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Abstract

Web access panels are self selected panels constructed with the aim of drawing in-
ference for general populations, including large segments of the population who
rarely or never access the Internet. A common approach for modeling survey
data collected over access panels is combing it with data collected by a randomly
selected reference survey sample from the target population of Interest. The act
of joining the panel is then treated as a random process where each member
of the population has a positive probability of participating in the survey. The
combined reference and panel survey sample can then be used for different esti-
mation approaches which model either the selection process or the measurement
of interest, or some case the two together. Most practitioners and academics who
have considered this combined sample approach, model the selection process by
a single phase process from the target population directly to the observed sample
set.

In the following work, I assume selection into the panel is a sequential rather
than a single phase process and offer several estimators that are underlined by
appropriate sequential models. After a careful investigation of a variety of single
phase methods applied in practice, I demonstrate the benefits a sequential frame-
work has to the panel problem. One notable strength of this approach is that by
assuming a sequential framework the modeler can include important variables
associated with Internet and Web usage. Under a single phase model inclusion
of such information would invalidate basic assumptions such as independence
between selection and model covariates.

In this work I also suggest a carefully structured panel estimation strategy, com-
bining a sample selection design with chosen estimator. Under the sequential
framework I demonstrate the potential of combining a within-panel random
sampling procedure, that is balanced on a sequence of target statistics, with
estimators that are modeled over both the selection process and the variable
of interest. I show that this strategy has several robustness properties over and
beyond currently applied estimators. I conclude by describing an estimation algo-
rithm which applies this estimation strategy to the combined panel and reference
survey sample case.
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Chapter 1

Web Access Panels

1.1 Introduction and Opening Words

The expansion of Online research and Online survey research is a major trend in
the past fifteen years. From a very small base Inside research (2009) put the US
total Online research in 2009 at about $2 billion, while the UK market research
society estimates that 26% of all research in the UK in 2010 was done Online.
The Lion’s share of this research is done over the platform of Web panels. This is
largely a replacement technology with 85% of the research conducted over these
panels have been migrated from traditional research modes such as face to face
or telephone. The main engine for this growth has been market research studies
such as brand evaluation, product concept trails, advertising testing, customer
satisfaction surveys. Political polling, always having an outsized influence1 on
the research market and the public perception of research, has also shifted in-
creasingly to Online platforms and has had a major part in a wider public and
commercial acceptance of estimates based on Web panel data.

Panels can be recruited by means of traditional probability designs (such as the
Knowledge Networks panel), however, the vast majority of panels are assembled
through a non-probability and loosely controlled process. As means of recruit-
ment panels employ a large range of procedures to solicit population members to
join the panel. These offers normally suggest the prospect of receiving monetary
remuneration for their survey response, but also stress social aspects such as the
participation in public debate or the possibility of influencing the development
of new products or improving relationships with companies. After joining, the
panel collects profiling information such as social and demographic indicators as
well as some attitudinal and behaviour information. The panel company then
communicates with their members by email or when panelists actively log on to
the panel website.

1With only 2% of total research spend, inside research (2009)
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The non controlled and non-probability method of panel recruitment are in stark
contrast to the conventional framework of survey sampling theory underlying
much of the survey based research for over 50 years (Baker et al., 2010), and so
it is not surprising the resistance Web panel faces from much of the key stake
holders of the industry including the academic, governmental as well as the com-
mercial communities. But given the deep societal changes of the last decade
reflected in dramatic new methods of communication and social interactions,
changes in consumer habits, as well as commercial pressures the march of sur-
veys moving Online is inevitable.

However, this relatively fast shift in the adaptation of Web panels in the industry
has exceeded the pace of methodological advancement. And while still fiercely
debated in academia, Web panels are now an integral part of survey based re-
search. Thus, it is necessary to acknowledge the importance of Web surveys,
instead of neglecting their potentials by regarding them as a cheap and dirty
method. It becomes now the methodologists responsibility to devise ways to
improve and devise frameworks that can underline a statistical approach to Web
panel based survey inference.

Luckily, there have been a number of substantial attempts by social scientists
in the design aspect of Web surveys particularly in questionnaire design and us-
ability issues. However, findings in these studies do not cover the full picture of
Web survey methodology, as they are limited to improving the quality of data
collected from persons who already participate in the surveys. At the same time,
academic researchers have in recent years started investigating and publishing
work on the topic and along with valuable work done in the commercial sector
there exists a good initial body of empirical and theoretical work to build on.

Still, a great deal more is left to develop in the field and my hope is that this work
may contribute to a more structured and detailed framework for the statistical
inference of general population parameters based on Web panel survey sampling
data.

1.2 Online Panels

Traditionally, the principal assignment for any survey based research is to es-
tablish a sample frame of the target population of interest. When the sampling
mode is Online, the researcher encounters the limitation that not all members
of the target population can access the mode on which the survey collection
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platform is built on - the Internet2. When the target population of interest is
certain classes of the population such as the student population or a commercial
organization, this issue is of minor concern given their high Internet penetra-
tion levels. However for general (e.g. national or international) populations a
non negligible and distinct segment of the population is not Online. Despite
the digital revolution of the past decade and the seemingly omnipresence of the
Internet in our daily lives in 2012 still only 76% of the EU population had used
the internet at least once, while only 67.5% of the EU population are regular
users - that is use the Internet at least one time a week (European Commission,
2013). In the US the Pew research center estimates that only 72% of Internet
users go Online at least once a week (Rainie, 2010). Furthermore, the use of
Internet is strongly associated with education level, income, profession, health
disability and age: for example in the UK, while almost all people aged 16-44
have used the Internet, only 3 out of 10 people aged 75+ have (ONS 2014). In
the US, demographic groups such as Hispanics and blacks are underrepresented
in the Online population (Baker et al., 2010).

It is true that effectively all Internet users have an email account, but still there
is no complete list of these addresses. Furthermore, while several Internet users
may share a single email address, more and more commonly users acquire multi-
ple email accounts from different providers which are used for different activities.
Many of these addresses are forgotten, left unused without being disabled. In
general , the non standardised format of emails blocks the possibility of establish-
ing an Online equivalent of the telephone sampling random digit dialing (RDD)
methodology. It is worth noting that even if a useful list of email account could
be compiled, legal and commercial body regulations would block the use of such
a list for privacy and consumer rights reasons (Baker et al., 2010).

The Online panel platform is a widely used solution to this lack of sampling
frame or sampling methodology for general population research. The ISO 26362:
Access Panels in Market, Opinion, and Social Research offers the following defini-
tion of Online panels: “A sample database of potential respondents who declare
that they will cooperate with future [online] data collection if selected” (Interna-
tional Organization for Standardization 2009). This is a broad definition which
can include (as noted in section 1.1) panel databases collected by an Offline ran-
dom probability design as well as one that is collected through a non probability
selection procedure - namely through a wide placement of Online ads and offers
to join the panel and partake in future surveys.

A further distinction can be made by the population targeted for the panel based
research. General Population panels are collected to correspond to the general
population Online, or when census balanced, to represent the general popula-

2Or more specifically in this work, the World Wide Web
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tion. Consumer Panels are similar but may be limited to certain ages (25-55)
and demographics more relevant to market research exercises such as a study
of the consumer packaged goods market. Sub-panels aim to represent certain
sub-populations for which unambiguous features or attributes are available link-
ing them to groups of panelist for specific areas of studies. One example is a
Handicap or disability panel, where members of the general population panel
can be identified as having a disability and can be gauged on unique health is-
sues, social views, economic status and even shopping patterns. This is a cost
effective way of researching such low incidence population segments. Similarly
Specialty Panels and Business to Business (B2B) panels which aim to survey
specific members of the population such as business executives legal profession-
als, musicians, hunters and other members of the panel representing small, low
incidence, groups of the population. Proprietary Panels are panels usually built
and maintained by a research company but exclusively used by a certain com-
pany for their own research needs. Banks, Content providers or large retailers
with large customer databases are companies which benefit from owning a panel
representing their client population.

As noted my research focuses on the problem of inference of general population
statistics based on data collected from panels assembled Online through a non
probability process, however, the ideas are immediately transferable to any of
the above panel types.

1.3 Data-Collection Methods in the Face of So-

cial, Economic and Technological changes

The field of survey methodology and specifically its data collection and data
measurement tools evolve dynamically along with the cultural and technological
changes. The survey methodology field advances by expanding the variety of
measurements of day to day activities and the views of the society it studies.
Over the previous century, among the evolutions most notable in the field was
the introduction of telephone interview (Groves and Kahn, 1979; Dillman, 1998;
and Dillman, 2002). It is noteworthy then that when the idea of conducting sur-
veys over telephone was first introduced, researchers were skeptical and not fully
convinced of the effectiveness of the method. One possible explanation was the
famous failed Literary Digest poll which was based as well on a list of telephone
owners. It is also true that the prevailing belief at the time was that surveys
should involve face-to-face interactions.

However, this changed and since the Health Survey Methods Conference in 1972,
where telephone interviewing first received attention as a serious data collection
mode (Dillman, 1998), there was (and still is) a great effort to build and improve
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telephone survey methodology (e.g., Groves and Kahn, 1979). Meanwhile, an
innovative concept of balancing survey costs and errors to the maximum degree
has influenced researchers to design surveys within some fixed amount of budget
- The total survey error paradigm (e.g., Groves, 1989). A well-defined probability
sampling procedure by random digit dialing was developed for telephone surveys
(e.g., Mitofsky, 1970; Waksberg, 1978; Lepkowski, 1988; Casady and Lepkowski,
1993). Inevitably, practical considerations and societal changes boosted the le-
gitimacy of telephone interviews. For example, increased telephone usage and
a lowered household contactability for face-to-face interviews due to an increase
in female workforce and a decrease in household size have made surveys by tele-
phone more feasible and cost-effective. Now, telephone surveys are a standard
data collection method in developed countries.

It is clear now that the digital revolution and the internet have created another
significant societal change and with it another leap in the sources of measure-
ment available. The internet is profoundly changing the way we communicate
with one another and so, the survey research field is experiencing another chal-
lenging transition into implementing Internet based surveys.

As noted already Web surveys3 have been both hyped for their capabilities and
criticized for their limitations. However, to put this in historical perspective, it
is instructive to return to what was written about telephone and mail surveys
when they were still regarded as unproven survey methodologies. In 1978, Don
Dillman, a noted authority on surveying, said the following about mail and tele-
phone survey questionnaires: ’Neither mail nor telephone has been considered
anything more than a poor substitute...’ for the highly regarded face-to-face in-
terview. At the time this view was probably justified, because the two methods
had many deficiencies and problems. Surveys by mail typically elicited extremely
low response rates, even with short questionnaires. Further, it was not possible
to reach many people by mail questionnaires, and among those to whom ques-
tionnaires could be delivered, the best educated were far more likely to respond.
Even completed questionnaires left much to be desired in terms on non answered
questions. It is not surprising, then, that users of the mail questionnaire treated
response rates well below 50 percent as acceptable and explained away problems
of data quality with disclaimers such as, this is the best we can expect from a
mail questionnaire (Dillman, 1978, pp. 12).

Not unlike the situation with mail surveys in the 1970s, many questions and
concerns exist about how to best conduct Web surveys and whether they are, in
fact, scientifically valid. However, reflecting on Dillman quotation and making
the necessary substitutions between web, mail and Web, the statement will ac-

3In Web surveys the respondent visits the survey Web site by either clicking a hyperlink in
an e-mail or in another Web site, or by typing the Web address directly into the address box
in the browser window.
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curately reflect much of the criticism directed at Internet-based surveys today.
Therefore, it is inevitable to consider Internet surveys as an alternative or rather
a new survey tool alongside traditional mail and phone survey methods.

More positively, Web-surveys do have advantages over more-traditional methods
in certain applications, and the use of this medium will continue to expand. Com-
pared to traditional survey platforms proponents argue (Kellner, 2008; Rivers,
2010) that: (1) they are less time consuming; (2) they are just as good or better
than more-traditional surveys; (3) they are much cheaper to conduct; and (4)
they are easier to execute. However, these assumptions may or may not be true
depending on the individual circumstances of the survey. Therefore, researchers
need to understand the current limitations of Web surveys.

According to Dillman (2002) our survey methods are more a dependent variable
of society rather than an independent variable constructed by the survey com-
munity in isolation. In fact the ideal survey methodology is likely to reflect the
society and its culture. As Taylor and Terhanian (2003) argue, just as telephone
surveys began to be adopted extensively a few decades ago mirroring the societal
and technological trends, the survey methodology field is currently witnessing a
widespread growth in the use of Web surveys. These changes are simply mani-
festation of societal trends.

1.4 The Web access Panel- Mechanics and a To-

tal Error Perspective

Web access panels have their roots in the prior post-mail panels started by US
market research companies, including Synovate, NOP and others (Baker et al.,
2010). These mail panels were assembled by a non random processes, similar to
the Web panels, but through non Internet sources. These panels were marketed
by commercial research companies based on their superior speed, cost and ability
to capture low incidence population - again similar to the strengths of today’s
Web panels.

Each Web panel is built and maintained in a very idiosyncratic process. This is
a reflection of the commercial nature of the panels, the relative novelty of the
idea as well as a lack of an agreed theoretical framework to model the process
and the analysis of the survey data recorded. In the following I touch on the
main elements considered by a panel management team from an operational and
methodological perspective.
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Population Coverage

Our interest is in estimating certain statistics of a target population. In sur-
vey sampling theory a target population is a finite population of units, that is
a population which at least in theory can be counted over a certain period of
time and are thus observable. A classic example is a survey targeting the US
population of adult household members in a certain month. Usually a target
population is defined already while considering a sampling frame from which
to collect population members. That is a researcher may want to survey the
entire adult population, however technically and financially limiting the aim to
the household member population is a more feasible proposition. Any sampling
frame (e.g. the Postcode Address File in Great Britain) will have limitations
that may cause errors in the eventual estimation stage. In traditional sampling
frames these include undercoverage, such as non registered households but also
overcoverage- caused by multiple mapping and duplications which usually are
a function of several household members clustered under the same address. To
deal with these issues the survey community established recognized and tested
procedures to identify and minimize such problems

In the Web access panel case the idea of a population sampling frame is substi-
tuted by the panel itself and evaluation of frame errors are replaced by a focus
of collecting a large and diverse enough set of the target population members,
allowing the researcher to sample a representative sample. The problem is that
the term diverse cannot be defined properly in practice. For different research
topics, a different diversity is required - for some instances social demographic
diversity is enough , in other areas it is a range of political views while in another
consumer habits. Randomization theory cuts through this problem by assuring
that, over repeated applications, for large enough sample the population and
sample distributions are similar on all observable and non observable variables.
When randomization is not possible, we are left to empirically compare to avail-
able information on the target population from sources such as national statistics
or reputable survey based statistics, but even then the researcher can test bal-
ance only on available data and can only hope that this indicates balance on non
observable distributions. Finally, it is worth noting that the problem of over-
coverage by multiple mapping also effects the Web panel as the panel frame,
the list of Internet emails, is likely to have many cases where several population
members are represented by a single address. Another problem, is the phenom-
ena of single population members participating in several panels simultaneously.
For example Walker et al. (2009), investigating 17 different Web panels, found
a duplication rate, a population unit which is a member of multiple panels, of
between 16-40%.

10



Recruitment, Registration and Profiling of Panelists

Non response or non cooperation is an error affecting any survey mode as it
severs the link between the planned selection design from the actual sampling
distribution. From the nature of Web access panels’ assembly procedure, which
relies on a multitude of contact points with the target population (many of them
loosely controlled by the panel management team), the magnitude and charac-
teristics of such non cooperation with the collection process is significant.

The recruitment to the panel is mainly done Online, but can have an Offline ele-
ment as well. Panel companies attempt to advertise and solicit volunteering to as
many members of the population as possible. The extent of the recruitment drive
is a function of the cost constraints and the desired social and demographic pro-
file of the panelists. Motivation to join and participate in surveys can be driven
by aspects such as monetary incentive - either fixed or contingent, the desire
of the member for self-expression of certain views and influence public opinion,
the opportunity to view survey results and as a means of entertainment. It may
be somewhat surprising that when studying panelists’ motivation Poynter and
Comley (2003) found a fairly even mix of the above list with monetary reward
(42%) the highest stated, followed by curiosity (40%), entertainment (20%) and
a desire for self expression of views (28%).

As noted, panel development is done in several fronts. Probably the most com-
mon way of recruitment is through the purchasing of email lists from specialised
vendors. These lists are compiled through co-registration agreements between
the email list vendor and web site owners, who actively maintain email lists of
visitors who sign up voluntarily and agree to be contacted by third party ’part-
ners’ (Baker et al., 2010). This is the approach taken in the US originally by
Harris Interactive in the late 90’s and YouGov in the UK. Another common re-
cruitment platform is Web banners or display ads. A panel owner has the option
to contact websites directly, through affiliate networks to which those websites
belong or through a media agency (Michael 2010). Yet anther recruitment source
is through search engines such as Google, Yahoo or Bing where the panel com-
pany or search engine consultants attempt to manipulate the rank of their panel
website on the search engine list when relevant search terms are typed in. The
same search engines are popular web sites for placement of display ads, where
again, the panel companies compete to have their web site link displayed by
search terms deemed relevant to population members who are likely to self select
into the access panel. As noted above. additional recruitment initiatives can be
done Offline, these include offering survey respondents in face to face, telephone
or post mail surveys to join the Online access panel. Another method is refer-
ral, snow balling or viral recruitment where panelists are encouraged to suggest
family, friends or other members of their social circle to join the panel.
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Given the uncontrolled nature of the process, it is almost impossible to estimate
or even define the response rate of the overall selection process. In one such
attempt Alvarez et. al, (2003) studied the case of Web banner recruitment and
found that the recruitment rate per Web banner impression was 0.002% while
the recruitment rate per actual Web banner ad click-through was just above
6%. Another study by the same authors found that a vendor email list com-
piled through a co registration agreement yielded a 32% recruitment rate. This
is one indication of the reason for the prevalence of vendor list based recruitment.

Baker et al. (2010) summarize several empirical evidence of the recruitment or
self selection error for US and EU panels. The evaluations are conclusive in
that population member who join Web access panels differ significantly from
the general Online population. For example a study of a Dutch panel (Vonk
et al. 2006) found it underrepresented ethnic minorities and immigrants while
over represented frequent Internet users, voters for certain political parties and
religious groups. Similar evidence has been documented by US studies (Krosnick
and Chang, 2004; Chang and Krosnick, 2009; Dever et al., 2008; Couper, 2000,
and others).

The majority of large commercial panels follow a double opt-in procedure of join-
ing the panel, which means that after the collection of a population member’s
(email) address, the panel sends him or her an email offering to join the panel
by following an attached link leading to the panel web site. On arrival most
panel companies screen potential panelists through a recruitment questionnaire,
recording a long list of profiling data which can range from basic social demo-
graphic characteristics to attitudinal, behaviour and psychogrpahic4 information
which in turn will be used to identify the overall profile of the panel as well as
sampling covariates for specific survey studies. The profiling phase is used as
well to maintain the integrity of the panel by means of different validation pro-
cedures. The aim of these procedures is to prevent fraudsters from joining the
panel and can include comparing profiling data to third party databases, checks
on the stated home address against postal records and ISP address as well as
data integrity evaluation (to test if the profession, age and other pieces of in-
formation given are ’reasonable’) and digital fingerprinting to check for multiple
registration (duplication tests) to the panel.

Incentive and Panel Maintenance

As is evident from the discussion above, acquiring a panelist is an expensive
undertaking and so an important part of the management’s team resources is to
decrease the level of panel attrition. This is a natural process which occurs in
any panel, with the largest group of panel drop-outs in fact are the group of new

4the study of personality, values, opinions, attitudes, interests, and lifestyles
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members. Longer term, attrition can be influenced by the length of the surveys
taken, the topic of studies when they do not match the respondents interests, or
inversely by a panel not being engaged enough in the sense that the member is
not sent survey requests over a long period of time.

The vast majority of panels offer panelists incentives. A common incentive is to
use redeemable points that are collected for each survey completed. The amount
of points gained can be a function of survey characteristics such as the length of
the survey or the perceived interest (or how tedious, boring) members may find
answering the questions. Another factor is the panelist characteristics, where
low incidence panel members (such as top business executives, members with a
specific disability) will likely be offered a higher number of points for completion
of the survey. Points can be redeemed in numerous ways: gift certificates or other
forms of vouchers, cash by check or bank transfer, purchase services or products
through participating websites, multiple participation in sweepstakes.

An important guiding principle the panel management must always follow is
that regardless of the incentive method, the level of remuneration should be high
enough to incentive panelists to participate, but must not be large enough to
encourage population members for which panel membership is a major source of
income, that is professional panelists, to be encouraged to join.

Within Panel Survey Sampling

Given the unrepresentativeness of the panels, it is uncommon for a researchers
to design a simple random sample from the panel. More likely, panel manage-
ment will sample by non random purposive methods. In the panel management
terminology ’sampling is the process of drawing a sample from the panel that
fulfills certain criteria, often referred to as quotas’ (Michael 2010). These criteria
can be basic social demographic quotas taken from national statistic organiza-
tions, but depending on the survey topic can include constraints on the sample
based on lifestyle and attitudes, brand and category usage, ownership health
conditions. To estimate the quotas necessary, several panel companies run in
parallel a smaller ad hoc random reference survey to estimate the population
distribution of these specific variables. Such reference surveys, for cost reasons,
can also be conducted on an ongoing basis and used to design several surveys
simultaneously. This approach was pioneered by Harris Interactive. Clearly, the
reference survey must match in wording the panel survey questions and should
be as much as possible mode and time insensitive.

While purposive sampling, and especially quota sampling, is viewed dimly in the
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traditional survey sampling world5 a strength of Online panels is their complete
knowledge of the distribution of the panel members across the many profiling
variables and the control on the distribution of the achieved sample. An inter-
esting example of the use of this knowledge are political polls, where many panel
companies at the time of a general (or in some cases local) elections, take a ’snap
shot’ of the electorate map by surveying all panel members over the days before
and after the election. Companies use this profiling data to anchor the panel to
the correct political landscape which they can then use on an ongoing basis for
political, social and even economic research.

1.5 Structure of Thesis

In chapter 1 I have introduced the idea of Web panels as a substitute to the
classical survey sampling population frame. I also have described there the main
methodological challenges practitioners face when using this new survey plat-
form. In chapter 2 I review common approaches to the problem, beginning with
the important fixed population framework. In chapter 2 I also explain the sta-
tistical logic of common panel practices such as purposive and quota sampling.
In chapter 3 I propose a sequential framework to the Web panel process and
adapt the most common estimators reviewed in chapter 2 to the sequential case.
I then discuss the strengths these estimators have compared to their single phase
framework counterparts, and demonstrate these properties through several sim-
ulation studies. In chapter 4 I introduce the idea of using a random reference
random survey as a surrogate to the unknown general population distribution
and describe how the sequential estimators of chapter 3 can be computed over
a combined sample set collected over both Web panel and reference surveys.
In the final sections of chapter 4 I move away from post survey adjustment
methods and propose a within-panel sampling design, which aims to balance the
achieved sample to a set of population statistics. I show that combining this
balanced sampling design with estimators built over a combination of selection
and measurement of interest models achieve an additional level of robustness to
misspecification.

5Although there is a significant divergence across the Atlantic where in Europe quota
sampling is far more accepted than in the US.
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Chapter 2

Modelling Panel Data -
Introduction to the Problem and
a Review of Relevant Approaches

2.1 Overview of Chapter

In chapter 1, I described the complex and to an extent intractable survey process
of Web access panels. The objective of this expensive undertaking is to draw in-
ference about the population from which the panelists originate. This fits the
survey sampling problem of estimating population quantities from a subset of
the population dataset, However, the non random and highly complex nature
of the underlying selection and survey process, and the lack of (even a proxy)
sampling frame stands out from the main stream of survey research datasets. It
may be only a small exaggeration to state that since the inception of scientific
survey sampling in the 1920s Web panel surveys are the first survey platform
possessing such characteristics that have gained traction and have not been dis-
missed outright by the research community.

In this first chapter I review common approaches relevant to the question of
inference based on Web panel samples. Broadly, these approaches can be cate-
gorized into (i) those which rely on a probability model of the measurement of
interest, (ii) those which rely on modelling the selection process or (iii) a combi-
nation of the two. For brevity and when unambiguous I will refer to these three
approaches as m, π and πm-estimation receptively. Within these categories, for
a given estimand the specific estimation procedures will differ on the inferential
framework, the estimation procedure and the specific estimator. Regardless of
these specifics, the different approaches have several common weaknesses and
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strengths in the context of the Web panel survey sampling setting which I will
try and highlight.

Even before, I can state that one common weakness of these approaches is that
they usually reduce the complex survey selection process into a single model.
More clearly, any inference over data collected from a sample of a population
must address explicitly or implicitly the selection (or missingness) mechanism.
It will be evident from the discussion that as a general rule, commonly used
approaches model the panel selection mechanism as a one phase process, which
from the short introduction it is clearly not to be the case. This reduction of
what is a sequence of conditional processes into a one phase process, I will ar-
gue, weakens both the ability of the analyst to offer a satisfactory model for the
selection mechanism and may increase the likelihood of model misspecification
of the measurement of interest - because it reduces artificially the complexity of
the selection process, and prevents the use of valuable information which could
otherwise be used directly.

A modelling framework which takes into account the sequential nature of the
selection process will be given in the following chapter 3, while here I consider
approaches which could be used if selection could be treated as being generated
by a single phase mechanism.

In the following I start by setting up the notation and formalizing the basic
problem, then section 2.3 discusses the applicability of the fixed population ap-
proach of survey sampling inference to the Web panel problem. This is a natural
starting point given the popularity of the framework in the survey community.
Section 2.5 covers the ’translation’ of observational study methods, which are
highly relevant to the Web problem, into the context and terminology of survey
methodology. After this, over sections 2.7-2.9 I review separately common π, m
and πm-estimation procedures, their strengths and weaknesses - all within the
context of the Web panel problem.

2.2 Notation, Terminology and Basic Set Up of

the Problem

A finite population s0 = {1, ..., k, ..., N} consists of N <∞ units where k repre-
sents the kth unit of the population, a physically existing element on which we
can make measurements or observations. For convenience, when describing basic
results I assume that the size N , at least conceptually, is known.

Let yk quantify without error the value of y, our variable of interest asso-
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ciated with the kth unit of the population. When yk is in bold font then
yk = (y1k, ..., yQk)

′, that is for each unit k sampled, a Q−vector of variables is
recorded - usually Q is of high dimension. The unknown set of population values
is denoted in general by the N×Q matrix ys0 = [y1, ...yk, ...,yN ]

′
and in the case

where only one variable is recorded by the N−vector ys0 = (y1, ..., yk, ..., yN)
′
.

When unambiguous, I may drop the s0 which here indicates the relevant set of
population units. These study variables can be continuous, as in situations where
yqk, q = 1, .., Q stands for the ’income’ or ’hours listening to the radio’ of unit k
of the population. In many other cases, however, yqk is categorical , for exam-
ple a dichotomous variable such that yqk = 1 if k has the attribute ’The Times
reader’ and yqk = 0 ’Not The Times reader’. But for specific cases, we consider
our objective is in estimating linear functions of y such as the population mean
ys0 = N−1

∑
s0 yk.

In the most general setting we assume the value yk is a single draw from the
distribution of the possible outcomes and is therefore itself stochastic. The un-
observed measurements y = [y1, ...,yN ]

′
, the fixed finite population, are assumed

to be the realized outcome of random variables Y = [Y1, ...,YN ]
′
, the Superpop-

ulation, with joint distribution about which certain features are assumed known.
This idea of a Superpopulation from which the finite population is a sample was
first proposed by Deming and Stephan (1941).

Formally, let f(y) be the probability density function (for continuous random
variables) or the probability function (for discrete random variables) of the Su-
perpopulation distribution of the random variables Y. Normally when the values
x = [x1, ...,xN ]

′
of X an N × P matrix with typical xk a P × 1 vector are (or

assumed) known for all members of the population s0 then I shall use the condi-
tional density function f(y|x). In some cases I assume that the family of Super-
population distributions is indexed by an unknown parameter θ = (θ1, ..., θT ) of
finite dimension T so that the density f(y) is denoted f(y;θ) and the conditional
density function is denoted f(y|x;θ).

The survey statistician observes only a subset of the population of interest. As
noted above, selection is underlined by a sequence of panel processes, however,
most published work on Online access panel data (for example see Isaksson et al.,
2004; Lee, 2006; Rivers and Bailey, 2009 and Lee and Valliant, 2009) reduces this
into a single selection model from finite population to the sample surveyed. This
is the approach we take throughout this chapter, but will be relaxed in subse-
quent chapters.

Formally let S = (S1, ..., SN)
′

be the N × 1 vector of indicator variables where
Sk = 1 if unit k belongs to the observed set and Sk = 0 otherwise, with distri-
bution Pr(S = s) = p(s) where s = (s1, ..., sk, ..., sN)

′
. Define s to be the set of
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population units participating in the survey, that is s = {k : Sk = 1}, then for
any selection mechanism with no duplication (such as discussed in this work),
the event S = s is equivalent to the event S = s that is Pr(S = s) = Pr(S = s).
When necessary I associate with the selection distribution an unknown param-
eter vector φ so we write p(s;φ) or p(s;φ) and when appropriate a conditional
distribution p(s|x;φ) .

Given s, the population y is partitioned ys0 = (ys,ys) where s is the compliment
set of unselected population members. Throughout assume that the observed
sample size

∑
k∈s0 Sk = nS is large enough so that estimation and inference is

reasonable.

Throughout I assume exchangeability of p(s) and f(y) in the sense that all per-
mutations, for example for (Sk1, ..., SkN), have the same N−dimensional proba-
bility distribution. In other words, the labels k are uninformative in the distri-
bution. See Cassel et al. (1977, p.72) for a more detailed definition.

2.3 The Coverage Constraint of the Fixed Pop-

ulation Framework

As a survey sampling platform, an investigation of the Web access panel infer-
ence problem should start with the fixed population approach which is practised
by the overwhelming majority of survey statisticians. In the following I discuss
briefly the inferential framework and evaluate the difficulty of implementing rele-
vant estimation strategies in the panel context. I assume throughout this section
a basic familiarity of the reader with the fixed population framework of survey
sampling inference. Standard references for this idea is given by Cochran (1977),
Cassel et al. (1992), Särndal et al. (1992) and Kish (1995).

In the fixed population approach all values of variables are considered fixed - but
unknown - at the outset. Variables y and x are not random, and are variables
only in the sense of taking possibly different values (Särndal et al., 1992, section
9.2). Fundamentally, randomness is due only to the subset selection process. The
problem is that whatever modelling approach one takes within this framework,
when tackling the panel question the researcher is constraint by the fact a subset
of the population cannot be selected into the sampling set, resulting in a biased
estimator.

Classically, it is understood that under a certain probability model p(·) we can
state before selection the probability of observing units s ⊆ s0, the sample. More
formally, for any s ∈ S where S is the set of all possible subsets of s0, selection
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satisfies p(s) ≥ 0 ∀s ∈ S and that
∑

s∈S p(s) = 1. An important element in fixed
population statistical inference is the calculation of the inclusion probability of
a random unit into the set s. For a given p(·),

πk = Pr(k ∈ S) that is Pr(Sk = 1) =
∑
S3k

p(S)

where the notation
∑

S3k is understood as the sum over all samples s which
include unit k of the population s0.

In fixed population inference, a selection model (or sampling design) is said to
be measurable if πk > 0 and πkl = Pr(k&l ∈ S) > 0 for all k, l ∈ s0. The
positive probability of selection for each unit is a necessary and sufficient condi-
tion for the existence of unbiased estimators, while the positive joint probability
for each pair of population units allows calculation of valid variance estimators,
and using observed survey data, confidence intervals that achieve the theoretical
coverage rate (see Lemma 3.4 in Cassel et al., 1977). Estimators are evaluated
by properties such as expectation, variance, mean square error (MSE) which are
all defined with reference to the specific selection model p(·).

Traditionally, the estimator accompanying the fixed population approach is the
HT -estimator (Horvitz and Thompson, 1952)

ŷs0 = N−1
∑
k∈s0

Sk
yk
πk

= N−1
∑
k∈S

yk
πk
. (2.1)

A popular alternative replaces N by N̂ =
∑

s π
−1
k .

Classical theory assumes that πk are known and specified by the researcher. In
Web panels, however, respondents self select into the panel. There is a rich
academic and commercial literature dealing with self selection and unit non re-
sponse in the survey sampling process. A popular approach is to describe the
self selection as a separate conditional phase to the sampling design. That is,
we assume first that a sample s1 is selected by known design p1(·), and subset s2

selects to respond to the survey questions with unknown response process p2(·)
with (conditional) unit selection probability π2k =

∑
k3s2 p2(s

2|s1) where s2 ⊃ s1.

After invoking two selection models estimator (2.1) is impractical1, and an ap-
propriate estimator in this case is

ŷs0 = N−1
∑
k∈S2

yk(π1kπ2k)
−1. (2.2)

1Even if both phases mechanism are known as πk is not easily defined- we need to know
p1(s1) for all s1 which in normal setting is available, but also for each s1 we must know π2k
which can’t be calculated without observing s1.

19



The two estimators (2.1) and (2.1) are mostly of not the same form as

πk = Pr(k ∈ s1)Pr(k ∈ s2|k ∈ s1)
= π1k (πk/π1k) 6= π1kπ2k

where the difference lies in conditioning the probability in selecting k to s2 on
the observed set s1 rather than on the event that k is in the realized set s1. See
Särndal et al. (1992, section 9.2) for further discussion.

A popular approach of estimating the self selection probabilities π2 is assuming

a response homogeneity groups (RHG) which states that s1 = ∪Hs1

h=1s
1
h so that

π2k = π2h for any k ∈ s1h; h = 1, ..., Hs1 . Let n1 = ∪Hs1

h=1n1h and n2 = ∪Hs2

h=1n2h

denote the sizes of s1 and s2 respectively then under RHG π2h = n2h

n1h
so

ŷs0 = N−1
∑
h

∑
k∈s2∪s1h

(
n2h

n1h

)−1π−11k yk

which can be shown to be unbiased by referring to the law of total expectations,
E(ŷs0) = EE(ŷs0|s1,n1) where n1 = (n11,..., n1h, ..., n1Hs1

).

However, in the Web panel case the process inverts. Now s1 represents the self
selected set of Web panelists with p1(s

1) being unknown while s2 is the survey
sample of panelists with conditional probability p2(·) known by design. The RHG
model here is defined over s0, that is s0 = ∪Hh=1s

0
h define homogeneous selection

strata such that π1k = n1h

Nh
for all h = 1, ..., H where sizes N = (N1, ..., NH)

are fixed as they are population characteristics. Assuming N is available from
external sources and for any design p2 estimator (2.2) is now

ŷs0 = N−1
∑
h

Nh

n1h

n̂1h

∑
k∈s2∪s1h

ykπ
−1
2k∑

k∈s2∪s1h
π−12k

=
∑

W
′

hŷs1hπ2

where W
′

h = Nh

n1h
n̂1h/N and n̂1h =

∑
k∈s2∪s1h

π−12k estimates the size of s1. An

alternative is to replace N with N̂ =
∑

h
Nh

n1h
n̂1h.

However, strata now are over s0 and define panel volunteering response groups
using fixed population characteristics. It is unavoidable that most homogeneous
(and likely largest such) group identifies non (at least regular) Internet users.
Define s01 to be this strata of non connected population units of size N1. With
π1k = 0 by definition for s01 let h = 2, ..., H and let B(·) denote the expected bias
of an estimator then

B(ŷs0) =
N −N1

N
(ys01 − ys01)
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the coverage bias, where ys01 represents the average over population excluding

members of s01. Thus it is not surprising that most survey statisticians tackling
the panel question limit their inference to the ’Internet connected’ population
(e.g. Bethlehem, 2008, 2010, Lee, 2009 and others). Counter intuitively, the
only possibility now for an unbiased estimate will be if the RHG model does not
hold as then the coverage error may cancel out with the selection model misspec-
ification error.

2.4 The Use of Model Assisted and Calibration

Estimators in Web Panels

The HT estimator and its variants such as the RHG model are only the most
basic estimator in the fixed population framework, while Calibration (Deville
and Särndal, 1992) and model assisted methods such as the generalized regres-
sion (GREG) estimator (Särndal, 1982; Robinson and Särndal, 1983) build on
the approach by including population level auxiliary data. However, as I shall
show in this short section, these methods share the same constraint due to the
fixed population assumption.

Calibration is a popular approach many practitioners take which seems to avoid
the coverage bias of the fixed population perspective (Lee and Valliant 2010,
Chang and Kott 2005). The approach in essence is a systematic way of intro-
ducing auxiliary information into HT type estimation, with the aim to increase
efficiency or increasingly to remove self selection bias. The calibration estimator
is

ŷs0 = N−1
∑

(gk/πk)yk (2.3)

such that πk is the selection probability into the survey set, and gk are calibration
weights which minimize the distance

Ep(s)

(∑
s

Gk(gk, π
−1
k )

)
s.t.
∑
s

(gk/πk)xk =
∑
s0

xk

for well behaved distance metric Gk(·) As Särndal and Lundstrom (2008) note
calibration estimation development is intimately link to practice and the ’fixa-
tion’ of national statistical agencies in estimators which are representable as the
sum of weighted survey values.

To understand intuitively the problem of using calibration in the panel context,
consider the specific case where Gk(·) = (gk − π−1k )2/π−1k qk for a known positive
weight qk. Then calibration simply provides an alternative derivation of the
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generalized regression (GREG) estimator

ŷs0 = ŷπs0 + (xs0 − x̂πs0)B̂ (2.4)

underlined by the ’assisting’ linear model

EM(yk) =
∑p

j=1 βjxjk = x′β and

VM(yk) = σ2
k ; k = 1, ..., N

(2.5)

where B̂ = (B̂1, ..., B̂p)
′ = (

∑
k∈s xkx

′

k/σ
2
kπk)

−1∑
s xkyk/σ

2
kπk. When qk = σ2

k

the estimator (2.3) is equivalent to (2.4) with gπk = 1 + (xs0 − x̂πs0)T̂
−1xk/σ

2
k

where T̂−1 =
∑

k∈s
xkx

′
k

σ2
kπk

.

Now linking to the panel problem, a useful exemplar is the post stratification
estimator

ŷps =
∑
h

Whys2h

where Wh = Nh/N . However, to justify this estimator is to pick one of several
invalid assumptions. From a systematic survey sampling perspective the ŷps is
assisted by model (2.5) such that β = (β1, ..., βH)′ and σ2

k = σ2
hxk ∀k : k ∈ s0h

for h = 1, ..., Hs0 implying a stratification of the population s0 = ∪Hh=1s
0
h defined

by homogeneity in y. In addition we must choose to either (1) ignore the unknown
selection probabilities πk, (2) assume an equal probability selection process or
(3) that strata h = 1, ..., H overlap into an RHG type of selection mechanism.
The first two are clearly false while the last brings back the coverage bias we
wish to ignore.

However, what seems to be a dead end, does show us the appeal in the Web
panel context of introducing models which explain y. Taking either of (invalid)
assumptions listed above we can find that

B(ŷps) ≈
∑
h

Wh(ỹs0h − ys0h)

where ỹs0h = N−1h
∑

s0h
ykπk/π1h and the approximation is due to Taylor lineari-

sation, with π1h denoting the unknown average selection probability into panel
segment s1h. The selection bias is a weighted sum of the strata biases, where each
strata bias can be rewritten as

ỹs0h − ys0h =
∑
s0h

(π1k − π1h)(yk − ys0h)/π1hNh.

While the post stratification and RHG estimator share the same structure, dif-
fering only in the weights Wh 6= W

′

h, the post stratification estimator (and more
broadly- calibration or model assisted estimators) seem to avoid coverage bias
by defining the strata on the population distribution of y. If its model holds the
bias will tend to zero. However, the invalidity of the selection model assumption
makes this approach questionable.
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2.5 The Interpretation of Observational Studies

into the Panel Case

The question of inference from self selected samples such as the Web panel sam-
ples, and more broadly to any non-probability sampling vis a vis the standard
probability survey sampling theory is somewhat analogous to the comparison of
observational studies against the scientific gold standard of randomized exper-
iments for causal inference. By observational studies we mean here a study of
a possible effect of a treatment on subjects, where the assignment of subjects
into a treated group versus a control group is outside the control of the investi-
gator. From analysis of observational studies we can draw ideas for analysis of
non-probability samples. As a background for that, I review here key ideas of
observational studies.

The web access panel is a survey sampling platform in purpose, but is assembled
as an observational study, and it is not surprising that early attempts to address
the panel question viewed Web panel surveys as a new type of observational
studies (Boruch and Terhanian, 1996) and used popular observational study es-
timation tools. However, for the survey statistician the translation to our finite
population estimand context and the specific data structure available in practice
requires clarifications.

As noted above, observational studies refer to studies of causality based on con-
venience samples, that is non randomized treatment assignment. The problem
is that substantial differences in the variable of interest across factors - tacitly
implying causality - after closer examination however, may be partly or entirely
be linked to variation of confounding covariates, rather than the specific char-
acteristic studied. The fundamental problem is that unless a study sufficiently
controls for conditions other than the experimental factor under study, distri-
butional differences and subsequent causality statements may not be any more
than an artefact (Lee, 2004).

In the basic setting of a causality problem for population unit k, the indicator
Sk takes the value 1 if unit k takes the action and 0 otherwise2. If the unit takes
the action we say that it is in the treatment group, otherwise it is in the control
group. In the tradition of Rubin (78) and Holland (86), we define causal effects

in terms of counterfactuals or potential outcomes. Specifically, Y
(1)
k is what unit

k′s outcome would have been if she had taken the action while the corresponding
potential outcome for not taking the action is Y

(0)
k . The individual causal effect

2The unit may or may not be the decision-maker with regard to the action. Sometimes the
action is taken by the unit, other times, others perform the action/treatment on the unit. In
the panel survey context, action is a combination of active and passive decision making.
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for unit k, then, would simply be Y
(1)
k −Y

(0)
k , the difference between what would

happen under action and what would happen under inaction.

Note that the causal effects are defined in terms of potential outcomes, not
observed quantities3. To connect the observed data and the potential outcomes,
we make use of a consistency assumption: when we observe a unit taking an
action, we observe their potential outcome for that action. Formally

Yk = Y
(s)
k if Sk = s (2.6)

where s is either 0 or 1. Without the consistency assumption the two distinct
variables Yk and Y

(s)
k need not be the same if the potential outcomes depend

on the actions of other units. The consistency assumption directly connects the
observed and potential outcomes, ignoring any of these possible spillover effects4.
In the design based survey sampling approach we assume the variable of interest
is unknown but fixed (as well as all other population characteristics which may
be measured), so the notation implicitly assumes consistency and sidesteps this
issue.

The quantity of interest in casual inference is typically the average treatment
effect (ATE or ACE )

E[Y(1) −Y(0)] = Y
(1) −Y

(0)
,

Now, consistency implies

E[Y
(1)
k |Sk = 1] = E[Yk|Sk = 1]

where E[Yk|Sk = 1] is the observed average outcome among those who have been

treated. But this implies nothing about the counterfactual quantity E[Y
(1)
k |Sk =

0], which is what the average outcome would be for non treated had they been
treated. The ’cost’ of making the consistency assumption is that we cannot si-
multaneously observe a unit’s outcome under both action and inaction. This
is commonly known as the fundamental problem of causal inference and makes
individual causal effects difficult to estimate without strong assumptions.

To overcome this we need the further assumption of conditional independence of
the potential outcomes. That is the potential outcomes are independent of the

3To emphasize this some authors denote Yk by Y obsk (Imbens and Rubin, 2010, chapter
5) or in a dose-response setting the outcome (the curve) is sometimes denoted by a different

letter, say D
(1)
k (Wasserman, 1999), to the observed value Yk.

4Rubin (78) refers to this assumption as the stable unit treatment value assumption or
SUTV It may seem that consistency is a definition rather than an assumption, but a few recent
studies have called that assertion into question (Cole and Frangakis, 2009; VanderWeele, 2009;
Pearl, 2010)
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action, conditional on a set of covariates Xk,

Y (1), Y (0)⊥Sk|Xk (2.7)

where ⊥ indicates conditional independence (Dawid, 1979). Political scientists
call this assumption no omitted variables, economists call it no selection on un-
observables, epidemiologists call it no unmeasured confounders and survey statis-
ticians non informative design. In words, the assumption means that the distri-
bution of the potential outcomes is the same for those who have and have not
been treated .

Augmenting consistency with ignorability allows us to fully connect the observed
data and the potential outcomes. For s = 1 or 0

E(Y
(s)
k ) =

∫
y
(s)
k f(y(s))dy(s)

=

∫
E(Y

(s)
k |Xk = x)f(x)dx

=

∫
E(Y

(s)
k |Xk = x, Sk = s)f(x)dx

=

∫
E(Yk|Xk = x, Sk = s)f(x)dx (2.8)

which some term the ’g-computation algorithm formula’ (Robins et al., 1999)
or the g-equation (Wasserman, 1999) and is the standard adjustment for a con-
founder as discussed by many statisticians, notably Rubin and Rosenbaum. The
strength of g-equation is in the sequential framework I discuss in chapter 3.
Equation (2.8) suggests an estimator which relies on a model of the distribution
of the conditional mean Y over the population distribution of X. I discuss this
approach in the following section.

We are now ready to reinterpret these ideas to the Web panel context. First,
’treatment’ here is participation in a Web panel and response to a specific sur-
vey. Non treatment is is simply non participation in a Web panel. We assume
that conditional on observed covariates Y

(0)
k = Y

(1)
k and our focus is on esti-

mating the fixed population parameter y
(1)

s0 , the average outcome if everyone
in the population would join our panel and be measured by a survey, or when

a superpopulation model is envoked E(Y
(1)

s0 ), but otherwise the discussion on
estimation of the ATE is the same but for the objective- instead of estimating
treatment effect we are measuring (or attempting to correct for) estimation bias
by relying on the conditional independence assumption. Here, (2.7) would be vi-
olated, for instance, if Liberal Democrat supporters were more likely than other
party supporters to join and respond to the panel survey and we failed to control
for political party affiliation. In a case of a political poll, joining the panel would
be correlated with potential outcomes and inflate the real support for Liberal

25



democratic party in the population.

In some cases s = 0 will denotes not the counterfactual but rather Y
(0)
k indicates

the response through a traditional survey setting such as a randomly selected
sample surveyed by telephone. In such instances the two states s = 0 or 1 do not
complement each other, are not counterfactual, and may happen simultaneously.
This causes a potential overlap with some implications to the estimation proce-
dures which I discuss in detail in chapter 4 along with the estimation methods
relying on a randomly selected ’reference’ survey sample.

2.6 Survey sampling as a Missing Data Problem

In the tradition of Rubin (1976) it is useful to describe the survey sampling
problem as a missing data problem where we want to draw inference on the
full population distribution D = (Y,X,S) while we observe only a subset of
the full population Ds = (Ys,X,S). This is not necessarily with aim to model
the full distribution but rather, outlying the full distribution will clarify the as-
sumptions and mechanism for valid inference. These conditions vary depending
on the estimand, the mode of inference (Survey sampling, Likelihood, Bayesian,
Generalized Estimation Equations), the estimation procedure and the estimator
used. Further discussion on the idea of describing survey sampling inference as a
general missing data problem can be found in Little (1983); Smith (1983); Smith
and Sugden (1988) and Gelman et al. (2004, chapter 7).

In general the full population D = (Y,X,S) with data d can be thought to have
distribution

f(d) = f(y|x)p(s|y,x)f(x) or

= f(y|s,x)p(s|x)f(x). (2.9)

Assuming throughout that values x are known, the analyst observes the dataset
ds with distribution

f(ds) =

∫
f(d)dys (2.10)

where ys is the set of unobserved responses from Ys, the unsampled units of
the population. In the case Y and S are conditionally independent given X, the
observed data distribution will follow

f(ds) = f(ys|x)p(s|x)f(x). (2.11)
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As Tsiatis and Davidian (2007) discuss we can outline broadly three estima-
tion strategies, by positing different statistical models that may have generated
the observed data, by making different assumption on the components of (2.9).
These broadly characterize three estimation approaches (m, π and πm mentioned
earlier), that is

1. Make no assumptions on the forms of f(x) or p(s), leaving these en-
tirely unspecified. Make a specific assumption on f(y|x), for example that
E(Yk|Xk = x) = m(xk;β) for some given function m(x;β) depending on
parameters β (P β × 1).

2. Make no assumption on the forms of f(x) or f(y|x), but make a specific
assumption on p(s), for example that Pr(Sk = 1|Xk = x) = E(Sk|x) =
π(xk;α) for some given function π(x;α) depending on parameters α (Pα×
1) and also that 0 > Pr(Sk = 1|Xk = x) > 1 for all x.

3. Make no assumption on the form of f(x), but make specific assumptions
on f(y|x) and p(s|x), for example, that assumptions outlined in preceding
items 1. and 2. hold.

denote f 0(ds) as the true joint density generating the observed data, and let m0

and π0 denote receptively the true functions E(Y|x) and E(S|x) corresponding to
f 0(ds). If model 1. is correct then m0 = m(xk;β) and if model 2. is correct then
π0 = π(xk;α). In the next three sections I discuss such estimation procedures
starting with the case of modelling the unknown selection process.

2.7 Modelling the Selection Process-

π−Estimation

As discussed in section 2.3 classic survey sampling theory relies explicitly on a
known p(s) and conditioning on the population values ys0 ,xs0 which lends the
term ’fixed population inference’. This reliance on the single distribution p(s),
however complicated, makes it operationally appealing for official statistic agen-
cies and survey based research companies where large amount of items Y are
processed. However, as shown, the fixed population inference suffers from a cov-
erage bias over the non ’Web-covered’ subset of the population, and furthermore
the panel selection process is unknown and so p(s) must be modelled. In the
following I discuss the idea of π-estimation methods such as the HT - estimator
from a superpopulation perspective.

I start with discussing in detail the propensity score estimation strategy, which
as noted by the AAPOR report on Online Panels (Baker et al., 2010) attracted
arguably the greatest amount of attention in Online panel survey research and
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estimation. The approach was first introduced for use in online panels by Harris
Interactive (Terhanian et al., 2000; Taylor et al., 2001) and further examined by
Lee (2004, 2006); Lee and Valliant (2009); Schonlau et al. (2004); Loosveldt and
Sonck (2008); Rivers (2007) and others.

The analyst observes ds from Ds = (Ys,X,S) and denote the conditional selec-
tion given covariates by π(x) = p(s|xs0). When s depends only on fully observed
covariates, we call π(x) the propensity score and a conditional independence
between Y and s exists, that is

f(ds|xs0) = f(ys|xs0)p(s|xs0). (2.12)

Commonly, it is assumed that

p(s|xs0) = Πk∈sπ(xk)Πk∈s [1− π(xk)] (2.13)

with π(xk) being the individual unit selection probability. The strict indepen-
dence assumption, which implies a form of Poisson selection process Särndal
et al. (1992) popular in survey literature, is not essential but simplifies notation
and discussion.

To understand the specific mechanics when applying propensity score estimation,
it is instructive to start with the original motivation for the method- finding a
low dimensional substitute to the conditioning covariate set x while still allow-
ing (2.12) to hold. When X takes a high dimension, such substitutes, termed
balancing scores, can facilitate more practical estimation strategies.

Formally, an appropriately constructed balancing score b(x) has the property

Xk⊥Sk|b(xk).

(Rosenbaum and Rubin, 1983, sec 2.2) discuss the special role of propensity scores
within the family of balancing scores and show that (i) the propensity score is
a balancing score, so X⊥S|π(x), that (ii) it is the coarsest such balancing score
in the sense that π(x) = f{b(x)}, for any balancing score b(x) where the finest
score is X itself, thus it is the most efficient score, and (iii) that if X provides
enough information for (2.12) to hold, then conditional independence holds given
any balancing score including the propensity score. That is

f(ds|π(x)) = f(ys|π(x))p(s|π(x)) (2.14)

which can be derived by showing that p(s|π(x),y) = E {E(S|π(x),x,y)|π(x),y}
which is equal to π(x) because of conditional independence given X.
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An immediate consequence is that

Eπ(x){E(Ys|s, π(x))|π(x)} =

∫ ∫
yf(y|s, π(x))f(π(x))dydπ(x)

=

∫
y

∫
f(y|π(x))f(π(x))dπ(x)dy = E(Y)

and under probabilistic selection, that is 0 < π(x) ≤ 1 valid inference is possible.
Probabilistic selection is closely related to the concept of common support in
matching literature, positivity in causal inference literature and measurability in
sampling theory and simply requires each unit to have a chance to participate
in a the survey. This lets the entire support of x to be represented in s while
if a particular subpopulation has zero probability of being in the sample, esti-
mates for this subpopulation must by necessity rely on extrapolation through a
supporting m-model.

Several competing estimation procedures have been popularized following Rosen-
baum and Rubin (1983) paper, including weighting, classification, matching and
covariance adjustment; all of which have been applied to the Web panel problem.
In the following I touch on the first two starting with the most widely cited- the
π−weighted estimator. For further reading see Rubin (2006); Rosenbaum (2002);
Abadie and Gardeazabal (2008); Dehejia and Wahba (2002, 1999); Olson (2006).
For specific application to the Web panel case see Isaksson and Lee (2005); Lee
and Valliant (2009); Rivers (2007) and Schonlau et al. (2004).

The π−weighted estimator can be viewed as a model based version of the HT−
estimator introduced in section 2.3 and takes the same form

Ŷπ = N−1
∑
k∈s

ykπ̂k(x)−1 (2.15)

where π̂k(x) = π(xk; α̂) are consistent estimators of the unit selection prob-
abilities. As with the HT - estimator an alternative version is to replace the
denominator with N̂π =

∑
k∈s π̂k(x)−1. For some selection processes p(·) the two

are identical, but in general the latter is superior as (i) it is more efficient with
both parts of the ratio increasing in size for large sample sizes, decreasing with
small sample sizes. (ii) It is a bounded estimator - as a convex combination of
yk’s it always lies in the interval [ymin, ymax] with endpoints the minimum and
maximum observed Y -values and so will fall in the parameter space of ys with
probability 1 (see Robins et al., 2007). The latter, classic Horvitz Thompson,
estimator is not bounded (a property Basu, 1971 famously exploited in attack-
ing survey sampling theory). Lastly, (iii) estimation of the population mean is
feasible even when the population size, N is unknown.
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Estimator (2.15) can be motivated by the g-equation (2.8)

E(Ys0) = N−1
∑
s0

∫
E(Yk|Xk = x)E(Sk|Xk = x)

E(Sk|Xk = x)
f(x)dx (2.16)

= N−1
∑
s0

∫
E(YkSk|Xk = x)

π(xk)
f(x)dx = N−1

∑
s0

E

(
YkSk
πk

)
The idea of inverse weighting is to recover the joint distribution of (X, Y ) by
attaching weight ∝ π(x)−1 to each point in {(Xk, Yk) : Sk = 1}. This estimation
principle is visualized in figure 2.1. Early discussion on the strengths and weak-
nesses of direct weighting by inverse estimated propensity scores can be found in
Little (1986) and Little and Rubin (1987, p.58). See Tan (2006) for a likelihood
formulation.

Assuming π̂k(x) are consistently estimated consider now the the potential bias
of the π−weighted estimator. Let Pr(Sk = 1|x, y) = πk(x, y) and denote
the joint density (X, Y ) in the population by f(x, y), while in the sample by

f(x, y|s) = πk(x,y)f(x,y)
π(·,·) where π(·, ·) =

∫ ∫
π(x, y)f(x, y)dydx is the average se-

lection probability. Also let Cov(·) denote covariance, σ(·|x) the conditional
standard deviation and ρ(·|x) the conditional correlation coefficient. By noting
that

∫ ∫
π(x)−1π(x, y)f(x, y)dydx = 1 then the potential bias of ŷπ is

B(Ŷπ) = E

(∑
s0 SkYk/πk(x)∑
s0 Skπk(x)−1

)
− E(Y)

≈
∫ ∫

y

(
π(y,x)

π(x)
− 1

)
f(y,x)dydx

= Cov

(
Y,
π(Y,X)

π(X)

)
=

∫ {
σ(Y |x)

σ{π(x, Y )|x}
π(x)

ρ{Y, π(x, Y )|x}
}
f(x)dx (2.17)

where the approximation is of order o(n−1).

Under correct specification π(y,x) = π(x) and the bias is exactly zero. Other-

wise, the magnitude of B(Ŷπ) will depend both on the level of departure from
the π−model and distributional properties of f(y|x) and p(s|x). Specifically,
bias will be small if at least one of the factors is small

(i) the conditional standard deviation of Y σ(Y |x) is small for all x , which
happens if Y ≈ E(Y |x) - that is the Y values are predicted well by the X, or

(ii) π(x, y) varies little with y for fixed x which happens if at least approximately,
p(s|x, y) ≈ p(s|x) for all x and y, which happens in a good prediction model of
S by x , or
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Figure 2.1: The π-estimator: π− estimation recovers the joint distribution of (X, Y ) by
attaching weight ∝ π(x)−1 to each point in {(Xk, Yk) : Sk = 1} but is sensitive to cases where
π ≈ 0.

(iii) the conditional correlation ρ{Y, π(x,Y)|x} is close to zero for all x.

The main objection to Ŷπ is its sensitivity to the common support assumption.
Direct weighting can be highly unstable as respondents with very low values of
π are sharply adjusted - an idea visualized in figure 2.1 as well. This sensitivity
can be seen both in the potential bias (2.17) which is a function of π−1 and in the
expected variance; for example the selection-model variance of the π−estimator

with known selection probabilities is V (Ŷπ|y) =
∑

s∈S p(s)(Ŷπ−E(Ŷπ))2 which
under Poisson selection is

V (Ŷπ) ≈ N−2
∑
k∈U

(
π−1k − 1

)
(yk − y)2 (2.18)

which also is inflated in regions where π(x) ≈ 0.

At the extremes when there is complete separation in the distribution f(x) be-
tween s and s the estimator breaks down and is not defined. An interesting
counterargument to this criticism (Tan, 2007) puts that this instability in fact
properly reflects the separation in f(x) and thus the lack of information on ys0
in the data from the non sampled units. It is a consequence of transparency
rather than a disadvantage and as such, makes clear that there is no basis for
inferring the expected outcome of non selected units. In contrast ML, multi-
ple imputation and other m-estimation methods will still be produced even in
complete separation because they are based implicitly on extrapolation. An ad-
ditional strength of π-estimation is that it is modelled over (S,X) both assumed
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observed over the entire finite population. This is in contrast to m−estimation
which is fitted over (Ys,Xs) , a major weakness I discuss in the following section.

In practice after choosing the π−weighted estimator, we must decide (i) the
covariate set X to include in the π−model and (ii) the relevant model fit-
ting/goodness of fit tests.

As for covariate selection, the fundamental recommendation, supported by the
potential bias (2.17) is to include all covariates associated either to Y or S .
This is echoed in advice such as in Rubin and Thomas (1996) and Heckman
et al. (1998) who argue that there is no distinction between highly predictive
covariates and weakly predictive ones in the performance of propensity score ad-
justment and suggest including all observable covariates. Drake (1993) finds that
misspecifications of the propensity score in terms of functional form have much
smaller biases than similar misspecifications in m−model estimation. Millimet
and Tchernis (2009) report a simulation that focuses on, essentially, the func-
tional form of the propensity score and conclude that the penalty for overfitting
is minimal. More recently Rubin (2009, p.1421) reiterates by stating that not
controlling for an observed covariate is bad practical advice in all but the most
unusual circumstances.

On the other hand, work on the effects of including covariates (into the propen-
sity model) that have only weak or no effect on either the selection or outcome
variables has been published countering the above consensus. For example in
a simulation study Augurzky and Schmidt (2001) include a set of variables Xs,
which strongly influence S, but do not or only weakly determine Y and a second
set Xy, that influence Y , but are irrelevant to S. Their result indicates that
including both sets of covariates results in an increase in the MSE and recom-
mend including only highly significant variables in the propensity score equation.
Similarly, Brookhart et al. (2006) find that one should include covariates that
are thought to be related to Y, whether or not they are related to the selection,
while the opposite of including covariates only related to S increases the variance
of and estimator without decreasing its bias. Clarke (2005, 2009); Clarke et al.
(2011) persuasively demonstrates that, for a misspecified model, the inclusion of
additional control variables, which influence both S and Y increases the estima-
tion bias dramatically.

Given a set of covariates, the particular model fitting process common in propen-
sity score literature is understood by recalling that the goal is to create balance,
on observed covariates, between the selected and non selected groups. Starting
with Rosenbaum and Rubin (1983, 1984) and Rubin (1997) the process is of
recycling between checking for balance on the covariates (e.g. by t-tests) and
reformulating the propensity score. For example, when large mean differences
in an important covariate are found to exist between the two groups, even after
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its inclusion in the model, then the square of the variable and interactions with
other variables can be tried. Ho et al. (2007) put this idea as the propensity
score tautology ’: The estimated propensity score is a balancing score when we
have a consistent estimate of the true propensity score; We know we have a con-
sistent estimate of the score when matching on the propensity score balances the
raw covariate. More recent balancing tests include testing for mean differences
within strata of the propensity score (Dehejia and Wahba, 1999, 2002) or testing
for the joint equality of covariate means across groups using the Hotelling test
or F-test (Smith and Todd, 2005). See Lee (2006) for further details.

Kosuke et al. (2006), Sekhon (2011) have criticized the use of an absolute cut off
point after which balance is achieved noting that hypothesis tests are not mono-
tonic functions of balance and are driven in part by factors other than balance
such as the number of observations, the ratio of selected and non selected units,
and their respective variances. Thus tests such as the t test can get better while
balance gets worse. They suggest alternatives such as using empirical QQ plots
to compare the full empirical distributions for the two groups (either univari-
ate, or for π(x) as it offers a good low dimensional summary) and numerically
summarize these plots with mean and maximum deviation between the two dis-
tributions on the scale of the variables being measured.

Still, the model fitting discussion remains within the boundaries of balancing
properties and in that light it is not surprising that in a a systematic literature
review (Weitzen et al., 2004) of the approximately 50 published articles inspected
only 6 considered usual modelling steps such as evaluating the goodness of fit
of a logistic regression model, while the majority inspected the balance achieved
after propensity score modelling.

Beyond direct weighted π-estimators, arguably the most popular application of
the propensity score is subclassification estimation (term coined by Cochran,
1968), in essence a model based version of the RHG estimator of section 2.3 .
For any balancing score, the basic setting involves ordering its values and form-
ing classes according to the values b(xk), k = 1, ..., N . Specifically let Sh define a
set of values of b(x) so that b(a) ∈ Sh implies units with x = a fall into subclass
h = 1, ..., H. This allows classification of the population into strata s0 = ∪Hh=1s

0
h

and similarly classifies s the selected sample. Denote the respective population
and samples sizes of these classes by Nh and nh for all h = 1, ..., H .

When subclasses are perfectly homogeneous in b(x), the model covariates are
perfectly balanced in the sense that for large populations with nh

Nh
≈ 0 the distri-

bution over s0h and sh is identical. And so a weighted average, with population
total weights, is an unbiased estimator for the population average. However, as
π(x) is the coarsest balancing score in the sense that π(x) = f{b(x)} for some
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function f than we expect residual bias due to imbalances in model covariates.

Noting that assignment is ignorable given b(x) this residual bias of the covariates
after subclassification can be quantified by

B(x) =
H∑
h=1

Wh[

∫
E(x|b){p(b|sh} − p(b|sh}db]

where sh = s0h − sh within each h = 1, ..., H which can be approximated to s0h
again assuming a small sample fraction. Thus the residual bias is a weighted sum
of the difference between the distribution of the balancing score in the sample
and that of the population.

A common problem which often surprises applied researchers is that such im-
perfect adjustment carries potentially the undesirable property of increasing the
bias for some linear functions of x even if all univariate means are closer post
subclassification. That is, there exists a vector w such that wB > wB∗ where
B∗ represents the original covariate imbalance. With this issue in mind Rosen-
baum and Rubin (1983) give the theoretical conditions (the equal percentage
bias reduction property) where the subclassification does not increase the bias.

To limit the residual bias one can create numerous subclasses so as to refine units
in each subclass to have almost identical propensity scores and negate the resid-
ual bias. The norm, however, is to adopt five subclasses based on quintiles of the
propensity scores5. This is based on work by Cochran (1968) and Rosenbaum
(1984) investigating subclassification on x and π(x) respectively.

The most obvious application of the approach (e.g. Little, 1986) involves the
following steps: (i) Estimate α and calculate π̂k = π(xk; α̂) for all k; (ii) Order
the estimated probabilities over s0 and form H classes according to the quantiles
of π̂k, where the hth quantile q̂h, h = 1, ..., H, is such that the proportion of
π̂k ≤ q̂h is roughly h/H, q̂0 = 0, and q̂H = 1; (iii) Within each class calculate
π̂h = (nsh + nsh)

−1(
∑

sh
π̂k +

∑
sh
π̂k) the average selection probability; and (iv)

Estimate ys0 by simple π−estimator Ŷs0 =
∑

s ykπ̂
−1
k /

∑
s π̂
−1
k which here can

be expressed as

Ŷs0 =
∑
h

Ŵhysh where Ŵh = nshπ̂
−1
h /

H∑
h

nshπ̂
−1
h .

An alternative popular in the Web panel literature (Lee, 2004; Valliant and De-
ver, 2011; Isaksson et al., 2005) is underlined by the following rationale. Assume

5Rather than classes based on homogeneity of π. This preference can be understood as
a preference of inexact classification over incomplete classification, see Rosenbaum.Rubin:85b
for a relevant discussion.
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H non overlapping classes, then the sample average can be written as

ys =
H∑
h=1

nshysh.

If we adjust each sampled unit by weights Wk = Nh/N
nsh/n

for k ∈ s0h, h = 1, ..., H
then we get a post stratified estimator

Ŷs0 =
H∑
h=1

Nh

N
ysh

which can be seen to be unbiased as E(Y) =
∫
E(Y|x, s)f(x)dx where here

f(x) = Nh

N
. Note the relationship between π−weights and these adjustment

weights

Wk =
f(x)

f(x|s)
=

f(x)p(s)

f(x)p(s|x)
∝ π(x)−1

for each class h. Thus, when π(x) are homogeneous in h the post stratification
should remove effectively the selection bias.

In practice we calculate

Ŷs0 =
H∑
h=1

Ŵhysh whereŴh =
N̂h

N

with N̂h denoting the number of population units that fall into class h of esti-
mated unit selection probabilities.

An important point is that numerous published work demonstrating the estima-
tor suggests defining the classes by quantiles of π(x) over the combined set of
sampled and non sampled units, (see Terhanian et al., 2000; Taylor et al., 2001;
Schonlau et al., 2002; Lee, 2004; Isaksson et al., 2004; as well as Valliant, 2009
among others). However, defining classes by equal unit counts by definition sug-
gests Ŵk ≈ 1/H depending on the number of classes predetermined and results
with the simple sample average remaining unadjusted. Anecdotally Valliant and
Dever (2011), when studying web panel inference using a reference survey, have
published a critique of the estimator supplemented with a simulation study stat-
ing that ’...although the mathematics needed to anticipate the large biases ...
are not obvious, the message ... is clear—propensity post stratification should
not be used.’ but fail to recognize that the fault is in the specific mechanics of
classification by quantiles they choose rather than the approach.

I conclude with setting the previous discussion in a wider family of π-weighted
estimators, all which can be applied to the Web panel problem. The following
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is based on work attributed to Robins and Rotnitzky (1994) together with col-
leagues, who developed an elegant semiparametric theory underlying estimation
equation estimators from general missing data problems. I develop this approach
in more detail in the next section dealing with m-estimators where I discuss con-
cepts such as the influence function and a linear estimator which are left here
undefined.

Let p0(d) be the true joint density, assume that E(Sk|Xk) = π(xk;α) for all k ∈
s0 leaving the rest of the components of p(dk) unspecified and that conditional
independence holds then the theory of Robins et al. shows that all asymptotically
linear estimators of E(Y ) = µ under model π0(xk) of the true function E(Sk|xk)
have influence functions of the form

SkYk
π0(xk)

− Sk − π0(xk)
π0(xk)

h(xk)− µ

for arbitrary function h(·) of x, which suggests that any estimator of the pop-
ulation average consistent and asymptotically normal under π0 must be asymp-
totically equivalent to an estimator of the form

N−1
N∑
k=1

[
SkYk

π(xk;α)
− Sk − π(xk;α)

π(xk;α)
h(xk)]

when parameters α are known. See Tsiatis and Davidian (2007, p. 570-571) for
the appropriate formulation when parameters are estimated.

Setting h = −µ or h = 0 result in the estimators
∑

s Ykπ
−1
k /

∑
s π
−1
k and∑

s Ykπ
−1
k /N respectively. Another interesting example is when we set h =

−E(Y (1− π(x))/E(1− π(x)) giving a π-imputation type estimator

Ŷs0 = fsys + (1− fs)ŷπs

with ŷπs =
∑

s ykπ̂
−1
k (1− π̂k)/

∑
s π̂
−1
k (1− π̂k) which is approximately unbiased

for the average of the unselected population set.

Using the fact the expectation of the square of the influence function is the
asymptotic variance, the most efficient h (limiting h(x) to be constant) can be
found resulting with the estimator

Ŷs0 =
∑
s

Ykπ̂
−1
k (1− Csπ̂−1k )/

∑
s

π̂−1k (1− Csπ̂−1k )

where Cs =
∑

s0(π̂
−1
k Sk − 1)/

∑
s0{(π̂

−1
k Sk − 1)}2, which is the normal ratio

π−estimator with each weight π̂−1k adjusted by a quantity estimating the devia-
tion of π−1k Sk from it’s expectation of 1. For large samples Cs should be close to
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zero while for small samples the adjustment is a way of countering this variance.
See Lunceford and Davidian (2004, page 2943) and Tsiatis and Davidian (2007)
for further details.

An interesting result by Lunceford and Davidian (2004) show by estimation equa-
tions theory that estimating πk(x;α), even if its true value is known, leads to
smaller (large-sample) variance for these estimators than using the true value.
The reason is that the fitted values balance for random sampling errors as well
as the panel selection bias. Thus, even if the functional form of the propensity
score is known exactly, it is beneficial from an efficiency standpoint to estimate
it anyway.

The move from HT -estimation over a fixed population to π−estimator paradigm
invoking a superpopulation does allow at least hypothetically a way to avoid the
coverage constraint and achieve valid inference under correct specification of the
selection process. Still, in chapter 3 I take one step further and model p(s) as a
sequence of selection phases where the first models Internet usage. Subsequently,
the ’Web covered’ segment of the population- and associated covariates such as
Internet related characteristics- become stochastic with each population unit
having a positive probability of joining the segment. This will allow a more
complete solution to this fundamental problem limiting population parameter
estimation from a Web based data selection platform.

2.8 Modelling the Outcome of Interest-

m−Estimation

In m−estimation, the model for the survey outcomes Y is used to predict the
non-sampled values of the population, allowing estimation of finite population
quantities. The approach does not overtly consider a distribution for S and they
are not the basis for the inference. m−estimation procedures are not widely
used in Web panel published work, which can be explained by the dominance of
π−estimation techniques in survey sampling community.

Classically, the key concept underpinning the reliance only on m−models for
inference is the idea of ignorability of Missing at Random (MAR) selection pro-
cesses. The basic idea can be formulated under a likelihood perspective by first
specifying a joint probability model over the entire finite population ds0 = (ys0 , s)
given parameters (θ,φ) and covariates xs0

f(ds0|xs0 ;θ,φ) = f(ys0|xs0 ;θ)p(s|ys0 ,xs0 ;φ) (2.19)

where the parameter vector (θ,φ) denote the parameters of the conditional dis-
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tributions of the outcome of interest matrix and the selection vector, respectively.
The actual observed data likelihood on the otherhand is

f(ds|xs0 ;θ,φ) =

∫
f(ds0|xs0 ;θ,φ)dys (2.20)

where ds = (ys,xs0). An m−estimation approach would ignore the selection
process, and work with the likelihood

f(ys|xs0 ;θ) =

∫
f(ys0|xs0 ;θ)dys. (2.21)

Rubin (1976) establishes the conditions under which inference from (2.20) and
(2.21) will be identical from a Bayesian, Likelihood as well as a frequentist theory
viewpoints. Principally, if

p(s|ys0 ,xs0 ;φ) = p(s|xs0 ;φ) (2.22)

that is a propensity score type assumption. If this holds

f(ds|xs0 ;θ,φ) = p(s|xs0 ;φ)

∫
f(ys0|xs0 ;θ)dys

= p(s|xs0 ;φ)f(ys|xs0 ;θ) (2.23)

and S and Y satisfy a conditional independence type of factorization, as in Dawid
(1979). From a frequentist viewpoint (2.20) and (2.21) will be identical only if
s is fixed, since otherwise the labels in the integral (2.21) are not well defined,
thus variables are conditionally independent in a probabilistic sense only if (2.23)
holds for all possible s, Rubin (1976). For notational simplicity I will, however,
avoid conditioning explicitly on s in the remaining of the section.

Provided that the parameters φ are not functions of the parameters θ, that is
the parameters are distinct, the distributions generated from (2.21) for given s
will be identical to those generated by (2.23) , and so selection can be ignored.
Bayesian inference requires a somewhat weaker condition on the selection mech-
anism than (2.22), that selection is MAR p(s|ys0 ,xs0 ;φ) = p(s|ys,xs0 ;φ) that is
selection evaluated at the observed value of ys,xs0 , s and φ must be free only of
ys, while in addition parameters (θ,φ) are a priori independent given xs0 .

How relevant, however, is this description for m-estimation over a Web panel
survey data? In the setting of data collected through a known (random or pur-
posive) sampling design (the backdrop of Rubin 1976 and subsequent work) the
MAR assumption is reasonable and explains how and when data analysts may
choose to ignore the selection mechanism. In the Web panel setting this empha-
sis seems misguided.
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Thus here, in m−estimation, we make no modelling assumption on p(s) and fo-
cus on the m−model. A description closer to our problem is this- Our survey
process collects both (xs,ys) from a population subset of Web panel volunteers.
Let Ws0 be an indicator variable, a vector of 0’s and 1’s, which explains joining
the panel set. Selection is then of the form p(s|w;φ). Ignorability then holds
for Superpopulation inference about θ based on the conditional distribution of
f(ys|w;θ) for a given s. But viewed as an indicator variable, W will limit infer-
ence to the panel population subset while not necessarily to the wider population
of interest. For this f(ys|w;θ) must be known, and the question is then how to
model this unobserved distribution.

A solution is to use xs and examine the conditional distribution. If

f(ys|w,xs;θ) = f(ys|xs;θ), (2.24)

holds, Superpopulation inference about θ can be made directly from (2.24). That
is panel volunteering, represented here by W, contains no information beyond
that in the auxiliary values xs in explaining the distribution of ys. For finite
population questions such as inference on ys0 involving ys requires knowledge of
xs as well. Thus, in m−estimation, the focus is on correct model specification
rather than considering MAR selection.

In the following subsections I build a robust m-estimation stratgey relying on
balanced sampling suitable for Web panel question by the following steps. I
introduce first the general idea of m−estimation using Valliant et al. (2000)
general linear model prediction framework and comment as well on the likelihood
and Bayesian approaches. I then briefly discuss Robins and Rotnitzky (1994)
semi parametric theory for estimating equation type estimation which I referred
to in the previous section, its relevance to the use of independent reference surveys
in the panel question and its strength in finding estimators of the estimation
variance. I then show that the common problem of model misspecificaion and
its associated bias is inflated by the sample selection problem and propose as a
layer of defense to this problem a purposive random sampling strategy- balanced
sampling- as a method of enhancing the robustness to model misspecification of
m−estimators while taking advantage of the ability of the panel administrators
to control the within panel sampling process.

2.8.1 The Best Linear Unbiased Predictor

Suppose population vector Ys0 has been generated by

m(β) :

{
E(Ys0) = ms0(xs0 ;β)

V (Ys0) = Vs0
(2.25)
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where ms0(xs0 ;β) = (m(x1;β), ...,m(xN ;β)) with m(·) indicating a function
- linear or non linear - of the unknown parameters β and the observed auxil-
iaries. The N ×N covariance matrix for Y is Vs0 . The population units can be
rearranged so that model components are expressed by

ms0(xs0 ;β) =
[
ms(xs;β)

′
,ms(xs;β)

′
]

Vs0 =

[
Vss Vss

Vss Vss

]
representing the selected and non selected units of the population and their co-
variance structure.

Under model (2.25) with β assumed known, among the class of unbiased es-

timators linear in Ys, that is of the form Ŷs0 = g
′
sYs, the error variance

E{Ŷs0 −Ys0}2 is minimized6 by

Ŷs0 = N−1{1′sYs + 1
′

s[ms(xs;β) + VssV
−1
ss (Ys −ms(xs;β))]} (2.26)

a sum of sample units used directly and predicted values adjusted based on the
model residuals. This is the best linear unbiased predictor (BLUP) estimator
given by Valliant et al. (2000, theorem 11.2.1).

In practice an estimator can be suggested by computing separately the unknown
β, for example by minimizing the generalized least squares [Ys−ms(xs;β)]

′
V−1ss [Ys−

ms(xs;β)] and solving iteratively by the Newton-raphson method, plugging
the estimator into (2.26). A closed form approximation of the error variance

V (Ŷs0 −Ys0) can be found by first using (2.26) to write down the variance in
general and applying standard Taylor series approximations using first partial
derivatives to compute variance and covariance components as necessary. Val-
liant (1985) covers some of the details. For the linear regression case the variance
can be derived directly.

Models of particular interest which fit into this framework are Generalized Linear
Models (GLM) which assumes a distribution in the exponential family underlying
(2.25) and an appropriate link function. For example suppose Ys0 are indepen-
dent Bernoulli random variables

E(Yk) = m(xk,β) where m(xk,β) ∈ {0, 1}
V (Yk) = m(xk,β)[1−m(xk,β)] ; ∀k ∈ s0 (2.27)

6Whereas the linear estimator minimizing the estimator variance V (Ŷs0) = g
′

sV (Yss)gs is

simply Ŷs0 = N−11
′

s0ms0(xs0 ;β), that is the value for each unit in the population is estimated
as its expected value from the regression model.
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assuming m(xk,β) = [1 + exp(−x
′

kβ)]−1 such that logit[m(xk,β)] = x
′

kβ. The
estimator (2.26) under (2.27) is simply

Ŷs0 = N−1[1
′

sYs + 1
′

sms(xs; β̂)] (2.28)

where the residual-based adjustment of (2.26) is dropped as Vss = 0 under the
assumption of independence between units. This is an identical format to the
regression estimator popular in survey sampling theory. The The MLE of the
model parameters can be found by solving the likelihood estimating equations
using the Fisher scoring algorithm. The approximate variance is the sum of
the sample variance Vss and a function of Vss and the first partial derivative
∂m(β)/∂β over the sampled and non sampled units. An estimator is computed
by plugging V̂ss = diag[ms(xs; β̂)(1−ms(xs; β̂))] and and similarly for Vss and
replacing β̂ into the first partial derivatives. Under certain conditions on the
finite population and sampling set it is consistent of the approximate variance
while the estimator is asymptotically normal. For the specific formulation and
conditions, see Valliant et al. (2000, sec 11.2.1), and Valliant (1985).

Two other estimation strategies are likelihood and Bayesian approaches. Take for
example the simple case where (yk, xk) k = 1, .., N are assumed to be independent
observations from a bivariate normal distribution with mean µ = (µy, µx) and
covariance matrix Σ = (σ2

x, σ
2
y, σxy). Under correct specification selection is

ignored and by simple factorization the joint distribution is

f(yk, xk|µ,Σ) = f(xk|µx, σ2
x)f(yk|xk; β0, β1, σ2

y|x) (2.29)

where β0, β1 and σ2
y|x are the regression coefficients and its model residual vari-

ance. The parameter (µx, σ
2
x, β0, β1, σ

2
y|x) are one to one function of the original

parameter (µ,Σ). MLE can be found then by independently maximizing the
two components of (2.29) leading to the common regression estimator such as
(2.28) under independent unit distributions where m(xk,β) = x

′

kβ.

The more popular m−approach in survey sampling is Bayesian (Ericson 1969,
1988; Binder 1982; Rubin 1983, 1987; Ghosh and Meeden 1997, Little 2004,
Little Rubin, Gelman et al.) which would determine the posterior distribution
of

Ys0 = fYs + (1− f)Ys ; f =
n

N

by using simulations of Ys. Bayesian inference separates the analysis into two
steps: (1) Superpopulation inference, that is, drawing θl l = 1, ..., L from the
posterior distribution f(θ|ys,xs0) and then (2) finite population inference by
drawing a vector of missing values Ys from f(ys|xs0 ,ys;θl) the posterior pre-
dictive distribution. As Ys is observed, draws from the posterior predictive
distribution of Ys is equivalent to draws from the posterior predictive distribu-
tion from Ys0 . The simulation of Ys from its posterior distribution are called
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multiple imputations (Gelman et al., 2002).

The fact is, however, that but for the linear regression case, there has been only
a limited number of studies applying estimators such as 2.26 in the survey field.
This can be explained by the need for explicit summation of the predictions for
non sampled population units which is rarely available for general population
cases. A notable exception is the case of small area estimation (SAE) where
aggregated population level data is used to model averages of measurements of
interest over units confined to a certain geographical region, mainly in the con-
text of official national statistics. There is a large body of literature in the field
(see Ghosh and Rao, 1994; Rao, 2003; Datta, 2009; Lehtonen and Veiganen,
2009; Chandra and Chambers, 2011 or Pfeffermann, 2013) which has expanded
on predictors such as (2.26), however, with little relevance to our Web panel
problem in terms of objectives or data structure.

A way of dealing with this constraint is by incorporating in the estimation strat-
egy data collected from a reference survey allowing for unit level summation.
A useful framework facilitating such integration is to consider finite population
estimation from the perspective of estimation equation functions which I discuss
in the next few paragraphs.

2.8.2 Estimating Equations in Survey Sampling

The use of estimation equations (EE) for analytic estimands such as regres-
sion coefficients over random survey samples is not new, see for example Binder
(1983), Pfeffermann (1993), Kovacevic and Binder (1997). Regression techniques
for complex surveys, as implemented in software packages like SUDAAN (Shah
et al. 1997), are based on weighted EE functions.

To fix the idea, suppose {dk, k = 1...N} are independent observations which
depend on an unknown single parameter θ. The estimator of θ is defined as the
solution to ∑

N

u(dk; θ̂) = 0

where u(dk; θ) is the estimation function, a known function that does not depend
on k or N . Godambe & Thompson (1986) show that the optimal estimation
function h(dk; θ) applied to a random sample data, unbiased of u(dk; θ) with
regards to the sample selection process, is simply a π−estimator of the ’census’
estimation equations ∑

s

h(dk; θ) =
∑
s

u(dk; θ)π
−1
k
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where πk , k ∈ s0 are constants known by design. The authors restrict to the
case where population level estimation function u(dk; θ) is linear with regards to
dk, and optimality refers to minimizing the variance of the estimation function
divided by the expected partial derivative squared. See Pfeffermann (1993, sec
7.2.4) for a short review. When fully specified joint distribution of the popu-
lation values is assumed this result provides justification for the use of pseudo
maximum likelihood estimation (PMLE) which utilizes sampling design weights
to estimate the likelihood equations that would have been obtained in the case of
a census. A general discussion of PMLE is entailed in Skinner (chapter 3, 1989),
Binder (1983) and Chambless & Boyle (1985)).

More recently, Robins and Rotnitzky (together with colleagues) developed an
elegant semiparametric theory underlying EE-type estimators for more general
missing data problems attracting great interest in the causal inference domains
(Gustafson 2012). Interestingly and despite the applicability, there is little ev-
idence of a crossover to finite-population sample surveys (Lumley et al., 2011).
Tsiatis (2006) gives an exhaustive introduction to this work, and in the following
I give a short description of some basic ideas within our m-estimation perspective.

First, for a parameter θ in a parametric or semiparametric statistical model,
the influence function ϕ(dk, θ) of estimator θ̂ based on independent, identically
distributed dk, k = 1, ..., N can be defined as satisfying

θ̂ − θ0 = N−1ΣN
k=1ϕ(dk, θ0) + op(N

−1/2) (2.30)

with E[ϕ(dk, θ)] = 0 and E[ϕ(dk, θ)
2] <∞ where expectation is with respect to

the true distribution of d and θ0 the true value of θ generating the data. An
estimator satisfying (2.30) is said to be asymptotically linear and is consistent
and asymptotically normal with asymptotic variance E[ϕ(d, θ)2]. An estimator
function u(dk; θ) is linked to the influence function by

u(dk; θ) = ϕ(dk, θ0)− (θ − θ0).

Tsiatis and Davidian demonstrate (2007) a wide variety of estimators for the
population mean can be expressed as the solution to an estimating equation
based on an influence function, and show that exploiting the relationship be-
tween influence functions and estimators is a fruitful approach to studying and
contrasting the (large-sample) properties of estimators

For our assumed data structure, we do not observe (Ys0 ,Xs0) nor a simple sample
of it but rather ds = (S,Xs0 ,Ys). Under correct specification of the m-model,
Y and X are conditionally independent and the observed distribution is

p(dk) = p(sk|xk)f(yk|xk)I(sk=1)f(xk). (2.31)
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Let p0(d) be the density in the class of densities of form (2.31) generating the
observed data (the true joint density). Assume only that E(Yk|Xk) = m(xk;β)
leaving the rest of the components of p(dk) unspecified and denote by m0(xk)
the true function E(Yk|xk). Tsiatis (2006, Section 4.5) shows that all estimators
of E(Y ) = µ have influence functions of the form

m0(xk)− µ+ Ska(xk)[Yk −m0(xk)] (2.32)

for arbitrary function a(·) of x, which suggests that any estimator of the popu-
lation average consistent and asymptotically normal under m0 must be asymp-
totically equivalent to an estimator of the form

N−1
N∑
k=1

[m(xk;β) + Ska(xk){Yk −m(xk;β)}] (2.33)

for example a = 1 will give the regression estimator discussed earlier, while
the estimator when a = 0 is equivalent to the BLUP estimator (2.28) when
Vs01N ∈ M(Xs0) where M(Xs0) denotes the vector space spanned by all linear
combinations of the columns of X- the linear manifold. Tsiatis and Davidian
(2006, eq. 7) give the correct formulation of the influence function underlying
estimator (2.33) when parameters are estimated7.

The use of influence functions allow as well a simple method for calculating and
estimating the standard error of estimators in the finite population case. In
appendix 5.1 I discuss variance estimation and demonstrate for the important
univariate case where Yk = βxk + εk, εk ∼ (0, σ2

k) and a(xk) = 1 which would
lead to the ratio estimator. The resulting estimator based on the influence is
equivalent to that proposed by (Valliant et al., 2000, p.145) for the ratio estima-
tor.

The use of estimating equation based on an influence function is not limited to
only m-type estimations and as I’ve discussed already in the previous section
covers the cases where assumptions are made on the distribution of the selection
process alone or, as shall be seen in the following section, alongside the outcome
model of interest leading to the important class of double robust estimators.

7Alternatively, from an estimation function perspective, for example for a = 1 assuming
normal distribution we may suggest solving( ∑

s0 [Sk(Yk − ys0)/σ2 + (1− Sk)(m(xk;β)− ys0)/σ2]∑
s0 Sk∂m(xk;β)/∂β

′
[Yk −m(xk;β)]

)
=

(
0
0

)
where 0 is a vector of all zeros of an appropriate dimension.
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2.8.3 m−Model Misspecification Over non-Random Sam-
ples

Thus far in this discussion little emphasis has been on what is usually the fun-
damental question in survey sampling, namely ’how have the observations been
sampled?’ More precisely we are anchored on the assumption of correct specifi-
cation of the outcome of interest model while disregarding any thought on the
sampling of panelists. Given the self selection of the panel it is convenient to
dismiss the within panel sampling mechanism as irrelevant. However, what if the
m-model is incorrect? Is there a link between the panel unrepresentativeness to
successful model fitting?

In the following I start by arguing that the common problem of m-model misspec-
ification is more likely in a self selected sample such as the Web panel set, even
when the conditional independence assumption is attainable given the available
covariates. However, by taking advantage of the panel managment’s control of
the within panel sampling process a proper estimation strategy, of selection and
estimator, becomes robust in the sense that it is robust to m-model misspecifi-
cation.

First, I introduce the following tool- For any selection mechanism

f(y|s,x) = f(y|x) + [f(y|s,x)− f(y|s,x)][1− π(x)]

with s denoting the non selected set of units. Consider, the basic case where
we we assume M : Yk = β + εk, which would underline estimating by the simple
mean, the potential bias can then be given by

B(Ŷs0|s) =

∫
y[f(y|s)− f(y|s)]dy[1− π]

where π denotes the unconditional probability of being a panel member. This
is an m-estimation version of the coverage error discussed in the context of the
fixed population framework where the size of the bias depends on (i) the differ-
ence in expected value of Y between panel and non panel members and (ii) the
probability of (not) participating in the panel survey. Returning to (2.34) note
that the bias is largest for values of x where the participation rate π(x) is low
and the gap in the distributional form of f(y|·) is wide8.

Now, to assist derivation I introduce a new formulation of the BLUP estimator

8Clearly a researcher considering running a Web access panel survey should ask whether
important segments of the population vis a vis the research topic overlap with the non par-
ticipating segments of Web panels, and whether these segments should behave fundamentally
different in regards to these measurements from the rest of the population studied.
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(2.26) assuming independent errors and an identity link function

Ŷs0 =
n∑
k=1

gkYk where gk = 1 + 1
′
sXsA

−1
s Xkwk

where As = X
′
sWXs. Together, under a working model M we can write

E(Ŷs0|s) =
n∑
k=1

E(gkYk)+
n∑
k=1

∫
gk

∫
yk[f(y|x, s)−f(y|x, s)][1−π(x)]f(x)dydx.

(2.34)

More generally assume that the true underlying model of the population follows
a BLUP type model M̃ also with independent errors while our working model
is as before denoted by M . If we let g̃ be the prediction coefficients under the
correct linear model

B(Ŷs0|s) =
n∑
k=1

E[(gk−g̃k)Yk]+
n∑
k=1

∫
gk

∫
yk[f(y|x, s)−f(y|x, s)][1−π(x)]f(x)dydx

a combination of model misspecification error and the effect of a self selected
sample set.

When the available conditioning covariate set X is not sufficient to attain con-
ditional independence, that is f(y|x, s) 6= f(y|x, s) , then the model is not cor-
rectly specified by definition and the bias is the sum of the two components. If,
on the other hand the model is correctly specified then gk = g̃k and by definition
f(y|x, s) = f(y|x, s) so the expected bias is zero.

Our interest is in the third possibility where the covariate set is sufficient for
f(y|x, s) = f(y|x, s) but our specific model specification is incorrect so that the
first component is not zero. The problem is that in practice for regions of X
where π(x) ≈ 0 the likelihood of model misspecification increases above and be-
yond the normal difficulties any modeller faces in other areas of statistics.

A useful illustration of the problem is given in figure 2.2 which describes the case
where the panel selection process is such that

p(s|x1,y) = p(s|x1)

and that we assume

M : Yk = β + βx1k + εk while in fact

M̃ : Yk = β + βx1k + β2x2k + εk
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Figure 2.2: Extrapolation of the BLUP estimator

where x2 = x21. Modelling is on the truncated data (ys,xs) and prediction, as can
be seen in the graph, may rely on model extrapolation at areas (values) different
from the majority of the xs, i.e. where π(x) ≈ 0.

What makes matters worse, is that this extrapolation from the panel data to
the non panel population is not evident in the standard errors of BLUP esti-
mators (or any imputation, multiple imputation, ML or mean score methods).
The usual standard goodness of fit techniques called upon to assess the adequacy
of the working model have limited relevance for detecting this misspecification.
Note how well the prediction model fits over the panel records as shown in figure
1.2, compared to their complete inadequacy over the entire population.

As Tan (2007) argues model checking in this region of x is not capable of de-
tecting m- misspecification, while leverage points may indicate the existence of
such region but not model misspecification. This problem holds for low or high-
dimensional x, and is separate from the difficulty to capture m(x) over panel
members when x is high-dimensional.

A final comment is to say that this problem does not exist in the π−estimation
approach as we assume that we observe (S,Xs0) over the entire population.
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2.8.4 Robust m−estimation Under Balanced Random Sam-
pling

One way of increasing the quality of m-estimators is to couple estimators with
sampling designs which may provide an additional layer of robustness to model
misspecification. To understand the idea, let us start with a simple example.

Consider an m-estimator which assumes a single covariate working model m :
E(Yk|x) = xkβ and V (Yk|x) = xkσ

2 with independent errors. Under m the

m−estimators is Ŷs0 = Xs0Ys/Xs the simple ratio estimator. If however, under
the true model of the population E(Yk|x) = α+ xkβ then the bias given s of the
m−estimator defined as the expectation over the true population model is

B(Ŷs0|s) = α(Xs0 −Xs)/Xs

and so when our sample is representative in the sense that Xs = Xs0 the bias
is removed. This example suggests that in the estimation of finite population
quantities such as totals and averages, we can protect against model misspecifi-
cation by ensuring that the sample is representative of the population.

We can generalize this idea by first exposing an interesting link between the
optimal linear m-type estimation and the simple sample average under a repre-
sentative sample. Consider as before m−estimators under a general linear model

m(x) :

{
E(Yk) = X

′

kβ

V (Yk) = σ2
k

(2.35)

where xk and β are p-vector and assuming xs0 is observed. If for all samples s
over the sampling space there exists a constant column vector λ of dimension p
not depending on k such that for all k ∈ s0{

σ2
k = λ

′
Xk

Xjs = Xjs0 for all j = 1, ..., p
(2.36)

then Ŷs0 = Ys .

The proof is simple. Start by noting that when σ2
k = λ

′
Xk then

Xs = n−1
∑
s

λ
′
XkX

′

k

σ2
k
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and assuming balance, that is, Xs = Xs0 then under (2.35)

Ŷs0 = Xs0(
∑
s

XkX
′

k

σ2
k

)−1
∑
s

XkYk
σ2
k

= n−1
∑
s

λ
′
XkX

′

k

σ2
k

(
∑
s

XkX
′

k

σ2
k

)−1
∑
s

XkYk
σ2
k

= n−1
∑
s

λ
′
XkYk
σ2
k

= Ys. (2.37)

In other words, the m-estimator under (2.35) reduces to the survey sample av-
erage as long as (i) the sample s is balanced in the sense it satisfies the condi-
tion xjs = xjs0 for all j = 1, ..., p, and (ii) that the correct model m(x) variance
structure can be described as a linear combination of the set (or subset) of the
regression covariates x.

This link between m-model and sample properties implies a bias-robust strategy
where the estimator is unbiased for all members of a broad class of models. As
long as the sample is balanced on all relevant covariates, within the wide class of
models, the analyst may misspecified the m−model but still produce unbiased
estimation.

To clarify this idea further it is instructive to go back to Herson and Royall
(1973) who first proposed the idea of model bias-robust strategies under a general
polynomial

Yk =
J∑
j=0

δjβjX
j
k + εkv

1/2
k

where the errors are εk ∼ (0, σ2) and uncorrelated, {βj}Jj=0 are a set of unknown
parameters, and {δj}Jj=0 are 0 − 1 variables indicating whether the jth power
term is in the model or not. If this model holds, then the bias of the survey
sample average is

E(Y s − Y s0) =
J∑
j=0

δjβj[X
j

s −X
j

s0 ]

which for any {δj}Jj=0 configuration will be zero as long as the sample s is bal-

anced on the same configuration of moments X
(j)

s .

Their discussion was within the classic survey sampling context and as such ad-
vocated for random sampling designs to achieve (better) balance, indeed when
considering the likely case where misspecification most likely occurs from omit-
ted variables the importance of random sampling is apparent. For example when
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m(x) :E(Yk) = β0xk + β1h(zk) where h(zk) is a function of an unknown charac-

teristic then the bias of, say Ŷ = Xs0Ys/Xs the ratio estimator

E(Ŷs0 −Ys0) = β1(
Xs

Xs0
h(z)s − h(z)s0)

which implies that for the bias to be zero we require that xs/xs0 = h(z)s/h(z)s0 .

In our context of Web panel survey sampling this bias robust strategy can be
viewed as a justification to the common practice in most panel companies to
sample purposively on basic population characteristics. More specifically, when
a linear m−estimation approach is taken a bias robust strategy would be to sam-
ple from the web panel purposively so that average balance on the covariates is
met.

Lastly, the question naturally arises: does it matter which model and so which
estimator we calculate within the assumptions of (2.35) and (2.36) given we
intend the sample to be balanced? The answer is yes for two reasons. (i) In
practice, it is difficult to achieve balance exactly and the estimators ’ varying
levels of sensitivity to departure in balance will be closely linked to the departure
from the true underlying model; (ii) closed form variance estimators will not be
the same since the residuals under the different models are different, even at
balance. For further discussion on these two ideas see Valliant et al (2000 sec
3.2.4, 3.2.5 and 5.5.1).

2.9 Modelling Both Selection and Outcome-

πm−Estimators

In the previous section we have throughout assumed that the population distri-
bution follows f(ds) = f(ys|x)p(s|x)f(x), a conditional independence between
p(s|·) and f(y|·), by alternatively making assumption on the conditional expec-
tations E(Y|x) and E(S|x) while ignoring the other elements of the distribution.
In this last section of the chapter I discuss estimators which rely on modelling
separately both conditional exceptions, while still ignoring the population distri-
bution of X.

We denote a specific class of such estimators as πm−estimators and discuss the
strength of the method compared to π or m only estimators. Specifically, the
πm−estimators can be shown to still be consistent when either π or m models are
correct, while being as efficient as an m−model when both models are correct.
From a Web panel problem perspective, these two characteristics can be seen as
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addressing the two key weaknesses of the single model estimators: The enhanced
fear of m−model misspecification given that modelling is done on a non repre-
sentative subset of the population, and the inefficiency of π−estimators, even
when the underlying model is correctly specified.

Before describing the idea directly, it is instructive to comment that we have
already touched briefly on two estimators which rely on modelling of both ele-
ments of the population distribution. The first is the idea of replacing the set X
with the unit selection probability π(xk) in a regression (covariance) adjustment.
Rosenbaum and Rubin (1983) suggested this in the context of causal inference,
with the reasoning coming naturally from the basic property of the propensity
score as a balancing score. That is

E(Y ) = EE(Y |b(x)) = EE(Y |b(x), S = 1)

for balancing score b(x) and a single variable Y . It follows that if as well the
conditional expectation of Y given π(x) can be explained by, for example, by a
GLM type model such as that underlying the BLUP estimator (2.25) then an
m−estimator of the population average, where the explanatory variable is π(x)
will have the form

Ŷs0m = N−1
∑
s

Yk +
∑
s

m[π̂(xk)β̂]

with m−1 a known link function and β̂ is the MLE among the set of observed
units s in the GLM model with the single covariate π̂(x) which itself is estimated
beforehand. However, as an m- estimator this approach suffers the same weak-
nesses of m−model misspecification enhanced by the self selected nature of the
set s. Furthermore, the fact we are modelling the study variable with selection
probabilities rather than original covariates may cause difficulty in including sub-
ject matter expertise in the modelling exercise which is not uncommon in survey
based research. Rosenbaum and Rubin showed that the point estimate obtained
from an m−estimator modelled over multivariate X or scalar π(x) lead to the
same result, and so the main argument for the estimator operational and lies
in the reduction of the complexity of the m−model and the obvious simplified
fitting and diagnostics tests over a single scalar π(x). For further discussion on
the approach see D’Agostino Jr (1998) who reviews empirical and theoretical
work on the topic and suggests as well a variation on the method which rather
than replacing X with π(x) in the m−model includes both. He argues for this
approach again on operational grounds but I shall show below that such a model
is a πm−estimator.

The second estimation strategy which involves assumption on both elements of
the joint distribution f(ds) is the family of GREG estimators and the broader
idea of Calibration estimation touched on briefly in section (1.4). As a survey
sampling approach both methods rely only on the p(s) distribution for statisti-
cal inference such as building confidence inference or computing statistical tests,
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however, for reasons of increasing efficiency Cassel et al. (1976); Särndal et al.
(1992) proposed initially to include an assisting linear regression model as a ve-
hicle for incorporating sample and population level covariate information.

We shall see the significance of GREG as a πm−estimator below, but before
it is useful to note a common misunderstanding when comparing GREG and
BLUP estimators- that the two differ only in the use or absence of unit selection
probabilities and for equal probability selection processes the two converge (see
for example Valliant et al., 2000, page 40-42). Consider the simple case where
p(s) is such that πk = n/N , a common assumption in practice when p(s) is
unknown. Then from formulation (2.4) and (2.25) assuming an identity link
function

ŶGREG = Ys + (X−Xs)β̂
′

ŶBLUP = X
′

β̂ + (n/N)(Ys −X
′

sβ̂). (2.38)

as β̂π = β̂ the weighed and ordinary least square sample estimator of the regres-
sion coefficients are identical. What is evident is that as an m−estimator the
BLUP estimator relies almost completely on the predicted values m̂k = x

′
β̂ (as

n/N ≈ 0) , while the model assisted π−estimator GREG is influenced by both
the m−model based correction and the direct sample average.

More broadly, I discuss now the class of Augmented inverse probability weighted
(AIPW) estimators and its specific subclass of πm−estimators. To start note

that the π−estimator Ŷπ =
∑

s0 Skπ̂
−1
k Yk/

∑
s0 Skπ̂

−1
k can be described as the

solution to a inverse probability weighted (IPW) estimating equation system∑
s0

Skπ̂
−1
k Uk = 0

where Uk =
(
Yk −Ys0

)
/σ2 for known σ2, and where π̂k = π(xk; α̂) are computed

beforehand by solving the vector of normal equations
∑

s0 [Sk − π(xk;α)]Xk = 0
for the logit regression coefficients of π(xk;α) = exp(x

′
α)/[1 + exp(x

′
α)].

However, the IPW estimation equations, although consistent and asymptoti-
cally normal (CAN) with respect to p(·), are defined only over the sample set
s and so do not utilize available population level covariate information Xs0 .
Robins and Rotnitzky (1995) address this inefficiency and note that under cor-
rect π−specification one never does worse by adding function h(·) of the available
population covariates. That is estimate the population average by the AIPW
equations ∑

s0

{
Skπ̂

−1
k Uk + (1− Skπ̂−1k )h(xk

}
= 0.

When πk are consistently estimated E
{

(1− Skπ̂−1k )h(xk)
}
≈ 0 and so the result-

ing AIPW estimator, as the IPW estimator, is CAN under correct specification of
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the selection process (Bang and Robins, 2005). In (2.8.2) I have already touched
on this idea in the discussion of the influence function for π−type estimators.

Moving on Scharfstein et al. (1999) show that by introducing a model for the
outcome variable Y, specifically by choosing h(x) = E(Uk|xs0) where the expec-
tation is with respect to the conditional distribution of Y given x, the resulting
estimator solving ∑

s0

{
Skπ̂

−1
k Uk + (1− Skπ̂−1k )E(Uk|xk

}
= 0 (2.39)

is CAN when either the m or π models hold, and will attain the minimum vari-
ance bound.

To see that GREG is a member of this πm-estimator class, assume first that
m(x;β) = E(Yk|X = x) = x

′
β and V (Y) = diag{σ2

k}; Also assume that
Pr(Sk = 1|X = x) = E(Sk|x) = πk(x;α) where 0 > Pr(Sk = 1|x) ≥ 1 for all
xs0 . Assume parameters α are estimated consistently and that β is estimated by
the normal equations over s weighted by π̂k k ∈ s. It is then immediate that the
GREG estimator of the population mean, given here by the following equivalent
forms

Ŷπm = N−1{
∑
s0

SkYkπ̂
−1
k + (1− Skπ̂−1k )

∑
s0

X
′

kβ̂π}

= N−1{
∑
s0

m̂πk +
∑
s0

(Yk − m̂πk)Skπ̂
−1
k } (2.40)

is the solution to the AIPW equations (2.39) where we estimate E(Uk|xs0) by
Ûk =

(
m̂πk −Ys0

)
/σ2 for given σ2 and with β̂π = (

∑
s σ
−2
k π̂−1k XkX

′

k)
−1∑

s σ
−2
k π̂−1k XkYk

so that m̂πk = x
′

kβ̂π. From the latter two formulation of (2.40) it is clear that

Ŷπm may be viewed either as a π-estimator that incorporates an m−model or
an m−estimator that incorporates a π−model.

As a solution to an AIPW equation Ŷπm is CAN under correct π−model speci-
fication, to see that it is also CAN when the m−model holds

B(Ŷπm) = N−1
∑
s0

E
{

(Yk − m̂πk)
(
Skπ̂

−1
k − 1

)}
. (2.41)

Estimator 2.40 is not unique and there are numerous variations the fall into the
πm (or DR) class of estimators of the population average. For example, Kang
and Schafer (2007) suggest an estimator identical to 2.40 but for estimating
the linear regression coefficients β by OLS rather than the WLS on π̂k. An-
other πm−estimator is that discussed by Bang and Robins (2005) which model
E(Yk|X = x) by m(x;β, φ) = m(x

′
β+φπ̂−1k ) where m−1(·) here is a known link
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function, that is a GLM model with explanatory variables including both the set
X and the inverse of the estimated selection probabilities π(x). The resulting
πm-estimator is

Ŷπm = N−1m(x
′
β̂ + φ̂π−1k (x; α̂)) (2.42)

where (β̂, φ̂) solves∑
s0

{
Sk∂m(x

′
β + φπ̂−1k )/∂(β, φ)[Yk −m(x;β, φ)]

}
= 0. (2.43)

It is clear the estimator is CAN when the model m(x;β, φ) (with π̂−1k replaced
by probability limit) is correct for E(Yk|X = x). Bang and Robins (2005) show,
by referring to the normal equations (2.43), that (2.42) is the solution to the
AIPW estimation equation which is sufficient to show that it is also CAN when
the π−model holds. I note that the same proof supports the estimator alluded
to by (D’Agostino Jr, 1998, p. 2277) which simply replaces π̂−1k with π̂k so that
m(x;β, φ) = m(x

′
β + φπ̂k) models the conditional expectation of Y.

One possible theoretical objection to Ŷ πm is that when the π is either known or

correctly modelled, Ŷ πm can be less efficient than Ŷ π if the model for E(Y |s =
1,x) is badly misspecified. Robins (2002, Appendix 4) has developed an alterna-

tive DR estimator, referred to as Ŷ IPCW , that, as noted by Robins, Rotnitzky,

and Bonetti (2001), is always guaranteed to be at least as efficient as Ŷ π when the
π is either known or correctly modelled. The GREG estimator in our discussion
is such an estimator. Furthermore, in practice, it would be rare for the model

for E(Y |s = 1,x) to be so badly misspecified that Ŷ πm was seriously inefficient.

A final note is the advantage of estimating the the population average with all

three methods. Robins and Rotnitzky (2001) note that when Ŷ πm , Ŷ π as well as

Ŷ m are calculated a comparison of the three estimators with one another serves
as a useful goodness of fit test. For example Bang and Robins (2005) sketch
this the general procedure: let σ̂2

π−πm and σ̂2
m−πm be the empirical variance of

(Ŷ π − Ŷ πm) and (Ŷ m − Ŷ πm), respectively, calculated from a large number of
nonparametric bootstrap replications of the survey data. Then the tests with

rejection regions | (Ŷ π− Ŷ πm)/σ̂π−πm | > 1.96 and | (Ŷ m− Ŷ πm)/σ̂m−πm | > 1.96
are valid large sample 0.05 level tests of the null hypotheses that the π-model and
the m−model, respectively, are correctly specified. These tests are not consistent
in the sense that they may not be rejected although estimators converge both to
a constant different from Ys0 , however this is will most likely not be common
’trap’ in practice.
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Chapter 3

A Sequential Framework for Web
Panel Survey Estimation

3.1 Introduction

In the previous chapter I have reviewed different key practices applicable to the
Web panel survey sample inference problem. We discussed broad three estima-
tion strategies which all fit into a basic missing data framework: the π,m and
πm-estimation strategies.

In this chapter I suggest a sequential framework to the same question and will
argue its specific merits in the panel case. The term sequential refers mainly to
the assumption that the selection process from population of interest to survey
set follows a sequence of selections, each step conditional on the previous subset
created. Once invoked, however, all relevant variables and parameters need to
be adjusted to this framework and certain relationships need to be specified.

The following chapter has the following outline. In section 3.2 I lay out the basic
set up of the sequential framework and add any necessary notation convention,
and in section 3.3 I describe the assumed available or observable data. In sec-
tion 3.4.1 I use the language of ignorability, here in a sequential framework, and
using a likelihood inferential setting I derive and outline broadly the necessary
assumptions on selection or covariates for estimation. In section 3.4.2 I discuss
the important idea of independence of the covariates used for establishing ig-
norability (or conditional independence) from the selection process. This idea is
formally stated in section 3.4.3.

In section 3.5 I discuss in detail three estimation strategies which fit into our
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sequential framework and discuss their properties and relative strengths. This
includes a πm-type estimator which has a sequential double robust property
(section 3.5.3). I conclude this chapter in 3.6 with three simulation studies.
The first tests statistical properties of the three estimators under correct and
incorrect model specifications. In the second I propose and inspect a bootstrap
variance estimator algorithm adapted to the sequential setting. I conclude the
chapter with a short discussion on the fallacy of a coding convention popular
in practice- assigning automatically to all non Web users the number zero to
Internet related quantitative measurements. This allows practitioners to model
(or weight) survey data using these observations. However, as I show this can
lead to invalid results.

3.2 Description and Set up

As before, denote a finite population of units k = 1, ..., N by s0. Now define
an N × 1 vector of indicator variables St = (St1, ..., S

t
k, ..., S

t
N)
′

of selection into
subset t ∈ {0, 1, ..., T} where Stk = 1 if unit k selects into the t selection set
and Stk = 0 otherwise. The probability of realizing a particular set is denoted
Pr(St = st) = p(st). To clarify, upper case bold St indicates the random vector
of selection indicators of phase t, lower case bold st indicates a single realization
of this random vector. Also let a lower case normal font st indicate the set of
labels k which are selected in phase t, that is st = {k : stk = 1}. By definition
let st ⊇ st+1 ∀t = 0, 1, ..., T as well as that the vector S0 ≡ 1

′
N as s0 represents

the finite population of interest.

In general, each unit k is associated with a sequence of t = 0, .., T selection or
designed sampling phases. The history of any variable up to a period t is de-
noted by an underline. For notational efficiency the initial period is not normally
mentioned explicitly. For example Stk = stk means (S1

k , S
2
k , ..., S

t
k) = (s1k, s

2
k, ..., s

t
k)

where each stk ∈ {0, 1} and the sequence starts with period 1 rather than 0. A
general description of the overall sequence of subsets from the population to the
final survey set is described then by ST = (S1,S2, ...,St, ...,ST ), an N×T matrix
which can be sorted to have a monotone zero/one structure.

Associated with each phase are random variables Xt so that the aggregate vari-
ables up to phase t are Xt = (X0,X1, ...,Xt−1,Xt), where Xt = (Xt

1, ...,X
t
k, ...,X

t
N)
′

is an N×P t matrix associated with the t phase selection process. The matrix Xt

is thus of dimension N×
∑t

j=0 P
j with typical component Xt

k = (X0
k,X

1
k, ....,X

t
k)
′

of dimension 1×
∑t

j=0 P
j defined for any t = 0, 1, ..., T . Over the entire T phase

process I write

XT = (X0,X1, ...,Xt, ...,XT−1,XT ) = (XT−1,Y)
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where variables associated with the last phase XT are the measurement variables
of interest representing the survey questions and are denoted also by Y. The
exact relationship between subset st and covariates Xt and survey measurement
Y will be formally defined in the following two sections. In some cases, for em-
phasis I shall add a subscript indicating the set of population units over which a
vector or matrix are defined over. For example ST or XTabove can be denoted
STs0 and XT

s0 as well.

In addition, to clarify modelling assumptions, we introduce a set of unknown
variables denoted here by W = (W1, ...,Wk, ...,WN)

′
a matrix of unknown

dimension. A similar technique is used in Smith and Sugden (1988) on which we
expand in the following.

3.3 Selection, Full and Observed Population Dis-

tributions

In its most general form each phase t = 1, .., T of the sequential selection process
may be influenced by Y,XT−1 or W as well as St−1, the past selection pattern.
So, I can write the general form of a T phase selection process by

Pr(STs0 = sTs0|XT−1
s0 = xT−1s0 ,Ys0 = ys0 ,Ws0 = ws0) (3.1)

described compactly by

p(sT |xT ,w) = ΠT
t=1p(s

t|st−1,xT ,w) (3.2)

where p(stk = 0|st−1k = 0,xt−1,w) = 1 always, for any k ∈ st−1 .

Similarly, under the T phase framework, write the joint distribution of the asso-
ciated variables (XT ,W) = (xT ,w) by

f(xT ,w) = f(xT |xT−1,w)f(xT−1,w) (3.3)

= f(y|w,xT−1)f(w,xT−1)

where the vectors are of length N , the population size.

As before, our interest is in inference on aspects of the full finite population,
specifically linear functions such as the average or total of XT = Y the survey
measurements of interest. Denote the full population by DT = (XT ,W,ST )
= {Yk,XT−1

k ,Wk, S
T
k }Nk=1 with values dT = (xT ,w, sT ), and combining (3.2) with

(3.3) gives the population joint distribution

f(dT ) = p(sT |xT ,w)f(xT |xT−1,w)f(w,xT−1) (3.4)

= ΠT
t=1p(s

t|st−1,xT−1,y,w)f(y|w,xT−1)f(w,xT−1).
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In the web panel context take for simple illustration the case where T = 2. First,
a relatively small subset s1 of s0 volunteers into a panel, while for the purpose of
an ad hoc survey the panel management samples a set s2 from the panel s1 by
a known design, which nevertheless suffers from various forms of non coopera-
tion. Without further assumptions both selection mechanisms p(s1|x1,y,w) and
p(s2|s1,x1,y,w) may be influenced by any or all of the variables (Y,X0,X1,W).
These may represent, respectively, survey variables of interest (y), covariates such
as social demographic indicators, age and gender (x0), covariates associated with
the panel population , for example Internet related behavioral data or panel op-
erational tracking data, e.g. historic response rates (x1). Finally the creation
of the subsets may be effected by data not quantifiable or that can never be
observed (w).

Next, we need to clarify what data can (at least in theory) be assumed observed
and available. In chapter 2 we assumed that (x, s,ys), the observed values of
(X,S,Ys) = {Xk, Sk,Yk · Sk}Nk=1 are observed or at least possible to observe1.

Here we restate this differently. Now I make the assumption that values (xtst , s
t)

of (Xt
st , S

t) for each t = 0, ..., T are observable for drawing population inference.
That means values x0 are observed for all members of s0, that values x1

s1 of X1

amongst members of s1 can also be observed, and so on. For t = T recall that
xT = y and thus xTsT = ysT denotes the observed values of the survey sample
measurements of interest Y. As I shall argue, this structure is particularly
useful for the panel inference question when the phases of selection are defined
judiciously. Now, denote the observed data by

DT
sT = (X0,X1

s1 , ...,X
T−1
sT−1 ,X

T
sT , S

T )

= (YsT ,X
T−1
sT−1 , S

T )

which can be written as well as {Yk · STk ,XT−1
k · ST−1k , STk }Nk=1 .

For illustration figure 3.1 gives such a description of a dataset for T = 3. This is
an idealized scenario as in practice such a dataset most likely suggests one based
on census data (thus a small set of x) or inversely implies a very narrow definition
for the finite population of interest (thus a small set s0). Thus, in practice the
analyst will in fact observe only (x3

s3 , s
3) which makes most estimation strategies

impractical without supplementary data. To anticipate later discussion, I note
here that in chapter 4 I will introduce the idea of inference using data from
a parallel random reference survey which will increase the applicability of the
inferential approach

As in the single phase case of chapter 2, to motivate possible inference strategies
and explicitly state distributional assumptions, I link the joint distribution of

1As our interest is usually on the average or total of the population, in many cases only a
sufficient population summary statistics such as the average of X or an estimator of this average
is necessary. This allows a much wider set of covariates X to be considered in estimation.
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Figure 3.1: A description of an idealized population dataset for a T = 3 sequence. The

hyphen (−) notation indicates an unobserved or undefined value for population member k ∈ s0.

DT
sT with values dTsT = (xTsT−1 , s

T ) to the theoretical population joint distribution

f(dT ) by integrating out non observed elements of the population, that is

f(dTsT ) =

∫
f(dT )dysT dx

T−1
sT−1dw (3.5)

where st = s0 − st, that is the complementary set of finite population units. For
T = 2 the full population joint distribution is

f(d2) = p(s2|x1,y,w)f(y|x1,w)f(x1,w) (3.6)

which is linked to the observed data distribution by

f(d2s2) =

∫
f(d2)dys2dxs1dw. (3.7)

The actual observed dataset d2s2 then includes values x0
s0 such as basic social

demographic records for each member of the population, values x1
s1 recorded

only for panel members, of e.g. Internet-related measurements such as ’hours
surfing ’ or ’most popular websites visiting ’ or panel-operational data such as
past survey response rates, and values ys2 of the panelists’ Web-survey recorded
responses.

3.4 Inference Under a Sequential Framework

3.4.1 A Likelihood Perspective at Conditions for Infer-
ence

I now derive the specific conditions for inference under the sequential framework
taking a likelihood inference perspective. I look here at a two phase case but
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the conclusions are expanded to a general T phase case in subsequent sections.
What is clear from the following derivation is that there are two possible sets
of assumptions required for derivation. The first leaves the selection process un-
specified, in the sense that it can rely on unobserved covariates W, while the
second leaves the covariate distribution unspecified.

The guiding question is what assumptions need to be made so that inference
based on the joint specification of the entire finite population and selection mod-
els is identical to that over the observed data ignoring2 the selection process.
The following can be seen as a generalization of Smith and Sugden (1988) who-
while invoking a two phase sequence- limit their discussion to only X0 type of
variables for modelling.

Suppose that we observe x0
s0 , x1

s1 and ys2 . As before W denotes other unobserved
covariates. Also, let ys2 represent the unobserved values over units s1∪ (s1∩ s2),
that is the units which were not selected in phase one (S1

k = 0) or that were se-
lected in phase one but not in the second phase (S2

k = 0 and S1
k = 1). Similarly

x1
s1

represents the unobserved values over units s1, that is the units which were
not selected in phase one (S1

k = 0).

The joint distribution (3.3) of Y,W and X1over the entire population s0 can
then be written as

f(y|w,x1;β)f(w|x1;α)f(x1|x0;φ1)f(x0;φ0) (3.8)

where we assume parameters β,α,φ1,φ0 are distinct as in Rubin (1976). Given
the data available a face value analysis (Dawid and Dickey, 1977) is one that
relies on the observed data

f(x0;φ0)f(x1|x0, s1;φ1)

∫ ∫
f(y|x1;β)dys2dx

1
s1 . (3.9)

A general formulation of the two phase selection process can be described by

p(s1|w,y,x1)p(s2|w,y,x1, s1) (3.10)

so a full likelihood analysis based on the likelihood function from (3.3) by using
(3.8) and (3.10) and integrating out unobserved values ys2 ,x

1
s1

and w.

f(x0;φ0)

∫
p(s1|w,y,x1)p(s2|w,y,x1, s1) (3.11)

×f(y|w,x1;β)f(w|x1;α) f(x1|x0;φ1)dys2dx
1
s1
dw.

2As frequently the case, this is a misleading term. The same assumptions for ignoring the
selection process are the basis for selection based inference as well.
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Alternatively, if integrating out the unobservable values w the full likelihood is

f(x0;φ0)

∫
p(s1|y,x1;α)p(s2|y,x1, s1;α) (3.12)

×f(y|x1;β) f(x1|x0;φ1)dys2dx
1
s1
.

Given distinct parameters the mechanisms are ignorable for likelihood inference
if they can be taken outside of the integral in (3.11) or (3.12). In our two phase
case, sufficient conditions for ignorability are either of type A or B

Conditions A Conditions B

(1) X1⊥S1|x0, φ1 (1) X1⊥S1|x0, φ1

(2) S1⊥Y|w,x0 (2) S1⊥Y|x0;α
(3) S2⊥Y|x1w, s1 (3) S2⊥Y|x1, s1;α
(4) Y⊥W|x1; β
(5) W⊥X1|x0;α

Table 3.1: Sufficient conditions for ignorability assumption to hold for likelihood inference.

Conditions A refers to description (3.11) while Conditions B refers to (3.12)

where A(1) and B(1) are required to ’bring out’ f(x1|·) from the integration;
A(2) and A(3) relate to the selection mechanisms while A(4) and A(5) are re-
quired for the modelling of y.

What one may learn from the two sets of conditions is that when the selection
process is unknown, and may be influenced by unobserved and/or unknown co-
variates, inference based on the observed data can rely on model specification
taken for the (i) selection process, or either over (ii) the observed covariates.
The latter is represented in conditions set B where the two selection phases are
modelled over known covariate values, while the former approach is given in set
A where the observed covariates are modelled while selection is left unspecified
as they rely on unobservables.

Both condition sets bring out the requirement for independence between the se-
lection process and the covariates used for modelling. A fundamental requirement
I elaborate in the following section.

3.4.2 Independence of the Conditioning Covariate

Under the influence of the remarkable popularity of the propensity score balanc-
ing approach (Abadie and Imbens, 2009), especially in the panel context (Lee,
2006), the general guidance to practitioners is to include all available covariates
X so that conditional independence between Y and S is achieved (for exam-
ple Rubin, 2004), although this recommendation has been challenged as I have
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reviewed in section 3.5.2. As we have just shown, a further constraint on this
approach is the condition that covariates X must be independent of selection 3.

As Lechner and Miquel (2005) points out, this issue in not addressed in the
classic formulation of Rosenbaum and Rubin (1983), and clarifications on the
topic (Rosenbaum, 1984) have been, from the personal experience of this author,
largely been ignored in practice. This omission to the simple formulation has had
the effect that this issue is overlooked and data analysts routinely use covariates,
either directly or after invalid imputation that should not be included. I give an
numerical example, in the panel context, of this in (3.6.3).

The correct set X that achieves conditional independence is impossible to know
and drives including more and more covariates. However, the high cost of survey
data collection (even for Web panel data) limits the size of datasets and thus the
pool of covariates we can include. This trade-off is particularly true for balancing
adjustment approaches such as matching or weighting which are especially ’data
hungry’. And so, in practice the analyst inevitably gravitates to the path of a
parsimonious parametric model specification, searching for one that behaves well
under validation tests.

The problem is that in many applications, and certainly in the panel case, the
most highly informative covariates which may achieve parsimony and would oth-
erwise be included in an estimation model cannot be used as they are not inde-
pendent of selection.

To put things more generally, take an m−estimator which assumes a linear re-
gression relationship between Y and (X,Z). Inference of the population average
requires only that E(Y |S = 1,x, z) = E(Y |S = 0,x, z). Using causal inference
notation denote Z|S = 1 by Z(1) and Z|S = 0 by Z(0). Since Z(1) is not ob-
served for non panelists and Z(0) is not observed for panelists, we must condition
on the observed z and thus adjustment may be on the same value, but different
adjustment variables. That is E(Y |S = 1,X = x,Z(1) = z) 6= E(Y |S = 0,X =
x,Z(0) = z). A visual representation of this is given in the left hand side panel
of figure 3.2.

In the Web panel case this issue is easily understood with the use of Internet
related covariates which are on the one hand highly informative practically ir-
replaceable - in explaining the survey process, but are also naturally correlated
with it. Take for example the approach of matching on π (Rosenbaum and Rubin

3The widely cited Lechner (2008) uses the term endogeneity (and exogeneity) meaning that
the variable is (not) influenced by the selection, which is not exactly in line with the common
use of this language in econometrics (e.g. Engle et al., 1983). In observational studies the term
used is post-treatment variables.
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Figure 3.2: Direct Acyclic Graphs showing single phase selection vs sequential selection

process. Arrows represent a causal relationship

(1983)) under a T = 1 framework with s denoting the Web panel survey response
set and Zk indicating personal sentiment on ’Safety in shopping Online’. Clearly,
this type of sentiment of Online behaviour is likely to be related to the process
underlying the frequent use of the Internet. Ignoring covariate independence, we
estimate p(sk = 1|Zk(s) = z) = πk for Sk = 1 and Sk = 0 and match panelists to
general population records by proximity to πk. However, the matching may be
on the same values but measuring in effect a different variable.

A more extreme example is when an adjustment covariate Z is perfectly corre-

lated with the selection indicator in the sense that p(sk = 1|zk) =

{
πk if z = 1

0 if z = 0

in which case the common support assumption is violated as well. Under the
same setting an m−estimation approach such as BLUP will result in extrapola-
tion of the regression model as f(y|z = 0) = f(y|s = 0) = f(ys) is unobserved
and so the estimation model cannot be verified 4.

The usefulness of the sequential framework here is twofold. First, with the usual
conditional independence between selection and the outcome variable, it nat-
urally derives and highlights the exact covariate independence from selection
necessary, as seen in the previous section. More positively, by the nature of the
sequential formulation, the constraint on the conditioning covariates are frag-
mented and weakened which then allows to increase the potential pool of vari-
ables to include in estimation models. Covariates that are associated with the
overall selection process are identified explicitly and may turn into independent
within a selection process phase. Graphically, this idea is described in the right
hand panel of 3.2 where X1 type variables are not independent of the selection
process p(s2) but are independent of the second phase of the selection process.

4Rosenbaum (1984) terms covariates such as Z as post-treatment variables and states that
’... adjustments for post-treatment variables... are justified only when they are unnecessary ’,
that is when f(y|z = 1) = f(y|z = 0) in which case adjustment is unnecessary.
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This can be especially useful property for the web panel problem. The key for the
analyst is to find a judicious sequential framework which maximizes the amount
of available covariates within the ignorability constraint. In the panel context
such a framework splits the survey process into three phases: (1) a large subset s1

of the population s0 randomly selects into the set of population members who are
regular Web users; (2) From this population a set s2 of the population volunteers
into a Web panel, and (3) the panel management designs and selects a sample
s3 to participate in a survey study. The specific deconstruction of the panel
selection into two phases, allows us to use the highly informative general Web
related covariates in modelling the volunteering into the panel, which otherwise
cannot be used as they are not independent of the overall process. The separation
of the within-panel survey sampling mechanism allows us to minimize the chance
of model misspecification as this part of the process is largely controlled and well
monitor by the panel management team.

3.4.3 Restrictions on the Selection Process

Let us reflect the ideas discussed above by establishing formally the relationship
between the observable covariates Xt ; t = 0, ..., T and the selection process. I
continue using the concept of unobservable covariates W to establish the min-
imal sufficient adjustment sets (Pearl, 2012) which may be different for π or m
estimation approaches depending on Y survey variables of interest studied.

I introduce now restrictions on the general selection process (3.2) of a T phase
selection distribution generalizing conditions (1)-(3) in both sets (A) and (B) of
table 3.1. Assume that for each t = 1, ..., T

p(st|st−1,xT ,w) = p(st|st−1,xt−1st−1 ,w)

so that overall that the the selection of set sT follows the distribution

p(sT |xT ,w) = ΠT
t=1p(s

t|st−1,xt−1st−1 ,w). (3.13)

Selection now holds the following properties: (i) each phase is conditionally in-
dependent of y and so overall it is independent of Y. A broader condition which
includes the independence from Y is that (ii) each selection of set st from set
st−1 is independent of items Xt,Xt+1, ....,XT given Xt−1,W which means that
selection st depends only on observed variables associated with earlier phases
and W. (iii) for each t and given W, selection of st from set st−1 may depend
only on the values of Xt−1 that are observed or may be observed, that is Xt−1

st−1

the values of the Xt−1 which can be observed. Thus unobserved values Xt−1
st−1

associated with unsampled units or possibly ill defined in the finite population
context (e.g. Web behavioural measurements which are meaningless over s0) can
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be ignored.

In our T = 2 case, and ignoring X, this means that s2 then may depend on X1
s1

and X0
s0 , for example a selection process proportionate to the average income

brackets in the general population and the average spending bracket Online in
the Internet connected population. It is independent, however, of the average
spending Online of non Internet users.

3.5 Three Estimation Strategies Under the Se-

quential Framework

In this section I propose three estimation strategies under the sequential frame-
work, broadly mirroring my discussion within the one phase framework in chap-
ter 2. The starting point of all three strategies is that the selection process is
restricted as defined in (3.13) which means that the observed population distri-
bution can be described by

f(dTsT ) =

∫
f(dT )dxTsT dw

=

∫
f(xTsT ,w)ΠT

t=1p(s
t|st−1,xt−1st−1 ,w)dw (3.14)

Similar to my comment on the the one phase case in chapter 2 one may posit
different statistical models by making different assumptions on the components
of (3.14). More specifically (3.14) suggests that estimation can rely on modelling
either the distribution of sTor that of XT

sT (or both) when sufficient conditions
that allow taking the relevant distributions outside of the integral (3.14) are
stated. In the following sections I term an π-estimation strategy as one that
relies on modelling ST , I term an m-estimation strategy as one that relies on
modelling XT

sT , and a πm−strategy as one that models the distribution of both
STand XT

sT .

3.5.1 Outcome-Model Based Estimation

Consider a T phase selection process where the observed data dTsT follows the
distribution described in (3.14). For m−estimation, further assume that the un-
observed covariates W have no effect on the outcome measurement distribution
given the observed covariates, that is

f(xtst |xt−1st−1 ,w) = f(xtst |xt−1st−1) for t = 1, .., T. (3.15)

Under (3.15) the observed data distribution is now

f(dTsT ) = f(xTsT )×
∫
p(sT |xT−1

sT−1 ,w)f(w)dw. (3.16)
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A likelihood estimation approach would be to assume a parametric model f(xT ;θ)
for the population covariate data of dT where θ ∈ Θ with a finite-dimensional
space Θ and estimate the population parameters by maximizing logf(xT ;θ) the
log-likelihood.

To allow comparison to an alternative approach take the case where XT is a
matrix of N ×

∑T
t=0 P

t representing an independent and identically distributes
sample of N observations from a multivariate normal distribution (MVN) with
mean vector µT = (µ01, µ02, ..., µ0P 0 , µ11, ...., µ1P 1 , ...., µT1, ..., µPT ) and covari-
ance matrix ΣT of dimension

∑T
t=0 P

t on
∑T

t=0 P
t . Our interest is in estimating

only the mean of the survey variables XT = (XT
1 , ..., X

T
PT ) and the relevant ele-

ments of the covariance matrix.

The observed distribution of 3.16 is

f(xTsT ;θ) = ΠnT
k=1f(xTk ;θ)Π

nT−1

k=nT+1f(xT−1k ;θ) · · · ·Πn0
k=n1+1f(x0

k;θ) (3.17)

where n0 = N the size of the finite population. Under (3.16) the log-likelihood
of (3.17) is appropriate for inference5 and has the following form

l(µT ,ΣT |xTsT ) =
0∑

t=T

[
−nt − nt+1

2
ln|Σt| −

1

2

∑
k∈st−1−st

(xtk − µt)Σ
−1
T (xtk − µt)

′

]
where |Σt| denotes the determinant of Σt, the scalar nt+1 = 0 for t = T and
xtk,µt represent respectively the unit value and mean of the vector of variables
associated with the first t population subsets.

However, as in the one phase selection framework, the likelihood equations do
not have an obvious solution. A way around this is to use the monotone data
structure inherent the sequential selection process and to factorize the joint dis-
tribution (Little and Rubin, 2002, section 7.4.2) of the observed data XT

sT .

Given distinctness6, the likelihood of θ can be maximized by maximizing sepa-
rately for each ’block’ t = 1, ..., T . Specifically, this is done by (1) calculating the
mean vector and covariance matrix of X0 over s0, and (2) calculating the multi-
variate regression of X1 on X0 over s1, (3) calculating the multivariate regression
of X2 on X1 over s2 , and so on until step (T + 1) calculate the (multivariate)
regression of XT on XT−1 over sT .

5for likelihood inference we need as well to assume that parameters θ are distinct of the
selection mechanism parameters (which are not specified), while for Bayesian inference these
two parameter sets must have an independent prior distribution.

6The parameter space for θ is the standard parameter space with no prior restrictions
then (βT−1,βT−2, ...,β0) are distinct in the sense that the their joint parameter space is the
product of the individual parameter spaces.

66



To ground the idea and allow empirical comparison to a competing method I
return to the case T = 2 with data described in table 3.2. Estimation follows
the following steps: (1) calculate the mean and sample variance for X0

1 and X0
2 ,

(2) compute the ML estimates of the four multivariate regression coefficients of
X1 on X0 and its residual covariance matrix , and (3) calculate the regression
coefficient estimates for Y on X1 and its residual variance. By using the sweep
operator (Little and Rubin, 2002, p 112) the ML estimator for the mean vector
µ̂ for all 5 variables can be found as well as the covariance matrix. The ML
estimator for the mean of the survey variable Y is µ̂y = 27.047.

x01 x02 x11 x12 y m̂0

78.5 6 7 23 50 52.8
74.3 15 1 29 52 52.8
104.3 8 11 56 20 23.6
87.6 8 11 31 47 41.8
95.9 6 7 52 33 33.8
109.2 9 11 55 22 17.8
102.7 17 3 71 (6) 20.8
72.5 22 1 31 (44) 51.1
93.1 18 2 54 (22) 30.7
115.9 4 (21) (47) (26) 13.0
83.8 23 (1) (40) (34) 38.3
113.3 9 (11) (66) (12) 13.3
109.4 8 (10) (68) (12) 18.1

Table 3.2: The data under a T = 2 framework. Values in parentheses are considered non

observed. Covariates X0
1 , X

0
2 are observed over the entire dataset N = 13, two covariates

X1
1 , X

1
2 are observed only over n1 = 9 observations and the outcome of interest Y is observed

only over n2 = 6 observations. The ML estimator of the mean of Y is µ̂y = 27.047, while the

average of the sequential predictors m̂0 is 31.383, slightly closer to 29.3 the true average. (data

source Draper and Smith 1981)

The same idea of factorization can be applied when XT includes non normal
variables. For contingency table type data multinomial ML estimates can be
found in manner analogous to the MVN case. For the case XT includes a mix
of categorical and continuous data a general location model can be used where
the conditional distribution of the continuous variables given the categorical are
MVN with the marginal distribution of the categorical variables are multinomial
(see Little and Rubin, 2002, section 14.2.3).

Some comments on this approach from a practitioner’s perspective: First, in
a survey context the number of covariates XT is normally large, easily many
dozens, and so modelling XT even through the simplifying process of factoriza-
tion leaves us with the task of multiple multivariate model fitting exercises. Note
as well that this is the case even when only a single survey variable XfT is of
interest. This modelling burden both hinders the regular use in a commercial
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environment and also increases the chance of model misspecification.

A second point is interpretation of the results to non-technical clients. Take
for example a T = 2 case with two categorical covariates X0p, X1q with p =
1, ..., P ; q = 1, ..., Q levels and a continuous survey variable Y. Assuming an
additive model Ypqk = β + β0

px
0p
k + β1

qx
1q
k + εkpq ; εkpq ∼ (0, σ2) an MLE of the

population average is

Ŷs0 = β̂ +
∑
p

Np

N
β̂0
p +

∑
p

∑
q

Np

N

n1pq

n1p·
β̂1
q

=
∑
p

∑
q

Ŵpqŷpq (3.18)

where the weight Ŵpq = Np

N

n1pq

n1p·
is the MLE of the proportion of the population

with (X0p = 1,X1q = 1), with n1pq indicating the number of units X0p
k = 1 and

X1q
k = 1 over s1, and n1p· =

∑Q
q=1 n1pq . See Vartivarian and Little (2003) for

similar estimator in general missing data context.

How do we interpret Ŵpq? Say X0 indicates gender while X1 is an Internet
behavioural indicator such as hours spent on news websites. Then Wpq is the
expected population size of units of gender p and Web news engagement q had
all units been surveyed. However, this implies all of s0 are Online. Of course
under the assumptions Ŵpq indeed estimates this by implicitly imputing values
X1 to non internet population set, however, avoiding such explaining would be
beneficial.

The reason for this friction is the need to define a model for distribution f(y|XT−1)
over the entire s0 which includes variables XT−1 associated with the selection pro-
cess and creation of lower phase populations. In many xT−1 include variables
not well defined over the entire population. This is not a statistical problem,
but in practice I believe it may confuses both the practitioners building the esti-
mation models and the end users which create the demand for this type of work. .

An alternative approach based on the g−computational algorithm (discussed in
chapter 2) conveniently sidesteps the need of modelling the entire joint distribu-
tion of XTover s0. It reduces the complexity of m-type estimation by focusing
estimation on the outcome variables XT = Y only. The idea is simple and is
best described by rearranging our estimand of interest as a series of conditional
expectations. Under (3.16) the estimand E(Ys0) can be given by

E
(
X
T

s0

)
= N−11

′

s0EE
{
E
[
· · ·E

(
Ys0 |xT−1s0

)
· · · |x1

s0

]
|x0
}

= N−11
′

s0EE
{
E
[
· · ·E

(
XT
sT |x

T−1
sT−1 , s

T
)
· · · |x1, s2

]
|x0, s1

}
.(3.19)
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where the first equation is due to the law of total expectations and the second
equation is directly inferred under (3.16).

Now, denote mT = XT and by letting mT−1 = E(mT |xT−1, sT−1) and mT−2 =
E(mT−1|xT−2, sT−2) and so on ..., mt−1 = E(mt|xt−1, st−1) ..., m0 = E(m1|x0)
the expected population average is equal to the expectation of m0 that is E(Y) =
E(m0) where m0 is a function of x0

s0 , the covariates associated with the finite
population of interest and which are assumed fully observed and clearly defined
over s0.

An estimation strategy suggested from the above first specifies regression models
mt−1(x

t−1;βt−1) = xt−1
′

k βt−1 for the regression functions E(mt|xt−1) over st−1 for
t = T, ..., 1 and then estimates the regression parameters βt−1 from the observed
data st. This latter task will carry out recursively based on the observation that
(i) by definition mt−1 = E(mt|xt−1st−1), (ii) under the sequential ignorability as-
sumption E(mt|xt−1st−1) = E(mt|xt−1st−1 , s

t) and (iii) that mt−1 is a function of xt−1st−1

which is entirely observed. Note that we can generalize this approach so that
mt−1(x

t−1;βt−1) = ψ(xt−1
′

k βt−1) with ψ−1 a known link function. If not stated
otherwise, my discussion will focus on linear regression where ψ−1 is the identity
link function.

More formally the sequential estimation algorithm:

1. Set Yk = mTk for all observed values of yk ; k ∈ sT ,

2. Recursively for t = T, ..., 1

(a) Specify the linear regression model mt−1 for the conditional expecta-
tion of mt on xt−1st−1

mt−1(x
t−1, st−1) :

{
E(mtk|xt−1, st−1) = xt−1

′

k βt−1
V (mtk|xt−1, st−1) = σ2

t−1k.

(b) Calculate consistent estimates β̂t−1 of the regression coefficients βt−1
over the observed set st

(c) Fit predictions m̂t−1k(X
t−1, st−1) = xt−1

′

k β̂t−1 over all of st−1 using
observed values of xt−1st−1 .

(d) Return to (a) now with m̂t−1k(X
t−1, st−1) replacing mt−1k.

3. The final step, for t = 1 gives predictions m̂0k(x
0) = x0′

k β̂0 calculated over
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the entire population s0. Then we can estimate the population average by

Ŷm = N−1
∑
s0

X0′

k β̂0

= N−1
∑
s0

m̂0k .

To demonstrate the estimation strategy, and compare to the likelihood approach
I return to a T = 2 example applied to our empirical data in table 3.2. Start by
defining m2 = Y, m1 = E(m2|x1, s1) and m0 = E(m1|x0); Under the conditional
independence assumptions

E(Ys0) = N−11
′

s0E
{
E
[
E(m2|x1, s2)

]
|x0, s1

}
= N−11

′

s0EE(m1|x0, s1)

= N−11
′

s0E(m0s0). (3.20)

Let Wt−1
st denote a diagonal matrix with typical element {σ−2t−1k} for k ∈ st. Es-

timation starts by fitting model m1(x
1) : E(Y|X1, s1;β1) = X1′

k β1 over s2 by re-
gressing Ys2 on X1

s2 giving the coefficient estimator β̂1 = (X1′

s2W
1
s2X

1
s2)
−1X1′

s2W
1
s2Ys2

and calculate m̂1k = X1′

k β̂1 over higher set s1. Then fit m0(x
0) : E(m1|x0;β0)

over s1 by regressing m̂1k on X0
k giving the coefficient estimator β̂0 equal to

(X0′

s1W
0
s1X

0
s1)
−1X0′

s1W
0
s1Ŷm1s1 and calculate m̂0k = X0′

k β̂0 over population s0 as
X0 is observed for all units. These are the sequential predictors stated in the
right hand side column of table 3.2. The population average estimator is then

Ŷm = N−11
′

s0X
0
s0β̂0

= N−11
′

s0X
0
s0(X

0′

s1W
0
s1X

0
s1)
−1X0′

s1W
0
s1m̂1s1

= N−11
′

s0H
0
s0s1H

1
s1s2Ys2

where H1
s1s2 = X1

s1(X
1′

s2W
1
s2X

1
s2)
−1X1′

s2W
1
s2 is parallel to the hat matrix in normal

linear regression. The estimated population average is N−1
∑

s0 m̂0k = 31.383,
slightly closer to the true population average 27.047 than the MLE which was
found to be 29.231. Unbiasedness of the estimator can be shown by

E(Ŷm) = N−11
′

s0E
{
E
[
H1
s1s2E(m2s2|x1

s1 , s
2)
]
|x0, s1

}
= N−11

′

s0EE(Hs0s1X
1
s1β1|x0, s1)

= N−11
′

s0E(Hs0s1E(m1s1 |x0, s1))

= N−11
′

s0E(Hs0s1m0s1) = N−11
′

s0E(m0s0)

which as shown in (3.20) is equal to E(Ys0), our estimand of interest. The key
to solving the above equations is to note that Ht−1

st−1stX
t−1
st βt−1 = Xt−1

st−1βt−1 for
any t = 1, ..., T .
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Note that by letting h1k = 1
′

s0X
0
s0(X

0′

s1W
0
s1X

0
s1)
−1X0′

s1W
0
s1X

1
s1(X

1′

s2W
1
s2X

1
s2)
−1X1

kW
1
k

the estimator can take the shape of a weighted sample based estimator

Ŷm = N−1
∑
k∈s2

h1kYk. (3.21)

This is essentially a sequential (m−model type) application of the ’g-computational
algorithm’ approach advocated by Robins (1986, 1987) developed in the context
of causal inference in longitudinal studies. Robins (1999) discusses theoretical
results, namely that an estimator constructed by this algorithm is consistent
and asymptotic normal for the E(Y) under the union of parametric models
mt−1(x

t−1;βt−1) for t = 1, .., T . This algorithm and the theoretical properties
can be expanded to any GLM link function Robins (1999).

Some comments on benefits of this approach are worth noting. First, simi-
lar to likelihood estimation under a judicious definition of the selection sets we
can include covariates of type X1,X2, ..,XT−1 which could not be used in the
single phase framework. Also, there are several characteristics which make this
method arguably better than the likelihood approach. Clearly for a single survey
measurement of interest, the recursive estimation has a lower modelling burden
lending to a higher chance of correct specification. The practitioner here can
also test more effectively model misspecification and avoid issues such as extrap-
olation by inspecting separately for each model mt over st−1 the distribution of
Xst−1−st and Xst which for each t will have a less imbalanced common support
(that is a very low incidence level for certain combinations of covariates) than
we would expect in a single phase framework. Furthermore, by averaging out co-
variates associated with the specific sub population which are clearly defined for
each phase t = T, .., 1 we are avoiding interpretation problems such as in (3.18)
making it is easier to integrate expert knowledge and contextual understanding.

I conclude this section by generalizing (3.21), a formulation fundamental in my
later discussion of panel estimation using a random reference survey sample and
purposive sampling designs. For T sequential framework

Ŷm =
∑
s0

m̂0k

= N−11
′

s0X
0
s0β̂0

= N−11
′

s0X
0
s0(
∑
s1

X0
kX

0′

k /σ
2
0k)
−1
∑
s1

X0
km̂1k/σ

2
0k

= N−11
′

s0X
0
s0(X

0′

s1W
0
s1X

0
s1)
−1X0′

s1W
0
s1m̂1s1

where W0
s1 = diag(σ2

0k)
−1 is a n1 × n1 diagonal matrix of model weights used

in the estimation equations of mo , and m̂1s1 is the vector of fitted values
m̂1k = X1′

k β̂1 over the set s1.
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Now, let Ht−1
st−1st = Xt−1

st−1A
t−1
st Xt−1′

st Wt−1
st be a t-phase sequential framework ana-

logue to the linear regression ’hat’ matrix, where At−1
st = (Xt−1′

st Wt−1
st Xt−1

st )−1

with Wt−1
st =diag(σ2

t−1k)
−1 a nt×nt diagonal matrix of model weights used in the

estimation equations of model mt−1. Then a T phase outcome model

Ŷm = N−11
′

s0H
0
s0s1m̂1s1

= N−11
′

s0H
0
s0s1 · · ·Ht−1

st−1st · ·H
T−1
sT−1sT

YsT

= N−11
′

s0H
T−1
sT−1sT

YsT = N−1
∑
sT

hT−1k Yk (3.22)

where hT−1k = 1
′

s0H
T−2
sT−2sT−1X

T−1
sT−1A

T−1
sT

XT−1
k WT−1

k which achieves our aim of

representing Ŷm as a linear function of ysT the observed set of outcome variables.
It is then simple to show unbiasedness by plugging (3.22) into equation (3.19).

3.5.2 Selection-Model Based Estimation

Now I turn to a sequential version of the π-estimator. As discussed in chap-
ter 2 the π-estimator is by far the most popular approach in practice, either in
its role at the centre of survey sampling theory (Horvitz and Thompson, 1952)
or in observational studies where Rosenbaum and Rubin (1983) introduced the
balancing properties of a consistently estimated unit selection probability. The
most important drivers of this popularity is its simplicity and universality - a
single simple to estimate model can be applied to any survey measurement of
interest.

Start again with the observed joint distribution. We leave the multivariate co-
variate distribution f(xTsT ,w) completely unspecified and assume that selection
is independent of unobserved covariates or values, so that

f(dTsT ) =

∫
f(xTsT ,w)dw × ΠT

t=1p(s
t|st−1,xt−1st−1). (3.23)

As in chapter 2, for simplicity we assume a parametric approach and model
the selection process by logistic regression, and assume as well that selection is
individualistic and probabilistic. Under these assumptions, which can be relaxed,

ΠT
t=1p(s

t|st−1,xt−1st−1) = (3.24)

ΠT
t=1Π

nst−1

k=1 p(stk = 1|xt−1k , st−1k )s
t
k

(
1− p(stk = 1|xt−1k , st−1k )

)1−stk
where p(stk = 1|xt−1k , st−1k ) denotes the selection probability of unit k ∈ st−1 into
subset st. This selection process is equivalent to a multiphase Poisson sample
design which are common practice (see for example Kott and Fetter 1999; Lohr
2009) in survey sampling theory. Next assume that

πt(x
t−1, st−1) :

{
p(stk = 1|xt−1k , st−1k ) = πt(x

t−1
k , st−1k ;αt−1)

p(stk = 1|xt−1, st−1) ≥ 0 for all t = 1, ..., T and k ∈ s0
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where πt(x
t−1
k ;αt−1) = exp(xt−1

′

k αt−1)/1 + exp(xt−1
′

k αt−1) are specified by a lo-
gistic model over the sub population st−1.

Under (3.23) each set of model coefficients αT−1 can be estimated consistently
over the appropriate sub population. The population average is then estimated
with the sequential π- estimator

Ŷπ = N−1
∑
sT

Ykπ̂
−1
Tk (3.25)

where πT (xT−1k , sT−1k ; α̂T−1) = π1(x
0
k; α̂

0)× ....× πT (xT−1k , sT−1k ; α̂T−1).

To see that the π-estimator is approximately unbiased, assume πt(x
t−1, sT−1k ; α̂T−1)

are estimated consistently so that πt(x
t−1, st−1; α̂t−1)−−−→nt→∞πt(x

t−1, st−1;αt−1) for
all t = 1, .., T ; k ∈ s0. If as well models πT (·;αt−1) are correctly specified,
then by rearranging the expectation of our estimand as a series of conditional
expectation

N−1
∑
s0

EE
{
E
[
· · ·E

(
STk Ykπ

−1
Tk(x

T−1, sT−1;αt−1)|xT−1
sT−1 , s

T
)
· · · |x1, s2

]
|x0, s1

}
is equal to E(Ys0) as under the assumptions E(Stk|xt−1, st−1k , yk;α

t−1) = Pr(Stk =
1|xt−1) for each t = 1, ..., T .

As in the one phase formulation, the role of the unit selection probability in
estimation can be understood by its strength as balancing score. In the sequential
framework balancing properties of πtk(x

t−1
st−1 , s

t−1) follows from the statement

if Yk⊥Stk|xt−1k , st−1k then Yk⊥Stk|πt(xt−1k , st−1k ), st−1k as well. (3.26)

For (3.26) to hold, it is sufficient to show that

p(st|y, πt(xt−1, st−1), st−1) = p(st|xt−1, st−1).

which holds for any t = 1, ..., T

p(st|y, πt(xt−1, st−1), st−1) = E
(
E(St|y, πt(·), st−1,xt−1)|y, πt(·), st−1

)
= E

(
E(St|st−1,xt−1)|y, πt(·), st−1

)
= E

(
πt(·)|y, πt(·), st−1

)
= πt(x

t−1, st−1).

A similar proof is given in Lechner and Miquel (2005); Lechner (2009); Lechner
and Miquel (2010) in the context of potential outcomes in two phase treatment
effect studies of labour market policy changes. Robins (1986) uses sequential
estimating equations to develop statistical properties of the π-estimator which
take into account the model coefficient estimation. As in the one phase frame-
work, the sequential π-estimator will be inferior to the m−estimator in terms
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of efficiency; the reason is identical and rests on fact that Ŷπ is defined only
over the final observed set sT while the m-estimator is defined over the entire
population s0 (Carpenter et al., 2006).

Fundamentally, estimation relies on correct specification of all t = 1, ...T models
πt(x

t−1). This may be seen as an increase in modelling burden compared to the
single phase π-estimator. However I would argue that given our discussion in
chapter 2, it is questionable that the panel survey process can be reduced to a
single model. Compared to (3.24) a single phase π-estimator assumes that

ΠT
t=1p(s

t|st−1,xt−1st−1) = ΠT
t=1p(s

t|st−1x0;α)

= ΠN
k=1π(x0

k;α)s
T
k (1− π(x0

k;α))1−s
T
k

a single model capturing the product of all T phases using only a limited pool of
X0 type of potential variables. This constraint on directly observed covariates
X1, ...,XT−1 and the use of a single model is exactly the reason for practitioners
resorting to made up metrics, so called ’Webographics’, that supposedly (Schon-
lau et al., 2007; Terhanian et al., 2000) are uniquely informative in explaining the
differences between the panel and general population. If I take a model driven
perspective, the sequential framework, by allowing more data and contextual in-
put to be used, should improve estimation.

Similar to previous comments, and even more so here, the choice of defining the
Web panel survey process into an Internet connection/usage phase, a panel se-
lection phase and a within panel survey sampling phase is beneficial. Separately,
these selection phases are much better understood.

For the first phase process we can use Information and communications technol-
ogy (ICT) and Internet take up models which have been researched extensively
Robertson et al. (2007); Kridel et al. (2002). Conditional on Web usage the
analyst may model self-selection into the panel p(s2|s1, ·) using crucial Internet
behaviour information and general respondent participation models (e.g. Groves
and Couper 1998; Groves et al. 2004, 1992) while avoiding the common support
constraint. The third process to model, survey sampling mechanism p(s3|s2, ·),
which is a mixture of known design with an increasingly large non response el-
ement (Baker and Brick, 2013) can be modelled now separately over time with
the panel management team’s ongoing tracking of panelists response record.

3.5.3 Selection and Outcome-Model Based Estimation: A
Double Robust Strategy

In the preceding sections we suggested estimation strategies relying on modelling
of either the sequential selection process p(st|st−1,xt−1,w) or the sequence of co-
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variate distributions f(xtst |x
t−1
st−1 ,w). In turn validity of the estimators relies on

correct specification of the set of π-models or m-models respectively. An alter-
native is to build an estimator which takes into account both the π set of models
and m set of models. I introduce one such estimator, a πm-estimator, under a
general T phase selection framework.

Under the assumptions separately taken in the m and π approaches, first denote
mTk = xTk and let mt−1k = E(mtk|xt−1k , st−1) for t = 1, ..., T and any k ∈ s0. We
assume then that{

E(Stk|xt−1, st−1) = πt(x
t−1
k ;αt−1) > 0

E(mtk|xt−1, st−1;βt−1) = ψ[mt−1(x
t−1
k ;βt−1)]

(3.27)

where ψ−1 is the link function of a given GLM, mt−1(x
t−1
k ;βt−1) is a known

regression function with unknown parameter βt−1 and πt(x
t−1
k ;αt−1) are specified

by a logistic model. Under (3.27) constructing the πm follows these steps

1. Independently for each t = 1, .., T

(a) Specify logistic regression models πt(x
t−1) of selection Stk’s over the

population subset st−1.

(b) Calculate consistent estimators α̂t−1 of model coefficients αt−1 and
predict selection probabilities πt(x

t−1
k ; α̂t−1) = π̂tk for all k ∈ st.

2. Recursively for t = T, ..., 1

(a) Specify a parametric regression model ψ[mt−1(x
t−1
k ;βt−1)] for the con-

ditional expectation of mt on Xt−1
st−1 over population subset st−1 .

(b) Fit models mt−1 over st and compute consistent estimators β̂πt−1of
βt−1 by weighting the estimation equations on weights π̂tk · σ2

t−1k
the product of unit selection weight π̂tk(x

t−1, st−1) and model weights
σ2
t−1k.

(c) Predict valuesmt−1k for all k ∈ st−1 using the observed values xt−1 and
β̂πt−1 the coefficient estimators, that is m̂πt−1k(x

t−1) = xt−1
′

k β̂πt−1.

3. The final step for t = 1 gives predictions m̂π0k(X
0) = ψ(X0′

k β̂π0), which
allows us to estimate the population average by

Ŷπm = N−1
∑
s0

m̂π0k

as the sum of X0
s0 is assumed known over the population of interest s0.

It is convenient to describe some of the properties of this πm estimator when ψ−1

is the identity link function. This format will also guide us in the next chapter
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when we consider the application to real panel settings.

For any t = 1, .., T the coefficients of model mt−1(x
t−1, st−1;βπt−1) are estimated

by

β̂πt−1 = (Xt−1′
st Wt−1

st π̂
−1
tst−1X

t−1
st )−1Xt−1′

st Wt−1
st π̂

−1
tst−1m̂tst

= At−1
πst X

t−1′
st Wt−1

st π̂
−1
tst−1m̂tst

where Xt−1
st is the nt × pt−1 matrix of covariates Xt−1 over st ; Wt−1

st is the

nt× nt diagonal matrix of model weights with typical component W−1
t−1k = σ2

t−1k
; π̂−1tst−1 = diag{π̂−1t (Xt−1

k ; α̂t−1)} an nt× nt matrix , and m̂tst is the nt vector of

unit predictions m̂tk. This allows us to describe Ŷπm as

Ŷπm = N−11
′

s0H
T−1
πsT−1sT

YsT

= N−1
∑
sT

hT−1πT k
Yk (3.28)

where HT−1
πsT−1sT

= H0
πs0s1 · · ·H

t−1
πst−1st · ·H

T−1
πsT−1sT

the product of the π-weighted

hat matrices Ht−1
πst−1st = Xt−1

st−1A
t−1
πst X

t−1′
st Wt−1

st π̂
−1
tst−1 for t = 1, ..., T with At−1

πst =

Xt−1
st−1(X

t−1′
st Wt−1

st π̂
−1
tst−1X

t−1
st )Xt−1′

st Wt−1
st π̂

−1
tst−1 and

hT−1πT k
= 1

′

s0H
T−2
πsT−2sT−1X

T−1
sT−1A

T−1
πsT

XT−1
k WT−1

k π̂−1Tk (3.29)

= 1
′

s0H
T−2
πsT−2sT−1X

T−1
sT−1X

T−1
k WT−1

k π̂−1Tk/
∑
sT

XT−1
k WT−1

k π̂−1TkX
T−1′
k

is the estimation weight we attach each observed unit k in the panel survey sam-
ple.

As in the single phase discussion Ŷπm is double robust, that is robust to mis-
specification of either m or π set of models.

Robustness to misspecification of m models can be found by condition-

ing E(Ŷπm) on the outcome variable Y and then sequentially on the pairs
(Xt−1, St−1) for all phases t = 1, ...T . This leads to an identity which for each
phase is a function only of the selection process St. To show unbiasedness start
with the identity

E(Ŷπm) = N−11
′

s0E
{
· · ·EE

(
HT−1
πsT−1sT

ysT |xT−1,y, sT−1
)
· · · |x0,Y, s0

}
(3.30)

= N−1E

· · ·EE
∑

sT

hT−1πT k
yk|xT−1,y, sT−1

 · · · |x0,Y, s0
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Note that from (3.29)∑
sT

hT−1πT k
Yk = 1

′

s0H
T−2
πsT−2sT−1X

T−1
sT−1

∑
sT XT−1

k WT−1
k π̂−1TkYk∑

sT XT−1
k WT−1

k π̂−1TkX
T−1′
k

and so looking only at the inner expectation of (3.31), explicitly indicating the
last phase random indicator and taking out 1

′

s0H
T−2
πsT−2sT−1X

T−1
sT−1 from the expec-

tation we get

1
′

s0H
T−2
πsT−2sT−1X

T−1
sT−1E(

∑
sT−1 STk XT−1

k WT−1
k π̂−1TkYk∑

sT−1 STk XT−1
k WT−1

k π̂−1TkX
T−1′
k

|xT−1,y, sT−1)

which - focusing only on the expectation now - under ignorability and assum-
ing correct specification and consistent estimation of selection model πT (xT−1)
includes the ratio of two correctly specified single phased π-estimators and so ,
similar to fixed population inference of sampling theory logic, these are approx-
imately unbiased (Särndal et al., 1992, page 176) for the corresponding ratio of
(sub)population quantities AT−1

πsT−1X
T−1′
sT−1W

T−1
sT−1π

−1
T−1sT−1ysT−1 . Furthermore, as

XT−1
sT−1A

T−1
πsT−1X

T−1′
sT−1W

T−1
sT−1π̂

−1
T−1sT−1 = HT−1

sT−1sT−1 and for any t , the hat matrix

Ht−1
st−1st−1 = IsT−1 the nT−1 identity matrix. Thus,

E(Ŷπm) = N−11
′

s0E
{
· · ·EE

(
HT−1
πsT−1sT

YsT |xT−1,y, sT−1
)
· · · |x0,y, s0

}
≈ N−11

′

s0E
{
· · ·EE

(
HT−2
πsT−2sT−1YsT−1|xT−2,y, sT−2

)
· · · |x0,y, s0

}
= · · ·
= N−11

′

s0EE
(
H0
πs0s1Ys1|x0,y

)
= E

(
Ys0

)
reaching the final line by repeating the above derivation for all sequences under
the assumption that models πt(x

t−1) t = T, T − 1, ..., 1 hold.

Robustness to misspecification of the π models can be found by condition-

ing E(Ŷπm) sequentially on the pairs (Xt−1,St) for all phases t = 1, ...T . This
allows us to ’condition out’ the selection process for each phase and derivation
relies only on correct m−models ’ specification. To show unbiasedness start with

E(Ŷπm) = N−1E

· · ·EE
∑

sT

hT−1πT k
Yk|xT−1, sT

 · · · |x0, s1


and by first letting mT = XT and under model mT−1(x

T−1, sT−1) which in our
case states that E(mTk|xT−1, sT ) = XT−1′

k βT−1

E(Ŷπm) = N−1E

· · ·EE
∑

sT

hT−1πT k
Yk|xT−1, sT

 · · · |x0, s1

 (3.31)

= N−1E

· · ·E
∑

sT

hT−1πT k
XT−1′
k βT−1|xT−2, sT−1

 · · · |x0, s1
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by noting that∑
sT

hT−1πT k
XT−1′
k βt−1 = 1

′

s0H
T−2
πsT−2sT−1X

T−1
sT−1A

T−1
πsT

∑
sT

XT−1
k WT−1

k π̂−1Tkx
T−1′
k βt−1

= 1
′

s0H
T−2
πsT−2sT−1X

T−1
sT−1βt−1

then continuing (3.31) we get

E(Ŷπm) = N−1E

· · ·EE
∑

sT

hT−1πT k
mTk|xT−1, sT

 · · · |x0, s1


= N−11

′

s0E
{
· · E

(
HT−2
πsT−2sT−1X

T−1
sT−1βt−1|xT−2, sT−1

)
· · · |x0, s1

}
= N−1E

· · E
∑
sT−1

hT−2πT−1k
mT−1k|xT−2, sT−1

 · · · |x0, s1


= · · ·
= N−1EE(

∑
s1

h0π1km1k|x0, s1) = N−1
∑
s0

E(mok) = E(Ys0)

by assuming ignorability and that all linear regression models mt−1(x
t−1, st−1)

hold over the rest t = T − 1, T − 2, ..., 1 phases.

It is useful to contrast this πm-estimator to others that use both parts of the joint
distribution under a sequential framework. One frequently cited estimator is de-
scribed by Bang and Robins (2005) in the context of longitudinal observational
studies where monotone missing data assumption is appropriate. Its estimation
algorithm is similar to ours but in its use of πtk, which it includes (its inverse)
as an additional covariate in the regression model rather than a weights. Robins
et al. (2000) discusses this model in more detail giving its asymptotic properties
and shows it is also a double robust estimator.

As noted in the previous chapter, this idea, of unit selection as a covariate, is
popular in the single phase setting7, however from a model driven perspective,
I find this method unintuitive and that there is little justification or diagnostics
regarding the appropriateness of such practice given it requires a very strong
assumption: the conditional expectation of response is linear in the selection
probability. In the following section I show by simulation that these two πm-
estimators behave similarly in terms of efficiency and bias correction.

Another estimator is the regression estimator (GREG) under a two phase set-
ting, popularized by (Särndal et al., 1992, section 9.7), but which I here expand

7Hade and Lu (2014) found that 24% of literature reviewed using propensity score estima-
tion takes this approach.
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to a T phase setting.

The fundamental departure of the GREG estimator is in the modelling of the
outcome variable of interest Y . While the πm-estimator models sequentially the
conditional expectation mt on Xt−1 over the population st−1, the GREG estima-
tor suggests a set of models of the conditional distribution of Y on Xt−1 each
over the entire finite population s0. This difference leads to an estimator which
has only a weak form of double robustness. In the case of Web survey inference
this difference can be of significance.

More specifically, GREG estimation starts by assuming for each t = 1, .., T that
the point scatter (Yk,X

t−1
k ) in the finite population s0 can be modelled by

{
E(Yk) = Xt−1′

k βt−1
V (Yk) = σ2

t−1k

and estimates the population average by

Ŷ = N−1
∑
s0

{
Ŷ1πk +

T−1∑
t=1

Stk(Ŷt+1πk − Ŷtπk)π̂−1tk + STk (Yk − ŶTπk)π̂−1Tk

}
.(3.32)

with ŷtπk = xt−1
′

k β̂
t−1
π(sT ). The estimators β̂

t−1
π(sT ) of the unknown regression coef-

ficients βt−1 are derived by the following π−estimation logic: If the yk−values
were known for the whole set s0, an estimator of the unknown βt−1vector could
be formed, over the entire population , namely

β̂
t−1

=

(∑
s0

Xt−1′
k Xt−1

k

σ2
t−1k

)−1(∑
s0

Xt−1
k Yk
σ2
t−1k

)
.

What can actually be calculated from the available data is π - weighted regression
coefficient vector

β̂
t−1
π(sT ) =

∑
sT

Xt−1′
k Xt−1

k

σ2
t−1kπ̂Tk

−1∑
sT

Xt−1
k Yk

σ2
t−1kπ̂Tk


computed over the final set sT .

As a ratio of two unbiased π−estimators, under ignorability β̂
t−1
π(sT ) estimates

consistently the finite population quantity β̂
t−1

, however, it does not necessarily
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estimate the model parameter βt−1. This can be easily shown

E(β̂
t−1
π(sT )) = EE


∑

sT

Xt−1′
k Xt−1

k

σ2
t−1kπ̂Tk

−1∑
sT

Xt−1
k Yk

σ2
t−1kπ̂Tk

|xT−1, sT


= E


∑

sT

Xt−1′
k Xt−1

k

σ2
t−1kπ̂Tk

−1∑
sT

Xt−1′
k XT−1

k

σ2
t−1kπ̂Tk

βT−1
and so when modelling the point scatter (Yk,X

t−1
k ) for the final the set of t = T

is E(β̂
t−1
π(sT )) = βt−1 , however, for the rest t = 1, ..., T − 1 models this is not the

case. The reason for this result is that as only YsT is observed, for ignorability
to hold we must condition on XT−1 regardless of which subpopulation level re-
gression coefficient we are estimating.

More generally, for t = 1, .., T , the estimator β̂
t−1
π(sT ) is approximately unbiased

of βt−1 if selection models πt(X
t−1) up to t and the specific model E(Yk) =

xt−1
′

k βt−1 are both correctly specified and consistently estimated. This can be
shown by first noting that

E(β̂
t−1
π(sT )) = EE

{
E
[
· · E

(
β̂
t−1
π(sT )|y,xT−1, sT−1

)
· ·|y,xt, st

]
|xt−1, st−1

}
= E(β̂

t−1
π(st))

as E(β̂
t−1
π(sT )|y,xT−1, sT−1) = β̂

t−1
π(sT−1), E(β̂

t−1
π(sT−1)|y,xT−2, sT−2) = β̂

t−1
π(sT−2), .....,

and so on up to phase t where E(β̂
t−1
π(st+1)|y,xt, st) = β̂

t−1
π(st) holds under ignora-

bility when selection models for phases T, ..., t hold. Next if the specific model
E(Yk) = Xt−1′

k βt−1 is also correct then

E(β̂
t−1
π(st)) = EE


(∑

s0

StkX
t−1′
k Xt−1

k π̂−1tk

)−1(∑
s0

StkX
t−1′
k Y kπ̂

−1
tk

)
|xt−1, st

 = βt−1

as E(Yk|xt−1, st) = Xt−1′βt−1 .

This π-leaning set of assumptions for the estimator β̂
t−1
π(sT ) carry over when con-

sidering the properties of the GREG estimator. Similarly to the derivation on

the model coefficients it can be shown that the GREG estimator Ŷπy under an
ignorable T phase selection distribution is unbiased of the population mean Ys0

if both (i) the selection model π1(x
0) or the measurement model E(Yk) = X0′

k β0

holds, and that (ii) all selection models πt(x
t−1, st−1) for t = 2, ..., T are cor-

rectly specified and consistently estimated. This can be seen by algebraically
rearranging (3.32) so that

Ŷ = N−1
∑
s0

{
Yk +

T∑
t=1

St−1k (π̂tk − Stk)(Ŷtπk − Yk)π̂−1tk

}
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and following a similar derivation to that of the regression coefficient above (see
section 5.2).

In the context of survey sampling where the selection process is assumed known
this form of robustness is useful. However, when the selection process is not
known, as is our case, comparing the two sequential estimators which incorporate
both m and π type models the πm estimator has a much stronger form of double
robustness.

3.5.4 A Short Note on Variance Estimation Under a Multi-
Phase Framework

For the single phase estimators discussed in the previous chapter, closed-form es-

timators for the variances of Ŷπ,Ŷm and Ŷπm are available . For the π−estimator,
a classic design variance estimator (for example see Särndal et al. 1992, chapter
9) can be suggested by replacing the unknown selection probabilities by their
estimated values. This can be justified by noting that the variance under the
joint (Y,S) distribution is approximately the same as the Y−expectation of the
S-variance when the sample fraction is small (Pfeffermann, 1993). This gives a
conservative estimate as it ignores the estimation of selection probabilities over
the sample data.8 Williamson et al. (2012); Lunceford and Davidian (2004) and
others have proposed adjusted estimators to take this into account. For the m
and πm-estimators discussed in the previous chapter closed-form estimators for
the unconditional variance under an ignorable one phase framework have also
been suggested. Specifically, for these estimators, when a linear m- model is
assumed, a sandwich type estimators can be easily derived. Valliant et al. (2000)
discuss this idea for the m−estimators and in Valliant (2002) you can find a
similar estimator proposed for πm−estimators in a one phase case.

Neither of these approaches translate smoothly to the sequential framework. The

’conservativeness’ of the fixed population approach for variance estimator of Ŷπ

becomes non negligible, while a direct derivation of a variance estimator for Ŷm

and Ŷπm , which can still be expressed in linear form, is not trivial. However,
relevant work on closed-form variance estimators has been done in more recent
years. In the setting of dynamic treatment regimes in a multi-interval setting,
Robins (2004) derives the variance estimator for doubly robust g-estimators,
which should be parallel to the πm estimation under our sequential framework,9

8Estimating the selection probability results in gains in efficiency as they capture the
additional random sampling error and so an estimator using the estimated rather than the
true selection probability will be less variable

9As I’ve discussed briefly in earlier chapters G-estimation, is a generalization of
M−estimation Stefanski and Boos (2002) using as well selection probabilities to give the DR
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by linearising the associated system of generalized estimating equations. Moodie
(2009) proposed to estimate the parameters of this linearised variance recursively.
But, adopting this estimation system to our specific problem is outside of the
scope of this work.

Apart from closed form solutions, another popular approach to variance esti-
mation is resampling and replication methods (such as jackknifing, balanced
repeated replication, bootstrapping). A description of these methods can be
found in many books on survey sampling, for example in Lohr (2009, chapter
9). These methods are relatively easy to implement, regardless of the form of
the point estimator, and there is a general move towards them and away from
the analytical approach (Binder et al., 2004). I suggest now a simple Bootstrap
approach (Efron, 1979) to our inferential question.

For the survey sampling case, a direct extension for i.i.d. samples (Shao and
Tu, 1996, see) is to apply the standard bootstrap, and if necessary indepen-
dently in each stratum. However, such an estimator may be inconsistent. For

example, the estimator Ŷ =
∑

hWhY sh under stratified random sampling, has

variance V (Ŷ ) =
∑

hW
2
hs

2
yh where Wh are population strata sizes and s2yh is

the strata sample variance. A standard Bootstrap estimator resamples with re-
placement independently from each strata and the expectation of the estimator
is
∑

hW
2
h (nh−1

nh
)s2yh , inconsistent when stratum sample sizes are bound. To deal

with these inconsistencies many modified bootstrap methods have been proposed
Mach et al. (2005). Still, for the case of unequal probability selection with inde-
pendent draws a naive bootstrap is valid (Lohr, 2009, chapter 6, section 1).

In our sequential framework the values of the variables of interest are not in-
dependent given the hierarchical structure, and so a simple bootstrap may mis-
represent variability in the sampling distribution of statistics Ramasubramanian
et al. (2002). In order to preserve the correlation structure in resamples, we may
mimic the data generating mechanism by resampling in a nested fashion. Most
published work in the survey sampling literature consider multi stage samples so
that resampling follows a top (clusters) to bottom (units) approach. However,
in our case this is not applicable - the hierarchy is not clustered but is rather
through a sequential linkage.

A simple solution is to reverse the process and start at the bottom of the hier-
archy instead of the top. Ramasubramanian et al. (2002) discusses such a boot-
strap approach under the two phase simple random sample framework which
can be easily generalized to T phases and shows its consistency for the ratio
estimator. The key idea is to keep the proportion of units belonging to st and

property.
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st∩st−1 = (st−1−st) , the selected and unselected populations, appearing in each
Bootstrap resample the same as in the original sample. As I shall now show,such
an approach seems to give useful results and is worth exploring further in future
work.

The algorithm for T = 2 is as follows:

1. Draw a simple random sample of size n2 with replacement from the set s2

of size n2. Denote the set s2b .

2. Draw another simple random sample of size n1−n2 with replacement from
the set (s1− s2) of size n1− n2 . Denote this set by s2b and let s1b = s2b ∪ s2b
and similarly define s0b = (s0 − s1) ∪ s1b .

3. Repeat the steps (i) and (ii) independently B times and let the bth (b =
1, 2, ..., B) Bootstrap resampled set be s2b = (s0b , s

1
b , s

2
b).

For any of the three estimator types we discuss, the Bootstrap variance estimator
for this method are given by

V̂ (Ŷ ) =
1

B − 1

∑
b

(Ŷb − Ŷ B)2

where Ŷ is the π,m or πm−estimator, Ŷb is the same estimator calculated over

the bth simulated population s2b = (s0b , s
1
b , s

2
b) and Ŷ B = B−1

∑
b Ŷb.

3.6 A Simulation Study

In the following section I study numerically, over three separate simulation stud-
ies, some statistical properties and specific behaviours of the three sequential
estimators described in this chapter.

In the first study I examine the basic properties of the three estimators under
different model specifications. This includes the bias and efficiency of the estima-
tors under the correct specification of the set of πT and xT models as well as the
different combinations possible for misspecifications. Under these setting I also
try and address the question raised by Kang and Schafer (2007) who suggested
that a πm-type of estimation which hold the valuable double robust property
perform, however, worse than a π or m estimator when both sets of model are
misspecified. This issue and its subsequent discussion (Ridgeway and McCaffrey,
2007; Tsiatis and Davidian, 2007; Robins et al., 2007) was under a single phase
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framework and it is interesting to put the question in a sequential setting as well.

In the second study I test the behaviour of a bootstrap variance estimation
approach outlined in section 3.5.4 for the three sequential estimators. After out-
lining again the estimation algorithm, I perform a simulation study to test this
algorithm under different population settings. I add also a short example on the
increase and decrease in estimator variance moving from a one phase to a multi
phase framework

In the final study I give what is intended to be a simple cautionary tale for the
average practitioner estimating population estimands in a Web panel setting.
The problem is that in many cases in the estimation procedure practitioners
’impute’ a zero to missing values of Internet related quantitative measurements
for example the number of daily visits to a certain web site. Intuitively, and
certainly from a fixed population perceptive, this is a logical approach. However,
I show that this assumption is an imputation which relies on certain assumptions.

3.6.1 Basic Examination of the Three Sequential Estima-
tors

As noted above, one of the objectives in this section is to test the bias of the
estimators under the misspecification of both π and m model sets. One of the
critiques of the Kang and Schafer (2007) study, which dealt with this question,
was that the authors picked an extreme simulated population to prove their point
of the superiority of m-only estimation. To avoid this and provide a certain ob-
jectivity, I chose a sequential dataset available in literature not related to the
misspecification issue. Thus I have recreated10 the population used in Bang and
Robins (2005, table 3). The use of this dataset in particular allows me also an
immediate comparison to the competing πm-algorithm where the the selection
probabilities are included as an additional covariate.

From finite population s0, two phases of selection define two population subsets
denoted by s2 = (s1, s2). The variable of interest and relevant covariates over
the population are X2

s0 = (X0′

s0 ,X
1
s0 ,X

2
s0)
′

where X0
s0 = (X0

1s0 ,X
0
2s0 ,X

0
3s0)

′
are

variables associated with the finite population s0 , the vector X1
s0 is the single

variable associated with the subpopulation s1 and the vector X2
s0 = Ys0 is the

variable of interest.The size of the finite population we study is 10, 000.

The population X2
s0 follows a multivariate normal (MVN) distribution. Values

10The exact parameter details were kindly supplied by Dr Bang through private communi-
cation.
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x0
s0 = (x0

1s0 ,x
0
2s0 ,x

0
3s0)

′
were generated independently from a standard normal

distribution, the values x1
s0 were generated by N(m0(x

0,β0), 1) which denotes
a normal distribution with mean a function of X0 and variance one; Values of
the outcome measurement of interest ys0 were generated from N(m1(x

1,β1), 1) ,
where the mean (m1(x

1,β1) is a function of variables associated with both s0 and
s1. Table 3.3 describes the structure and parameters of the mean function. Note
that a MVN distribution linking X1 to X0 and the two to the Y is not required
for either of our estimators - a strength compared to likelihood estimation. In
sections 3.6.2 and 3.6.3 I simulate alternative populations where X0 and X1 have
no obvious parametric relationship.

The subpopulation s1 is generated by the selection model π1(x
0,α0) defined over

s0 which suggests that each member of the population has a positive probability,
a function of X0 of being a member of s1. The sample set s2 is generated by the
function π2(x

1,α1) defined over the subpopulation s1. The two selection models
are described in table 3.3. Under this data configuration, the expected size of
subset s1 is n1 ≈ 3, 300 and the expected size of sample s2 is n2 ≈ 700. Our
interest is in estimating E(Y) = 11, and I assume we observe the set of of values
(x0′

s0 ,x
1
s1 ,ys2)

′
.

Models Parameters

m0(x
0,β0) β0[1,x

0
1,x

0
1 · x0

3]
′

β0 = [0, 3,−2]
m1(x

1,β1) β1[1, (x
0
1)

2,x0
2, (x

1)2),x0
2 · x1]

′
β1 = [0,−3, 3, 1,−2]

π1(x
0,α0) α0[1,x

0
1,x

0
2,x

0
3,x

0
1 · x0

2]
′

α0 = [0,−1, 1, 1,−1,−1]
π2(x

1,α1) α1[1,x
0
1,x

0
2,x

0
3,x

0
1 · x0

2,x
0
3 · x1]

′
α1 = [0, 1, 1, 0,−1, 0,−2]

Misspecification Model Estimated
m0(x

0,β0) β0[1,x
0
1,x

0
2]
′

m1(x
1,β1) β1[1,x

0
1, (x

0
2)

2, (x0
3)

2,x1]
′

π1(x
0,α0) α0[1,x

0
2,x

0
3]
′

π2(x
1,α1) α1[1,x

1]
′

Table 3.3: Simulation scenarios for estimation models- Both correctly specified and misspec-
ified. Parameters for outcome and selection models represent linear and logistic regression
model coefficients respectively.

Of interest here is the behaviour of the three estimators under different levels
of misspecification. I use four false models described in table 3.3. Under this

set up, we calculate Ŷπ,Ŷmand Ŷπm using both the correct model specifications
and all fifteen possible misspecification combinations.

The π−estimator Ŷπ is constructed based on the sequential π-estimation pro-
cedure described in section 3.5.2: (a) fit a logistic regression of S1

k on x0 for all
k ∈ s0 the full population , and separately model, also by logistic regression,
S2
k on x1 over the subpopulation s1 and obtained the regression coefficient esti-
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mates; (b) compute estimated selection probabilities π̂1 and π̂2 for all units in s2

where both x0 and x1 are fully observed; (c) estimate the population mean by
the π-estimator (3.25) with probability weights π̂−12k = π̂−11k · π̂

−1
2k .

The m−estimator Ŷm is constructed following the algorithm described in section
3.5.1; I regress y on x1 = (x0,x1) over the survey sample set s2 and compute the
corresponding predicted values for all units in s1. Next, these predicted values
were regressed on x0. Hence, the new predicted values were obtained as a func-
tion of x0 only, which is known for the full population s0. The average of this
quantity is the final estimate.

The πm- estimator Ŷπm was calculated by a similar process described in section
3.5.3 which in essence follows the m-estimator computation, but for each t the
m−estimation equation is weighted by the estimated selection probabilities πt.

We examine these three estimators by summarizing over 500 simulations when
all π and m models are correctly specified, as well as for all 15 possible cases
of misspecification which include: four single model misspecification, six double
model specification, four triple model misspecification and the case where all four
models are misspecified. A summary of these scenarios is presented in table 3.4
with the associated bias, variance and inter quantile range of each estimator.

The first thing to notice from the results in table 3.4 is that in terms of point es-
timation, the performance of the estimators under comparison are in agreement
with our discussion and theory. The π-estimator and m-estimator are unbiased
when either π2(x

1), π1(x
0) or m2(x

1),m1(x
0) respectively are correctly modelled.

These scenarios are indicated by an underline in the table. On the other hand
in all cases of misspecification the mean bias is non negligible. In our specific

settings the m−estimator Ŷm has a significantly larger bias under misspecifica-

tion relative to the π-estimator estimators. The bias of Ŷm is particularly large
when the model m2(x

1) over s1 is misspecified and is a result of the specific
functional form - the inclusion of higher order terms for both (x0

2,x
0
3)- given to

the population in this study. The πm-estimator Ŷπm displays the double robust
property and is unbiased in all seven scenarios where either selection or outcome
models or both are correctly specified. These combinations are also indicated
in the table with an underline. A convenient way of comparing the relative be-
haviour of the three estimators in terms of bias is by the dot plot given in figure
3.3 which clearly shows the dominance of the πm-estimator compared to the π
and m- estimators, underlying it’s DR property.
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Figure 3.3: A simple dot plot summariz-

ing the bias of the three estimators. Bias

denotes the empirical deviation from the

mean of the estimates from 500 simula-

tions. Each simulation is based on a pop-

ulation size of 10,000.

Figure 3.4: A Boxplot summarizing the

bias distribution of the three estimators

conditional on the number of misspecifica-

tions in the estimation models. The bias

and number of simulations are identical to

that of figure 3.3 on the left panel.

A lively debate has taken place on the behaviour of DR estimators under a single
phase setting (as mentioned as well in the previous chapter) where both π and m
model assumptions are misspecified. Robins (2000) suggested that even under
complete misspecification, the bias of the πm-estimators will be no worse than
a π only or m only estimation strategy, implying an ’extra’ double robustness.
Kang and Schafer (2007) on the other hand show a scenario where in fact a πm-
estimator is significantly inferior to an m only estimator when both models are
misspecified. Several authors have followed the issue and suggested DR type esti-
mators (or at least paths towards such estimators) which under misspecification
will give estimates which are at least no worse than an m-estimator, see Ridge-
way and McCaffrey (2007); Robins et al. (2007); Tsiatis and Davidian (2007).

Ours is a sequential two phase setting and it is interesting to consider this idea of
an ’extra’ robustness here. Looking again at figure 3.3 the error plot does show

that Ŷπm has what seems to be a negligible bias for 8 out of the 15 scenarios stud-
ied, while our expectations are that the πm-estimator will be unbiased only under
seven combinations. The m or π-estimators have negligible bias for only the four
combinations where the relevant models are correctly specified. Furthermore, it
is clear from the graph that the inclusion of π models in the πm−algorithm caps
(here to under 4) the maximum level of bias which potentially we may incur if
modelling only on m-models where the maximum bias (shared in eight scenarios)
is 7. The box plot in figure 3.4 breaks down the results into five misspecifica-
tion categories - zero to four misspecified models. From the graph, and the raw
results in table 3.4 we clearly see that (a) across all specification scenarios the
πm-estimator is superior to the m-estimator, while (b) in comparison to the the
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Bias Ratio

Misspecification BR(ŷπ) BR(ŷm) BR(ŷπm)
—- -0.073 -0.007 0.004

π2(x
1) 2.18 0.021 0.018

π1(x
0) 0.65 0.01 0.013

m2(x
1) -0.01 5.047 0.182

m1(x
0) 0.056 6.106 -0.034

π2(x
1),π1(x

0) 2.932 0.012 0.011
m2(x

1),m1(x
0) 0.04 4.689 0.196

π2(x
1),m1(x

0) 2.061 6.311 -0.031
π1(x

0),m2(x
1) 0.697 5.079 0.671

π2(x
1),m2(x

1) 1.922 4.85 3.081
π1(x

0),m1(x
0) 0.624 6.239 1.025

π1(x
0),m2(x

1),m1(x
0) 0.638 5.12 0.576

π2(x
1),m2(x

1),m1(x
0) 2.056 4.901 3.235

π2(x
1),π1(x

0),m1(x
0) 2.692 6.043 0.002

π2(x
1),π1(x

0),m2(x
1) 2.981 5.217 3.375

π2(x
1),π1(x

0),m2(x
1),m1(x

0) 2.901 5.124 3.342

Table 3.5: Simulation Results: The Bias Ratio of the three estimators. Here BR(·) denotes

the Bias ratio calculated by BR = B(ŷ)

V (ŷ)1/2
. The variance is that of the estimates from 500

simulations.

π-estimator the πm-estimator is superior as well but for the single case where
all four models are misspecified. In that sense one may argue that this study
gives anecdotal evidence to the ’extra’ robustness of the πm-estimation approach.

Consider next the variance and interquartile range of the estimators given in ta-
ble 3.4. The m-estimator is the most efficient under correct specification, while
the π−estimator is in comparison highly inefficient. As I have discussed in the
previous chapter, this relative weakness of the π−estimator is well known and
is exasperated in a sequential framework. What is interesting is that whenever

the m-model was correctly specified, Ŷπm was nearly as efficient as Ŷm. Thus a

very small price is paid in terms of efficiency loss by using Ŷπm in place of Ŷm,
and yet as we’ve discussed, when the π−models were correct, huge benefits were
obtained in terms of robustness against misspecification of the m-models. When

both set of models are correct Ŷπm and Ŷm have almost identical variance. In
a similar study Bang and Robins (2005) notes that following from the theory

of semiparametric efficiency bounds, when assuming correct specification, Ŷπm

based on correct m−models is asymptotically more efficient than Ŷπm based on
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an incorrect model for the m−models. This is born out here; indeed we see that

Ŷπm based on an incorrect m−models have variance over ten times that of Ŷπm

based on a correct m−models.

I conclude this section with a brief discussion on the behaviour of the estimators
as tools of inference. I use the bias ratio statistic as an indicator to the expected
nominal coverage of confidence intervals. As Särndal et al. (1992, Table 5.1, p165)

discuss, under the assumption that (Ŷ − E(Y))/V (Ŷ)1/2 follows the standard
normal distribution, a bias ratio of less 0.5 has only a small effect on the nominal
coverage (92.1%) on a confidence interval with α = 5%, and even a bias ratio
of 0.65 still is expected to have a coverage of 90% which may be considered still
tolerable. The bias ratio of the estimators over the 16 specifications studied are
given in table 3.5, a summary of these results in the form of a dot plot is given
in figure 3.5.

Figure 3.5: A dot plot of the Bias ratio

(BR) of the three estimators. BR denotes

the empirical deviation from the estimates’

over 500 simulations divided by the empir-

ical standard deviation. Each simulation

is based on a population size of 10,000.

Figure 3.6: A Boxplot of the bias ratio

distribution of the three estimators condi-

tional on the number of misspecifications

in the estimation models. The bias ratio

and number of simulations are identical to

that of figure 3.5 on the left panel.

Looking at the dot plot it is immediately clear that the m-estimator is useful
as an inferential (that is at least 90% nominal coverage) tool only when the
m−models are both correctly specified. On the other hand, the π−estimator
gives what may be considered useful inference in 8 out of the 16 scenarios, and
the πm estimator in 11 (or even 12) scenarios. From the box plot in figure 3.6
the same picture emerges - πm gives better inferential results over all levels of
misspecification but the case where both sets of model specification are incorrect
in which case neither of the three approaches yield meaningful results. As a final
remark, note that when looking at the nine misspecification scenarios (meaning
I ignore the first seven cases in table 3.4) πm is superior to the m-estimator in
all scenarios, and is equal to the π-estimator.
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3.6.2 A study of Variance Estimation by Bootstrap and
on the Increase or Decrease in Variance when Mov-
ing from a Single to a Multi-Phase Framework

In the following section I start by testing the bootstrap variance estimator algo-
rithm which I discussed in section 3.5.4. For convenience I give the algorithm
again for the case T = 2 :

1. Draw a simple random sample of size n2 with replacement from the set s2

of size n2. Denote the set s2b .

2. Draw another simple random sample of size n1−n2 with replacement from
the set (s1− s2) of size n1− n2 . Denote this set by s2b and let s1b = s2b ∪ s2b
and similarly define s0b = (s0 − s1) ∪ s1b .

3. Repeat the steps (i) and (ii) independently, say, B times and let the bth
(b = 1, 2, ..., B) Bootstrap resampled set be s2b = (s0b , s

1
b , s

2
b).

For any of the three estimator types we discuss, the Bootstrap variance estimator
for this method are given by

V̂ (Ŷ ) =
1

B − 1

∑
b

(Ŷb − Ŷ B)2

where Ŷ is the π,m or πm−estimator, Ŷb is the same estimator calculated over

the bth simulated population s2b = (s0b , s
1
b , s

2
b) and Ŷ B = B−1

∑
b Ŷb.

To test the method I suggest the following simulation study. I start with an
identical population as in section 3.6; A two phase process described by the unit
selection indicators s2 = (s1, s2) with distribution over a population defined by
X2
s0 = (X0′

s0 ,X
1
s0 ,X

2
s0)
′

with X0
s0 = (X0

1s0 ,X
0
2s0 ,X

0
3s0)

′
and X2

s0 = Ys0 . The pop-
ulation variables X0

j (j = 1, 2, 3) were generated independently from a standard
normal, the distribution of x1 from N(m0(x

0,β0), 1) and y from N(m1(x
1,β1), 1)

are presented in table 3.3. The population size is fixed to N = 30, 000.

The Bootstrap variance estimator was tested on seven different two phase selec-
tion processes which define s1 and s2. Both selection mechanisms follow a logistic
regression model such as in section 3.6 and represent a wide variety of possibil-
ities, see table 3.6. Note that the first two cases represent in fact a one phase
scenario as all members of s1 have a probability of selection equal de facto to one.
The other five settings include the entire spectrum of relationship between the
first and the second phases of selection. In all cases I aimed to achieve a survey
sample size of n2 ≈ 200. I denote the seven scenarios by capital letters A to G
with average achieved subset sizes of A : n1 = n2 = 200; B : n1 = n2 = 225; C :
n1 = 2, 074, n2 = 207; D : n1 = 3, 548, n2 = 222; E : n1 = 3, 548, n2 = 206; F :
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Selection Models

π1(x
0,α0) α0[1,x

0
1,x

0
2,x

0
3,x

0
1 · x0

2]
′

π2(x
1,α1) α1[1,x

0
1,x

0
2,x

0
3,x

0
1 · x0

2,x
0
3 · x1]

′

Scenario Parameters Description
A α0 = [−5, 0, 0, 0, 0] p(s1) = srs

p(s2|s1) = census
B α0 = [−5.5, 1, 0, 0, 0)] p(s1) = π1(x

0)
p(s2|s1) = census

C α0 = [−2.6, 0, 0, 0, 0] p(s1) = srs
α1 = [−2.2, 0, 0, 0, 0, 0, 0] p(s2|s1) = srs

D α0 = [−2.6, 1, 0, 0, 0] p(s1) = π1(x
0)

α1 = [−3.5, 1, 0, 0, 0, 0, 0] p(s2|s1) = π2(x
0)

E α0 = [−2.6, 1, 0, 0, 0] p(s1) = π1(x
0)

α1 = [−3.4, 0, 1, 0, 0, 0, 0] p(s2|s1) = π2(x
1)

F α0 = [−3.2, 1, 1, 0, 0] p(s1) = π1(x
0)

α1 = [−4.3, 0, 1, 0, 1, 0, 0] p(s2|s1) = π2(x
1)

G α0 = [−2.4, 1, 1,−1,−1] p(s1) = π1(x
0)

α1 = [−3.4, 1, 1, 0,−1, 0,−2] p(s2|s1) = π2(x
1)

Table 3.6: A description of the seven simulation scenarios testing. The two selection models
are given in the top of the table, each representing a logistic regression model. The seven
scenarios differ in the coefficient parameter values given in the middle column.

n1 = 3, 516, n2 = 205; G : n1 = 3, 590, n2 = 212. The Bootstrap estimators were
calculated over 500 runs. The number of simulations to test these estimators was
chosen to be 500 as well.

Looking at the results in table 3.7, it is useful first to comment on the three
estimators properties over the scenarios. The three estimators give, as expected,
consistent estimates, although this is slightly less evident for the π−estimator
which can be attributed to the relatively small number of simulations and rel-
atively large variance. The variance of the π−estimator is substantially larger
than the πm-estimator which in turn is slightly larger (or equal) to that of the
m−estimator.

More subtle and interesting is the significant difference in the variance across all
three estimators between the one phase (A,B) and two phase (C to G) cases.
For the π−estimator the two phase scenarios have a slightly higher variance
which is related to the additional selection phase; note here that for the π-
estimator scenario C is also a one phase case- the two consecutive srs designs
can be considered also a one phase srs. On the other hand for both m and
πm-estimators there is a notable drop in the variance from the one phase to
the two phase case. This however, can be predicted from the linear presenta-
tion of the πm and m-estimators. Start with the general formulation of the
πm-estimator ŷπm = N−11

′

s0H
T−1
πsT−1sT

YsT , for a one phase case the estimator is

N−11
′

s0H
0
πs0s1Ys1 while for a two phase case the estimator is N−11

′

s0H
0
πs0s1m̂1s1 .
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B(ŷπ) B(ŷm) B(ŷπm) V (ŷπ) B(V̂π) V (ŷm) B(V̂m) V (ŷπm) B(V̂πm)

A 0.8% 0.3% 0.3% 1.75 -2.1% 0.58 -1.6% 0.57 -2.0%
B -1.3% 0.3% 0.1% 1.88 -3.6% 0.59 -2.3% 0.58 -2.7%

C 3.9% -0.2% -0.2% 1.84 1.5% 0.18 -4.7% 0.18 -4.6%
D 3.0% 0.1% -0.1% 2.60 0.7% 0.15 -5.6% 0.17 -7.2%
E 2.8% 0.1% -0.1% 2.09 -2.3% 0.15 -0.4% 0.16 -10.4%
F -0.6% -0.1% -0.2% 3.90 1.9% 0.17 2.1% 0.20 -2.3%
G 1.0% -0.4% 0.0% 2.14 -0.4% 0.15 -1.8% 0.20 3.7%

Table 3.7: Simulation Results: Estimating the variance of the three Estimators. In the
first three columns, B(·) indicates the average difference percentage between the estimator
and the true population average over 500 simulations. In the remaining columns the bias
denotes the average difference between the variance estimator and the variance calculated
over the 500 simulations for each specification scenario. For each simulation 500 resampling
with replacement we used to calculate the Bootstrap variance estimator. Bias percentage is
the percentage average bias in terms of the simulated variance. A : n1 = n2 = 200; B :
n1 = n2 = 225; C : n1 = 2, 074, n2 = 207; D : n1 = 3, 548, n2 = 222; E : n1 = 3, 548,
n2 = 206; F : n1 = 3, 516, n2 = 205; G : n1 = 3, 590, n2 = 212;

As the hat matrix H0
πs0s1 and size of s1 is the same for both cases the fundamen-

tal property of regression to the means results in the predicted values m̂1over
the set s1 having a smaller variation than the direct observations y we use in the
one phase case.

Finally, looking at the the bias of the bootstrap variance estimators, the results
are promising and merit further inspection in future work. As I note earlier,
a direct bootstrap estimator does give consistent results for finite population
statistics when the selection process is one where individual unit selection prob-
abilities are independent - with unequal or equal probabilities. Although in our
case there is a hierarchical structure, still within each phase of the sequential
process here the unit selection probabilities are independent and so it seems the
resampling algorithm I suggest above is sufficient to capture the variability in
the sampling distribution of the statistics.

3.6.3 The Fallacy of Coding Non Internet Users with Zero

Throughout the discussion over this and the preceding chapter, a reader may be
tempted to suggest using Internet related covariates by simply coding a value
zero for members of the ’non Internet’ population. They then treat these covari-
ates as general population covariates which can be used in any of the estimation
strategies we have discussed. This is common practice in research organizations.
This sort of imputation is simple and intuitively appealing. However, in the fol-
lowing I give a stylized example to show that even when the true values of these
x1 covariates are indeed close to zero for non Internet members estimators can
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be badly biased.

Consider a survey estimating the population average of Yk, unit k’s answer to
’How engaged are you in the current US presidential campaign? ’. Assume we
observe the replies Ys2 as well as X1

s1 and X0
s0

−X0
k the annual income of member k of the population, standardized.

−X1
k frequency (hours) of accesing news or entertainment websites.

where s2 ⊆ s1 are the Internet and the Panel population subsets respectively and
are realized each following a logit regression model

π1(x
0, s0) : p(s1k = 1|x0, s0) = (1 + e−0.5x

0
k)−1 and

π2(x
1, s1) : p(s2k = 1|x1, s1) =

{
(1 + e5−0.5x

0
k−0.5x

1
k)−1 for s1k = 1

0 for s1k = 0

To keep the example within a fixed population setting11, I introduce W 0
k , a set of

covariates (here univariate) not measured but associated with the use of Internet.

Let (X0
k ,W

0
k ) ∼ N

(
0
0
,

1 0.3
0.3 1

)
for all k ∈ s0. And X1

k = eW
0
k ; ∀k ∈ s1

which means that X1 over s1 has a Log-normal distribution. Further, assume
(as is frequently the case in practice) that the analyst wrongly imputes the value
X1
k = 0 rather than assigning X1

k = NA for all non internet members of the
population s1. Finally, let

Yk = 1 + x0k + 2w0
k + εk ; εk ∼ (0, 1).

I compare 6 estimators, three π−estimators and three m estimators. The π
estimators include one sequential π- estimator which models separately s1 and
s2 using X0

s0 and X1
s1 respectively, and two single phase estimators: The first

Ŷπx0 models s2 over s0 using X0 only; The second ŶπX1 models s2 over s0 using
both X1 and X0. These are described in the following table.

Estimators Notes

Ŷπ2 =
∑

s2 Yk(π̂1k · π̂2k)−1 π̂1k, π̂2k are fitted by logistic regression

Ŷπx0 =
∑

s2 Ykπ̂x0k
−1 π̂x0k : logit−1 [p(s2k = 1|x0, s0)] .

Ŷπx1 =
∑

s2 Ykπ̂x1k
−1 π̂x1k : logit−1 [p(s2k = 1|x1, s0)] .

While the sequential estimator Ŷπ2 is clearly unbiased, we expect the second

Ŷπx0 to be only partially beneficial- as X0 will explain some of the selection

11By which I mean here that selection (is random, but) does not effect population quantities

such as Y
0

s0or X
0

s0 . In other words Y
0

s0or X
0

s0will not vary with different selection patterns of
the population.
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process. Estimator ŶπX1 uses X1 which over s0 is misspecified, so we expect
also a biased estimator. In our set up this is reflected by a failure to meet
the common support requirement which is best shown by the non overlapping
distribution of X1 in the final graph panel below12.

Figure 3.7: Boxplots representing the distribution of Y ,X0 and X1over the achieved sam-

ple, here denoted IIS, the non-sampled population denoted NoIIS, and the subpopulation

NoWeb of non-Internet connected units of the population respectively. From the bottom panel

describing X1it is clear that it is defined only over the Internet-connected population.

Similarly, I calculate three m-estimators. A two phase regression estimator which
first models Ys2 against X1, and then regresses the fitted values of the model
against X0 over s1. The other two estimators are simple regression estimators.
Over s2 the first models Y against X0 and the second models Y against X1.
These three estimators are described in the table below.

Estimators Notes

Ŷm2 = N−11
′

s0X
0
s0β̂0 β̂1 = (X1′

s2X
1
s2)
−1X1′

s2Ys2 and letting Ŷm1k = X1
kβ̂1

= N−11
′

s0Hs0s1X
1
s1β̂1 β̂0 = (X0′

s1X
0
s1)
−1X0′

s1Ŷm1s1

Ŷmx0 = N−1
∑

s0 Ŷmx0k Ŷmx0k = α̂ + β̂X0
k + γ̂(X0

k)
2

Ŷmx1 = N−1
∑

s0 Ŷmx1k Ŷmx1k = α̂ + β̂X0
k + γ̂(X0

k)
2 + β̂X1

k + γ̂(X1
k)

2

12if (X0,X1) were factors, this lack of common support would result in estimated probabil-
ities equal to zero for all members of s1- immediately eliminating π- estimation strategy.
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The models for Ŷmx0 and Ŷmx1 were found by simple goodness of fit measure-

ments given available covariates. Equivalent to π-estimator we expect Ŷπx0 to

be only partially effective in removing the bias. As for Ŷm2 and Ŷmx1 the dif-
ference is more subtle. In the graph below the blue dots represent the observed
marginal scatter between Y and X1. The best fit of the observed data is the
green line which is a logarithmic regression and this will be the first model in
the two phase m−estimator. However, when taking a one phase m−estimator
approach the analyst must consider that X1

k is equal to zero for non Internet
members of the population. To make this idea clear I added in the plot red dots
representing possible range of values y for the non internet population members.

Figure 3.8: A scatter plot describing the stylized example where an analyst taking a one
phase modelling perspective and coding zero values X1 of non internet units will miss-specify
the true model and assume a polynomial relationship, here denoted by the red dots.

Given x1
k = 0 for s1 the analyst will give up the logarithmic model which is thus

undefined. The best alternative is a very reasonable polynomial model which is
displayed by the red dotted line above.

To test these ideas we created a a population of size N = 20, 000. And simulated
a two phase selection process. The relevant population profiles and averages of

1,000 simulations are X
0

s0 = 0.01, Y s0 = 1.01, p(s1) = 0.51, p(s2|s1) = 0.05,
Y s1 = 1.39 and Y s2 = 3.90.

the selection process causes a strong positive bias in the observed sample average
of the outcome variable The following two density plots and associated summary
tables confirm our earlier discussion: The sequential estimators are unbiased,
while the two other sets of estimators are biased to different degrees.
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Estimators E(·) V (·)
Ŷπ2 1.01 0.07

Ŷπx0 2.22 0.06

Ŷπx1 0.90 0.06

Ŷm2 0.99 0.00

Ŷmx0 2.12 0.01

Ŷmx1 0.47 0.01

Table 3.8: The estimated expectation and variance of the three π−estimators and three
m−type estimators based on 1,000 simulation over a population of 20,000 units. Additional
grpahs of the distribution of the six estimators are presented in section 5.3.

The short simulation study above intended to show in a simple example the error
of using Internet related adjustment covariates in a one phase framework. While
it is true that in very specific scenarios such estimators are unbiased, Rosenbaum
(1984) puts it nicely that in general these estimators are justified only when they
are unnecessary- such as a when a simple linear relationship exists between Y
and W0 and between X1 and W0 or under unrealistic restrictions. Under a
sequential framework this issue is completely avoided.

97



Chapter 4

The Application of the
Sequential Framework in
Practice

4.1 The Reference Survey and the Role of its

Sampling Weights

4.1.1 Introduction, Basic Set- up and Introductory No-
tation

The panel of persons who volunteer to participate in Web surveys are used to
make estimates for entire populations, including segments who have only a small
theoretical chance to participate in the surveys. In our case these are the pop-
ulation subset of rare or infrequent Web users- A segment which in some popu-
lations may be very large. A successful estimation method will allow inference
based on panel data to be representative of the entire target population. In the
previous chapter I have outlined a general framework under which three com-
peting estimation procedures- a π, m and πm estimator class type have been
proposed. As discussed, a key strength in the underlying sequential structure of
the framework allows to directly use covariates in the estimation process which
otherwise would not be utilized as they invalidate the conditional independence
assumption. However, throughout this discussion has been underpinned by the
unrealistic assumption that the practitioner observes data which in practice is
unlikely to be available. In this chapter I will translate these theoretical ideas
into a realistic setting of a finite population survey sampling inferential problem
based on survey data collected from a Web access panel and a reference random
sample.
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s0

·s1
·s2

·s3

Figure 4.1: A graphical description of the three subsets of interest s1, s2 and s3 within the

frame of the finite population s0. In the Web panel context these represent respectively the

finite population (s0), the Internet active subpopulation (s1), the Web access panel volunteers

(s2) and the survey sample (s3) .

The sequential framework on which the three sets of estimators I proposed can
be visualized by the diagram in figure 4.1 where in the Web panel survey sample
context s0, s1, s2 and s3 represent respectively the unit sets of the finite popu-
lation members of interest (s0), the Internet active members in the population
(s1), the Web access panel volunteers (s2) and the survey sample respondents
(s3) from which measurement data is recorded. Throughout we have assumed
that the individual membership for all units k ∈ s0 in each set st, t = 0, .., 3
are fully observed along with the unit values of of variables Xt denoted xtst .
Earlier I outlined the different assumptions on the selection process leading to
s3 = (s0, s1, s2, s3) or the distribution of the covariates X2

s2 = (X0
s0 ,X

1
s1 ,X

2
s2)

which allow a sequential version of the conditional independence assumption to
hold. Under these assumptions inference on general population quantities of the
measurements of interest Y can be derived from the survey sample collected data
ys3 by any of the three estimation approaches.

In practice however, the practitionaire is likely to observe only the subset x2
s2 ∩

s3 = (x0
s3 ,x

1
s3 ,x

2
s3) of the covariate information, that is the values of covariates

x2 over the survey sample members. In more specific cases where the analyst is
a member of the panel owner the set of values x2 over the entire panel members
s2 may be available to process as well. To estabilish a link to the population
of interest the practionaire may use available population statistics (averages or
totals) of some but not necessarily all of x0

s0and x1
s1 , taken from external sources

such as census data or established large social surveys. Such a constraint on the
available data undermines the already strong theoretical assumptions and ulti-
mately limits the range of estimators and model fitting process. A good example
is the strong reliance in survey sampling practice on the GREG estimator and
the linear models underlying it, in large parts because it requires only population
level statistics for estimation.

To strengthen the plausibility of the conditional independence assumption and
broaden the range of estimation approaches, practitioners and academics (Taylor
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et al. (2001); Terhanian et al. (2000); Varedian and Forsman (2003)) suggest
combining the panel sample survey data and available population statistics with
information collected over a reference sample denoted by sR randomly selected
from the target population.

x0
1s0 x1

1s1

x0
2s0 ·s2(x2

s2) x1
2s1

.

.

.
·s3(ys3)

.

.

.
x0
Ps0 ·sR(x0

sR
,x1

sR
) x1

Js1

Figure 4.2: A description of the possible data available to the statistician analyzing Web panel

survey data. At best the analyst will observe the within panel collected data (x0
s2 ,x

1
s2 ,x

2
s2 ,ys3)

, reference survey data (x0
sR ,x

1
sR) and population statistics x0

1s0 , ...,x
0
Ps0and x1

1s1 , ...,x
1
Js1 .

Thus under a more realistic limited information case the optimum an analyst in
practice has at his disposal are the within panel collected data (x0

s2 ,x
1
s2 ,x

2
s2 ,ys3) ,

the reference survey collected data (x0
sR
,x1

sR
) and population statistics x0

1s0 , ...,x
0
Ps0

and x1
1s1 , ...,x

1
Js1 a diagram summarizing the available data is in figure 4.2. Ide-

ally the random reference sample is designed to collect specific data which is
considered relevant to the Web panel survey problem- This can be from an
π−estimation perspective such as the one taken by Harris Interactive which
coined the phrase webographics (Schonlau et al., 2007) for such covariates that
explain the process of panel volunteering, or from an m-estimation view where
then covariate will change on a survey-by-survey basis. However, in general
any large well designed random survey of the entire general population may be
considered potentially useful. The benefit in obtaining such a dataset is clear-
the range of models πt(x

t−1) and mt(x
t−1) which may be tested now are not

constraint by the limited pool of potential covariates available from secondary
sources such as national statistic databases, nor are we limited in applying only
models consistent with the use of (only) aggregate level data for inference.

To allow a model to be estimated, the same set of covariates must be observed
for both the web panel and reference samples. As noted by Lee and Valliant
(2009), the covariates should be measured in similar way in both surveys (e.g.,
identical question wording). Measurement differences for some factual insensi-
tive covariates such as age, sex, and perhaps race may be inconsequential even
if different modes are used in the surveys. But, for more complex socioeconomic
measures like income and assets, incompatibilities may be serious. This can lead
to biased estimates.
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As noted in previous section, the choice of an Internet or Web available segment
of the population is crucial in enhancing the inference power of the estimation
procedure when assuming a sequential framework. Thus the definition of mem-
bership into the Web available segment of s0 and panel membership needs to be
considered carefully so that any discrepancies between these definitions between
the two survey samples may cause serious measurement error in the estimation.
The interpretation of the term “Web available” is arbitrary and can vary among
surveys depending on operational decisions such as the survey measurements
used and their exact wordings. “Web available” could mean that a person has
Web access at home or it could mean access anywhere, including home, work,
libraries, or other locations. In developed countries with high Internet penetra-
tion “Web Usage” or “Web Active” can be used alternatively assuming that the
practical barrier for panel recruitment requires a certain minimum level of web
browsing or Online usage. The analyst must specify the exact term used which
is largely a function of the specific set of data available.

In the following I cover several issues related to the application of the structured
Web panel estimation framework through. I start in sections 4.1.2 and 4.1.3
by looking at the coverage of the reference survey and the use of the reference
surveys’s sample design weights in estimating model parameters and population
statistics. I then cover in length over section 4.2 the mechanics of calculating
estimators over the combined data of the reference and Web panel survey sam-
ples. In section 4.3 I describe several simulation studies to demonstrate the
basic algorithm and show some possible implications of not using the Web panel
or reference sample survey weights. In section 4.3.2 I consider the question of
sampling sR and s3, specifically the sample sizes of each survey and show that
conclusions differ when considering m or π-based estimators. In section 4.4 I
combine the previous estimation procedure with a sequential π−balanced and
calibration sampling design. I show that together with a πm−estimator, this of-
fers an estimation strategy which is double robust as well as robust to m−model
misspecification. I conclude this chapter with some conclusions, recommenda-
tions for future work and some final words on this research.

4.1.2 A Look at the Universe Coverage of the Reference
and Web Panel Survey Samples

The reference survey’s utility as a surrogate for the unobserved general popula-
tion distribution is directly linked to its design and any deficiencies it has vis a
vis the target population (Couper et al., 2001; Couper, 2008). The assumption
a reference survey covers probabilistically all segments of the population is espe-
cially questionable for data collected by commercial entities given questionable
design practice and low response rates. Valliant and Dever (2011) give a useful
taxonomy of the problem in the context of propensity score adjustments for Web
panel surveys which I build on to our sequential framework.
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The target population s0 can be devided into subsets covered and not covered
by the reference survey sampling frame, the Web active subpopulation, the Web
panel and the final set of sampled survey participants. This means that to iden-
tify how much of a population we can validly make inferences for, we need to
clarify this partition from the outset. Let s1 and s1 be the set of population
members defined by their availability (or not) to Internet web browsing. The set
of Web panelists is denoted by s2 and the reference survey sample is denoted by
sR drawn from s0R a subset of s0. Together, these describe the group of relevant
subpopulations. For example s0 = s0R ∪ s0R, where s0

R
is the population not cov-

ered by the reference sample, while the Web connected subpopulation which is
not covered by the reference survey sampling frame is s1

R
. A diagram describing

the entire multitude of sub populations is given in 4.3

s1 s1

s0
R

s1
R

s2 Panel s1
R

Not s2
R

(= s1
R
− s2

R
)

Covered s2
R

s3R
s3
R

s2R

s0R s1R s1R
Reference s2R(= s1R − s2R)
Covered

Web Population No Web s0

Figure 4.3: A description of the different sub populations defined by the two selection phases
leading to panel participation indicated by the numerical superscript and the reference survey
sampling frame coverage indicated by the subscript R. For example: The general population
covered by the reference survey sampling frame is s0R while the Internet connected subpopu-
lation which is not covered by the reference survey sampling frame is s1

R
. The non Internet

connected population which is not covered by the reference survey sampling frame is s1
R

while

that which is covered by reference sampling frame is s1R.

Of course the discrepancy between s0R the covered population of sR compared
with s0 is a function of the survey sampling process applied, the population of
interest, the survey topic and even the institution conducting the survey Groves
et al. (2004). In principle, area or face to face (F2F) sampling gives the best
coverage of s0, however, as Valliant and Dever (2011) note, even in well designed
and executed area probability samples certain groups by as much as 25 percent
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(U.S. Census Bureau, 2002,). In the UK, official government social surveys such
as Labour Force Survey (LFS) and the British Crime Survey (BCS) use as a sam-
pling frames the Postcode Address File (PAF)Lynn et al. (1999) which entirely
excludes certain parts of the population1 Pickering (2008). More broadly there is
a steadily increase of non cooperation with survey interviewers- The LFS reports
response rates decline from 80.02% in 1993 to 57% in 2012 Steel (2012), with
some governmental regions - London and West Midlands Metropolitan Council-
achieving response rates of just over 50% Barnes et al. (2008). For large rep-
utable commercial surveys the state is even worse. For example the National
Readership survey (NRS) reports a proportion of sample successfully contacted
in the first place is 84% (in 2010) and the proportion of identified respondents
who complete an interview is 61% (in 2010) which suggests an overall response
rate, which in 2010 was 52%. In London the response rate is just over 40% (NRS
and Ipsos MORI official website, 2010) .

More concerning is that area or F2F sampling is dramatically more expensive
than other survey sampling methods. The American Community Survey which
includes census-type demographic questions (household and person level) is col-
lected by a mixed mode design allowing a good basis for comparison. The cost
for a completed mail form is $10, a completed computer-assisted telephone in-
terviewing (CATI) survey coasts $18 per interview while a computer-assisted
personal interviewing (CAPI) survey costs $140 per interview. In the UK the
BCS reports a unit cost of 100 ($162) per achieved case (Betts, 2010).

However, basing the reference survey on a cheaper sample of landline telephones
introduces substantial coverage problems as s0

R
will be the segment of the pop-

ulation which cannot be reached by a landline phone either because they do
not have a phone at all or, as is increasingly the case are members of a house
hold which use only mobile/wireless phones. This segment can be large. For
example, in the UK National Readership Survey (NRS), in the period January
through June 2010, found that 45.7 percent of persons 25 to 29 years old lived
in households with only mobile phones, while as a whole 7% of UK households
are without a fixed landline Betts (2010).

The coverage level of sR is reflected in its unit selection probability denoted here
πRk. This probability may be unequal due to clustering, stratification, post-
stratification, attrition, purposive oversampling and other non-response adjust-
ments. Depending on the survey objective, data and modeling constraints πR are
constructed to project the sample to s0 or limited to the subset s0R (see 4.3). Still,
to focus the discussion on the Web panel question I assume throughout that πR
are known design probabilities that allow total population s0 coverage. Clearly,

1For example, the communal establishment establishment resident population made up
about 2.1 per cent of the adult population at the time of the 2001 Census
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that the reference survey itself needs adjustment is problematic, however, a mit-
igating argument may be that problem of non sampling errors in classic survey
designs are well researched. Nevertheless, when discussing the calculation of the
estimators I will occasionally make suggestions on the composition of the auxil-
iary data used for the reference survey adjustment models to increase the overall
robustness of the combined approach.

Lastly note that strictly speaking the reference survey probabilities should be
adjusted to inflate to s0 − s2 or s0R − s2R, that is respectively, the covered or
general population excluding the Web panel segment. This adjustment removes
the overlap of persons who are in panel s2 as well as the reference sample which
is necessary for selection models to be estimated cleanly (Valliant and Dever,
2011). Similar to the situation in an observational study where the treated and
the non treated cases are disjoint. Typically, however, s2 is so small relative to
s0R or s0 that this further adjustment is unnecessary. For example, if population
frame consists of the approximately 49 million adults (16+) in the UK who have
either a landline or a mobile phone, and a large volunteer panel has 300 thousand
adult panelists, all of whom have a telephone, then the panel would constitute2

only 0.0057 percent of the population.

4.1.3 The Role of Sampling Weights When Modeling Sur-
vey Data

The mechanically combined data of panel and reference survey data are used to
implement in practice the different estimation strategies introduced in the pre-
vious chapter. The basic idea I follow for each of the estimation procedures is of
estimating by inverse probability weighting (IPW) over the available dataset the
estimation algorithms which assumed full information over the three populations
subsets s3.

To understand the role of the weights take for simplicity a two phase π-estimator,
while conclusions can be then applied easily to a three phase π, m or πm ap-
proach. Consider a two phase framework where first s2 of panel members is
drawn from s0, followed by a selection of an ad hoc survey sample s3 from the
panel. In addition a parallel sample sR is selected from the population. Through-
out assume that labels s2, s3 and sR and their associated measurements are fully
observed. For estimation we combine the datasets of panelists and the random
survey respondents into one set denoted s, that is s = s2 ∪ sR. The dataset s
is used primarily for estimating Pr(S2

k = 1|X0
k = xk, s

0) as I assume p(s3|s2,x2)

2Note, however, that there will be overlap between the volunteer subuniverse and the
reference universe; that is, s1R in Figure 4.3 is not empty. For example, if s0R consists of persons
with landline phones, there will be some who volunteer to be part of a panel.
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the within panel survey selection process, where X2 = (X0,X2) and X2 measur-
ing panel related information, either follows closely its planned design or that
the panelists non response element is well understood- a reasonable assumption.
Under such setting the π−Estimator is

Ŷπ =
∑
k∈s3

Ykπ̂2k(x
0)−1π−13k /

∑
k∈s3

π̂2k(x
0)−1π−13k (4.1)

where π̂2 is the estimated unit probability of joining the panel and π3k is assumed
known for all panelists. The question here is the role of reference survey weights

πR in building Ŷπ.

If pairs (s2k,x
0
k) were observed over all s0 then by considering a logistic model

π2(x
0
k;α) = exp(x0′

k α)/[1 + exp(x0′

k α)] the parameters α could be estimated
through the equations

Us2(s
0) =

∑
k∈s0

[S2
k − π2(x0

k;α)]x0
k = 0 (4.2)

resulting with consistent estimators π2(x
0
k; α̂) = π̂2k of the unit participation

probability. In practice however, we are limited to s = s2∪sR the pooled sample
assembled for estimation. Define a new indicator

Sk =

{
1 if k ∈ s
0 if k /∈ s

defined over s0 of whether unit k is available to the analyst. When sR and s2

are processed independently - possibly by separate organizations - this leaves
the possibility that a unit k may be included in both surveys, however, as dis-
cussed earlier, the sizes of sR and s2 are most likely small relative to the general
population so that

E(Sk) = Pr(S2
k = 1) + Pr(SRk = 1)− Pr(S2

k · SRk = 1)

≈ π2k + πRk (4.3)

which is understood that Pr(S2
k · SRk = 1) ≈ 0, that is for practical purposes no

person can be selected for both panel and survey.

A naive approach is to estimate π2k the unit selection probability into the Web
panel over the set s directly without the use of the reference weights

Û =
∑
k∈s

[S2
k − π2s(x0

k;αs)]x
0
k = 0 (4.4)

which in fact models S2
k in the combined sample s by a logistic model, that is

Pr(S2
k = 1|, sk = 1,X0

k = x0
k) = exp(skx

0′

k αs)/[1 + exp(skx
0′

k αs)]. Denote the
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consistent selection probability estimates by π̂2sk = π2s(x
0
k; α̂s).

To see the potential bias resulting in using π̂2sk to estimate π2k when calculating
the π-estimator (4.1) assume that ignorability of s given x0 holds, and denote
E(Yk|x0) = mk(x

0) then

E(Ŷπ) = E

(∑
k∈s0

SkYkS
3
kπ̂
−1
2skπ

−1
3k /

∑
k∈s0

SkS
3
kπ̂
−1
2skπ

−1
3k

)

≈ Es

{
n−1s Ex0

(∑
k∈s

mk(x
0)|s

)}

= n−1Es

{∑
k∈s0

Skmk

}
= n−1

∑
k∈s0

(πRk + π2k)E(Yk) (4.5)

where the second line is arrived by iterative expectations and assuming π̂2sk are
consistent. Specifically, for fixed s

E

(∑
s

YkS
3
kπ̂
−1
2skπ

−1
3k /

∑
s

S3
kπ̂
−1
2skπ

−1
3k

)
≈

∑
sE{EE(YkS

3
kπ
−1
2skπ

−1
3k |x0,y, s2)|x0}∑

sE{EE(S3
kπ
−1
2skπ

−1
3k |x0, s2)|x0}

=

∑
sEE(YkS

2
kπ
−1
2sk|x0)∑

sEE(S2
kπ
−1
2sk|x0}

= n−1s
∑
s

EE(Yk|x0
k).

The last line in (4.5) is arrived by fixing ns = n2 +nR to be n which is reasonable
in large sample sizes and noting from (4.3) that E(Sk) = π2k + πRk.

To make things more tangible, assume that p(sR) is a simple random sample
over s0 and that s2R = s2 ∩ sR is negligible relative to s0 so then even after an
adjustment to the reference survey weights the unit selection probabilities are
πRk ≈ nR/N and so

n−1
∑
s0

(πRk + π2k)E(Yk) =
nR
n
E(Ys0) + n−1

∑
s0

π2kE(Yk).

Now, by noting that

E(n2Ys2) = EE(
∑
s0

S2
kYk|x0) =

∑
s0

π2kE(Yk)

and approximating n2 to be constant, then the expectation of the π-estimator is

E(Ŷπ) ≈ nR
n
E(Ys0) +

n2

n
E(Ys2). (4.6)

Thus for the common case where the Web panel set s2 is negligible relative to

s0 but is much larger than sR the reference survey E(Ŷπ) ≈ E(Ys2), the panel
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unadjusted average. Only when the reference survey is by a large order bigger
than the panel survey then we can expect valid estimates. This is an example
of the bias from the use of unadjusted estimating equations ignoring the refer-
ence survey selection weights. In the literature of case control studies this bias is
corrected by a post hoc manual adjustment of the estimated intercept parameter.

As implied from the above discussion, the substantial bias underlying 4.6 can be
removed by weighting the estimating equations (4.4) with the reference survey
weights. To see this, for a given panel set s2 and a randomly selected reference
survey sample sR define the individual inclusion probabilities

πk =

{
1 k ∈ s2

πRk k ∈ sR.
(4.7)

Again, the definition of πk is partial as it ignores the possibility that k ∈ (s2∩sR),
however, ignoring this small overlap the underlying idea is that by including πk
in the estimation equations, the available data s covers3 s0. Specifically, we
estimate now π2k by

Ûπ =
∑
k∈s

π−1k [S2
k − π2(x0

k;α)]x0
k = 0 (4.8)

which are approximately unbiased for the estimating equations over the entire
populations given in (4.2). To see this note that

E(Ûπ −Us2(s
0)) = E

(∑
k∈s0

(Skπ
−1
k − 1)(S2

k − π2(x0
k;α))x0

k

)

= EE

( ∑
k∈s0−s2

(SRkπ
−1
Rk − 1)(0− π2(x0

k;α))x0
k|s2
)

which is equal to zero as E(SRkπ
−1
Rk|s2) = 1 given (i) independence between the

processes of s2 and sR and (ii) ignoring the possible small overlap between sR
and s2. Thus given conditional independence on x0 and under model π2(x

0;α)

E(Ŷπ) = Ex0E

(∑
k∈s0

S3
kYkπ̂

−1
2skπ

−1
3k //

∑
k∈s0

S3
k π̂
−1
2skπ

−1
3k /|x

0

)

≈ Ex0

(∑
k∈s0

E(Yk|x0)N−1

)
= E(Y)

as π̂2k/π2k ≈ 1 which holds as the size of the panel is large and that we assume
π3 is the known unit sampling probability of a random panelist into the specific

3In practice let s0 − s2 ≈ s0 and directly use the reference survey probabilities with no
adjustment. If the analyst wishes nevertheless to adjust the reference survey weights so that it
appears the reference survey sampling frame excludes the panel population s2 ,simply calculate

a new weight π
′

Rk = πRk(N−n2

N ). Then
∑
sR
π

′−1
Rk +

∑
s2 π
−1
2k = N .
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survey sample.

Two comments: Our premise above is that sR is processed independently from
s2, however, when the same organization controls the two survey sample pro-
cesses we can avoid the overlap s2 ∩ sR by simply including a screening question
in the reference survey protocol. If this is applied the reference survey sampling
frame excludes the panel population s2 and the new weight π

′

Rk are such that∑
sR
π
′−1
Rk +

∑
s2 π

−1
2k = N . A second point is that when x0 include both design

and selection covariates for sR and s2 respectively the discussion above implies
that we can in fact ignore the weights π−1k in estimating π2k and proceed with

finding π̂2k directly from Ûπ and inflating the estimates by nR

N
or if taking into

account the overlap nR

N−n2
.

It is also instructive to clarify on the common case where the analyst is an
end user of the dataset independent of the panel management team and thus not
exposed to the entire panel data set s2, but rather only to the final survey sample
set s3. This means the dataset available is s = sR ∪ s3 with known weights πRk
for units sR and weights π3k for the panel respondents s3 to the survey. Still,
even here the analyst can draw valid inference. The only adjustment necessary
is in the definition of the combined selection probability πk defined in (4.7). In
this case, for a given panel set s2 the unit selection probability attached to each
member of the combined dataset s is now

πk =

{
π3k k ∈ s3

πRk k ∈ s0 − s2.

Relying on the same conditional independence assumptions stated above, the
estimation equations (4.8) defined over s = s3∪sR and weighted by π−1k also give
consisted estimates of the panel selection probabilities.

Interestingly, the same bias manifests itself when calculating our proposed m-
type estimators, that is estimation by sequential linear regression models. Al-
though model parameters β are consistent even when the reference survey weights

are ignored, the relevant finite population sizes such as N , n1,X
0

s0 and X
1

s1 can-
not be estimated without the use of correct reference survey weights. I give a
numerical demonstration of this in a simulation study described in section 4.3.
Furthermore, if probabilities πRk contain information on the design or post selec-
tion adjustment covariates not recorded directly into the dataset s, ignorability
will not hold and neither m or π-type estimation give consistent results. This
idea will also be demonstrated in the second part of the simulation study in
section 4.3.
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4.2 Adjusting the Estimation Algorithms

In the following sections I detail the estimation procedure over the combined
data of panel and reference survey samples for three specific examples of a π, m
and πm estimators. In all three I continue with the idea of IPW estimation of
the estimation mechanism under a fully observed finite population set.

4.2.1 The case of π-type Estimator

The process aims to compute the estimator

Ŷπ3s
3 = N−1

∑
s3

Ykπ̂
−1
3k ; where π̂3k = π̂1k · π̂2k · π̂3k

under a three phase sequential framework.

Our first step is to estimate π1k = Pr(S1
k = 1|s0) the internet selection probability

- defined for some populations as the probability of being a frequent Web user.
If over the entire population of interest s0 the pairs (X0, S1) are observed, one
approach is to assume that unit probability is independent and follows logit
model p(s1k|x0, s0) = exp(x0′

k ;α0)/[1 + exp(x0′

k ;α0)] which I denote π1k(x
0;α0)

and also that 0 < π1k(x
0;α0) ≤ 1 for all k ∈ s0. A consistent estimator α̂0

π

would be the solution to the estimation equations

Us1(s
0) =

∑
s0

(S1
k − π1k(x0;α0))x0

k = 0.

In practice, s0 = s1 ∪ s1 is not observed but rather only a random sample sR =
sR ∩ (s1 ∪ s1) and we can replace the estimating equations Us1(s

0) by

Ûπs1(sR) =
∑
s0

SRk[S
1
k − π1(x0

k;α
0)]x0

kπ
−1
Rk = 0

=
∑
sR

[S1
k − π1(x0

k;α
0)]x0

kπ
−1
Rk = 0 (4.9)

where SRk and πRk are the unit selection indicator and selection probability
associated with the sampling design p(sR). That Ûπs1(sR) is unbiased for Us1(s

0)
is immediate from

E[Ûπs1(sR)− Us1(s0)] = EE

{∑
s0

(SRkπ
−1
Rk − 1)[S1

k − π1(x0
k;α

0)]x0
k|s1,x0

}

which is equal to zero as we assume that p(sR) is by design independent of In-
ternet connectivity. Thus when πRk are correctly calculated and π1(x

0
k;α

0) is
correctly specified, the estimated probabilities π̂1k = π1k(x

0; α̂0) are consistent
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estimators.

Similarly, to estimate the conditional unit probability of joining the Web panel we
can assume that selection into the panel is independent and follows a logit model
p(S2

k = 1|x1, s1) = exp(x1′

k , s
1;α1)/[1 + exp(x1′

k , s
1;α1)], denoted by π2k(x

1;α1)
and that 0 < π2k(x

1;α1) ≤ 1 for all k ∈ s1. If pairs (x1, s2) are observed over
the set of Internet population s1 = s2 ∪ (s2 ∩ s1) consistent estimators α̂1 would
be the solution to the estimation equations

Us2(α
1, s1) =

∑
s1

[S2
k − π2(x1

k;α
1)]x1

k = 0.

However, we do not observe the entire Internet connected population but rather
a sample of it extracted from the artificially combined dataset s = (sR ∪ s2) of
reference survey data and Web panel recruitment data. As in section 4.1.3 above
we define indicator Sk over s that is equal to one when k ∈ s and zero otherwise
and attach to each unit k in s the artificial unit selection probabilities

πk =

{
1 k ∈ s2

πRk k ∈ sR

which is a partial definition as it ignores the possibility of a unit k being a mem-
ber of both s2 and sR. However, throughout I assume Pr(SRk · S2

k = 1|s0) ≈ 0
which can be explained by the separate processes of panel and reference survey
selection implying that Pr(SRk · S2

k = 1|s0) = Pr(SRk = 1|s0)Pr(S2
k = 1|s0) as

well as noting that p(s2|s0) ≈ 0 for a large finite population.

Given weights π−1k , we calculate consistent estimators π̂2k of π2k by

Ûπ =
∑
k∈s

π−1k [S2
k − π2(x0

k;α)]x0
k = 0

which in 4.1.3 is shown to be approximately unbiased of the unavailable finite
population estimation equation Us2(α

1, s1) defined over the entire Internet con-
nected population s1.

Finally, we observe (X2
k, S

3
k) for all k ∈ s2 the panel population. Assuming the

sample selection design and unavoidable unit non response can be accurately
modeled jointly by

E(S3
k |x2, s2;α2) = (1 + e−x

2′
k α2

)−1

denoted by π3k(x
2;α2) and that 0 < π3k(x

2;α2) ≤ 1 for all k ∈ s2 then consistent
estimates α̂2 of parameters α2 solve the estimation equations

Us3(s
2) =

∑
s2

(S3
k − π3k(x2;α2))x2

k = 0.
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Let π̂3k = π3k(x
2; α̂2) and calculate over the entire panel s2. As noted above, the

selection process governing s3 is in reality a combination of a designed random
sample and an unknown non response mechanism. Still it is reasonable to assume
that for the panel management team the latter is well understood given the
unique control, observational power and data recording abilities an Internet panel
has. The sampling model is known by design and so together a correct model
specification of this selection process is expected.

The alternative One Phase approach

To isolate the benefit of including an Internet selection phase I introduce briefly a
one phase estimator which ignores the Internet usage phase and model Pr(S2

k =
1|s0) directly. We model over s = s2 ∪ sR and the indicator

Sk =

{
1 k ∈ s2

0 k /∈ s2

with associated probabilities πk = 1 for all members in s2 the panel sample and
πk = πRk for all units of sR the reference survey sample. I hypothesize the model

Pr(S2
k = 1|x0, s0) = [1 + e−x

0′α]−1 denoted π2(x
0
k;α) then parameters α can be

estimated by the likelihood equations

Us2(s
0) =

∑
s0

[S2
k − π2(x0

k;α)]x0
k = 0

but as only s is observed the pseudo likelihood equations are used

Ûπs2(s) =
∑
sR∪s2

[S2
k − π2(x0

k;α)]x0
kπ
−1
k = 0

=
∑
s0

Sk[S
2
k − π2(x0

k;α)]x0
kπ
−1
k = 0. (4.10)

The main distinction is that Pr(S2
k = 1|s0) is modeled without the valuable

information available in X1 such as Internet behavioral information.

4.2.2 The case of m-type Estimator

Take the case where Yk over the population of interest can be modeled by normal
linear regression. The general idea which I reviewed in chapter 3 is that under a
three phase sequential framework we can describe the estimand E(Ys0) by

E(Ys0) = N−11
′

s0E
{
E
[
EE(Ys0|x2

s0)|x1
s0

]
|x0
s0

}
= N−11

′

s0E
{
E
[
EE(Ys3|x2

s2 , s
3)|x1

s1 , s
2
]
|x0
s0 , s

1
}

(4.11)
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where the second line is due to the sequential conditional independence property.

This suggested the following estimation approach: assume the distribution of
Y over the sub population s2 follows a linear regression model and so process
p(s3|s2) is ignorable for this regression model over s2. Thus fitting the regression
over s3 will give consistent estimates of E(Yk|x2) over s2. Then assume over s1

that E (E(Yk|x2)|x1), a function of X1 can be modeled by a regression model as
well. Again, by ignorability, this model can be fitted only over s2 giving consis-
tent estimators. The remaining unobserved values over s1 can be predicted using
X1
s1−s2 . The process continues in same fashion over s0 using X0 . The average of

these last predictions is a consistent estimator of the population expected value.

More technically, estimation proceeds as follows. First, definem2s3 = E(Ys3|x2
s2 , s

3)
, m1s2 = E(m2s2 |x1

s1 , s
2) and m0s1 = E(m1s1|x0

s0 , s
1) and from 4.11 this gives the

equation

E(Ys0) = N−11
′

s0E
{
E
[
E(m2s2|x1

s1 , s
2)
]
|x0
s0 , s

1
}

= N−11
′

s0EE(m1s1|x0
s0 , s

1)

= N−11
′

s0E(m0s0)

thus, we start by denoting for k ∈ s3 the observed panel response sample yk =
m3k, and specifying a parametric regression model E(Yk|X2

s2 ;β2) = x2′

k β2 with
independent unit variance σ2

2k = W−1
2k over the subpopulation s2. Let m2k =

X2′

k β2 and note that given ignorability the model can be fitted over the observed
set s3. The consistent estimators β̂2 of the model parameters solve the estimating
equations

Um2(s
3) =

∑
s3

(Yk − x2′

k β2)x
2
kw2k = 0 (4.12)

which are observed in their entirety. Let m̂2k = X2′

k β̂2 be a consistent estimator
of m2k. Compute m̂2k over s2, giving m̂2s2 .

Next, specify the parametric regression model E(m2k|x1
s1 ;β1) = X1′

k β1 with in-

dependent unit variance σ2
1k = W−1

1k over the subpopulation s1. Let m1k = X1′

k β1

and note that given ignorability the model can be fitted over the observed subset
s2. The consistent estimators β̂1 solve the estimation equations

Um1(s
2) =

∑
s2

(m̂2k − x1′

k β1)x
1
kw1k = 0. (4.13)

Let m̂1k = X1′

k β̂1 be then a consistent estimator of m1k. If possible we would
wish to calculate m̂1k over s1, however instead, we predict the m̂1k’s over the ran-
dom subset of the Internet connected population s1R∪s2 using the available X1

k’s.
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In the last step, specify a parametric linear regression model E(m1k|x0
s0 ;β0) =

x0′

k β0 with independent unit variance σ2
0k = w−10k over the general population

s0. Let m0k = x0′

k β0 and again note that under ignorability E(m1k|x0
s0 ;β0) =

E(m1k|x0
s0 , s

1;β0). If the entire Internet population was observed, consistent
estimators of parameters β0 would be found by the estimation equations

Um1(s
1) =

∑
s1

(m̂1k − x0′

k β0)x
0
kw0k = 0. (4.14)

However, instead we fit the m̂1k’s over the available subset of the Internet con-
nected population s1R ∪ s2 using the available x1

k’s and so we can estimate the
estimating equations (4.14) by

Ûπm1(s) =
∑
s1

Sk(m̂1k − x0′

k β0)x
0
kπ
−1
k w0k = 0

=
∑
s1R∪s2

(m̂1k − x0′

k β0)x
0
kπ
−1
k σ0k = 0

which under the assumption of independence between the panel and reference
survey selection process is an unbiased estimator of (4.14).

To calculate the m−estimator, ideally we would proceed by predicting the values
m̂0k = X0′

k β̂0 over the entire target population s0 using the available X0
s0 and

estimate the population average by

Ŷm3 = N−1
∑
s0

m̂0k

however, when the entire range of relevant covariates X0
s0 or X

0

s0 are not known-

a likely scenario- we replace Ŷm3 with

Ŷm3 = N−1
∑
s

π−1k m̂0k

= N−1
∑
s

π−1k X0′

k β̂0 = X̂
0′

π β̂0 or alternatively by

= N̂−1π
∑
s

π−1k X0′

k β̂0 = X̃
0′

π β̂0

where N̂−1π =
∑

s π
−1 and so X̃

0′

π is understood to be a ratio estimator of the
population mean of covariates x0 over the target population.

Finally, as in chapter 3 I describe Ŷm3 in a sequential ’Hat’ format, which will
be useful in explaining our π−balanced sampling strategy in section 4.4. Recall
that under full observed dataset d3s3

Ŷm3 = N−1
∑
s3

h2kyk
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where h2k = 1
′

s0H
1
s1s2X

2
s2A

2
s3X

2
kW

2
k and H1

s1s2 = H0
s0,s1H

1
s1,s2 , and for any

t = 1, ..., T let Ht−1
st−1st = Xt−1

st−1A
t−1
st Xt−1′

st Wt−1
st with At−1

st = (xt−1
′

st Wt−1
st Xt−1

st )−1

and Wt−1
st =diag(σ2

t−1k)
−1 a nt×nt diagonal matrix of model weights used in the

estimation equations of model mt−1.

However, as s0 and s1 based quantities are estimated over sR the m-estimator
takes the following shape

Ŷm3 = N̂−1π 1
′

nĤ
0
πs,s∩s1Ĥ

1
πs∩s1,s2H

2
s2,s3ys3

where H2
s2,s3 = X2

s2(X
2′

s3W
2
s3X

2
s3)
−1X2′

s3W
2
s3 is the normal hat matrix of a linear

regression fit over s3and projected to s2, while

Ĥ0
πs,s∩s1 = X1

s∩s1π
−1
s∩s1(X

1′

s2W
1
s2X

1
s2)
−1X1′

s2W
1
s2

Ĥ1
πs∩s1,s2 = X0

sπ
−1
s (X0′

s∩s1π
−1
s∩s1W

0
s∩s1X

0
s∩s1)

−1X0′

s∩s1π
−1
s∩s1W

0
s∩s1

with W2
s3 = diag(σ2

2k)
−1, k ∈ s3 , W1

s2 = diag(σ2
1k)
−1, k ∈ s2 and W0

s∩s1 =

diag(σ2
0k)
−1, k ∈ s ∩ s1. Note that from Ĥ1

πs∩s1,s2 it is clear that the model is

fit over s2 which is observed entirely but projected to the unobserved Internet
population s1 by the selection probabilities π−1s∩s1 of the combined data set s.

4.2.3 The case of πm-type Estimator

The estimation procedure intertwines the the m-estimator procedure with the
π-estimator selection probabilities.

Over the panel population s2

1. Assume that panel survey selection design and the unavoidable unit non
response can be accurately modeled together by

E(S3
k |x2, s2;α2) = (1 + e−X

2′
k α2

)−1

which I denote by π3k(x
2;α2) and that 0 < π3k(x

2;α2) ≤ 1 for all k ∈ s2.
Consistent estimates α̂2 of parameters α2 solve the estimation equations

Us3(s
2) =

∑
s2

(S3
k − π3k(x2;α2))x2

k = 0.

Let π̂3k = π3k(x
2; α̂2) and calculate for all units over the entire observed

panel s2.
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2. Denote yk = m3k for k ∈ s3 and specify the parametric regression model
over the subpopulation s2

E(m3k|x2
s2 ;β2) = x2′

k β2

with independent unit variance V (m3k|x2
s2) = σ2

2k . Let m2k = X2′

k β2

and note that given ignorability the model can be fitted over the observed
set s3. The consistent estimators β̂2π of the model parameters solve the
estimating equations

Um3(s
3) =

∑
s3

(Yk − x2′

k β2)x
2
kσ
−2
2k π̂

−1
3k = 0 (4.15)

which are observed in their entirety. Denote m̂2πk = X2′

k β̂2π and compute
over s2, giving the vector m̂2πs2 .

Over the available Internet sub-population s1R ∪ s2

1. Assume that the panel self selection process is independent, individual and
follows

E(S2
k |x1, s1;α1) = (1 + e−X

1′
k α1

)−1

over the Internet subpopulation. Denote the unit probabilities by π2k(x
1;α1)

and assume that 0 < π2k(x
1;α1) ≤ 1 for all k ∈ s1. As discussed earlier,

the estimator α̂1
π is the solution to the equations

Ûπs2(s) =
∑

s1 Sk(S
2
k − π2k(x1;α1))x1

kπ
−1
k = 0

=
∑

s1R∪s2
(S2

k − π2k(x1;α1))x1
kπ
−1
k = 0

where s1R = s1∩sR is the set of reference survey respondents who are defined
as Internet population members. Let π̂2k = π2k(x

1; α̂1
π) and calculate these

estimated unit probabilities for all k’s over s1R ∪ s2.

2. Specify the parametric regression model over the subpopulation s1

E(m2k|x1
s1 ;β1) = X1′

k β1

with independent unit variance V (m2k|x1
s1) = σ2

1k . Let m1k = X1′

k β1 and
note that given ignorability E(m2k|x1

s1 ;β1) = E(m2k|x1
s1 , s

2;β1) and so
the model can be fitted over the observed subset s2. The model consistent
estimators β̂1π solve the estimation equations

Um2(s
2) =

∑
s2

(m̂2πk − x1′

k β1)x
1
kσ
−2
1k π̂

−1
2k = 0. (4.16)

Denote m̂1πk = X1′

k β̂1π and calculate the predictions m̂1πk’s over the avail-
able random subset of the Internet connected population s1R ∪ s2 using the
observed X1

k’s.
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Over the available population data sR ∪ s2

1. Estimate the probability of being a frequent Web user, under the assump-
tion

E(S1
k |x0, s0;α0) = (1 + e−X

0′
k α0

)−1

which I denote π1k(x
0;α0) and that 0 < π1k(x

0;α0) ≤ 1 for all k ∈ s0.
A consistent estimator α̂0

π can be found as the solution of the following
estimation equations

Ûπs1(s) =
∑

s0 Sk(S
1
k − π1k(x0;α0))x0

kπ
−1
k = 0

=
∑

sR∪s2(S
1
k − π1k(x0;α0))x0

kπ
−1
k = 0.

calculated over the available random subset of s0. Let π̂1k = π1k(x
0; α̂0

π)
and calculate over the combined set sR ∪ s2.

2. Specify a parametric linear regression model

E(m1k|x0
s0 ;β0) = X0′

k β0

with independent unit variance V (m1k|x0
s0) = σ2

0k over the general pop-
ulation s0. Let m0k = X0′

k β0 and again note that under ignorability
E(m1k|x0

s0 ;β0) = E(m1k|x0
s0 , s

1;β0) which implies that model fitting can
be over s1. We fit the m̂1πk’s over the available subset of the Internet
connected population s1R ∪ s2 using the available X1

k’s by consistently esti-
mating β0 using the following equations

Ûπm1(s) =
∑
s1

sk(m̂1πk − x0′

k β0)x
0
kπ
−1
k σ−20k π̂

−1
1k = 0

=
∑
s1R∪s2

(m̂1πk − x0′

k β0)x
0
kπ
−1
k σ−20k π̂

−1
1k = 0

denote m̂0πk = X0′

k β̂0π. It is interesting to note that πk reshapes the
estimating equations to resemble the distribution of s1 while π̂1k introduces
selection consistency towards the model distribution over s0 from s1.

The m−estimator is calculated over the combined reference and panel survey
sample

Ŷπm3 = N−1
∑
s

π−1k m̂0πk

= N−1
∑
s

π−1k X0′

k β̂0π

= X̂
0′

π β̂0π

or when the size of the population N is not known, or for statistical stability
reasoning we replace the denominator with N̂π =

∑
s π
−1
k .
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In parallel to the m-estimator I describe Ŷπm3 in a sequential ’Hat’ format. In
the case where d3s3 is available in full

Ŷπm3 = N−1
∑
s3

h2πkYk

Where h2πk = 1
′

s0H
1
πs1s2X

2
s2A

2
πs3X

2
kW

2
kπ̂
−1
3k and H1

πs1s2 = H0
πs0,s1H

1
πs1,s2 , and for

any t = 1, ..., T let Ht−1
πst−1st = Xt−1

st−1A
t−1
πst X

t−1′
st Wt−1

st π̂
−1
tst with At−1

πst = (Xt−1′
st Wt−1

st π̂
−1
tstX

t−1
st )−1

and π̂−1tst=diag(π̂−1tk )−1 a nt× nt diagonal matrix of estimated selection probabil-
ities calculated separately.

Replacing s0 and s1 quantities by reference survey estimators the πm-estimator
takes the following shape

Ŷπm3 = N̂−1π 1
′

nĤ
0
πs,s∩s1Ĥ

1
πs∩s1,s2H

2
πs2,s3Ys3

where H2
s2,s3 = X2

s2(X
2′

s3W
2
s3π̂

−1
3s3X

2
s3)
−1X2′

s3W
2
s3π̂

−1
3s3 is the weighted hat-type ma-

trix of a linear regression fit over s3and projected to s2, while

Ĥ0
πs,s∩s1 = X0

sπ
−1
s (X0′

s∩s1π
−1
s∩s1W

0
s∩s1π̂

−1
1s∩s1X

0
s∩s1)

−1X0′

s∩s1π
−1
s∩s1W

0
s∩s1π̂

−1
1s∩s1

Ĥ1
πs∩s1,s2 = X1

s∩s1π
−1
s∩s1(X

1′

s2W
1
s2π̂

−1
2s2X

1
s2)
−1X1′

s2W
1
s2π̂

−1
2s2

where s∩s1 = s1R∪s2 and with W2
s3 = diag(σ2

2k)
−1, k ∈ s3 , W1

s2 = diag(σ2
1k)
−1, k ∈

s2 and W0
s∩s1 = diag(σ2

0k)
−1k, ∈ s∩ s1. Note that from Ĥ1

πs∩s1,s2 it is clear that

the model is fit over s2 which is observed entirely but projected to the unobserved
Internet population s1 by the selection probabilities π−1s∩s1 of the combined data
set s .

4.3 Simulation Studies to Demonstrate Basic

Properties of Procedure

4.3.1 Testing the Basic Algorithm and the Use of Survey
Weights

In the following section I describe a simple simulation study demonstrating the

basic properties of the three sequential estimators Ŷπm, Ŷπ and Ŷm under a set-
ting more close to practice, that is when the estimators are calculated with an
independent reference survey sR. I use the available set up to examine two addi-
tional points. First is to demonstrate that modelling sequentially, while adding
modeling burden by definition, may still be more efficient than a single model
when each modeled sequence is more parsimonious. The second point I make is
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to demonstrate the behaviour of the estimators when the sampling weights are
ignored. As before the estimand of interest is the population average Ys0 , the
simulation is repeated 2, 000.

The simulated population is constructed as follows. The finite population s0 is of
fixed size N = 50, 000 where the set of X0 type of covariates have the following
distribution

(q0,wp, x0) ∼ N

1,

1 0.3 0.3 0.3 ..
1 .. .. ..

1 0.3
0.3 1
0.3 .. .. 1


where p = 1, ..., 5. That is a multivariate normal distribution of seven variables.
I assume throughout that only covariate X0 is observed to the analyst while q0

and the set of variables W 1, ....W 5 cannot be direcetly used.

Our interest is restricted to a single measurment of interst which has the following
distribution

Yk = 1 + x0k + 0.2w1k − .25w2 + 0.5w3 + 0.9w4 − 0.1w5 + εk

with independent standard normal errors. The three phase selection process
starts with s1 randomly selected by

p(s1 = 1|x0) = (1 + e2.5+0.8x0k)−1

which results in an ’Internet connected population’ of approximately E(n1) ≈
27, 000. The (self) selection of Web panel s2 is simulated by the process

p(s2 = 1|x1, s1) = (1 + e−1+0.08x0k+0.025x1k)−1

where

X1
k =

{
eα
′wk ∀k ∈ s1

− ∀k ∈ s1
with α′wk = 0.5w1+0.5w2−0.3w3+0.3w4+0.05w5+εk

which results in an average response rate of 0.25 from s1 (the Internet population)
and a panel size E(n2) ≈ 7, 000. Note that the analyst observes only X1 while
the set W0 of covariates are unobserved. Finally, assume a survey sample s3

is randomly selected by known design on panel behavior statistic X2, with a
standard normal distribution defined over the s2. The sampling design takes the
form

p(s3 = 1|x2, s2) = (1 + eα3−0.5x2k)−1
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where α3 = −4.5 resulting in an average survey sample size E(n3) ≈ 1, 000.

To assist with estimation a reference survey sample is collected separately and in-
dependently from the panel selection process. The sample sR is collected directly
from s0 by design

p(sR = 1|x0, q0, s1) = (1 + eαR−0.05x0k−0.05q
0
k)−1

where αR = −5.68 resulting in an average survey sample size E(nR) ≈ 1, 000. It
is informative to summarize the different selection and model assumptions in a
unified table

Model Covariates
s1 x0

s2 x1(w0)
s3 x2

sR x0 q0

Yk x0 w0 q0

from which it is evident that X2, the panel behavior statistic is redundant to
estimation of Ys0 , that is X2 is not included in the minimum adjustment set
(Pearl, 2000), and so including the covariate in an estimator (either m or π)
will decrease efficiency. Also, note that I assume neither q0 nor w0 are observed.
While the information in W0 is ’reduced’ by X1 which is observed, the infor-
mation in q0 is available only in the survey weights for sR. Thus any estimation
procedure ignoring sR weights should introduce bias. The basic statistics of the
simulated population and its subsets are described in table 4.1.

s0 s1 s2 s3 sR
Ys0 = 1.009 Ys1 = 1.108 Ys2 = 1.223 Ys3 = 1.219 YsR = 0.910

X
0
s0 = 0.006 X

1
s1 = 2.497 X

2
s2 = 0.000 X

0
s3 = 0.095 X

0
sR

= −0.076

N = 50, 000 n1 = 27, 161 n2 = 7, 697 n3 = 95 nR = 102

Table 4.1: A list of selected statistics over the different populations of interest. Note that
but for N = 50, 000 the size of the finite population all figures are averages over the 2,000
simulations.

We calculate Ŷπ3
,Ŷm3

and Ŷπm3
following the estimation steps outlined in the

previous sections. All models are correctly specified using X1, the (redundant)
covariate X2 , and the weights πR and π3. In addition I calculate a two phase

π-estimator Ŷπ2
which ignores the selection p(s1|s2) and directly models p(s2|s0)

by using W covariates. Under my description, this is a ’theoretical’ estimator
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built over unobserved covaraite set. The first line in table 4.2 gives the estima-
tion bias and standard deviation calculated over the 2,000 simulations.

Ŷm3
Ŷπm3

Ŷπ3
Ŷπ2

Estimation B V 1/2 B V 1/2 B V 1/2 B V 1/2

π3 and πR 0.003 0.210 0.005 0.212 -0.002 0.266 -0.007 0.299

πR only -0.003 0.204 -0.003 0.202 -0.011 0.248 -0.020 0.289

π3 nor πR -0.068 0.212 -0.069 0.215 -0.063 0.355 -0.075 0.389

Table 4.2: Estimation bias and standard deviation for the four estimators tested over the
three estimation strategies. The three estimation strategies include from top to bottom: (i)
the case where estimates were calculated taking into account both sets of weights π3 and πR
, (ii) estimates ignored the within panel survey sample weights π3, and (iii) the case where
neither πR nor π3 were applied.

Inspecting the first line of results it is evident first that as expected the vari-
ance sizes over the competing three phase estimators has the following order

V (Ŷπ) > V (Ŷπm) ≥ V (Ŷm). However, the difference between the π−estimator
and m or πm−estimators is smaller than when calculated over the entire pop-
ulation. This is because both types of estimators are calculated over a limited
set of observations whereas in the discussion in the previous chapter the m and
πm-estimators where calculated recursivley over the entire population. A second

point is that we notice that V (Ŷπ2
) > V (Ŷπ3) that is the three phase π-estimator

has smaller variance than a two phase estimator. Both estimators are correctly
specified and valid, and differ on (i) the number of selection models estimated,
and (ii) the number of covariates included in the selection models. Under the
setting of this simulation the use of three parsimonious models is more efficient
than two larger models.

With the same artificial population I demonstrate as well the effect of omitting
the reference or the within panel survey selection weights. The bottom three
lines in table 4.2 describes these different scenarios: (i) a normal application
using both π3 and πR, (ii) a partial application which ignores the unequal unit
selection probability π3 and replaces it with a constant probability π = n2/n3,
and (iii) the case where the reference survey weights are replaced by the constant
probability π = nR/N as well as treating the selection of s3 again as following
a design of equal unit probability equal to π = n2/n3. Scenarios such as these,
under a two phase example, were touched upon in our discussion in section 4.1.3.

Our variable of interest Y is independent of X2 and so treating the final sample
mistakenly as a simple random sample as we do in the second scenario intro-
duces no error to the two m-based estimators and only small distortion to the
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two π-based estimators. There is also a small improvement in the efficiency of
the estimators. Underlying the third scenario is the fact we are ignoring the
available information on covariate q held in the reference survey design weights
πR. Covariate q is not independent of Y and X0 and as expected all four estima-
tors examined are biased. Interestingly, and less obvious is that the size of the
bias across all estimators is quire stable. For the m and πm−based estimators
given the correct specification the bias can be attributed mainly to the invalid

estimate of X
0

s0- in our setting underestimating the expected population average.
For π-estimators the bias is indirect and is a function of the selection probabili-
ties estimated over incorrectly unadjusted estimation equations. In the following
section we bring more detail into the mechanism sR may introduce bias into our
estimators.

4.3.2 The Question of sR and s3 Sample Sizes

In planning a Web panel based survey study, the practitioner may have the choice
of determining how much resource should be invested in the panel survey and
how much in the reference survey. Clearly, large samples from both platforms
is desirable, but as the reference survey is more expensive companies (such as
Harris Interactive or Ipsos) tend to base their estimation on a relatively small
reference sample size compared to the panel survey sample. It is interesting
then to evaluate the effect different allocations of resources, resulting in different
sizes of n3 and nR the sample sizes of s3 and sR respectively, have on estimator
properties. A specific question is whether there is a symmetry in the estimators’
behaviour when considering the ratio of n3 and nR.

To test this I propose a simulation study using the same population described in
the previous section. To create varying achieved sample sizes for the two survey
sample sets I change the intercept coefficient in the sampling designs

p(s3 = 1|x2, s2) = (1 + eα3−0.5x2k)−1

which samples s3 by known design on panel behavior statistic X2 from the panel
s2, and

p(sR = 1|x0, q0, s1) = (1 + eαR−0.05x0k−0.05q
0
k)−1

which samples sR directly from s0. The different intercept coefficients and
achieved sample sizes are displayed in table 4.3.

Overall we examine the same four estimators Ŷπ3
Ŷm3

Ŷπm3
and Ŷπ2

of the pre-
vious section over the 11 scenarios defined by the ratio of the two survey sample
sizes
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α3 E(n3) αR E(nR)

-4.95 50 -6.3 50

-4.65 75 -5.85 75

-4.5 100 -5.68 100

-4.0 150 -5.3 150

-3.5 250 -4.8 250

-2.75 500 -4.05 500

Table 4.3: The different intercept coefficients and the achieved average sample sizes for
the the within panel survey sample s3 and the independent random survey sample sR. The
two survey designs follow p(s3 = 1|x2, s2) = (1 + eα3−0.5x2

k)−1 and p(sR = 1|x0, q0, s1) =

(1 + eαR−0.05x0
k−0.05q

0
k)−1 respectively.

• nR = 50 and n3/nR = 1, 1.5, 2, 3, 5, 10

• n3 = 50 and nR/n3 = 1, 1.5, 2, 3, 5, 10.

To make a stronger distinction between the different allocation of resources I
change the estimation algorithms outlined in the previous sections so that for

the two m−estimators Ŷm3
and Ŷπm3

we calculate the regression coefficient pa-
rameters over the panel survey sample s3 only, rather than the fused sample
s = s3 ∪ sR. The population average is estimated as before over the fused sam-
ple set. A summary of the main results are summarized in the table 4.4 for 11
scenarios n3/nR. The bias B and the MSE = B2 + V (ŷ) where V (·) is the vari-
ance are estimated over 2,000 simulations. A useful graphical summary which
supplements table 4.4 is given in figure 4.4 which displays the simulation distri-
butions of the same estimators across the 11 scenarios by a simple Boxplot graph.

Several points can be drawn. First is that the estimators’ behaviour across the
varying ratio settings of nR/n3 are not symmetrical. For example it is obvious
that for each of the five pairs of ratio settings with an overall same sample size,

that is n3 + nR = n, for n = 550, 300, 200, 150 and 125, the estimator Ŷπ3
is

significantly more efficient (or has a lower MSE) for cases where nR/n3 > 1.
For the cases where nR ≈ 50 the three phase estimator is still unbiased, but in
practice estimates will likely to be considerably ’off the mark’ - a classic critique
of π−estimation strategy. This finding gives another demonstration of the effect
the size of the reference survey has on Web panel inference. Thus for a small

sample size study based on a Ŷπ3
estimator any additional resource should go

into adding more reference survey respondents.

The same asymmetry is displayed by Ŷπ2
estimator, but the disparity is substan-

tially narrower. Looking at the two π−estimators it is worth noting as well, that

the small efficiency gain of Ŷπ3
against Ŷπ2

we observed in section 4.3.1 is still
displayed here for the cases where nR/n3 > 1, but when the ratio tilts towards
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nR/n3 Ŷπ3
Ŷm3

Ŷπm3
Ŷπ2

500/50 B -0.2% 0.2% 0.3% 0.1%

MSE 0.089 0.049 0.052 0.091

250/50 B 0.1% 0.5% 0.4% 0.3%

MSE 0.101 0.056 0.058 0.104

150/50 B -0.4% 0.1% 0.1% -0.1%

MSE 0.107 0.058 0.059 0.108

100/50 B 0.1% 0.4% 0.7% 1.1%

MSE 0.121 0.062 0.064 0.124

75/50 B 0.0% -0.3% -0.3% 1.3%

MSE 0.123 0.065 0.068 0.133

50/50 B -0.1% 0.1% 0.1% 2.3%

MSE 0.695 0.075 0.076 0.205

50/75 B -4.7% -0.3% -0.3% 2.2%

MSE 0.684 0.060 0.081 0.183

50/100 B -0.6% -0.1% -0.3% 2.3%

MSE 0.668 0.056 0.062 0.158

50/150 B -2.9% 0.0% 1.1% 1.3%

MSE 0.674 0.044 0.050 0.142

50/250 B -2.1% 0.1% -0.1% 3.8%

MSE 0.663 0.038 0.041 0.112

50/500 B 0.0% 0.7% 0.7% 4.9%

MSE 0.607 0.033 0.033 0.126

Table 4.4: The bias and mean square error of the four estimators Ŷπ3
Ŷm3

Ŷπm3
and

Ŷπ2
estimated over 2,000 simulation runs for each of the 11 scenarios examined. The 11 sce-

narios represent the cases where nR = 50 with n3/nR = 1, 1.5, 2, 3, 5, 10 and n3 = 50 with
nR/n3 = 1, 1.5, 2, 3, 5, 10.

a larger panel sample survey size the Ŷπ2
is much more efficient. It seems that

for small samples sizes of sR the additional selection phase brings much more
instability that can be compensated by the more separate parsimonious models

underlining Ŷπ3
.

The two m-estimators Ŷm3
and Ŷπm3

also are asymmetrical in the sense dis-
cussed above, but here the trend reverses. That is to say that both estimators
are (slightly) more efficient for cases where n3/nR > 1. To understand this result
it is useful to note that for a single phase πm-estimator, when there exists a
p-vector of constants δ so that X0

s0δ = 1s0 where 1s0 is the N -vector of constant
1, then Ys0 = Xs0B0 where B0 is the finite population regression coefficient4 the

4when weighted least square regression is appropriate the assumption changes to state that
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Figure 4.4: A box plot summary of the distribution of Ŷπ3
Ŷm3

Ŷπm3
and Ŷπ2

over
2,000 simulation runs for each of the 11 scenarios examined. The graph shows
from top to bottom- on the left hand side the ratios n3/nR = 10, 5, 3, 2, 1.5 and
on the right hand side the ratios n3/nR = 0.1, 0.2, 0.33, 0.5, 0.67.

πm-estimation error can be written as

Ŷπm −Ys0 =

(
X̂

0

πs −X
0

s0

)′
+ X

0′

s0

(
β̂0 −B0

)
(4.17)

a deconstruction of the error into that of estimating X
0

s0 and the difference
between the sample and population estimates of the regression parameters β.
Under correct specification of π and m-models the first part of (4.17) will be
large when sR is skewed with respect to model covariates’ population averages;
The second part of (4.17) on the other hand will generally be small under cor-
rect specification even when the sample is skewed. Still, under our simulation
setting, where the regression parameters β are estimated over s3 the loss in effi-

ciency in estimator X̂
0

πs of X
0

s0 is smaller than the gains in estimating β which
is somewhat surprising given the correct specification. Clearly, when sR is used
in estimating both parts of (4.17) then more resources allocated to the random
reference survey would probably be advisable.

there exists δ so that for each k ∈ s0 the identity X0′

k δ = σ2
k holds where σ2

k is the model unit
variane.
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4.4 Balanced Sampling, Calibration and Bias

Robust Strategies

After discussing the mechanics of utilizing a reference survey as a surrogate of
the general population, in this section I turn to the sampling design (of s3 and
sR) part of our estimation strategy. Note that until now our discussion of the
sequential framework has been in essence a post sampling estimation one and
so here the question is whether there are certain sampling strategies which are
beneficial in terms of precision and accuracy. This will bring our sequential
framework discussion back to classic survey sampling where an estimation strat-
egy includes a sampling design and an accompanying estimator optimal in terms
such as unbiasedness and efficiency.

In the first section I return to the question of balance robust sampling for
m−estimators and expand it to the sequential framework. Following that, I
introduce first the idea of balance random sampling, or as I denote it π-balanced
sampling, and show how it can be used to create robustness against m-model
misspecification for πm-estimators, similar to the robustness in the case of m-
estimators. In the final section, I detail a sequential π−balanced estimation
strategy which can be implemented in the Web panel survey sampling problem.
To achieve the required balance using a reference survey I will take advantage of
additional tools such as the Calibration adjustment methods I briefly discussed
in section 2.4.

4.4.1 Balanced Sampling Strategy for Bias Robust Under
m-Sequential Estimation

In the following section I return to the question of balanced robust sampling for
m-estimation I reviewed in section 2.8.4. Recall that the idea of balanced sam-
pling is to create an additional layer of robustness to the m−estimators in the
sense that for a large family of models, balanced sampling allows valid inference
even under model misspecification of the m−model. Given our support of a se-
quential framework in the Web panel context, I will expand the balance strategy
to cover the case when more than one phase of sample selection is assumed.

I start with a two phase example where a panel s2 is self selected directly from
the population s0 and from it a survey sample s3 is drawn. I then will give a
description for the general T−phase case. To make the idea of balance explicit
consider the case where two single-covariate m-models are assumed

m2(x
2) :

{
E(Yk|x2, s2) = x2kβ2

V (Yk) = x2kσ
2
2

and m0(x
0) :

{
E(m2k|x0, s0) = x0kβ0

V (m2k) = x0kσ
2
0

(4.18)
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where m2k = x2kβ2, which separately, at each phase, underline a classic ratio
estimator so that the m-estimator results in

Ŷm = X
0

s0
m̂2s2

X
0

s2

=
X

0

s0

X
0

s2

X
2

s2

X
2

s3

Ys3 .

If, however, the true models are in fact E(Yk|x2, s2) = α + x2kβ2 + x0kβ0 denoted

m2k and E(m2k|x0, s0) = α̃ + x0kβ̃0, the expectation of Ŷm is

E(Ŷm) = EEE((
X

0

s0

X
0

s2

X
2

s2

X
2

s3

(Ys3|x2
s2 , s

3)|x0
s0 , s

2))

= EEE((
X

0

s0

X
0

s2

X
2

s2

X
2

s3

(α + X
2

s3β2 + X
0

s3β0|x2
s2 , s

3)|x0
s0 , s

2))

which may be biased of Ys0 . When within-panel balanced sampling is achieved-

That is if X
0

s3 = X
0

s2 and X
2

s3 = X
2

s2 then

E(Ŷm) = EE(
X

0

s0

X
0

s2

(α + X
2

s2β2 + X
0

s2β0|x0
s0 , s

2))

= EE(
X

0

s0

X
0

s2

m2s2 |x0
s0 , s

2) = E(
X

0

s0

X
0

s2

(α̃ + β̃X
0

s2))

which can be shown to be equal to E(ys0) if X
0

s0 = X
0

s2 .

As in the one phase case, the exact form of misspecification dictates the specific
balance necessary to counter potential bias. If for example the panel level re-
gression model does not include an intercept, that is E(Yk|x2, s2) = x2kβ2 + x0kβ0
then the balance required is only X

0

s0 = X
0

s2 . Similarly, if the overall population
model would omit the interaction that is E(Yk|x2, s2) = x0kβ0 then no balance at
all is required.

Under a T phase selection framework a sequential m−estimation bias robust
strategy can be stated by the following. Assuming a general linear structure

mt−1(x
t−1, st−1) :

{
E(mtk|xt−1, st−1) = xt−1

′
βt−1

V (mtk|xt−1, st−1) = σ2
t−1k

with independent errors for t = 1, .., T . If there exists in each phase a pt−1column
vector λt−1 and selection design such that{

σ2
t−1k = λ

′

t−1x
t−1
k

xt−1jst = xt−1jst−1 for all j = 1, ..., pt−1
(4.19)
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then Ŷm = YsT . The idea then is that under a model where the variance func-
tion is a linear combination of covariates that are included in the regression
equation the m−estimator reduces when the samples are balanced on the true
model regression covariates as defined in 4.19 to the simple final phase sample
average. As I have discussed above as long as we remain within this relatively
wide ranging class of models, this property allows us to misspecify the model but
still estimate the finite population without bias.

It is possible then, and clearly desirable, to outline a balanced sampling bias-
robust strategy. However, in the context of our problem - the commercial Web
panel survey sampling problem - is there any use of such a strategy? The problem
is of course, that but the final stage, we have no control of the selection design

at all. For example, in the T = 2 case that means that the balance X
0

s0 = X
0

s2

cannot be actively met. Still, as I show in the next section, similar ideas described
in the m-model context can be applied in the πm- type estimation approach
where some degree of balance can be reached.

4.4.2 Sequential Robust π-Balanced Sampling Given Full
Information

I move now to the idea of bias-robust balanced sampling for πm-estimation. First
It is useful to distinguish between this idea and the double robust characteristic
inherit to πm-estimators. The balanced sampling strategy identifies specific sam-
ple charectaristics which if met, for any such s, the estimator is unbiased with
regards to the m- distribution even when the estimation model is misspecified.
On the other hand by modeling over both m and π-models, DR estimators are
unbiased over the joint πm- distribution even when the m-model is misspecified
as long as the π−model is correctly specified.

πm−estimation does not condition inference on the sampled set s and so a bal-
anced sample for πm-estimators must consider the selection process. Such sam-
ples have been studied in the survey sampling context and are called π−balanced
samples. Also, an efficient sampling procedure, the Cube method, to achieve such
balance in practice has been proposed. In the following I introduce first the idea
of π−balanced sampling and the Cube method which can be used in implement-
ing the within-Panel sampling design of s3.

Deville and Tillé (2004); Tillé (2006) give the following definition for a π-balanced
sample in a one phase framework. Let p(s) denote the selection process (or
when appropriate sampling design) which is assumed to generate the sample
s. A selection process p(s) is said to be π−balanced on the auxiliary variables
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X0
1 , ..., X

0
p0 if and only if it satisfies the balancing equations given by X̂

0

πs = X
0

s0

which can also be written∑
s

X0
jkπ
−1
k =

∑
s0

Xjk j = 1, ..., p0 (4.20)

assuming here known πk, k ∈ s0 , for all s∈ S such that p(s) > 0.

By this definition, depending on the constraints 4.20, π−balanced sampling in-
cludes any random survey sampling design. For example any fixed size sample
design (e.g. simple random sample of size n) can be defined as a random selec-
tion process balanced on the covariate Xk = πk because from 4.20 each s satisfies∑

s xkπ
−1
k = n the size of the sample. Another example is stratified sampling

designs: first define indicator variable δkh equal to 1 if unit k is a member of
strata s0h where s0 =

∑
s0h and N =

∑
hNh for h = 1, ..., H . Then, any p(s)

balanced on equations
∑

s δkhπ
−1
k =

∑
sh
Nh/nh = Nh is a stratified sample of

nh units from population strata s0h of size Nh. A more familiar notation of the
balancing equation would be N̂hπ = Nh , h = 1, .., H where N̂hπ =

∑
s∩s0h

π−1k .

The definition of balanced sampling design can even accommodate stratification
on overlapping strata, something the clasic theory of stratified sampling designs
does not allow since the stratification must be a partition of the population.

Balanced sampling is desirable, but is not trivial because of the combinatory
explosion of the number of samples for large populations. To overcome this
Deville and Till (2004); Ardilly (2006) propose the cube method, a class of
sampling algorithms that selects a balanced sample and exactly satisfies a set
of given inclusion probabilities. The cube method is a shortcut that avoids the
enumeration of the samples, and is based on a random transformation of the
vector of inclusion probabilities π = (π1, ..., πN) until a sample is obtained such
that:

1. the inclusion probabilities are exactly satisfied,

2. the balancing equations are satisfied to the furthest extent possible.

Its name comes from the geometric representation of the sample indicators Sk
k = 1, ..., N as a vertex of an N-cube as as showed in the left panel of figure

4.5. The balancing equations
∑

s0 Sk
X0

jk

πk
=
∑

s0 Xjk , j = 1, .., P with unknowns

values Sk define an affine subspace in RN of dimension N − P denoted by Q,
where

Q = {s ∈ RN |
∑
s0

Sk
X0
jk

πk
=
∑
s0

Xjk}

A balanced sampling design thus consists of choosing a vertex of the N -cube (a
sample) that remains on the linear sub-space Q as shown in the right panel of

128



Figure 4.5: On the left hand side a geometric representation (Deville and Tillé,
2004) of all potential samples in a population of size N = 3. On the right hand
side the case where a constraint of n = 2 is applied. There are thre vertices of
the cube which remain on the linear sub space defined by the balance constraint.

4.5 where the balancing equations can be met exactly.

The cube method has been implemented in R package ’sampling’. The appli-
cation has no limit as far as population size is concerned, and can accomodate
up to P = 40 balancing variables. However, computation time increases with
N × P 2. See Till and Matei (2007) for discussion of the method and R package
application including approximations when exact balancing is not possible.

We are ready to discuss a bias robust strategy for πm-estimator. I start with
a simple example under a single covariate one phase framework where the an-
alyst assumes working model m0 : E(Yk|x0) = x0kβ0 and V (Yk|x0) = x0kσ

2 with
independent errors, the population s0 is observed entirely and unit selection

probabilities are known. Under m0 and assuming X
0

s0 and πs0 = (π1, ...., πN) are

known, the πm−estimator is Ŷπm = X
0

s0Ŷπ/X̂
0

π the weighted ratio estimator.
If, however, the true population model is m̃0 : E(Yk|x0) = α + x0kβ0 then the

m−bias of Ŷπm is

Bm̃0(Ŷπm) = α(X
0

s0 − X̂
0

π)/X̂
0

π.

Still, when s is π−balanced such that X̂
0

π = X
0

s0 then Bm̃0(·) = 0. Further note
that as the cube method randomly selects the sample so that all πk ; k ∈ s0 are
satisfied exactly the double robust property still holds and so balanced sampling
design may offer an additional layer of robustness against m- misspecification.

Now, we can quickly establish a general definition of a bias-robust strategy un-
der a single phase πm-estimation framework. Consider as before m−estimators
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under a general linear model

m(x0) :

{
E(Yk) = x0′

k β0

V (Yk) = σ2
0k.

(4.21)

where x0
k and β0 are p-vectors and assuming x0

s0 is observed. If for all samples s
over the sampling space there exists a constant column vector λ0 of dimension
po not depending on k such that for all k ∈ s0{

σ2
0k = λ

′

0x
0
k

x̂
0

jπ = x0
js0 for all j = 1, ..., p0

(4.22)

where x̂
0

jπ is the normal π-estimator with denominator N or N̂π =
∑

s π̂
−1
k then

Ŷπm = Ŷπ. The proof follows the same steps as in the m-estimation approach.

The intuition behind this result can be understood best under a single categor-

ical covariate model. When X0
k is univariate and categorical Ŷπm is simply a

post stratification estimator. If p(s) represents a stratified sampling design then

the post stratification procedure Ŷπm is redundant as we are post stratifying
an already stratified sample. The bias robust strategy generalizes this idea as
πm-estimators are a general form of post stratification (and a member of the
general class of calibration estimators, ass disscussed in chapter 1), while bal-
anced sampling designs generalize the idea of stratification by allowing the use
of continuous covariates and overlapping strata.

The implication then is that under the assumptions 4.21-4.22 estimator Ŷπm is
m−unbiased even under misspecification for a wide class of models which all

converge to the same π−estimator. Furthermore, if Ŷπm is computed under a
correct π−model then it is (π−) unbiased even when assumptions 4.21-4.22 are
not met.

Finally, we can extend these ideas to the sequential πm-estimation framework.
Consider a T -phase ignorable framework where

mt−1(x
t−1, st−1) :

{
E(mtk|xt−1, st−1) = xt−1

′
βt−1

V (mtk|xt−1, st−1) = σ2
t−1k

πt(x
t−1) :

{
p(stk = 1|xt−1, st−1) = πt(x

t−1
k ;αt−1)

p(stk = 1|xt−1, st−1) > 0

where here πt(x
t−1
k ;αt−1) = exp(xt−1

′

k αt−1)/1 + exp(xt−1
′

k αt−1) follow a logistic
distribution over the sub population st−1 and with mt−1(x

t−1, st−1) having inde-
pendent errors for t = 1, .., T . If there exists in each phase a pt−1column vector
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λt−1 and selection design such that{
σ2
t−1k = λ

′

t−1x
t−1
k

x̂
t−1
jπst = x̂

t−1
jπst−1 for all j = 1, ..., pt−1

(4.23)

where x̂
t−1
jπst = x̂

t−1
jπst−1 means that

∑
st X

t
kπ̂
−1
tk∑

st π̂
−1
tk

=
∑

st−1 Xt
kπ̂
−1
t−1k∑

st−1 π̂
−1
t−1k

then Ŷπm = Ŷπ.

In words the strategy states that under a sequence of linear m−models with
variance structures that can be represented as a combination of the regression
covariates we can achieve additional robustness to m−misspecification by bal-
ancing the m−model covariates in the sense that for each phase t = 1, .., T the

π−estimator of the m−model covariates s0 population average X̂
t−1
jπst is equal to

X̂
t−1
jπst−1 the same covariate average calculated over the higher subpopulation.

As a simple example take the case of T = 2. The balancing criteria require that

the set s1 is such that X̂
0

π1s1
= X

0

s0 which is similar to the classic one phase case.
In addition we require the set s2 to have the property

X̂
1

π2s2
= X̂

1

π1s1
(4.24)

which can be given two different interpretations. First it states directly that s2

is such that the two phase π-estimator of the general population averages cal-
culated over s2 for covariates X1 is exactly equal to the one phase π-estimator
calculated over s1 of the same population quantities. Secondly, (4.24) implies
that our first phase balance still holds, that is for the general population co-
variates X0, a subset of X1, the π−estimator is equal exactly to the population
averages.

Finally note that the π−models do not necessary need to be specified correctly or
estimated consistently although for m−bias robustness to hold. Of course for the
double robust property to hold the π−models do need to be correctly specified
and consistently estimated. Also note that by including X0

k = 1 the selection
process is of fixed size in the sense that each phase t projects by π−estimation
the subset population size of st−1 including that of the general population, a
desirable property especially when dealing with population statistics.

4.4.3 The Application of π-Balanced Strategy when Ref-
erence Survey is Used

Let us now understand how a π−balanced bias robust strategy can be applied
to our main question of estimation over a Web panel survey sample, assisted by
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a random reference survey. Under a three phase sequential framework, the main
issues in practice are

(i) we control only the within-panel survey sampling selection process p(s3|s2)
while the first two phases are entirely self driven, and

(ii) for estimation, we observe only a subset of (xt−1st−1 , s
t) t = 1, .., 3. At the

most the subset s is a union of s2 and a random reference survey s3.

Recall that had d3s3 = (s3,x2
s2 ,ys3) been observed fully then a πm-estimator is

Ŷπm3 = N−11
′

s0H
0
πs0,s1H

1
πs1,s2H

2
πs2,s3ys3 (4.25)

where Ht−1
πst−1st = xt−1st−1A

t−1
πst x

t−1′
st wt−1

st π̂
−1
tst for t = 1, ..., 3 with At−1

πst = (xt−1
′

st wt−1
st π̂

−1
tstx

t−1
st )−1

and π̂−1tst=diag(π̂−1tk )−1 a nt× nt diagonal matrix of estimated selection probabil-
ities calculated separately.

However, as discussed in detail earlier in this chapter, only a disjointed subset of
d3s3 is observed, so we estimate (4.25) by

Ŷπm3 = N̂−1π 1
′

nĤ
0
πs,s∩s1Ĥ

1
πs∩s1,s2H

2
πs2,s3ys3 (4.26)

where H2
s2,s3 is defined as for (4.25) while

Ĥ0
πs,s∩s1 = x0

sπ
−1
s (x0′

s∩s1π
−1
s∩s1w

0
s∩s1π̂

−1
1s∩s1x

0
s∩s1)

−1x0′

s∩s1π
−1
s∩s1w

0
s∩s1π̂

−1
1s∩s1

Ĥ1
πs∩s1,s2 = x1

s∩s1π
−1
s∩s1(x

1′

s2w
1
s2π̂

−1
2s2x

1
s2)
−1x1′

s2w
1
s2π̂

−1
2s2

where s∩s1 = s1R∪s2 and with w2
s3 = diag(σ2

2k)
−1 k ∈ s3 , w1

s2 = diag(σ2
1k)
−1k ∈

s2 and w0
s∩s1 = diag(σ2

0k)
−1k ∈ s ∩ s1.

Given the density of the notation I restate our objective again in simple terms:
After outlining the πm-estimator (4.26) calculated over sR ∪ s2 I discuss now
the additional procedures we take to shape the available sample data. The idea
behind these procedures is to create (under certain assumption on the m-models)

an equilibrium between Ŷπm3 and Ŷπ3 the three phase π−estimator. As I have
shown above, this will give us an additional layer of robustness to m-model mis-
specification, on top of the double robust property which requires an exactly
correct m or π model specification. In the following it is demonstrated that in
the ideal case of (4.25) the application is relatively straightforward, while for
(4.26) the procedure is substantially more involved.

The estimation strategy starts with phase t = 1. Under full information H0
πs0,s1

is calculated over s0, and for balance robustness we would require (refer back
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to 4.23) that m0 is such that σ2
0k = λ

′

0x
0 and s1 is such that X

0

s0 = X̂
0

s1π1

where X̂
0

s1π1
=
∑

s1 X0
kπ̂
−1
1k /

∑
s1 π̂

−1
1k . When the set of covariates X0 includes

the constant 1 the denominator is redundant as
∑

s1 π̂
−1
1k = N by definition. In

practice, however, we calculate Ĥ0
πs,s∩s1 over s1R ∪ s2 and so for the bias robust

strategy to hold we require at this stage that X̂
0

sπ = X̂
0

s1R∪s2π
which in more detail

means the balancing equations are∑
s X0

kπ
−1
k∑

s π
−1
k

=

∑
s1R∪s2

X0
kπ̂
−1
1k π

−1
k∑

s1R∪s2
π̂−11k π

−1
k

(4.27)

where as before s = s2 ∪ sR and πk = πR for members of sR and πk = 1 for panel
member units5. It is important to stress here that for m- unbiasedness to hold
we require as well that we are balancing towards the correct finite population

quantity, that is X̂
0

sπ is in fact equal to X
0

s0 .

Regardless of whether we balance s1 or s1R ∪ s2, fundamentally, the selection
process generating s1 is not controlled and we must resort to calibration. As
discussed in chapter 1, the term calibration refers in the classic survey sampling
context to a family of post sample adjustments to the selection weights so that a
calibrated π-weighted sample estimate is equal to known population quantities.
In the specific case of linear calibration the application can be shown explicitly.
In our case the linear calibration weights are the scalars

g1k = (
∑
s

x0
kπ
−1
k )

′
(
∑
s1R∪s2

x0
kπ̂
−1
1k π

−1
k x0′

k )−1x0
k

which achieve balance requirement of (4.27) in the sense that

∑
s X0

kπ
−1
k∑

s π
−1
k

=

∑
s1R∪s2

g1kX
0
kπ̂
−1
1k π

−1
k∑

s1R∪s2
g1kπ̂

−1
1k π

−1
k

or when the sample size is also calibrated, the equations simplify to
∑

s X0
kπ
−1
k =∑

s1R∪s2
g1kX

0
kπ̂
−1
1k π

−1
k . In words, we calibrate the π-estimator over s1R ∪ s2 to the

finite population estimator calculated over s = sR ∪ s2, which in turn we assume

estimates exactly the population average X
0

s0 . With regards to the latter point an
important recommendation would be then to request from the reference survey
sampling statistician to design the selection of sR on correlated s0 population
quantities, including the population size. If this is not possible directly, an
alternative is to include these covariates in the calibration model on the refernce
selection weights π−1Rk. In practical terms, a simple application of the process can

5If m0(x0) meets the variance structure constraint as stated in (4.23) this balance will lead

to the canceling out the components of N̂−1π 1
′

nĤ
0
πs,s∩s1 .
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be done with the use of the calib function included in the survey package6 in R.

This procedure results in an adjusted component Ĥ0
πs,s∩s1 of Ŷπm3

Ĥ0
πs,s∩s1 = x0

sπ
−1
s (x0′

s∩s1g1s∩s1π
−1
s∩s1w

0
s∩s1π̂

−1
1s∩s1x

0
s∩s1)

−1x0′

s∩s1g1s∩s1π
−1
s∩s1w

0
s∩s1π̂

−1
1s∩s1

where g1s∩s1 is the diagonal matrix with typical value g1k for k ∈ s1R ∪ s2. For
completeness note that the linear calibration weights here can be viewed as es-
timators of calibration weights g1k = (

∑
s0 x0

k)
′
(
∑

s1 x0
kπ̂
−1
1k x0′

k )−1x0
k we would

calculate under full information.

For phase t = 2 we take a similar approach but as s2 is observed in full this leads
to a slightly less complicated procedure in practice. Consider first the case where
s1 and s2 and X1

s1 are fully observed. Under a bias robust strategy and given an
appropriate regression and variance function for balance robustness we require

that X̂
1

πs2 = X̂
1

πs1 for all s2 given known s1 which explicitly can be written as∑
s2 X1

kπ̂
−1
2k

N̂s2π2

=

∑
s1 X1

kπ̂
−1
1k

N̂s1π1

where N̂s2π2 =
∑

s2 π̂
−1
2k and given s1 is sampled by balanced design implies

N̂s1π1 = N . An easier way to consider this (and a technical solution to sequential
balancing using a one phase software function) is to define Z1

k = X1
kπ̂
−1
1k . This

means that the balanced design is constrained so that∑
s2 Z1

kπ̂
−1
2k

n̂1s2
=
∑
s1

Z1
k/n1 (4.28)

where n̂1s2 =
∑

s2 π̂
−1
2k a second phase π−estimator of the size of s1. This turns

the balancing problem into a simple balancing of the selection process of s2 from
the (sub)population s1. As before I note that for the subset X0 of covariates

(4.28) implies balance to X
0

s0 . Now, as s2 is self selected, we turn again to
calibrate the available set and here this would take the form∑

s2 Z1
kg2kπ̂

−1
2k

n̂1s2
=
∑
s1

Z1
k/n1

where now n̂1s2 =
∑

s2 g2kπ̂
−1
2k and if linear calibration is used

g2k = (
∑
s1

Z1
k)
′
(
∑
s2

Z1
kπ̂
−1
2k Z1′

k )−1Z1
k.

In practice only a subset of the Web population s1 is observed, that is s1R ∪ s2
along with the weights πk’s. Note as well that p(s1) is not balanced but rather

6T. Lumley (2012) ‘survey: analysis of complex survey samples’. R package version 3.28-2.
and T. Lumley (2004) Analysis of complex survey samples. Journal of Statistical Software
9(1): 1-19.
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calibrated, so we start first with redefining Z1
k = X1

kπ̂
−1
1k π

−1
k g1k and then setting

the calibration equations on the observed subsets leading to

∑
s2

Z1
kg2kπ̂

−1
2k =

∑
s1R∪s2

Z1
k

where in the case a linear calibration is used the second phase calibration weights
are defined as before g2k = (

∑
s1 Z1

k)
′
(
∑

s2 Z1
kπ̂
−1
2k Z1′

k )−1Z1
k but this time when

Z1
k = X1

kπ̂
−1
1k π

−1
k g1k. Here, as in the first phase we require as well that the ref-

erence based sample equals the full information quantity, that is
∑

s1R∪s2
Z1
k =∑

s1 Z1
k/n1 for robustness to hold.

Finally for the last phase t = 3 in the Web panel context this is a within panel
survey sampling exercise where balance can be implemented directly through
sampling design by the cube method. In simple terms and assuming full infor-
mation in the first two phases we define the strategy as sampling s3 by design
p(s3|s2) with unit inclusion probabilities π3k so that

∑
s3

X2
kπ
−1
3k =

∑
s2

X2
kπ̂
−1
2k (4.29)

for all s3 where π−13k = (π̂1k · π̂2k ·π3k)−1. If we let Z2
k = X2

kπ̂
−1
2k then the balancing

equations (4.29) are simply

∑
s3

Z2
kπ
−1
3k =

∑
s2

Z2
k

and simple one phase application such as in the cube R function can be ap-
plied directly. Given the use of the reference survey in the first two phases we
need to redefine the balancing covariates to include calibration weights so that
Z2
k = X2

kπ̂
−1
2k π

−1
k g

2k
where g

2k
and π̂−12k are the product of the first two phase

calibration weights and estimated selection probabilities respectively. Given the
re-defined Z2

k the balancing constraints for the sampling design are as above, that
is
∑

s3 Z2
kπ
−1
3k =

∑
s2 Z2

k. As s2 is fully observed the selection can be technically
applied by the cube method.

A final comment on the π−balanced strategy in practice is that assuming a large
reference survey, for example when sR is an establishment survey, the estimator
variance will be dominated by the final within-panel survey sampling phase.
Such cases emphasize the benifit of applying the balancing constraints. By its
definition a balanced sampling design is a restricted sampling procedure and
reduces the sampling variance of the estimator.
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4.5 Summary and Final Words

In an ongoing march, for over a decade now, Web based surveys and in particular
Web access panels have transformed the landscape of survey based research and
have become a key tool for the study of general populations. With the deepening
of the Internet and associated information and communication technologies into
our day to day life, the importance of Web surveys will continue to grow.

While being a practitioner of Web panel surveys, my aim in this work has not
been to defend the scientific validity of the methodology nor to be a proponent
of the platform, but rather the initial goal I set out had been to describe the
myriad ad hoc estimation procedures practiced in commercial settings through
a detailed mathematical and methodological presentation. By this I aimed to
potentially offer ways of improving existing approaches.

This is not the first attempt to put Web access panels on a firmer statistical foot-
ing, and this work has certainly built on available published research. Previous
investigation into the Web panel question focused on demonstrating the limita-
tions of traditional survey sampling techniques in compensating for the errors
innate to this survey method. Such studies (for exmple Isaksson et al., 2004;
Lee, 2006; Dever et al., 2008; Rivers 2009; Valliant and Dever 2011) went on to
introduce to the survey sampling community novel statistical adjustments such
as propensity scores weighting or sampling by statistical matching and demon-
strated their superior applicability to the Web panel question compared to clas-
sical methods such as post stratification.

Through a careful and structured investigation I have expanded on these ideas,
and offer in this work several contributions:

First, I intended to explain more clearly common approaches practiced in Web
survey sampling estimation procedures. For example, purposive sampling from
the Web panel, based on population statistics, can be understood as a robust
model based approach strategy under a general class of linear models. An-
other commonly used procedure is the calibration of propensity score adjust-
ment weights to available (or estimated) population statistics. Previous research
(such as Lee, 2004) described this as a combination of coverage bias correction
(calibration) and selection bias correction (propensity score). Others offered it
as a general selection bias adjustment (propensity score) with a second correc-
tion layer (calibration) aimed at variance reduction. Here I have shown that
when viewing calibration as an m−model estimator, the combination of it with
propensity score weighting (a π−estimator) puts the procedure within the large
class of πm−estimators. This class of estimators has been shown to be both
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more efficient then π−estimators and offer a double robust property that can be
argued to have a better potential for bias adjustment (Bang and Robins 2005;
Robins et al., 2007).

The second contribution of this work is the introduction of the sequential frame-
work to Web panel survey sampling, and a suit of associated sequential based
estimators. I have argued that the framework has several benefits. (i) The se-
quential framework represents much better the real recruitment and selection
process of a member of the general population into the final survey set. This
way, when taking a π−estimation approach, the researcher modeling the selec-
tion process can use the strong operational understanding of the different phases
of the process, as well as the entirely known within-panel sampling design to
inform better the overall π− model. (ii) An important result of adapting a se-
quential framework is the availability of Internet and panel associated variables
in the modeling and estimation stages. When assuming a single phase model,
variables such as Web usage, Online consumer characteristics or even panel re-
sponse behavior cannot be utilized as they are not independent of the selection
process. However, when the underlying (π or m type) models are deconstructed
into a sequence of conditional models these dependencies are broken and we
can build potentially better preforming models. (iii) I have also outlined in a
clear mathematical presentation a sequential πm-estimation strategy which com-
bines a procedure of sampling from the panel a π−balanced sample on a set of
population statistics. The combination of a πm−estimator with a the balanced
sampling procedure adds an additional layer of robustness, on top of the DR
property of the estimator. Furthermore, this πm-balanced strategy is general
enough to include most of the common practiced estimation approaches such
as propensity score weighting, purposive sampling or propensity score weighting
and calibration and more. (iv) I describe a detailed algorithm that implements
these estimation strategies to the more practical scenario where a random refer-
ence survey sample replaces the unknown population distribution.

To test the performance of the estimation procedures and discuss questions facing
researchers in practice I conducted several simulation studies. These included
an investigation of the effect of the sample size ratio between the Web panel
and reference survey set. Another study was to examine the common practice
of coding zero ,the values of Internet related variables for non Internet members
of the population. I also tested a simple bootstrap estimator for the variance of
different estimators under a sequential framework.

The separate modeling of the sequential population and sample sets, defined by
the selection phases, potentially captures more accurately the true underlying
distributions. However it can be argued, that the introduction of these additional
models bring with it a higher risk of bias due to model misspecification. It
is also clear that in the case of relying on a sequential π−model, there is an
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inevitable addition of estimation variance. I expect that both bias from model
misspecification and higher variance from the additional layers of modeling may
be an issue when applying these estimation approaches to empirical data. These
observations are hoped to guide future research on the topic.
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Chapter 5

Appendix

5.1 The Influence Function

The influence function (2.32) of the population average is

ϕ(dk,ys0) = Xkβ̂ −Ys0 + Sk(Yk −Xkβ̂) (5.1)

and the variance of the estimator is

V (ŷs0) = E(ϕ(dk,ys0)
2)/N

= V (
∑
s0

ϕ(dk,ys0)/N
2

= V (
∑
s

ŷk −
∑

yk)/N
2

=
∑
s

V (Yk)(
xs
xs

)2 +
∑
s

V (Yk)

where the first line is true asymptotically by definition of an influence function
under regularity conditions and the second is true as

∑
s0 E(ϕ2

k) =
∑

s0 V (ϕk)
and while E(ϕ2

k) = V (ŷs0) then V (ŷs0) =
∑

s0 V (ϕk)/N . More generally, when

the linear model is Yk = β
′
xk + εk, then by similar derivation

V (ŷs0) = N−2[V (a
′

sYs) + V (1
′

sYs)]

= N−2[
∑
k∈s

a2kV (Y k) +
∑
k∈s

V (Y k)] (5.2)

where ak = 1
′
sxsA

−1
s xkv

−1
k with As = x

′
sV
−1
ss xs.

(Valliant et al., 2000, chapter 5) derive this identical variance as part of their
BLUP theory by developing directly the prediction error variance rather than
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using the influence function. Dorfman (1991) shows that normally (5.2) is dom-
inated by the first component, that associated with the sampled set, for regular
case where the sample set is negligible in size to the population. More specifically,
Dorfman (1991) and (Valliant et al., 2000, chapter 5) show that

V (ŷs0) = N−2[
∑
k∈s

a2kV (yk) +
∑
k∈s

V (yk)]

≈ O

(
(N − n)2

n

)
+O(N − n)

The structure of the approximate variance in (5.2) suggests a sandwich estimator
which is found by replacing the unknown V (yk)’s by the observed square errors
r2k , thus we can suggest

V̂m = N−2
∑
k∈s

a2kV̂ (yk)

= N−2
∑
k∈s

a2k(ŷmk − yk)2 (5.3)

which is consistent of Vy(ŷm), the y variance of the estimator. (Valliant et al.,
2000, Lemma 5.3.1, p.136) offer several alternative estimators which attempt to
estimate the smaller component of the approximate variance, see (Valliant et al.,
2000, , p.145) for further details.

5.2 GREG Coefficient Sequential Properties

For any t = 1, .., T , the estimator β̂
t−1
π(sT ) is approximately πm-unbiased of βt−1

if selection models up to t and model E(Yk) = xt−1
′

k βt−1 are both correctly spec-
ified and consistently estimated.

That is

E
(
β̂
t−1
π(sT )

)
≈ βt−1

if models πT (xT−1), ..., πt+1(x
t) as well as E(Yk) = xt−1

′

k βt−1 are correctly speci-
fied and consistently estimated.

Let

β̂
t−1
π(sT ) =

(∑
s0

STkXt−1′
k Xt−1

k π̂−1Tk

)−1(∑
s0

STkXt−1
k Y kπ̂

−1
Tk

)
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and note that

E
(
β̂
t−1
π(sT )

)
= EE

{
β̂
t−1
π(sT )|xt−1, st−1

}
= EE

{
E
[
· · ·E

(
β̂
t−1
π(sT )|y,xT−1, sT−1

)
· · · |y,xt, st

]
|xt−1, st−1

}
.

First assume that πT (xT−1, sT−1) holds and is estimated consistently so that
π̂Tk−−−−→nT→∞ πTk then

E
(
β̂
t−1
π(sT )|y,xT−1, sT−1

)
≈ β̂

t−1
π(sT−1)

where

β̂
t−1
π(sT−1) =

(∑
s0

ST−1k Xt−1′
k Xt−1

k π̂−1T−1k

)−1(∑
s0

ST−1k Xt−1
k Y kπ̂

−1
T−1k

)
.

Similarly if πT−1(x
T−2, sT−2) holds and π̂T−1k −−−−→nT−1→∞ πT−1k thenE

(
β̂
t−1
π(sT−1)|y,xT−2, sT−2

)
≈

β̂
t−1
π(sT−2) where

β̂
t−1
π(sT−2) =

(∑
s0

ST−2k Xt−1′
k Xt−1

k π̂−1T−2k

)−1(∑
s0

ST−2k Xt−1
k Y kπ̂

−1
T−2k

)

and continue this sequentially under πT−2(x
T−3, sT−3).... to πt+1(x

t, st) so that
we reach

β̂
t−1
π(st) =

(∑
s0

StkX
t−1′
k Xt−1

k π̂−1tk

)−1(∑
s0

StkX
t−1
k Y kπ̂

−1
tk

)
.

Now, if E(Yk) = xt−1
′

k βt−1 holds then

E
(
β̂
t−1
π(st)

)
= EE


(∑

s0

StkX
t−1′
k Xt−1

k π̂−1tk

)−1(∑
s0

StkX
t−1′
k Y kπ̂

−1
tk

)
|xt−1, st

 = βt−1

as E(Yk|xt−1, st) = xt−1
′
βt−1 .

141



5.3 Simulation Summary and Distributions
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Figure 5.1: π-estimators

π−Estimators ŷπ2 ŷπx0 ŷπx1

1.01 2.22 0.90
V (·) 0.07 0.06 0.06
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Figure 5.2: m-estimators

m−Estimators ŷm2 ŷmx0 ŷmx1
0.99 2.12 0.47

V (·) 0.00 0.01 0.01

5.4 GREG Estimator DR Property

Given the previous distributional assumptions, the GREG estimator Ŷπy under
an ignorable T phase selection model is unbiased of the population mean Ys0 if

(i) Either the selection model π1(x
0) or the measurment model m1(x

0) holds, as
well as that

(ii) selection models πt(x
t−1, st−1) for t = 2, ..., T are correctly specified and

consistently estimated.

For a T phase selection process deconstruct the bias of the estimator Ŷπy as
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B(Ŷπy) = N−1
∑
s0

E

{
T∑
t=1

St−1k (π̂tk − Stk)(Ŷtπk − Yk)π̂−1tk

}

= E

{
(π̂1k − S1

k)(Ŷ1πk − Yk)π̂−11k +
T∑
t=2

St−1k (π̂tk − Stk)(Ŷtπk − Yk)π̂−1tk

}
= I + II

Consider first quantity II .

As selection models πt(x
t−1, st−1) for t = 2, ..., T are assumed to be correctly

specified and consistently estimated then π̂t(·)−−−→nt→∞πt(·) and so each B̂t−1
π(sT )

is
selection consistent and approximately unbiased estimator of the coressponding
finite population quantities Bt−1

st−1 . Thus quantity II :

T∑
t=2

E
{
St−1k (π̂tk − Stk)(Xt−1′

k B̂t−1
π(sT )

− Yk)π̂−1tk
}

can be approximated by

≈
T∑
t=2

E
{
St−1k (πtk − Stk)(Xt−1′

k Bt−1
st−1 − Yk)π̂−11k · π

−1
2k · · · π

−1
tk

}
which is equal to

T∑
t=2

EE
{
St−1k (πtk − Stk)(Xt−1′

k Bt−1
st−1 − Yk)π̂−11k · π

−1
2k · · · π

−1
tk |x

t−1, st−1, yk

}
,(5.4)

or equivelently
T∑
t=2

EE
{
St−1k (πtk − Stk)(Xt−1′

k Bt−1
st−1 − Yk)π̂−11k · π

−1
2k · · · π

−1
tk |x

t−1, st
}

(5.5)

(a) If π1(·) is correct and consistently estimated then π̂1k → π1k and (5.4) is
consistent of

T∑
t=2

EE
{
St−1k (πtk − Stk)(Xt−1′

k Bt−1
st−1 − Yk)π−1tk |x

t−1, st−1, yk

}
which is equal to zero as E(Stk|xt−1, st−1, y) = E(Stk|xt−1, st−1) for all t = 2, .., T .

(b) If m1(·) is correct and consistently estimated then the identity (5.5) is
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T∑
t=2

EE
{
St−1k (πtk − Stk)(Xt−1′

k Bt−1
st−1 − Yk)π̂−11k · π

−1
2k · · · π

−1
tk |x

t−1, st
}

= 0

as E(Yk|xt−1, st) = xt−1
′

k βt−1 and E(Xt−1′
k Bt−1

st−1|xt−1, st) = xt−1
′

k βt−1 .

As to quantity I:

E
{

(π̂1k − S1
k)(Ŷ1πk − Yk)π̂−11k

}
= E

{
(π̂1k − S1

k)(X
0′

k B̂0
π(sT ) − Yk)π̂

−1
1k

}
(5.6)

(a) If π1(·) is correct and consistently estimated then π̂1k → π1k and so (5.6) can
be approximated to

E
{

(π1k − S1
k)(X

0′

k B0 − Yk)π−11k

}
= EE

{
(π1k − S1

k)(X
0′

k B0 − Yk)π−11k |x
0, y
}

which is equal to zero as E(S1
k |x0, y) = π1k. On the other hand

(b) If m1(·) is correct and consistently estimated then

E
{

(π̂1k − S1
k)(X

0′

k B̂0
π(sT ) − Yk)π̂

−1
1k

}
≈ EE

{
(π̂1k − S1

k)(X
0′

k B0 − Yk)π̂−11k |x
0, s1

}
is equal to zero as E

(
X0′

k B0 − Yk|x0, s1
)

= 0.

5.5 Cube Method

Let xk = (x1k, ..., xkp)
′

the observed value of random vector Xk and let X =
[X1, ...,Xk, ....,XN ]

′
be the N × p population matrix. A sampling design p(s)

is said to be balanced on the auxiliary variables x, if and only if it satisfies the
balancing equations given by ∑

U

xk =
∑
s

xkπ
−1
k and

V

{∑
s

Xkπ
−1
k |X = x

}
= 0

where the second equation (the variance constraint) can be interpreted so that
balance in the first equation is satisfied for all s ∈ S such that p(s) > 0.
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The cube method is an algorithm which calculates the unit inclusion probabilities
πk for k = 1, .., N defining a design p(s) balanced on X. The algorithm can be
explained concisely by viewing the problem geometrically. A design p(s) defined
on S the set of samples s. Now, each sample s is in fact a vector of 0’s and
1’s which can be considered as a vertex of the N−cube. Also, the balancing
equations

∑
U aksk =

∑
U akπk where ak = xkπ

−1
k define a linear subspace in RN

of dimension N − p . So the problem is to choose a vertex of the N−cube (a
sample) that remains on the linear sub space. The solution is found by a linear
program solved by simplex algorithm (see (Tillé, 2006, sec 8.6)) .

5.6 Ignorability in Non Sequential Case

Denote P (Stk = 1t|yk,x0
k) = p(stk|yk,x0

k). I show that sequential Ignorability
implies independence as defined single phase Ignorability:

p(stk|yk,x0
k) = p(stk|st−1k, yk,x0

k)p(st−1k|yk,x0
k)

4−II
= p(stk|st−1kx0

k)p(st−1k|yk,x0
k)

repeating the factorisation of p(st−1k|yk,x0
k) until period 0, I obtain the desired

result

p(stk|yk,x0
k) = p(stk|x0

k).

5.7 Example Estimators- Sequential Selection

BLUP Estimators

Note that they all are ML estimators for m2(x
1).

m2(x
1) X1 = x1 ŷm = x1β̂

[Xp0Xp1]Y X1 ∑
p0

∑
P 1 Wp0p1ys2p0p1

(∗)

[Xp0Xp1]Y (Xp0,Xp1
s1 )

∑
p0

∑
P1 w

′
p0p1

n2p0p1ys2p0p1∑
p0

∑
P1 w

′
p0p1

n2p0p1

(∗∗)

[Xp0 +Xp1]Y (Xp0,Xp1
s1 )

∑
p0

∑
P1 w

′
p0p1

n2p0p1 (β̂+β̂p0+β̂p1 )∑
p0

∑
P1 w

′
p0p1

n2p0p1

(∗∗∗)

add [Xp0 +X1]Y ?

[Xp1]Y (Xp0,Xp1
s1 )

∑
P1 w∗

p1
ys2·p1∑

P1 w∗
p1

(∗∗∗∗)

[Xp0]Y (Xp0,Xp1
s1 )

∑
p0

Np0

N
ys2p0·

[φ]Y (Xp0,Xp1
s1 )

∑
p0

n2p0·
n2

ys2p0·
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comments-

(∗)Wp0p1 = Np0p1/N

(∗∗)w
′

p0p1 =
Np0·
n1p0

n2

N
/
n2p0p1

n1p0p1
. The estimator reduces to ŷm =

∑
p0

∑
P 1

Np0·
N

n1p0p1

n1p0
ys2p0p1

(∗∗∗) If the model for Y is [X0 + X1]Y , then ŷkp0p1 = β̂ + β̂p0 + β̂p1 ,predicted
values from an additive model fitted to the respondent data on s2.

(∗∗∗∗) w∗p1 =
∑

p0 w
′

p0p1n2p0p1

5.8 Balancing score Properties in the Three Phase

Sequential Case

Presuming assumptions (1) to (4), the following statements hold

• Yk⊥S1k|b1k(x0) for all b1(x
0) such that E{p1(x0)|b1(x0)} = p1(x

0)

—————————————————————————

Proof: see earlier case.

—————————————————————————

functions that fulfill the balancing score condition is the propensity score p1(x
0).

This is identical to the one phase case.

• Yk⊥S2k|b2k(x1, s1) for all b2(x
1, s1) such that E{p2(x1, s1)|b2(x1, s1)} =

p1(x
1, s1).

—————————————————————————

Proof:

Pr(S2 = 1|y, b2(x1, s1)) = Ex1,s1{Pr(S2 = 1|x1, s1, y, b2(x
1, s1))|y, b2(x1, s1)}

4−I
= Ex1,s1{p2(x1, s1)|y, b2(x1, s1)}
b.d
= Pr(S2 = 1|x0, s1).

—————————————————————————
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functions that fulfil the balancing score condition is p2(x
1, s1), p2(x

1) as well as

[p2(x
1, s1), s1] and [p

2
(x1), s1].

• Yk⊥S3k|b3k(x2, s2) for all b3k(x
2, s2) such that E{p3(x2, s2)|b3k(x2, s2)} =

p3(x
2, s2).

—————————————————————————

Proof:

Pr(S3 = 1|y, b3k(x2, s2)) = Ex2,s2
{Pr(S3 = 1|x2, s2, y, b3k(x

2, s2))|y, b3k(x2, s2)}
4−I
= Ex2,s2

{p3(x2, s2)|y, b3k(x2, s2)}
b.d
= Pr(S3 = 1|x2, s2).

—————————————————————————

functions that fulfill the balancing score condition is p3(x
2, s2), p3(x

2) as well as

[p3(x
2, s2), s2] and [p

3
(x2), s2].

5.9 The Three Phased Sequential π−Estimator

is Unbiased

I show that the three phased π−estimator

Ŷ π =
∑
k∈s0

YkS3kπ̂3(x
2
k)
−1/

∑
k∈s0

S3kπ̂3(x
2
k)
−1

indeed estimates the desired quanity- The population average of measurement
E(Y ).

As in previous derivations, I assume for simplicity that the probabilities π are
estimated consistently and with enough regularity such the the following exposi-
tion based on true probabilities holds asymptotically with estimated probabilities
as well.

I also replace the scale factor
∑

k∈s0 S3kπ̂3(x
2
k)
−1 by its estimand, the population

total N . Note that

Ŷ π =
∑
k∈s0

YkS3kπ̂3(x
2
k)
−1/

∑
k∈s0

S3kπ̂3(x
2
k)
−1

= N−1
∑
k∈s0

YkS3kπ̂3(x
2
k)
−1 +O(n−1).
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Thus

N · E(Ŷ π) =
∑
k∈s0

E
YkS3k

π3(x
2
k)

=
∑
k∈s0

E
YkS1kS2kS3k

π1(x0;α1)π2(x1, s1;α2)π3(x2, s2;α3)

=
∑
k∈s0

Ex0

[
E(

YkS1kS2kS3k

π2(x1, s1;α2)π3(x2, s2;α3)
|x0) · 1

π1(x0;α1)

]
=

∑
k∈s0

Ex0

[
E(

YkS2kS3k

π2(x1, s1;α2)π3(x2, s2;α3)
|x0, s1k)p(s1k = 1|x0) · 1

π1(x0;α1)

]
=

∑
k∈s0

Ex0

[
E(

YkS2kS3k

π2(x1, s1;α2)π3(x2, s2;α3)
|x0, s1k)

]
=

∑
k∈s0

Ex0

[
Ex1

{
E(

YkS2kS3k

π2(x1, s1;α2)π3(x2, s2;α3)
|x1, s1k)

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
E(

YkS2kS3k

π3(x2, s2;α3)
|x1, s1k)

1

π2(x1, s1;α2)

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
E(

YkS3k

π3(x2, s2;α3)
|x1, s2k)p(s2k = 1|x1, s1k)

1

π2(x1, s1;α2)

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
E(

YkS3k

π3(x2, s2;α3)
|x1, s2k)

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
Ex2

(
E(

YkS3k

π3(x2, s2;α3)
|x2, s2k)

)
|x1, s2k

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
Ex2

(
E(Yk|x2, s3k)

p(s3k = 1|x2, s2k)

π3(x2, s2;α3)

)
|x1, s2k

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
Ex2

(
E(Yk|x2, s3k)

)
|x1, s2k

}
|x0, s1k

]

Now by sequentially for each phase, using the ignorability assumption, followed
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by averaging over the relevant auxiliary vector

N · E(Ŷ π) =
∑
k∈s0

Ex0

[
Ex1

{
Ex2

(
E(Yk|x2, s3k)

)
|x1, s2k

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
Ex2

(
E(Yk|x2, s2k)

)
|x1, s2k

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
E(Yk|x1, s2k)

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
Ex1

{
E(Yk|x1, s1k)

}
|x0, s1k

]
=

∑
k∈s0

Ex0

[
E(Yk|x0, s1k

]
=

∑
k∈s0

Ex0

[
E(Yk|x0

]
=

∑
k∈s0

E(Yk)

= N · E(Y )

5.10 Example Estimators- Sequential Selection

π−Estimators

As in the one phase case, note that many of estimators coincide with the outcome
model ML estimators.
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π2(x
1) X1 = x1 ŷπ =

∑
k∈s2 ykπ̂2(x

1
k)
−1/

∑
k∈s2 π̂2(x

1
k)
−1

[X1]S X1 ∑
s2 ykπ̂

−1
2k /

∑
s2 π̂

−1
2k
∗

[Xp0]S1,[Xp1]S2|S1 X1 ∑
p0

∑
P 1 Wp0p1ys2p0p1

∗∗

[X0]S1,[X1]S2|S1 (X0,X1
s1)

∑
k∈s2 ykπ̂2k

−1/
∑

k∈s2 π̂2k
−1

[Xp0]S1,[Xp1]S2|S1 (X0,X1
s1)

∑
p0

∑
P 1

Np0·
N

n1p0p1

n1p0
ys2p0p1

∗∗∗

[Xp0]S1,[Xp1, Z1]S2|S1 (X0,X1
s1)

∑
p0 π̂

−1
p0

∑
k∈s2 π̂

−1
2k yk/

∑
p0 π̂

−1
p0

∑
k∈s2 π̂

−1
2k

v

[Xp0]S1,[Xp1, Z1]S2|S1 (X0,X1
s1)

∑
p0 π̂

−1
p0

∑
k∈s2 π̂

−1(w)
2k yk/

∑
p0 π̂

−1
p0

∑
k∈s2 π̂

−1(w)
2k

vv

[Xp0]S1,[Xp1]S2|S1 (X0,X1
s1)

∑
p0

∑
p1 π̂

−1
p0p1n2p0p1ys2p0p1/

∑
p0

∑
p1 π̂

−1
p0p1n2p0p1

vvv

[Xp0]S1,[Xp1]S2|S1 (X0,X1
s1)

∑
p0

∑
p1 π̂

−1(w)
p0p1 n2p0p1ys2p0p1/

∑
p0

∑
p1 π̂

−1(w)
p0p1 n2p0p1

vvvv

[Xp0]S1,[Z1]S2|S1 (X0,X1
s1)

∑
p0

∑
p1 π̂

−1
p0p1n2p0p1ys2p0p1/

∑
p0

∑
p1 π̂

−1
p0p1n2p0p1

∗

[Xp0]S1,[Z1]S2|S1 (X0,X1
s1)

∑
p0

∑
p1 π̂

−1(w)
p0p1 n2p0p1ys2p0p1/

∑
p0

∑
p1 π̂

−1(w)
p0p1 n2p0p1

∗∗

[Z0]S1,[Xp1]S2|S1 (X0,X1
s1)

∑
p1(

n2·p1

n1·p1
)−1
∑

k∈s2p1
π̂1kyk/

∑
p1(

n2·p1

n1·p1
)−1
∑

k∈s2p1
π̂1k
∗∗∗

[Z0]S1,[Xp1]S2|S1 (X0,X1
s1)

∑
p1 N̂p1{

∑
k∈s2p1

π̂−1
1k yk/

∑
k∈s2p1

π̂−1
1k }∑

p1 N̂p1

∗∗∗∗

∗ a one phase estimator using fitted probabilities from unconditional model
π̂2k = π2(x

1; α̂).
∗∗ Specifica example of ∗ where we assume Xp1 = (Xp0, Xp1) is known for all
resulting in a simple one phase post stratification estimator. Underlying as-
sumption is equal selection probability within groups defined by x1.
∗∗∗ Identical to the MLE with partial information in model based approach.
Found by letting π1(x

0; α̂1) = n1p0·/Np0· and π2(x
1, s1; α̂2) = n2p0p1/n1p0p1 into

π− estimator.

v where π̂p0 = (n1p0·/Np0·) and π̂2k = π2(x
p1, z1, s1; α̂2). The case where first

phase is modelled by categorical while 2nd includes continuous variables as well.
Is unbiased as follows the assumptions.

vv Same data available and model assumptions as previous but where π2k are
fitted by weighted model, that is π̂

−1(w)
2k = π2(x

p1, z1π̂p0 , s
1; α̂

(w)
2 ), for example

weighted logistic regression. As v is unbiased the additional weighting should be
redundant.

vvv The Double Expansion Estimator (DEE). Assumes π2(x
1) = [π2(x

1, s1;α2), π1(x
0;α1)].

This is a special case as the 2nd phase model ignores 1st phase information. It
estimates by raw response rates so that π̂−1p0p1 = π̂p0 · π̂p1 where π̂p0 = n1p0·/Npo

and π̂p1 = n2·p1/n1·p1 . This is generally a biased estimator as π̂p1 = n2·p1/n1·p1

are not unbiased estimators of the population strata size defined by Xp1 = xp1.
The DEE will be unbiased only when Y ∼ X1 and π2 ∼ Xp1.

vvvv The Reweighted Expansion Estimator (REE). The same as (DEE), but es-

timates 2nd phase probabilities by weighted response rates, that is π̂
−1(w)
p0p1 =
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π̂p0 · π̂(w)

p1 where π̂p1 = n2·p1/n1·p1 as before while π̂
(w)

p1 =
∑

k∈s2
p0·
π̂−1p0 /

∑
k∈s1

p0·
π̂−1p0 .

The (REE) estimator will be unbiased if either Y depends only on Xp1 or S2

depends only on Xp1. This can be shown by simple conditional expectation
E(ŷπ) = EyEs(ŷπ − y|y) = EsEy(ŷπ − y|s2).

∗ Another case where the 2nd model ignores the previous selection model predic-
tors. Specifically, π̂−1p0p1 = π̂p0 · π̂p1 where π̂p0 = n1p0·/Npo and π̂p1 = π2(z

1, s1; α̂2)

∗∗The same as above, but here the propensity score model is weighted by π̂p0 =

n1p0·/Npo so that π̂
(w)

p1 = π2(z
1, s1, π̂p0 ; α̂

(w)
2 ). The interesting question is whether

the weighting will help in reducing bias if Y is influenced by Xp0.

∗∗∗ The classic case of (DEE) and (REE) under the setting of KOTT (2011) .
The probability π1k is estimated by π̂1k = π1(z

0; α̂1) while π̂2k = (n2·p1/n1·p1).
This results in a normally biased (DEE) estimator.

∗∗∗∗ This is the setting KOTT (2011) discusses. First π̂1k = π1(z
0; α̂1) as

above while π̂
(w)
2k = π2(x

p1, s1, π̂1k; α̂2) =

∑
k∈s2p1

π̂−1
1k∑

k∈s1p1
π̂−1
1k

. Also note that denomi-

nator
∑

k∈s1p1
π̂−11k = N̂p1 an unbiased estimator of the count in strata defined

by Xp1 = xp1. Thus ŷπ =

∑
p1{π̂

(w)−1
2k

∑
k∈s2p1

π̂−1
1k yk}∑

p1{π̂
(w)
2k

∑
k∈s2p1

π̂−1
1k }

and as the denominator

∑
p1{π̂

(w)
2k

∑
k∈s2p1

π̂−11k } =
∑

p1

∑
k∈s2p1

π̂−1
1k∑

k∈s1p1
π̂−1
1k

∑
k∈s2p1

π̂−11k =
∑

p1 N̂p1 and so ŷπ =

∑
p1{π̂

(w)−1
2k

∑
k∈s2p1

π̂−1
1k yk}∑

p1 N̂p1
=

∑
p1 N̂p1{

∑
k∈s2p1

π̂−1
1k yk/

∑
k∈s2p1

π̂−1
1k }∑

p1 N̂p1
.
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