πs(

−→
zk)) by definition.

z �e z′ =⇒ z �e Πs(z′) hence z ∈ CD(Πl(
−→
zi ),Πl(

−→
zk); Πs(

−→
zk)).

Hence all the points that are equitably dominated by any of the permutation cones lie

in CD(Πl(
−→
zi ),Πl(

−→
zk);
−→
zk).

From now on we denote CD(Πl(
−→
zi ),Πl(

−→
zk);
−→
zk) as U1.

Definition 36 For zi ∈ Rp : zi � zk for all i ∈ Ir{k}, U1 =
−→
zk+

∑
λtrt such that λt ≥ 0

and rt are the rays in R, where R is the set of all rays
−→
zk − Πl(

−→
zk) ∀l : Πl(

−→
zk) 6=

−→
zk1 and

−→
zk −Πj(

−→
zi ) for all j, l ∈ P and for all i ∈ I r {k}.

U1 is a convex set, defined by an extreme point (
−→
zk ) and the extreme rays in set R.

In our 2D example U1 corresponds to the region ABOC seen in Figure 4.7.

1A special case occurs when Πl(
−→
zk) =

−→
zk and Πl(.) is not the permutation provided by the identity

matrix. That is
−→
zk has at least two elements that have the same value.

In such cases we can not talk about ray
−→
zk−Πl(

−→
zk). Instead, we use points from the close neighborhood

of
−→
zk in order to represent the ray corresponding to the PD axiom. We define the following:

For each i and j such that i 6= j and
−→
zki =

−→
zkj define

zk′ : zk′h =
−→
zkh for all h 6= i, j and zk′i =

−→
zki − ε and zk′j =

−→
zkj + ε

zk
′′

: zk
′′
h =

−→
zkh for all h 6= i, j and zk′′i =

−→
zki + ε and zk

′′
j =

−→
zkj − ε

where ε is a small positive value and use the rays
−→
zk − zk′ and

−→
zk − zk′′ instead.

See Figure 4.8 for a 2D example.

From now on, we assume that this special case is considered when we talk about
−→
zk −Πl(

−→
zk).
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Figure 4.7: Region U1
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Figure 4.8: Special case in 2D (
−→
zk1 =

−→
zk2) Rays

−→
zk − zk′ and

−→
zk − zk′′ where ε = 0.1

104



CHAPTER 4. INCORPORATING PREFERENCE INFORMATION IN
MULTICRITERIA PROBLEMS WITH EQUITABILITY CONCERNS

Definition 37 For a set A, an alternative z is equitably dominated by A if there exists

an alternative z′ ∈ A : z �e z′.

Given zi � zk for i ∈ I r {k} Remark 35 shows that every point that is equitably

dominated by any of the permutation cones will also be equitably dominated by U1. On

the other hand, since U1 is a convex cone having
−→
zk as the lower generator it consists of

points which are at most as preferred as
−→
zk.

To sum up, U1 is a region that encompasses all the information provided by all the

permutation cones generated based on zi � zk, i ∈ I r {k}. Based on these results we

propose to use U1 and for each alternative z we check whether z is equitably dominated

by U1.

We now analyze U1 in more detail. We claim that in region U1, the rays given by

zk−Πj(
−→
zi ) for i ∈ Ir {k}, where Πj(

−→
zi ) 6=

−→
zi are not extreme, hence can be written as a

nonnegative combination of the other rays in R. In other words the cones C(Πj(
−→
zi ),
−→
zk) :

Πj(
−→
zi ) 6=

−→
zi do not lie on the boundary of the region U1. In our 2D example tis corresponds

to claiming that the ray (3, 4)− (6, 2), i.e. (−3, 2), is not an extreme ray for U1 and this

is clearly seen in Figure 4.7.

Lemma 38 In set R, the rays given by
−→
zk −Πj(

−→
zi ), where Πj(

−→
zi ) 6=

−→
zi can be written as

a nonnegative combination of the rays
−→
zk −Πj(

−→
zk) ∀j :

−→
zk 6= Πj(

−→
zk) and

−→
zk −

−→
zi .

Proof. We will prove this for an arbitrary element i ∈ I r {k}.

Let zi 6=
−→
zi as assumed. Let h be the minimum value for which zih > zih+1 holds.

Define zi′ as the permutation obtained from zi by swapping zih and z
i
h+1. That is, z

i =

(zi1, z
i
2, ..., z

i
h, z

i
h+1, ..., z

i
p) and z

i′ = (zi1, z
i
2, ..., z

i
h+1, z

i
h, ..., z

i
p) where z

i
h > zih+1. We first

show the following holds:
−→
zk − zi =

∑
λtrt where rt are in the set {

−→
zk − Πj(

−→
zk) ∀j :

−→
zk 6= Πj(

−→
zk) and

−→
zk − zi′}.

That is,
−→
zk − zi can be written as a nonnegative combination of

−→
zk −Πj(

−→
zk) for all j and

−→
zk − zi′.
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For zi, zi′ as defined above the following holds:

−→
zk − zi =

−→
zk − zi′ +

(
zih − zih+1
−→
zkh+1 −

−→
zkh

)
(
−→
zk −Πj(

−→
zk))

where Πj(
−→
zk)i =

−→
zki ∀i 6= h, h + 1 and Πj(

−→
zk)h =

−→
zkh+1; Πj(

−→
zk)h+1 =

−→
zkh (all the

elements of
−→
zk are the same in Πj(

−→
zk) except for hth and h+ 1th being swapped).

It is clearly seen when we analyze the vectors in detail as below:

−→
zk1 − zi1

...
−→
zkh − zih

−→
zkh+1 − zih+1

...
−→
zkp − zip


=



−→
zk1 − zi1

...
−→
zkh − zih+1

−→
zkh+1 − zih

...
−→
zkp − zip


+

(
zih−zih+1−→
zkh+1−

−→
zkh

)



−→
zk1 −

−→
zk1

...
−→
zkh −

−→
zkh+1

−→
zkh+1 −

−→
zkh

...
−→
zkp −

−→
zkp


In the above equation if

−→
zkh+1 >

−→
zkh then

(
zih−zih+1−→
zkh+1−

−→
zkh

)
≥ 0, that is we are able to write

the ray that corresponds to
−→
zk − zi as a nonnegative combination of the rays

−→
zk −Πj(

−→
zk)

∀j :
−→
zk 6= Πj(

−→
zk);
−→
zk − zi′.

Note that a special case occurs when
−→
zkh+1 =

−→
zkh, hence

−→
zk = Πj(

−→
zk). As discussed

before we use
−→
zk − zk′ and

−→
zk − zk′′ instead of

−→
zk − Πj(

−→
zk) where zk′ (and zk′′) are the

vectors obtained from
−→
zk by subtracting (adding) ε from (to) hth element and adding

(subtracting) ε to (from) the h+ 1th element.
−→
zk − zi =

−→
zk − zi′ + 2

(
zih−zih+1
zk
′′
h −zk

′′
h+1

)
(
−→
zk − zk′′). Note that zk′′h − zk

′′
h+1 = 2ε.

−→
zk1 − zi1

...
−→
zkh − zih
−→
zkh − zih+1

...
−→
zkp − zip


=



−→
zk1 − zi1

...
−→
zkh − zih+1

−→
zkh − zih

...
−→
zkp − zip


+ 2

(
zih−zih+1

2ε

)



−→
zk1 −

−→
zk1

...
−→
zkh − (

−→
zkh + ε)

−→
zkh+1 − (

−→
zkh+1 − ε)

...
−→
zkp −

−→
zkp


Note that any permutation of vector zi will result in

−→
zi if we apply a finite number

of such binary contiguous swaps. At each such step we will be able to write the first ray

106



CHAPTER 4. INCORPORATING PREFERENCE INFORMATION IN
MULTICRITERIA PROBLEMS WITH EQUITABILITY CONCERNS

(
−→
zk−zi) as a nonnegative combination of the rays (

−→
zk−Πj(

−→
zk) ∀j :

−→
zk 6= Πj(

−→
zk);
−→
zk−zi′).

Starting from the first element which is higher than its consecutive element, these type of

swaps will eventually result in
−→
zi .

Hence, we have the following result:

In set R the rays given by
−→
zk − Πj(

−→
zi ), where Πj(

−→
zi ) 6=

−→
zi can be written as a

nonnegative combination of the rays
−→
zk −Πj(

−→
zk) ∀j :

−→
zk 6= Πj(

−→
zk) and

−→
zk −

−→
zi .

Corollary 39 In U1 the rays (
−→
zk − zi ): zi 6=

−→
zi where i ∈ I r {k} are not extreme rays.

Proof. By Lemma 38,
−→
zk − zi where zi 6=

−→
zi can be written in terms of the other rays in

R. Hence such (
−→
zk − zi)s are not extreme rays of U1.

Definition 40 We change the definition of U1 as follows:

U1 = {z : z =
−→
zk +

∑k−1
i=1 µi(

−→
zk −

−→
zi ) +

∑p!
j=1 βj(

−→
zk − Πj(

−→
zk)),where µi ≥ 0, βj ≥ 0

∀i ∈ I, j ∈ P}

The following theorem is our main result which is based on the results that we have

provided so far. For notational simplicity we will define a region ED (Equitably Domi-

nated) which is the inferior region that we can obtain through the convex cones approach

given zi � zk where i ∈ I r {k} in Rp+.

Definition 41 ED = {z : z ∈
⋃
s∈P

CD(Πl(
−→
zi ); Πs(

−→
zk))}.

Theorem 42 If z ∈ ED then z is equitably dominated by U1.

Proof. z ∈ ED =⇒ z ∈ CD(Πl(
−→
zi );
−→
zk) due to Remark 35. Hence z is equitably

dominated by U1.

Theorem 42 states that all the points that are equitably inferior to the permutation

cones will be equitably dominated by region U1. That is, all the information that we can

infer using cones is provided by equitably dominated region of U1. Moreover, definition of

U1 (see Definition 40) provides us a way to partially handle the permutational complexities

since it does not include all the permutations of the upper generators (zis); we just use
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the corresponding ordered vectors (
−→
zi s). Note that we still use all the permutations of the

lower generator (
−→
zk) to define U1. This issue will be discussed in detail in the next section.

For similar results that apply to the corresponding polyhedrons see Appendix Section

4.B.

4.3.5 Checking Equitable Dominance by a Point in U1

Recall that by Theorem 42 if z ∈ ED then z is equitably dominated by U1. Hence, for

each alternative z we have to check whether there exists z′ ∈ U1 : z �e z′. Using Corollary

39 we can define each point z′ ∈ U1 using the equation z′ =
−→
zk +

∑k−1
i=1 µi(

−→
zk −

−→
zi ) +∑p!

j=1 βj(
−→
zk −Πj(

−→
zk)).

Suppose that we work on Rp+. The following model will be used for checking equitable

dominance of an alternative z by U1 :

(LP4)

max 0

subject to

z′h −
k−1∑
i=1

µi(
−→
zkh −

−→
zih)−

p!∑
j=1

βj(
−→
zkh −Πj(

−→
zk)h) =

−→
zkh for h = 1, ..., p (4.13)

nrn −
p∑

h=1

dnh ≥
n∑
h=1

−→z h for n = 1, ..., p (4.14)

rn − dnh − z′h ≤ 0 for h, n = 1, ..., p (4.15)

µi ≥ 0 for i = 1, ..., k − 1 (4.16)

βj ≥ 0 for j = 1, ..., p! (4.17)

dnh ≥ 0 for h, n = 1, ..., p (4.18)

This model checks whether there exists z′ ∈ U1 such that Θ(z) ≤ Θ(z′). Constraint sets

4.13 and 4.14 ensure that z′ ∈ U1 and Θ(z) ≤ Θ(z′), respectively. The objective function

and constraint set 4.15 are used to ensure that Θn(z′) =
∑n

i=1
−→z ′i = nr∗n −

∑p
h=1 d

∗
nh,

where r∗n and d
∗
nh are the optimal values of these decision variables based on Theorem 33.
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It is an LP problem with p!+p2 +2p+k−1 variables and p2 +2p constraints excluding

the set constraints. Hence it is practical to solve this LP for cases where p is small (≤ 5).

Recall that the permutational term (p!) is due to the necessity of using all permutations of

the lower generator. This seems to be restricting the size of problems that can be solved

by an algorithm that uses this result. However, note that, we work on problems where we

ask the DM to compare alternatives, i.e. vectors. Requesting the DM to compare vectors

is only meaningful when the size of the vectors (p) is reasonable. Hence we already have

a natural limit on p due to the cognitive limitations of the DM.

One can show similar results for the polyhedrons. See Appendix Section 4.C.

Table 4.2 below summarizes our main theoretical results (See Appendix for LP5).

Table 4.2: Summary of the main results
2-point cones case k-point cones case

z ∈ CD(z1; z2) =⇒ z ∈ CD(
−→
z1;
−→
z2) z ∈ CD(z1, ..., zk−1; zk) =⇒ ∃ z′ ∈ U1 : z �e z′

z ∈ UP (z1; zk) =⇒ z ∈ UP (
−→
z1;
−→
zk) z ∈ UP (z1, ..., zk−1; zk) =⇒ −→z ∈ UP (

−→
z1, ...,

−−→
zk−1;

−→
zk)

Work on
−→
R p. Use LP3 and LP5. Use LP4 and LP5.

In the next section we propose an interactive ranking algorithm which is based on our

theoretical results.

4.4 An Interactive Ranking Algorithm

In this section we introduce a solution algorithm that uses the idea of convex cones for

the ranking problematique. In this algorithm we test our method to deal with symmetry.

We first provide a general description of the approach, followed by a simple numerical

example. Next, we explain the algorithm in detail.

4.4.1 General Overview of the Algorithm

We propose an algorithm that can be used to obtain a ranking of a discrete set of al-

ternatives given. In the algorithm, we gather preference information from the DM by
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presenting him/her some pairs. Using the information he/she provides, it is possible to

generate cones and polyhedrons as discussed before. For each alternative in the set we

check whether it is cone dominated or lies in the upper side of the polyhedron generated.

We perform these checks by using models LP4 and LP5 discussed in the previous section.

Note that, at the beginning of the algorithm, before asking questions to the DM, we will

perform an initial check to see whether there are alternatives equitably dominating each

other. Theorem 22 in Section 4.2.2 provides us the link between vector dominance and

equitable dominance. Based on this theorem, in order to check equitable dominance, we

will check rational dominance for the cumulative ordered vectors of the alternatives (Θ(.)).

Hence, for practical reasons, we will find Θ(.) vector for each alternative in our set at the

beginning of the algorithm. This information will also be used in the LPs to check the

status of an alternative z, since these LPs use
∑i

h=1
−→z h , which is Θi(z), as a parameter.

Suppose that we are given a finite number of alternatives each showing a distribution

profile for p parties. We can summarize our algorithm with the following steps:

S.1. Map the alternatives to Θ(Rp) and check whether any alternative is equitably

dominated by the other for each pair of alternatives.

S.2. Select k alternatives (k ≥ 2) based on a predetermined rule. Get the preference

information from the DM by asking him to compare these alternatives. Denote the least

preferred alternative as zk and the rest as zi for i = 1, 2, .., k − 1.

S.3. Based on the preference information obtained, check for each alternative z whether

z � zk by solving LP4. If not, then check whether zk � z by solving LP5.

S.4. Update the result accordingly. If the result is not satisfactory, continue with Step

2.

4.4.2 Numerical Example

Let us show the general idea using a 2D example. Note that our results are valid for any

p-dimensional case, we are providing a 2D example for simplicity.

Example 43 Suppose that a DM is trying to reach a partial ordering for the following
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Table 4.3: Example problem step 1. mapping the alternatives to the cumulative ordered
space

Alternative (z) Ordered Vector (−→z ) Cumulative Ordered Vector (Θ(z))

z1 (1,2) (1,3)
z2 (2,3) (2,5)
z3 (2,2) (2,4)
z4 (3,4) (3,7)
z5 (2,6) (2,8)
z6 (0.5,8) (0.5,8.5)
z7 (0,10) (0,10)
z8 (3.5,3.5) (3.5,7)
z9 (2.5,5) (2.5,7.5)
z10 (4,6) (4,10)

income distributions in a 2-person population:

z1 = (1, 2), z2 = (3, 2), z3 = (2, 2), z4 = (3, 4), z5 = (6, 2) , z6 = (0.5, 9), z7 = (10, 0),

z8 = (3.5, 3.5) , z9 = (5, 2.5) , z10 = (6, 4). Let us apply the algorithm.

S.1. Map the alternatives to Θ(R2) and check whether each alternative is equitably

dominated by the other for each pair of alternatives.

Based on Theorem 22 we check equitable dominance by checking rational dominance

of the corresponding cumulative ordered vectors. Through inspection one can see that the

following holds:

z1 ≺ z3 ≺ z2 ≺ z5 ≺ z10

z1 ≺ z3 ≺ z2 ≺ z4 ≺ z8 ≺ z10

z1 ≺ z3 ≺ z2 ≺ z9 ≺ z10

z6 ≺ z10

z7 ≺ z10

Figure 4.9 shows this information in a tree like form. � (≺) is represented by an arrow

from the preferred alternative to the less preferred one.

Example 44 S.2. Now suppose that we have preference information from the DM that

z4 � z5.Then, we know that z1 ≺ z3 ≺ z2 ≺ z5 ≺ z4 ≺ z8 ≺ z10.

S.3. Based on the preference information obtained, check for each alternative z whether

z � z5 by solving LP4. If not, then check whether z5 � z by solving LP5.
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Figure 4.9: Preference tree after S1

Since we already know the statuses of z1, z2, z3, z4, z8 and z10 with respect to z5; we

perform the checks for z6, z7 and z9.

S.3.1 Check whether z6 � z5:
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To do this we will solve the following LP:

Max 0

z′1 − µ(−→z 5
1 −−→z 4

1)− β(−→z 5
1 −←−z 5

1) = −→z 5
1

z′2 − µ(−→z 5
2 −−→z 4

2)− β(−→z 5
2 −←−z 5

2) = −→z 5
2

r1 − d11 − d12 ≥ Θ(z6)1

2r2 − d21 − d22 ≥ Θ(z6)2

r1 − d11 − z′1 ≤ 0

r1 − d12 − z′2 ≤ 0

r2 − d21 − z′1 ≤ 0

r2 − d22 − z′2 ≤ 0

µ, β ≥ 0

dni ≥ 0 ∀i, n

That is, we solve the following LP:

Max 0

z′1 + µ+ 4β = 2

z′2 − 2µ− 4β = 6

r1 − d11 − d12 ≥ 0.5

2r2 − d21 − d22 ≥ 8.5

r1 − d11 − z′1 ≤ 0

r1 − d12 − z′2 ≤ 0

r2 − d21 − z′1 ≤ 0

r2 − d22 − z′2 ≤ 0

µ, β ≥ 0

dni ≥ 0 ∀i, n
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The above LP is feasible. Hence z6 � z5.

S.3.2 Check whether z7 � z5.

When the above LP is solved for z7, a feasible solution can be found. Hence z7 � z5.

S.3.3 Check whether z9 � z5.

The corresponding LP model is not feasible. So we can not conclude that z9 � z5. Now

we will check whether z9 ∈ UP (−→z 4,−→z 5) by solving the following LP:

Max ε

z′1 − µ(−→z 5
1)− µ1(−→z 4

1) = 0

z′2 − µ(−→z 5
1)− µ1(−→z 4

1) = 0

z′1 + ε ≤ Θ(z9)1

z′1 + z′2 + ε ≤ Θ(z9)2

µ+ µ1 = 1

µ, µ1 ≥ 0

Writing down the parameters explicitly, we have the following LP:

Max ε

z′1 − 2µ− 3µ1 = 0

z′2 − 6µ− 4µ1 = 0

z′1 + ε ≤ 2.5

z′1 + z′2 + ε ≤ 7.5

µ+ µ1 = 1

µ, µ1 ≥ 0

Since ε∗ = 0 ≥ 0, z9 ∈ UP (−→z 4,−→z 5), hence z5 � z9.

S.4. Using the preference information (z4 � z5) that the DM provided and using the

convex cones, we obtained the information that z6 � z5; z7 � z5 and z5 � z9. Now we
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know the following:

z1 ≺ z3 ≺ z2 ≺ z5 � z9 ≺ z10

z1 ≺ z3 ≺ z2 ≺ z5 ≺ z4 ≺ z8 ≺ z10

z6 � z5 � z9 ≺ z10

z7 ≺ z5 � z9 ≺ z10

See Figure 4.10 for a tree representation of these preferences.

Figure 4.10: Preference tree after S4

Example 45 If this quasi-ordering is not satisfactory, one can go back to Step 2, choose

another pair and ask the DM for new information. For example we can ask her to compare

z8 and z9.

4.4.3 Detailed Description of the Algorithm

Example 43 shows the idea that our ranking algorithm is based on. The algorithm that

we propose differs from the above sketch in a number of aspects. Unlike the example
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case, as long as new information is available, which allows us to generate new cones, we

repeat Step 3. That is, we try to use the available information as much as possible before

presenting the DM a new sample. After all the checks are performed, we continue with

Step 4. We now provide a detailed description of the algorithm using subroutines.

For a problem including n alternatives showing allocation to p parties, that is with p

criteria, the pseudocode of our algorithm is as follows:

Algorithm 46 Initialize the parameters and generate data using Initialization subrou-

tine

Check equitable dominance relation between each pair of alternatives using Domi-

nancecheck subroutine

Repeat

Get preference information from the DM using Getinfo subroutine

newinfo=1 //This parameter is used to check whether any new information is

obtained that can allow us to generate new cones

Repeat

Perform the checks related to the cones and polyhedrons using Conegener-

ation subroutine

Until newinfo=0

Count the number of alternatives whose ranks are known using Countassigned

subroutine

Until n-unassigned<n or CPUtime>1800

Display results and performance measure values

Let us now explain each subroutine in more detail.

Initialization

This subroutine is used to initialize the parameters and generate the set of alternatives.

At the end of this subroutine, the cumulative ordered vectors for all the alternatives are

also found and kept in memory.

Dominancecheck
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As discussed before (see Theorem 22) equitable dominance is checked by checking ratio-

nal dominance of the corresponding cumulative ordered vectors. We store the information

on dominance relations in an n ∗ n matrix called Dominancemat. Dominancemat(i,j) =1

if alternative i equitably dominates alternative j; 0 otherwise.

Getinfo

This subroutine gathers information from the DM by providing him with a set of alter-

natives. The size of this set is controlled by a parameter called samplesize. The alternatives

are selected according to a predetermined rule. In the first iteration we rank the alterna-

tives according to their Euclidean distances to an ideal point (IP) whose coordinates are

defined as follows:

IPi = Max
Θ(z)

Θ(z)i ∀i = 1, ..., p.

We select the ones having the least distances to the IP.

In the following iterations, we select the alternatives on whose ranks we have the least

information. We keep track of the information on an alternative’s possible ranks using an

n ∗ 2 matrix called boundmatrix. In this matrix each row is dedicated to an alternative

and the two values in each row show the minimum and maximum possible ranks of the

alternative, respectively. At the beginning these values are set to 1 and n for all the

alternatives. Whenever new information is available, this matrix is updated accordingly.

While asking the DM for preference information, we choose the alternatives for which the

difference between the maximum and minimum rank is larger.

The preference information gathered is in form of ranking of the alternatives in the

sample. If samplesize is two, this corresponds to a pairwise comparison. For samples with

more than two alternatives, the DM ranks these alternatives from the best to the worst.

When preference information is obtained, it is stored in an n ∗n matrix called Userprefer-

ence. This matrix keeps the information for cone and polyhedron generation. When new

information is gathered, the Userpreference matrix is updated based on transitivity. For

example, if from previous iterations we know that alternative i is preferred to alternative

j and in the current iteration we are given j is preferred to alternative k, then we update

the matrix setting Userpreference(i,k)=1. This allows us to generate the largest cone for
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a given lower generator.

Conegeneration

Given available information on the preferences, in this subroutine we perform the cor-

responding checks related to the cones and polyhedrons. The two LPs, LP4 and LP5, are

generated and solved in this subroutine. Whenever possible, redundant cones/polyhedrons

and checks are avoided. We do not generate a cone/polyhedron that we generated before.

Moreover, we do not solve these LPs for an alternative if we already know that it is eq-

uitably dominated by/equitably dominates or less preferred/more preferred to the cone’s

lower generator. Since some of the new information obtained through these checks leads

us to new cones and polyhedrons, we repeat this subroutine until there is no useful new in-

formation. We check this condition by using a binary variable called newinfo. A flowchart

of this subroutine is provided below in Figure 4.11:

118



CHAPTER 4. INCORPORATING PREFERENCE INFORMATION IN
MULTICRITERIA PROBLEMS WITH EQUITABILITY CONCERNS

Count the # of alternatives
that are preferred to(but not

dominating) alt. j.
Store in notdom.

Set lastnotdom(j)=notdom.
Generate the cone and

polyhedron.
(Set the parameters of LP4

and LP5 accordingly.)

notdom>0
(Can we generate a cone?)

&
Notdom>lastnotdom(j)
(Is this a new cone?)

j=1
Newinfo=0

j=j+1

i=1

Is status of i with respect
to j is known?i=i+1

Formulate and solve LP4

to check whether alt. i is
dominated by the Cone

Is alt. i cone dominated?

Formulate and solve LP5

to check alt. i’s position
with respect to the

Polyhedron

Is alt . i in/in the upper side
of the polyhedron?

Update Userpreference.
Set Newinfo=1.

i<n+1

j<n+1

STOP

Yes

Yes

Yes

Yes

Yes

No No

No

No

No

No

Yes

Figure 4.11: Flowchart of Conegeneration subroutine
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Countassigned

Recall that we keep the lowest and highest possible ranks for an alternative in bound-

matrix. At the end of each iteration, for each alternative, we count the alternatives that

it dominates/is preferred to and the ones that it is dominated by/less preferred than.

We update the information on boundmatrix accordingly. We then count the number of

alternatives whose rank we know, i.e, whose maximum and minimum possible ranks are

equal. This information is then used to decide whether to terminate the algorithm.

4.5 Computational Experiments

In this section we provide the results of our computational experiments on the performance

of the algorithm. We present our experimental setting, state our performance measures

and discuss the results of the experiments.

4.5.1 Experimental Setting

Two different data settings are used in the experiments. The first setting is based on

real life data on income distributions of different countries. In the second setting the

alternatives are generated using the random number generator of MATLAB.

In the first data set we use income distribution information of different countries from

the World Bank [179] and UNU-WIDER (United Nations University- World Institute

for Development Economics Research) [180] databases. We use the quintile values to

represent a country’s income distribution. For each country we take the percentage share

of income that accrues to subgroups of population indicated by quintiles. Let us denote

these percentage shares as Si i = 1, ..., 5, where Si% is the income share held by the ith

20% of the population. Given these percentage shares, for each country, we can find mean

income levels for each quintile, µi : i = 1, ..., 5 as follows:

µi =
TI ∗ Si
TP ∗ 20

i = 1, ..., 5

where TI and TP are the total income and population of the corresponding country.
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Note that TI/TP is the mean income level for that country. We use GNI (Gross National

Income) [181] values to estimate TI/TP , hence use the following equation:

µi = GNI ∗ Si
20

i = 1, ..., 5

Hence for each country we use a distribution vector of size 5 consisting of the mean

income levels of each quintile. One can think of these µi values as the income levels of 5

representative people in the population. In this setting we could be able to obtain samples

of size (n) 14, 15, 26, 39, 54 and 66. These samples differ from each other in terms of

income sharing unit and unit of analysis reported in the database. Note that since we

work on quintiles p = 5.

In the second setting the alternatives are generated randomly from a uniform distri-

bution using MATLAB’s random number generator. In this set only equitably effi cient

alternatives are generated. This is ensured by generating the cumulative ordered vectors

rather than the alternatives themselves. Note that for a vector to be a cumulative ordered

vector, the difference between its consecutive elements should be increasing. We generate

cumulative ordered vectors which are Pareto effi cient so that the alternatives will be eq-

uitably effi cient. Pareto effi ciency is ensured by generating the vectors on a quarter circle

( or on the boundary of a sphere) in the nonnegative orthant. If the generated vector

does not correspond to an ordered vector, we repair it. We then derive the original set of

alternatives by applying an inverse cumulative function to the cumulative order.

We refer to these two data sets as Income Distribution (ID) and Equitably effi cient

(EE), respectively. One can see that the diffi culty of the problem is expected to increase

in the latter one.

The DM’s responses are simulated using an underlying value function. Three types of

underlying value functions are used in the experiments:

1. Linear value function

max
i

∑p
j=1wj

−→z ij

where wj , j = 1, ..., p are generated from a uniform distribution between 0 and 1.
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2. Product function

max
i

p∏
j=1

zij

3. Tchebycheff value function

max
i
{min

j

−→z ij} = max
i
{−→z i1}

Another parameter used in the algorithm is the sample size, denoted by s. We use an

s value of 2 in the experiments, that is we only ask for binary comparisons.

In the EE data set, for each combination of the settings discussed above, we generate

instances starting with n = 10 and p = 2, increasing them in increments of 10 and 1,

respectively. For each such combination we generate 10 problem instances.

4.5.2 Performance Measures

We now discuss the performance measures used to evaluate the algorithm and the perfor-

mance of convex cones approach. We use the following measures:

1. CPU time in seconds

2. Number of LP4 problems solved

3. Number of LP5 problems solved

4. Number of binary comparisons gathered from the DM

5. Ratio of the binary comparisons gathered from the DM

6. Ratio of the binary comparisons gained through convex cones

The definitions of measures 1,2 and 3 are clear. Let us explain measures 4, 5 and 6.

Number of binary comparisons gathered from the DM: The calculation of this measure

is obvious when we only gather pairwise comparisons from the DM. In the cases where we

present more than two alternatives, we report the information that we gain in terms of

the underlying pairwise comparisons made by the DM. For example, if we present the DM

three alternatives for him to rank, we say that he provides
(

3
2

)
= 6 pairwise comparisons.

Hence for a sample size of s, at each iteration, the number of binary comparisons gathered

is
(
s
2

)
. In t iterations, we have t ∗

(
s
2

)
.
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Ratio of the binary comparisons gathered from the DM (qratio) : This is another way

to measure the amount of information taken from the DM. In order to achieve a complete

ranking of n alternatives, one has to know the relation between each pair of alternatives

in this set. Hence, we should know the result of
(
n
2

)
binary comparisons. The ratio is then

calculated as follows:

qratio = t ∗
(
s
2

)
/
(
n
2

)
Recall that in Dominancecheck subroutine we find the number of pairwise equitable

dominance relations. Let us denote it by d. In the output we also report the ratio of

the equitable dominance relations which is a property of the problem set rather than a

performance measure. We call it dratio and calculate as follows:

dratio = d/
(
n
2

)
.

Ratio of the binary comparisons gained through convex cones (gainratio): Similar to

qratio, this measure is used to see the amount of information that we gain by using convex

cones. It is calculated as follows:

gainratio=1-qratio-dratio

The optimal solutions of the LPs are found by using CPLEX 12.2. We set a termination

limit of 30 minutes to the algorithm. All experimentations are done in Intel Core i5 2.27

GHz, 4 GB RAM. The algorithm is coded with MATLAB.

4.5.3 Experiments

In this part we present the results of our experiments.

Table 4.4 shows our results for the first data set where we use income distribution

information. For the linear utility function case for each n value we generate 10 problem

instances, each with randomly generated objective function weights. We then report the

average values over all these 10 instances. In the other cases, we solve the algorithm once.
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Table 4.4: Results for WorldBank and UNU-WIDER Data
n Utility dratio LP4 LP5 Solution Time gainratio qratio Number of Number of

Function (CPU seconds) comparisons gained questions asked
14 1 0.901 3 3 0.443 0.022 0.077 2.00 7.01

2 0.901 3 3 0.490 0.022 0.077 2.00 7.01
3 0.901 6 6 0.890 0.044 0.055 4.00 5.01

15 1 0.876 10.6 9.9 1.423 0.054 0.070 5.69 7.33
2 0.876 7 7 1.020 0.057 0.067 5.99 7.04
3 0.876 12 12 1.740 0.019 0.105 2.00 11.03

26 1 0.895 43.2 43.1 5.480 0.032 0.073 10.37 23.76
2 0.895 43 43 6.530 0.028 0.077 9.10 25.03
3 0.895 45 44 6.280 0.040 0.065 13.00 21.13

39 1 0.916 73.3 72.4 9.721 0.030 0.054 21.86 40.09
2 0.916 73 72 10.580 0.028 0.055 20.75 40.76
3 0.916 58 54 8.300 0.050 0.034 37.05 25.19

54 1 0.932 125 123.2 16.786 0.028 0.040 40.07 57.24
2 0.932 156 156 23.160 0.022 0.045 31.48 64.40
3 0.932 115 113 16.800 0.038 0.030 54.38 42.93

66 1 0.898 594.1 590.6 80.617 0.056 0.046 119.05 99.31
2 0.898 608 605 85.530 0.054 0.048 115.83 102.96
3 0.898 480 470 66.270 0.068 0.034 145.86 72.93

It is observed that in this data set, dratio is very high, with a minimum value of 0.895.

That is in at least 89.5% of all the pairs in the set, we can observe equitable dominance

before asking to the DM for preference information. Hence, there is not much to ask the

DM. This fact is observed in the average number of questions asked, in the qratio and the

average number of the two LPs solved. Consequently, gainratio is quite low, the maximum

is observed as 0.068 in the case where n = 66 and the DM has a Tchebycheff type of utility

function.

One interesting observation is made regarding the ratio of gainings through cones to

the questions asked (gainratio/qratio). This gives us how many extra binary comparisons

we can infer, given a binary comparison from the DM. This ratio increases as the problem

size, n, increases. In the set with 14 alternatives and the DM has a linear utility function

this ratio is 0.29 while it increases to 2 in the set with 66 alternatives and the DM has a

Tchebycheff type of utility function. This indicates that the gain that we obtain through

cones tends to increase as the problem gets larger.

Note here that, these results are preliminary results for real life income distribution

data. Since we are representing the income distributions with a vector of size 5, it becomes

harder to capture the underlying distribution and the results are sensitive to changes in
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the data quality. A number of assumptions are made regarding the income distributions

of different countries while collecting the data which may affect the results significantly

(see [179] and [180] for more information). More detailed experiments in this area await

further attention.

We now discuss the performance of our algorithm for the EE setting. For each combi-

nation of utility function, p and n values, 10 problem instances are generated. The average

performance measure values over the 10 instances are shown in Table 4.5. Recall that in

each problem instance none of the alternatives are equitably dominating each other, i.e,

dratio=0. Hence this set consists of more diffi cult problems in that sense.
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Table 4.5: Results for the EE set
Utility p n Number of LP4 Number of LP5 Solution Time gainratio qratio Number of
Function (CPU seconds) questions asked

1 2 10 32.60 18.80 3.32 0.95 0.05 2.40
20 192.40 149.30 21.66 0.96 0.04 7.90
30 589.70 506.20 85.97 0.97 0.03 11.40
40 944.20 813.00 121.55 0.98 0.02 13.70
50 1714.20 1543.40 248.86 0.98 0.02 19.80
60 2258.50 2005.80 341.17 0.99 0.01 17.80
70 2159.40 1847.70 313.64 1.00 0.00 10.60

3 10 100.90 94.10 12.27 0.68 0.32 14.50
20 707.80 694.40 113.45 0.77 0.23 44.60
30 2061.00 2011.50 320.35 0.84 0.16 70.60
40 3446.10 3351.40 612.62 0.89 0.11 88.60
50 6397.10 6308.70 1438.71 0.91 0.09 111.90

4 10 129.50 128.70 16.43 0.54 0.46 20.90
20 884.80 874.10 124.20 0.73 0.27 52.00
30 2778.30 2757.50 472.12 0.78 0.22 95.80
40 5737.00 5706.60 1278.61 0.82 0.18 140.90

5 10 133.40 132.70 16.95 0.49 0.51 23.00
20 1070.80 1065.30 149.77 0.64 0.36 67.70
30 3100.40 3089.80 533.22 0.75 0.25 109.20
40 6895.75 6881.38 1483.24 0.81 0.19 145.88

2 2 10 46.70 33.40 5.07 0.91 0.09 4.10
20 260.80 220.70 31.30 0.95 0.05 9.90
30 739.70 669.60 96.78 0.96 0.04 17.50
40 1399.70 1296.20 197.30 0.97 0.03 22.00
50 2617.40 2466.60 418.67 0.98 0.02 28.10
60 4026.70 3826.20 733.58 0.98 0.02 34.40
70 5528.70 5267.70 1110.43 0.98 0.02 38.50

3 10 98.50 92.90 12.11 0.64 0.36 16.20
20 752.30 729.20 101.44 0.77 0.23 43.00
30 2075.00 2035.50 325.55 0.81 0.19 82.20
40 4332.30 4272.80 843.19 0.85 0.15 119.60

4 10 123.50 122.40 15.80 0.52 0.48 21.70
20 971.80 967.10 137.55 0.68 0.32 60.40
30 2946.70 2934.10 508.64 0.76 0.24 104.70
40 6290.67 6265.67 1213.64 0.80 0.20 152.67

5 10 127.20 126.40 16.37 0.50 0.50 22.50
20 1092.20 1088.70 153.25 0.66 0.34 64.70
30 3380.00 3375.30 611.02 0.73 0.27 119.20

3 2 10 27.20 11.80 2.51 0.96 0.04 1.80
20 106.30 58.70 10.48 0.98 0.02 4.50
30 263.00 157.40 26.79 0.99 0.01 3.20
40 467.30 320.60 51.32 1.00 0.00 3.50
50 573.20 375.60 73.15 1.00 0.00 3.40
60 943.60 692.20 112.40 1.00 0.00 3.10
70 1286.00 966.10 159.81 1.00 0.00 3.10

3 10 96.00 90.30 11.77 0.67 0.33 14.90
20 717.80 696.90 95.15 0.77 0.23 43.60
30 2063.30 2019.90 323.04 0.84 0.16 71.70
40 4189.10 4118.70 795.93 0.87 0.13 103.30

4 10 128.20 127.00 16.56 0.49 0.51 23.10
20 985.20 978.90 142.83 0.70 0.30 56.30
30 2758.30 2740.40 562.76 0.78 0.22 95.10
40 6040.00 6009.90 1324.71 0.81 0.19 147.10

5 10 128.30 127.60 62.92 0.50 0.50 22.70
20 1055.70 1052.00 531.56 0.66 0.34 64.20
30 3275.90 3269.90 586.79 0.74 0.26 113.30
40 4606.70 4594.50 1832.07 0.94 0.06 47.70
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We can find complete rankings for problems with up to 70 alternatives when the number

of parties, p, is two, and up to 40 alternatives when p is three, four and five in our time

limit of 30 minutes.

These results reveal the contribution of convex cones. The minimum average gainratio

value is 0.49, that is, at least about 50% of the binary comparisons are provided by the

convex cones. This indicates a satisfactory performance for the convex cones approach.

Note here that in some instances gainratio is seen as 0, which is due to rounding.

We can see the effect of problem size on the performance of the algorithm and on the

amount of information gained from cones.

As can be observed from the table when the number of alternatives, n, increases

gainratio increases. Hence for constant p, the contribution of convex cones approach to

the solution increases as n increases. Note that although qratio decreases with increasing

n, the actual number of questions increases, resulting in an increase in the number of

cones/polyhedrons generated. Moreover as n increases so does the the number of LPs

solved per cone/polyhedron. As a result, we observe an increase in the number of LPs

solved and the solution time.

The effect of number of parties, p, is also notable in the performance of the convex

cones. As p increases the number and ratio of the comparisons required from the DM

increase. As a result of the increase in the ratio of the comparisons required, the ratio

of information gained through cones decreases. Moreover the increase in the number of

comparisons provided by the DM leads to an increase in the number of LP models solved

and in turn an increase in solution time.

It is also observed that the effects of p and n are consistent over the three types of

utility functions used.

4.6 Conclusion and Further Research

In this study we consider a method to incorporate preference information for multicriteria

problems with equity concerns. We are motivated by the fact that problems involving eq-
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uity concerns are widely encountered in real life, especially in public sector. Such problems

include, facility location, income distribution and resource/service allocation problems.

We analyze a method based on convex cones that is frequently used to represent DM’s

preferences in multi criteria decision making environment. Based on the reported satisfac-

tory performance of convex cones in reducing the amount of information required from the

DM to solve different MCDM problems, we consider extending their use for problems with

equity concerns. We provide theoretical results and discuss a way to partially handle the

computational complexities due to symmetry. This allows us to use convex cones approach

in problems with impartiality without significantly increasing the computational efforts.

Related to the cones, we also discuss the use of polyhedrons in a ranking problematique.

We check the performance of the suggested approach by using it in a ranking algorithm.

In the most diffi cult setting, where all the alternatives in the set are equitably effi cient, our

algorithm provides complete rankings for problems with up to 70 alternatives when the

number of parties is two, and up to 40 alternatives when the number of parties is three,

four and five in less than 30 minutes requiring a reasonable number of comparisons from

the DM. It is observed that this satisfactory performance of the algorithm is mostly due

to the high ratio of information gained by convex cones and polyhedrons. At least 50%

of the information is obtained through cones and polyhedrons in this setting. We observe

that the number of parties and the number of alternatives affect the problem complexity

and the percentage of the information gained through cones.

To the best of our knowledge, this study is the first extensive study that attempts to

incorporate DM’s preference information in MCDM problems with equity concerns where

the utility function is not assumed to be linear. This is also the first discussion on the

convex cones approach in a symmetric environment and the first study that reports results

for a ranking algorithm that uses the information from cones and polyhedrons.

In the near future, this study can be extended by working more on the MCDM models

and generalizing the use of convex cones in this context. This includes four main areas:

Searching for alternative ways to handle computational complexity due to symmetry, using

convex cones in selecting the best and sorting problematiques, using convex cones in

128



CHAPTER 4. INCORPORATING PREFERENCE INFORMATION IN
MULTICRITERIA PROBLEMS WITH EQUITABILITY CONCERNS

different feasible sets and performing an experimental study to use convex cones approach

as effi ciently as possible. These potential research topics are discussed below.

1. More on Handling the Computational Complexity: Recall that the method we pro-

pose to handle computational complexities due to symmetry reduces many of the

permutational computations. However, in LP4 we still have to find all the per-

mutations of the lower generator of each cone. In the near future, more theoretical

studies may be performed to see whether there exists a way to obtain the information

without any permutational calculations.

2. Interactive Algorithms for Selecting the Best and Sorting Problematiques: Selecting

the best alternative in an MCDM setting involving equity concerns is a problema-

tique that is encountered in the public sector as discussed before. It has applications

in location and public service/resource allocation decisions. We use different ways

to gather and use DM’s preference information in different problematiques. For ex-

ample, in a sorting environment, instead of taking pairwise comparisons or rankings,

we may request him/her to assign the alternatives into the classes.

3. Use of Convex Cones for Problems with Different Feasible Sets One can study differ-

ent problem environments where the feasible region is defined by constraints. More

research can be done to generalize the use of convex cones in such environments.

4. Experimental Study on Convex Cones: While designing an algorithm the analyst

makes various decisions regarding convex cones that may affect the performance of

the proposed method. These decisions are mostly related to the ways to collect pref-

erence information from the DM. The performance of the algorithm may vary based

on the size of the sample used for gathering preference information, the selection

rule applied to select the alternatives in the sample and the form of the information

the DM provides. For example, given a set of k alternatives, we may require the

DM to rank them or select the best/worst alternatives in the sample. We can per-

form an experimental study to see the effects of such decisions that are made in the
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approaches using convex cones theory.

4.A Results for the 2-point Polyhedrons Case

Lemma 47 For z1, z2 ∈ Rp+, if z ∈ P (z1;
−→
z2) then z ∈ UP (

−→
z1;
−→
z2).

Proof. Let z1 6=
−→
z1 (Otherwise, the result is immediate). Let h be the minimum value

for which z1
h > z1

h+1 holds. Define z
1′ as the permutation obtained from z1 by swapping

z1
h and z

1
h+1. That is, z

1 = (z1
1 , z

1
2 , ..., z

1
h, z

1
h+1, ..., z

1
p) and z1′ = (z1

1 , z
1
2 , ..., z

1
h+1, z

1
h, ..., z

1
p)

where z1
h > z1

h+1.

Suppose for an arbitrary µ ≥ 0 we have a point z ∈ P (z1;
−→
z2) : z = µ

−→
z2 + (1 − µ)z1.

Define z
′ ∈ P (z1′;

−→
z2) : z

′
= µ
−→
z2 + (1− µ)z1′.

z and z′ have the same elements except the hth and h + 1th elements, which are as

follows:

zh = µ
−→
z2
h + (1− µ)z1

h;

zh+1 = µ
−→
z2
h+1 + (1− µ)z1

h+1;

z′h = µ
−→
z2
h + (1− µ)z1

h+1;

z′h+1 = µ
−→
z2
h+1 + (1− µ)z1

h.

From Lemma 27 we know that z′ �e z if Min{z′h, z′h+1} ≤ Min{zh, zh+1} and z′h +

z′h+1 ≤ zh + zh+1. Let us check (Recall that z1
h > z1

h+1):

Min{z′h, z′h+1} = Min{µ
−→
z2
h + (1− µ)z1

h+1, µ
−→
z2
h+1 + (1− µ)z1

h}

= µ
−→
z2
h + (1− µ)z1

h+1 = z′h.

We do not know what Min{zh, zh+1} is, hence we will compare z′h with both zh and

zh+1.

z′h = µ
−→
z2
h + (1− µ)z1

h+1 ≤ µ
−→
z2
h + (1− µ)z1

h = zh

z′h = µ
−→
z2
h + (1− µ)z1

h+1 ≤ µ
−→
z2
h+1 + (1− µ)z1

h+1 = zh+1. Hence,

Min{z′h, z′h+1} ≤Min{zh, zh+1} (4.19)

zh + zh+1 = µ
−→
z2
h + (1− µ)z1

h + µ
−→
z2
h+1 + (1− µ)z1

h+1
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= µ
−→
z2
h + (1− µ)z1

h+1 + µ
−→
z2
h+1 + (1− µ)z1

h

= z′h + z′h+1. That is,

z′h + z′h+1 ≤ zh + zh+1 (4.20)

From 4.19 and 4.20 the conditions of Lemma 27 is satisfied so z′ �e z . Since µ is

arbitrary, this result is valid for every z ∈ P (z1;
−→
z2).

We showed that if z ∈ P (z1;
−→
z2), then ∃z′ ∈ P (z1′;

−→
z2) such that z′ �e z, where z1′ is

the permutation obtained by a single swap of two consecutive elements of z1 as defined

above.

Any permutation of vector z1 will result in
−→
z1 if we apply a finite number of such binary

contiguous swaps. Starting from the first element which is higher than its consecutive

element, these type of swaps will eventually result in
−→
z1. Hence, we have the following

result:

For any z2, z1 ∈ Rp+, if z ∈ P (z1;
−→
z2) then ∃z′ ∈ P (

−→
z1;
−→
z2) such that z′ �e z. That is,

z ∈ UP (
−→
z1;
−→
z2).

Proposition 48 For any z2, z1 ∈ Rp+, if z ∈ P (z1; z2) then z ∈ UP (
−→
z1;
−→
z2).

Proof. Let z1 = Πs(
−→
z1) and z2 = Πq(

−→
z2). Then z = µ(Πq(

−→
z2)) + (1− µ)(Πs(

−→
z1)). Let the

inverse permutation of Πq be Πr and let Πr(Πs) = Πt.

We can rewrite the condition as follows: If Πr(z) ∈ P (Πt(
−→
z1);
−→
z2) then Πr(z) ∈

UP (
−→
z1;
−→
z2) ∀t, implied by Lemma 47 proved above.

Theorem 49 For any z2, z1, z ∈ Rp+, if z ∈ UP (z1; z2) then z ∈ UP (
−→
z1;
−→
z2).

Proof. If z ∈ UP (z1; z2) there exists a z′ ∈ P (z1; z2) : z′ �e z. From Proposition 48 z′

∈ UP (
−→
z1;
−→
z2). Then from transitivity of �e, z ∈ UP (

−→
z1;
−→
z2).
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4.B Generalization for the k-point Polyhedrons Case

Lemma 50 Every point in a k-point polyhedron is a convex combination of k − 1 points

which are in the k−1 distinct 2-point polyhedrons generated by one of the upper generators

and the lower generator. That is, given zi such that zi � zk, ∀i ∈ I r {k} we have the

following:

If z ∈ P (z1, z2, ..., zk−1; zk) then there exists λi and yi ∈ P (zi; zk) for i = 1, ..., k − 1

such that z =
∑k−1

i=1 λiy
i,
∑k−1

i=1 λi = 1.

Proof. z = µzk +
∑k−1

i=1 µiz
i such that µ+

∑k−1
i=1 µi = 1.

Let yi = (1− µ′i)zk + µ′iz
i ∀i.

Now we will show that there exist λi i = 1, ..., k − 1 such that z =
∑k−1

i=1 λiy
i. Given

µi corresponding to vector z, we will show that λis and µ
′
is exist as defined so that we can

write z as a convex combination of yis. Suppose that we have λi values for i = 1, .., k − 2

such that λi > 0 and
∑k−2

i=1 λi < 1 and we set λk−1 = 1−
∑k−2

i=1 λi. Given these λi and µi,

we can set µ′i values as follows:

µi = λiµ
′
i for i = 1, .., k − 1

µ′i = µi/λi. Since λi > 0 and µi ≥ 0, we have µ′i ≥ 0.

z = µzk +
k−1∑
i=1

µiz
i

= (1−
k−1∑
i=1

λiµ
′
i)z

k +

k−1∑
i=1

λiµ
′
iz
i (Since µ = 1−

k−1∑
i=1

µi = 1−
k−1∑
i=1

λiµ
′
i)

=
k−1∑
i=1

λi(1− µ′i)zk +
k−1∑
i=1

λiµ
′
iz
i.

=
k−1∑
i=1

λi[(1− µ′i)zk + µ′iz
i]

=

k−1∑
i=1

λiy
i

Remark 51 If an alternative z ∈ UP (zi, zk) then it is in the upper side of any k-point
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polyhedron having zi and zk as two of the generators (zk being the lower generator).

Theorem 52 If z ∈ P (z1, z2, ..., zk−1; zk) then z ∈ UP (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk).

Proof. From Lemma 50 if z ∈ P (z1, z2, ..., zk−1; zk) =⇒we can find yi ∈ P (zi; zk) :

z =
∑k−1

i=1 λiy
i for i = 1, ..., k − 1where

∑k−1
i=1 λi = 1.

By Theorem 49, yi ∈ P (zi; zk)⇒ yi ∈ UP (
−→
zi ;
−→
zk);

By Remark 51 yi ∈ UP (
−→
zi ;
−→
zk) =⇒ yi ∈ UP (

−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk) for all i =

1, ..., k − 1.

Since yis, as defined above, are all in UP (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk) and UP (

−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk)

is convex; any convex combination of them will also be in UP (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk).

Hence, z ∈ UP (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk).

4.C Checking for Polyhedrons

If z ∈ P (z1, z2, ..., zk−1; zk) then z ∈ UP (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk). Hence, for each alternative

z we have to check whether there exists z′ ∈ P (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk) : z′ �e z.

The following model will be used for that purpose:

(LP5)

Max ε

subject to

z′h − µ
−→
zkh −

k−1∑
i=1

µi(
−→
zi h) = 0 for h = 1, ..., p (4.21)

n∑
h=1

z′h + ε ≤
n∑
h=1

−→z h for n = 1, ..., p (4.22)

k−1∑
i=1

µi + µ = 1 (4.23)

µi ≥ 0 ∀i

µ ≥ 0
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Constraint sets 4.21 and 4.23 ensure that z′ ∈ P (
−→
z1, ...,

−→
zi , ...,

−−→
zk−1;

−→
zk) and constraint set

4.22 ensures that z′ �e z by ensuring Θ(z′) ≤ Θ(z).

It is an LP problem with p+ k + 1 variables and 2p+ 1 constraints excluding the set

constraints.
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Chapter 5

Incorporating Balance Concerns in

Resource Allocation Decisions: A

Bi-criteria Modelling Approach

5.1 Introduction

Resource allocation (distribution) is a process by which resources (inputs) are allocated to

different entities such as activities, projects or departments [182]. The inputs are usually

allocated in a way that maximizes some output value.

A common goal in resource allocation in organizations alongside maximization of out-

put (effi ciency) is “balance” [182]. Balance can be sought in terms of various attributes

such as risk (high risk vs. sure bets), internal vs. outsourced work, distribution of resources

across industries, various markets the business is in, different project types etc. [183]. Fail-

ure to achieve a balanced portfolio is often revealed by a decision maker (DM) who claims

that there is “too much”or “too little”resource going to activities of a particular type.

A related concept considered in many allocation decisions is equity (fairness). However,

as we use the term, a “perfectly balanced distribution” is not necessarily a distribution

where each category receives the same amount. We define balance as a more general

concept, of which equity might be considered as a special case. We assume that the DM has
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a balance distribution based on which she evaluates the balance in a given distribution. We

refer to a distribution that has the “desired proportions”shown by the balance distribution

as a “perfectly balanced distribution”even if this distribution gives some categories more

than the others. Equity concerns can be represented as the special case where the DM’s

balance distribution gives each category an equal amount.

The contributions of the current study are as follows:

• We propose a means to handle balance concerns alongside effi ciency concerns in

allocation problems and hence provide a bi-criteria framework to think about trading

balance off against effi ciency.

• We discuss ways to measure the deviation from a distribution which the DM considers

as balanced and hence define and classify imbalance indicators.

• We propose formulations and algorithms which provide insight to the decision makers

in general resource allocation settings.

Section 5.2 discusses an example allocation setting. Section 5.3 discusses alternative

ways in which balance concerns have been handled in mathematical programming models

and provides a brief review of related works from the literature. Section 5.4 introduces

some imbalance indicators, which can be used to assess the degree of balance in a distrib-

ution. We introduce these indicators as another criterion to be optimized in the classical

maximize output setting and provide bi-criteria models in section 5.5. In section 5.6 we

discuss a way to solve the bi-criteria models and obtain nondominated solutions. We pro-

vide the results of our computational experiments on the performance of the suggested

approach in section 5.7. We also provide results for 3-criteria extensions of the approach

as well as a tabu search algorithm that can be used to solve large-sized problems. We

conclude our discussion in Section 5.8.
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5.2 The Balance Concept

Consider a setting where a DM is faced with m R&D projects and s/he will decide which

ones to initiate given an available budget, B, which typically is not suffi cient to initiate

all projects. Each project i incurs a cost (input) ci and returns an output value bi.

Suppose that it is possible to categorize the projects into n categories (e.g. based on the

technological area or based on the department they are proposed by) and each project

belongs to one (and only one) of these categories.

Each feasible portfolio corresponds to two portfolio-related distributions: a distrib-

ution of the budget B to different project categories and a distribution that shows the

contribution of each category in terms of the output. Suppose that the DM wants to

ensure balance in one or both of these distributions as well as having a high total output

from the selected portfolio.

This is an example of an allocation problem in which the DM has concerns about

ensuring balance. In this study we provide a general framework that can be used for

many allocation problems. To have a structured discussion, we will illustrate the general

idea using this R&D project selection example and discuss possible generalizations in the

conclusion.

We distinguish the cases based on the space balance is sought, i.e. based on whether

balance is sought in the input distribution or the output distribution. Which balance con-

cept is more appropriate depends on the nature of the problem. For example in healthcare,

the policy maker may want a balanced input allocation on the grounds that people should

be responsible for their own health and the policy makers can only be responsible for

providing them with a balanced allocation of inputs. On the other hand, the policy maker

may prefer a balanced distribution of health (the output) on the grounds that health policy

should aim at equal health for all.
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5.3 Literature Review on Incorporating Balance into Mod-

els

In this section we mention some noteworthy studies that consider the balance concept in

portfolio selection and allocation decisions in an explicit way. We refer the interested reader

to [184] for a more detailed discussion on balance in project portfolio selection problems.

There is also a wide range of applications in which equity concerns are incorporated into

mathematical models, including but not limited to drug allocation [95], HIV prevention

funds allocation [14], water allocation [120], bandwidth allocation [10], workload allocation

[27] problems, and location-allocation problems in homeland defense [36].

Effi ciency concerns are reflected to the model by maximizing the total output. From

a modelling point of view, balance concerns may be handled in two ways:

• Modifying the feasible region by introducing constraints: In this approach the analyst

changes the feasible region of the problem so that the feasible allocations will ensure

a certain degree of balance.

[185] considers selecting a portfolio of solar energy projects using multiattribute pref-

erence theory. As a way of ensuring a balanced portfolio, they use lower bounds on the

number (or monetary value) of the projects of a certain type that are included in a port-

folio. Similarly, [186] uses linear programming to maximize the total technical score of

funded projects on a smoking intervention study. Balance related constraints are used

to ensure geographic equity in project proposal fundings and to ensure “a spread” of

changes across different quartiles of the population with respect to smoking preference

and decline in smoking rate. [187] proposes an integer programming model for selecting

and scheduling an optimal project portfolio. The balance related constraints enforce an

upper limit on the percentage of total investment made on different project categories,

such as high risk and long term projects. The authors illustrate their approach by solving

a small-size problem with 12 projects. [188] considers a multi-dimensional integer knap-

sack problem and introduces constraints to incorporate balance concerns into the model.
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The constraints are used to apply upper and lower bounds on the fraction of the resources

allocated to different project categories. The authors, however, mostly focus on the linear

programming relaxation of the integer programming formulation and hence assume that

partial resource allocation to projects is possible. [189] develops a nonlinear integer pro-

gramming model to optimize a portfolio of (possibly interdependent) product development

improvement projects over multiple periods. The projects are categorized based on the

strategic objectives that they support and balance over different objectives is ensured by

incorporating a constraint that shows the minimum number of projects from each cat-

egory. [190] discusses a multi-criteria decision analysis (MCDA) framework to allocate

fishing rights to candidates in South Africa. As part of their decision support system they

provide an integer formulation for the candidate selection problem in which balance con-

cerns are reflected using constraints. These constraints ensure that the proportion of the

number of candidates selected from a designated group exceeds a minimum desired level

for this group. [183] propose a DEA (Data Envelopment Analysis) based methodology to

construct and evaluate balanced portfolios of R&D projects with binary interactions. As

part of their proposed methodology, they compute indices of risk, effi ciency and balance

for each project. They use a maximum threshold for risk index and minimal thresholds

for effi ciency and balance indices and screen the initial list of candidate projects. Only

the ones that satisfy the requirements set by the indices are considered further. A similar

approach is used in [191] to evaluate R&D projects in different stages of their life cycle.

[192] develop a fuzzy R&D project selection model in which balance in spending be-

tween different strategic goals is enforced in constraints. These constraints specify upper

and lower bounds on the spending for each strategic goal (see also [193]).

• Modifying the objective: In this approach the analyst increases the number of criteria

of the corresponding model; turning it into a bi/multi criteria problem. The approach

we take falls into this category. We use this approach as it is possible to observe the

trade-off between different criteria by finding different solutions to the problem.

Modifying the objective typically relies on the use of a balance indicator, zI(x), which
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assigns a value that shows the level of balance in a distribution x. Using the indicator one

can define a balance criterion along with the effi ciency criterion (zT (x)).

Note that if balance is considered over different aspects such as technology areas, mar-

kets etc., it is possible to use a balance indicator for each aspect and hence generate a multi

criteria model. [194], [195], [196] and [197] use multiattribute models which tackle balance

concerns over multiple attributes and then use Multiattribute Value/Multiattribute Util-

ity models to aggregate the set of attributes into a single index. One of the restrictions on

the generality of the proposed models is the assumption that the number of items in the

subset is constant. Moreover, an additive value function may not always be appropriate,

and even when it is appropriate, determining weights may not be easy.

[198] models the concern for balance as a separate set of criteria which minimize the

deviation from the ideal allocation of manpower to different project categories and also to

different client categories. With additional criteria which are not balance related, he formu-

lates a multi-criteria decision making (MCDM) model for the project portfolio selection

problem. The reference point approach (see [158]) is used, which involves solving non-

linear integer programming problems subject to linear resource constraints. The approach

is used in an interactive setting. For various reasons including the technical diffi culty due

to nonlinearity, a heuristic method is used to solve the resulting optimization problems.

The same approach is also used in [199].

As it expresses balance criteria as measures of deviation from a desired allocation,

this approach is similar to the approach used to incorporate balance in this paper. We,

however, mostly focus on a bi-criteria setting and use linear (integer) models whenever

possible. The underlying reason for this choice is the ease of presentation. The ideas

proposed here are easily generalizable to multidimensional settings where balance is desired

over multiple attributes. Balance concern for each such attribute can be reflected as a

criterion to the model and appropriate multicriteria optimization or heuristic methods

can be implemented to obtain solutions. The emphasis of this paper is to introduce the

idea of balance distribution based balance indicator as a way of handling balance concerns

in an explicit and tractable way.
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Unlike [198], we do not assume an interactive setting; we rather present the DM with

a dispersed subset of nondominated portfolios. This is an alternative approach to the one

used in [198]; empirical research should be performed to see which one is more appropriate

in different problem environments. We provide graphical displays of the set of nondomi-

nated solutions which visualize the tradeoff between effi ciency and balance. These graphs

can be used as a starting point for further discussion with decision makers.

We also provide an explicit link between inequality measurement literature by making

an analogy between the perfect balance line and the perfect equality line. This will be

explained in detail in the next section. We discuss different indicators that can be used

to assess imbalance. Our solution approach allows one to incorporate different imbalance

indicators into the same model and hence observe the tradeoff between them.

5.4 Imbalance Indicators

In this section we propose imbalance indicators that measure how different a distribution

is from an ideally balanced distribution. The indicators rely on a balance distribution

which is provided by the DM. This balance distribution shows how the DM would allocate

a certain amount of the input/output across the categories involved. This might be for

example, the status quo or previous year’s allocation.

We will use the following terminology and notation to frame our discussion:

We refer to the entities over which the balance is sought as categories. J = {1, 2, ..., n}

is the set of the categories. The vector x ∈ Rm is used to show the decision vector

related to input allocation. Note that m is not necessarily equal to n unless we make

explicit allocation decisions to categories themselves. For example, in the project selection

problem m is the number of projects and x is the corresponding binary decision vector

and we expect n < m unless each project is considered as a different category.

x can be continuous or discrete and includes the decision variables which dictate the

input allocation to categories (this dictation can be indirect as in the project selection

problem: in that case, x shows the portfolio of projects, from which we can infer the
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allocation to categories). Any function defined over the input allocation is a function of

the decision vector x. Let a(x) ∈ Rn be the distribution over which the balance is sought,

hence it can either show the input or the output distribution to categories.

We denote the balance distribution of either input or output by r ∈ Rn where rj is the

amount allocated to category j in the balance distribution. Which of these (input/output)

is intended will be clear from context. For notational simplicity we will normalize the

balance distribution so as to obtain balance shares (proportions) for each category. Let

us denote the balance share of category j as αj . By definition αj = rj/
∑

j∈J rj . Hence,

α ∈ Rn is the balance distribution in terms of shares.

Suppose that given α, we want to assess how balanced a distribution a(x) is. Using α,

we can obtain a target point r(x) as follows: r(x)j = αj ∗
∑

j∈J a(x)j .One can think of the

elements of r(x) ∈ Rn as target (desired) amounts for the different categories involved.

We denote the componentwise deviations of the distribution a(x) from the correspond-

ing r(x) as d(x)j ∀j ∈ J . That is, d(x)j = |a(x)j − r(x)j | =
∣∣∣a(x)j − αj ∗

∑
j∈J a(x)j

∣∣∣
∀j ∈ J.

Figure 5.1 visualizes componentwise deviations in a 2 dimensional environment. Note

that except r, all the terms are functions of the input allocation x. d1 and d2 are the

componentwise distances of point a to the inflated balance point.
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Figure 5.1: Distances from the balance point in 2D

It does not seem appropriate to capture balance using a distance measure from the

balance distribution itself (r). The rescaling of r, i.e. generating r(x), is necessary to

obtain an appropriate evaluation. Consider, for example, the case where r = (1, 2), that

is the DM considers (1, 2) as a balanced distribution, and we want to assess how balanced

distribution a(x) = (2, 4) is. Using just a distance measure would mislead us by concluding

that (2, 4) is not balanced (as the componentwise absolute deviations between (1, 2) and

(2, 4) are not equal to zero). However if (1, 2) is balanced, it would seem natural to suppose

that (2, 4) is also balanced. This is clearly seen when we rescale r = (1, 2) with respect

to (2, 4). We find r(x) = (1/3, 2/3)a(x) = (2, 4). Since a(x) = r(x), the componentwise

deviations are all zero hence we capture that a(x) has perfect balance. That is why, we

avoid using just a distance measure from the given balance distribution to account for

balance and instead generate a balance line based on the balance distribution.

The intuition behind our approach generalizes the perfect equality line concept used in

inequality measurement theory ([127]). The perfect equality line consists of points whose
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components are equal in all dimensions, i.e, it consists of the distributions where everyone

gets the same income. Despite being different in the total income, all points on this line

are considered to have perfect equality, i.e. zero inequality. Similarly, we derive a line

of perfect balance passing through the origin and the balance point (see Figure 5.1) and

derive our balance indicators accordingly.

We now define the four imbalance indicators as follows.

Indicator 1: The total proportional deviation from the target.

I1(x) =

∑
j∈J d(x)j∑
j∈J a(x)j

=

∑
j∈J

∣∣∣a(x)j − αj ∗
∑

j∈J a(x)j

∣∣∣∑
j∈J a(x)j

=
∑
j∈J
| a(x)j∑

j∈J a(x)j
− αj |

This is the sum of the absolute differences between the actual share and the desired

share for each category. Taken in its input oriented sense, this indicator is the fraction of

input which is misallocated. Taking the proportional deviation also implies the following:

of two alternative distributions with the same total absolute distance from the balance

line, the one that has a larger sum will have a smaller imbalance value, hence will be

favoured. Special cases of I1(x) where the balance distribution is the one with perfect

equality, i.e., each category receives an equal share, have been used in the literature (e.g.,

in [111]).

Indicator 2: The maximum proportional deviation from the target. Unlike I1(x) this

indicator focuses only on the worst-off deviation.

I2(x) =
Maxj∈J{d(x)j}∑

j∈J a(x)j
= Maxj∈J |

a(x)j∑
j∈J a(x)j

− αj |

Indicator 3: The total componentwise proportional deviation. Compared to the first

two indicators this is a more individual oriented measure as it is the sum of fractional

misallocations to each party.
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I3(x) =
∑
j∈J

d(x)j
r(x)j

=
∑
j∈J

∣∣∣a(x)j − αj ∗
∑

j∈J a(x)j

∣∣∣
αj ∗

∑
j∈J a(x)j

=
∑
j∈J

1

αj
| a(x)j∑

j∈J a(x)j
− αj |

This measure is a weighted sum of the absolute differences between the actual share

and the desired share for each category where weight for category j is 1
αj
. This allows one

to penalize the deviations from the categories that are already assigned a low target share

value. We note that for this measure to be meaningful, one should have αj > 0 for all j.

Indicator 4: The maximum proportional deviation from the corresponding target

value over all elements of the distribution. Unlike I3(x) this indicator focuses only on the

worst-off deviation.

I4(x) = Max
j∈J
{d(x)j
r(x)j

} = Max
j∈J
{ 1

αj
| a(x)j∑

j∈J a(x)j
− αj |}

Which indicator one chooses to use, might have material significance for the solutions

which are bi-criteria effi cient in the biobjective formulations. However, when n is low as

in Proposition 53, whichever indicator one chooses, one will get the same ordering and

thus the same effi cient frontier. Hence in this case, which indicator one chooses does not

matter: one can choose any indicator and be confident of getting the same result.

Proposition 53 For n ≤ 3 we have I1(x) = 2 ∗ I2(x). Moreover when n = 2 the four

indices provide us with the same order. That is, for any two distributions x1 and x2 where

n = 2 (that is a(x1), a(x2) ∈ R2), the following holds: I1(x1) ≥ I1(x2) ⇐⇒ I2(x1) ≥

I2(x2) ⇐⇒ I3(x1) ≥ I3(x2) ⇐⇒ I4(x1) ≥ I4(x2).

Proof is provided in Appendix A.

Remark 54 In general, Proposition 53 no longer holds for I1(x); I3(x); I4(x) and I2(x);

I3(x); I4(x) in problems where n > 2. As for I1(x) and I2(x) it no longer holds when

n > 3.

Proof is provided in Appendix A.
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Table 5.1 summarizes the classification of the imbalance indicators.

Table 5.1: Imbalance indicators
Imbalance Indicators

Objective\Focus Collective Individual Oriented

Sum I1(x) =
∑
j∈J d(x)j∑
j∈J a(x)j

I3(x) =
∑
j∈J

d(x)j
r(x)j

Bottleneck I2(x) =
Maxj∈J{d(x)j}∑

j∈J a(x)j
I4(x) = Max

j∈J
{d(x)j
r(x)j
}

5.5 Bi-criteria Models

In this section we develop bi-criteria models for allocation problems with objectives of

maximizing total output and minimizing an imbalance indicator.

Although all the models we discuss are based on the same general idea, they differ

in technical aspects depending on the problem type, i.e., based on whether the alloca-

tion is discrete or continuous and whether the balance is sought in the output or input

distribution.

For our project selection problem we provide mixed integer formulations for the bi-

criteria models, which exploit the fact that the decision variables are 0-1 variables to tackle

nonlinearity due to the imbalance indicators.

We first provide a complete analysis for the case the DM desires a balanced input

distribution as this problem naturally arises in many situations. It is straightforward to

develop models for the case where a balanced output distribution is desired when we have

a discrete setting.

5.5.1 Discrete Allocation

The general method proposed in this paper is applicable to different combinatorial prob-

lems that can be formulated as a binary integer problem (BIP), like some location prob-

lems. We use project selection problems as an example.

Consider the project selection problem discussed in Section 2. Suppose that the DM

wants to have a portfolio where input is allocated to different project types in a balanced
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way and gives an example input allocation r ∈ Rn, which he considers balanced. The

corresponding proportional allocation is denoted as α ∈ Rn as before.

We use an m× n incidence matrix G with elements gij for i ∈ I and j ∈ J as follows:

gij =
1 if project i belongs to category j

0 otherwise
The binary variable associated with each project is as follows:

xi =
1 if project i is initiated

0 otherwise
for i ∈ I

Note that we seek balance in the input space and a(x)j =
∑
i∈I
cigijxi for all j ∈ J,

that is, the input allocated to a certain category is the sum of the costs of the initiated

projects in that category. In what follows, we assume that at least one of the projects will

be initiated in a feasible solution. We also have
∑

j∈J a(x)j =
∑

i∈I cixi.

We now provide an example model that uses the indicator I1(x) as the second objective.

For the project selection problem I1(x) is as follows:

I1(x) =

∑
j∈J

∣∣∣αj ∗∑j∈J a(x)j − a(x)j

∣∣∣∑
j∈J a(x)j

=

∑
j∈J
∣∣∑

i∈I αjcixi −
∑

i∈I cigijxi
∣∣∑

i∈I cixi
.

We have the following model where we use variables ZT and ZI to denote zT (x) and zI(x),

respectively.

Max {ZT ,−ZI} (5.1a)

s.t.
∑
i∈I

cixi ≤ B (5.1b)

ZT =
∑
i∈I

bixi (5.1c)

ZI =

∑
j∈J
∣∣∑

i∈I αjcixi −
∑

i∈I cigijxi
∣∣∑

i∈I cixi
(5.1d)

xi ∈ {0, 1} ∀i ∈ I (5.1e)

The above model is nonlinear due to constraint set 5.1d. We linearize it by introducing
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auxiliary variables dj , yj and tj and obtain the following MIP model (See [200] and [201]

for more information on such linearizations):

Model 1

Max {ZT ,−ZI} (5.2a)

s.t.
∑
i∈I

cixi ≤ B (5.2b)

ZT =
∑
i∈I

bixi (5.2c)

∑
i∈I

ci(αj − gij)xi ≤ dj ∀j ∈ J (5.2d)

∑
i∈I

ci(gij − αj)xi ≤ dj ∀j ∈ J (5.2e)

dj −
∑
i∈I

ci(αj − gij)xi ≤ 2 ∗ dUB ∗ yj ∀j ∈ J (5.2f)

dj −
∑
i∈I

ci(gij − αj)xi ≤ 2 ∗ dUB ∗ (1− yj) ∀j ∈ J (5.2g)

ZLBI xi ≤ ti ≤ ZUBI xi ∀i ∈ I (5.2h)

ZLBI (1− xi) ≤ ZI − ti ≤ ZUBI (1− xi) ∀i ∈ I (5.2i)∑
j∈J

dj =
∑
i∈I

citi (5.2j)

xi ∈ {0, 1} ∀i ∈ I (5.2k)

yj ∈ {0, 1} ∀j ∈ J (5.2l)

ti ≥ 0 ∀i ∈ I (5.2m)

Constraint set 5.2b ensures that the total budget is not exceeded and the constraint

set 5.2c defines ZT , total output of the portfolio. We define new variables djs that show

the absolute distances, i.e. dj =
∣∣∑

i∈I ci(αj − gij)xi
∣∣ ∀i. Constraint sets 5.2d, 5.2e, 5.2f,

5.2g and auxiliary binary variables (yjs) are used to define the absolute distances (djs)

and tackle the nonlinearity due to the absolute function. dUB is an upper bound for
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the continuous dj variables. We use the same upper bound for all the dj variables and

calculate the bound as follows: dUB =
∑

i∈I ci. Constraint sets 5.2h, 5.2i and 5.2j are used

to tackle the nonlinearity due to the ratio terms in the definition of ZI (see constraint set

5.1d) as follows: In constraint set 5.1d we have
∑

j∈J dj = ZI ∗
∑

i∈I cixi =
∑

i∈I ciZIxi.

We define auxiliary continuous variables ti such that ti = ZI ∗ xi ∀i ∈ I hence obtain

constraint set 5.2j. Constraint sets 5.2h and 5.2i ensure that ti = ZI ∗ xi ∀i hold. ZUBI

and ZLBI are upper and lower bound parameters for ZI , respectively. From the definition

of ZI , ZLBI = 0. We define ZUBI as follows: ZUBI = n ∗ dUB/Min
i
{ci}.

Model 1 has 2m+2n+2 variables and 2m+4n+3 constraints excluding set constraints.

Remark 55 dUB is an upper bound for all dj.

Proof. dj =
∣∣∑

i∈I ci(αj − gij)xi
∣∣ =

∑
i∈I ci |αj − gij |xi. Since both 0 ≤ αj ≤ 1 ∀j and

0 ≤ gij ≤ 1 ∀i, j we have |αj − gij | ≤ 1. Hence
∣∣∑

i∈I ci(αj − gij)xi
∣∣ ≤ ∑

i∈I cixi ≤∑
i∈I ci.

It is possible to include additional constraints in cases where certain projects are mutu-

ally exclusive for some underlying technical reasons. We note that these are easily handled

computationally, hence for ease of presentation we do not include such constraints into

the formulation explicitly. The models involving I2(x), I3(x) and I4(x) are very similar

hence are provided in Appendix B.

It is straightforward to develop models for the case where a balanced output distri-

bution is desired when we have a discrete setting. The model will be the same except

the following: We use bi instead of ci in constraint sets 5.2d, 5.2e, 5.2f, 5.2g and 5.2j and

change dUB and ZUBI accordingly.

5.5.2 Continuous Allocation

Suppose that a DM should decide how to allocate a given input B among m projects

but this time the allocation can be performed in a continuous manner. We use the same

notation as in the discrete case with a difference in the decision variable and output

definition.
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Let xi be the allocated input to project i and let fi(xi) be the resulting output.

The input allocated to category j denoted as a(x)j is a linear function of x such that

a(x)j =
∑
i∈I
gijxi for all j ∈ J . In such cases the total input allocation is always B, i.e.,∑

j∈J a(x)j = B. Note that the properties of the production functions fi(xi) will affect

the complexity of the problem and the resulting models may be diffi cult to solve when e.g.

these functions are nonlinear. However, if production functions are concave it is possible

to use piecewise linearization and obtain a linear problem as we show in the example in

the next section.

Recall that the indicators in the discrete setting have decision variables in the denomi-

nator and hence require linearization. As Remark ?? shows the balance criterion no longer

requires such linearization in the input oriented continuous setting.

Remark 56 For the continuous allocation the indicators (I1(x),I2(x),I3(x) and I4(x)) in

the input oriented setting reduce to linear functions of deviations.

Proof. Given a balance resource distribution α, I1(x) is as follows: I1(x) =
∑
j∈J |αjB−a(x)j |

B =∑
j∈J d(x)j
B . Hence minimizing I1(x) is equivalent to minimizing

∑
j∈J d(x)j . Similarly, it

is possible to show that minimizing I2(x), I3(x) and I4(x) are equivalent to minimizing

Max
j∈J
{d(x)j},

∑
j∈J

∏
i 6=j

αid(x)j , andMax
j
{
∏
i 6=j

αid(x)j}, respectively. Also note that one does

not need the auxiliary binary variables (e.g. yjs in model 1) to linearize the nonlinear-

ity due to the absolute function as we directly minimize linear functions of the absolute

distances.

5.6 Solution Approach

Our models are bi-criteria versions of the knapsack problem. In the discrete case knapsack

problem is considered to be a nondeterministic polynomial-time hard (NP-hard) problem

([202]).

We define set Z as follows: Z = {(ZT , ZI) : ZT = zT (x) and ZI = zI(x), x ∈ X}.

Definition 57 For two points (ZT , ZI) and (Z ′T , Z
′
I), (ZT , ZI) dominates (Z ′T , Z

′
I) if
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ZT ≥ Z ′T and ZI ≤ Z ′I with strict inequality holding at least once.

Definition 58 A point (ZT , ZI) is nondominated and the corresponding solution (x) is

effi cient if there is no other point in Z that dominates it.

We call all the nondominated solutions for a problem the nondominated set.

We use the epsilon constraint method to obtain nondominated (/effi cient) solutions

for the bi-criteria problems considered here. This method is based on sequentially solving

single objective problems in which the value of the second objective is controlled using a

constraint (see [203] and [204] for a discussion of the epsilon constraint method).

The general algorithm is as follows (note that lex max refers to lexicographic maxi-

mization).

Step 0. Solve lex max (zT (x),−zI(x))

s.t. x ∈ X

Let the optimal value for zI(x) be Z∗I

Step 1. If Z∗I ≤ ZLBI Stop.

Otherwise, set k = Z∗I − Stepsize.

Step 2. Solve lex max (zT (x),−zI(x))

s.t. x ∈ X

zI(x) ≤ k

Let the optimal value for zI(x) be Z∗I

Go to Step 1.

When the objective function values are integer, it is possible to generate all nondomi-

nated points with this method. In this paper we use the method to generate a subset of
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the nondominated set as our objective function values are not necessarily integer. We first

generate the solution that has the maximum output (ZT ) value and obtain a nondominated

solution at each iteration until we generate the one that has the minimum imbalance (ZI)

value. We use a parameter Stepsize to control the maximum difference between two con-

secutively generated nondominated points in terms of their imbalance values. The smaller

the Stepsize, the higher the number of nondominated solutions found. On the other hand,

the higher the computational time is. Note that it is also possible to modify the algorithm

such that it starts with the solution that has the minimum imbalance and moves toward

the ones with higher total output values by controlling zT (x) by a constraint.

5.6.1 An Example Problem

We now provide a real life example for the input oriented discrete case based on data

given to us by a public sector agency whose R&D portfolio selection problem provided the

immediate motivation for the current work. The problem is a project selection problem

subject to the available budget. The cost and value figures for each project are tabulated

below (see Table 5.2). The values are a weighted average of performances of each project

over multiple criteria. Note that the projects are of three types and the cost values are

normalized to protect confidentiality. The budget and value correspond to input and

output, respectively.
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Table 5.2: Data for the example problem
Project Project Cost Overall Project Project Cost Overall
Index Type Value Index Type Value
1 Type 1 0.19 1.39 21 Type 2 0.88 1.71
2 Type 1 0.16 1.13 22 Type 2 0.86 1.34
3 Type 1 0.30 1.67 23 Type 3 0.05 2.15
4 Type 1 0.29 1.48 24 Type 3 0.18 2.47
5 Type 1 0.55 2.13 25 Type 3 0.16 1.96
6 Type 1 0.57 1.43 26 Type 3 0.31 3.42
7 Type 1 0.96 1.50 27 Type 3 0.43 3.92
8 Type 1 0.99 1.44 28 Type 3 0.42 3.42
9 Type 1 0.74 0.99 29 Type 3 0.42 2.97
10 Type 1 0.67 0.85 30 Type 3 0.33 2.29
11 Type 2 0.21 3.13 31 Type 3 0.37 1.67
12 Type 2 0.28 2.52 32 Type 3 0.59 2.60
13 Type 2 0.28 2.11 33 Type 3 0.42 1.79
14 Type 2 0.40 2.43 34 Type 3 0.96 4.08
15 Type 2 0.24 1.49 35 Type 3 0.54 2.11
16 Type 2 0.58 2.91 36 Type 3 0.54 2.08
17 Type 2 0.95 3.15 37 Type 3 0.90 3.25
18 Type 2 0.89 2.82 38 Type 3 0.75 2.20
19 Type 2 0.91 2.47 39 Type 3 0.81 2.06
20 Type 2 0.61 1.57

Suppose that the agency has a budget (total input) of 9.31 units, which is about 45% of

the total cost of all the projects available. Given this budget, the portfolio that maximizes

the total output has a total output of 59.32 and requires an input of 9.2 units. The

allocation of this total input to the three type of projects are 1.49 units, 1.99 units, 5.72

units, for types 1, 2 and 3 respectively.

Suppose that the DM considers an input allocation that has equal percentages as

balanced. That is, in a perfectly balanced portfolio the total amount allocated to each

project type should be 33% of the overall input.

For explanatory purposes we will use one of the indicators, I3(x), and show the port-

folios obtained by solving the corresponding bi-criteria problems. A subset of the effi cient

portfolios obtained using I3(x) using Stepsize of 0.05 are visualized in Figure 5.2. The

figure shows 13 portfolios each of which is obtained through one iteration of the algorithm.
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Figure 5.2: Solutions obtained using I3(x)

The first portfolio is the one that gives the maximum total output and type 3 projects

are allocated more input than the other two types in this portfolio. It is seen that in

each new solution the algorithm returns a portfolio where the three types are closer in

input usage. In the first iterations, balance is increased via increasing the input allocation

to type 2 projects. As we restrict the solution to become more and more balanced, the

allocation to type 1 projects increases. One can also see the amount of sacrifice from

effi ciency (total output) by moving towards more balanced portfolios in Figure 5.3, which

is the total output vs. imbalance graph.
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Figure 5.3: Effi ciency vs. balance

The epsilon constraint approach allows us to visit the whole nondominated set in

a uniform way, i.e., we provide representative portfolios for different parts of the whole

nondominated set. Seeing such a uniform subset of the nondominated set has advantages in

terms of clarity and transparency. The results show the tradeoffbetween the effi ciency and

balance criteria. For example, moving from the first solution to the second one sacrifices

from effi ciency around 0.8% and this increases balance around 20%. On the other hand, it

is seen that as we restrict the solution to become more and more balanced, the effi ciency

sacrifice that we have to make may increase significantly. In addition to seeing the tradeoff

between the two criteria, one can have more information about the solution structure. A

quick review would give us an idea about the more “powerful” projects, the ones that

occur in most of the nondominated solutions. In the above example we observed that the

projects 1,3,4,5; 11,16; and 23, 24, 25, 26, 28, 29 are included in most of the portfolios.

As a way of simplifying the decision making process, these projects can be fixed and the

others might be analyzed in more detail.
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Figure 5.4: Different balance points

We have also generated solutions by using I1(x), I2(x) and I4(x) using a Stepsize of

0.05. We observed a similar trend as in Figure 5.2.

It is also possible to use other balance distributions and see the resulting solutions.

Figure 5.4 (a)-(d) show the first 10 solutions obtained using the balance distributions

(33, 33, 33); (60, 20, 20); (20, 20, 60); (20, 60, 20) respectively with I3(x). Note that

in the third case we report only 4 solutions as these were the only solutions obtained

using a Stepsize of 0.05 in the algorithm. This is because the output maximizing solution

already has low imbalance with respect to the given balance distribution. No significant

adjustment was necessary in this case.

As another example, we consider a linearized version of the above problem to analyze

the case where we have continuous allocations. We assume that the production functions

fi(xi) are concave of the form fi(xi) = si ∗ xθii for all i. We generate si and θi values

from uniform distributions U(0, 5) and U(0, 0.5), respectively. We solve the problem using

piecewise linear approximation for the concave production functions. Figure 5.5 shows a

156



CHAPTER 5. INCORPORATING BALANCE CONCERNS IN RESOURCE
ALLOCATION DECISIONS: A BI-CRITERIA MODELLING APPROACH

Figure 5.5: Continuous case using I3(x) with balance distribution (0.33,0.33,0.33)

set of effi cient allocations which are obtained setting Stepsize to 0.1. One can clearly see

that we move to more balanced allocations towards the end of the spectrum. Also note

that unlike the discrete case, all of the allocations have the same total input value. The

tradeoff between the two criteria is clearly seen in Figure 5.6, which shows the total output

value vs. imbalance value for this continuous case.
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Figure 5.6: Effi ciency vs. balance in the continuous case

5.7 Computational Study

In this part we discuss the computational aspects of the recommended epsilon constraint

approach by providing the results of an experimental study. For the experimental study

we again use the project selection problem. The aim of this section is to see the size of

problems for which we can obtain a subset of the nondominated solutions to present the

DM in reasonable time, using the formulations developed in the previous sections of this

paper.

We consider the (discrete) project portfolio selection problem where m and n denote

the number of projects and the number of project categories, respectively. As in [204] the

output (bi) and the input (ci) values are randomly generated integers between 10 and 100.

We set B = 0.5
∑
ci. We start with m =50 increasing in increments of 50. As for n, we

use 3 and 5. For each m and n combination, we generate 10 problem instances.

We use the (adaptive) epsilon constraint approach discussed in [204], which is a gen-
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eralization of the scheme we discussed in section 6 for arbitrary numbers of objectives.

The algorithms are coded in Visual C++ and solved by a dual core (Intel Core i5 2.27

GHz) computer with 4 GB RAM. The optimal solutions are found by CPLEX 12.2. The

solution times are expressed in central processing unit (CPU) seconds. We set a time limit

of 1 hour for the execution of the epsilon constraint approach.

We first discuss the results for problems where we seek balance in the input space as

in our experience most applications involve concerns about ensuring balance in the input

distribution to categories. In most cases we report the results for the models using I3

(I3(x)) as the imbalance indicator. That is because I3 is likely to be computationally

more complex than the others. We also report results for the cases where we introduce 2

imbalance indicators, in which case we use I3 and I2 (I2(x)) as the two indicators. The

balance distributions (r) are taken as (50, 30, 20) and (50, 30, 20, 10, 80) for the n = 3 and

n = 5 settings, respectively. Hence α is (0.5, 0.3, 0.2) and (0.26, 0.16, 0.11, 0.05, 0.42) for

these two settings.

We ran extensive experiments and we show a sample of the more interesting results

in Table 5.3. In this table we report the average and maximum values for solution times

and number of calls to CPLEX. We also report the average and minimum number of non-

dominated solutions (|ND|) returned by the algorithm. Note that the number of instances

for which the algorithm could not terminate in 1 hour are indicated in parenthesis for the

settings where the maximum solution time is 3600 seconds and these settings are reported

in italics. The table also reports the value of the parameter Stepsize, which is used to

adjust the right hand side of the constraint restricting the criterion value that is treated

in the constraint for the bi-criteria problems. We report results for problems with a single

type of input (indicated as Inp=1) and with two types of inputs (indicated as Inp=2).

For the instances where we obtain the nondominated set we set the optimality gap

(θ) to 0.01% for CPLEX. We optimize the model that minimizes the imbalance while

restricting the total output value with a constraint. As we assume integer values for the

total output, setting Stepsize to 1 ensures that none of the nondominated points is missed.
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Table 5.3: Performance results for the epsilon constraint approach
Inp=1

CPU Time |ND| Stepsize Calls to CPLEX
Criteria Gap m n Avg Max Avg Min Avg Max Avg Max

2 0 50 3 363.92 930.81 64 31 1.0 1.0 128 219
5 2024.80 3600 (1) 103 70 1.0 1.0 207 283

0.01 50 3 4.31 13.61 13 5 9.9 15.9 27 37
5 39.65 249.96 10 5 50.1 56.5 21 45

100 3 6.46 10.70 15 8 13.1 29.3 30 39
5 831.51 3600 (2) 16 2 53.1 95.0 40 51

150 3 8.04 11.78 16 13 16.3 24.8 33 43

0.05 50 3 0.69 0.98 7 4 9.9 15.9 14 19
5 3.98 16.07 6 3 50.1 56.5 14 21

100 3 1.94 3.77 10 4 13.1 29.3 21 41
5 10.01 24.21 12 5 44.4 57.1 26 39

150 3 3.88 5.48 12 6 16.3 24.8 25 39
5 25.15 74.90 15 9 55.4 81.6 31 43

50 3 1.24 1.86 11 8 1.0 1.0 24 37
5 20.68 46.29 35 22 1.0 1.0 71 103

100 3 4.31 6.53 20 5 1.0 1.0 40 69
5 94.50 271.34 70 26 1.0 1.0 142 257

150 3 8.82 14.97 26 15 1.0 1.0 53 95
5 181.16 664.59 77 23 1.0 1.0 154 333

3 0.01 50 3 10.11 30.51 10 2 - - 62 136
5 332.66 1060.22 40 8 - - 261 779

100 3 49.27 372.90 11 2 - - 56 84
5 2507.664 3600 (4) 65 9 - - 426 785

0.05 50 3 6.21 38.75 8 1 - - 47 83
5 612.30 3311.74 31 7 - - 190 444

100 3 7.93 11.36 9 3 - - 60 83
5 461.85 3600 (1) 29 9 - - 163 286

150 3 12.09 23.48 7 2 - - 55 100
5 395.25 1363.90 40 9 - - 224 585

Inp=2
3 0.05 50 3 138.80 1230.46 21 3 - - 97 263

5 2885.29 3600 (7) 84 11 - - 992 2095
100 3 23.44 143.64 15 4 - - 87 342

5 3253.64 3600 (9) 61 4 - - 328 328
150 3 15.02 31.25 9 5 - - 51 84
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As seen from Table 5.3 the cardinality of the nondominated set and the solution time

required to solve the single-objective subproblems increase as the number of categories

increases. These results also indicate that for larger problems, the size of the nondominated

set or the solution time of the single-objective subproblems may be prohibitively large to

allow us to obtain the whole nondominated frontier in reasonable time. However, in

many cases presenting a large number of solutions to the decision maker may be neither

necessary nor desirable. We rather suggest obtaining a moderate number of solutions

which approximate the nondominated solutions and spread over the nondominated region

in a uniform way.

To determine an appropriate Stepsize value we find the two nondominated solutions

at the two ends of the nondominated frontier: The solution that has the largest ZT value

and the solution that has the smallest ZI value. These solutions provide us the maximum

and minimum total output values in the nondominated set: ZTMax = Max{ZT : (ZT , ZI)

∈ Z} and ZTMin = Min{ZT : (ZT , ZI) ∈ Z}, respectively. We set Stepsize = (ZTMax −

ZTMin)/40. We solve the single objective sub-problems with a predefined optimality gap

θ; hence find approximate nondominated solutions with a worst case quality guarantee.

We report the results in Table 5.3. We also report results for θ = 5% case with a fixed

Stepsize value of 1.

The results indicate that the solution times increase as n increases for fixedm although

the number of solutions returned decreases or stays similar. It indicates that the single

objective subproblems become more diffi cult when n increases. For fixed n, the solution

times and the average number of solutions increase as we increasem. As expected, increas-

ing the optimality gap parameter (θ) leads to a decrease in solution times. The number

of calls to CPLEX also decreases as θ increases, this is because the algorithm starts with

a solution that has larger imbalance values and hence returns solutions which lie at the

center of the frontier.

We next perform experiments for 3-criteria problems where there is a single input and

there are 2 different indicators. For these experiments we use I2 (collective-bottleneck

indicator) and I3 (individual oriented-sum indicator) as the two additional criteria to the
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total output criterion. We express the two imbalance criteria in the form of constraints

and set the corresponding Stepsize values as 0.05 and 0.5 for I2 and I3, respectively.

It is possible to observe the effect of the number of categories (n) to the solution times.

The effect of the number of projects on solution times does not seem to be as predictable

as the effect of the number of categories. In some settings we even observe smaller solution

times as m gets larger for fixed n.

We also note that the correlation coeffi cient between the values of the indicators I2

and I3 is quite high: it is between 0.8 and 0.96 for all settings. This indicates that for

most cases if a portfolio has a high I2 value, it is likely to have a high I3 value as well.

As expected, highest correlation is observed for the settings with n = 3 categories. This

is because, for such cases if the worst-off category has high deviation from the target it

is likely that the sum of all deviations will be high as well. As the number of categories

increases the effect of the worst-off value to the total deviation decreases, resulting in

differences between sum-oriented and bottleneck-oriented indicators.

Finally, we consider the case where there are two inputs. In this setting the projects

consume two inputs and return a single output. The output and input values are randomly

generated integers between 10 and 100, as before. The resulting model is a 3-criteria

model, where we have the total output criteria and two imbalance criteria corresponding

to the distributions of the two inputs over project categories. We report the results of our

experiments in Table 5.3 for θ = 5%, where we use I3 as the imbalance indicator. The

two imbalance criteria are incorporated in the form of constraints with the same Stepsize

values of 0.5.

It is seen from Table 5.3 that the solution times and the number of solutions increase

considerably when the number of categories increases. Moreover, as there are two different

inputs, the correlation between the values of the imbalance indicator that correspond to

distributions of these two inputs is expected to decrease compared to the previous 3-criteria

instances. The correlation coeffi cients were between 0.46 and 0.78 for the all the settings.

Our computational results indicate that the heuristic version of the epsilon constraint

approach with appropriate Stepsize and optimality gap parameters can be used for small
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to medium-size problems. We observe that the solution times tend to increase significantly

as the number of categories increases. For large-size problems with more than 150 projects

different heuristic algorithms can be employed to obtain solutions in reasonable time.

We have also attempted to obtain nondominated solutions for problems for which the

imbalance criterion is defined over the output distribution to categories. We observe that

these problems are harder to solve. Even for the smallest problems considered (m=50,

n=3) the epsilon-constraint based heuristic with 5% optimality gap fails to return solutions

in 1 hour for some instances. To obtain solutions to these problems in reasonable time

heuristic algorithms can be explored. One such approach is described here and some

preliminary results are provided.

We designed a tabu search (TS) heuristic that starts with the solution that maximizes

the total output. Using this initial feasible solution, we try to find solutions with improved

balance values by searching its neighborhood. Given a solution, we search its neighbor-

hood by switching the status of the projects in a pairwise manner. That is, for each pair

of projects one of which is in the portfolio and the other is not, we exclude the former and

include the latter if such an interchange is feasible. We calculate the potential improve-

ment in balance for each such move, and perform the move that leads to the maximum

improvement. We terminate when the number of non-improving moves reaches to 250 or

number of the iterations reaches to 1000. We set tabu tenure to 50, i.e., we do not undo a

selected move for the next 50 iterations. We use aspiration criterion as the best solution,

i.e., tabu status of the moves that improve the best solution is overridden. We keep the

candidate solutions in a set called incumbent set.

The TS algorithm executes to improve the ZI value. Meanwhile we keep track of

the corresponding ZT values and update the incumbent set whenever we find an eligible

solution, i.e., a solution which is non-dominated by the incumbent set.

Our experiments showed that the TS has satisfactory performance in terms of solution

quality and computational time. We now report computational results for TS. As it was

not possible to obtain the exact nondominated set for the case where we seek balance in

the output space we report the performance of the TS algorithm for the input-oriented
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Figure 5.7: TS algorithm vs. ECM for a problem with m=50 n=3

case. Figure 5.7 shows the solutions obtained by the TS algorithm and the (exact) epsilon

constraint method (ECM) in an example instance for m=50 n=3 case. As seen the TS

approximates the nondominated set quite well.

We also compared TS with our (heuristic) epsilon constraint method (ECM) with 1%

optimality gap (ECM(1%)) with variable Stepsize values (As reported in Table 5.3). In

terms of solution time TS massively outperforms ECM as it takes less than 2 seconds for

TS to return a set of candidate solutions even for the largest problem instances considered

as opposed to 363 seconds for ECM. However, the TS method clearly does not give guar-

antees of optimality and so knowing how good the generated solutions are in general is

problematic. To assess the quality of solutions returned by the algorithms in this particu-

lar case, we use three performance metrics, namely P, D1 and D2. We denote the solutions

returned by the TS or the heuristic ECM as the ANS (approximate nondominated set). P

is the percentage of exact non-dominated objective vectors returned by the TS (or heuristic

ECM). D1 and D2 give information about the average and maximum distances between
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Figure 5.8: Comparison of ECM (Heuristic) and TS for an instance with average distance
values

the points of the nondominated set and the points in set ANS, respectively (See [205] for

the formulations of these metrics).

Table 5.4 shows the results. To give an idea about the scale of the distance metric

we provide a graphical display of the solutions returned by the algorithms for an example

instance which has the average distance values for both TS and ECM. For this instance

TS has values of 0.07 and 0.13 and ECM(1%) has 0.01 and 0.03 for distance metrics D1

and D2, respectively.

As seen from the Table 5.4 and Figure 5.8, ECM outperforms the TS but the perfor-

mance of TS algorithm is still satisfactory for these problems.

Table 5.4: Performance results for TS and ECM with 1% optimality gap
P D1 D2

m n Algorithm Avg Min Avg Max Avg Max
50 3 TS 1.18 0 0.06 0.1 0.13 0.22

ECM (1%) 1.69 0 0.01 0.02 0.04 0.05

50 5 TS 0.68 0 0.05 0.09 0.12 0.24
ECM (1%) 13.83 0 0.01 0.02 0.05 0.13
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Figure 5.9: TS algorithm vs ECM with 5% optimality gap

For the output case we were unable to obtain the (approximate) nondominated set

in reasonable time using the epsilon constraint approach with 5% optimality gap. Figure

5.9 shows the results of the ECM with 5% optimality gap and TS for an example in-

stance where m=50 and n=3. We leave a detailed comparative study of different solution

approaches for the output-oriented case to future research.

We observe that the TS algorithm returns a set of good solutions in negligible time for

the input-oriented cases. For the output-oriented case the algorithm finds a set of solutions

in negligible time. We have also done some explorations to extend the TS algorithm

for multicriteria problems and observed that the solution times are negligible. However,

further research should focus on generating a diverse set of solutions for multicriteria

cases using algorithms that are computationally effi cient. We hope this interesting and

challenging question stimulates further research.
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5.8 Conclusion

Allocation problems include a wide range of applications where inputs are allocated to

entities so as to maximize the total output. Taking our motivation from various real life

cases where a balanced (input/ output) distribution over categories is considered important

as well as total output maximization we provide a framework to trade balance off against

effi ciency in such problems.

We define and categorize balance distribution based (im)balance indicators and show

a way to incorporate these measures into the mathematical formulations of different al-

location problems. We propose bi-criteria modelling by introducing balance as another

criterion to the model alongside the total output criterion. We discuss an approach to

obtain a subset of nondominated solutions. The solutions obtained are distributed over

the entire nondominated set in a uniform way and range from the solution that has the

maximum total output to the solution that has maximum balance.

We illustrate the approach by solving a real life project selection problem. Consider-

ing balance explicitly as another criterion and showing a subset of the effi cient solutions

to the DM has many advantages like bringing transparency to decisions and facilitating

communication with the stakeholders. The generated graphs can help to initialize a struc-

tured discussion on balance. Observing how much one has to sacrifice to get closer to an

ideally balanced distribution can provide justification for the decisions made for the final

allocation.

We discuss the performance of the epsilon constraint approach by providing experimen-

tal results for larger bi-criteria and 3-criteria project selection problems. We are able to

obtain a subset of (approximate) nondominated solutions that spread uniformly over the

nondominated frontier, hence represent different regions of the frontier. We also suggest

a TS approach for large-size problems and those with output-oriented imbalance criteria.

We provide initial experimental results on the performance of the TS approach.

It is possible to use this modelling approach in other types of allocation problems

where we allocate a homogeneous good to multiple entities. We note that the nature of
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the allocation, i.e. whether it is discrete or continuous, has an effect on the type of models

developed. For example, for problems where the input allocation is continuous and balance

is sought in the output space there is no obvious way to transform the decision model to

a tractable mixed integer program when one is using the imbalance indicators discussed

here: in these problems we cannot assume that the denominator is constant nor do we

have binary variables and so cannot linearize using the idea we deployed in the discrete

cases.

We have taken an initial step to bring in the perfect equality line concept to consider

balance in resource (or output) distributions. There are possible further steps that can be

taken. For example:

• Further research can be done on generalizing the proposed approach to a multi-

criteria case where balance concerns are defined over multiple aspects and on devel-

oping ways to present the problem to the DM in a way that is easily communicated.

Related algorithmic challenges can be addressed using appropriate methods such as

metaheuristics.

• The balance line concept can also be extended by allowing a piecewise linear struc-

ture for the balance line. For example when the total amount available is very low

the DM might tend to desire an equitable allocation, and as the total amount dis-

tributed increases, some other allocations may become more desirable than the equal

allocation. The balance line approach can also be generalized to a balance cone ap-

proach where the extreme points and rays of the cone are generated based on the

information given by the DM. Regarding any allocation within the cone as perfectly

balanced one might assess the balance of alternative allocations and provide a subset

of nondominated points to the DM.

• Axiomatic discussion of the difference imbalance indicators is another research area

that we believe would be interesting. Presumably a key idea in axiomatizing balance

would involve the observation that the points on the balance line are equally balanced
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and that as one moves towards the balance line one gets points which are better in

terms of balance.
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5.A Proofs of Propositions 53 and 54

5.A.1 Proof of Proposition 53

We first prove the first part of the proposition and show that for n = 2, 3 we have I1(x) =

2I2(x).

Let n = 3, and let the input/output distribution over which balance is sought be

a(x). a(x) = (a(x)1, a(x)2, a(x)3) and a(x)1 + a(x)2 + a(x)3 = aT . Suppose the balance

distribution is (α1, α2, α3). Let d(x)1, d(x)2 and d(x)3 be the componentwise absolute

deviations from the rescaled balance distribution. The following holds: d(x)1 + d(x)2 +

d(x)3 = 2 ∗ Max{d(x)1, d(x)2, d(x)3}. To see this, without loss of generality (w.l.o.g.)

assume that Max{d(x)1, d(x)2, d(x)3} = d(x)1. Observe that the total negative compo-

nentwise deviation of a(x) from r(x) should be equal to the total positive component-

wise deviation. Hence we have Max{d(x)1, d(x)2, d(x)3} = d(x)1 = d(x)2 + d(x)3 and

d(x)1 + d(x)2 + d(x)3 = 2 ∗Max{d(x)1, d(x)2, d(x)3}. Hence

I1(x) =
d(x)1 + d(x)2 + d(x)3

aT
=

2Max{d(x)1, d(x)2, d(x)3}
aT

= 2I2(x).

Note that it is easy to verify that I1(x) = 2I2(x) for n = 2 in the same way.

We now prove the second part of the proposition: For n = 2, I1(x1) ≥ I1(x2) ⇐⇒

I2(x1) ≥ I2(x2) ⇐⇒ I3(x1) ≥ I3(x2) ⇐⇒ I4(x1) ≥ I4(x2). Note that I1(x1) = 2I2(x1)

(and I1(x2) = 2I2(x2)), hence I1(x1) ≥ I1(x2) ⇐⇒ I2(x1) ≥ I2(x2) for n = 2.
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Let a(x1) = (a(x1)1, a(x1)2) and a(x2) = (a(x2)1, a(x2)2). Let a(x1)1 + a(x1)2 = a1
T

and a(x2)1 +a(x2)2 = a2
T . Suppose the balance allocation is (α1, α2). Let r(x1) and r(x2)

be the corresponding (adjusted) balance distributions, i.e., r(x1) = (a1
T ∗ α1, a

1
T ∗ α2) and

r(x2) = (a2
T ∗ α1, a

2
T ∗ α2). Note that d(x1)1 = d(x1)2 and d(x2)1 = d(x2)2.

1. We will first show that I1(x1) ≥ I1(x2) ⇐⇒ I3(x1) ≥ I3(x2).

(a) I1(x1) ≥ I1(x2) =⇒ I3(x1) ≥ I3(x2)

Suppose that I1(x1) ≥ I1(x2) while I3(x1) < I3(x2).

If I1(x1) ≥ I1(x2) then

2d(x1)1

a1
T

≥ 2d(x2)1

a2
T

(5.3)

If I3(x1) < I3(x2) then

d(x1)1

a1
T ∗ α1

+
d(x1)1

a1
T ∗ α2

<
d(x2)1

a2
T ∗ α1

+
d(x2)1

a2
T ∗ α2

=⇒

d(x1)1

a1
T

(
1

α1
+

1

α2

)
<
d(x2)1

a2
T

(
1

α1
+

1

α2

)
=⇒

d(x1)1

a1
T

<
d(x2)1

a2
T

=⇒ 2d(x1)1

a1
T

<
2d(x2)1

a2
T

(5.4)

From equations 5.3 and 5.4 we have a contradiction hence there is no x1 and x2 such

that I1(x1) ≥ I1(x2) while I3(x1) < I3(x2) for n = 2. It is easy to verify

I3(x1) ≥ I3(x2) =⇒ I1(x1) ≥ I1(x2) in the same way.

2. We will now show that I1(x1) ≥ I1(x2) ⇐⇒ I4(x1) ≥ I4(x2).

I1(x1) ≥ I1(x2) =⇒ I4(x1) ≥ I4(x2)

Suppose that I1(x1) ≥ I1(x2) while I4(x1) < I4(x2). From previous result if I1(x1) ≥

I1(x2) equation 5.3 holds.

If I4(x1) < I4(x2) then

Max{ d(x1)1

a1
T ∗ α1

,
d(x1)2

a1
T ∗ α2

} < Max{ d(x2)1

a2
T ∗ α1

,
d(x2)2

a2
T ∗ α2

}

d(x1)1

Min{a1
T ∗ α1, a1

T ∗ α2}
<

d(x2)1

Min{a2
T ∗ α1, a2

T ∗ α2}
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Without loss of generality let α1 < α2. Then we have
d(x1)1
a1T ∗α1

< d(x2)1
a2T ∗α1

=⇒ d(x1)1
a1T

<

d(x2)1
a2T

. This is equation 5.4, hence the rest follows as in part 1 leading to a contra-

diction. Similarly, it is easy to show that I4(x1) ≥ I4(x2) =⇒ I1(x1) ≥ I1(x2) also

holds.

5.A.2 Proof of Remark 54

Consider the following counterexamples:

Example 60 Consider two allocations x1 and x2 which have a(x1) and a(x2) as shown in

the table below and suppose that the balance distribution is r. The pairwise comparisons of

the two alternatives are different under I4(x). We have I1(x1) < I1(x2); I3(x1) < I3(x2)

but I4(x1) > I4(x2).

Allocation I1(x) I3(x) I4(x)

a(x1) =(16,16,13) 0.21 0.67 0.42

a(x2) =(18,20,20) 0.28 0.84 0.38

r =(36,20,24)
In the example case given below the pairwise comparisons of the two alternatives are

different under I1(x). Note that for n = 3 we have I1(x1) ≥ I1(x2) ⇐⇒ I2(x1) ≥ I2(x2)

so I2(x) is also not consistent with I3(x) and I4(x).

Allocation I1(x) I3(x) I4(x)

a(x1) = (11,12,18) 0.17 0.49 0.24

a(x2) = (20,10,17) 0.16 0.51 0.28

r =(30,25,30)
In the example case given below the pairwise comparisons of the two alternatives are

different under I3(x).

Allocation I1(x) I3(x) I4(x)

a(x1) =(18,20,10) 0.25 0.80 0.42

a(x2) = (12,12,17) 0.26 0.78 0.47

r =(39,27,26)

Example 61 To show that I1(x) = 2 ∗ I2(x) no longer holds when n > 3; consider the
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below example where I1(x1) < I1(x2) but I2(x1) > I2(x2).

Allocation I1(x) I2(x)

a(x1) =(18,13,10,17) 0.25 0.13

a(x2) =(19,11,20,15) 0.28 0.11

r =(39,33,28,20)

5.B Models using other indicators

5.B.1 Using I2(x):

This model is very similar to Model 1, except for the constraints related to ZI . We use

decision variables Ij to denote componentwise misallocations, i.e., Ij = dj/
∑

i∈I cixi. We

find upper and lower bounds for Ij . We use the same bounds for all Ij and denote them

as IUB and ILB , respectively. The bounds are as follows (dUB is as defined in Model 1):

IUB =
dUB

Mini{ci}

ILB =
dLB∑
i∈I cixi

= 0

ZI is the maximum componentwise deviation, i.e. Ij ≤ ZI for all j ∈ J and we

minimize ZI , hence ZUBI = IUB. We have nonlinear terms in the equation defining Ijs.

We use the same techniques used in model 1 and obtain the following model.
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Model 2

Max {ZT ,−ZI}

Constraint sets 5.2b, 5.2c, 5.2d, 5.2e,5.2f, 5.2g

Ij ≤ ZI ∀j ∈ J

dj =
∑
i∈I

citij ∀j ∈ J

ILBxi ≤ tij ≤ IUBxi ∀i ∈ I, j ∈ J

ILB(1− xi) ≤ Ij − tij ≤ IUB(1− xi) ∀i ∈ I, j ∈ J

xi ∈ {0, 1} ∀i ∈ I

yj ∈ {0, 1} ∀j ∈ J

dj ≥ 0 ∀j, tij ≥ 0 ∀i ∈ I, j ∈ J

Model 2 has mn + m + 2n + 2 variables and 2mn + 6n + 2 constraints excluding the

set constraints.

5.B.2 Using I3(x):

This model uses I3(x) as the balance criterion. Recall that this indicator is the sum

of the componentwise proportional deviations. We use decision variables Ij to denote

the componentwise proportional deviations for the categories in the model. That is, Ij =

dj/αj
∑

i∈I cixi.We use the following upper and lower bounds for Ij in the model, denoted

as IUBj and ILBj , respectively (We set dUB as before):

IUBj = (

∑
j∈J rj

rj
)

dUBj
Mini{ci}

= (

∑
j∈J rj

rj
)

dUB

Mini{ci}
for all j ∈ J

ILBj =
dLB

αj
∑

i∈I cixi
= 0 for all j ∈ J.

Using IUBj and ILBj we can set ZUBI =
∑

j∈J I
UB
j and ZLBI = 0.
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The resulting model is the following:

Model 3

Max {ZT ,−ZI}

Constraint sets 5.2b, 5.2c, 5.2d, 5.2e,5.2f, 5.2g∑
j∈J

Ij = ZI

dj =
∑
i∈I

ciαjtij ∀j ∈ J

ILBj xi ≤ tij ≤ IUBj xi ∀i ∈ I, j ∈ J

ILBj (1− xi) ≤ Ij − tij ≤ IUBj (1− xi) ∀i ∈ I, j ∈ J

xi ∈ {0, 1} ∀i ∈ I

yj ∈ {0, 1} ∀j ∈ J

dj ≥ 0 ∀j, tij ≥ 0 ∀i ∈ I, j ∈ J

Model 3 has mn + m + 2n + 2 variables and 2mn + 5n + 3 constraints excluding the

set constraints.

5.B.3 Using I4(x):

This model uses I4(x) in the objective function. It is very similar to model 3 with a slight

change in the constraint defining ZI . We change it as follows:

Ij ≤ ZI ∀j ∈ J

Where IUBj , ILBj and dUB are as in model 3 and ZUBI = Max
j
{
∑
j∈J rj
rj
}dUB =

Max
j
{ 1
αj
}dUB. The resulting model has mn + m + 2n + 2 variables and 2mn + 6n + 2

constraints excluding the set constraints.
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Chapter 6

Conclusion

In this work we reflected upon handling equity concerns in operational research problems

(see [127], [128], [206] for more discussion on equity and fairness).

We first provide a comprehensive review of the studies in the operational research (OR)

literature that try to handle equity concerns in mathematical models. We categorize the

equity related concerns into two main areas, namely equitability and balance.

We categorise the studies based on the approach used to address equity concerns and

discuss pros and cons of these different approaches. Alongside the Rawlsian approach,

which focuses on the worst off entity rather than the distribution vector and hence is

rather crude, two approaches are used to handle equitability concerns. One approach uses

inequality indices and the other uses equitable aggregations. Balance concerns are handled

in similar ways: one approach uses imbalance indicators and another one uses a scaling

approach that converts the problem into an equitability problem, for which equitability-

handling methods can be used.

The equitable aggregation approach is based on a well-defined and commonly accepted

set of axioms and can be used as a gold-standard for other approaches. Finding the

equitably effi cient set of solutions, however, may not be of much help to a decision maker

who has to select the “best” solution or rank alternatives from best to the worst. In an

effort to guide the decision maker through the set of candidate alternatives (the equitably

effi cient ones) we extend the current theory in interactive multi-criteria decision making
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literature. Specifically, we extend the theory of convex cones such that they can be used

in a symmetric setting. After a discussion and review on the use of convex cones in non-

symmetric environments, we introduce our theoretical results that extend this approach

to symmetric environments. We then illustrate the use of our theoretical findings by

designing an interactive ranking algorithm and solving example problem instances.

The equitable effi ciency concept is based on an axiomatically justified notion of fairness;

however, it may result in prohibitively high computational effort, especially in problems

where the set of alternatives are implicitly defined by constraints. One other way to

incorporate equity concerns is using inequality indices in the models. These indices return

scalar values that show the degree of disparity in a distribution and have a value of zero

at the perfect equality line, i.e. the line of distributions where everyone receives an equal

amount. We generalize the perfect equality line concept and define the perfect balance

line, which consists of points that have the same proportional allocation as a reference

distribution the decision maker (DM) provided. This concept provides a way to address

balance concerns, which occur in many resource allocation settings in real life. Not ignoring

the widely encountered effi ciency concerns, we discuss the use of bi-criteria modelling in

resource allocation settings, the two criteria being effi ciency and balance, respectively.

Some of the research directions that could be explored further are summarized below:

Algorithmic challenges:

There is a vast amount of potential real-life applications such as health care decision

making, resource allocation, and supply chain design, for which mathematical modelling

tools can provide solutions by considering the multiple concerns inherent in the prob-

lems. Most mathematical models considered in the recent OR literature are multi-criteria

decision making models where one (or sometimes all) of the criteria is equity related.

Multi-objective models are more diffi cult than their single objective counterparts ([207]).

This renders it necessary to address the related algorithmic challenges and explore exact

and/or heuristic methods to solve these multi-objective models.

As a specific example, in models incorporating equity concerns via inequality indices, as

one moves away from simple inequality indices to more complicated but more realistic ones,
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the complexity of the resulting models may change significantly. For example, the indices

that respect the strong version of the Pigou-Dalton Principle of transfers (PD), such as the

Gini coeffi cient and the variance, often make the corresponding mathematical model harder

to solve than some simpler measures that do not respect strong PD such as the range. As a

result, there are relatively few studies in the literature which involve models that quantify

equity using such measures. Hence, designing computationally feasible algorithms for more

complicated models with indices which satisfy desired axioms on equitability and hence

would be accepted by many inequity-averse DMs is a relevant and stimulating research

topic.

Another example research question would be on handling computational challenges

when one has a multi-criteria approach to equitability, i.e. considers a preference model

with the symmetry axiom. We have so far discussed the problems where a discrete set

of alternatives is explicitly given and proposed an interactive solution method for such

problems. A natural extension of our work would be considering situations where the

alternatives are implicitly defined by constraints. Such problems are relevant in many

real-life applications. Hence, finding ways to deal with the computational challenges the

symmetry axiom brings (due to the combinatorial number of permutations) and designing

algorithms which, for example, return equitably effi cient solutions in reasonable time is

another relevant research topic. Moreover, further research can be performed in guiding

the DM through the set of equitably effi cient alternatives by using, for example, interactive

approaches.

Another specific research question would be about resource allocation settings where

the DMs have balance concerns over the output distribution. We have made initial at-

tempts along this line by proposing solution approaches for discrete problems and observed

that these models are significantly more diffi cult to solve than their counterparts, which

consider balance concerns in the input distribution. Moreover, the output distribution may

be generated by production functions based on the input allocation decision. In such set-

tings inputs and outputs are connected by the “production functions”, the forms of which

will affect the complexity of the resulting mathematical models. For example, a nonlin-
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ear production function would be expected to lead to models, which are computationally

challenging yet relevant in many applications and interesting to explore.

Decision support:

We see great potential for further research in improving the decision support process

for real-life multi-criteria problems involving equity concerns. Researchers should reflect

upon how the theoretical advances and analyses can be used within a real life decision

support context.

One of the main issues is choosing the type of the decision support in terms of the

timing of the interaction with the DM. As we have discussed in Chapter 3 there are three

main multicriteria decision aiding (MCDA) methods: a priori, a posterior and interactive

MCDA methods ([145]). All three approaches are meaningful and useful in their own way.

For a decision support system to be successfully implemented the analyst should choose

the appropriate type of support for the problem at hand. Hence, a relevant discussion in

“inequity-averse decision making”can be held on the application contexts where each of

these methods may make sense. Some example questions are the following: “Are there

application contexts where more a priori approaches make sense as there is consensus about

the aggregation mechanism or equity index to be used? Are there contexts (perhaps health

care decision making) where making equity judgements is so sensitive that all that one can

do is present the DM with the effi cient set and ask her to choose one of the solutions in

this set? Where do interactive approaches make sense? Such discussions would help the

decision making practitioners in deciding the appropriate set (type) of support systems,

which would eventually contribute to the success and impact of the relevant decision aiding

applications and increase the practical value of the research outputs.

Some research questions regarding the interactive decision support can be considered

in the future. Experimental studies on interactive approaches can be performed in order

to answer questions like “How easy do people find it to express preferences over distri-

butions?” or “ What kind of questions result in the best performance of the interactive

procedure used in terms of e.g. the cognitive effort or the time required from the DM?”

“What kinds of inconsistencies arise?”. Alongside general discussions on these questions,
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specific interactive methods can be re-considered from these perspectives. For example,

our work on convex cones can be re-considered in the light of such questions. Recall

that, we propose an interactive method for symmetric cases that uses the convex cones

approach, which is based on using preference information from the DM. In our method

we used pairwise comparisons provided by the DM but other questioning modes are also

possible. It would be interesting to conduct an experimental study on alternative types of

interaction and analysis of inconsistencies that may arise within this context.

Designing a decision support system or choosing an appropriate one from the available

systems would involve considering behavioural aspects as well. In inequity-averse deci-

sion making, questions like “What equity indices are closest to people’s intuitive ideas

of equity?” await further attention. Such studies exist in the Economics literature but

more practice-oriented discussions can be held within the OR community, especially by

behavioural scientists.

The appropriateness and computational handling of particular structural assumptions

on the DM’s preferences is also a fruitful area for further research. Within the aggregation

functional approaches to equitability we discuss the equitable dominance relation, which

is also the unanimity relation when DM’s utility function is assumed to belong to any one

of the following sets: additive, concave, quasi-concave or Schur-concave. When preference

information from the DM is introduced, this unanimity no longer holds. In this thesis we

have considered the case where the utility function is assumed to be quasi-concave and

proposed a solution approach that incorporates the DM’s preference information to obtain

a most preferred solution or a subset of good solutions, or to refine the ranking of the set

of solutions. An extension of this work that we have in our future research agenda involves

considering all these four assumptions on the functional form of the utility function and

proposing interactive solution approaches accordingly. We aim to discuss the advantages

and limitations of each approach.

Robustness:

Robustness is crucial for the decision maker(s) to be comfortable with the proposed

solution as a robust solution would make it easier to persuade the stakeholders to imple-
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ment it (see [208] and [209] for a discussion of robustness concerns in operational research

and decision aiding).

In general, robustness in multi-criteria decision making approaches is a relatively recent

topic; hence to the best of our knowledge, there is almost no work on the multi-criteria

decision making situations where equity is of concern. For example, in a decision making

setting where the feasible alternatives are implicitly defined by constraints, the decision

makers may want to obtain solutions which would always be among the “good”solutions

within the possible parameter value intervals. Further research can be performed especially

in MCDM settings with the symmetry property. In such settings some equitably effi cient

solutions may be less sensitive to changes in the considered parameters than the others.

Hence, one can focus on designing solution approaches that specifically aim to find such

robust solution sets.

Robustness concerns related to the fairness rules can also be explored further. For ex-

ample, in settings that quantify equity using an inequality measure, further analysis could

be performed to see the extent to which selecting the “wrong”inequality approach affects

the solutions in different problem settings (see [42] for an example study that considers a

single facility location problem). Such works would be of much help to the decision makers

who find it diffi cult to select one inequality measure from a number of alternative mea-

sures. Having knowledge on the robustness of solutions with respect to different measures

would guide the analyst on the amount of time to be devoted to discussion on the choice

of the measure to be used. If the solutions do not change significantly when the index is

changed, then less time could be devoted to such discussions. If solutions would change

in a considerable way when different candidate measures are used, then more time would

be required to deliberate over these candidate measures and to choose the “right”one.

Deepening our understanding of the concept and measurement of equity:

We have discussed various indices that can be used in the models to incorporate equity

related concerns. One future line of work can focus on axiomatisation of these inequality

and balance indices. An axiomatic analysis would make it possible to discuss limitations

and advantages of different indices in a more structured way.
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More research can be performed on how to “measure”or quantify equity in different

settings such as the ones where ordinal measures rather than cardinal ones should be used.

An example occurs in the ground delay problems, where there is a reference ordering in

which entities are served or processed and one wants to deviate from this order as little

as possible (see [108] for an example study). Imbalance measures can be defined and

classified for such settings along with a discussion on the underlying axioms assumed for

each measure.

Another extension of our work on imbalance indicators, which are based on the perfect

balance line, can be to examine the cases with different balance line forms, such as piecewise

linear ones. A piecewise linear balance line would reflect preferences of a decision maker,

for whom the desired ratio allocations would change depending on the total amount of

good. For example, when the amount of good is relatively scarce, then the concern may

be allocating the good equitably (i.e. a perfectly balanced distribution allocates each

entity the same amount) whereas when the total amount of good is plenty then a perfectly

balanced allocation for the DM might involve different ratios than the equal ones. Such

a piecewise linear extension of the perfect balance line concept would result in a more

flexible decision support system in terms of capturing different ideas of balance.

Multidimensional equity also seems of interest and links to a topic in economics ([210],

[211], [212], [213], [214], [215], [216], [217]). Multidimensional equity considerations are

relevant in many practical applications and involve assessing inequity in bundles of different

goods that different entities receive. Such cases are computationally and cognitively more

challenging since the distribution (allocation) vectors seen in the single good case are now

replaced with matrices in which each column (row) corresponds to the distribution of one

of the multiple goods. Hence decision making in such settings is associated with comparing

such allocation matrices. The definition of the anonymity property changes in such cases

because the preference model is expected to have the anonymity property over the entities

but not over the different goods. That is, symmetry holds over only one dimension of

the matrix. Similarly, the PD is defined in a slightly different way: everything else being

the same, an allocation matrix 1 should be considered more equal than another allocation
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matrix 2, when it is obtained by applying matrix 2 a series of PD transfers for one or more

of the goods. Further research can be performed on generalizing the concepts and axioms

used in the single dimensional settings to multidimensional ones, proposing operational

means to compare two allocation matrices and designing solution approaches that can

incorporate preference information in these settings.
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