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Abstract
In April 2002, five years after the Blair government’s proposals to create a ‘New NHS
[National Health Service]’, the government outlined the key priorities that would mark the
NHS reform. The main reforms involved patient choice supported by a system of ‘Payment
by Results’ (PbR) under which hospitals would be funded on the activity they undertook.
PbR is a case based payment system, a type of system increasingly being adopted as
the main form of provider payment across industrialised countries. The literature on this
type of payment system and experiences from other countries identifies many different
behavioural incentives that can have both positive and negative impacts on quality of
care. This thesis investigates the quality implications observed so far in England, for
seven conditions which represent a spectrum of important clinical areas that are admitted
through both emergency and elective admissions.

In order to identify changes in quality, this thesis first considers how to construct an ap-
propriate measure of quality. The first part of the thesis utilizes two different methodolog-
ical techniques used for quality measurement; a latent variable approach and a technique
put forward by McClellan and Staiger (1999) using Vector Autoregressions. The results
from these techniques indicate that quality measurement approaches differ markedly with
regards to how much measurement and systematic error they are able to filter out of raw
outcome data. Finally, the new indicators created by these techniques are used to evalu-
ate the quality impact the introduction of PbR as the main form of hospital payment has
had in England. The analysis indicates that since the policy’s implementation, there have
been differential quality effects on the different conditions. However, for the most part this
indicates an improvement in mortality outcomes, and a reduction in the variation of out-
comes across hospitals. As found, the interpretation of readmissions has to be approached
with caution as more severe patients being kept alive through quality improving measures
on mortality create more mixed signals for the readmission indicators. In two conditions
we find changes in activity that are indicative of efficiency gains, in the form of better
coding and adoption of new technology, both as a result of differences in reimbursement
categories.
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1 Introduction
1.1 Introduction

In April 2002, five years after the Blair government’s proposals to create a ‘New NHS [Na-
tional Health Service]’ (Secretary of State for Health, 1997), the White Paper, ‘Delivering
the NHS Plan’ was published. This publication described key priorities that would mark
the NHS reform, namely patient choice supported by a system of ‘Payment by Results’
(PbR) under which hospitals would be funded on the activity they undertook. These
mechanisms were intended to ensure that money would follow the patient to providers,
such that stronger incentives existed to improve performance and ensure that the NHS
worked for patients (Ham, 2009). The ultimate vision of the [NHS] plan was to provide
“prompt, convenient, high quality services, which treat patients as partners” (Secretary
of State for Health, 2002).

The payment of health care providers represents one of the most essential tools of the
health care system. Not only is provider payment historically one of the largest areas
of total hearth care expenditure for most developed countries, but it also has the power
to create powerful incentives which can ultimately affect the quantity, quality, equity,
efficiency and costs of health interventions. Indeed it was large health care expenditures
in the seventies and eighties that led to the development case payment systems, one of
the most commonly adopted payment systems today. Pure case payment systems, or
activity-based payment, are fixed payment systems used to pay hospitals according to
patient characteristics, often measured by Diagnostic Related Groups (DRGs). PbR is
an example of a case payment system for hospitals. Under PbR, Primary Care Trusts
(PCTs) reimburse hospitals for each procedure they perform though a nationally set tariff
that takes into account the diagnosis, mix and complexity of patients receiving care as
measured by Healthcare Resource Group (HRG), the English equivalent to the DRG.

DRGs are essentially a classification tool, proposed by Robert Fetter et al. in 1980 as
a way of comparing and controlling hospital costs. By dividing patients into diagnostic
groups which are weighted according to factors influencing the cost of treatment, relative
case groups can be constructed to reflect the difference in the resource utilization of hos-
pitals. These case groups form the basis of ‘case payment’, as they provide a means with
which hospitals can be reimbursed according to indices of their case weighted admissions
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1.1. Introduction

adjusting for other hospital factors such as location and status of the hospital. Under a
case based system hospitals are paid for the activities they perform, thus encouraging them
to respond to patient preferences and demands, and operate more efficiently. Moreover
this type of payment system allows costs to become much more transparent. Yet, while
this system is beneficial when designed correctly, it also carries with it many risks.

Under this type of system payment for each case is determined ex ante. The payment
received by hospitals is thus unrelated to the actual costs incurred during the patients
stay. Thus, hospitals may have a financial incentive to discharge patients early, or skimp
on quality, as they will not be paid for any additional costs they incur. Under the same
logic providers have the incentive to seek out treating low risk (cost) patients, and avoiding
high risk (cost) patients. To some extent this can be avoided if the DRG classifications
become more specific, and account for the heterogeneity in patient case mix (Dranove and
White, 1987; Shleifer, 1985). The financial incentives that derive from such a payment
mechanism also depend on how high the case payments are set (Ginsburg and Grossman,
2005; Newhouse, 2002). If payments are relatively generous (above marginal costs), hos-
pitals will try to attract more patients, conversely if payments are low (below marginal
costs) hospitals will discourage patients. This financing mechanism may also create mo-
tivation to ‘game’ the system in order to profit. Providers can do this by ‘’ patients,
that is classifying them into a higher (more expensive) DRG category in order to receive
a bigger payment. For this reason it is necessary to regularly audit case-based systems,
and carefully design payment rates and diagnostic codes so that they accurately reflect
the costs of providing different types of medical services (Ginsburg and Grossman, 2005;
Schreyögg et al., 2006; Street and Maynard, 2007).

The United States first introduced a case-based system, when adopting Diagnosis Re-
lated Groups (DRGs) in Medicare and Medicaid (Newhouse, 2002). As this type of sys-
tem motivates more efficient and cost-effective behaviour (Audit Commission, 2004; Jegers
et al., 2002) and it has become increasingly popular. More recently, this system of payment
has been adopted in European countries such as England, Austria, Sweden, Germany and
others. Evidence from the United States (US) and European systems indicate increased
efficiency (Kahn et al., 1990), changes in coding and admissions behaviours (Duckett and
Jackson, 2000; Keeler et al., 1990; Kahn et al., 1992; Rogers et al., 2005), as well as
incentives that may create instances of behaviour that can adversely influence quality
(Newhouse, 2002). Yet, the same underlying payment system can differ between different
health systems either because of different design features, such as the size of payment, the
breadth of payment or the timing of payment, or because of differences in existing politi-
cal, organizational and institutional structures. The variation in these parameters across
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national health systems make if very difficult to extrapolate findings from one country to
the other. Many countries are still in the early years of adopting case-based systems and
given the inherent institutional and organizational differences between health care systems
there are differences in the effects these policies are having, and will have.

Indeed while case-payments have been, and are being, applied in many health care
systems, the English case is unique. Apart from Germany, who is also in the process
of applying a case-based system, in no other country are hospital incomes completely
determined by activity related payments. Moreover, the national tariff in the English
PbR system reflects average costs alone, which apart from France, is not the case for any
other country. Most countries apply a more complex pricing system to provide all hospitals
with an incentive to improve their performance (Street and Maynard, 2007). These two
differences, make the recent PbR policy being applied to England a very interesting case
study for both the academic literature in activity-based funding and policymakers alike.
It is of interest to examine the English experience in order to determine whether the
effectiveness of the payment system differs, given the organizational and institutional
differences of the English health system and the PbR policy. The results of such an analysis
can be useful not only for informing policy within England, but to be used comparatively
to understand how the different structural and design features influence the effectiveness
of this type of payment system.

Some work has already being undertaken to examine the effects of the English PbR
policy on length of stay, readmissions and volumes of inpatient and emergency activity
(Farrar et al., 2009). While case-based reforms are usually focused on improving the
efficiency of health care delivery, they do raise concerns about their effects on quality of
care, which may be adversely effected as evidence from the US experience has suggested
(Cutler, 1995; Kahn et al., 1992; Shen, 2003). Moreover, in 2008, the Audit Commission
noted that 53% of doctors were wary of the quality effects the PbR policy would have,
and while they also report increases in readmission rates between 2003/04 – 2006/07, yet
do not find evidence to attribute these to the PbR policy. Similarly a case study of South
Yorkshire (Mannion and Street, 2006) indicated increased tensions between commissioners
and providers surrounding issues of ‘supplier induced demand and the cost implications
of poor clinical coding and other information imperfections that could result under this
type of system. Little evidence has been published to suggest that PbR has had any
effect on quality of care, however the few studies that address this issue have used crude
proxies for quality: in-hospital mortality, 30 day post surgical mortality and emergency
re-admissions, metrics that the authors themselves note are insufficiently sensitive (Farrar
et al., 2009).
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1.2. Background

In order to determine how effective PbR has been at creating “prompt, convenient,
high quality services, which treat patients as partners”, this thesis aims to investigate the
effects PbR has had on the quality of health care providers. However, as demonstrated
by previous efforts, the measurement of quality of care has proved to be a hurdle in this
undertaking. Thus, in order to determine the effects of this reform it is first necessary to
be able to first establish a suitable metric for quality of care. Part II is thus devoted to this
endeavor, Part III then uses the information generated in Part II to evaluate the effects
PbR has had on quality. Before jumping into Parts II and III of the thesis, this chapter
will go on to provide some background to both areas. The following section will review
the methodological techniques commonly used for quality measurement today. This gives
us an opportunity to consider what tools are available to conduct an analysis of this sort,
and justify our selection for the methods used. Before concluding we will also revisit the
discussion on PbR, going into more detail on why and how we expect it to influence quality
in the English setting. Finally, the last section will review in more detail what will be
done in each of the thematic chapters, the data used in the analysis, and the choice of
conditions selected for this study.

1.2 Background

Measuring Quality

The desire to measure the quality of hospital care dates back to the advent of medicine
itself. Yet, the measurement of hospital quality is no easy feat. Health care is complex,
multidimensional and the link between clinical practice and patient outcomes is often
tenuous at best. Many hurdles face those who attempt to measure quality starting with
the seemingly simple task of defining it. As far back as ancient Greece, the challenge in
defining quality of care resulted in using list of attributes, categories or features to aid
in its conceptualizations. The ancient civilizations of Egypt and Babylon recognized that
poor quality care can lead to harm, and good quality care to the absence of harm, however
still struggled with a better way to measure it than simply focusing on the final outcome
of care (Reerink, 1990). Indeed, up until the pioneering work of Nightingale, Codman and
Donabedian, the notion of quality of care while very real in terms of being recognized and
appreciated, was a mystery in terms of how to palatably define or measure it.

The first proponents of routine clinical outcome measurement were Florence Nightin-
gale (circa 1860) and Ernest Codman (circa 1900). Nightingale pioneered the systematic
and rigorous collection of hospital outcomes data in order to understand and improve per-
formance. While Codman advocated the “end results idea”, essentially the common sense
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notion of following every patient treated for long enough to determine whether their treat-
ment was successful, and if not to understand and learn from the failures which occurred.
Unfortunately, political and practical barriers prevented both these ideas from becoming
fully adopted until the last twenty years. Currently, quality of hospital care is often con-
ceptualized with regards to the performance in different domains, and in its measurement
indicators range beyond clinical outcomes, such as clinical process measures and resource
utilization measures. Avedis Donabedian, whose name is synonymous with quality mea-
surement, advocated the measurement of structure process and outcome rather than the
use of only outcomes to measure quality. He argued that “good structure increases the
likelihood of good process, and good process increases the likelihood of good outcome”
(Donabedian, 1988). Indeed many of the indicators used for quality measurement are
often thought of in terms of this framework, and increasingly quality management policies
use combinations of the three types of indicators.

Although clinical outcome measures are the gold standard for measuring effective-
ness in health care, their use can be problematic, for example if the outcomes cannot
realistically be assessed in a timely or feasible fashion, or when trying to understand the
contribution of health services to health outcomes. Thus many health services performance
initiatives use measures of health care process instead of, or in addition to, measures of
outcome. Process measures have certain distinct advantages, for example, they are quicker
to measure, and easier to attribute directly to health service efforts (Brook et al., 1996).
In addition they are commonly considered a better measure of quality as they examine
compliance with what is perceived as best practice. However, they may have less value
for patients unless they are related to outcomes, and may be too specific focusing on
particular interventions or conditions. Moreover, process measures may ultimately ignore
the effectiveness or appropriateness of the intervention and pre-judge the nature of the
response to a health problem, which may not be identical in all settings, such as for pa-
tients who have multiple morbidities (Klazinga, 2011). In recent years another important
development in the assessment of health service performance has been the growing use
of patient reported outcome measures. These type of measures typically ask patients to
assess their current health status, or aspects of health problems (Fitzpatric, 2009). In
England, the routine use of Patient Reported Outocome Measures (PROMS) is growing,
with wide-scale adoption in the NHS from 2009 for certain elective procedures.

However, amongst these different measures and dimensions, clinical outcome measures
arguably carry the most weight as they are often the most meaningful for stakeholders
and more clearly represent the goals of the health system. Even Donabedian himself con-
cluded that, “outcomes, by and large, remain the ultimate validation of the effectiveness

25



1.2. Background

and quality of medical care” (Donabedian, 1966). In the past decades, many industrial-
ized countries have invested large amounts in the development and routine collection of
hospital outcome indicators. Indicators are being developed, tested and used in countries
such as Austria, Finland Spain, Italy, France, Germany, Australia, the UK and the US,
where administrative databases and medical records are able to provide large-scale sources
of individual patient level data. These databases allow researchers to easily and relatively
cheaply calculate hospital-specific mortality rates which often serve as outcome-based mea-
sures of quality. It is easy to see why this type of measure is desirable. A simple indicator
that allows the identification of ‘good’ and ‘bad’ hospitals can serve as instruments to
direct policy and or to inform patient decisions. Indeed for some conditions, routinely
available data or this sort has been shown to be as good a predictor of death as some
expensive clinical databases (Aylin et al., 2007).

As measures of health outcome are increasingly used to inform policy, statistical re-
searchers have made efforts to address some of the methodological issues associated with
them. For example, it is well known that a patient’s outcome will be influenced by the
severity of their condition, their socio-economic status as well as the resources allocated
to their treatment. In such cases, it is critical to employ methods of risk adjustment
when using and comparing indicators to help account for these variations in patient pop-
ulations. Failure to risk adjust outcome measures before comparing patient performance
may result in misinterpretation of data which can have serious implications for quality im-
provement and policy (Iezzoni, 2009). Typically, some sort of risk adjustment technique
is employed to address these attribution problems, and control for the other influencing
factors. However, many different risk-adjustment mechanisms exist, and are applied dif-
ferently by different users (Iezzoni, 1994). Thus risk-adjusted measures may not always
be comparable with one another (Iezzoni et al., 1996).

Hospital standardized mortality ratios (HSMR) are common risk-adjusted measures
used to evaluate overall hospital mortalities. Initially developed by Jarman (Jarman et al.,
1999), HSMRs compare the observed numbers of deaths in a given hospital with the
expected number of deaths based on national data, after adjustment for factors that affect
the risk for in-hospital death, such as age, diagnosis and route of admission (Shojania
and Forster, 2008). However, despite their prolific use, many authors express concerns
as to the degree of true quality information these indicators hold and implore users of
this information to exercise caution in drawing conclusions from them (Birkmeyer et al.,
2006; Dimick et al., 2004; Lingsma et al., 2010; Mohammed et al., 2009; Normand, Wolf,
Ayanian, and McNeil, Normand et al.; Powell et al., 2003; Shahian et al., 2010). In part,
these concerns represent skepticism about how good risk adjustment techniques are at
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controlling for differences in for case mix or chance variation. But also, mortality may not
always be a valid indicator of quality (Iezzoni, 2009; Shojania and Forster, 2008). For,
even when outcome measures are risk adjusted they still run the risk of not accounting
for factors that cannot be identified and measured accurately.

Indeed, measures of risk may not be uniformly related to patient outcomes across all
hospitals. Certain systematic factors which bias results when these differences are not
taken into account. Mistaking such errors for differences in quality is known as “case-
mix fallacy”. Systematic errors of these sort will lead to erroneous conclusions concerning
a variables true value. For example, patterns of use of emergency services may indicate
higher degrees of illness in some areas, but poor availability of alternative services in others
(Wright and Shojania, 2009). It would me misleading to adjust the data across hospitals
according to only one of these assumptions. Mohammed et al. (2009) find systematic
associations between hospital mortality rates and the factors used to adjust for case-mix in
English Dr. Foster data. Thus, using these measures for case-mix adjustment may actually
increase the bias that they are intended to reduce (Lilford et al., 2007; Powell et al., 2003).
In these cases standardized mortality ratios, or other risk-adjustment methods may also be
misleading. In order to avoid these types of errors it is critical that data collection methods
are carefully designed and implemented (Terris and Aron, 2009). Most recently Shahian
et al. (2010) present evidence suggesting that the methodology used to calculate hospital
wide mortality rates is instrumental in determining the relative ‘quality’ assigned to a
particular hospital. The authors note that rather than suggesting a particular preferred
technique for the calculation of hospital mortality, they call into question the very concept
of the measurement of hospital-wide mortality.

Moulton (1990) notes that using aggregate variables, such as average death rates,
in combination with individual observations by trust or site to determine relationships
through regressions or other statistical models runs the risk of producing downwards biased
standard errors, and possibly exaggerating the significance of certain effects based on
spurious associations. Moreover, while some deaths are preventable, or more dependent
on treatment, it is not sensible to look for differences in preventable deaths by comparing
all outcomes from one provider. Focusing on mortality rates associated with procedures
where the quality of care is known to have a large impact on patient outcomes, such as
those that are heavily dependent on technical skill, is in fact more informative (Lilford
and Pronovost, 2010).

Indeed, focusing on certain conditions could be considered an extreme form of risk
adjustment, where measures focus only on particular conditions, rather than creating
organization wide outcome measures. Surgical mortality rates for specific conditions or
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procedures have become more popular as they are able to identify key areas where health
system quality is more likely to influence outcomes, and where medical progress has been
instrumental in improving outcomes. Popular outcome indicators of this sort are 30-
day mortality rates for acute myocardial infarction (AMI) and Stroke. Better treatment
of AMI in the acute phase has led to reductions in mortality (Capewell et al., 1999;
McGovern et al., 2001). The last few decades have seen a dramatic change in care for AMI
patients (Klazinga, 2011) first with the introduction of coronary care units in the 1960s
(Khush et al., 2005) and then with the advent of treatment aimed at restoring coronary
blood flow in the 1980s (Gil et al., 1999). Aside from the contributions from medical
technology, improved processes have also contributed to the improvement in outcomes.
Research showed that the time from AMI occurrence to re-opening the artery is a key
driver of prognosis, and since care processes were changed radically. It is now common
for emergency medical personnel to administer drugs, such as aspirin, during patients
transport to hospital and emergency departments have instituted procedures to ensure that
patients receive definite treatment with thrombolysis or catheterisation within minutes of
arrival (Klazinga, 2011). Moreover the proven link between identified care processes and
patient outcomes, for conditions such as AMI, allow researchers to be more confident
in making judgements about quality and the end result of care. Indeed, there has been
considerable work that has used AMI as a proxy for quality both in England (Bloom et al.,
2010; Propper et al., 2004, 2008) and internationally (Kessler and McClellan, 1996, 2011;
McClellan and Staiger, 1999; Shen, 2003).

The Organization for Economic Co-operation and Development (OECD) Health Care
Quality Indicators (HCQI) project, initiated in 2002, which aims to measure and compare
the quality of health service provision in the different countries identifies key quality vari-
ables that can be used at the acute care level1. These indicators include case-fatality rates
for AMI and Stroke (OECD, 2010). The Agency for Healthcare Research and Quality in
the US, identified seven operations for which they recommended surgical mortality as a
quality indicator: Coronary Artery Bypass Graft (CABG) surgery, Repair of Abdominal
Aortic Aneurysm, Pancreatic Resection, Esophageal Resection, Pediatric Heart Surgery,
Craniotomy and Hip Replacement (Dimick et al., 2004). However, even in cases where
there is an established link between treatment and quality, it is not necessarily the case
that surgeries are performed frequently enough, in all hospitals, to reliably identify hos-
pitals with increased mortality rates. Indeed, Dimick et al. (2004), attempted to identify

1As the HCQI project is concerned with overall health system quality it also identifies suitable qual-
ity indicators in other health system domains, including patient safety, health promotion, protection
and primary care, patient experiences, cancer care and mental health care. For more information see
http://www.oecd.org/health/hcqi.
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how many hospitals had an appropriate sample size to determine quality based on these
seven conditions. They found that apart from CABG surgery, the remainder of operations
for which surgical mortality was advocated as a suitable indicator were not performed
frequently enough to make valid assessments of quality. Indeed further work on the re-
lationship between hospital volumes and outcome indicate that mortality rates are poor
measures of quality when small numbers of procedures are performed, unfortunately most
procedures are not performed frequently enough to allow valid assessment of procedure-
specific mortality at the individual hospital level (Birkmeyer et al., 2002). Indeed, most
observed variation across hospitals and across time is actually, as a consequence, from
random variation (good or bad luck) and does not reflect meaningful changes in quality
(Dimick and Welch, 2008).

Another common outcome measure at the hospital level are readmission rates. The
measure has become increasingly popular despite the fact that it cannot always be at-
tributed to the quality of care delivered by the hospital. Indeed, McClellan and Staiger
(1999) note that high readmissions may be easily misinterpreted as indicators of poor
quality when in some cases they may indicate good quality treatment of severe patients.
Moreover, readmissions may be the result of poor quality care of other parts of the health
system (primary care), behavioural factors (poor adherence), or even the result of good
quality care. Benbassat and Taragin (2000) conclude that readmission indicators are not
good measures of quality of care for most conditions, as there is large variation in the
percentage of the indicator that can be attributed poor quality care. Their own study
using reports of different readmission indicators for various conditions indicated a range
between 9%-50%. They note that readmissions for specific conditions, such as Child Birth,
Coronary Artery Bypass Grafting and Acute Coronary Disease as well as approaches that
ensure closer adherence to evidence based guidelines, may be more appropriate.

However, after initial use in the US, there are now a growing number of European
countries that measure readmission rates more systematically as a health service outcome
(Klazinga, 2011). A recent literature review conducted by Fischer et al, (2010), indicated
that of the 360 studies reviewed which used readmission rates as an outcome indicator,
only 23 focused on the validity of the indicator and only 14 looked at the specific source of
data used to calculate the indicators. The authors concluded that routinely collected data
on readmissions alone is most likely insufficient to draw conclusions about quality. Some
of the major problems linked to this conclusion was evidence of inaccurate and incomplete
coding of the indicator, and little evidence to indicate that readmissions are related with
quality of care carried out.

While investigating mortality and readmission rates by different condition may allow a
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clearer relationship between outcome and quality of care, other challenges such as random
error data quality still persist. Powell et al. (2003) note that variations in outcome will be
influenced by change variability which can manifest itself in type 1 or type 2 errors as well
as data quality. Both these issues are important, and while the former can be accounted
for to some degree using statistical tools the later can seriously undermine conclusions
made using the data. The best way to reduce the likelihood of both these types of errors
is to have more data, or more precision in the way they are collected. As routine data
collection mechanisms are still being developed and improved there is no way to completely
avoid this issue. Yet, as Spiegelhalter et al. (2002) note it would be advantageous to have
better data on morbidity collected, as mortality data is in most circumstances sufficiently
rare, and thus of limited value in monitoring. Regardless, known limitations in the data
should always be made explicit when it is used.

Over the past two decades, much empirical research has been done to create improved
adjustment mechanisms to make the best use of this information (Iezzoni, 2003). As more
organizations begin to use performance systems to make judgements about health service
quality and support decision making, more work has been concerned with methodological
techniques that can be used to create suitable profiles of provider quality (Landrum et al.,
2000). Different statistical techniques have been used to this end, investigating one di-
mension of care, including Bayesian hierarchical regression models (Normand et al., 1997;
Christiansen and Morris, 1997) and maximum likelihood estimates (Silber et al., 1995).
These models control for differences in cases per hospital, thus reducing the noise which
may produce large differences between observed and expected mortality between hospitals
with different sample sizes – due primarily to sampling variability.

However, as quality is multidimensional, this type of focus will limit the focus of
comparison across providers, and result in misleading results. However, reporting on too
many different types of indicators may create confusion or overwhelm users of performance
information, when there are contradictory indicators or simply too much information. So
called composite measures, or aggregated measures, may address some of these problems.
However there is often much controversy surround them because of the methods required
to construct them which often involve weighing different aspects of performance. Yet,
different methodological studies have been undertaken to try to find suitable methods to
address these issues (Landrum et al., 2000).

Latent variable models have been used to account for the correlation among perfor-
mance measures and to measure the quality of providers. This type of methodology as-
sumes an unobservable (latent) trait, such as quality, contributes to the attainment of an
ultimate outcome. Correlation among different measures is induced by variability in the
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latent trait of any one provider, which represents the summary of the unobserved quality
they are able to deliver (Landrum et al., 2000). Originally these types of models were used
in psychology research (Bentler, 1980; Cohen et al., 1990), but have been applied to many
disciplines, including economics where they have been used to measure areas that are not
directly observable, such as quality of life (Theunissen et al., 1998). One of the advantages
to using this methodology is that it can deal with multidimensionality of data, as it is able
to aggregate a large number of observable variables to represent an underlying concept.
Chapter 2 uses this approach to measure the quality of different English NHS hospitals in
providing services over the period 1996-2008 for seven different conditions. These latent
quality measures are then studied cross-sectionally and longitudinally and compared to
the raw data in order to try and understand trends in performance across providers and
over time.

However, the variability present in latent measures, or in our case in latent quality
across providers, will include both a systematic component and a random component.
The former can be explained by provider specific covariates and the latter by chance.
While the systematic components will also include measures of quality, they may also
include other systematic differences that contribute to outcome, such as deprivation or
severity, which may bias the measures (Mohammed et al., 2009). Such bias is referred to
as systematic error, as discussed previously. In order to correct for these biases, as well
as some of the noise still present in the estimates, and create better measures of quality
McClellan and Staiger (1999) proposed using multivariate autoregression methods. These
models are able to create smoothed out hospital rates of mortality and complications over
time as well as to forecast future performance. Chapter 3 applies this technique to the
latent estimates calculated in Chapter 2 and assesses the performance of the two measures
as compared to one another.

An important question when using any metric of quality that is created specifically
from the data of a single condition or procedure is how generalizable these findings are
to the organization as a whole. In order to better understand the relationship of quality
within a hospital, across conditions, Chapter 4 examines how different outcome measures
constructed from these methodologies for different condition are related to each other. We
find interesting relationships across the indicators for the different conditions, suggesting
that interpretation of the metrics may be more complex and requires careful consideration.
The findings of the first four chapters provide us with a thorough understanding of the
difficulties in measuring quality, but also with metrics that are sensitive enough to evaluate
quality. This allows us to proceed to the second part of the thesis which evaluates quality
change since the implementation of the ‘New NHS’ reforms.

31



1.2. Background

Evaluating Quality

With suitable quality metrics we are able to return to our initial question, and examine the
effect PbR has had on hospital quality. International experience and theory suggest the
policy can have a number of positive and negative effects (Table 1.1). In theory case-based
payments are designed to make providers indirectly compete with one another by setting
prices in such a way that they reflect efficient performance. This is usually the main driver
behind the adoption of such a policy, as it will help health systems to contain costs by
forcing providers to become more efficient. Moreover, this type of system is relatively easy
to operate, and if there are not too many case-groups it also can be relatively cheap to
administer. International experience suggests that the payment mechanism is successful
containing costs, decreasing length of stay, and increasing technical efficiency in many
countries who have adopted it (Table 1.2).

However, the cost reductions that make this system so desirable, may not always be
linked to only positive behaviours. Indeed, the very pressure put on providers to match
the price the are reimbursed for each case group can lead to undesired effects. These often
manifest themselves in terms of undesirable changes in activity, adverse effects on quality
and gaming.

Table 1.2 indicates the positive and negative effects case payment systems have on
different areas of performance. By definition, a case-based payment system removes the
economic incentive to over-provide services for any single case, as providers will only be
reimbursed a pre-determined tariff for each case-group. However, it may also encourage
providers to increase the number of unnecessary admissions, as they will be reimbursed
for every extra case (Mannion and Street, 2006). Results form international experience
indicates the latter effect, as activity has increased in many countries, but also the former
effect in the United States. This may be related to wider structural factors, such as the
organization of the health system, but also the payment mechanisms prior to the adoption
of case-payment.

In a similar vein, theory predicts that case-based payments will have a negative effect on
length of stay (LOS) and a positive effect on quality. Providers are encouraged to minimize
costs and be most effective, which can result in lower length of stay and higher quality
of care. However, depending on how the payment is set, providers may be encouraged to
discharge patients earlier so as not to make losses, in which case there will be a reduction
in LOS and also quality. This phenomenon has been referred to as discharging patients
‘quicker but sicker’ (Duckett and Jackson, 2000) The evidence from international literature
suggests that LOS has indeed decreased in most settings. There is also evidence of increases
in LOS, often in other areas of care (such as long term care), which has been attributed to
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cost-shifting. Moreover, there have been increases in hospital readmissions following the
adoption of this type of system, suggesting some element of quality skimping.

Table 1.1: Effects of case-based payments.

Domain Theory Evidence

Activity +/- • Activity Increase: Australia (Healy et al., 2006; Duckett, 1995);
Sweden (Diderichsen, 1995); England (Audit Commission, 2005;
Farrar et al., 2009; Sussex and Farrar, 2008; Rogers et al., 2005)
• Activity decrease: US (Guterman et al., 1988; Davis and Rhodes,
1988; Kahn et al., 1992; Rosenberg, 2001)

LOS - • Reductions in LOS: Austria (Theurl and Winner, 2007);
Germany (Schreyögg et al., 2005); USA average LOS (Feder et al.,
1987; Newhouse and Byrne, 1988; Shen, 2003), England (Audit
Commission, 2005; Sussex and Farrar, 2008)
• Increase in LOS: Sweden hospitalization rates (Diderichsen,
1995); USA long-stay patients (Newhouse and Byrne, 1988);

Efficiency + • Reductions in costs: Australia (Duckett, 1995); USA (Cutler,
1995; Shen, 2003), England (Rogers et al., 2005; Farrar et al., 2009);
• Technology improvement: Austria (Sommersguter-Reichmann,
2000)

Quality +/- • Improved Quality of care: USA (Kahn et al., 1990, 1992; Wells
et al., 1993)
• Higher Readmissions: Australia (Duckett and Jackson, 2000);
Austria (Rauner et al., 2003); England (Kahn et al., 1992); USA
Kahn et al. (1992)
• Decline in Quality of care: Sweden (Forsberg et al., 2001);
• No effect on Quality: England no evidence (Farrar et al., 2009)

Gaming + • Patient Selection: USA (Ellis and McGuire, 1996; Newhouse,
1989; Meltzer et al., 2002)
• Upcoding: Australia (Ellis and Vidal-Fernandez, 2007); Sweden
(Mikkola et al., 2002); USA (Chulis, 1991; Ginsburg and Carter,
1986; Sloan et al., 1988)
• Cost Shifting: Austria (Sommersguter-Reichmann, 2000); USA
(Cutler, 1995; Ellis and Vidal-Fernandez, 2007; Newhouse and
Byrne, 1988)

Other behaviours that can adversely effect quality are those which are unwittingly

33



1.2. Background

incentivised by the payment mechanism. These include patient selection, cost-shifting,
‘’, as well as fraud. All of these behaviours are ways to game the payment system and
profit. Patient selection occurs when providers try to minimize costs by selecting to treat
the less severe patients over the more severe. Cost-shifting deals with the more expensive
patients by shifting them to another part of the system, typically funded through a different
payment mechanism, such as long-term care or social-care. Upcoding refers to the shifting
of patients to similar case-categories which are reimbursed at a higher rate, such as the
same case with complications. While fraud is simply lying about the activity recorded in
order to increase revenues. The evidence for all of these is limited, but especially so for
upcoding and fraud. Indeed, some cases which have been identified as possible instances
of upcoding have later been attributed to other factors (Carter et al., 1990).

We have reviewed much of the experiences of other countries, in Table 1.1 and also in
the introduction, yet, we can only infer so much of that to the English setting. The same
underlying payment system can differ between different health systems either because of
different design features, such as the size of payment, the breadth of payment or the timing
of payment, or because of differences in existing political, organizational and institutional
structures. The variation in these parameters across national health systems make if
very difficult to extrapolate findings from one country to the other. There are some key
features, regarding the organization of the English NHS as well as the implementation of
the case payment system, which make it unique, and should be taken into account before
attempting to analyse the effectiveness of PbR.

The basis of the English national tariff is an average of all hospital costs for the HRG
case-group. HRGs are an English measure of case-mix which allow a clinically meaningful
grouping where resource use can be expected to be roughly the same, and thus can have
a particular cost ascribed to it. The HRG case-mix is constructed using ICD-10 codes
for diagnosis and the OPCS4 classification for procedures, while HRG costs are derived
from national reference cost exercises. Street and Dawson (2002) note that due to the
organizational structure of the NHS and its lack of a substantial private insurance sector
that would require detailed billing data, there is no history of routine patient level cost
data collection. Moreover efforts in the mid-eighties to encourage such activities towards
this end failed to spark an interest and were abandoned. As a result most hospitals cost
activity on the basis of top-down allocations. This is an important difference from many
other systems which had detailed billing data prior to the introduction of case payment
systems, as it requires providers to make considerable efforts to in coding and collecting
cost information.

At the time of their development in the early 1990s, HRGs were not used to reim-

34



1.2. Background

burse providers, but primarily for benchmarking exercises and to set targets to encourage
unit cost reductions (Street and Dawson, 2002). Currently the PbR tariff is payable for
admitted patient care (elective, non-elective and emergency), outpatient attendances and
accident and emergency admissions, while specialist work is excluded. Hospitals also re-
ceive a separate payment, the Market Forces Factor, which is based on the geographical
price indices for land, labour and building costs. PbR started being implemented in April
2004 to NHS foundation trusts, and was extended to elective activity for all other NHS
trusts in April 2005, and to non-elective and outpatient care from April 2007 (Audit Com-
mission, 2004, 2005) (Figure 1.1). The two key differences between the English PbR tariff
and that adopted in other settings has already been mentioned previously, namely that
hospital incomes are completely determined by this type of payment and that the national
tariff reflects the average costs of all hospitals.

Figure 1.1: Timeline of PbR and HRGs.

The academic literature on case payment systems discusses the different incentives
associated with alternative tariff setting mechanisms (Ellis and McGuire, 1996; Schreyögg
et al., 2006; Street and Maynard, 2007). As discussed previously the English tariff reflects
average costs alone, and is calculated from cost data gathered from all hospitals. This
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will encourage hospitals to become ‘average’ rather than to strive to become considerably
more efficient (Street and Maynard, 2007). The English case reports the tariff in monetary
units, unlike other countries which separate price and underlying cost by using a points
system where policy makers decide how much to pay per point (Schreyögg et al., 2006).
Ellis and McGuire (1996) warn of the possibility that this type of system will encourage
providers to practice upcoding, however they note that this will only result in temporary
gains as the higher price level will be factored into future revisions of the tariff. Similarly
Street and Maynard (2007) predict there will be a short-term bout of upcoding, but that
it will not last as future tariff revisions incorporate this behaviour into the price.

In addition to the reforms of PbR and competition in the time period being investigated
there are other changes that may contribute to change in quality of care. Between 1997
and 2008 health expenditure on the English NHS more than doubled in cash terms, going
from £55.1 billion to £125.4 billion. Expenditure on health care per capita increased
from £231 in 1980 to £1,168 in 2000, and by 2008 it was £1,852 (Boyle, 2011). Moreover,
other reforms in this period have been key priorities English health policy since 2000,
and will have had an impact on quality. Amongst these are the expanded use of private-
sector provision; the introduction of more autonomous management of NHS hospitals
through Foundation Trusts; the new General Practitioner GP, Hospital Consultant and
Dental Services contracts; the establishment of the National Institute for Health and
Clinical Excellence (NICE) and the expansion of its remit to include the development
of comprehensive guidelines for all services; and the establishment of the Care Quality
Commission to regulate providers and monitor quality of services as well as the expansion
of the NHS workforce to include over 50,000 more doctors, including 10,000 more GPs,
and almost 100,000 more nurses and midwives (Boyle, 2011). As much as possible these
factors need to be controlled for in any analysis of change during this period, and where
this is not possible they need to be acknowledged.

Based on the theory of case payments, the design of the English PbR policy, and the
overall organizational system and reform of the English NHS, we expect to see quality
improvements over the period analysed. In part this will be expected due to the sheer
rise in money spent on hospitals, and the greater workforce. However, given the way the
tariff is set we do expect to see less variation amongst hospitals, as they are incentivised to
deliver ‘average’ performance. Moreover, we do expect to see some short-term ‘upcoding’,
especially as there is little experience of providers to code for payment historically.

In order to investigate the effects of PbR on quality we conduct two analyses. The
first, in Chapter 5, uses a simple fixed effects model to understand how the policy has
changed quality, as measured in the previous chapters, in each of the seven conditions.
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We are interested in exploring what has happened to average quality over the period as well
as relative quality between different hospitals. We find that the policy has had variable
effects by condition, but where quality has changed it is mostly improved. However, we
do find that there is less variation across providers. The second analysis, in Chapter 6,
conducts an in-depth investigation is performed for two pairs of HRG groups where activity
appears to have risen for the most expensive case groups at the expense of the cheaper
alternative. However, similarly to other studies in the literature we find that what appears
to be ‘upcoding’ behaviour is indeed the result of other phenomena. In our case it is a
combination of improved coding and movement to a previously less adopted technology.

1.3 Data

The data used to conduct this analysis is Hospital Episode Statistics (HES) which docu-
ments hospital activity in England. The HES database has been in existence since 1987
and is/has been used by the Department of Health to provide performance information
at the hospital level (Spiegelhalter et al., 2002). Hospital episode statistics (HES) contain
records for all NHS patients admitted to English hospitals in each financial year (April 1 to
March 31), with information on all medical and surgical specialties, including private pa-
tients treated in NHS hospital trusts. The HES data holds over 15 million patient records
each year, stored according the financial year in which the period of care was completed.
Each NHS hospital is required to submit data items for each episode in every patient’s
stay in that hospital. Data is entered from patient’s notes onto hospital administration
systems by trained clinical coders (Aylin et al., 2007).

Diagnosis of patients are coded using ICD-10 (international statistical classification of
diseases, tenth revision) codes while procedures use the UK Office of Population Censuses
and Surveys classification (OPCS4). Since the introduction of the internal market, HES
data has also been used for contracting between purchasers and providers. The data avail-
able in the HES database contains patient characteristic data (e.g. gender, age), clinical
information (e.g. diagnoses, procedures undergone), mode of admission (emergency, elec-
tive), outcome data (mortality, readmission, discharge location) as well as details on the
amount of time spent in contact with the health system (waiting times, date of admission,
date of discharge) and details of which hospital the patient was treated in. The HES
data we used was accessed through Dr. Foster Intelligence, an independent association
dedicated to providing high quality health information.

While HES data is a rich source of information, it requires some manipulation in
order to ensure that the total care received by a patient is measured under the same
episode. HES data measures the care received under one consultant during the course of
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the patient’s treatment, in the case that the patient is treated by more than one consultant
it is important to identify such patients and link their records of care to provide a complete
picture of their care experience. Dr. Foster has done the matching within the HES
data and is able to provide information on the complete patient experience. In addition
they have linked to other data sources such as the death registries, to provide additional
information such as death rates at different intervals (30-days and yearly), readmission
rates and further details on the patient, such as further information on their co-morbidities
and on some socioeconomic characteristics.

Data on gender and age are used as explanatory variables in the analysis, as is a variable
indicating whether the treatment undergone was an elective procedure. The Charlson co-
morbidity index which predicts the 1 year mortality for a patient who may have a range of
co-morbid conditions was used to control for severity of patients. This index is constructed
by assigning a score to each condition depending on the risk of dying associated with it,
and summing these scores up (Charlson et al., 1987). Finally, socio-economic status was
measured using the Carstairs index of deprivation. This index is based on four census
indicators: low social class, lack of car ownership, overcrowding and male unemployment,
which are combined to create a composite score. The deprivation score is divided into
seven separate categories which range from very low to very high deprivation.

There has been much discussion in the literature regarding the quality of HES data
(Aylin et al., 1999; McKee and James, 1997; McKee et al., 1999; Stark et al., 2000; Westaby
et al., 2007; Williams and Mann, 2002) as well as that provided by Dr. Foster (Hawkes,
2010a,b; Mohammed et al., 2004, 2009). Aylin et al. (1999) concluded that the HES were
reasonably reliable at the broad level of procedure groups but judged that data before 1991
were unreliable. However, they that reported that a number of admissions had missing
outcomes, which may be due to failure to link episodes within an admission or simply that
no outcome was recorded. Stark et al. (2000) argues that HES data are unreliable and
in particular undercount activity compared with departmental records, while McKee and
James (1997); McKee et al. (1999) notes the lack of secondary diagnosis coding throughout
the database, which may have serious implications for case-mix adjustment. Some authors
caution that even mortality may not always be recorded accurately (Lilford et al., 2004;
Westaby et al., 2007), although not to such a degree that it would influence standardized
hospital mortality rates (Mohammed et al., 2004). Another issue in the data is the increase
use of the code for palliative care. In the past five years there has been a big increase in
this code, ranging from 7% in some hospitals to 50% in others (Hawkes, 2010a). Patients
coded this way are assumed to have come to the hospital to die and are coded differently to
prevent putting the blame of their death on the hospital. However, this change in coding
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will influence quality as is measured by risk-adjusted mortality.
With regards to the Dr. Foster data in particular, Mohammed et al. (2009) notes

that there are systematic differences in the associations between hospital mortality and
the factors we use to adjust for patient case-mix, such as age, emergency admissions and
co-morbidity. While these differences will play a role in influencing standardized mortality
ratios (Wright and Shojania, 2009) they will be accounted for by the McClellan and Staiger
(1999) methodology adopted in Chapter 3. Finally, some of the clinical audit literature
from the US (Hsia et al., 1988) and England (Cox and Koutroumanos, 2010) suggests
that there will also be error in the coding of patients, which will vary from hospital to
hospital and by condition. Again, the McClellan and Staiger (1999) technique corrects for
measurement error and so is arguably best suited for data facing this sort of variation and
inaccuracy.

We requested data for seven conditions for the financial years 1996-2008, namely:
Acute Myocardial Infarction (AMI), Myocardial Infarction (MI), other Ischemic Heart
Disease (IHD), Congestive Cardiac Failure (CCF), Stroke, Transient Ischemic Aattack
(TIA) and Hip Replacement. The data for these conditions was extracted based on the
ICD-10 and OPCS 4.3 classification codes indicated in Table 1.2. In most cases there
were problems with the sample sizes of some of the years before 2000, and so these years
were not included in the analysis. Any hospital trust that had less than 10 admissions
throughout the entire period of analysis was dropped from the analysis. Moreover, any
primary care trusts, private trusts acting as NHS providers and social care trusts were
also excluded. For the sample of patients admitted with AMI, only emergency admissions
were examined, and only for patients with a length of stay greater than two days. For
the patients admitted with Stroke and Congestive Cardiac Failure, all patients admitted
as day cases were excluded.

Seven conditions were chosen in order to be able to evaluate how well the quality
measures performed for different clinical areas, different sample sizes and different type of
admissions. AMI and MI, otherwise referred to as a heart attack, both refer to an acute
blockage of an artery that provides blood to the heart muscle, it is a major health event
that almost always results in hospitalization. MI is classified separately in our analysis
as it refers to a recurrent heart attack, thus this population should have modifiable risk
factors addressed/treated, and are therefore a separate epidemiological subgroup. AMI is
commonly used for quality assessment purposes because of the large sample size available,
the established link between treatment and survival, and because it is usually an emergency
admission which makes patient selection by providers difficult.
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Table 1.2: Summary Statistics of the Sample.

Condition ICD-10/OPCS4.3
codes

Years Analyzed Mean cases per
year

Number of
hospitals

AMI ICD-10: 121 2000-2008 399,560 139

MI ICD-10: 122,123 2000-2008 7,641 150

IHD ICD-10: 120,125 2000-2008 142,638 119

CCF ICD-10: I11.0, I13.0,
I25.5, I50.0, I50.1,
I50.9, J81X

2000-2008 3,717 122

Stroke ICD-10: I60 - I67 2000-2008 66,866 167

TIA ICD-10:
G45.0-G45.4,
G45.8-G45.9,
G46.0-G46.8

2000-2008 12,433 139

Hip OPCS4.3: W37-W39
W46-W48 W58

1996-2008 40,564 125

IHD refers to other forms of Ischemic Heart Disease, excluding AMI and MI. Hospital-
ization for these conditions involve similar symptoms to the MI cases but somewhat less
severe illness, characterized by inadequate blood flow to the heart that does not actually
case death of heart muscle. Hospital treatment in these instances is provided to assure
that a heart attack has not occurred, and to attempt to improve blood flow and reduce
heart workload to prevent future heart attacks, chest pain or breathing problems. As a
performance indicator, IHD is selected for similar reasons to AMI and MI. It is an impor-
tant clinical domain, accounting for a large burden of illness in England. For this reason it
is a well recognized condition and easily coded. Moreover, as many patients are admitted
with IHD and thus it offers a large sample size which we have already noted is important
in any methodological technique. Finally by including IHD in the analysis we will also be
able to investigate any cross correlation of quality at the specialty level.

CCF is characterized by the inability of the heart to supply sufficient blood flow to meet
the body’s needs. It is a serious condition which needs and responds to conservative (or
eventually palliative) management. Treatment for CCF commonly involves lifestyle mea-
sures (such as smoking cessation, light exercise including breathing protocols, decreased
salt intake and other dietary changes) and medications, and sometimes devices or even
surgery. CCF is a chronic condition but is very readily hospitalized when it gets bad
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enough or when its in its acute form, mostly Pulmonary Oedema. Patients with Heart
Failure are frequently readmitted to hospital and high quality care for these patients have
been identified as a key priorities for decreasing morbidity and costs (Chin et al., 1997).
As PbR aims to reduce costs but also improve quality it is interesting to include a con-
dition with patients where clinical decline is inevitable. Moreover, especially because this
condition differs from the other cardiovascular conditions included in this way, it is of
interest to investigate the cross correlation of quality at the specialty level.

A Stroke is characterized by rapidly developing loss of brain function(s) due to dis-
turbance in the blood supply to the brain arising from acute disruption of one of its
feeding black vessel (artery). The larger the distribution of the pathological blood ves-
sel, the greater the symptoms. The quality and severity of symptoms however also de-
pend on the assigned function of that brain’s area. A Stroke is a medical emergency
and can cause permanent neurological damage, complications, and lead to death. They
are defined in two main categories, the commoner Ischemic Strokes, where a blood ves-
sel is acutely blocked/obstructed for a variety of reasons (commonest a blood clot or
cholesterol-containing vessel wall debris) and Haemorhagic Stroke (much less common)
where the diseased blood vessel sustains a rupture/break and the lack of blood supply
to the distal tissue is further complicated by the pressure effect of leaking blood within
the skull. A Transient Ischemic Attack (TIA), also referred to as a ‘mini Stroke’, is a
temporary disruption/disturbance in the blood supply to a particular area of the brain,
resulting in brief neurological dysfunction. If these symptoms persist for more than 24
hours, it is categorized as a Stroke. TIAs are not typically of the haemorhagic type. Stroke
case fatality rates are increasingly used as performance indicators, and thus we though it
important to include them in the study. They are also well recognized conditions, with
a large sample size. TIA was included in the analysis to investigate any cross correlation
of quality between the two conditions, as treatment upon admission will follow the same
protocol.

Hip Replacement occurs in instances where the hip joint is surgically replaced by
a prosthetic implant. Hip Replacement surgery can be performed as total replacement
or a half replacement. Total Hip Replacement is defined as the surgical removal of the
entire hip joint (ball and socket) and its replacement by a prosthetic (metal or synthetic
plastic) implant. A half replacement or hemiarthroplasty, being a slightly less invasive
procedure, refers to the replacement of only the ball part of the joint (femoral head).
Hip Replacements can be undertaken as elective conditions, with the vast majority of
such cases being undertaken to treat Arthritis. The procedure may be the result of an
emergency to replace a broken hip. This condition was selected as it is not dominated
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by emergency admissions, indeed elective hip arthroplasty are extremely common and
extremely successful. Also Hip Replacement is an easily identifiable condition, which will
be easily coded and provide us with a large sample of patients to work from.

1.4 Organization of Thesis

A challenge inherent to any study assessing quality change is the measurement of quality.
In order to be able to properly evaluate whether quality has changed since the introduction
of PbR we believe it is necessary to look beyond readily available outcome measures, or
even risk adjusted measures, and identify tools that can be used to produce robust metrics.
While ultimately the challenge set forward by this body of work is to evaluate the PbR
policy and its impact on quality, we find this complex undertaken lies in an area where
statistical methodology and substantive issues are tightly interwoven. For this reason we
spend Part II of the thesis replicating a method we feel is sensitive enough to measure
quality during this time period and separate it from the noise and systematic bias inherent
in the data. Once these metrics have been produced and carefully analysed, we are able to
use them to evaluate quality, and examine the effectiveness of the PbR policy in achieving
high quality services for NHS patients. The detailed breakdown of the chapters that make
this body of work is presented in Table 1.3.

Table 1.3: Breakdown of thematic chapters.

The New NHS: Incentives for improved quality in English hospitals?

Part 1: Introduction
Chapter 1: Introduction
Part 2: Measuring quality
Chapter 2: Using a latent variable approach to measure the quality of English NHS
hospitals
Chapter 3: Using a Vector Autoregression Framework to measure the quality of English
NHS hospitals
Chapter 4: Examining the persistence of hospital quality across conditions
Part 3: Evaluating Quality
Chapter 5: The effect of Payment by Results on quality of care
Chapter 6: The effect of payment by results on the activity of related procedures
Part 4: Conclusions and Policy Recommendations
Chapter 7: Conclusions and Policy Recommendations
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Measuring Quality
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2 Using a latent variable
approach to measure the
quality of English NHS
hospitals

2.1 Introduction

Often timely and relevant data on quality of care does not exist, because it is costly and
difficult to collect. Yet, even when such data is available it is not straightforward to
use. We are still far from having complete data sets informing us of all the factors that
influence outcomes, or measures for the appropriate clinical processes of care required to
obtain good outcomes. Indeed, while work on the evidence base of medicine is growing,
and many conditions have been identified as amenable to health care (Holland, 1988; Nolte
et al., 2004), there still remains considerable uncertainty about the clinical effectiveness
of over half of current medical practice (Tovey, 2007; Maynard, 2008). Even with good
data, multidimensionality is a problem - as quality of medical care has many dimensions:
outcomes, processes and others - ideally all of which would be integrated into a quality
evaluation (McClellan and Staiger, 1999).

Increasingly measures of health outcome are used to inform policy, whether it is
through investigations into surgical performance (Spiegelhalter et al., 2002), to produce
publicly available indicators of performance for hospitals (Healthcare Commission, 2004;
New York State Department of Health, 2004), or to produce research to evaluate health
care reforms (Farrar et al., 2009; Jarman et al., 1999). Use of outcomes to compare quality
of care assumes that variation attributable to other factors can be properly accounted for,
such that any residual variation in outcomes, such as observed mortality and morbidity,
is indicative of variation in quality of care (Lilford et al., 2004).

While outcome measures are influenced by quality of care they are also a result of data
collection techniques, data quality, patient case-mix, and chance. Definitions of outcomes
can vary considerably across institutions influencing the comparability of data. Even with
a simple outcome such as death, systematic differences can arise with definitions and the
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way they are applied across institutions, for example by classifying patients who come
to the hospital to die under the palliative code Z51.5 (Hawkes, 2010b). Moreover, trying
to identify groups, or cases, of patients whose outcome is being compared can also be
difficult. Some cases such as Child Birth or Fractured Neck of Femur are very easy to
identify, but other areas such as Stroke or Infertility are harder to classify, and data coding
and collection may vary across institutions (Lilford et al., 2004). Both these issues pose
challenges in using data for to compare providers.

The type of information will also differ markedly when obtained from different sources
such as case records or administrative data. Routine administrative data often contains
little information on co-morbidity and severity of disease which will have a large impact
on outcome. Clinical databases, run by various bodies, may record more detailed clinical
information, but are also likely to vary considerably with regards to data quality (Aylin
et al., 2007). In England, HES is often regarded as unreliable by clinicians because of
problems in its early years, notably it’s inability to secondary diagnoses for most patients
(McKee and James, 1997; McKee et al., 1999). However, since then data quality has
improved considerably (Audit Commission, 2004). Indeed Aylin et al. (2007) note that,
“if suitable predictive models could be developed using this routinely collected information
source, they would be a valuable tool for generating measures of performance adjusted for
case mix”.

The most commonly discussed challenge of using outcome measures as a quality met-
ric is accounting for differences in patient case-mix. Fair comparison of quality between
providers needs to consider the differences in patient factors that will influence outcomes,
such as patient severity or co-morbidity. Typically, some sort of risk adjustment is em-
ployed to address the attribution problems associated with outcome measures, and control
for the other influencing factors. Yet, even when outcome measures are risk adjusted, as
is the case for hospital standardised mortality ratios (HSMRs) for example, they still run
the risk of not accounting for factors that cannot be identified and measured accurately.
Mistaking such errors for differences in quality is known as “case-mix fallacy” (Lilford
et al., 2004).

Finally, we should not forget the presence of random error, which is inherent to any
measurement. Random error can take the form of type 1 (false negatives) or type 2 (false
positives) error. The only way to limit the amount of both types of error is to ensure
the sample size is large enough. Unfortunately this is not always possible when dealing
with health care, as it depends on the prevalence of particular treatments and conditions.
Many studies have noted the challenges associated with sample size and outcomes, which
limit the number of procedures that can be assessed (Birkmeyer et al., 2002; Dimick et al.,
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2004).
In using outcome measures as quality metrics, the challenge lies in controlling for all

these factors in order to extract the true quality signal from the measure. With the
exception of chance, every other factor has components that can be measured and others
that cannot (Lilford et al., 2004). Case-mix adjustment is often used to control for variance
in outcome, indeed there is a wide literature on different statistical methods used to
produce case-mix adjusted outcomes (Jarman et al., 2005; Iezzoni, 1994; Iezzoni et al.,
1996; Iezzoni, 1997; Shahian et al., 2001, 2010). However, worryingly enough different
case-mix adjustment methods can produce different results, identifying different providers
as good or bad performers depending on the adjustment technique used (Iezzoni et al.,
1996; Shahian et al., 2010).

Even if a case-adjustment technique was uniformly applied to providers outcomes could
still vary systematically across providers due to differences in the other areas. For example,
outcomes could differ because of systematic factors such as systematic differences in data
recording, or systematic differences to patient behaviours before and after treatment. For
example, hospitals that treat less educated patients may have worse outcomes because they
have lower adherence to medications after treatment. An alternative method to control for
noise was put forward by McClellan and Staiger (1999) who used information on individual
patient characteristics at the individual hospital level to adjust hospital quality measures
at the hospital level and thus take account of any systematic biases which are embedded
within these measures. The approach, in recognition that the measurement of hospital
quality is difficult, begins with latent variable approach to address measurement issues,
before going on to refine this measure with a vector autoregression framework.

A latent variable is a variable that can not be observed directly, such as hospital
quality. Latent variable assessment takes the observable data and combines it to make
assumptions about the unobservable, latent, phenomenon. The latent variable measured
by this method will consist of the ‘true’ variance with both random and systematic errors.
This type of technique has been used extensively in the areas of psychological and edu-
cation testing (Hambleton and Cook, 1977), political science (Treier and Jackman, 2008),
and increasingly in epidemiology (Muthén, 1989). In educational testing, information is
collected about the subject’s ability through their answers on various questions which
are indicative of their underlying ability. Conditional on the latent trait, the multiple
responses are assumed to be independent observations, and thus correlation amongst the
responses is induced by variability in the latent ability amongst the subjects. Thus by
modelling their responses the latent ability can be estimated (Landrum et al., 2000).

This model can be extended to health, where the latent trait being modelled is provider
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quality. By using hospital-specific intercepts derived from a patient level equation which
maps quality of outcome (e.g. 30-day mortality) against patient characteristics we are able
to create latent measures of quality, as they pick up the unmeasured systematic aspects
which are retained after controlling for observable variation in patient outcomes. While
these latent outcome measures will still be noisy, they will filter out much of the estimation
error that is otherwise present due to systematic differences in patient mix across hospitals
rather than differences in care. Additionally, as these estimates are normally calculated
using large samples of patients it is possible to eliminate much of the noise inherent
in raw outcome measures, that make quality measures difficult to interpret. While a
latent variable approach is essentially another case-mix adjustment technique it is an
improvement to other methods as the latent measure provides a composite measure of
quality for each provider than result in different outcomes.

These latent outcome estimates of hospital quality thus have a number of attractive
features. They can incorporate information on quality measures in a systematic manner,
are relatively easy to compute from available data and overcome the risk of over-estimation
which is common when aggregate data are combined with individual observations. These
hospital intercepts, which estimate the mean value of quality measure holding patient
characteristics constant, are therefore less noisy and less likely to be inconsistent estimates
than crudely observed aggregate measures of hospital quality. In their analysis, McClellan
and Staiger (1999) take an additional step to further control for noise that is present
across time periods, and also to address issues of the multidimensional nature of quality.
This involves using all the information provided, across time and across dimensions, to
create better single point quality estimates. These steps will be discussed in more detail
in Chapter 3, which will use the results of this chapter in an attempt replicate their entire
method using the latent measures in a Vector Autoregressive framework to analyse the
quality of English hospitals for a longer time period and across a wider range of conditions.

In this chapter, we will explore the use of latent variable modelling to measure quality
of health care providers. We find that this methodology can be useful for quality measure-
ment in situations where random or systematic measurement error is a problem, where
the phenomenon under study is not directly observable, and where many indicators are
needed to describe the different aspects of the phenomenon. The next section will outline
the empirical methods used in the chapter, before we go one to describe the data used for
the model. Finally, we will present the results of the analysis and conclude.
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2.2 Empirical Model

This chapter introduces the basic approach which analyses the determinants of hospital
quality through a two-step process, with hospitals being the unit of analysis. In the first
step, individual patient level data is used to create latent outcome measures at the hos-
pital level using multiple individual outcome measures (mortality and readmission rates),
adjusted for individual level patient characteristics. This process allows the amount of
noise surrounding these outcome measures to be minimized, thus creating more robust
quality measures at the hospital level. The latent outcome measures are then used in the
second step to examine how different hospital and social characteristics influence quality
of care.

Creating Latent Outcome Measures

The first step of the analysis uses the quality measures provided at the individual patient
level over a given amount of years to estimate the relative difference in the mean value
of outcomes of each hospital holding patient characteristics constant. These hospital
intercepts are estimated using the following equation:

Y k
iht = βqk

1h +
∑

φXjht + uiht , (2.1)

where Y k represents the quality outcome measure (mortality and readmission rates at
different time intervals), with i denoting the individual patient, h the hospital and t the
year. ∑

φ represents a group of individual control variables for patient characteristics
(age, gender, socioeconomic deprivation, co-morbidities and type of admission). While β

represents the fixed effects of all NHS hospitals in which treatment was provided to the
sample of patients. The model is run with no constant term, and thus a variable for every
hospital can be included. As there is no reference case, the βk coefficients will represent
the intercept value of the hospital’s mortality/readmission regression.

This patient level regression is run separately for each year t and quality outcome
measure k. By saving the βk coefficients for each regression, we obtain a vector of hospital
intercepts for each quality outcome measure k, and year t. These estimates of quality are
appealing as they provide relative rankings of hospital performance contributing to the
quality outcomes, controlling for other observable influences. These estimates thus allow
some of the noise to be removed from the outcome measures, and thus enable a more
appropriate comparison of hospital trusts to one another.
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Panel Data Estimation with Lagged Variables

Just as the performance of hospitals in obtaining a desired outcome for their patients will
be influenced by the characteristics of patients, it will also depend on other factors such
as the characteristics of the hospital itself. The second step of this analysis uses the latent
quality measures calculated in the manner explained above and examines how they are
associated with key hospital characteristics. This will inform us about what factors our
quality metrics are associated with, but can also help draw conclusions about how well
the latent indicator performs.

Hospital performance is likely to be influenced by hospital characteristics such as the
type of hospital. Different types of hospitals (teaching, acute, specialist, foundation) may
be associated with different quality care because of different underlying incentives or man-
agement models. For example, in addition to delivering medical care to patients, a teaching
hospital will also provide clinical education and training to future health professionals, and
also invests in research and technology. These functions may result in different objectives
and managerial style which can also contribute to quality differences. Specialist trusts
and foundation trusts were introduced to the NHS in 2004. Specialist trusts are dedicated
to providing elective care, while a foundation trust is a high performing hospital that has
received more managerial and financial freedoms. These differences are likely to have an
effect on hospital performance.

Other factors such as the number of patients treated (caseload) may also contribute to
overall performance. The relationship between cases and outcomes is not clear. Increased
caseload may result in lower quality due to overcrowding, or it can result in higher caseload
as doctors become more experienced. Moreover, higher quality may lead to more cases
as demand increases, or it can be the result of selecting fewer cases. Similarly average
deprivation and co-morbidity is likely to be correlated with the latent outcome measure if
there is a confounding relationship between them, that is if they are both correlated with
another variable that influences quality. For example if more deprived patients are less
likely to adhere to treatment after being discharged and thus are more likely to have bad
outcomes.

However, it is unlikely that hospital performance is instantaneously influenced by a
change in any of these variables, because of institutional, technological or even psycho-
logical reasons (Gujarati, 2003). In an institution structural forces dominate, at least in
the short term. For example contractual obligations may prevent hospitals from switching
sources of labour, on ancillary services immediately. Thus in certain regards institutions
are ‘locked in’ to current conditions, at least until the medium term. Technological rea-
sons may relate to the adoption of medical innovations. There will be a time gap between
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the introduction of a new technology and its adoption in routine health service provision.
Finally, the psychological factors refer to the inertia of the status quo, managers and em-
ployers take time to adjust to change, thus even if some other factor such as changes in
prices occur it may take a transition period for this change to translate into behaviour.
Moreover, the performance of a hospital is likely to depend on its past performance. Thus
it is important to consider how lags of hospitals own performance, as well as of the other
explanatory variables influence the latent variable.

In order to examine the relationship between the exogenous factors discussed above
and hospital performance, as measured by the latent variable, the following equations are
estimated:

D30ht = α + β1D30h(t−n) + β2
∑

Xht + β3
∑

Xh(t−1) + β4Hht + εht (2.2)

D365ht = α + β1D365h(t−n) + β2
∑

Xht + β3
∑

Xh(t−1) + β4Ht + εht (2.3)

R28ht = α + β1D30ht + β2R28h(t−n) + β3
∑

Xht + β4
∑

Xh(t−1) + β5Ht + εht (2.4)

R365ht = α + β1D365ht + β2R365h(t−n) + β3
∑

Xht + β4
∑Xh(t−1) + β5Ht + εht (2.5)

where D30ht and D365ht denote the 30-day and 365-day hospital mortality intercepts
gained from the first stage analysis, representing the latent mortality for each hospital
h at year t, and where R28ht and R365ht denote the 30-day and 365-day term hospital
readmission intercepts, representing latent readmissions for each hospital h at year t. The
lag variables D30h(t−n) and D365h(t−n) take into account the latent mortality measures of
n years prior to year t, while variables X1 and X2 control for hospital type and treatment
characteristics of the hospital such as average length of stay of patients, number of cases
admitted and average waiting time). Ht represents yearly dummies which are intended to
capture any contemporaneous shocks that may influence quality.

In any model that includes a lagged dependent variable there is an inherent problem
of autocorrelation, which is magnified when the time-series dimension of the data is small
(Nickell, 1981). The problem arises because of the correlation of the lagged dependent
variable and the error term, and results in making the estimators inconsistent. Including
additional regressors does not remove this bias, and if they are correlated with the lagged
dependent variable their coefficients may also be seriously biased. This problem can by
addressed by estimating a dynamic panel data model, which uses the first differenced
Generalized Method of Moments (GMM) estimator (Arellano and Bond, 1991). However,
the Arellano-Bond estimator may not perform well if the autoregressive parameters are too
large and the time series observations are moderately small. This problem is addressed by
the later work of Arellano and Bover (1995) and Blundell and Bond (1998) which impose
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additional restrictions on the initial conditions process. The Blundell-Bond estimator
is used in this analysis, given the small time-series component available in the newly
constructed panel dataset. In addition the Blundell-Bond estimator is able to incorporate
lagged levels as well as lagged differences, which increases the efficiency of the model by
allowing us to add additional instruments such as hospital characteristics.

The xtabond2 command in statistical package STATA is used to perform the analysis.
A two-step estimator was used, as it is asymptotically more efficient. Robust standard
errors were requested, which ensures that the xtabond2 command includes a finite-sample
correction to the two-step covariance matrix derived by Windmeijer (2005), which can
make two-step robust estimations more efficient than one-step robust, especially for system
GMM, with lower bias and lower standard errors. Following the recommendations made
by Roodman (2006) the model is specified so that every repressor is included in instrument
matrix, with endogenous variables, such as the lagged dependent variable, specified from
two lags, and exogenous predetermined variables specified from one or two lags. Finally,
the xtabond2 command reports the results of the Arellano-Bond AR(1) and AR(2) tests
for autocorrelations, as well as the Sargan and Hansen test statistics which indicate how
well specified the model is.

2.3 Data

HES data accessed via Dr. Foster Intelligence is used to conduct this analysis. This data
is reviewed in detail in the data section of Chapter 1. To undertake the first analysis
mortality and readmission rates at different intervals are used as dependent variables.
These variables are directly reported in the data, an represent noisy estimates of hospital
outcome. The model was estimated for 30-day within hospital mortality rates, designed to
measure if a patient dies within up to 30 days in hospital after their initial admission for
treatment (with a value of 1 in the case of death and 0 otherwise), 365-day overall mortality
rates, 28-day readmission rates which measure whether a patient is readmitted for the same
condition in a 28 day period (with a value of 1 for readmission and 0 otherwise), and 365
day readmission rates.

A trust code is used to distinguish each hospital in the data, allowing us to identify
which hospitals are performing better or worse. However, we do not report on individual
hospitals in this chapter. Data on gender and age are used as explanatory variables in
the analysis, as is a variable indicating whether the treatment undergone was an elective
procedure. For AMI specifically we only ran the model for patients who were admitted
as emergency admissions, as very few patients were admitted, as very few patients were
admitted as elective. The Charlson co-morbidity index was used to control for patient co-
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morbidity, and the Carstairs index of deprivation was used to control for socio-economic
status.

The second part of the analysis considers how explanatory variables at the hospital
level influence the latent quality measures. In order to do this we take the latent measures
constructed for every outcome measure, for every year and create a new panel data set
at the hospital level. This data set contains the newly created latent outcome measures
for each year, along with the hospital characteristic information that was available in
the individual data. In addition, it is possible to estimate a set of aggregate variables
for each year in the data corresponding to the average socioeconomic and demographic
characteristics of the patients treated by each hospital, such as mean co-morbidity of
patients treated, mean deprivation of patients treated, number of admissions, mean length
of stay and mean waiting times.

2.4 Results

This chapter examines the measurement of quality at the hospital level using the two
models described previously. Model 1 refers to the model used to construct the latent
measures (equation (2.1)) and Model 2 to the analysis of the latent measures (equations
(2.2)–(2.5)). The results are presented for the two models, separately by condition. The
results for three conditions, AMI, Stroke and Hip Replacement, are presented in the results
section and the results for the remaining four conditions, MI, Ischemic heart disease, CCF
and TIA, are presented in Appendix A.

For each condition, the results begin with a graphical representation of the the av-
erage value of the four outcome measures being studied (30-day and 365-day mortality;
and 28-day and 365-day readmissions) to indicate the hospital average, over time, before
any analysis is undertaken. In each of these figures, the dashed lines represent the 95%
confidence intervals of the estimates representing variation among hospitals. These graphs
are useful in order to visually represent the difference between the latent measures and
the raw measures.

Model 1

In Model 1, the unit of analysis is the individual patient, and the main focus of interest
is the relationship between individual patient’s death rates/ readmission rates and the
quality of the hospital at which they were treated, controlling for patient characteristics.
In the first model a linear regression is used (estimated separately for each year and each
outcome indicator) to measure the hospital specific effects that contribute to mortality and
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readmission rates, controlling for age, gender, deprivation, co-morbidities and whether the
procedure undertaken was elective or emergency. The model is estimated as a regression-
through-the-origin, thus R2 value is not meaningful and not reported. The results of these
regressions are presented for each condition and indicate how each of the control variables
influence the outcomes measured as the dependent variables. The sign and magnitude
for each variable in each regression is as expected, such that age, gender, co-morbidity,
deprivation and type of admission significantly influence outcomes for most conditions.

From the Model 1 regressions, the hospital intercepts are extracted and saved, and used
as a ‘latent outcome measures’ of the unobservable hospital specific effect on mortality
and readmissions. The latent outcome measure averaged across hospitals is graphically
illustrated over time, separately for each outcome measure and condition studied. In
these figures, the solid line represents the mean latent outcome measure of all hospitals
in the sample, over the time period being evaluated, while the dashed lines indicate the
95% confidence intervals for these estimates representing variation among hospitals. If
we imagine hospital quality to be the true underlying signal, surrounded by random,
systematic and measurement error, than each hospital’s intercept indicates the slope of
that curve when graphed over time. As the latent variables are the hospital coefficients
in each of the outcome equations, a negative value indicates or a fall in the raw outcome
attributable to unobserved hospital effects, while a positive value indicates a rise in the
raw outcome. While the 95% confidence intervals represent the variation across hospitals.
These diagrams allow us to visualise the average latent measures over time and draw some
conclusions about trends in quality. The latent measures show a clearer change in quality
over time than apparent from the noisy outcome data. This is consistent with the trends
as shown by other risk adjusted measures, such as HSMRs, which indicate that quality is
improving (Hawkes, 2010a).

In order to observe the trend in latent outcome measures at the hospital level, the time
trend of latent values are illustrated for a selection of four hospitals in each condition,
represented in four panels. Of the four hospitals included, there is always a small hospital
(upper left), a large hospital (lower right), and two midsize hospitals, where size of hospital
is determined relative to the average caseload per year per condition. These hospitals are
not a random sample, but chosen to illustrate the data in different settings. The solid line
in each of these panels indicates the latent outcome measure estimated from the linear
model for the selected hospital, while the two dashed lines indicate the 95% confidence
intervals of these estimates. The latent outcome measures have been normalized such that
the mean aggregate outcome value of all hospitals for each year is equal to zero, and any
deviation from the mean indicates above or below average performance for that hospital.
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Negative values indicate lower mortality than average, and positive values indicate higher
mortality than average, controlling for patient characteristics. The solid lines can be
interpreted as absolute outcome differences, for example a value of 0.02 indicates that the
hospital’s mortality was 2% above the average hospital in that year. These figures allow
an interpretation of how the individual hospitals are performing relative to their peers in
all areas evaluated. They indicate that the latent measures are easy to use as performance
indicators at the individual hospital level.

AMI

Figure 2.1 indicates the trends over time in raw average mortality and readmission rates
for AMI. The trend in average AMI 30-day mortality across hospitals is downward, with
short term mortality falling gradually over time, at a gradual pace. Average 365-day
mortality is also falling, yet while this trend is gradual for most years there is a large
sudden drop from 2005 to 2006, which is not present in the 30-day mortality trend. The
trend in average 28-day readmissions indicates an almost negligible increase over time.
While, average 365-day readmissions stay relatively constant, rising and falling marginally
over the time period studied, such that readmissions at the end of the time period are
around the same level as they were in the beginning.

The regression results from Model 1, presented in Table 2.1, indicate that patient char-
acteristics such as age, gender, deprivation and co-morbidities are almost always significant
at high levels for all four outcome indicators. Gender significantly impacts mortality and
readmissions, such that women have a marginally higher mortality, and higher readmis-
sion rates, than men. Existing co-morbidities, as measured by the Charlson Co-morbidity
index, significantly increase mortality and readmissions, as do increased deprivation as
measured by the Carstairs score. Only emergency admissions are considered for AMI, and
so type of admission is not controlled for. Trust dummies included for each hospital and
year are highly significant for all four outcome measures.
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Figure 2.1: Trends across years in average AMI outcome measures across hospitals.

Table 2.1: Regression results for AMI Model 1.

Year N (total) Age Gender Carstairs Score Co-morbidity Trust dummies

30-Day Mortality

(0.000) (0.003) (0.000) 0.001

2001 43986 0.004*** 0.011*** 3.82E-04 0.037*** yes

(0.000) 0.003 (0.000) -0.001

2002 44619 0.004*** 0.007*** 0.001*** 0.039*** yes

(0.000) 0.003 (0.000) 0.001

2003 44160 0.004*** 0.009*** 8.16e-04* 0.040*** yes

(0.000) 0.003 (0.000) 0.001

2004 43426 0.004*** 0.009*** -2.18E-05 0.035*** yes

(0.000) 0.003 (0.000) 0.001

2005 40186 0.004*** 0.019*** 5.35E-04 0.035*** yes

(0.000) 0.003 (0.000) 0.001

2006 37743 0.003*** 0.002 0.001*** 0.031*** yes

(0.000) 0.003 (0.000) 0.001

2007 36240 0.003*** 0.001*** 1.61E-04 0.032*** yes
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Year N (total) Age Gender Carstairs Score Co-morbidity Trust dummies

2000 32950 0.004*** 0.006* 0.001** 0.043*** yes

(0.000) 0.003 (0.000) 0.001

2008 33607 0.003*** 0.001 4.29E-04 0.031*** yes

(0.000) 0.003 (0.000) 0.001

365-Day Mortality

2000 37346 0.011*** 0.010** 0.004*** 0.090*** yes

(0.000) -0.004 -0.001 -0.002

2001 49780 0.011*** 0.016*** 0.003*** 0.086*** yes

(0.000) -0.004 -0.001 -0.002

2002 50711 0.011*** 0.017*** 0.004*** 0.084*** yes

(0.000) -0.004 -0.001 -0.002

2003 50202 0.011*** 0.027*** 0.004*** 0.086*** yes

(0.000) -0.004 -0.001 -0.002

2004 49762 0.011*** 0.014*** 0.003*** 0.078*** yes

(0.000) -0.004 -0.001 -0.002

2005 46914 0.010*** 0.020*** 0.004*** 0.075*** yes

(0.000) -0.004 -0.001 -0.002

2006 45133 0.006*** 0.012*** 0.003*** 0.042*** yes

(0.000) -0.003 -0.001 -0.002

2007 44026 0.005*** 0.017*** 0.002*** 0.040*** yes

(0.000) -0.003 -0.001 -0.001

2008 41474 0.005*** 0.009*** 0.001** 0.039*** yes

(0.000) -0.003 -0.001 -0.001

28-Day Readmission

2000 32950 4.80e-04*** 0.007* 0.002*** 0.010*** yes

(0.000) -0.004 -0.001 -0.002

2001 43986 5.71e-04*** 0.013*** 0.002*** 0.009*** yes

(0.000) -0.003 -0.001 -0.002

2002 44619 5.40e-04*** 0.011*** 0.001** 0.011*** yes

(0.000) -0.003 -0.001 -0.002

2003 44160 6.64e-04*** 0.022*** 0.001** 0.008*** yes

(0.000) -0.003 -0.001 -0.002

2004 43426 9.75e-04*** 0.008*** 0.002*** 0.011*** yes

(0.000) -0.003 -0.001 -0.002
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Year N (total) Age Gender Carstairs Score Co-morbidity Trust dummies

2000 32950 0.004*** 0.006* 0.001** 0.043*** yes

2005 40186 0.001*** 0.017*** 0.002*** 0.013*** yes

(0.000) -0.004 -0.001 -0.002

2006 37743 0.001*** 0.015*** 0.001 0.014*** yes

(0.000) -0.004 -0.001 -0.002

2007 36240 0.001*** 0.016*** 0.003*** 0.015*** yes

(0.000) -0.004 -0.001 -0.002

2008 33607 0.001*** 0.017*** 0.002*** 0.013*** yes

(0.000) -0.004 -0.001 -0.002

365-Day Readmission

2000 37346 0.001*** 0.008* 0.005*** 0.018*** yes

(0.000) -0.005 -0.001 -0.003

2001 49780 0.001*** 0.022*** 0.007*** 0.020*** yes

(0.000) -0.004 -0.001 -0.002

2002 50711 0.001*** 0.017*** 0.005*** 0.021*** yes

(0.000) -0.004 -0.001 -0.002

2003 50202 0.002*** 0.026*** 0.005*** 0.018*** yes

(0.000) -0.004 -0.001 -0.002

2004 49762 0.002*** 0.023*** 0.005*** 0.020*** yes

(0.000) -0.004 -0.001 -0.002

2005 46914 0.001*** 0.026*** 0.005*** 0.022*** yes

(0.000) -0.004 -0.001 -0.002

2006 45133 0.001*** 0.030*** 0.004*** 0.022*** yes

(0.000) -0.004 -0.001 -0.002

2007 44026 0.002*** 0.027*** 0.006*** 0.022*** yes

(0.000) -0.004 -0.001 -0.002

2008 41474 0.002*** 0.029*** 0.004*** 0.020*** yes

(0.000) -0.004 -0.001 -0.002

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Figure 2.2 shows the trends over time in average latent mortality and readmission
rates for AMI, such that the curve in each panel represents the rate of change in the
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raw outcomes over time controlling for patient characteristics. The mean hospital latent
mortality outcomes are negative for both 30-day and year-long mortality, indicating that
on average rate of change in mortality attributable to each hospital is decreasing. However,
for both outcomes the values are becoming more positive over time, meaning that the mean
is decreasing at an increasing rate. The confidence intervals for 30-day mortality show a
variation of just under 2% in the beginning of the sample, which narrow after 2005 to
about 1%. This indicates less variation in the quality of hospitals towards the end of
the time period. The panels for readmissions are mostly positive, indicating increasing
readmissions attributable to hospital performance are increasing, on average. However, in
both readmission panels the points are approaching zero indicating that they are increasing
at a decreasing rate. Indeed for 28-day readmissions the value falls below zero for 2007-
2008, indicating decreasing readmissions in this period.

Figure 2.2: Trends across years in average latent AMI outcome measures across hospitals.

Figures 2.3 and 2.4, show the trend in AMI latent 30-day and 365-day mortality for
four selected hospitals. The confidence intervals for both figures, show more variation
in latent mortality within hospitals than indicated by either of the averages plotted in
Figure 2.2. For both short term and long term mortality, estimates within hospitals range
from over 5% above average to more than 7% below average. There hospital specific
panel indicate year-to-year variations of performance, commonly around 3-4% in either
direction. Figures 2.5 and 2.6 show AMI latent 28-day and 365-day readmissions for the
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same four hospitals. The confidence intervals for both readmission figures show about the
same degree of within hospital variation among latent readmissions than was observed for
latent mortality, of about 5%. The magnitude of the year-to-year variation, is also similar,
but varies according to the hospital.

The latent outcome measures graphed by individual hospital allow quality comparisons
to be made between different providers, and examination of their own quality trajectory
through time. For example, in Figure 2.3, the midsize hospital in the bottom left hand
panel is clearly providing above average quality for the entire time period, as the estimate
and the entire 95% confidence interval lie below 0, or the average mortality rate of all
hospitals. However, the trend of the estimate over suggests that while mortality rates are
below average, they are steadily increasing relative to its peers. Looking at the latent
long term mortality rates for the same hospital (Figure 2.4) indicates that the provider
performs relatively worse on this outcome measure in the later time periods. While 365-
day latent mortality rates started off below average in 2000, they have steadily increased
throughout the sample until they are unequivocally above average in 2008.

Figure 2.3: Trends across years in latent AMI 30-day mortality for selected hospitals.
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Figure 2.4: Trends across years in latent AMI 365-day mortality for selected hospitals.

Figure 2.5: Trends across years in Latent AMI 28-day readmissions for selected hospitals.
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Figure 2.6: Trends across years in latent AMI 365-day readmissions for selected hospitals.

Stroke

The average 30-day mortality rates across hospitals, displayed in Figure 2.7, suggest that
there has been a very modest decrease in Stroke mortality over the 2000-2008 period.
The average 365-day mortality rates show a more distinct decline over the same period,
that is especially pronounced over the years 2005-2006. The trends in average readmission
rates over the same period indicate an increase in the average over time. Average 28-
day readmissions undergo only a minor increase during the period, while average 365-day
readmissions increase, especially over the 2006-2007 period. The confidence intervals for
all four estimates is narrow in all figures.
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Figure 2.7: Trends across years in average Stroke outcome measures across hospitals.

The results from the Model 1 mortality regressions, presented in Table 2.2 suggest
that both short and long term Stroke mortality is significantly influenced by age, gender,
co-morbidities and type of admission. Greater age, and increased co-morbidities are both
associated with higher mortality, while women have slightly higher mortality than men,
and elective admissions are significantly associated with lower mortality as compared to
non-elective admissions. The results from the Model 1 readmission regressions, indicate
that both short term and long term readmissions are significantly influenced by the same
variables as mortality, as well as deprivation. Where higher deprivation is associated
with higher readmissions, and the effect of all other significant variables is in the same
direction as mortality. For both mortality and readmission, the trust dummies were highly
significant.

Table 2.2: Regression results for Stroke Model 1.

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

30-Day Mortality

2000 52295 0.005*** 0.028*** -6.12e-04 0.007*** 0.098*** yes

(0.000) (0.004) (0.000) (0.002) (0.011)
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2001 68864 0.005*** -0.031*** -1.46e-05 0.013*** 0.086*** yes

(0.000) (0.003) (0.000) (0.002) (0.010)

2002 68243 0.005*** -0.030*** -2.06e-04 0.022*** 0.095*** yes

(0.000) (0.003) (0.000) (0.002) (0.012)

2003 68385 0.005*** -0.033*** -4.38e-04 0.025*** 0.080*** yes

(0.000) (0.003) (0.000) (0.002) (0.011)

2004 66396 0.005*** -0.034*** -2.19e-04 0.023*** 0.084*** yes

(0.000) (0.003) (0.000) (0.002) (0.012)

2005 66825 0.005*** -0.039*** -9.15e-04 0.029*** 0.094*** yes

(0.000) (0.003) (0.000) (0.002) (0.011)

2006 67705 0.005*** -0.039*** 9.85e-04* 0.024*** 0.094*** yes

(0.000) (0.002) (0.000) (0.002) (0.011)

2007 68403 0.005*** -0.035*** 6.0e-04 0.023*** 0.085*** yes

(0.000) (0.001) (0.000) (0.002) (0.010)

2008 69526 0.004*** -0.037*** 2.05e-04 0.024*** 0.078*** yes

(0.000) (0.001) (0.000) (0.001) (0.010)

365-Day Mortality

2000 52295 0.010*** -0.023*** -3.48e-05 0.033*** 0.089*** yes

(0.000) (0.004) (0.001) (0.002) (0.012)

2001 68864 0.010*** -0.023*** 0.001 0.033*** 0.075*** yes

(0.000) (0.004) (0.001) (0.002) (0.011)

2002 68243 0.010*** -0.032*** 0.001 0.047*** 0.066*** yes

(0.000) (0.004) (0.001) (0.002) (0.012)

2003 68385 0.010*** -0.040*** 0.001 0.052*** 0.063*** yes

(0.000) (0.004) (0.001) (0.002) (0.012)

2004 66396 0.001*** -0.042*** 0.001 0.053*** 0.075*** yes

(0.000) (0.004) (0.001) (0.002) (0.013)

2005 66825 0.009*** -0.043*** 0.001 0.055*** 0.083*** yes

(0.000) (0.004) (0.001)) (0.002) (0.013)

2006 67705 0.007*** -0.042*** 0.001* 0.032*** 0.102*** yes

(0.000) (0.003) (0.001) (0.002) (0.011)

2007 68403 0.0059*** -0.039*** 0.001* 0.028*** 0.088*** yes

(0.000) (0.003) (0.001) (0.002) (0.011)
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2008 69526 0.006*** -0.039*** 0.001 0.030*** 0.084*** yes

(0.000) (0.003) (0.001) (0.002) (0.010)

28-Day Readmission

2000 52295 -3.58e-04*** 0.006*** 8.0e-04*** 9.11e-04 0.010* yes

(0.000) (0.002) (0.000) (0.001) (0.006)

2001 68864 -2.15e-04*** 0.007*** 9.90e-04*** 0.006*** 0.013** yes

(0.000) (0.002) (0.000) (0.001) (0.010)

2002 68243 -2.53e-04*** 0.007*** 9.47e-04*** 0.003** 0.006 yes

(0.000) (0.002) (0.000) (0.001) (0.012)

2003 68385 -2.46e-04*** 0.004** 9.64e-04*** 0.004*** 0.008 yes

(0.000) (0.002) (0.000) (0.001) (0.011)

2004 66396 -0.001*** 0.004* 0.001*** 0.004*** 0.019*** yes

(0.000) (0.002) (0.000) (0.001) (0.012)

2005 66825 -3.17e-04*** 0.008*** 0.002*** 0.003*** 0.027*** yes

(0.000) (0.002) (0.000) (0.001) (0.011)

2006 67705 -2.73e-04*** 0.008*** 0.001*** 0.005*** 0.016*** yes

(0.000) (0.002) (0.000) (0.001) (0.011)

2007 68403 -1.37e-04*** 0.008*** 0.002*** 0.005*** 0.009 yes

(0.000) (0.002) (0.000) (0.001) (0.010)

2008 69526 -2.81e-04*** 0.008*** 0.002*** 0.006*** 0.007 yes

(0.000) (0.002) (0.000) (0.001) (0.010)

365-Day Readmission

2000 52295 1.52e-04 0.014*** 0.005*** 0.007*** 0.021** yes

(0.000) (0.003) (0.001) (0.002) (0.010)

2001 68864 1.07e-04 0.019*** 0.004*** 0.010*** 0.027*** yes

(0.000) (0.003) (0.001) (0.002) (0.009)

2002 68243 2.53e-04** 0.015*** 0.004*** 0.007*** 0.022** yes

(0.000) (0.003) (0.001) (0.002) (0.010)

2003 68385 2.29e-04** 0.010*** 0.003*** 0.009*** 0.027*** yes

(0.000) (0.003) (0.001) (0.002) (0.010)

2004 66396 -3.67e-04*** 0.012*** 0.004*** 0.009*** 0.030*** yes

(0.000) (0.003) (0.001) (0.001) (0.011)

2005 66825 -1.71e-05 0.013*** 0.004*** 0.020*** 0.036*** yes
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

(0.000) (0.003) (0.001) (0.001) (0.010)

2006 67705 1.03e-04 0.015*** 0.004*** 0.011*** 0.016* yes

(0.000) (0.003) (0.001) (0.001) (0.010)

2007 68403 5.62e-04*** 0.013*** 0.005*** 0.009*** 0.006 yes

(0.000) (0.003) (0.001) (0.002) (0.011)

2008 69526 2.28e-04** 0.011*** 0.004*** 0.013*** 0.023** yes

(0.000) (0.003) (0.001) (0.001) (0.010)

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Figure 2.8 shows the trend in latent outcome measures over the 2000-2008 time period.
Both mortality panels show negative values on the hospital intercepts, indicating declining
mortality. Over time the values become less negative, indicating that they are decreasing
at an increasing rate. The confidence intervals for both latent short and long term mor-
tality suggest a variation of about 2%. The hospital intercepts for both short and long
term readmissions are positive, indicating that on average, controlling for patient factors,
hospitals have positive readmissions. Throughout the period the slope is fluctuating for
both readmission measures. The trajectory is such that readmissions initially increase,
till about 2004, and then decreases back to its initial level. The confidence intervals sug-
gest variation of about 0.5% for short term readmissions, and about 1% for long term
readmissions.
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Figure 2.8: Trends across years in average latent Stroke outcome measures across hospitals.

Figures 2.9 – 2.12 present the latent mortality and readmission estimates for four se-
lected hospitals treating Stroke patients. The variation within hospitals and year-to-year
for all four outcome estimates is small for the midsize and large hospitals, ranging around
or under 5% below or above average. However the confidence intervals of the small hos-
pital show vary large within-hospital variation of over 50% in either direction for short
term mortality rates, and up to 20% in either direction for the other three latent outcome
estimates. This could be attributed to the sample size of the hospital. Similar to the
previous conditions the figures also indicate large year-to-year fluctuations of hospital spe-
cific latent mortality and readmission measures, ranging around 2-3% for the short term
outcome estimates and around 5% for the long term outcome estimates.
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Figure 2.9: Trends across years in latent Stroke 30-day mortality for selected hospitals.

Figure 2.10: Trends across years in latent Stroke 365-day mortality for selected hospitals.
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Figure 2.11: Trends across years in latent Stroke 28-day readmissions for selected hospitals.

Figure 2.12: Trends across years in latent Stroke 365-day readmissions for selected hospitals.
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Hip Replacement

Average 30-day mortality for Hip Replacement in the years 1996-2008, presented in Figure
2.13 exhibits a relatively constant trend during the entire time period. The confidence
intervals surrounding the estimate narrow slightly from 2004 onwards, suggesting less
variation in outcomes among hospitals from that point onwards. The average 365-day
mortality rates for Hip Replacement shown in Figure 2.13 do not display a constant trend.
Instead there is a noticeable increase from the year 1999 which is sustained until 2006,
where mortality returns to is 2008 level. Similar to Figure 2.1, the confidence intervals
surrounding the estimate narrow from 2005 onwards. Average 28-day and 365-day read-
missions for Hip Replacement both show a slight upwards trend throughout the 2000-2008
period. In both figures there is a widening of confidence intervals in the year 2001, sug-
gesting a larger variation in readmissions amongst hospitals for that year. For average
365-day readmissions only, there is sharp increase from 2006-2007.

Figure 2.13: Trends across years in average Hip Replacement outcome measures across hospitals.

Table 2.3 presents the regression results from Model 1 for all four outcome indicators.
In both mortality regressions age, gender, co-morbidity and type of admission is significant
such that higher age and co-morbidity leads to increased mortality. In addition, women
have a marginally higher mortality than men, and non-elective admissions have higher
mortality than elective admissions. Deprivation is significant for only some of the years in
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both regressions. Where significant, higher deprivation is associated with higher mortality.
The trust dummies were always significant. All the explanatory variables included in the
28-day and 365-day readmissions models were significant, such that older patients, more
deprived patients and patients with co-morbidities had higher rates of readmissions in
addition to women and patients that where admitted for elective procedures.

Table 2.3: Regression results for hip Model 1.

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

30-Day Mortality

1996 25835 4.29e-04*** 0.004*** -2.12e-04 0.021*** 0.015*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

1997 29952 4.12e-04*** 0.002** -2.48e-04 0.019*** 0.017*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

1998 34559 5.34e-04*** 0.004*** 2.44e-04 0.020*** 0.015*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

1999 36527 4.41e-04*** 0.002** 1.81e-04 0.020*** 0.019*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2000 36864 4.55e-04*** 0.004*** 5.31e-05 0.017*** 0.014*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2001 38745 4.47e-04*** 0.002** 4.20e-04** 0.015*** 0.016*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2002 41502 4.39e-04*** 0.002** 4.73e-04*** 0.017*** 0.015*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2003 44759 4.68e-04*** 0.001 9.38e-05 0.017*** -0.011*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2004 47124 3.87e-04*** 0.003*** 2.24e-04 0.012*** -0.012*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2005 46507 4.06e-04*** 0.002*** 1.52e-04 0.013*** -0.013*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2006 45438 3.76e-04*** 0.003*** 1.39e-04 0.013*** -0.013*** yes

(0.000) (0.001) (0.000) (0.000) (0.001)

2007 47232 3.64e-04*** 0.002*** 1.26e-04 0.011*** -0.011*** yes

(0.000) (0.001) (0.000) (0.000) (0.001)

2008 48243 3.35e-04*** 0.002*** 1.29e-04 0.008** -0.008*** yes
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

(0.000) (0.001) (0.000) (0.000) (0.001)

365-Day Mortality

1996 25835 0.001*** 0.005*** -1.64e-04 0.033*** 0.030*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

1997 29952 0.001*** 0.003*** -1.59e-04 0.032*** 0.028*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

1998 34559 0.001*** 0.005*** 3.10e-04 0.028*** 0.026*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

1999 36527 0.001*** 0.002** 3.41e-04 0.026*** 0.029*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

2000 36864 0.002*** 0.010*** 3.00e-04 0.057*** 0.064*** yes

(0.000) (0.002) (0.000) (0.002) (0.003)

2001 38745 0.002*** 0.006*** 0.002*** 0.059*** 0.089*** yes

(0.000) (0.002) (0.000) (0.002) (0.003)

2002 41502 0.002*** 0.004** 0.002*** 0.054*** 0.079*** yes

(0.000) (0.002) (0.000) (0.002) (0.003)

2003 44759 0.002*** 0.003* 0.001*** 0.058*** 0.082*** yes

(0.000) (0.002) (0.000) (0.002) (0.003)

2004 47124 0.002*** 0.007*** 0.002*** 0.058*** 0.077*** yes

(0.000) (0.002) (0.000) (0.002) (0.003)

2005 46507 0.002*** 0.005*** 0.001*** 0.044*** 0.070*** yes

(0.000) (0.002) (0.000) (0.001) (0.002)

2006 45438 0.001*** 0.004*** 2.88e-04 0.019*** 0.028*** yes

(0.000) (0.010) (0.000) (0.001) (0.001)

2007 47232 0.001*** 0.003*** 2.46e-04 0.014*** 0.021*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2008 48243 0.001*** 0.002*** 3.76e-04** 0.010*** 0.023*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

28-Day Readmission

1996 25835 4.63e-04*** 0.014*** 0.001 0.008*** 0.053*** yes

(0.000) (0.003) (0.001) (0.003) (0.005)

1997 29952 5.13e-04*** 0.009*** 0.002** 0.009*** 0.046*** yes

(0.000) (0.003) (0.001) (0.003) (0.004)
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

1998 34559 4.36e-04*** 0.018*** 0.002** 0.008*** 0.053*** yes

(0.000) (0.003) (0.001) (0.003) (0.004)

1999 36527 6.01e-04*** 0.013*** 1.23e-04 0.014*** 0.055*** yes

(0.000) (0.003) (0.001) (0.003) (0.004)

2000 36864 5.99e-04*** 0.012*** 0.2e-06*** 0.008*** 0.052*** yes

(0.000) (0.003) (0.001) (0.003) (0.004)

2001 38745 9.41e-04*** 0.0017** 0.002*** 0.006*** 0.059*** yes

(0.000) (0.003) (0.001) (0.002) (0.004)

2002 41502 7.54e-04*** 0.013*** 0.002*** 0.006*** 0.070*** yes

(0.000) (0.002) (0.001) (0.002) (0.001)

2003 44759 8.63e-04*** 0.014*** 0.002*** 0.011*** 0.067*** yes

(0.000) (0.003) (0.001) (0.002) (0.001)

2004 47124 9.01e-04*** 0.016*** 0.002*** 0.006*** 0.068*** yes

(0.000) (0.002) (0.001) (0.002) (0.001)

2005 46507 9.55e-04*** 0.018*** 0.002*** 0.012*** 0.066*** yes

(0.000) (0.003) (0.001) (0.002) (0.001)

2006 45438 0.001*** 0.019*** 0.002*** 0.011*** 0.068*** yes

(0.000) (0.003) (0.001) (0.002) (0.001)

2007 47232 0.001*** 0.014*** 0.003*** 0.013*** 0.075*** yes

(0.000) (0.003) (0.001) (0.002) (0.001)

2008 48243 0.001*** 0.014*** 0.003*** 0.011*** 0.076*** yes

(0.000) (0.002) (0.001) (0.002) (0.001)

365-Day Readmission

1996 25835 0.002*** 0.013*** 0.002** 0.026*** 0.164*** yes

(0.000) (0.005) (0.001) (0.005) (0.007)

1997 29952 0.002*** 0.017*** 0.003*** 0.021*** 0.147*** yes

(0.000) (0.004) (0.001) (0.004) (0.006)

1998 34559 0.002*** 0.025*** 0.004*** 0.023*** 0.152*** yes

(0.000) (0.004) (0.001) (0.004) (0.006)

1999 36527 0.002*** 0.016*** 0.002*** 0.023*** 0.159*** yes

(0.000) (0.004) (0.001) (0.004) (0.006)

2000 36864 0.002*** 0.011*** 0.003*** 0.022*** 0.167*** yes

(0.000) (0.004) (0.001) (0.004) (0.005)

72



2.4. Results

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2001 38745 0.002*** 0.0124*** 0.004*** 0.018*** 0.165*** yes

(0.000) (0.004) (0.001) (0.003) (0.005)

2002 41502 0.002*** 0.011*** 0.003*** 0.018*** 0.185*** yes

(0.000) (0.004) (0.001) (0.003) (0.005)

2003 44759 0.002*** 0.012*** 0.004*** 0.027*** 0.184*** yes

(0.000) (0.003) (0.001) (0.003) (0.005)

2004 47124 0.002*** 0.015*** 0.005*** 0.017*** 0.178*** yes

(0.000) (0.003) (0.001) (0.003) (0.005)

2005 46507 0.002*** 0.017*** 0.004*** 0.022*** 0.164*** yes

(0.000) (0.003) (0.001) (0.003) (0.005)

2006 45438 0.002*** 0.013*** 0.003*** 0.018*** 0.165*** yes

(0.000) (0.003) (0.001) (0.003) (0.005)

2007 47232 0.003*** 0.006* 0.006*** 0.026*** 0.186*** yes

(0.000) (0.003) (0.001) (0.003) (0.005)

2008 48243 0.002*** 0.015*** 0.005*** 0.024*** 0.174*** yes

(0.000) (0.003) (0.001) (0.002) (0.005)

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Figure 2.14 shows the average Hip Replacement 30-day latent outcome estimates across
hospitals in the time period 1996-2008. Both mortality estimates are negative through-
out the period being investigated. This indicates that on average, the rate of change in
mortality, controlling for patient characteristics is falling. For both short and long term
mortality, the trajectory of the average hospital intercept indicates that initially the rate
of change is decreasing at an increasing rate, but after 2000 it begins to decrease at an
decreasing rate. This pattern is much more pronounced for year-long mortality than 30-
day mortality. It is also apparent in both panels that the confidence intervals at the end
of the period are narrower than in the first years of the sample.

The hospital intercepts for both readmission estimates vary around zero. The av-
erage latent outcome for 28-day readmissions indicates increasing average readmissions
attributable to hospital performance, but at a declining rate. Around 2001, the average
becomes negative, indicating that hospitals are contributing towards declining readmis-
sions. The average latent outcomes estimated from 365-day readmissions are negative for
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all years but 1997, indicating that throughout the period readmissions are falling. As
the values are becoming increasingly more negative we can say that they are falling at a
decreasing rate.

Figure 2.14: Trends across years in average latent Hip Replacement outcome measures across
hospitals.

Figures 2.15 – 2.18 show the latent mortality and readmission estimates for four selected
hospitals treating Hip Replacement patients. The within hospital and year-to-year varia-
tion in latent mortality is smaller than all other conditions aside from Hip Replacement,
ranging around 1−5% below and above both 30-day aggregate mortality and 28-day read-
mission measures, and around 5 − 10% below and above the 365-day aggregate mortality
and aggregate readmission measures. While there is year-to-year variation this is usually
around 2 − 4% in either direction. There is wider variation in the confidence interval and
the year-to-year variation for the small hospital for all conditions.
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Figure 2.15: Trends across hospitals in latent Hip 30-day mortality for selected hospitals.

Figure 2.16: Trends across years in latent Hip 365-day mortality for selected hospitals.
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Figure 2.17: Trends across years in latent Hip 28-day readmissions for selected hospitals.

Figure 2.18: Trends across years in latent Hip 365-day readmissions for selected hospitals.
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Model 2

The second model uses the aggregate outcome measures as dependent variables to test for
fundamental relationships amongst outcomes and hospital characteristics. Tables 2.4 – 2.7
present the results for the regressions estimated for Model 2, one for each of the aggregate
outcome measures, for each condition, run separately for each of the seven conditions. The
number of instruments for each model is reported together with the regression results.
As only a emergency AMI conditions were included in the sample, waiting times and
lagged waiting times were not included in any of the AMI models. Additionally, different
specifications of the models were run for the different conditions, and the one which best
met model fit criteria is reported. For this reason lagged waiting times and length of stay
are sometimes not included in selected models. Most models passed the AR(1) test for
autocorrelation with over 95% confidence, aside from the readmission models for Stroke.
All models also passed the Sargan test for instrument validity with over 95% confidence,
rejecting the null hypothesis that the overidentifying assumptions are valid. The models
indicate that few hospital characteristics are significant in influencing the change in latent
outcomes over time. However, for most conditions some element of performance is dynamic
– demonstrating that change does not occur instantaneously but is incremental.

Table 2.4: Model 2 regression results for latent 30-day mortality.

AMI MI IHD CCF Stroke TIA Hip

L. Latent 0.961*** -0.0711 0.488** -0.0265 0.342** 0.0166 -0.603***

Mortality (0.209) (0.176) (0.247) (0.121) (0.153) (0.0939) (0.103)

L. LOS 0.00738*** 0.00380 -1.92e-05 -0.000525 0.000656 -1.32e-06 -0.00147*

(0.00113) (0.00543) (0.000538) (0.00233) (0.000768) (0.000744) (0.000815)

L. Cases -0.000188 7.44e-05 3.95e-08 0.000558 -2.08e-05 -5.77e-05 6.09e-05**

(0.000394) (0.000195) (1.19e-06) (0.000447) (5.98e-05) (7.07e-05) (3.01e-05)

L. Waiting - - - - - 6.51e-07** 2.56e-05

Times - - - - - (2.85e-07) (4.97e-05)

Cases -0.000329 0.000404 -4.86e-07 -0.000966 3.94e-05 2.36e-05 -5.47e-05

(0.000525) (0.00117) (3.32e-06) (0.00120) (0.000283) (8.79e-05) (3.85e-05)

Cases2 5.92e-07 -9.94e-07 1.84e-10 8.63e-06 -9.43e-09 1.08e-07 -7.12e-09

(6.63e-07) (4.38e-06) (9.40e-10) (8.83e-06) (1.96e-07) (1.36e-07) (2.42e-08)

LOS -0.0111*** -0.00525 0.000815 0.00181 - 7.47e-05 0.00240**

(0.00144) (0.0102) (0.00122) (0.00307) - (0.00155) (0.000940)

Waiting - 6.53e-06*** -1.91e-06 6.80e-05 3.01e-06 4.81e-06 -2.04e-05

Times - (1.82e-06) (2.44e-06) (0.000148) (1.24e-05) (5.68e-06) (5.11e-05)
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AMI MI IHD CCF Stroke TIA Hip

Specialist 0.0603 -0.0373 0.000995 -0.0603*** 0.0384 0.00990*** 0.00400

Trust (0.0723) (0.105) (0.00433) (0.0203) (0.0443) (0.00368) (0.00523)

Foundation -0.00120 0.00210 -0.000576 0.0167 0.00447 -0.000772 -0.000743

Trust (0.00936) (0.0154) (0.000766) (0.0163) (0.00474) (0.00227) (0.00163)

University -0.00149 0.0141 -0.000822 -0.0471*** -0.0133 0.000767 -0.00114

Hospital (0.0171) (0.0187) (0.00257) (0.0173) (0.00914) (0.00143) (0.00205)

Constant 0.142 -0.331** -0.0208 -0.237*** -0.179* -0.0324*** -0.0484***

(0.121) (0.134) (0.0135) (0.0617) (0.0930) (0.00861) (0.00971)

Year Dummies Yes Yes Yes Yes Yes Yes Yes

Instruments 22 28 33 33 30 34 47

N 986 341 919 352 830 509 1,047

Groups (hospitals) 132 105 129 101 125 104 121

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Table 2.5: Model 2 regression results for latent 365-day mortality.

AMI MI IHD CCF Stroke TIA Hip

L. Latent -0.194 -0.130 0.686*** -0.140 0.376 0.0983 -0.450***

Mortality (0.181) (0.125) (0.222) (0.0963) (0.428) (0.0871) (0.111)

L. LOS 0.00471*** 0.00147 -0.00248 0.000786 0.00114** -0.000830 -0.00421***

(0.00100) (0.00363) (0.00214) (0.00218) (0.000542) (0.00159) (0.00149)

L. Cases 0.000250 6.86e-05 -1.14e-07 0.000123 1.11e-05 7.87e-05 0.000103

(0.000185) (0.000159) (3.22e-06) (0.000469) (3.08e-05) (5.48e-05) (7.49e-05)

L. Waiting - - - - - -1.36e-07 0.000144

Times - - - - - (4.36e-07) (9.69e-05)

Cases -0.00110** -8.26e-05 8.69e-06 -0.000267 0.000237 2.88e-05 -0.000138

(0.000529) (0.000761) (6.09e-06) (0.00115) (0.000246) (0.000205) (8.79e-05)

Cases2 7.83e-07* 8.61e-07 -1.59e-09 5.54e-06 -1.76e-07 -2.16e-07 3.34e-08

(4.35e-07) (3.07e-06) (1.65e-09) (8.90e-06) (1.68e-07) (4.80e-07) (4.65e-08)

LOS 0.00506** -0.00525 0.00370 0.00445 - -0.00151 0.00780***

(0.00231) (0.0102) (0.00237) (0.00354) - (0.00290) (0.00211)

Waiting - 7.46e-06*** -6.37e-06* -0.000129 3.08e-05 9.99e-06 -0.000146

Times - (1.48e-06) (3.55e-06) (0.000106) (1.96e-05) (2.42e-05) (0.000104)

Specialist -0.0487 -0.0504 0.00154 -0.0491 0.0650 0.0102 0.0105
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AMI MI IHD CCF Stroke TIA Hip

Trust (0.0475) (0.0411) (0.00738) (0.0373) (0.0518) (0.00900) (0.00698)

Foundation -0.00101 0.0129 0.000429 0.0142 0.00184 -0.00626 -0.00107

Trust (0.00959) (0.0144) (0.00176) (0.0149) (0.00613) (0.00540) (0.00346)

University -0.0332* 0.00480 -0.00301 -0.0354 -0.00872 0.000457 -0.00126

Hospital (0.0190) (0.0124) (0.00374) (0.0230) (0.00748) (0.00409) (0.00423)

Constant -0.269** -0.347*** -0.0222* -0.343*** -0.394* -0.327*** -0.0809***

(0.106) (0.0532) (0.0128) (0.0651) (0.236) (0.0324) (0.0185)

Year Dummies Yes Yes Yes Yes Yes Yes Yes

Instruments 22 32 29 33 24 35 47

N 986 341 919 352 830 509 1,047

Groups (hospitals) 132 105 129 101 125 104 121

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Table 2.6: Model 2 regression results for latent 28-day readmissions.

AMI MI IHD CCF Stroke TIA Hip

L. Latent -0.0775 0.0596 0.0191 -0.515*** -0.164*** 0.960 -0.0459

Mortality (0.0589) (0.138) (0.410) (0.183) (0.0442) (1.446) (1.247)

L. Latent 0.210 -0.448*** 0.323* -0.255 0.0550 -0.390 0.0894

Readmissions (0.313) (0.139) (0.178) (0.197) (0.105) (0.406) (0.205)

L. LOS -0.000251 0.00336 -0.000531 -0.000907 0.000287 -0.00172 -0.00113

(0.000389) (0.00234) (0.00123) (0.00244) (0.000244) (0.00227) (0.00131)

L. Cases -1.52e-05 -3.38e-05 -1.88e-07 0.000263 -2.12e-06 -3.37e-05 3.66e-05

(1.60e-05) (0.000160) (3.33e-06) (0.000329) (8.46e-06) (0.000108) (6.13e-05)

L. Waiting - -0.000138 -9.10e-06* 7.72e-05 4.59e-06 4.60e-07 -5.10e-05

Times - (0.000170) (5.07e-06) (7.95e-05) (3.76e-06) (1.40e-06) (0.000133)

Cases 1.93e-05 9.12e-05 5.55e-07 1.27e-05 6.00e-06 0.000106* 5.87e-05

(1.56e-05) (0.000173) (4.08e-06) (0.000223) (7.36e-06) (6.24e-05) (0.000102)

LOS -0.000906 0.00229 0.000316 -0.00448* - - 0.00517**

(0.00114) (0.00309) (0.00239) (0.00235) - - (0.00241)

Waiting 1.77e-05 0.000117 2.65e-07 -5.78e-05 2.65e-06 0.000109** -3.11e-05

Times (1.47e-05) (0.000158) (3.96e-06) (0.000205) (7.45e-06) (5.58e-05) (6.60e-05)

Specialist -0.000906 0.00248 -0.000185 -0.00439* -0.0140 -0.0118 0.00295

Trust (0.00114) (0.00345) (0.00241) (0.00246) (0.0188) (0.0246) (0.00230)
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AMI MI IHD CCF Stroke TIA Hip

Foundation 0.00507 6.59e-06*** -9.40e-06 -3.55e-05 4.51e-06 -1.45e-05 6.80e-05

Trust (0.00359) (2.00e-06) (6.44e-06) (0.000182) (3.75e-06) (2.79e-05) (0.000156)

University -0.0264 -0.0400 -0.000396 0.0162 -0.0140 -0.0118 -0.00946

Hospital (0.0207) (0.0279) (0.00433) (0.0420) (0.0188) (0.0246) (0.0108)

Constant -0.0138 0.0466 3.58e-05 0.0945 0.0289* 0.0291 -0.0283

(0.0215) (0.0751) (0.0386) (0.0676) (0.0157) (0.0626) (0.0442)

Year Dummies Yes Yes Yes Yes Yes Yes Yes

Instruments 30 36 29 31 34 26 42

N 986 182 879 200 744 509 1,047

Groups (hospitals) 132 71 125 65 122 104 121

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Table 2.7: Model 2 regression results for latent 365-day readmissions.

AMI MI IHD CCF Stroke TIA Hip

L. Latent -0.448*** -0.0690 0.191 0.616 -0.227 0.0182 -0.821

Mortality (0.149) (0.198) (0.944) (0.476) (0.267) (0.634) (0.527)

L. Latent -0.220** -0.312 1.047*** 0.162 -0.161 -0.250 0.0497

Readmissions (0.110) (0.400) (0.232) (0.311) (0.398) (0.266) (0.183)

L. LOS 0.00132** 0.00142 0.000196 0.00252 0.000724 0.000634 -0.00107

(0.000560) (0.00366) (0.00245) (0.00390) (0.000860) (0.00344) (0.00235)

L. Cases -5.91e-06 -0.000195 -1.31e-05** 5.72e-05 6.20e-05 -0.000306 3.14e-06

(2.74e-05) (0.000179) (5.47e-06) (0.000782) (6.24e-05) (0.000452) (2.09e-05)

L. Waiting - 4.70e-05 -5.40e-06 0.000286** 1.55e-06** 6.18e-06*** -4.33e-05

Times - (0.000114) (1.98e-05) (0.000114) (7.26e-07) (1.79e-06) (0.000164)

Cases 3.56e-05 -1.39e-05 1.18e-05* 0.000361 -0.000263** -0.000227 2.53e-05

(2.40e-05) (0.000452) (6.76e-06) (0.000480) (0.000108) (0.000491) (4.06e-05)

LOS -0.00206 -0.00604 -0.00166 -0.0141** - - 0.00740

(0.00215) (0.00614) (0.00408) (0.00608) - - (0.00642)

Waiting 3.87e-05 -4.98e-05 1.30e-05** 0.000114 -5.58e-05 0.000319 1.20e-05

Times (2.49e-05) (0.000174) (5.89e-06) (0.000510) (7.07e-05) (0.000476) (2.15e-05)

Specialist -0.00135 0.000957 -0.000672 -0.0101* 1.48e-05 -4.58e-05 0.00484

Trust (0.00177) (0.00357) (0.00472) (0.00572) (2.22e-05) (4.77e-05) (0.00346)
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AMI MI IHD CCF Stroke TIA Hip

Foundation -0.000908 -3.94e-06 -6.40e-07 4.47e-05 -0.0308 -0.0273 3.45e-05

Trust (0.00424) (3.11e-05) (1.07e-05) (0.000383) (0.0622) (0.0229) (0.000192)

University -0.00519 -0.0500 -0.00752 0.0188 0.00454 -0.000680 -0.0169

Hospital (0.0273) (0.0597) (0.0121) (0.0704) (0.00520) (0.0125) (0.0212)

Constant -0.117** 0.0315 0.0231 0.476* 0.00320 -0.00228 -0.110***

Hospital (0.0568) (0.103) (0.268) (0.259) (0.00778) (0.00861) (0.0350)

Year Dummies Yes Yes Yes Yes Yes Yes Yes

Instruments 25 36 29 29 36 27 41

N 986 182 879 200 744 509 1,047

Groups (hospitals) 132 71 125 65 122 104 121

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

AMI

Tables 2.4 – 2.7 show the results for the regressions run for Model 2, using the AMI latent
outcome measures as dependent variables. The results suggest that an increase in lagged
30-day mortality is associated with higher 30-day mortality and lower 1-year readmissions.
Table 2.4 indicates, that aside from lagged mortality, the only other variables found to
be significantly related to 30-day mortality were length of stay and lagged length of stay.
Where lagged length of stay has a significant negative association, such that higher LOS
and length of stay a significant positive association. In the model for long term AMI
mortality, presented in Table 2.5, length of stay and lagged length of stay were also sig-
nificant, but both had a positive association, such that higher length of stay is associated
with higher 1-year mortality estimates. Lagged caseload is negatively associated with year
long mortality, such that more cases are associated with higher 1-year mortality. In ad-
dition, teaching hospitals were significantly related to lower 1-year mortality than acute
care trusts, but with 90% significance. The results using short term readmissions as a
dependent variable, presented in Table 2.6, show no significant associations. Table 2.7
indicates that year-long readmissions are influenced by lagged readmissions and lagged
length of stay in addition to lagged mortality. The direction of the results suggests that
higher lagged readmissions will lead to lower readmissions, and higher lagged length of
stay will lead to higher 1-year readmissions.
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MI

Tables 2.4 – 2.7 show the results for the MI regressions run for Model 2. The results suggest
that only for 28-day readmissions is past performance a significant predictor of current
performance, such that higher lagged readmissions result in lower 28-day readmissions.
The only variable found to impact the latent mortality measures was waiting times, where
higher waiting times were associated with higher short term and long term mortality. Table
2.6 also indicates that foundation trusts are associated with higher 28-day readmissions
than acute care trusts. None of the variables for the model with 1-year readmissions as
the dependent variable were significant.

IHD

The results from the Model 2 regressions, investigating what hospital characteristics influ-
ence the IHD latent outcome measures, are presented in Tables 2.4 – 2.7. Tables 2.4 and
2.5 indicate that both long term and short term mortality have a significant positive as-
sociation with lagged mortality. No other variables are significant in the 30-day mortality
model 2.4. The model for year-long mortality is negatively associated with waiting times
at 90% significance. Tables 2.6 and 2.7 also show that both long term and short term
readmissions have a significant positive association with lagged readmissions. The model
for 28-day readmissions is positively associated with lagged waiting times at the 90% while
the model for year-long readmissions is positively associated with waiting times, Year-long
readmissions are and positively associated with caseload, such that more cases are linked
to higher readmissions. However it is negatively associated with lagged caseload.

CCF

Table 2.4 presents the regression results of Model 2 for latent CCF outcomes. The 30-
day mortality model indicates that there is no significant relationship between predicting
lagged latent mortality and latent mortality. The only significant variables in the short
term mortality model are the hospital type, where CCF latent mortality is significantly
lower in teaching hospitals and in specialist trusts as compared to acute care hospitals. The
results from Table 2.5 do not indicate similar results for long term latent mortality. In fact
latent long term mortality is not associated with any of the explanatory variables included
in the model. The regression results for latent 28-day readmissions, presented in Table
2.6, show a high negative association between lagged latent 30-day mortality and 28-day
latent readmissions, while lagged latent 28-day readmissions have no significant effect on
the dependent variable. Higher length of stay is associated at the 90% significance level
with lower 28-day readmissions. Specialist trusts have significantly lower readmissions,
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both 28-day and year long, than acute care trusts, although only at 90% significance.
Table 2.7 indicates that the other explanatory variables associated with latent 365-day
readmissions are lagged waiting times and length of stay. Neither past latent mortality
nor past latent readmissions are significantly associated with year-long latent readmission
rates. Higher length of stay is associated with lower year-long readmissions, and higher
lagged waiting times are associated with higher year-long readmissions.

Stroke

The results in Table 2.4 indicate that lagged mortality is positively associated with 30-day
latent mortality, such that higher rates of past mortality will lead to higher rates of current
mortality. None of the other variables included in the short term mortality regression are
found to be significant. Table 2.5, shows that past mortality is not significantly associated
with year-long latent mortality at any level of significance. The only variable that is
significantly related with long-term mortality is lagged length of stay, where an increase
in length of stay is significantly associated with higher one-year mortality. Table 2.6
indicates that 28-day latent readmissions are significantly associated with lagged latent 30-
day mortality, but not with lagged latent 28-day readmissions. Table 2.7 shows that year-
long readmissions are not significantly associated with either of these past performance
indicators. Year-long latent readmissions are negatively associated with caseload and
positively associated with lagged waiting times. Higher lagged waiting times lead to higher
year-long readmissions while fewer cases lead to lower year-long readmissions.

TIA

Tables 2.4 and 2.5 show the Model 2 regression results for the latent outcome models
for TIA. Past mortality is not a significant determinant of 30-day mortality or 365-day
mortality. Of the variables included in the regression, lagged waiting times are positively
associated with higher 30-day mortality, and specialist trusts are associated with higher
30-day mortality relative to acute care trusts. None of the variables included in the
regression for 365-day mortality were significant at any level. Tables 2.6 and 2.7 show the
Model 2 results for the latent readmission regressions. Neither past mortality nor past
readmissions are significantly associated with 28-day readmissions or 365-day readmissions.
The only variable significant in the 28-day readmission regression is caseload, where higher
caseload is associated with higher readmissions. The only significant variable in the 365-
day readmission regression, presented in Table 2.7, is lagged waiting times. The positive
association indicates that higher past waiting times are associated with higher year-long
readmissions.
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Hip Replacement

Tables 2.4 shows the Model 2 results for the latent 30-day mortality regressions. The
results indicate that 30-day mortality has a negative and significant relationship with past
mortality. Current and lagged length of stay are also significantly associated with 30-day
mortality, such that higher lagged length of stay is associated with lower 30-day mortality,
while higher length of stay is associated with higher 30-day mortality. In addition caseload
is significant, such that it has a positive association with 30-day mortality. The results
for year-long mortality indicate similar results. Lagged year-long mortality is significantly
associated with year-long mortality, such that an increase in lagged mortality results in
lower mortality. Length of stay and lagged length of stay are also significantly associ-
ated with year-long mortality, indicating a positive and negative association respectively.
The regression results for readmissions, presented in Tables 2.6 and 2.7, indicate fewer
significant explanatory variables. The only significant variable in the 28-day readmission
model is length of stay where higher length of stay is associated with higher readmissions.
There are no significant variables in when the year-long readmission outcome is used as
the dependent variable.

2.5 Discussion

This chapter focuses on the need to develop more sensitive indicators to measure the
quality of health care providers. Performance measurement is increasingly being used by
stakeholders such as managers, politicians, regulators, researchers, service users and the
general public to inform their decision making – whether this be individual choices or
broader health policy decisions. While increasingly process and structure measures are
being used in quality measurement, outcome measures remain lucrative in their ability
to present a simple, all-encompassing measure of health care efforts. Hitherto, stakehold-
ers have relied on raw or risk-adjusted outcome measures as indicators of organizational
quality. Yet, these types of indicators are largely determined by exogenous factors such
as patient characteristics, and often risk-adjustment techniques are highly sensitive to
technical choices which can bias measures in different directions depending on the risk
adjustment method selected.

The method applied in this chapter employs a systematic approach for evaluating
hospital quality using outcome indicators. This approach assumes a latent hospital level
variable that is unmeasured but includes all of the unobserved factors influencing hospital
quality. It is captured by vectors of hospital level intercepts estimated from individual
patient level equations measuring determinants of outcomes for seven different conditions
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across hospitals. These intercepts, or ‘latent outcome measures’ will thus exclude known
confounding patient level variables, but reflect factors such as unmeasured resources, en-
vironmental and organizational characteristics as well as random error and data imperfec-
tions. They can then be used to explain how much unobserved hospital effects contribute
to changes in mortality and readmission in any given year. Closely observing the trend
of the latent outcome measures over time allows for a better examination of the rate of
change in hospital quality than the examination of raw outcome measures, that can be of
practical use to individual providers or policy makers.

The average latent mortality estimates, plotted over time, show the rate of change in
outcomes over time, controlling for patient characteristics. In most conditions, for most
years, average mortality attributable to hospital quality is declining, where the rate of
decline appears to slow from 2005 onwards. This is especially pronounced for the year-
long mortality measures in all conditions, and for 30-day mortality intercepts in AMI, IHD,
Stroke, TIA and Hip Replacement. The trends in readmissions vary more by condition.
The average of the hospital intercepts suggest increasing readmissions for AMI, CCF and
Stroke and decreasing readmissions for IHD, Hip Replacement and TIA. While this chapter
has not used these measures to investigate the possible factors that could be responsible for
these changes, it is likely that policy changes in this time associated with the introduction
of Payment by Results and increased competition play some role, either in terms of the
effects they have on quality through incentives or more likely on the effect they have on
coding of mortality. Under this payment scheme, hospital revenue is very closely linked
to coding. This may result in better coding, but also can lead to adverse behaviours
such as miscoding or fraud. Discrepancies in coding practices have recently been reported
in the literature, such as hospitals coding deaths as palliative care in order to reduce
mortality rates (Hawkes, 2010b). Further in-depth investigation is necessary to draw any
conclusive results. Given the concerns about mortality coding, future estimates using this
methodology would benefit from considering palliative outcomes in addition to mortality
and readmission rates at different levels, or controlling for palliative care by including it
in the explanatory variables of the patient level regressions.

Another interesting observation for many of the average latent estimate plots is that
the difference between the coefficients from one year to the next, which indicate the abso-
lute rate of change in mortality. Thus an increase of 0.02 in the average mortality intercept
from one year to the next means that the mortality attributable to hospital quality in-
creased by 2% over that time period. This information can allow us to make important
conclusions about changes over time, controlling for patient factors. Finally, the confi-
dence intervals often become narrower for the mortality intercepts, and either wider or
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narrower for the readmissions estimates. This suggests that the variation amongst relative
hospital performance in any given year is also changing. Again this may be linked to poli-
cies occurring during this time period, and perhaps indicate a need to examine possible
explanatory factors.

The latent outcome measures can also be examined at the individual hospital level.
Investigating the outcome measures at this level of analysis provides more information
on how hospitals are performing relative to each other. The results indicate that where
there is sufficient sample size these estimates can be informative and quite precise in
distinguishing quality trends over time, and relative to peers. However, in cases where
there is a small number of patients treated annually, the estimates will be subject to wide
year-to-year fluctuations in quality, and surrounded by wide confidence intervals. Both
factors make it harder to draw conclusive results about the quality of provider, making
it difficult to draw any conclusions with an adequate degree of certainty. This suggests
that the best sample with which to conduct this type of analysis at the hospital level is
for conditions where there are large number of patients, provided at many hospitals in the
country.

The final part of the analysis of this chapter examined the latent outcome measures
to determine how much they can be explained by known hospital characteristics. One of
the main areas of interest of this section was to determine how dynamic hospital outcomes
are. The regression results produced mixed findings. Each condition except TIA had at
least one outcome measure that was influenced by past performance, but only for IHD
were all four outcomes significantly influenced by past performance.

In general, there appear to be two ways in which past performance can influence
current performance: through positive association or a negative association. The first
way, a positive association, occurs when good/bad past performance is a predictor of
continuing good/bad performance. This can be best explained through a notion of path
dependency, where hospitals performing a certain way in one period are likely to continue
to do so regardless of the characteristics of the patients admitted. The second way, as
indicated by a negative association, occurs where past good/bad past performance is
associated with bad/good current performance. This can be regarded as a process of
change. Where bad performance precedes good performance, we can conceptualise this as
a process of improvement, where poor outcomes in one period motivate internal change
so that outcomes will improve in the next period. Where good performance precedes bad
performance, we can consider this change an indication of decline.

In the 30-day mortality model AMI, IHD, Stroke and Hip Replacement were signifi-
cantly influenced by past performance. All conditions but Hip Replacement had a positive
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association suggesting path dependency. For Hip Replacement the association is negative,
suggesting there has been change over time. The average trend in latent 30-day mortality
indicated in Table 2.14 suggest that mortality is improving over the time period studied,
thus the negative association is indicative of an improvement. This result possibly reflects
a change in procedure which we find as a result of higher uptake of a newer technology
in this area - this finding is discussed in detail in Chapter 6 where Hip Replacement is
analyzed in more detail. The results from the year-long mortality regression model, and
Figure 2.14 also indicate a dynamic effect indicating an improvement in performance.
The only other condition to have a significant dynamic effect for this year-long mortality
is IHD, where the sign suggests path dependency.

Unlike the mortality models, the short and long term readmission models were esti-
mated using two lagged outcome measures to test for a dynamic effect; past readmissions
and past mortality. The positive and negative associations for the lagged readmission
variables can be interpreted in terms of path dependency and change as explained above.
However, the sign on the past mortality variables indicates the association between mor-
tality and readmissions. Common sense would suggest that high readmissions are an
indication of poor quality, as are high mortality rates. However as noted in Chapter 1
this may not always be the case. High readmissions may also be indicative of good qual-
ity where severe patients have been saved, or even an indication of other factors such as
patient lifestyle and behaviour after discharge.

Only in the AMI model for year-long readmissions were both lagged outcome measures
significant for the same condition. In this case, the negative sign on the lagged readmission
measure suggests change over time. The average latent trend for this AMI outcome,
plotted in Figure 2.2 indicates increasing readmissions in the beginning of the sample,
followed by decreasing readmissions in the final year. Thus the negative sign on the
lagged measure is indicating the improvement in readmissions. The negative sign on the
lagged mortality variable indicates that 365-day mortality and 365-day readmissions are
negatively correlated, meaning that higher year-long readmissions may not be indicative
of worse performance for this condition.

The results for the other condition’s readmission models, as indicated in Tables 2.6
and 2.7, indicate a negative association between lagged 30-day mortality and 28-day read-
missions for CCF and Stroke. No other conditions show a significant association between
lagged mortality and readmission. As in the case of AMI, the results for CCF and Stroke
are indicative of how to correctly interpret the readmission indicators for these conditions.
In both conditions, the negative association between the two indicators suggests that high
short term readmissions are not necessarily indicative of poor quality. These differing
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associations by condition (and time period) are extremely important as they influence the
interpretation of performance information. For this reason they are more closely investi-
gated for all indicators in Chapter 3.

The results of the lagged readmissions on current readmissions also provide more in-
formation as to the dynamic associations in readmission indicators across the other condi-
tions. For IHD there is a significant dynamic effect in both 28-day and year-long readmis-
sion rates, indicating a positive association across time. This can be explained through
the path dependency framework outlined above. The model for MI shows a negative asso-
ciation between lagged 28-day readmissions and current readmissions, indicating change
over time. Figure A.2 indicates variation in 28-day latent readmissions across the time
period investigated, such that readmissions are increasing throughout most of the period,
but with a period of decline in the middle of the sample. Thus, it is likely that the negative
coefficient is capturing these changes in readmissions. In the remainder of the conditions
investigated, lagged readmissions are not significant predictors of current readmissions in
either the short or long term models.

The results from Model 2 do not suggest any conclusive findings on how hospital type
influences performance. There are very few specialist trusts in the sample1. However,
specialist trusts were associated with lower CCF 30-day mortality, 28-day and year-long
readmissions but also with higher TIA 30-day mortality as compared to acute care trusts.
While there are more foundation trusts and university hospitals in the sample, foundation
trusts were only significant in having higher 30-day mortality for MI, and university hos-
pitals for having lower 28-day readmission rates for CCF. There are mixed results for the
directions on the significant variables for caseload, waiting times and length of stay. In
most cases, where significant higher waiting times and lagged waiting times are negatively
associated with all outcome measures. Although this is not true for IHD where it has a
positive association. Lagged length of stay where significant was always negatively asso-
ciated with all outcome measures. Long length of stay is likely to be an effect of worse
quality or co-morbidity, both likely to contribute to worse outcomes. However, same pe-
riod length of stay is associated with lower readmissions for CCF and 30-day mortality for
AMI. Caseload also has mixed effect, this could be because good hospitals get more cases
or because more too many cases may lead to lower quality.

Overall we find that it is difficult to attribute changes in performance to hospital
characteristics and exogenous factors using only this analysis. However we are able to
identify areas where past performance is an important predictor of future performance, as
well as areas where the association between different outcome measures may be informative

1There were four specialist trusts in the sample and of those two are orthopaedic.
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as to their correct interpretation. These findings leads us to extend the methodology to use
this information to creating better quality measures which take into account the dynamic
nature of performance and between indicators, and over time, as is done in Chapters 3 and
4. Moreover, our results suggest that we can distinguish between two different types of
dynamic effect, path dependency and change, and identify the conditions where one occurs
instead of the other. Indeed, in the areas where we see change and not path dependency
there is room for further analysis to discover what factors are motivating this change,
and whether it constitutes an improvement or decline in performance. In Chapter 6 we
attempt to do this by investigating in detail the conditions of AMI and Hip Replacement
so as to better understand the mechanisms of improvement suggested in these results.

We conclude that while the latent variable technique used in this chapter does not
offer the solution to quality measurement it is an important addition to the tool box of
methods with which to better understand the hospital contributions to quality of care.
The latent outcome measures provide an interesting way to examine hospital performance
over time and relative to one another, provided that they are used for conditions with
large sample size. Furthermore, the latent outcomes generated through the latent variable
approach provide useful indicators to use in further analysis of hospital performance.
These indicators can be useful in correcting for methodological bias that arises from using
statistical models that combine aggregate variables (such as hospital mortality rates) with
individual observations to determine relationships. In conclusion, while these types of
variables may only be only risk adjusted outcome measures, they provide a straightforward
way to present, observe and analyse outcome data as well as to provide directions for
further research.
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3 Using a Vector
Autoregression Framework to
measure the quality of
English NHS hospitals

3.1 Introduction

In interpreting health service performance, people are immediately drawn to measures of
health outcome. Chapters 1 and 2 have already reviewed some of the main challenges in
using these types of measures, ranging from the existence of suitable data to the method-
ologies used analyse it. The main motivation of Part II is to be able to create a robust
measure of hospital quality using the raw outcome measures provided in administrative
data. This measure can then be used, confidently, to evaluate the effectiveness of health
policy.

The challenge we face is taking raw outcome data and using it to identify how much of
this reflects hospital quality of care. As noted previously, outcome data will be influenced
not only by quality of care but also by random error, systematic bias and patient case-mix.
In order to extract the true quality signal from this data, we need to control for all other
factors as much as possible. Chapter 2 used a latent variable technique to create measures
of unobserved quality in English hospitals for the treatment of a range of conditions. These
measures were analysed and compared with raw outcome data in order to determine their
suitability for quality assessment purposes. While the latent measures did appear to be
more sensitive to changes in hospital quality than the raw measures, they did also vary
considerably across institutions and over time.

Theory tells us that the latent measures do address some of the methodological chal-
lenges we outlined earlier, such as the multidimensional nature of quality and the need to
adjust for patient-case mix, yet also that they are limited in their ability to address others.
While the latent measures are adjusted for the case-mix factors we were able to control
for, namely: age, gender, co-morbidity, deprivation and type of admission, they will still
contain random and systematic error in the estimates along with the unobserved quality
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we are trying to measure. This noise contributes to the variation we see across hospitals
and over time.

Moreover, outcomes are often the product of the inputs of previous years, and will not
necessarily be a reflection of the performance of the current health system. Conversely,
current inputs may contribute in part to future attainment. It is vital that when assessing
the outcomes collected these are analysed in a way that takes into account these time
lags, which are often more pronounced in the health care sector than in other areas of the
economy (due to training of staff, or testing of treatments where inputs may take a number
of years before they can be translated into outputs). In line with best practice discussed
earlier, a performance measurement system should aim to be dynamic, reflecting their
overarching objective of informing policy. Indeed the analysis from Chapter 2, indicates
that hospital performance is dynamic. However, as the latent estimates are computed
year-by-year they are not able to capture this dynamic element.

This chapter attempts to address some of these hurdles by applying technique published
in 1999 and applied to US hospital data by McClellan and Staiger. We use this method
to evaluate quality for English hospitals using English patient level data. Their method
uses vector autoregressions (VARs) to capture dynamic interactions in the time series and
across measures. This step allows information from the dynamic interactions of outcomes
over time and across dimensions to be used to filter out more of the noise captured by the
measures, and also use the time series and cross sectional information contained in the
estimates to further adjust them. Moreover, the VAR methodology is commonly used for
forecasting, and thus can be used to predict and forecast hospital quality extremely well.
This chapter reviews the entire methodology and uses it to replicate the McClellan and
Staiger (1999) quality measures for English hospitals.

3.2 Background

In health economics, and many other areas of applied economics, we face problems of en-
dogeneity amongst dependent and independent variables. Endogeneity can occur in cases
where there is a two-way influence between the independent and dependent variables.
This influence can arise from autoregression with autocorrelated errors, omitted variable
bias, simultaneity between variables as well as measurement and/or sample selection er-
ror. Different methodological techniques have been adopted to deal with this issue, such as
instrumental variable (IV) methods, simultaneous equation models, non-linear techniques
and GMM estimators, such as those used in Chapter 2. Yet this problem of endogeneity
is not unfamiliar to economists who have come across the same problems when attempt-
ing to explain the relationships among money, interest rates, prices and output. In 1980,
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Christopher Sims (1980) championed the VAR approach which took away many of the
restrictions models impose and allowed the data to be modelled in an unrestricted re-
duced form, where all variables are treated as endogenous. Predictions of the VAR model
performed well, and so the technique has become popular in economics despite critiques.
The basic idea behind the model is to treat all variables symmetrically, such that variables
which that we are not confident are exogenous are modelled as endogenous. This leads to
an n-equation, n-variable linear model, where each variable is explained by its own lagged
values, plus the current and past values of the other lagged variables. While VAR mod-
els are often used in macroeconomics to analyse the relationship between different policy
tools, they have rarely been used in the area of health economics.

This chapter considers using a VAR methodology similar to the McClellan and Staiger
(1999) method used to create better quality indicators that will control for these issues but
also use them to inform their estimation. The simplest form of a VAR is a first-order VAR
specification, VAR(1), where the longest lag length modelled is unity. Different specifica-
tions of the model however are also able to incorporate more lags. Indeed identifying the
correct number of lags is important in order to specify the model correctly, and is likely
to influence the results. There are various tests available that indicate how many lags are
appropriate, including the Akaike information criterion (AIC) and the Schwartz criterion.

Stock and Watson (2001) also note that the VAR can come in three different varieties,
each of which places different restrictions upon the data being modelled, these are: reduced
form, recursive and structural. A structural VAR use theory to produce instrumental
variables that can test contemporaneous links between variables (Stock and Watson, 2001).
In practice structural VARs differ considerably from their reduced form and recursive
counterparts, because of the restrictions placed upon the model. As we do not use this
type of VAR we will not go over it in detail1. A reduced form VAR expresses each variable
as a linear function of its own past values, the past values of all other variables being
considered and a serially uncorrelated error term. In our evaluation of quality a VAR(1)
model of this type would be represented by this simple system:

D30ht = α + β1D30h(t−1) + β2D365h(t−1) + β3R28h(t−1) + β4R365h(t−1) + εD30ht

D365ht = α + β1D365h(t−1) + β2D30h(t−1) + βR28h(t−1) + βR365h(t−1) + εD365ht

R28ht = α + β1R365h(t−1) + β2D30h(t−1) + β3D365h(t−1) + β4R28h(t−1) + εR28ht

R365ht = α + β1R365h(t−1) + β2D30h(t−1) + β3D365h(t−1) + β4R28h(t−1) + εR365ht .

(3.1)

1For an in-depth discussion on structural VARs see Stock and Watson (2001); Enders (2004).
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Each equation in this system is estimated by Ordinary Least Squares (OLS). The error
terms represent the ‘surprise’ movements in the variables after the past variables have
been taken into account. If the different variables are correlated with each other, than the
error terms in the reduced form model will also be correlated across equations.

A recursive VAR constructs the error terms in each regression to be uncorrelated with
one another by including some contemporaneous values of the variables in the regression.
So our system from above, would be modified to look something like:

D30ht = α + γ1D365ht + γ2R28ht + γ3R365ht + β2D365h(t−1)

+ β3R28h(t−1) + β4R365h(t−1) + εD30ht

D365ht = α + γ1D30ht + γ2R28ht + γ3R365ht + β1D30h(t−1) + β2D365h(t−1)

+ β3R28h(t−1) + β4R365h(t−1) + εD365h

R28ht = α +γ1D30ht +γ2D365ht +γ3R365ht +γ3R365ht +β1D30h(t−1) +β2D365h(t−1)+

β3R28h(t−1) + β4R365h(t−1) + εR28ht

R365ht = α + γ1D30ht + γ2D365ht + γ3R28ht + β1D30h(t−1) + β2D365h(t−1)

+ β3R28h(t−1) + β4R365h(t−1) + εR365ht . (3.2)

Equations (3.2) are not reduced form equations, for example D30ht will have a contempo-
raneous effect on the other three quality variables, and they will have a contemporaneous
effect on D30ht. This system can be better represented in matrix algebra, allowing the
VAR model to be represented in standard form (Enders, 2004). Again each regression
can be estimated by OLS, however if the right hand variables are not identical, because
some contemporaneous effects are dropped than estimation by OLS will no longer provide
uncorrelated error terms. In this case a Seemingly Unrelated Regression (SUR) may prove
to be more efficient (see Chapter 4 for more discussion on this).

As VARs involve current and lagged values of multivariate time series they are able to
capture co-movements between variables that other models cannot. Thus, VAR models can
be very useful for data description. Typically results from Granger-causality tests, impulse
responses and forecast error variance decompositions are used to inform researchers about
different relationships between the variables. While coefficients and R-squared values are
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often not reported, as the other statistics are more informative. Granger causality tests
examine whether lagged values of one variable help to predict another. Impulse responses
are able to trace out the responses of current and future values of each variable to a one-
unit increase in any one of the VAR errors. While forecast error decompositions indicate
the percentage of the variance of the error made in forecasting a variable due to a specific
shock in a given time horizon. In addition, VAR models have been shown to be very good
at forecasting, especially when over-parametrization can be properly adjusted for (Stock
and Watson, 2001). These statistics will be used later on, in Chapter 4, where we continue
to use the VAR model for analysis.

The McClellan and Staiger (1999) methodology uses a reduced form VAR between the
latent quality variables to understand the interactions between the variables which are
thought to be co-determined. Indeed by closely studying the residuals and the coefficients
they are able to better understand just how persistent quality is for various conditions.
The relationship amongst different quality indicators and information about the variables
which is important in their interpretation. Following this analysis, the authors use the
output produced from the VAR model to create smoothed time-series estimates of each of
the outcome variables that take into account the time-series and cross-sectional variations
they have identified. The empirical steps to this process taken to replicated this process
are reviewed in detail the following section before the results are presented and discussed.

3.3 Methodology

Hospital performance over the period 1996 to 2008 is evaluated by a two step process,
as outlined by McClellan and Staiger (1999). The first step, undertaken in Chapter 2,
derives latent outcome measures at the hospital level (h) by estimating patient level (i)
regressions (in the form of equation (2.1)) replicated below. The patient level regressions
include hospital fixed effects (β) and a set of patient characteristics, ∑

φX, known to
influence outcomes (age, gender, deprivation, co-morbidities, and elective or emergency
treatment). The regressions are run separately for each year (t) and outcome measure
(k), and the hospital intercepts, representing the mean value of outcomes of each hospital
holding patient characteristics constant across all hospitals, are extracted and used to
create a new dataset at the hospital level.

Y k
iht = βqk

1h +
∑

φXjht + uiht .

As explained in detail in Chapter 2, the latent measures, β, describe the rate of change
in outcomes as explained by risk-adjusted hospital quality. This chapter uses these latent
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measures in a VAR framework to create new quality measures which describe, summarize
and forecast hospital quality. The newly constructed dataset contains Qh a 1×TK vector
of the estimated latent hospital outcome for hospital h, adjusted for differences in patient
characteristics, such that:

Qh = qh + εh ,

where qh is a 1 × TK vector of the true hospital effects for hospital h, and εh is the
estimation error (which is mean zero and uncorrelated with qh). The variance of εh is
estimated from the patient level regressions (equation (2.1)) and is equal to the variance
of the regression estimates Qh, where Ωjh represents the covariance matrix of the hospital
effects estimates for hospital h in year t. Or simply:

E(ε′
htεht) = Ωht

E(ε′
htεht) = 0, for t #= s .

Thus, the estimation problem McClellan and Staiger (1999) lay out is how to provide
estimates of Qh to predict qh. They propose creating a linear combination of each hospital’s
observed measures in such a way that minimizes the mean squared error of the predictions,
conceptualised as running the following hypothetical regression:

qk
ht = Qhtβ

k
ht + ωiht (3.3)

They note that equation (3.3) cannot be estimated directly, as q represents unobserved
performance and the optimal β varies by hospital and year. Thus, the measurement
challenge is to predict the true hospital effect, q, from its noisy estimate Q. The idea is
to attenuate the coefficient of Q towards zero, such that a prediction of q can be derived
that will reduce the noise without distorting the true effect. This is a similar idea to a
smoothing techniques as outlined, for example, in Titterington et al. (1985).

While equation (3.3) can not be directly estimated, the parameters of the hypothetical
regression can be estimated from the existing data. The minimum least squared predictor
is given by:

W (qh|Qh) = Qhβ ,

where

β = [E(Q′
hQh)]−1E(Q′

hqh) . (3.4)

This best linear predictor can be calculated using the following estimates:

E(Q′
hQh) = E(q′

hqh) + E(ε′
hεh) (3.5)
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E(Q′
hQh) = E(q′

hqh) , (3.6)

where E(ε′
hεh) is estimated using the individual patient level estimates of the covariance

matrix for the parameter estimates Qh, which we call Sh. Sh varies among hospitals.
E(q′

hqh) can be estimated by E(Q′
hQh − Sh) = E(Q′

hqh). Plugging these estimates into
equation (3.4) allows the calculation of the desired least squares estimates, such that:

q̂ht = Q[E(Q′
hQh)]−1E(Q′

hqh) = Qh[E(q′
hqh) + E(ε′

hεh)]−1E(q′
hqh) . (3.7)

Using estimates (3.5)and (3.6), the R-squared statistic can also be calculated, based on
the least squared formula.

Estimation of equation (3.7) provides the basis for the second step of the methodology,
undertaken in this chapter. McClellan and Staiger (1999) coin these estimates ‘filtered
estimates’ as they optimally filter out the estimation error of the observed quality mea-
sures. They note three attractive properties of the filtered estimates. First, that allows
information for many years and different indicators to be combined in a systematic man-
ner. Second, by nature of their construction, these estimates are optimal linear predictors
for mean squared error. Finally, the estimates are simple to construct using standard
statistical software.

Given the time-series nature of the data, information of the performance in each hos-
pital effect over time is used to better predict and further forecast the outcome measures.
Using a VAR model, further structure is imposed on the filtered estimates, by assuming
that each performance measure in a given its past performance, plus a contemporaneous
shock that can be correlated across the different outcome measures. Thus a first order
VAR model for qht(1 × K) is estimated, where:

qht = qh,t−1Φ + vht . (3.8)

Z = V (vht) the (K × K) variance matrix of the residuals, and Γ = V (qh(t=1)) the (K ×
K) initial variance matrix from the first year of the data sample are also estimated. Φ
represents a (K × K) matrix containing the estimates of the lag coefficients. The VAR
structure implies:

E(Q′
hQh) − Sh = E(q′

hqh) = f(Φ, Z, Γ) . (3.9)

Using the parameters estimated from the VAR model we are able to estimate equation
(3.9), using the Broyden algorithm in eViews to estimate non-stochastic predictions, or
the ‘filtered outcome measures’.
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The above analysis is estimated using a large pooled cross section that spans over
many individuals and providers. The first part of the analysis, reviewed in Chapter 2, is
performed using the statistical package STATA, the remainder of the analysis is undertaken
in eViews, which includes more options to perform time-series analyses, and especially the
VAR model. The size and amount of information on each patient and provider allows
us to avoid many of the technical and methodological challenges presented in time series
analysis.

3.4 Data

The data used to calculate this model is the same data as used in Chapter 2, presented
in the data section of Chapter 1. This chapter builds on the methods used in Chapter 2
which used individual patient mortality rates and readmission rates at different intervals
to contract latent outcome measures at the hospital level. These latent measures are
collected into a new data set at the hospital level, distinguished by hospital identifiers and
variables indicating the year of the measure. The creation of the latent variables and the
hospital level data set are described in detail in the data section of Chapter 2. In order to
conduct the analysis described above all hospitals with missing years of data are dropped
from the sample. The sample size described in terms of number of hospitals and average
number of cases per hospital across all years are presented in Table 3.1.

Table 3.1: Summary statistics of the sample of hospitals included.

Condition ICD-10/ OPCS 4.3 codes Years
Analysed

Number of
Hospitals

Average Cases per
Hospital per year

AMI ICD-10: I21 2000-2008 119 331

MI ICD-10: I22, I23 2000-2008 113 74

IHD ICD-10: I20, I25 2000-2008 121 1295

CCF ICD-10: I11.0, I13.0, I25.5,

I50.0, I50.1, I50.9, J81X

2000-2008 120 31

Stroke ICD-10: I60-I67 2000-2008 121 522

TIA ICD-10: G45.0-G45.4,

G45.8-G45.9, G46.0-G46.8

2000-2008 120 116

Hip OPCS4.3: W37-W39

W46-W48 W58

1996-2008 120 332
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3.5 Results

The methodology of this chapter uses VAR models to describe and summarise hospital
quality. By quantifying what is known about the different dimensions of measured quality
and the time trend associated with the different latent outcome measures. The results of
this chapter attempt to illustrate how well the filtered estimates perform at predicting in
sample hospital quality and forecasting out of sample hospital quality. This is done by
comparing the filtered measures to the latent measures diagrammatically as to visualize
how the methodology reduces the noise in the estimates, by measuring the signal to noise
ratio of the filtered estimates, and by estimating the goodness of fit measures of the
estimates. Each of these steps is explained in more detail below. This section shows that
in all of these areas the filtered estimates appear to be very good predictors and forecasts
of true hospital quality.

Of the seven conditions for which this analysis was conducted the results of AMI,
Stroke and Hip Replacement are presented in this section, by condition, while the results
for MI, IHD, CCF and TIA are presented in Appendix B. This is because of the relatively
large set of results which, if presented in totality, might obscure the main objective of this
chapter which was to present general operation of the methodology. Suffice to say that
with all conditions the general performance is similar. For each reported condition, the
first table reports the VAR parameters of interest: the lag coefficients, the variance and
correlation for the residuals to each effect, and the initial variance and correlation of the
effects in the first year of the sample. These are discussed separately for each condition.
All VAR models were tested for stability and passed unit root tests with all roots lying
inside the unit circle.

Initially the VAR parameters are estimated using the information on all five aggregated
outcome measures (i.e. the three mortality and the re-admission rates for all years in the
sample, separately for each condition). The VAR(1) specification is as given in equation
(3.8), and other specification of the model were tested with different lag lengths, the
inclusion of additional lags yielded similar scores, sometimes marginally better, using the
Akaike information criterion and the Schwartz criterion. Given the small difference in
scores we chose to use the VAR(1) specification for all models as it fits the data relatively
well and makes the analysis more parsimonious and the models easier to interpret.

The signal variance, which measures the underlying quality signal of each outcome
measure is one of the parameters which the VAR model is able to extract from the original
hospital data. These estimates can be used together with the estimates of the estimation
error in each measure, defined as Sh in equation (3.9) above, to estimate the signal-to-noise
ratio for each of the outcome measures, as specified in equation (3.10). For each condition
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a figure is therefore included which plots the estimates of the ratio of signal variance to
total (signal plus noise) variance in the observed hospital outcome measures against the
number of cases treated in each hospital (the cases upon which this measure is based in
the first step of the analysis).

Signal/(Signal + Noise) = Vht/(Vht + Sht) (3.10)

This plot provides statistical information on the level of “true” signal in each of the quality
measures relative to underlying noise and indicates which performance measures have large
associated variances across the specific observed outcomes and across the relevant sample.

The methodology further uses the VAR framework to further refine the latent outcome
measures estimated in Chapter 2 by creating new ‘filtered’ measures of quality which
contain more information as, by using the underlying time-series structure of the latent
variables, they filter out more noise. The figures reported in each section report the latent
outcome measures used in the analysis together with the predicted (in sample) filtered
and forecasted (out of sample) filtered quality indicators for each condition. The predicted
filtered estimates are constructed for the entire time period using the latent measures from
the entire time period, while the forecasted indicators are constructed for the entire time
period using the latent measures only up to 2006. Thus, the last two filtered measures are
forecasted using existing data, but can be assessed as compared to the existing measures
for those years.

Each figure plots the latent and predicted filtered estimates constructed from the data
in four panels for four separate hospitals: small hospital (upper left), a large hospital
(lower right), and two midsize hospitals. These hospitals are not a random sample, but
chosen to illustrate the results in different settings, and are the same hospitals represented
in the corresponding figures in Chapter 2. Each panel plots data for a single hospital from
2000 through to 2008, apart from the figures for Hip Replacement which plot the data
on the larger sample available for that condition, from 1996 through to 2008. The figures
plot two lines, a solid line indicating the aggregated outcome measures, estimated from
a linear model run separately by year controlling for patient characteristics (see the data
section above), and a long dashed line, indicating filtered outcome measures, estimated
by a multivariate VAR framework including all the outcome-based measures. The solid
lines can be interpreted as absolute outcome differences, or risk-adjusted mortality rates.
A value of 0.02 indicates that the hospital’s mortality was 2% above the average hospital
in that year, with negative values indicating lower mortality than average, controlling for
patient characteristics. The dashed lines are based on a multivariate VAR model, thus
incorporating all of each hospital’s data from 2000-2006 (1996-2006 for Hip Replacement),
and using this data to forecast the values for 2007-2008. The two short dashed lines
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indicate the 95% confidence intervals of the parameter estimates (long-dashed line). These
figures are discussed below, separately for each condition.

In order to assess the ability of the filtered estimates to predict variation in true hospital
effects, McClellan and Staiger (1999) construct an R-squared measure that can be applied
to this setting, using the standard R-squared formula:

R2 = 1 −
∑N

h=1 û2
h∑N

h=1 q2
h

. (3.11)

As the purpose of this goodness of fit measure is to estimate how well the filtered estimates
minimize the mean square error of the prediction, the numerator should measure prediction
error, such that:

û = q − q̂ .

Since q is not observed, estimates must be used for both the numerator and the de-
nominator. McClellan and Staiger (1999) propose using the estimate of E(q′

hqh) for the
denominator and E(qh − q̂h)′(qh − q̂h) for the numerator. Both of these can be estimated
using estimates 3.5 and 3.6 above.

These R-squared measures are calculated for the predicted values, and presented sep-
arately for each condition. Each table reports the results for predictions using different
amounts of data, similar to the McClellan and Staiger (1999) analysis. The first column
reports the R-squared for predictions using all years of data for both outcomes, the sec-
ond column uses data from all years but only from the outcome being considered. The
following columns calculate the R-squared for predictions based on 3 years of data, and 1
year of data, for both outcomes and one outcome respectively.

A similar goodness of fit measure is constructed in order to measure the accuracy of
the VAR model in forecasting outcomes. In order to compare the forecast to the actual
measurement, the model was estimated using data from 2000-2006 (1996-2006 for Hip
Replacement) and used to forecast outcomes for 1 and 2 years ahead (2007-2008). The
R-square measure for the forecasts, was thus used to measure the fraction of the true
hospital variation found in the aggregate measures that was successfully explained in the
forecasts:

R2 = 1 −
∑N

h=1
(
û2

h − Sh
)

∑N
h=1

(
Q2

h − Sh
) . (3.12)

In this measure the forecast error is estimated as:

û = Q − q̂

and Sh measures the variance of the OLS estimate Qh. Thus the R-squared for the forecasts
estimates the amount of variance in the true hospital effects that has been forecasted. This
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R-squared measure can be negative if the forecasts lie out of sample. The expected R-
squared values are calculated for the forecasted values using the measure estimated for
the predicted values (equation (3.11)), the actual R-squared measures, based on actual
estimates (equation (3.12)) are also calculated. These R-squared measures for predictions
and forecasts are presented below, separately for each condition.

The final part of the results section (3.5), ranks the hospitals in the same using three
different performance measures (raw, latent and filtered measures).This allows for a better
understanding of the differences between the indicators and can be useful in drawing
conclusions as to their applicability to policy.

AMI

The parameter estimates of basic model coefficients in Table 3.2 indicate the effect past
values of each outcome measure have on their own performance. The model suggests that
one-year hospital mortality, D365ht, is the most persistent of all four outcome indicators,
with a value of the coefficient on its own lag of approximately 0.8. R28ht exhibits a weak
dynamic effect, with a coefficient of around 0.4, while D30ht and R365ht both show an
almost negligible dynamic effect. The standard deviation of the residuals indicate about
6% variation in short term mortality rates, and long term readmission rates across hos-
pitals, while short term readmission rates vary by nearly 4% across hospitals. Long term
mortality rates however are subject to much wider variation at about 17% across hospi-
tals. The standard deviations from the year 2000 suggest that both readmission measures
and year-long mortality have an annual variation around 3 – 4%, however 30-day mortal-
ity rates fluctuate more, varying around 10% annually. The correlation between variables
in the year 2000, indicates a negative association between the outcome measures 30-day
mortality, D30ht and short term re-admissions, R28ht. The correlation of residuals indi-
cates a similar negative association between D365ht and R365ht, and a positive association
between R28ht and R365ht.

Table 3.2: Estimates of AMI multivariate VAR(1) parameters for hospital specific effects.

D30ht R28ht D365ht R365ht

D30h(t−1) 0.078627 -0.023861 0.582003 -0.330667

(0.04077) (0.02525) (0.07844) (0.04201)

[ 1.92840] [-0.94497] [ 7.41973] [-7.87205]

R28h(t−1) -0.299568 0.404420 -1.651768 0.478057

(0.05853) (0.03625) (0.11260) (0.06030)

[-5.11841] [ 11.1577] [-14.6699] [ 7.92850]
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D30ht R28ht D365ht R365ht

D365h(t−1) 0.166596 -0.052642 0.797091 -0.044305

(0.01356) (0.00840) (0.02608) (0.01397)

[ 12.2879] [-6.26978] [ 30.5604] [-3.17204]

R365h(t−1) 0.043576 0.012759 0.536484 -0.003055

(0.03673) (0.02274) (0.07066) (0.03784)

[ 1.18648] [ 0.56097] [ 7.59290] [-0.08073]

Residuals
S.D. dependent 0.057489 0.036205 0.172179 0.058462

Correlation of residuals (D30ht) 1.000000 -0.195636 0.281587 -0.272041

Correlation of residuals (R28ht) -0.195636 1.000000 -0.172637 0.478933

Correlation of residuals (D365ht) 0.281587 -0.172637 1.000000 -0.437937

Correlation of residuals (R365ht) -0.272041 0.478933 -0.437937 1.000000

Initial Conditions
S.D. dependent in 2000 0.095917 0.029137 0.038380 0.03838

Correlation with D30ht in 2000 - -0.5124 0.0335 0.0641

Correlation with R28ht in 2000 -0.5124 - -0.0304 0.0334

Correlation with D365ht in 2000 0.0335 -0.0304 - -0.0431

Correlation with R365ht in 2000 0.0641 0.0334 -0.0431 -

Sample (adjusted): 2001 2008
Included observations: 952 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Figure 3.1 presents the signal to noise ratio of the four AMI outcome measures. This is
calculated as specified by equation (3.10) using the signal variance estimated in the VAR
equation as well as the observed measurement error from the patient level equations. The
ratio estimates of the amount of signal variance to total (signal plus noise) variance in
the observed hospital outcome measures, and plots this ratio against the number of cases
treated in each hospital. Recall that these are the cases used to construct the measures
in Chapter 2. What is immediately apparent from Figure 3.1 is the very high signal
to noise ratios, especially once the number of cases rises above 200, which is indicative
that the outcome measures are strong estimates of quality. Of the four measures, the
two mortality measures have the strongest signal, where year-long mortality is a better
predictor of performance than 30-day mortality due the higher variance across hospitals
in the true effects observed in Table 3.2. However, as the sample exceeds 300 patients,
the difference between the two indicators ratios begins to shrink, suggesting that both
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indicators can be used to detect a large amount of the mortality-related quality difference
between hospitals. While, the readmission measures also have good signal to noise ratios,
and especially year-long readmissions, they are lower than the mortality measures. In the
larger hospitals the indicators do have relatively strong signals, but for the small hospitals
they remain, as might be expected given the smaller sample sizes, relative noisy measures
of performance.

Figure 3.1: Signal to noise ratio for the four AMI outcome measures (year 2005).

Figures 3.2 – 3.5 present the filtered AMI outcome measures (black dashed line) for
selected hospitals, together with their confidence intervals (red dotted lines), and the
latent outcome measures derived in Chapter 2 (blue solid line). There are two features
of the filtered estimates that stand out when compared to the latent measures. The first
is that, as expected, the filtered estimates move smoothly from year to year, while the
latent indicators are more erratic. The filtered estimates tend to be closer to zero than
the aggregated estimates, indicating their tendency to approach the average. The other
noticeable difference between Figures 3.2 – 3.5 and the corresponding Figures 2.3 – 2.6 in
Chapter 2 are the confidence intervals which are much wider for the filtered measures than
they were for the latent variables. Thus while the filtered measures seem more consistent
over time, the wider confidence intervals surrounding them make it harder to interpret
them with certainty as compared to the latent measures.
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Figure 3.2: Filtered and latent estimates for AMI D30ht for selected hospitals.

Figure 3.3: Filtered and latent estimates for AMI D365ht for selected hospitals.
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Figure 3.4: Filtered and latent estimates for AMI R28ht for selected hospitals.

Figure 3.5: Filtered and latent estimates for AMI R365ht for selected hospitals.

Table 3.3 indicates the R-squared estimates as calculated from equation (3.11) dis-
cussed above. These are presented for the predictions made of the different outcome
measures, using different amounts of past data. The table indicates very high R-squared
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values for all measures, suggesting that the filtered estimates are able to predict extremely
well. In all cases the predicted R-squared values suggest that the filtered estimates capture
over 90% of the true variation across hospitals in the different outcomes measures. Only
for one-year mortality are the estimates a bit lower, although even then they do not fall
below 79%. Table 3.3 also indicates that the filtered estimates are able to predict just as
well using fewer years of data.

Table 3.3: Summary of estimated prediction accuracy using alternative methods of signal extrac-
tion. All estimates based on the VAR(1) model from Table 3.2.

Expected R2 prediction based on:
All 8 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.993171 0.993224 0.993237 0.993246 0.994526 0.994452

2006 0.979275 0.979259 0.981738 0.981795 0.979818 0.979875

D365ht

2004 0.891798 0.892396 0.891843 0.891521 0.990980 0.990974

2006 0.981158 0.980648 0.916352 0.916693 0.796221 0.796244

R28ht

2004 0.996880 0.996899 0.996901 0.996891 0.997927 0.997931

2006 0.996920 0.996921 0.997074 0.997065 0.997650 0.997664

R365ht

2004 0.991736 0.991746 0.991792 0.991701 0.992516 0.992544

2006 0.989215 0.989353 0.989767 0.989848 0.991058 0.991133

The R-squared values for the outcome forecasts are presented in Table 3.4. The ex-
pected R-squared values are derived using equation (3.12) and represent how well the
forecasts are able to predict the true values. The actual R-squared values indicate how
well the predictions fit the data when using a full sample. Both the actual and the ex-
pected R-squared values are very high. While the expected R-squared values are lower
than the actual R-squared values the difference is very small, and never more than14%.
This indicates that the forecasts are also able to predict the true values extremely well
for up to two years after the end of the data set. The results are also presented for a
VAR(2) specification of the model, and are almost identical to the VAR(1) results. This
indicates that the forecast performance is not sensitive to the lag choice specified for this
VAR model.
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Table 3.4: Summary of forecast accuracy using alternative forecasting models. Forecasting 2006-
2008 values using data from 2000-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.997908 0.997619 0.998164 0.998201

2007 (actual) 0.9939783 0.9940615 0.9927514 0.9927658

2008(expected) 0.994683 0.994478 0.997798 0.997928

2008 (actual) 0.9489663 0.9486998 0.9446982 0.9446459

D365ht

2007(expected) 0.973235 0.971065 0.979825 0.979843

2007 (actual) 0.9774626 0.9764693 0.9616151 0.9613662

2008(expected) 0.968023 0.96491 0.976735 0.979905

2008 (actual) 0.9759809 0.9745514 0.9708943 0.9708727

R28ht

2007(expected) 0.97878 0.979752 0.993951 0.992514

2007 (actual) 0.9911799 0.9912462 0.9912541 0.9912401

2008(expected) 0.924943 0.912794 0.953368 0.957072

2008 (actual) 0.993593 0.9936331 0.9943355 0.9943442

R365ht

2007(expected) 0.890177 0.890824 0.895657 0.867804

2007 (actual) 0.9843904 0.9845041 0.9845231 0.9842737

2008(expected) 0.846979 0.84891 0.828721 0.841011

2008 (actual) 0.980951 0.981266 0.9836124 0.9833608

Stroke

Table 3.5 presents the parameter estimates from the Stroke VAR model. The lag coeffi-
cients suggest that death is a persistent dimension of hospital quality; ranging at about
0.6 for both D30ht and D365ht. The variance of the residuals indicate an annual standard
deviation of 5% and 8% respectively, while the initial variance indicates a variance of
around 6% to 9% across hospitals. The parameters on the readmission indicators suggest
that these are much less dynamic. The lag coefficients are always less than 0.07, and
the sign varies between positive and negative. The variance in the year 2000, indicates
little variation across hospitals; corresponding to a standard deviation of around 3% for
R28ht and 5% for R365ht. The variance of residuals indicates similar variation annually;
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indicating a standard deviation of about 4% and 6% respectively. Similar to the other
conditions, there is indication of a high positive correlation between the pairs of mortality
and readmission measures. There is also a mild negative correlation between R365ht and
both mortality measures. All other correlations are negative and weak.

Table 3.5: Estimates of Stroke multivariate VAR(1) parameters for hospital specific effects.

D30ht R28ht D365ht R365ht

D30h(t−1) 0.423853 -0.117846 -0.203754 0.073602

(0.03406) (0.02607) (0.05454) (0.03794)

[ 12.4429] [-4.52056] [-3.73594] [ 1.94019]

R28h(t−1) 0.089437 -0.040873 -0.190125 -0.118715

(0.05469) (0.04186) (0.08757) (0.06091)

[ 1.63524] [-0.97649] [-2.17116] [-1.94903]

D365h(t−1) 0.158739 0.160186 0.840151 0.171265

(0.01975) (0.01511) (0.03161) (0.02199)

[ 8.03908] [ 10.6003] [ 26.5745] [ 7.78821]

R365h(t−1) 0.116206 0.056785 0.286192 0.010468

(0.03664) (0.02804) (0.05867) (0.04081)

[ 3.17113] [ 2.02485] [ 4.87787] [ 0.25651]

Residuals
S.D. dependent 0.068801 0.042570 0.122831 0.062766

Correlation of residuals (D30ht) 1.000000 -0.136723 0.553742 -0.418894

Correlation of residuals (R28ht) -0.136723 1.000000 -0.195895 0.680239

Correlation of residuals (D365ht) 0.553742 -0.195895 1.000000 -0.399833

Correlation of residuals (R365ht) -0.418894 0.680239 -0.399833 1.000000

Initial Conditions
S.D. dependent in 2000 0.056062 0.032202 0.088837 0.053572

Correlation with D30ht in 2000 - -0.1007 0.6780 0.0523

Correlation with R28ht in 2000 -0.1007 - 0.3266 0.4023

Correlation with D365ht in 2000 0.6780 0.3266 - 0.2434

Correlation with R365ht in 2000 0.0523 0.4023 0.2434 -

Sample (adjusted): 2001 2008
Included observations: 968 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Figure 3.6 plots the estimates of the signal to noise ratio in the observed hospital
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outcome measures for Stroke against the number of hospital admissions. Similar to AMI,
all measures have a very strong signal, which improves substantially in hospitals with
more cases. Of the four measures, year-long mortality has the strongest signal, again this
is probably related to the high signal variance for this indicator, as observed in Table
3.5. However the other measures also perform very well. The readmission measures have
almost the same signal to noise ratio and overlap in Figure 3.6, while 30-day mortality has
the weakest signal but which is still quite high. As the sample exceeds 250 patients, the
difference between the four indicator’s ratios begins to shrink, suggesting that all indicators
can be used relatively confidently to detect a large amount of the quality differences
between hospitals.

Figure 3.6: Signal to noise ratio of the four Stroke outcome measures (year 2005) .

Figures 3.7 – 3.10 present the filtered Stroke outcome measures (black dashed line)
for selected hospitals, together with their confidence intervals (red dotted lines), and the
latent outcome measures derived in Chapter 2 (blue solid line). There same two features
identified above when interpreting the AMI figures can also be observed for the Stroke
figures: namely the smoothed out estimates for the filtered measures as compared to the
latent indicator, and the wide confidence intervals. However, in some cases such as the
small hospital in the upper left hand panel, the filtered estimates provide a clearer picture
as to performance over time, as the latent figures change value significantly from year to
year. The filtered measures indicate that the hospital (h = 26) has declining mortality over
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the time period studied combined with declining readmissions. This improved performance
results in the hospital moving from being worse than average on all outcomes to average
by the year 2008. The other three hospital’s filtered measures illustrated in the panel all
indicate average performance throughout the period being investigated.

Figure 3.7: Filtered and latent estimates for Stroke D30ht.

Figure 3.8: Filtered and latent estimates for Stroke D365ht.
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Figure 3.9: Filtered and latent estimates for Stroke R28ht.

Figure 3.10: Filtered and latent estimates for Stroke R365ht.

Table 3.6 indicates the R-squared estimates for the predictions made for Stroke out-
comes measures, using different amounts of past data. While the R-squared values for
Stroke are not as high as for AMI, they remain high for all outcomes. The mortality
estimates are able to predict better than the readmission estimates, but even these are
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able to capture over 77% of the true variation in hospitals. Similar to the AMI results,
the filtered estimates constructed from as little as one year of data are able to predict
the true variation just as well as the larger samples. Indeed, in some cases they are even
better predictors than the larger samples. The R-squared values for the outcome forecasts
presented in Table 3.7 indicate that the model is able to forecast estimates as well as it is
able to predict them from a full set of data. Both the actual and the expected R-squared
values are very high, and almost identical. The results for the different model specifica-
tions indicate the forecast performance is not sensitive to the lag choice specified in the
VAR model, as the results for both the VAR(1) and the VAR(2) specifications are very
high and almost the same in value.

Table 3.6: Summary of estimated prediction accuracy using alternative methods of signal extrac-
tion. All estimates based on the VAR(1) model from Table 3.5.

Expected R2 prediction based on:
All 8 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.983698 0.983669 0.983509 0.983862 0.991067 0.991066

2006 0.980058 0.980046 0.982017 0.981926 0.987698 0.987725

D365ht

2004 0.938718 0.9384 0.938640 0.938740 0.969390 0.969351

2006 0.981663 0.981831 0.980129 0.979591 0.940582 0.939948

R28ht

2004 0.994965 0.994965 0.994909 0.994961 0.993634 0.993594

2006 0.833847 0.833997 0.833539 0.833902 0.833445 0.833399

R365ht

2004 0.772766 0.773075 0.772993 0.772996 0.807686 0.806639

2006 0.937973 0.937642 0.937648 0.937475 0.93510 0.935357
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Table 3.7: Summary of forecast accuracy using alternative forecasting models. Forecasting 2006-
2008 values using data from 2000-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.9993262 0.999328 0.9994763 0.9995843

2007 (actual) 0.9893464 0.9895585 0.9897618 0.989777

2008(expected) 0.9982069 0.9982541 0.9986149 0.9987863

2008 (actual) 0.9914728 0.9915513 0.9916081 0.9917418

D365ht

2007(expected) 0.9925504 0.9929932 0.9930512 0.9935482

2007 (actual) 0.9859509 0.9866322 0.991607 0.9913715

2008(expected) 0.9913359 0.9915887 0.9919757 0.9928179

2008 (actual) 0.9813546 0.9818443 0.9898155 0.9895275

R28ht

2007(expected) 0.9915956 0.9906852 0.9906945 0.9904812

2007 (actual) 0.9973422 0.9973438 0.9961982 0.9961572

2008(expected) 0.9991251 0.99915 0.9993581 0.9992571

2008 (actual) 0.9939768 0.9939387 0.9943756 0.9943268

R365ht

2007(expected) 0.9982554 0.9983872 0.9980332 0.9981403

2007 (actual) 0.9909626 0.9909122 0.9905966 0.9904634

2008(expected) 0.9987442 0.9989667 0.9989013 0.9988669

2008 (actual) 0.9871836 0.9872606 0.9882355 0.9880505

Hip Replacement

The parameter estimates of the basic model run for Hip Replacement are presented in
Table 3.8. The estimates suggest that D365ht is persistent over time, but that the other
quality indicators being considered are not. The lag coefficient of D365ht is almost 0.6,
as compared to lag coefficients of about 0.2 for R28ht and R365ht, and about 0.01 for
D30ht. The variance of initial conditions indicates a standard deviation of about 2%
across hospitals for D30ht, 3% for R28ht, 4% for D365ht and 5% for R365ht. Similarly
the variance of their residuals shows an annual standard deviation of 1% for D30ht and
D365ht, 3% for R28ht and 4% for R365ht. The correlation coefficients amongst indicators,
and amongst residuals, indicate a high positive correlation between R365ht and R28ht,
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and a weak positive correlation between D30ht and D365ht. There is a positive correlation
between the residuals of D365ht and R28ht, while the correlation coefficient amongst these
two indicators in the year 2000 is low and negative. The opposite is true for the pair
D365ht and R365ht which have a negative correlation in the year 2000, but a low positive
correlation between their residuals. Finally there is a positive correlation between D30ht

and R28ht.

Table 3.8: Estimates of Hip Replacement multivariate VAR(1) parameters for hospital specific
effects.

D30ht R28ht D365ht R365ht

D30h(t−1) -0.047351 -0.224300 -0.627994 -0.282623

(0.02543) (0.07851) (0.08952) (0.09652)

[-1.86231] [-2.85705] [-7.01536] [-2.92803]

R28h(t−1) -0.030140 0.312121 -0.359189 0.468140

(0.01479) (0.04567) (0.05207) (0.05615)

[-2.03789] [ 6.83480] [-6.89816] [ 8.33795]

D365h(t−1) 0.036579 0.058774 0.633914 -0.029772

(0.00686) (0.02119) (0.02417) (0.02606)

[ 5.32910] [ 2.77313] [ 26.2315] [-1.14255]

R365h(t−1) -0.016563 -0.045723 -0.039086 0.018910

(0.01098) (0.03390) (0.03865) (0.04168)

[-1.50871] [-1.34884] [-1.01124] [ 0.45373]

Residuals
S.D. dependent 0.011466 0.036723 0.049172 0.046638

Correlation of residuals (D30ht) 1.000000 -0.197193 0.262098 -0.250718

Correlation of residuals (R28ht) -0.197193 1.000000 0.350683 0.790476

Correlation of residuals (D365ht) 0.262098 0.350683 1.000000 0.149165

Correlation of residuals (R365ht) -0.250718 0.790476 0.149165 1.000000

Initial Conditions
S.D. dependent in 2000 0.019079 0.033392 0.044777 0.046217

Correlation with D30ht in 2000 - 0.3661 0.2470 0.1459

Correlation with R28ht in 2000 0.3661 - -0.1613 0.7196

Correlation with D365ht in 2000 0.2470 -0.1613 - -0.4921

Correlation with R365ht in 2000 0.1459 0.7196 -0.4921 -

Sample (adjusted): 1997 2008
Included observations: 1462 after adjustments

Standard errors in ( ) & t-statistics in [ ]
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Figure 3.11 illustrates the signal to noise ratios of the observed hospital outcome mea-
sures against the number of Hip Replacement cases treated in each hospital. For Hip
Replacement, the signal to noise ratios are quite high, indicating that the four outcome
measures are good indicators of hospital performance. Similar to the previous conditions,
the signal to noise ratio increases as more cases are included in the analysis, and the dif-
ferences between the four indicators begin to shrink. Yet, year-long mortality consistently
has the strongest signal of the four conditions, despite not having as high a signal variance
as it did for AMI and Stroke. While year-long readmissions have a higher signal vari-
ance than year-long mortality (Table 3.8), they most probably have higher amounts in the
variance of the estimation error, causing them to perform the worst of the four measures.

Figure 3.11: Signal to noise ratio for the four Hip Replacement outcome measures (year 2005) .

Figures 3.12 – 3.15 present the filtered Hip outcome measures, their 95% confidence
intervals and the corresponding latent outcome measures derived in Chapter 2 for selected
hospitals. The sample for Hip Replacement is longer than for AMI and Stroke, and so all
figures present information back to 1996. Similar to the other two conditions, the filtered
estimates are smoothed averages of the latent measures, and the confidence intervals are
wider, again due to a limited number of hospitals available in the data. Also similar to
Stroke, the latent measure for the small hospital, upper left hand corner, is more erratic
than for the medium and large hospitals, thus making the filtered estimates useful in terms
of interpreting a trend over time.
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Figure 3.12: Filtered and latent estimates for Hip Replacement D30ht.

Figure 3.13: Filtered and latent estimates for Hip Replacement D365ht.
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Figure 3.14: Filtered and latent estimates of Hip Replacement R28ht.

Figure 3.15: Filtered and latent estimates of Hip Replacement R365ht.

Table 3.9 indicates the R-squared estimates for the predictions made for the Hip fil-
tered outcomes, using different amounts of past data. The R-squared values for Hip are
extremely high, indicating a near perfect prediction for all measures, even when using only
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one year of data. Table 3.10 indicates the R-squared values for the outcome forecasts, es-
timated using equation (3.12), and predictions estimated using equation (3.11). These are
also near perfect for both the forecasts and predictions, and both the VAR(1) and VAR(2)
specifications. This indicate that the model is able to forecast estimates as well as it is
able to predict them from a full set of data, regardless of the lag choice specified in the
model.

Table 3.9: Summary of estimated prediction accuracy using alternative methods of signal extrac-
tion. All estimates based on the VAR(1) model from Table 3.8.

Expected R2 prediction based on:
All 11 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.999851 0.999851 0.999850 0.999852 0.999824 0.999829

2006 0.999856 0.999852 0.999860 0.999857 0.999840 0.999840

D365ht

2004 0.993021 0.992983 0.992833 0.992773 0.998047 0.998065

2006 0.994185 0.994248 0.991052 0.990711 0.982275 0.982161

R28ht

2004 0.998588 0.998589 0.998595 0.998593 0.998714 0.998706

2006 0.997845 0.997845 0.997835 0.997836 0.997967 0.997969

R365ht

2004 0.995829 0.995849 0.995807 0.995831 0.996284 0.996242

2006 0.993924 0.993940 0.993907 0.993959 0.995122 0.995136

Table 3.10: Summary of forecast accuracy using alternative forecasting models. Forecasting
1996-2008 values using data from 1996-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.999837 0.9998281 0.9998208 0.9998139

2007 (actual) 0.9998575 0.9998609 0.9998577 0.9998588

2008(expected) 0.9997321 0.999688 0.9997113 0.9996896

2008 (actual) 0.9998561 0.999858 0.9998613 0.9998624
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All outcomes Same outcome All outcomes Same outcome
D365ht

2007(expected) 0.9968599 0.9970006 0.9963497 0.9963019

2007 (actual) 0.9869273 0.9871355 0.9848145 0.9850215

2008(expected) 0.9965712 0.9964086 0.9957694 0.9954451

2008 (actual) 0.9840067 0.9841068 0.9814323 0.9818322

R28ht

2007(expected) 0.9985577 0.9983832 0.9987864 0.9986095

2007 (actual) 0.9980288 0.998031 0.9980153 0.9980155

2008(expected) 0.9995171 0.9995244 0.999558 0.9995869

2008 (actual) 0.9767528 0.9767398 0.9767273 0.9767253

R365ht

2007(expected) 0.9989753 0.9989704 0.9990094 0.9990171

2007 (actual) 0.9928861 0.9929147 0.9931077 0.993055

2008(expected) 0.999464 0.9994054 0.999514 0.9994828

2008 (actual) 0.9878172 0.9878773 0.9880453 0.9880126

Comparison of Indicators

In this subsection, we are able to relate our findings to policy by ranking the hospitals in
the AMI sample using three different indicators of performance for the year 2005. The first
indicator is an aggregated 30-day mortality rate as available in the raw data. The second
performance indicator is the latent 30-day mortality rate derived in Chapter 2, while the
third measure is the filtered 30-day mortality rate estimated in this chapter. The hospitals
are also ranked by the other outcomes and these are reported in Appendix B.5 due to space
constraints. The year 2005 is presented as it is in the middle of the sample and allows
enough information to construct the filtered measures from, however the R-squared values
in the AMI section suggest that even with less data the filtered measures are still good
predictors. The outcomes are ranked only for AMI at not the other conditions, as the
results are very similar and do not provide further insight.

Table 3.11: Rankings of 2005 AMI D30ht measures.

Ranking Mean D30ht Hospital Latent D30ht Hospital Filtered D30ht Hospital
Top 10

1 0.0521401 55 -8.417754 83 -2.490163 17

2 0.0532544 9 -5.088554 81 -2.113111 54

3 0.0536913 89 -5.00683 42 -1.934144 22
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Ranking Mean D30ht Hospital Latent D30ht Hospital Filtered D30ht Hospital
4 0.0594286 119 -4.887803 47 -1.651729 103

5 0.0645161 62 -4.834379 22 -1.651613 3

6 0.0681818 19 -4.648541 15 -1.608179 18

7 0.0681818 97 -4.089908 1 -1.47745 7

8 0.0684932 80 -4.078938 50 -1.438395 107

9 0.0758808 52 -3.924413 16 -1.425196 21

10 0.0774194 42 -3.834195 68 -1.343411 89

Bottom 10
110 0.1702128 12 2.985045 3 0.2998581 33

111 0.1727941 36 3.342186 7 0.3957789 118

112 0.1759531 96 3.580219 41 0.4082001 41

113 0.1787072 17 3.738158 89 0.4182017 99

114 0.19 53 4.557611 90 0.5266839 66

115 0.1901408 71 4.750142 17 0.5433974 38

116 0.1929825 41 5.562703 53 0.5688122 35

117 0.1987578 90 5.586496 71 0.9426492 27

118 0.2 66 18.70218 43 1.04961 9

119 0.3426574 43 28.97059 66 1.091938 56

Table 3.11 presents the top and bottom 10 hospitals as ranked by the three different
performance measures together with the values of each measure. Each hospital is repre-
sented by a number which has been randomly assigned to be its identifier. Figure 3.16
illustrates the different rankings for the first 15 hospitals in the sample. What is immedi-
ately apparent from both Table 3.11 and Figure 3.16 is that depending on the indicator
used the ranking of hospitals changes substantially, although not always in the same direc-
tion. Some hospitals go from a very high ranking to a very low ranking. Hospital 9 went
from being ranked second best to second worst when using the filtered measure to rank
performance instead of the raw aggregated mortality measure. Hospital 3 on the contrary,
went from a very low ranking, 96 to a very high ranking, 5. There are also cases where
two measures seem to be more similar to one another, but where rankings stay relatively
consistent such as hospitals 11 and 15.
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Figure 3.16: Rankings of 2005 AMI quality measures for D30ht.

Figure 3.17 presents the full time series of the three different performance indicators
for hospitals 3, 9, 11 and 15. This alternative presentation of the data can help to better
understand why the rankings are different from one another. In the upper left hand
corner the trajectories of hospital 3’s indicators are presented. The mean raw mortality
only ranges between 0 and 1, as each patient is coded as either having died or survived.
When ranked according to this indicator, hospital 3 does relatively poorly coming in 96th
out of 119 in 2005. This indicator does not adjust for differences in patient characteristics,
such as co-morbidity or deprivation, while the latent measure does. When looking at the
performance of hospital 3 as reported by latent measure there is much more variation from
year to year. The year 2005 is the worst year in terms of hospital 3’s performance, and
the hospital is ranked 110 of 119. In all other years however, the hospital performs above
average. The third indicator, the filtered measure, is constructed using the information
provided throughout the time-series and from the other outcome measures. While the
filtered indicator does reflect hospital 3’s worsening performance over time, it smooths out
the year-to-year variation allowing for a more representative overall picture when singling
out one year. The performance ranking for hospital 3 using the filtered measure is 5 out
of 119, which is a huge difference from the latent measure but reflects the hospital’s above
average performance in all the other years.

When looking at hospital 9 in the upper right hand panel, again the raw mortality
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has much less variation than the other two indicators. Using this indicator hospital 9
ranks 2nd out of the 119 in 2005. The latent measure adjusts for some of the patient
differences through the and shows a very different picture of performance, with much larger
year to year variation. Performance as reported by this indicator starts out much worse
than average in 2000, improving in the years 2001-2006, but worsening again after. In
2005 performance is still above average, but adjusting patient characteristics, the ranking
falls from 2 to 16. The third indicator, the filtered measure, is constructed using the
information provided throughout the time-series and from the other outcome measures.
Thus, the improvement in performance is indicated, however not as sharply as by the
latent measure, and never so much that it results in above average performance. This
adjustment causes the ranking to drop down to 118.

Figure 3.17: AMI D30ht quality indicators for selected hospitals.

Hospital 11 in the bottom right hand panel ranks 79 out of 119 when using the aggre-
gated raw mortality measure. However the latent variable indicates that when controlling
for patient characteristics performance varies considerably from year to year, sometimes
reaching very high levels above average, and others falling far below average. 2005 is one of
the years where performance is below average, and thus when ranked according to it does
poorly coming 104th out of 119. The filtered indicator by definition provides a smoothed
out measure of average performance across time and incorporating the performance of the
other outcome measures. This is apparent from the diagram which shows less volatility
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over time in the filtered indicator. Using this indicator the ranking falls down to 87th out of
119, which lies between the two other measures. Finally, when looking at the performance
of hospital 15 in the bottom right hand panel we see a similar result. The latent measure
shows much more erratic performance from year to year once it controls for all the patient
characteristics, and the filtered measure is able to summarize these into a much smoother,
consistent trend.

Overall, the analysis provides support for the following: Aggregate raw measures are
unable to produce a consistent performance ranking of hospitals that controls for system-
atic differences in patients case mix, such as deprivation or severity. The latent measures
do adjust explicitly for these differences, but exhibit year-on-year variation and therefore
different rankings of hospital performance depending on the year selected, making it diffi-
cult to draw conclusions on overall hospital performance over time. The filtered measures
are able to summarize the information provided by the latent variable over time and con-
sider the performance of the other indicators alongside it, thus providing a much more
consistent picture of performance.

The largest difference in rankings is observed in hospitals treating fewer patients. Small
caseload leads to increased volatility in the raw mortality and readmission measures across
the years. While the latent measures control for systematic patient differences in hospitals,
the volatility due to small numbers remains. This was obvious in Chapter 2 where the
small hospitals always had the most erratic performance measures from year to year. The
filtered measures are better at smoothing out the jumps from year to year as they combine
all the information from the time-series and across the other variables. Thus in these cases,
the filtered measure will be a better indication of performance in any one year.

3.6 Discussion

In their paper The Quality of Health Care Providers, McClellan and Staiger (1999) propose
a methodology with which to evaluate health care providers. Their framework is able to
tackle some of the main limitations inherent to quality measurement, allowing them to
create indicators which: integrate different dimensions of quality into one measure, reflect
the multifaceted nature of performance; filter out much of the noise inherent to this type of
measure as a result of the small number of patients treated and the large number of factors
which contribute to outcomes; and to eliminate much of the bias created from systematic
differences in patient mix which may result in variations in treatment. Their paper uses US
patient level data for elderly American’s suffering from heart disease to create performance
indicators at the hospital level. They are able to prove that the indicators they create
predict and forecast quality remarkably well, better than many existing methods.
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Despite its advantages over traditional methods, this analysis has not been applied
to evaluate hospitals outside the US2, or for other conditions. This chapter, together
with Chapter 2, attempts to replicate their analysis using English patient level data for
a wider range of conditions. The chapter is also able to address some of the limitations
acknowledged by the authors, due to gaps in their data on patient co-morbidity, which
can be used to create even more robust indicators. Our results indicate that this method
can be applied to other countries with similar data, and when controlling for co-morbidity
are able to produce indicators with high prediction accuracy. However, in our application
of this method to a different setting we are also able to identify other difficulties, which
arise to do a smaller sample of hospitals available in the English data as compared to the
US data.

The first step of the methodology, creating latent measures of performance for each of
the outcomes of interest, is presented in Chapter 2. These latent measures serve essentially
as risk adjusted measures of performance, as they are able to control for exogenous patient
characteristics such as age, gender, deprivation and co-morbidity. They proved to be useful
for detecting trends and comparing hospital performance to their peers. When analysed
more closely, to see what factors influenced performance, the results indicated that many
of the indicators are dynamic, and also related to one another. This chapter replicates the
second step of the methodology which uses a VAR framework that is able to incorporate
the time series information, as well as the relationship to other the other outcome variables
into new performance indicators. Both the VAR models, and the indicators inform us on
the performance of hospitals.

The results of the VAR models indicate which dimensions of hospital performance are
persistent across different conditions, indicate how much they vary across hospitals and
over time, and provide insight as to their relationship with each other. The results for all
conditions suggest that of the four measures included in the model, year-long mortality is
the most persistent dimension of performance. While the coefficient of year-long mortality
on its own lag is only around 0.2 for CCF, it is over 0.63 for all other conditions suggesting
a strong dynamic presence for these conditions. For most conditions, this indicator also
exhibits a high standard deviation across hospitals, ranging from 20% to 5%, and is over
10% for all conditions except Hip Replacement. The high variation associated with year-
long survival most likely stems from a variety of factors outside the provider’s influence,
such as patient behaviour and lifestyle. Although the extent of this influence will vary by
condition.

The persistence of the 30-day mortality indicator varies considerably more by condi-
2It has been applied to evaluate educational outcomes in the USA, for more information see Kane et al.

(2002).
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tion. The coefficient on its own lag is high for IHD and CCF and around 0.4 for Stroke.
In most cases it is quite low, such as for the conditions of AMI, Hip Replacement, MI,
and TIA. The variation of indicator across hospitals also varies considerably by condition.
The standard deviation is around 10% for MI and CCF, around 6% for AMI and Stroke,
and around 1% for Hip Replacement, IHD and TIA.

Unlike our results, the McClellan and Staiger (1999) paper finds that 30-day mortality
is more persistent than year-long mortality for AMI, and that shorter term mortality is
more persistent than year-long mortality for IHD. This difference could be explained by
variations in the UK and US treatment pathways. It could also be linked to the different
samples being analysed by the different investigations; their analysis focused only on the
elderly while ours examined all patients. It may also be related to the fact that we were
able to adjust for patient co-morbidity which they did not have the data to do.

Similarly the mortality models in Chapter 2 only identified a significant dynamic re-
lationship between IHD and Hip Replacement for year-long mortality, and a significant
dynamic relationship for AMI, IHD, Stroke and Hip Replacement for 30-day mortality.
Given the performance of the filtered estimates on the different goodness of fit measures
this could be related to the noise in the latent estimates which obscure the ‘true’ quality
effect. It could also reflect the number of restrictions set in the GMM model, which the
VAR model does not apply.

Moreover, we mention in the results section that for this analysis the VAR(1) specifica-
tion was chosen for ease of interpretation and parsimony. However, different specifications
were indicated as marginally better fits for the model by the Aikake and Swartz lag tests.
Yet, when tested with alternative specifications the results did not differ substantially.
Moreover, the R-squared estimates calculated for a VAR(2) specification, as reported in
the results section, indicate similar results for all conditions, and in many cases do not
indicate improved fit. However, investigation for each condition could benefit from the
inclusion of more lags to create more robust predictions and forecasts, especially if there
is a longer time-series being analysed.

The readmission indicators are by and large less persistent indicators of quality as
compared to mortality. The coefficients on the lags of 28-day emergency readmissions
range between 0.4 and 0.5 for AMI, IHD and Hip Replacement, while year-long readmis-
sions are only persistent for IHD with a coefficient around 0.5. The variation in short and
long term readmissions varies more considerably by condition. The standard deviation on
both indicators is around 5% for AMI, Stroke and Hip Replacement but rises to around
10% for MI and CCF. Both TIA and IHD indicate little variation between hospitals in 28-
day readmissions, with standard deviations around 2-3%, but high variation in year-long
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readmissions, with standard deviations around 7-8%.
The AMI, Stroke and CCF VAR models indicate a strong positive correlation between

28-day readmissions and year-long readmissions, and weaker positive correlation between
30-day mortality and year-long mortality. These associations are expected as they all
represent worse outcomes. However, the model also shows a negative association between
mortality and readmissions present for some conditions and different time combinations,
but strongest between year-long mortality and year-long readmissions. McClellan and
Staiger (1999) also observe this result, for AMI, although for 30-day mortality and year-
long readmissions. They note that while a positive correlation might be expected, as
higher values for both indicators represent worse outcomes, the negative correlation may
reflect the relatively poor heart function of ‘marginal’ patients who survive when treated
in high quality hospitals. Thus, the hospitals which have worse mortality measures will
perform better on the readmission measures, as fewer severely ill patients survive to be
readmitted. Moreover if healthier patients led to low mortality rates, than complication
rates for that hospital would also be lower, thus there are quality differences amongst
hospitals which are not linked to patient selection.

The Hip Replacement, MI, IHD and TIA models suggest mixed association between
the readmission and mortality variables; indicating a positive correlation between some of
the mortality and readmission combinations and negative correlations between the others.
For example, in Hip Replacement and MI 30-day mortality is negatively associated with
both short and long term readmissions but year-long mortality has a positive association
with both. In most cases however, all associations are weak. For no condition were all
associations positive however, indicating that one should be cautious when interpreting
readmission measures in isolation as they may not be indicative of higher quality. The
results of the VAR models also report the correlation of the residuals for the different
indicators. In all models short term and long term mortality are positively correlated with
one another, although in most cases this is very weak, with Stroke having the highest as-
sociation at 0.55. Short and long term readmissions have strong positive correlations with
each other in the AMI, Stroke and Hip Replacement models, but very weak associations
in the other conditions.

The signal variances estimated using the VAR parameters were also used together with
the estimation error to construct signal to noise ratios for each outcome measure in each
condition for the year 2005. The first striking result is how strong the signal is for the
indicators in most conditions, for a sufficient sample of patients. TIA and CCF have the
weakest signal to noise ratio, yet, for both conditions this is related to having relatively
fewer cases admitted annually as compared to the other conditions, resulting in more
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estimation error. Indeed, in all the conditions the signal to noise ratios are considerably
worse for the hospitals with fewer cases. While the number of cases required to get a good
signal to noise ratio varies by condition, in most cases it includes the medium to large
volume hospitals. McClellan and Staiger (1999) also observe this finding in their paper,
and note that it is generally harder to observe the true performance of smaller hospitals
from patient outcome data. This is because the variation in the data will be more strongly
influenced by differences in treatment, such as the presence or absence of an individual
physician, which would have relatively smaller effects in a larger hospital. Moreover, If we
consider the average number of cases per hospital (Table 3.1) together with the number
of cases above which the signal to noise ratio because high enough, we see that only for
hospitals of average size and above do the patient outcome measures for a single year
provide relatively good information on performance.

The other striking result from the signal to noise ratios was that in all cases, except
CCF, long-term mortality had the strongest signal. This suggests that for these conditions,
the long term measure of mortality is a more useful measure of quality than the short term
measure. Similarly, for most conditions year-long readmissions had a stronger signal than
28-day readmissions, aside from Stroke and Hip Replacement. Indeed 28-day readmissions
in almost all cases tended to be the worst performing measure. For cases such as AMI,
where treatment variations in the short term have high implications for survival, one would
expect the short term mortality measure to have a stronger signal. Especially as long term
outcomes add more noise. This finding was reported by McClellan and Staiger (1999) in
the US analysis. It is interesting that this is not the case in the UK scenarios, and raises
interesting questions as to why.

One possibility for the noise found in the short term estimates, may linked to the
organization of the health system and different health policies within in the UK. In the
NHS data collection and reporting has not traditionally been attached to financing as it
is in a claims type system such as that of the US, this may lead more error in estimates
if less effort is put into coding. On the other hand, since 2000 many health policies have
focused on using measures such as 30-day in-hospital mortality and 28-day emergency
readmissions to measure and reward the performance of hospitals, such as the star ratings.
There has been criticism surrounding these policies and the distortionary results they had
on indicators, such as manipulation of data collection (Bevan and Hamblin, 2009). In
addition, the introduction of payment by results (2004/5) has now linked coding to hospital
payments changing the importance of good coding. As a result, discrepancies in coding
practices have been reported in the literature, such as hospitals coding deaths as palliative
care in order to reduce mortality rates (Hawkes, 2010b). Thus, it is plausible that the
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emphasis put on the short term indicators for policy has created more measurement error
in their collection, making the longer term measures perform better despite the additional
noise in them from other exogenous factors such as patient behaviours and/or lifestyles.

The McClellan and Staiger (1999) analysis replicated the VAR models for different
samples of hospitals in order to better understand the differences in estimation parameters
between them. We were unable to do this as the number of hospitals in our sample across
each of our conditions were considerably less, at around 100 per condition as opposed to
their sample of approximately 4,000.

While the results of the VAR models prove informative in themselves, they can also be
used to create ‘filtered measures’ of each of the four indicators. These filtered estimates
are able to encompass the time-series relationships within indicators, as well as the corre-
lations between measures, allowing them to portray a more accurate description of overall
performance. The results section presents these filtered measures together with the latent
measures in a series of diagrams for each outcome, for each condition. These figures have
three main similarities throughout all conditions. The first is that the filtered indicators
are able to provide smoother estimates over time as compared to the latent measures which
exhibit considerable year-to-year variation. The second is the wider confidence intervals
of the filtered measures, which are about double the size of the latent measure confi-
dence intervals (Chapter 3). In their analysis, McClellan and Staiger (1999) note that the
confidence intervals for their filtered estimates are much tighter than those of the latent
measures. We attribute this different finding to the smaller sample of hospitals we used to
estimate the filtered estimates, resulting in higher uncertainty surrounding the estimates3.
However, many critiques of the VAR methodology note that the standard errors of the
variance decompositions are large that it is difficult to make inferences about them (Sims,
1980). In this instance as well, the wider confidence intervals make it much harder to draw
conclusive interpretations from the estimates about relative hospital performance.

Finally, the third similarity across conditions in the performance of the estimates for
the small hospitals. As noted in Chapter 2, the small hospitals exhibit more year-to-
year fluctuation in the latent estimates. While the filtered estimates smooth out this
performance, and have wide confidence intervals, the latent measure will often lie outside
these bounds. This reflects observations noted earlier, about predicting performance for
small hospitals, which the raw measures are very sensitive to differences in treatment.

An evaluation of the filtered estimates in prediction the variation of true hospital effects
is estimated through R-squared estimates, based on the adapted formula in McClellan
and Staiger (1999). The R-square estimates for all filtered measures, in all conditions,

3Their sample consisted of 3945 hospitals while we had data on around 120 hospitals per condition.
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are very high, suggesting that the filtered estimates are able to predict true performance
remarkably well. These high estimates are in line with the very high signal to noise ratios
of the original data, discussed previously. Moreover, the R-squared measures also indicate
that the model is also able to predict very accurately using different amounts of data,
including that of only one year. The R-squared values presented in this chapter are much
higher than the ones reported byMcClellan and Staiger (1999), especially when using a
limited set of data to create predictions. This differs from the McClellan and Staiger
results, where the R-squared estimates decline when a smaller sample is used to construct
the indicators. This is most probably related to differences in the underlying data. For
instance, unlike them, we had information on patient co-morbidity which allowed us to
better adjust for case-mix. Also while their sample only considered the elderly we looked
at the entire patient population.

As discussed previously, the VAR structure allows the model to forecast outcomes for
future years. By using the data to estimate performance the final years of our sample, and
compare these data to the true estimates we are able to assess how well the model forecasts
data. The R-squared results using this formula (equation (3.12)) were also very high for all
conditions, indicating the VAR’s ability to forecast outcomes. While these estimates are
again higher than McClellan and Staiger’s, they also note the model’s ability to forecast
extremely well. The results are also presented for a VAR(2) specification of the model, and
are almost identical to the VAR(1) results. This indicates that the forecast performance
is not sensitive to the lag choice specified in the VAR model.

The last section of this Chapter considers how hospitals perform when ranked by
the three different measures (raw, latent and filtered). The results are quite striking.
Depending on the measure chosen, hospitals may go from the top of a ranking to the
bottom, or the opposite. The hospitals with the fewest cases are most influenced by the
type of measure as there is so more variance in the raw and latent estimates. The filtered
measures are better at smoothing out the jumps from year to year as they combine all the
information from the time-series and across the other variables. Thus in these cases, the
filtered measure will be a better indication of performance in any one year. The latent
estimates, while risk adjusted are very erratic from year-to-year, and rankings may change
suddenly when looking at year snapshots. Raw measures do not control for exogenous
characteristics that influence outcomes, and so are the worst measure of the three. While
the filtered estimates are much better at providing a much more consistent picture of
performance over time, we do not advocate the ranking of hospitals, as this exercise shows
how sensitive rankings are to the method chosen.

Much of the analysis of this chapter focuses on identifying which indicators are more
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useful for comparing performance across hospitals. The VAR models indicate which mea-
sures are more persistent for the different conditions, how much they vary across hospitals,
how well they capture the true signal in the data and how they are correlated with the
other measures being considered. The results overall suggest exercising caution when in-
terpreting any indicator alone as it may be misleading given its relationship with the other
outcome measures. However, the mortality indicators capture more of the true signal than
the readmission measures for most conditions, and especially long-term mortality making
it a better indicator to look at.

In conclusion, the analysis of the VAR models for the seven conditions chosen indicate
considerable correlation of the outcomes across time and between measures. The degree of
persistence varies by measure and across conditions, as does the extent to which measures
vary across hospitals. However, in almost all cases the most persistent measure with the
strongest signal was year-long mortality. Some of the other more generalizable findings are
that predictions are weaker for hospitals with fewer cases, and variation in their outcomes
from year to year is larger. However, measures overall are very good at identifying the true
signal of good performance in different hospitals. Indeed the R-squared values indicate
that the measures are extremely good predictors and forecasters of performance.
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4 Examining the persistence of
hospital quality across
conditions

4.1 Introduction

Chapters 1–3 have reviewed many of the challenges in measuring quality of care using
outcome measures. One of the major challenges they note is identifying suitable metric to
capture the multidimensionality of quality. Increasingly most quality assessment exercises
at the hospital level use a combination of different types of indicators, recognizing that
the measurement hospital performance over time or across institutions is challenging, due
to the diversity of services they provide and multiple factors which influence their perfor-
mance, such as technological innovation and personal skill. Yet multidimensionality spans
not only from the different structures, processes and outcomes associated with quality, but
also in terms of the mix of conditions and patients that care is provided to. In dealing with
the first of these issues, Chapters 2 and 3 consider how we can create stronger indicators
of quality by combining the information known about patients and also about different
outcome measures. These chapters dealt with the second issue by selecting particular
conditions that are linked to known processes of care associated with good quality care,
such as AMI.

While many studies take this approach, using one or more conditions as proxies of
quality for whole institutions (Bloom et al., 2010; Dimick et al., 2004; Propper et al., 2004,
2008), another way to overcome this problem is to measure case-adjusted outcomes across
all patients treated in hospitals as is done with HSMRs (Jarman et al., 1999). Recently,
problems with the aggregated approach have been highlighted by Shahian et al. (2010)
who note that these measures are highly dependent on the case-adjustment technique
used, such that it is difficult to use them to draw any meaningful results about quality.
Using individual conditions as proxies, takes an extreme approach to case-adjustment by
examining only those conditions that are believed to have a strong relationship between
quality and outcome. However, when using this approach it is not clear what the results
suggest about overall quality in the institution; that is to say there is ambiguity about
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just how well the selected conditions perform as proxies.
Commonly used outcome indicators are mortality and readmission rates of specific

types of patients. As discussed in Chapter 1, 30-day mortality rates from AMI and Stroke
have been used as measures of quality across OECD countries, while other conditions such
CABG surgery, repair of Abdominal Aortic Aneurysm, Pancreatic Resection, Esophageal
Resection, Pediatric Heart Surgery, Craniotomy and Hip Replacement, have been recom-
mended by the Agency for Healthcare Research and Quality in the US (Dimick et al.,
2004). Studies from the US (Kessler and McClellan, 1996; McClellan and Staiger, 1999)
and England (Bloom et al., 2010; Propper et al., 2004, 2008) have used risk adjusted AMI
30-day mortality as proxies of quality of care. Indeed, since the 1980s, there has been con-
siderable work done on ‘avoidable mortality’, that is identifying conditions where death
is avoidable according to current medical knowledge, practice and public health interven-
tions in a defined age/sex group of the population (Holland, 1988; Nolte et al., 2004).
This chapter attempts to understand to what extent mortality and readmission rates of
different conditions for same hospital are related, indicating how persistent the quality
of health care providers is across treatments. Little work has been done to study these
relationships, and existing studies indicate only modest correlations between the mortality
of different conditions (Dimick et al., 2006). This will allow us to better understand if
good outcome indicators are only reflective of providers doing certain procedures well or if
they are consistent across different treatments and thus the result of some wider common
factors in the hospital environment.

Using the VAR model, we examine whether there is an empirical relationship between
the latent outcome measures, or risk adjusted outcome measures, from seven conditions
(including AMI) within the same hospital. That is, if there are features of quality that are
present across conditions within certain hospitals or if they are more treatment specific.
Understanding the linkages of different performance indicators across conditions, will allow
us to determine how generalizable different measures are about the overall performance
of hospitals. After reviewing the methodology in more detail, the chapter will present the
data being investigated. We will discuss which seven conditions have been selected, as well
as the construction of the latent outcome measures from Chapter 2. Finally, the results
of the models are presented in the results section, and the findings and their implications
for performance measurement and policy are examined in the discussion section.

4.2 Methodology

The methodology of this chapter uses the VAR model to better understand the co-
integrating relationship of the variables outlined above. The VAR analysis was chosen
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as it is able to model two way relationships and track the dynamics of these relationships
through time, giving it a strong advantage over other models in terms of understanding
co-integrated relationships. The first model, Model 1, attempts to understand the rela-
tionship of the same outcome measures across different conditions in order to determine
whether there are certain hospital characteristics which make them perform better overall.
Model 2, analysed separately for each condition, attempts to use the VAR framework to
better understand the nature of the co-integrating relationships amongst different perfor-
mance indicators.

Model 1 assumes that a condition’s outcome measure in a given year for a given hospital
will depend on its quality measure in the past years plus a contemporaneous shock that
might be correlated across the quality indicators for other conditions. The first model is
interested in relating the different indicators of outcome across conditions, such that:

Qk
c1ht = αc + A11(L)Qk

c1ht−1 + A12(L)Qk
c2ht−1 + ... + A1n(L)Qk

cnht−1 + εt (4.1)

Where Qk the denotes the outcome measure being used, c denotes the condition, h iden-
tifies the hospital and t the year. αc denotes 1 × 7 vectors containing the constant terms,
while A indicates the matrices of the coefficients to be estimated, and (L) their lag spec-
ification. εt denotes the vector of innovations that may be contemporaneously correlated
with each other but are uncorrelated with their own lagged values and all the right-hand
side variables. Each equation was estimated using lag lengths of 1 – 4 years. The Akaike
information criterion (AIC) indicated (SC) 3 lags were optimal, and so the VAR(3) spec-
ification was chosen. The results reported will be for this specification. Recall that only
one lag was used in the VAR model used in Chapter 3 for ease of interpretation and com-
parability across the conditions. As we are using the model for a different purpose, and
do not need to compare the different models to one another, we experiment with the 3 lag
specification which is optimally indicated, albeit marginally.

Unrestricted VAR models often suffer from over-parameterization (Enders, 2004; Gu-
jarati, 2003). In order to avoid this problem and still include the optimal lag length to
capture the dynamic effect of performance, we first estimate a reduced form version of
the model and use the Granger causality/block exogeneity tests and variance decomposi-
tion estimates to determine which variables are exogenous to the model. The information
about the relationship between variables from the VAR(3) specification is used to modify
the models and adjust the lag lengths included for the different conditions. In the final
version of the model, we include three lags of the outcome for the dependent variable
condition and the contemporaneous value and 1 lag of all other conditions indicators. As
the right-had variables were no longer identical, we could not use OLS to estimated the
equations and instead used SUR estimation. From the resulting coefficients of the SUR
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model, we were able to estimate the effect performance in one condition had on another.
Estimation with the SUR model will produce more efficient coefficients than estimation
with OLS, especially when the disturbances are highly correlated, and the independent
variables are not highly correlated.

4.3 Data and Key Variables

The risk adjusted outcome measures being used for this investigation have been con-
structed in Chapter 2 using a latent variable approach. The data from which these mea-
sures are constructed uses 4 different outcome measures collected at the individual level
30-day within hospital mortality rates, year-long overall mortality rates, 28-day emergency
readmission and year-long readmission rates. Using patient level regressions, a dummy
variable for the hospital in which every patient was treated, and controlling for patient
characteristics, we are able to estimate the unobserved effect hospitals are having on the
different outcomes. Thus, the latent measures estimated are essentially risk-adjusted out-
come measures. For more detail on the construction of these variables see the methodology
section of Chapter 2.

Chapter 2 and 3 examine the relationships between these risk-adjusted outcome mea-
sures separately for each condition. Some of the key characteristics that have emerged
from these analyses are that different performance measures have different levels of per-
sistence and exhibit different variation amongst hospitals. However, year-long mortality
is almost always the most persistent variable across conditions. The associations amongst
the different outcome measures also vary by condition. For the most part the mortality
variables and readmission variables are positively correlated amongst themselves, although
in most cases not very strongly. However, mortality and readmission variables tend to be
negatively correlated with one another, indicating that higher readmission variables may
not always be indicative of worse quality. Filtered outcome estimates are constructed in
Chapter 3 also using a VAR framework. They are able to incorporate information provided
throughout the time-series and from the other outcome measures used for each condition.
As compared to the risk-adjusted (latent) measures they are smoother over time, but with
greater confidence intervals. For more discussion of the two types of indicators see the
results section of Chapter 3.

In order to run the VAR model in this chapter the risk-adjusted measures are collected
into a new data set at the hospital level. Each hospital is distinguished by a unique
identifier, and the sample is reduced for all conditions to the years 2000-2008 where data
is available for all seven conditions. A description of this data sample are presented in
Table 4.1. The same seven conditions examined in this chapter as in Chapters 2–3, as
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from the disease and treatment codes indicated in the table.

Table 4.1: Descriptive statistics for the sample used in the cross-condition VAR.

Conditions ICD-10/ OPCS 4.3 codes Years Analysed Number of
Hospitals

AMI, MI, IHD, CCF,
Stroke, TIA, Hip

ICD-10: I20, I21, I22, I23,
I25, I11.0, I13.0, I25.5,
I50.0, I50.1, I50.9, J81X,
I60-I67, G45.0-G45.4,
G45.8-G45.9,
G46.0-G46.8
OPCS4.3: W37-W39
W46-W48 W58

2000-2008 130

The justification of the selection of the above conditions is explained in detail in the
Data section in Chapter 1. AMI, MI, Stroke and TIA are extremely urgent health prob-
lems. Thus, patients suffering from these conditions are likely to go to nearby facilities
for care, limiting the amount of selection bias that can occur. For this reason outcome
of these type of indicator are often used in assessments. Patients with IHD and CCF
are also readily hospitalized, usually when it becomes very severe or is in its acute form.
Hip Replacement can be admitted as an elective or emergency treatment. Elective Hip
Arthroplasty are extremely common and extremely successful, however as the treatment
is mostly performed amongst the elderly population, where underlying medical conditions
are likely to be present, complications occasionally arise during or –more commonly- after
treatment. Acute Hip Replacements carry a much higher morbidity and mortality risk,
partly due to the lack of preoperative preparedness of the patient but also partly because
people who will undergo urgent surgery might not have been deemed as appropriate surgi-
cal candidates in an elective setting. Our risk-adjusted quality measures take into account
the admission of these patients, however there is likely to be more selection bias amongst
the elective Hip Replacement patients admitted.

Of the seven conditions selected, we can classify them in to similar groups: AMI,
MI, IHD and CCF are all heart conditions, while Stroke and TIA are neurological Hip
Replacement is an orthopaedic condition. We expect to see a stronger relationship between
the risk adjusted outcome measures within the same underlying group, as they are more
likely to have common factors influencing quality. The relationships between the conditions
in different groups will be informative as to how generalizable risk adjusted outcome
measures are for quality in other areas.
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4.4 Results

The methodology employs a reduced form VAR framework to estimate the impact that
exogenous factors have had on the quality indicators. Granger causality tests are used to
evaluate whether the lags of any of the variables Granger cause any other variables in the
VAR system. As normal pairwise Granger Causality tests do not yield reliable results in a
multivariate VAR (Dufour and Renault, 1998; Lütkepohl, 2006), Granger Causality/block-
exogeneity tests were used, under the null hypotheses that they do not affect any of the
other variables in the system. As the causal relationship between a pair of variables in a
multivariate system will be largely influenced by their relationship to other variables in
the system, it is easier to think of the system in terms of an entire causal ordering, rather
than as piecemeal elements of the relation. Close examination of the Granger causalities
presented for each of the four outcome indicators allow us to examine how the different
variables are associated with each other. These tables present the p-values from χ2 (Wald)
statistics for the joint significance of each of the other lagged endogenous variables in the
equation being considered. The statistic in the final row, labelled ‘All’, indicate the p-
values from χ2 (Wald) statistic for the joint significance of all variables in the equation.
If the null hypothesis is rejected, then the direction of causal relations for each pair of
variables is determined. The Granger tests tell us nothing of the polarity or magnitude
of these relationships– but together with the variance decomposition estimates we can
acquire a more complete understanding of the relationships amongst the variables.

Forecast error variance decompositions can be used to ascertain the importance of the
interactions between the variables in the VAR system, at it determines how much of the
forecast error variance of each variable can be explained by exogenous shocks to other
variables within a specific time horizon. The variance decompositions were obtained using
a Choleski decomposition. As the order of the variables is likely to influence the results
these were estimated using many different orderings. However, given the low correlation
between the errors, the change in ordering is unlikely to make a big difference. We es-
timated the variance decompositions using different orderings and indeed found this to
be the case. In addition the variation observed from the different orderings is reduced at
longer forecasting horizons (Enders, 2004). The set of variance decompositions reported in
this section are estimates at 10 lags, where there was little variation between the different
orderings of the conditions.

Using the results from the Granger Causality/block-exogeneity tests and the forecast
error variance decompositions, we are able to construct and run a better specified model for
each of the conditions, that considers the dynamic variables where indicated. As the right
hand side variables for each equation differ, we estimated this system using a SUR. The
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SUR technique estimates each regression by Ordinary Least Squares (OLS) and uses the
residuals to estimate the error variances both for each equality and across equations. The
errors are then transformed so that they all have the same variance and are uncorrelated.
The other variables then also undergo the transformation, and OLS estimation is applied
to the transformed variables (Martin and Smith, 2005). The coefficients from the SUR
model help us to identify the relationships between the outcome measures of the different
indicators. Finally we also conduced the Spearman’s rank correlation coefficients of the
filtered outcome indicators. The results are all presented separately by outcome indicator.

Latent 30-Day Mortality Estimates

The results of the Granger Causality/block-exogeneity tests for risk-adjusted 30-day mor-
tality, presented in Table 4.2, indicate whether the lags of the excluded variable affect the
endogenous variable. The null hypothesis is that the lagged coefficients are significantly
different than zero, while the ‘All’ column is a joint test to see if the lags of all other
variables affect the endogenous variable. Reading off the columns of the table, we can
observe some evidence of endogeneity for IHD, CCF at the 1% level and Stroke at the
10% significance level. For IHD we see that lagged values of AMI and TIA mortality have
a significant effect on IHD mortality. Lagged values of AMI and Stroke mortality have a
significant effect on CCF mortality, while lagged values of IHD and TIA mortality have
significant effects on Stroke mortality.

Table 4.2: Pairwise Granger Causality Test/Block Exogeneity Wald Tests for D30ht VAR(3)
specification.

30-Day Mortality VAR(3)

Excluded Variable Dependent Variable

AMI MI IHD CCF Stroke TIA Hip

AMI - 0.2290 0.0018 0.0006 0.7363 0.2070 0.1059

MI 0.6145 - 0.8446 0.5487 0.5909 0.3359 0.3482

IHD 0.6819 0.1281 - 0.2534 0.0911 0.7110 0.2192

CCF 0.3981 0.4945 0.9034 - 0.1105 0.4034 0.9869

Stroke 0.3398 0.5988 0.1675 0.0251 - 0.8450 0.2573

TIA 0.9213 0.8012 0.0541 0.2915 0.0296 - 0.6568

Hip 0.5942 0.8607 0.2069 0.7999 0.8613 0.9764 -

All 0.8112 0.4808 0.0086 0.0010 0.0764 0.8020 0.3623

The forecast error variance decompositions presented in Table 4.3 indicate the percent-
age of the variance of the error made in forecasting a variable due to a specific shock at a
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given horizon, and are informative about the interaction of the variables. Reading off the
rows of the table it is immediately apparent that most of the variance of each mortality
measure is explained by its own lags, this ranges from 98% for AMI to 94% for TIA. No
other condition accounts for over 2% of the variance of 30-day mortality in any of the
seven conditions being investigated.

Table 4.3: Variance Decomposition percentages for D30ht using the VAR(3) specification.

% of

FEV in

Standard

errors

Typical Shock in

AMI MI IHD CCF Stroke TIA Hip

AMI 0.036036 98.22361 0.069142 0.306507 0.773694 0.267182 0.230910 0.128951

MI 0.117229 0.152837 97.63818 1.546354 0.241875 0.144968 0.195015 0.080769

IHD 0.016468 0.705988 0.510289 95.84055 0.483150 1.799155 0.210501 0.450366

CCF 0.130813 1.486912 0.483108 0.720106 94.88037 1.914901 0.168820 0.345779

Stroke 0.033281 0.105104 2.133255 1.189376 1.141058 94.85801 0.315946 0.257246

TIA 0.012641 1.598555 1.333829 1.948989 0.615825 0.197573 94.29646 0.008770

Hip 0.008657 0.328762 1.334577 1.047900 0.025746 0.405228 0.165104 96.69268

Forecast Horizon at 10 years

Note: The Choleski ordering for this table was AMI, MI, IHD, CCF, Stroke, TIA, Hip

Table 4.4 presents the results from the SUR estimated for each condition and includes
3-lags of the dependent variable, and 1 lag of the risk-adjusted mortality of the other
conditions. 3-lags are chosen as they were specified as optimal by the AIC in the previous
model. While the variance decomposition percentages of the other conditions, at a ten-year
forecast horizon, were low, 1-lag was included to draw some conclusions about the dynamic
quality effects within hospitals. The R-squared estimates show that for all conditions
except Hip Replacement, the model is successful in capturing about 50 − 60% of the
variance in risk-adjusted mortality rates, and that this is largely explained by their own
past outcomes.

For all conditions, the three lags of itself are significant, indicating that outcomes are
very dynamic. For all conditions, except Hip Replacement, the sign of the coefficient for the
first lag of the mortality indicator for all conditions is positive, suggesting that an increase
in risk-adjusted mortality in period t − 1 will cause an increase in risk-adjusted mortality
in period t. The size of this effect varies by condition, indicating a very high dynamic
effect for MI at 0.7, followed by 0.5 for most of the other conditions. Hip Replacement
exhibits an extremely low negative effect. While the second lag is still significant at 1%
for all conditions, the coefficient is smaller, indicating that there is less of an effect on

138



4.4. Results

the dependent variable. This is not true for Hip Replacement, where the coefficient has
increased and become positive. The results for the third lag are still significant 5% or
above for all conditions, although the coefficients are very small, and negative for Hip
Replacement.

All of the risk-adjusted mortality rates are influenced by the risk-adjusted mortality
of at least one of the other conditions. Contemporaneous and lagged risk adjusted AMI
mortality is significant in influencing IHD, CCF and Stroke, and contemporaneous mor-
tality alone significantly affects Hip Replacement. The contemporaneous effect is positive
for all these conditions apart from Stroke, indicating that high AMI mortality in one year
would be associated high mortality in these conditions, while the opposite would occur
with Stroke. However the effect is small for all conditions apart from CCF. Where sig-
nificant, lagged AMI mortality had the opposite sign to the contemporaneous effect, such
that higher AMI mortality in year t − 1 is associated with lower CCF mortality for year t.

Table 4.4: Seemingly Unrelated Regression for risk adjusted D30ht estimates.

AMI MI IHD CCF Stroke TIA HIP

Explanatory

Variables

Dependent Variables

DV L.2 0.187352*** 0.097468*** 0.188667*** 0.179875*** 0.330422*** 0.151277*** 0.17563***

(0.030487) (0.035901) (0.031609) (0.033126) (0.032770) (0.032052) (0.039135)

DV L.3 0.052758** 0.050641*** 0.100506*** 0.132121*** 0.065510** 0.068117** -0.11076***

(0.027356) (0.031205) (0.029447) (0.030825) (0.030264) (0.029580) (0.039361)

AMI - -0.087226 0.042875*** 0.776358*** -0.060751** 0.009030 0.161110***

(0.103193) (0.016592) (0.126146) (0.031501) (0.013853) (0.039311)

AMI L.1 0.598694*** 0.161837 -0.05151*** -0.79946*** 0.052723* -0.031333 0.016209

(0.033098) (0.104108) (0.016732) (0.127075) (0.031842) (0.013962) (0.013711)

MI -0.010628 - 0.02495*** -0.009493 0.035748*** 0.03989*** -0.008035

(0.014527) (0.006285) (0.048857) (0.011939) (0.005143) (0.013789

MI L.1 0.003800 0.727239*** -0.02164*** 0.028105 -0.026248** -0.03570*** 0.014491***

(0.015095) (0.033746) (0.006533) (0.050687) (0.012412) (0.005364) (0.005245)

IHD 0.169505** 0.94626*** - 1.136166*** 0.062988 -0.19640*** -0.005887

(0.087293 (0.233088) (0.289356) (0.071711) (0.031133) (0.005443)

IHD L.1 -0.111375 -1.06570*** 0.574897*** -0.86949*** -0.025188 0.15864*** -0.046022

(0.087830) (0.233463) (0.032420) (0.291326) (0.072025) (0.031432) (0.031588)

CCF 0.064823*** 0.009531 0.019433*** - -0.02687*** -0.01549*** 0.036073

(0.011145) (0.030310) (0.004868) (0.009319) (0.004048) (0.002547)
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AMI MI IHD CCF Stroke TIA HIP

CCF L.1 -0.05880*** -0.025352 -0.011640** 0.583471*** 0.03299*** 0.012896*** 0.004365*

(0.011453) (0.031079) (0.005002) (0.033777) (0.009435) (0.004160) (0.003230)

Stroke -0.102036** 0.287342** 0.016743 -0.330910** - -0.006029 -0.002102

(0.043764) (0.118373) (0.019189) (0.147598) (0.015999) (0.015885)

Stroke L.1 0.090545** -0.133387 -0.007538 0.343633** 0.507251*** 0.007762 0.020552

(0.044021) (0.119247) (0.019240) (0.148889) (0.034267) (0.016123) (0.015939)

TIA 0.010064 2.170857*** -0.30043*** -1.40150*** 0.035551 - -0.033395**

(0.106381) (0.280108) (0.045451) (0.354007) (0.087414) (0.038220)

TIA L.1 -0.064007 -1.40431*** 0.189141*** 1.08720*** -0.100899 0.570750*** -0.018239

(0.104526) (0.278669) (0.044985) (0.348211) (0.085746) (0.032231) (0.037502

Hip 0.128751 0.789460*** -0.061220 0.390161 0.089048 -0.013219 -

(0.107485) (0.289552) (0.046937) (0.360638) (0.088640) (0.039021)

Hip L.1 -0.131166 -0.206313 0.066904 -0.177648 -0.005013 0.019547 -0.01243***

(0.107259) (0.290172) (0.046777) (0.361123) (0.088847) (0.039033) (0.004214)

R2 0.533735 0.629012 0.533405 0.557296 0.663021 0.488114 0.071582

N 636 636 636 636 636 636 636

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

When looking at the results for MI, we see that the risk-adjusted mortality for con-
temporaneous and lagged MI is associated with IHD, CCF and TIA. The coefficients are
very small for all these variables. In all cases the sign is positive for the contempora-
neous effect and negative for the lagged effect. The results for the IHD model suggest
that contemporaneous and lagged IHD risk adjusted mortality is significant in influencing
MI, CCF and TIA. The contemporaneous effect is positive for all variables apart from
TIA, and the sign is reversed for the lagged effect. The size of the coefficients is largest
for the relationship between IHD and CCF. Contemporaneous risk adjusted IHD has a
significantly effect on AMI, such than an increase in IHD mortality is associated with an
increase in AMI mortality.

Contemporaneous and Risk-adjusted CCF is significantly associated with AMI, IHD,
Stroke and TIA. Similar to the other conditions, the sign is reversed when looking at the
contemporaneous and lagged effects. The effect of contemporaneous CCF on AMI and
IHD is positive, while the effect of lagged CCF on AMI and IHD is negative. CCF has the
opposite dynamic relationship with Stroke and TIA. CCF only has no significant effect on
MI. The size of all these associations are very small.
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Contemporaneous and lagged risk-adjusted mortality for Stroke significantly influences
AMI and CCF, such that they are negatively associated with the former and positively
with the latter. Contemporaneous Stroke mortality negatively influences MI but lagged
mortality does not. The coefficients are small on all significant variables. The coefficients
indicate that contemporaneous and lagged risk-adjusted TIA is significantly associated
with MI, IHD and CCF. The sign on the contemporaneous effect is positive for MI and
negative for the other indicated conditions, including Hip Replacement. Similar to the
other dynamic relationships discussed above, the sign is reversed for the lagged effect. The
size of the coefficient is large for MI and CCF, indicating a strong association amongst
these conditions. Finally, risk-adjusted mortality for Hip Replacement is only significant
in influencing IHD, and only contemporaneously. The magnitude of the effect is relatively
large.

Latent 365-Day Mortality Estimates

Table 4.5 indicates the Granger causality/block-exogeneity tests for the year-long risk-
adjusted mortality estimates. From the ‘All’ column, we observe some evidence of endo-
geneity for IHD, TIA and Hip Replacement. This is significant at 1% for IHD and TIA,
but at 10% for Hip Replacement. Looking at the individual variables, year-long risk ad-
justed IHD mortality is significantly affected by lagged values of risk adjusted year-long
AMI and Stroke mortality with 5% and 1% significance. TIA is significantly affected by
lagged values of CCF and Stroke at 1% significance and Hip Replacement with 10% sig-
nificance. Hip Replacement is effected by lagged values of risk adjusted year-long CCF
and TIA mortality at 5% significance.

Table 4.5: Pairwise Granger Causality Test/Block Exogeneity Wald Tests for D365ht VAR(3)
specification.

365-Day Mortality VAR(3)
Excluded Variable Dependent Variable

AMI MI IHD CCF Stroke TIA Hip

AMI - 0.0514 0.0349 0.0373 0.2070 0.1373 0.1975
MI 0.6638 - 0.8967 0.1956 0.3079 0.1642 0.4893
IHD 0.4008 0.8255 - 0.3778 0.6662 0.3690 0.7697
CCF 0.6007 0.9504 0.1407 - 0.2100 0.0048 0.0390
Stroke 0.4543 0.6799 0.0009 0.8869 - 0.0004 0.9122
TIA 0.6884 0.7996 0.1788 0.2624 0.9507 - 0.0244
Hip 0.0216 0.0316 0.8101 0.6398 0.9555 0.0606 -
All 0.3423 0.3226 0.0072 0.2788 0.7008 0.0001 0.0978
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The variance decomposition percentages for the year-long risk adjusted mortality rates
in Table 4.6 indicate that most of the variance of the forecast error is explained by itself.
This is the highest for AMI IHD and CCF and Hip Replacement, all above 95%, but at
around 90% for MI, Stroke and TIA. For AMI, none of the mortality rates for the other
conditions explain over 0.5 of the variance in the forecast error. For MI, Hip Replacement
explains over 6% of the variance, and AMI just over 1%. For IHD, CCF explains just
over 2% of the forecast variance, while all other conditions less than 1%. For Stroke,
MI accounts for nearly 6.5% of the forecast error, and CCF and AMI about 2%. IHD
explains another 1% and TIA and Hip Replacement are almost negligible. 4% of variance
in forecast error of TIA is explained by Hip Replacement, 3% by IHD, 2% by AMI and
less than 1% by Stroke and MI. 2% of Hip Replacement’s forecast error is accounted for
by AMI, and the other conditions all account for less than 1%.

Table 4.6: Variance Decomposition percentages for D365ht using the VAR(3) specification.

% of

FEV in

Standard

errors

Typical Shock in

AMI MI IHD CCF Stroke TIA Hip

AMI 0.150565 97.73275 0.414054 0.377599 0.263897 0.279656 0.363818 0.568221

MI 0.231973 1.229519 91.53107 0.013705 0.046967 0.227374 0.490768 6.460593

IHD 0.107316 0.372524 0.049894 96.20926 2.258779 0.929918 0.130017 0.049607

CCF 0.157662 0.746149 1.064262 1.376480 95.13499 0.220446 1.313856 0.143821

Stroke 0.090850 1.944060 6.462655 0.791335 2.001118 88.70909 0.010900 0.080844

TIA 0.167406 2.230687 0.344484 3.213478 1.294588 0.876988 87.95642 4.083352

Hip 0.044039 1.945740 0.313211 0.348649 0.987421 0.272940 0.615216 95.51682

Forecast Horizon at 10 years

Note: The Choleski ordering for this table was: AMI, MI, IHD, CCF, Stroke, TIA, Hip

The results of the SUR models for year-long mortality are presented in Table 4.7. The
R-squared values are all over 40%, and around 60% for CCF and Hip Replacement, indi-
cating that the model is able to explain nearly half the variance in year-long mortality for
the seven conditions. In all conditions, the two lags of the dependent variable are signif-
icant and positive, indicating a dynamic effect. The third lag of the dependent variable
is also significant for MI, CCF, Stroke and Hip Replacement, although it is negative for
Hip Replacement. The magnitude of the coefficients for the first lag of the dependent
variable are all above 0.4, and highest for Hip Replacement. The coefficient on the second
lag drops for all conditions, but stays the highest for CCF indicating more persistent per-
formance over time. Where significant the value of the third lag is even lower, apart from
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Hip Replacement.
Contemporaneous values of risk adjusted year long AMI are significant predictors of

mortality for all other conditions, while lagged AMI mortality is only significant for MI,
CCF and Hip Replacement. The sign on the coefficients indicate that contemporaneous
AMI mortality is negatively correlated with CCF and TIA mortality, but positively cor-
related with all other conditions. Where the lags are significant, the sign switches for
the lagged effect. Contemporaneous and lagged MI readmissions are a significant predic-
tors for Stroke and TIA. Contemporaneous MI is also positively with both, as well as
being positively associated with AMI, while lagged MI is negatively associated with both.
Contemporaneous IHD is positively associated with CCF, and negatively associated with
Stroke and TIA, lagged IHD is positively associated with TIA but not any of the other
conditions. Contemporaneous CCF is positively associated with IHD, and negatively as-
sociated with AMI and Stroke. AMI and Stroke are also associated with lagged CCF
mortality, but the sign is reversed. Lagged CCF mortality is also negatively associated
with TIA, while contemporaneous CCF is not. The value of the coefficients for AMI, MI,
IHD and CCF are low in all cases.

Table 4.7: Seemingly Unrelated Regression for risk adjusted D365ht estimates.

AMI MI IHD CCF Stroke TIA HIP

Explanatory

Variables

Dependent Variables

DV L.2 0.161948*** 0.181597*** 0.171739*** 0.300041*** 0.124456*** 0.186148*** 0.172038***

(0.031015) (0.035379) (0.032690) (0.031442) (0.032658) (0.032206) (0.026438)

DV L.3 0.021315 0.099929*** 0.034530 0.132290*** 0.117344*** 0.036815 -0.19543***

(0.027945) (0.032646) (0.030260) (0.030359) (0.029996) (0.030771) (0.030123)

AMI - 0.175202*** 0.039790** -0.12643*** 0.03499* -0.11078*** 0.02847***

(0.050913) (0.024988) (0.031964) (0.020098) (0.040070) (0.010203)

AMI L.1 0.523541*** -0.11664*** -0.056303 0.115093*** -0.005309 0.025578 -0.02696***

(0.032861) (0.049212) (0.024053) (0.030832) (0.019405) (0.038800) (0.009840)

MI 0.095908*** - -0.003710 -0.036364 -0.09504*** -0.10978*** 6.22E-05

(0.028862) (0.018717) (0.024047) (0.014823) (0.029959) (0.007655)

MI L.1 -0.028046 0.539948*** -0.008871 0.056827** 0.055226*** 0.108085*** 0.004828

(0.029618) (0.034758) (0.019139) (0.024573) (0.015324) (0.030599) (0.007794)

IHD 0.065604 -0.009880 - 0.150792*** -0.065911** -0.35761*** 0.014212

(0.059854 (0.078939) (0.049503) (0.031136) (0.061489) (0.015722)

IHD L.1 -0.088878 0.013162 0.549683*** -0.060642 0.028807 0.153661*** -0.013623

(0.059992) (0.078990) (0.033391) (0.049685) (0.031248) (0.062302) (0.015732)
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AMI MI IHD CCF Stroke TIA HIP

CCF -0.19850*** -0.081064 0.096322*** - -0.13360*** -0.025682 -0.009332

(0.042975) (0.057087) (0.027744) (0.022080) (0.044840) (0.011386)

CCF L.1 0.15403*** 0.062583 -0.040138 0.455009*** 0.10609*** 0.104848** 0.004333

(0.042185) (0.055884) (0.027251) (0.032218) (0.021719) (0.043824) (0.011137)

Stroke 0.117409 -0.60999*** -0.082676* -0.33780*** - -0.48723*** -7.93E-05

(0.073675) (0.096335) (0.047669) (0.060746) (0.075541) (0.019437)

Stroke L.1 0.001221 0.44688*** -0.012943 0.26165*** 0.574844*** 0.454457*** 0.006845

(0.073415) (0.096519) (0.047495) (0.060968) (0.033050) (0.075216) (0.019350)

TIA -0.10418*** -0.16788*** -0.13765*** 0.019878 -0.11352*** - 0.005231

(0.036801) (0.048672) (0.023610) (0.030844) (0.019004) (0.009758)

TIA L.1 0.044732 0.094912** 0.08893*** 0.030258 0.07980*** 0.507934*** -0.013777

(0.036467) (0.048338) (0.023465) (0.030438) (0.018979) (0.033376) (0.009579)

Hip 0.567393*** 0.069135 0.051744 -0.047415 -0.002148 0.011115 -

(0.139307) (0.185637) (0.090656 (0.117412) (0.072887) (0.146540)

Hip L.1 -0.41574*** -0.173236 -0.009076 0.026400 -0.010329 0.073965 0.720947***

(0.144665) (0.192635) (0.094051) (0.121399) (0.075620) (0.151944) (0.029407)

R2 0.437267 0.458630 0.470580 0.588279 0.485304 0.422073 0.601383

N 636 636 636 636 636 636 636

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Contemporaneous Stroke readmissions are a negative predictor of MI, IHD, CCF and
TIA mortality, and are relatively high for MI, CCF and TIA. Lagged values of Stroke
mortally are positively associated with MI, CCF and TIA and remain relatively large.
TIA mortality is significant and negative for AMI, MI, IHD and Stroke, but the values of
the coefficients are low. Lagged TIA mortality is positively associated with MI, IHD and
Stroke and the values indicate an even weaker association. Hip Replacement is associated
with AMI, such that the values indicate a relatively strong positive association between
contemporaneous hip mortality and AMI mortality, and a relatively weak negative asso-
ciation between lagged hip mortality and AMI.

Latent 28-Day Readmission Estimates

Table 4.8 presents the results of the Granger Causality/block-exogeneity tests for risk-
adjusted 28-day readmissions. The ‘All’ column indicates some evidence of endogeneity
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for AMI, MI, IHD and TIA with 5% significance or over. For AMI we see that lagged
values of MI and IHD have a significant effect on risk adjusted readmissions. Lagged
values of IHD, CCF have a significant effect on risk-adjusted MI readmission, while lagged
values of AMI, MI, TIA and Hip readmissions have significant effects on IHD mortality.
Finally lagged values of MI, IHD and CCF risk adjusted readmissions significantly impact
TIA.

Table 4.8: Pairwise Granger Causality Test/Block Exogeneity Wald Tests for R28ht VAR(3)
specification.

28-Day Readmissions VAR(3)

Excluded Variable Dependent Variable

AMI MI IHD CCF Stroke TIA Hip

AMI - 0.5722 0.0327 0.7555 0.6180 0.2852 0.3671

MI 0.0011 - 0.0444 0.4556 0.8225 0.0250 0.6089

IHD 0.0022 0.0195 - 0.6405 0.7458 0.0359 0.2892

CCF 0.6202 0.0374 0.5672 - 0.1572 0.0468 0.1806

Stroke 0.4302 0.5713 0.5273 0.1150 - 0.3894 0.0754

TIA 0.6501 0.4177 0.0006 0.3734 0.3070 - 0.1449

Hip 0.1234 0.2008 0.0123 0.8875 0.3786 0.3271 -

All 0.0002 0.0159 0.0001 0.6673 0.6975 0.0168 0.1659

Table 4.9 presents the variance decomposition percentages for 28-day risk adjusted
readmission rates. Again the largest amount of the variance of the forecast error in the
conditions is explained by itself, although this is lower than for the mortality outcomes
measures. This is highest for CCF, Stroke and Hip Replacement at 95%, IHD and TIA are
also above 90%, but AMI is relatively low at 86%. For AMI, the risk adjusted readmission
rates of IHD explain over 10% of the variance in the forecast error, and the readmission
rates of MI explain nearly 2%. All other conditions have very low values. Similarly for
MI readmissions, IHD explains the largest portion of the forecast error variance at over
5% and AMI just over 1%. For IHD, AMI explains just over 5%, Hip Replacement a bit
over 1% and all other conditions less than that. For the remaining conditions, no other
condition accounts for over 2% of the forecast error.
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Table 4.9: Variance Decomposition percentages for R28ht using the VAR(3) specification.

% of

FEV in

Standard

errors

Typical Shock in

AMI MI IHD CCF Stroke TIA Hip

AMI 0.035841 86.39919 1.882459 10.38385 0.602159 0.104970 0.236702 0.390671

MI 0.085341 1.361604 91.38744 5.315513 0.524300 0.281605 0.246366 0.883176

IHD 0.022533 5.634419 0.191761 91.69390 0.051047 0.408958 0.782296 1.237622

CCF 0.094715 0.818006 1.086792 1.116505 95.03112 1.018157 0.899300 0.030118

Stroke 0.019286 1.619055 0.039725 0.213028 0.490413 95.35720 1.227889 1.052692

TIA 0.040074 0.191572 0.771842 2.109950 2.584053 0.531111 93.08755 0.723920

Hip 0.027452 0.556988 0.521928 1.152340 0.198788 1.180246 0.707539 95.68217

Forecast Horizon at 10 years

Note: The Choleski ordering for this Table was: AMI, MI, IHD, CCF, Stroke, TIA, Hip

The results of the SUR models for the risk adjusted 28-day readmission estimates
are presented in Table 4.10. The R-squared estimates for the models indicated that in
most cases it is able to explain about half the variation in readmissions. It performs
less well for MI and Hip Replacement, where it is able to explain about 40% and 15%
respectively. The first, second and third lags of the dependent variable are significant for
most conditions, indicating that readmissions are very dynamic. The exception is Hip
Replacement where only the first and third lags are significant. The sign on the first lag
is positive for all conditions, however the value of the coefficients are not as high as they
were for the mortality estimates, indicating a weaker effect. The values of the coefficients
for the second and third lags are lower, indicating the dynamic effect wearing off.

Examining the other explanatory variables reveals that contemporaneous AMI is a
positive predictor of IHD and Stroke, and a negative predictor of CCF and Hip Replace-
ment, although the value of the coefficient suggests that association all but CCF is quite
weak. Lagged AMI readmissions are also associated with CCF and Stroke, but the sign
is reversed from the contemporaneous effect and the magnitude of the coefficient is much
lower. Risk adjusted MI readmissions are negatively associated with CCF and Hip Re-
placement and positively associated with IHD, but again the values on the coefficient are
very low. Lagged MI readmissions are weak positive predictors of AMI, CCF and Hip
Replacement. Contemporaneous CCF is a weak negative predictor of AMI, MI and TIA
and a weak positive predictor of IHD, lagged CCF is only significant for MI but the sign
of the association is positive.

Contemporaneous Stroke readmissions are positive predictors of AMI and CCF and

146



4.4. Results

negative predictors of TIA and Hip Replacement. The value of the coefficient in all cases
indicates a relatively strong effect. Lagged Stroke readmissions also predict the same
conditions, and while the effect remains relatively strong the direction is reversed. There
is a weak positive association between contemporaneous TIA readmissions and IHD, and a
negative association MI, CCF and Stroke which is relatively strong for CCF. Lagged TIA
readmissions are continue to be significant for IHD, CCF and Stroke but the coefficients
are lower in value. Contemporaneous Hip Replacement has a weak negative association
with AMI, Stroke and TIA and a slightly stronger negative association with MI. Lagged
values of hip readmissions are only significantly associated with Stroke, and the value of
the coefficient is quite low.

Table 4.10: Seemingly Unrelated Regression for risk adjusted R28ht estimates.

AMI MI IHD CCF Stroke TIA HIP

Explanatory

Variables

Dependent Variables

DV L.2 0.157913*** 0.217126*** 0.091447*** 0.286443*** 0.131106*** 0.180445*** 0.009773***

(0.030767) (0.032785) (0.033130) (0.029342) (0.031707) (0.031370) (0.026020)

DV L.3 0.093962*** 0.084173** 0.127575*** 0.103890*** 0.126648*** 0.144845*** -0.003702

(0.027977) (0.030322) (0.028892) (0.027611) (0.028084) (0.028320) (0.023535)

AMI - 0.083821 0.042350** -0.32619*** 0.077571*** -0.022906 -0.082793*

(0.112618) (0.019702) (0.119601) (0.019903) (0.044197) (0.043747)

AMI L.1 0.538134*** -0.081332 0.004349 0.19594* -0.046470** 0.001574 0.017708

(0.031668) (0.110923) (0.019132) (0.116559) (0.019445) (0.043040) (0.042633)

MI -0.001651 - 0.023651*** -0.19417*** -0.001229 -0.023807 -0.04721***

(0.012872) (0.006611) (0.040030) (0.006747) (0.014907) (0.014569)

MI L.1 0.040562*** 0.422964*** -0.01994*** 0.144207*** -0.002297 0.009063 0.029921**

(0.012034) (0.032677) (0.006234) (0.037848) (0.006374) (0.014084) (0.013801)

IHD 0.157951** 0.782934*** - 0.525372** 0.035743 0.368363*** 0.130834

(0.074639) (0.219396) (0.233855) (0.039051) (0.086299) (0.085934)

IHD L.1 0.026594 -0.320072 0.677362*** -0.114767 -0.043997 -0.210736** 0.010558

(0.075932) (0.224195) (0.031474) (0.238382) (0.039754) (0.088248) (0.087699)

CCF -0.026238** -0.17810*** 0.012530** - 0.005265 -0.04114*** 0.003389

(0.011540) (0.033705) (0.005946) (0.006053) (0.013358) (0.008272)

CCF L.1 0.014692 0.145293*** -0.008757 0.399054*** 0.002493 0.010246 0.010488

(0.010762) (0.031461) (0.005548) (0.030796) (0.005651) (0.012472) (0.010747)

Stroke 0.30980*** -0.038083 0.031349 0.404678* - -0.28643*** -0.22787***
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AMI MI IHD CCF Stroke TIA HIP

(0.072249) (0.214670) (0.037486) (0.228827) (0.083946) (0.083106)

Stroke L.1 -0.24936*** 0.096421 -0.031976 -0.55247** 0.618191*** 0.22790*** 0.30337***

(0.072137) (0.213821) (0.037309) (0.228180) (0.032134) (0.083722) (0.082382)

TIA -0.019106 -0.166589* 0.07998*** -0.35914*** -0.05417*** - -0.051038

(0.032433) (0.095637) (0.016620) (0.101478) (0.016889) (0.037082)

TIA L.1 0.033241 0.137201 -0.08366*** 0.299642*** 0.05618*** 0.541382*** 0.035751

(0.032530) (0.095857) (0.016690) (0.102159) (0.016928) (0.032807) (0.037257)

Hip -0.060652* -0.31015*** 0.028778 -0.003382 -0.04854*** -0.073073* -

(0.034608) (0.101701) (0.017823) (0.108838) (0.018086) (0.040182)

Hip L.1 -0.005289 -0.065736 0.020697 -0.041625 0.04939*** 0.063768 0.365077***

(0.035609) (0.104740) (0.018300) (0.111714) (0.018580) (0.041237) (0.042943)

R2 0.554428 0.397957 0.696157 0.451002 0.607697 0.519184 0.157403

N 636 636 636 636 636 636 636

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Latent 365-Day Readmission Estimates

Table 4.11 presents the results of the Granger Causality/block-exogeneity tests for risk-
adjusted year long readmissions. The ‘All’ column indicates some evidence of endogeneity
for Hip Replacement at 5% significance and IHD, Stroke and TIA at 1%. For Hip Re-
placement, the chi-squared test indicates that lagged values of Stroke and TIA have a
significant effect on risk adjusted readmissions. For IHD and Stroke, lagged values of
Hip Replacement have a significant effect, while lagged values of AMI readmissions have
significant effects on TIA and Stroke.
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Table 4.11: Pairwise Granger Causality Test/Block Exogeneity Wald Tests for R365ht VAR(3)
specification.

365-Day Readmissions VAR(3)

Excluded Variable Dependent Variable

AMI MI IHD CCF Stroke TIA Hip

AMI - 0.0595 0.3958 0.6906 0.0414 0.0530 0.3546

MI 0.5631 - 0.6822 0.9941 0.5638 0.6878 0.1397

IHD 0.1446 0.5421 - 0.1179 0.9093 0.1234 0.4443

CCF 0.9966 0.5395 0.0668 - 0.0961 0.3037 0.7247

Stroke 0.8594 0.4699 0.4562 0.7797 - 0.2694 0.0743

TIA 0.1046 0.4439 0.2916 0.0577 0.9837 - 0.0623

Hip 0.9722 0.2882 0.0751 0.7930 0.0966 0.5448 -

All 0.6240 0.3118 0.0909 0.4486 0.1076 0.0989 0.0495

The variance decomposition percentages for year long risk adjusted readmission rates
are presented in Table 4.9. Again the largest amount of the variance of the forecast error
for each condition is explained by itself. This is around 95% for AMI, MI, IHD and Stroke,
and over 99% for CCF, TIA and Hip Replacement. For AMI, a negligible amount of the
variance in the forecast error is explained by the risk adjusted readmission rates of the other
conditions. For MI, AMI readmissions explain over 2% of the forecast error, and Stroke
nearly 1.5%. 2% of IHD forecast error is accounted for by hip, while all other conditions
have very low values. TIA accounts for over 4% of the forecast error of CCF readmissions,
while IHD for over 2% and AMI and MI about 1% each. The variance decomposition of
the forecast errors for Stroke readmissions are such that Hip Replacement accounts for
over 2%, and all other conditions for less than 1%. For TIA, AMI and Stroke explain
almost 3%, MI over 1% and all other conditions less than 1%. Finally the nearly 3%
of the forecast error of Hip Replacement is accounted for by Stroke and TIA, and IHD
explains about 1.5%, while all other conditions account for less than 1%.
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Table 4.12: Variance Decomposition percentages for R365ht using the VAR(3) specification.

% of

FEV in

Standard

errors

Typical Shock in

AMI MI IHD CCF Stroke TIA Hip

AMI 0.090501 98.70889 0.254707 0.391759 0.009760 0.070692 0.472412 0.091779

MI 0.147368 2.276795 94.77693 0.470095 0.067534 1.443554 0.126491 0.838599

IHD 0.038481 0.097818 0.070058 96.05539 0.347611 0.631246 0.248768 2.549107

CCF 0.137021 0.951112 1.207000 2.553303 90.81431 0.064143 4.309704 0.100431

Stroke 0.034611 0.631405 0.380211 0.936857 0.447049 95.14921 0.173727 2.281544

TIA 0.071102 2.790180 1.032996 0.734510 0.747682 2.620303 91.91310 0.161223

Hip 0.040651 0.583124 0.925351 1.609994 0.207120 2.417708 2.634518 91.62218

Forecast Horizon at 10 years

Note: The Choleski ordering for this table was: AMI, MI, IHD, CCF, Stroke, TIA, Hip

The results for the SUR models for risk adjusted 365-day readmissions are presented in
Table 4.13. The R-squared values for the individual regressions indicate that in most cases
they are able to explain about half, and sometimes nearly 60% of the variation in year-long
readmissions. For Hip Replacement the value of the R-squared estimate is much lower,
indicating it is able to explain only about 17% of the variance. The results also indicate
that two lags of the dependent variable are significant for all conditions, suggesting that
the readmission outcome measures are dynamic. For many conditions the third lag is
also significant. The value of the coefficients for the first lag is relatively high, however it
declines for the second and third lag. In all conditions apart from Hip Replacement the
sign is positive indicating a positive association across time.

Table 4.13: Seemingly Unrelated Regression for risk adjusted R365ht estimates.

AMI MI IHD CCF Stroke TIA HIP

Explanatory

Variables

Dependent Variables

DV L.2 0.199535*** 0.251365*** 0.209415*** 0.289965*** 0.129079*** 0.198856*** 0.223241***

(0.032807) (0.035135) (0.033799) (0.029456) (0.033797) (0.031974) (0.040228)

DV L.3 0.181245*** 0.030915 0.138477*** 0.086428*** 0.099908*** 0.142555*** 0.052245

(0.030576) (0.034243) (0.029919) (0.028069) (0.029364) (0.029620) (0.033917)

AMI - -0.174574** 0.004590 0.151741*** -0.06361*** -0.061671** 0.145974***

(0.057263) (0.012758) (0.052254) (0.012731) (0.026568) (0.029880)

AMI L.1 0.456406*** 0.086576 -0.008331 -0.101208** 0.056009*** 0.018620 0.017445
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AMI MI IHD CCF Stroke TIA HIP

(0.035409) (0.056306) (0.012528) (0.051315) (0.012495) (0.026069) (0.022717)

MI -0.07071*** - -0.000273 -0.14169*** -0.008398 0.011503 0.006214

(0.024189) (0.008419) (0.034543) (0.008499) (0.017558) (0.022249)

MI L.1 0.037782 0.535474*** -0.004920 0.097650*** 0.001198 0.010343 -0.023324

(0.024672) (0.034966) (0.008590) (0.035276) (0.008659) (0.017880) (0.015035)

IHD -0.107421 -0.027109 - -0.240048 0.062793* -0.128157* 0.033722**

(0.107110) (0.167736) (0.153482) (0.037589) (0.077643) (0.015282)

IHD L.1 0.170033 0.202768 0.575135*** 0.445533*** -0.023260 0.064946 0.208220***

(0.108279) (0.169484) (0.032381) (0.154866) (0.038001) (0.078429) (0.066109)

CCF 0.070856*** -0.13329*** -0.02335*** - 0.012842 -0.003959 -0.090814

(0.025289) (0.039598) (0.008805) (0.008909) (0.018475) (0.067139)

CCF L.1 -0.048273** 0.06927* 0.018451** 0.480992*** -0.004650 -0.010544 -0.018348

(0.024549) (0.038545) (0.008545) (0.031090) (0.008646) (0.017911) (0.015745)

Stroke -0.45293*** -0.199637 0.079010** 0.178707 - 0.424074*** 0.016708***

(0.108713) (0.171749) (0.037991) (0.157234) (0.078218) (0.015271)

Stroke L.1 0.28943*** -0.020309 -0.066767* -0.226086 0.601554*** -0.23635*** -0.135720**

(0.108813) (0.170398) (0.037760) (0.156521) (0.033002) (0.078302) (0.067749)

TIA -0.110117** 0.041914 -0.029641 0.015638 0.102043*** - 0.216961

(0.051544) (0.080926) (0.018080) (0.074005) (0.017910) (0.066969)

TIA L.1 0.052456 0.020536 0.016290 0.088372 -0.06967*** 0.520754*** -0.017698

(0.051605) (0.081025) (0.018119) (0.074046) (0.018066) (0.032767) (0.032036)

Hip 0.085811 -0.168676* 0.067343*** -0.135723 -0.042703** -0.039790 -

(0.062420) (0.097932) (0.021637) (0.089421) (0.021891) (0.045364)

Hip L.1 0.001821 0.031260 0.032483 0.072690 0.058228*** -0.017455 -0.03758***

(0.060836) (0.095530) (0.021082) (0.087120) (0.021275) (0.044118) (0.009917)

R2 0.624146 0.490366 0.661888 0.561351 0.574192 0.535415 0.168016

N 636 636 636 636 636 636 636

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Contemporaneous values of AMI readmissions are negatively associated with MI, Stroke
and TIA and positively associated with CCF and Hip Replacement. All of these associ-
ations are weak. Lagged values of AMI readmissions are also associated with CCF and
Stroke lagged however the sign is reversed, and the association is weaker. Contempora-
neous MI is weakly negatively associated with AMI and CCF, while lagged MI is weakly
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positively associated with CCF. Contemporaneous IHD has a weak and positive associa-
tion with Stroke and Hip Replacement and a weak negative association with TIA. Lagged
IHD is also positively associated with Hip Replacement and CCF, and the value on the
coefficient of the latter is relatively large. Contemporaneous values of CCF readmissions
have a weak positive association with AMI and a weak negative association with IHD and
MI. The lagged values of CCF are also correlated with these conditions, but the sign is
reversed.

Contemporaneous values of risk adjusted year long readmissions for Stroke are pos-
itively associated with IHD, TIA and Hip Replacement and negatively associated with
AMI. The value of the AMI and TIA coefficients are relatively high, at around 0.45.
Lagged values of Stroke, are also significant in influencing these conditions, however the
value of the coefficient is lower, and the sign is reversed. Risk adjusted TIA readmissions
have a significant negative association with AMI and a positive association with Stroke,
both coefficients indicate that the association is weak. Lagged TIA readmissions also sig-
nificantly affect Stroke, although the relationship is negative and weaker. Readmission
for Hip Replacement are positively associated with IHD and negatively associated with
MI and Stroke, however all associations are weak. Lagged Hip Replacement readmissions
continue to be associated with Stroke, at about the same strength as contemporaneous
readmissions, but positively.

4.5 Discussion

Outcome measures are commonly used to determine whether health service providers are
delivering high quality care. Mortality rates have been used to evaluate the performance
of individual physicians, or hospitals in many industrialized countries, and are often used
in composite scores of performance. While outcome measures are often measured more
generally, such as overall mortality rates, the outcomes of selected conditions, such as AMI,
are sometimes preferred. By focusing on a particular condition, users of the data can better
adjust it for exogenous factors such as patient case-mix and choose conditions may have
higher instances of occurrence and/or stronger linkages between outcome and treatment.
However, when performance is assessed using these piecemeal outcome measures, we need
to be cautious about generalizing these findings to draw conclusions about provider’s
performance in general.

Chapters 2 and 3 consider how to use methodological tools to create better estimates
of quality, by reducing bias and systematic error as well as incorporating time series
and cross section information from different variables. However, these chapters did not
consider the association of quality across different conditions. Better understanding of
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these relationships will allows us to determine to what extent the outcomes of one condition
can be used to make generalizations about the overall performance of an institution. This
chapter investigated the relationship between the latent outcome measures constructed
in Chapter 2 using a VAR model, the same model used in Chapter 3 to transform these
measures into filtered estimates.

The models are run separately for each of the four risk-adjusted outcome indicators,
30-day in hospital mortality, year long mortality, 28-day emergency readmissions and year
long readmissions. For each model a VAR(3) specification is run and the Granger causal-
ity and forecast decompositions are reported to describe the data. The Granger causality
estimates indicate, for all four outcomes, where the lagged values of one condition’s out-
come significantly help to predict the other condition’s outcomes. The estimates for the
different conditions suggest that where significant, a condition influences the performance
of the other conditions. For example in the 30-day mortality estimates, indicate that TIA
outcomes are significant predictors of Stroke mortality, however Stroke is not a significant
predictor of TIA mortality. Thus, there is a uni-dimensional causality of TIA on Stroke.

The forecast error decompositions of all four outcome measures indicate that the depen-
dent variable is largely determined by its own past performance. While there is variation
amongst the conditions, as to which are more endogenously determined, they are all ex-
tremely dynamic indicators. No condition is ever able to forecast over 10% of the variance
in forecast error of another for any of the outcome measures. Risk adjusted 30-day mor-
tality is the most endogenous of the outcome measures, where all the indicators for all
conditions are able to forecast about 95% of their own variance ten years into the future.
The other three outcome measures perform similarly, with all conditions being able to
forecast around 90% of their own variance.

The information about the relationship between variables from the VAR(3) specifica-
tion is used to modify the models and adjust the lag lengths included for the different
conditions. In the final version of the model, we include three lags of the outcome for
the dependent variable condition and the contemporaneous value and 1 lag of all other
conditions indicators. We include the 1 lag, as the Granger causality estimates indicate
some endogeneity between the lagged outcomes of other conditions, but not more as the
variance decomposition estimates indicate that a very small portion of the variance will
be determined by the outcomes of the other conditions. We keep the three lags for the
dependent variable as this was the appropriately defined lag length by our tests, and the
variance decomposition estimates indicate that a large percent of the forecast error is au-
toregressive. These versions of the model are estimated by SUR, as the right hand side
variables are no longer the same for every equation.
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The results of the SUR models for each condition are informative as to how the out-
comes of different conditions are associated with one another contemporaneously and
dynamically. The interpretation of the coefficient on the contemporaneous outcomes is
straightforward, if the condition is significant this means that the outcome of that condi-
tion is somehow associated with the dependent variable’s outcome. If the association is
positive it suggests that good quality in that condition is associated with good quality in
the other condition, for example good CCF outcomes are associated with good AMI out-
comes. This may be because the cardiology department is good in this particular hospital
because of the skill of physicians or equipment available. If the association is negative it
indicates that good quality in one condition is associated with poor quality in another.
For example risk adjusted 30-day AMI mortality is negatively correlated with contem-
poraneous 30-day risk adjusted Stroke mortality. This could be a result of competing
resources amongst departments within a hospital, resulting in a trade-off in equipment
or staff that impacts quality. If all contemporaneous coefficients were positive this would
indicate that there is some overarching driver that encourages good quality throughout
the hospital, such as management. Instead, the results of our SUR models indicate that
for all conditions the outcomes of some conditions have a positive contemporaneous effect
on the dependent variable, while others have a negative effect.

One of the most interesting results of from the SUR models is that in almost all cases
when one condition is significantly associated with another the sign on the contemporane-
ous effect is opposite from the sign on the lagged effect. For example 30-day risk adjusted
CCF mortality is positively associated with 30-day risk adjusted AMI mortality, however
lagged CCF mortality is negatively associated with 30-day AMI mortality. Similarly, while
contemporaneous Stroke and AMI 30-day mortality is negatively associated, lagged Stroke
mortality is positively associated with AMI mortality. What is striking is that the sign
switch is present in all cases, but one, where the contemporaneous and lagged effect are
significant. This suggests that when the conditions are dynamically associated with one
another there is a particular type of relationship.

Through the examination of the contemporaneous effects we know which conditions
are reinforcing and which are competing. Reinforcing conditions are characterized by a
positive contemporaneous relationship, where good quality in one is associated with good
quality in the other. In the example used above, CCF and AMI would be reinforcing
conditions. Competing conditions are characterized by a negative contemporaneous rela-
tionship, where good quality in one is associated with bad quality in the other. In the
example used above, Stroke and AMI would be competing conditions. The results of the
lagged indicators suggest that in cases where the reinforcing relationship is dynamic, that
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is both the contemporaneous and lagged condition are significantly associated with the de-
pendent variable, the sign switches. Going back to our example, a decline in risk-adjusted
CCF mortality is associated with a decline in AMI mortality, but in the dynamic rein-
forcing relationship the decline in lagged CCF mortality is associated with an increase in
AMI mortality. Similarly in the dynamic competing relationship, an increase in contem-
poraneous Stroke 30-day mortality is associated with a decrease in AMI mortality, but in
the dynamic competing relationship a decline in lagged Stroke outcomes is also associated
with a decrease in current AMI mortality.

This sign switch, or the nature of the dynamic reinforcing and dynamic competing
relationships are more difficult to explain, and are more specific to the pairs of variables
which are correlated. For example, the association between CCF and AMI is more com-
plicated to disentangle because the outcomes for either of these conditions will impact the
outcomes of the other. AMI may appear as a complication of CCF, or heart failure may
appear as a sequence of AMI in patients who had no disturbance of cardiac function prior
to the formation of the infarct (Gerbode and Selzer, 1948). Indeed the Granger causality
estimates for 30-day mortality suggest that lagged AMI outcomes are significant predictors
of CCF mortality, but that lagged CCF outcomes are not significant predictors of AMI
mortality. Similarly, the results from Chapter 2 tell us that 30-day AMI mortality is neg-
atively correlated with emergency readmissions, such that a ‘good’ hospital will be able to
successfully save the very severe AMI patients who then return with complications later
on. It is possible, then that some of these patients develop heart failure as a result of a
severe MI, such that lower lagged AMI mortality is associated with higher CCF mortality.
This tells us that CCF mortality may be a less good overall performance indicator of the
provider due to its relationship with AMI. Thus, in order to understand the dynamic rein-
forcing and dynamic competing relationships we need to consider these in relation to the
related conditions. Below we consider in detail the results for AMI only, while the other
results are discussed in Appendix C. We chose to focus on AMI because it has been used
more so than other conditions as an indicator of hospital quality (Kessler and McClellan,
1996; McClellan and Staiger, 1999; Propper et al., 2004) and recently in the UK, AMI
outcomes have been used as a proxy of hospital quality to assess management practices
(Bloom et al., 2010), as well as to inform publicly available hospital rankings such as the
Dr. Foster ‘Good Hospital Guide’.

Another interesting result that appears, is that while two conditions may have a dy-
namic reinforcing relationship with regards to one of the outcome indicators, they may
have a dynamic competing relationship with regards to another. For example, TIA and
Stroke have a dynamic competing effect with regards to year-long mortality and 28-day
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readmissions, but a dynamic reinforcing effect when looking at year-long readmissions.
This may initially seem counter-intuitive, as we associate both lower mortality and lower
readmissions as indications of higher quality. However, in Chapters 2 and 3 we already
came across a negative correlation between mortality and readmission indicators for many
of the conditions, indicating that in some instances higher readmissions may be mistaken
for lower quality, when in fact they may be a result of the lower mortality of ‘marginal’
patients. A similar explanation may be applied to these cases. For example, when consid-
ering the relationship between TIA and Stroke, we know that when a patient is admitted
with TIA it initially appears exactly the same as a Stroke, the only difference being that
the patient will recover in 24 hours. After having a TIA, patients are at a great risk of
going on to develop a Stroke in the next few weeks, so it is important that they receive
appropriate treatment shortly after. In the case of TIA thus, we can assume that high
28 day readmissions are an indicator of poor quality. Stroke patients will spend a longer
time in hospital than TIA patients, on average, and thus low short-term readmissions in
this case may very well reflect better quality.

Indeed, looking back at Chapter 3 we see that the in the Stroke model, 28-day read-
missions were negatively correlated with 30-day mortality, while year-long readmissions
were not. The TIA model from Chapter 3 also tells us that TIA 28-day readmissions are
positively correlated with 30-day mortality as are year-long readmissions. Thus, the com-
peting effect we see between the two conditions in the short term could very well reflect
this. That is to say that hospitals with low readmissions for Stroke (better quality) are
negatively correlated with hospitals that have high 28-day readmissions for TIA (better
quality). Thus it appears that TIA patients benefit from being treated at institutions
with lower long-term Stroke readmissions. This is confirmed by the long run readmissions
model which indicates that there is a reinforcing effect between the two conditions. The
relationship between these two conditions highlights the importance of the correct inter-
pretation of readmissions indicators. Not being aware of what exactly high readmissions
indicate for a particular condition can lead to misinterpretation of outcome indicators.

AMI

The forecast error variance decompositions for AMI indicate that its performance is highly
dynamic. For all mortality outcomes, and year-long readmissions AMI is able to predict
over 97% of its own variance in a 10 year horizon. The results from the AMI SUR mod-
els confirm that performance is very highly dynamic, with all three lags being significant
predictors of current outcomes, such that high outcomes in a previous period are highly as-
sociated with high outcomes in the current period. The Granger causality results for AMI
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suggest that the lagged values of other conditions do not significantly help to predict any
AMI outcomes aside from 28-day readmissions, where lags of MI and IHD are significantly
associated with AMI readmissions. Moreover, the forecast error variance decomposition
indicates that these conditions are able to explain 2% and 10% of the forecast error in a
ten-year period, respectively.

AMI & MI

The results of all tables suggest that 30-day mortality AMI and MI outcomes are not
significantly associated. In the case of year-long mortality the Granger causality estimates
indicate that lagged AMI is a significant predictor of MI year-long mortality, but not
the reverse. Indeed, the SUR model for year-long mortality shows a contemporaneous
reinforcing effect, for both AMI and MI models. However, a dynamic reinforcing effect
appears only in the MI model, such that higher lagged AMI mortality is associated with
lower MI mortality. Thus, good mortality outcomes in one are indicative of good mortality
outcomes in the other, but ultimately higher lagged AMI mortality will lead to lower MI
mortality, presumably because this results in less MI patients.

The Granger causality estimates for both short and long term readmissions suggest
unidirectional causality, such that lagged AMI readmissions significantly influence MI. The
SUR results confirm this showing that lagged MI is a positive predictor of AMI 28-day
readmissions, that the two conditions exhibit a contemporaneous competing relationship,
such that higher long term readmissions in MI will lead to lower long term readmissions
in AMI. This allows us to interpret causality and suggests that higher AMI readmissions
lead to higher MI readmissions, possibly because readmitted AMI patients are having
a MI. In all cases where there is a significant effect the value of the coefficient is very
low, indicating that when this effect is occurring it affects only a small percentage of
the outcomes being considered. Indeed, this is confirmed by the forecast error variance
decomposition estimates, which show that one condition will never explain more than 2%
of the variance in the other.

Overall, in the short term if an AMI patient survives and is readmitted it is likely
that this will increase MI readmissions in the long term. If the AMI patient dies it will
lead to lower MI mortality later on, as there are fewer patients. Thus, in this case using
AMI to measure the quality of providers may be more informative than using MI, as what
seems to be ‘worse’ outcomes for MI may be the result of better AMI treatment for the
relatively poor heart function of ‘marginal’ patients who survive when treated in high
quality hospitals. This is similar to the finding from Chapter 3, where AMI readmissions
and mortality were negatively correlated, indicating that higher readmissions in some cases
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is an indication of better quality, as they indicate ‘marginal’ patients that were able to
survive due to good treatment.

AMI & IHD

The 30-day mortality SUR model suggests that AMI and IHD have a dynamic reinforcing
contemporaneous effect on each other. Thus, low mortality in one condition is associated
with low mortality in the other contemporaneously, but the lagged mortality of one is
negatively associated with the contemporaneous mortality of the other. The Granger
causality estimates indicate a unidirectional casual effect between lagged outcomes of AMI
and IHD mortality, such that lagged values of AMI influence IHD but not the opposite.
Both the variance decomposition estimates, and the values of the coefficients suggest that
the magnitude of the effect is small. The same casual effect is suggested by the Granger
causality estimates for year-long mortality. However, in the SUR model lagged AMI is
not a significant predictor of IHD mortality, and IHD is not a significant predictor of AMI
mortality. The only significant effect is the positive effect between contemporaneous AMI
and IHD.

The SUR model for 28-day readmissions also suggests there only a contemporaneous
effect between AMI and IHD, such that higher readmissions in one are associated with
higher readmissions in the other. The Granger causality estimates suggest significant bi-
directional causality. While, this effect is present for both conditions, the IHD coefficient
in the AMI model is higher, as is the forecast error variance decomposition. This suggests
that IHD readmissions explain more of the variation in AMI readmissions. However, when
looking at year-long readmissions there is no association between the two conditions.

Thus it appears that lower lagged AMI mortality will lead to higher IHD mortality, yet
the same factors will influence the short term readmissions for both conditions. This sug-
gests that AMI mortality is a better indicator of overall performance than IHD mortality,
as the ‘worse’ outcomes for IHD may be the result of better AMI treatment for the rela-
tively poor heart function of ‘marginal’ patients who survive when treated in high quality
hospitals. However, treatment of the two are clearly related, and poor IHD treatment will
result in higher readmissions for AMI.

AMI & CCF

The dynamic reinforcing relationship between AMI and CCF mortality outcomes has
already been discussed briefly above. The Granger causality estimates in Tables 1 and 6
suggest that there is unidirectional causality between AMI and CCF, such that lagged AMI
short and long term mortality Granger causes CCF short and long term mortality. Yet the
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variance decomposition percentages, for both long and short term measures suggest that
this applies to less than 1% of the variance in mortality of either condition. Thus, the SUR
dynamic reinforcing relationships in the short and long term models can be interpreted
as AMI and CCF being contemporaneously positively correlated, possibly because good
outcomes of both reflect a strong cardiology unit. However, lower lagged AMI mortality
will cause worse CCF outcomes, and worse CCF outcomes are associated with higher AMI
mortality. In the case of short-term mortality, the coefficient of the former effect is very
small, while the coefficient of the latter indicates that it explains a substantial amount of
the variance. For long term mortality both explain a small amount of the variance.

The effect is slightly different for the readmission measures. Neither for long term nor
short term readmissions are the Granger causalities significant. Moreover, the forecast
error variance decompositions indicate that the conditions explain less than 1% of each
others variance. The SUR model for year-long readmissions do however, indicate the
same dynamic reinforcing relationship between AMI and CCF discussed above. Although
because of the insignificant Granger causalities we can only interpret this as association
between the conditions, yet again the coefficients suggest the effect CCF has on AMI is
weaker than AMI’s effect on CCF. The short-term readmissions model suggests only a
positive contemporaneous association between the two conditions.

Overall, the results suggest that it is difficult to disentangle the effects between the
two conditions. It appears while contemporaneously either indicator will be indicative of
good performance, better AMI performance will cause worse CCF performance later on.
Thus, again AMI is a more reliable indicator of provider quality, as poor CCF outcomes
can be a result of successful AMI treatment.

AMI & Stroke

The Granger causality tests for short and long term mortality do not suggest any significant
relationship between the lags of one condition on the other’s performance. Moreover
the variance decomposition percentages between AMI and Stroke are also very small,
indicating they explain less than 0.5% of each others forecast error variance. The SUR
results for short-term mortality show a weak dynamic competing relationship between
the two conditions, such that contemporaneously they are negatively associated, while
lower lagged mortality of one is associated with lower mortality in the other. As the
Granger causality estimates are not significant, the dynamic effect may be a result of the
decreasing trend in latent short term mortality that both conditions experienced during
this time period (see Figures 2.2 and 2.8, Chapter 2). Thus, while they have a competing
contemporaneous effect, they are both improving over time.
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The results of the long-term mortality SUR model are quite different, indicating a sig-
nificant relationship of contemporaneous AMI mortality on Stroke mortality only. More-
over the association is only significant at 10%, and of very low value. However, the
association between the two is positive, unlike the association of contemporaneous short
term mortality. The figures from Chapter 2 do indicate a steep decline in long-term mor-
tality for both these conditions over the period being investigated which may account for
this association. Interestingly, AMI is significant in the Stroke model, but Stroke is not
significant in the AMI model. It is possible that this is because AMI explains more of the
variance in Stroke outcomes than the reverse, as demonstrated by the variance decom-
positions in Table 4.6. The Granger causality tests for readmissions indicate that lagged
values AMI year-long readmissions are significant in influencing Stroke readmissions, while
the variance decomposition percentages between the short and long term outcomes of the
two conditions are very low. The long-term SUR model indicates a dynamic competing
relationship similar to the one observed for short-term mortality.

The SUR model for short term readmissions indicates a dynamic reinforcing effect, such
that the contemporaneous effect between the two conditions is positive, while a decline in
the lagged readmissions of one condition will lead to an increase in the readmissions of
the other. The Granger causalities suggest no significant causality in any direction, while
the variance decomposition suggest that AMI readmissions explain more of the variance
in Stroke than the other way around. However, the value of the Stroke coefficients in the
SUR model are higher than the AMI coefficients for the Stroke model.

These results are very difficult to explain. There is some literature on the association
between ischemic Stroke and AMI. The risk of Ischemic Stroke in patients presenting with
AMI has declined from 2.4% to 3.5% in earlier reports to about 0.6% to 1.8% in more
recent studies incorporating thrombolytic or anticoagulant therapy in the acute phase
(Suarez, 2006). However, the Granger causalities between the conditions do not suggest
that this is what is driving the association. Indeed, while is observed that over the past
40 − 50 years Stroke case fatality rates have decreased in high-income countries (Feigin
et al., 2009) it is difficult to know what to attribute this to. There has been evidence to
suggest that hospitals with Stroke units are able to achieve better outcomes, however it
remains uncertain what about these units is responsible for them (Langhorne et al., 2000).
Perhaps the relationship between Stroke and AMI is linked to the resource allocation
between departments within a hospital. More in-depth research into the relationship
between treatment of the two conditions would be needed to help disentangle the factors
driving this relationship.
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AMI & TIA

AMI and TIA have no significant relationship in any of the short-term outcome models.
In both of the long term models, they have a weak competing contemporaneous effect
which is not dynamic, indicating that contemporaneous long term outcomes of TIA are
negatively associated with long term AMI outcomes. The Granger causality estimates do
not suggest a significant causal link in any direction for mortality. However, they do sug-
gest unidirectional causality, such that lagged AMI readmissions cause TIA readmissions.
Again it is not clear what is driving the negative contemporaneous effect between the two
conditions.

AMI & Hip Replacement

The short term mortality SUR model indicates that AMI outcomes have a small positive
effect on hip outcomes. The Granger causality and variance decomposition estimates do
not help in clarifying the relationship between the two variables. The long term Granger
causality estimates however do suggest that lagged hip mortality is a significant predictor
of AMI, and the variance decomposition estimates indicate that it explains nearly 2%
of AMI’s forecast error. Indeed the SUR results show a dynamic reinforcing effect, such
that the two conditions have a positive contemporaneous association, and a negative lagged
association. Moreover the value of the hip coefficients in the AMI model are relatively high.
Indeed, a high number of patients suffer from AMI in the year following their surgery. The
results of the year-long readmission model show that AMI has a positive contemporaneous
effect on Hip year-long replacements, but not the other way around. While, short term
readmissions between the two conditions are negatively associated. The explanation of
these effects is difficult, but may be related to the associations indicated for mortality.

Through the investigation of the relationships between AMI to the other conditions
reported by our models, we believe there is evidence to select risk-adjusted AMI indicators
as good quality measures of the cardiovascular departments of hospitals The different
causal relationships between AMI and the other cardiovascular conditions make it difficult
to interpret some of the other indicators, where rates of higher readmissions or mortality
may not always be indicative of poor quality. However, the negative contemporaneous
correlation between AMI and Stroke and AMI and TIA suggest that it may perform less
well as an indicator of overall hospital performance. Indeed, looking at this indicator
alone may draw attention away from other conditions in the hospital which compete for
resources.

Our discussion of the relationship between AMI and other conditions was limited due
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to uncertainty as to what exactly these associations were reflecting. In the case of AMI
and Stroke it was difficult to disentangle the complex relationship as there are a number
of possible explanations to explain the associations between the different indicators. This
highlights some of the limitations with trying to draw conclusions based on outcome
indicators alone, and the need to have complementary process and structure indicators.
For example, in the case of AMI and Stroke it would be informative to have evidence on
the administration of anticoagulants, and whether the patient was treated in a Stroke unit.
While this study is limited to the extent it can make conclusions about the relationships
between the pairs of conditions studied, it does suggest that the methodology and risk-
adjusted outcome measures are sensitive enough to be able to detect some of the subtle
causal relationships suggested in the literature.

Many policy makers consider hospitals the nucleus of the health system, possibly be-
cause they are responsible for a substantial proportion of health care spending. Yet,
endeavours to measure hospital performance over time or across institutions are challeng-
ing, due to the diversity of services they provide, and multiple factors which influence
their performance, such as technological innovation and personal skill. In practice many
hospital indicator frameworks use a combination of indicators to assess performance. Of-
ten mortality and readmission rates are included, these may be overall rates or ones that
express the outcomes of the specific services that are provided in the hospital (e.g or-
thopaedic surgery) of specific types of patients (AMI, Stroke). In addition, measures of
throughput, such as waiting times and the average length of hospital stay are commonly
used to measure responsiveness and efficiency respectively. However, when used alone
these indicators they may ignore the ultimate effectiveness or appropriateness of the in-
tervention, especially in situations where health services are dealing with patients with
multi-morbidities, and from different socio-economic backgrounds. Overall, we find that
it is difficult to make generalizations about quality of providers based on outcome indica-
tors alone, and for separate conditions. While AMI is associated with many of the other
conditions we are interested in the relationships between them are often more complex
than they initially appear. Moreover, in many cases where associations are identified they
apply only to a small number of patients. However, our findings suggest that the VAR
model is well suited for understanding health provider performance as allows us to model
the endogeneity inherent in the provision of health care, and use this in order to determine
casual effects and relationships between performance indicators and across time.
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Evaluating Quality
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5 The effect of Payment by
Results on quality of care

5.1 Introduction

As part of the Blair Government’s health reforms, in 2003/04 the English NHS moved
from a bulk contract system of funding hospital episodes to a DRG type system known
as “Payment by Results” (PbR) (Audit Commission, 2004). Under this system Primary
Care Trusts (PCTs) – the commissioning agencies in the English NHS - reimburse hospitals
for each procedure they perform though a national tariff based on Healthcare Resource
Groups (HRGs), the English version of DRGs. This type of provider payment, typically
referred to as case payment or activity payment, has been increasingly adopted in many
health care systems because of the positive effects it can have on cost containment and
transparency. Indeed in Chapter 1 we review the theoretical underpinnings this type of
payment system and consider how is able to incentivize providers to deliver more efficient,
transparent care within a reasonable cost. However, in Chapter 1 we also note that both
theory and experience indicate a number of other unwanted effects that can also arise
from this type of system, depending on various design, organizational and system factors
such as how cases are defined, how the tariff is set, the organizational setting in which it
is applied and the structure of the health system to which it is applied. It is important to
understand how and when these unwanted effects emerge, especially when they can have
adverse quality implications for patients.

The US Medicare program was the first to introduce DRG payments, under the
Prospective Payment System (PPS) in 1983, where hospitals were reimbursed a fixed
amount per patient based on reported diagnosis. Since its adoption there has been con-
siderable literature documenting the effects of this payment mechanism on different areas
of performance. Various studies reported a decrease in activity (Davis and Rhodes, 1988;
Guterman et al., 1988; Kahn et al., 1990; Rosenberg, 2001). With regards to quality of
care, studies report mixed findings. Kahn et al. (1990) identify improved processes of care
being applied for CCF, MI, Pneumonia, Hip Replacement and Cerebrovascular accidents
following the adoption of PPS, that result in decreases in mortality. However, in future
work Kahn et al. (1992) report evidence of patients being admitted to hospital sicker and
released less stable than before the adoption of DRGs, while again noting improvement in
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processes of care, declines in in-hospital mortality as well as no change in post-discharge
mortality. Wells et al. (1993) report mixed quality results for depressed elderly patients
in the clinical setting, with moderate improvements since the introduction of DRGs, but
poor quality for one third of patients at discharge. Cutler (1995) and Shen (2003) also
reported a compression of deaths in short term hospital discharges, yet no change in the
mortality of patients surviving past one year after discharge.

Some instances of selection were also reported from the US experience. Newhouse
(1989) found that patients in unprofitable DRGs were more likely to be found in ‘hospitals
of last resort’, suggesting patient selection by profitability. Similarly, there was a short
term noticeable shift of treatment from DRG financed inpatient settings to outpatient
clinics which were otherwise financed (Cutler and Reber, 1998; Ellis and Vidal-Fernandez,
2007; Newhouse and Byrne, 1988). Other evidence of patient selection was presented by
Meltzer et al. (2002) who found greater cost decreases for high cost patients than low
cost patients, mirrored by a pattern of reductions in more expensive DRGs. Similarly,
Ellis and McGuire (1996) identified evidence of selection, under Medicaid’s mental health
services in New Hampshire where expenditures for the sickest patients were reduced under
prospective payment.

Since Medicare’s adoption of DRGs as the mechanism for paying hospitals in 1983,
case payment systems have been increasingly adopted amongst industrialized countries.
While the basic principles of the system remain intact, there is large variation amongst the
motivation, system of design, and implementation of DRG systems in different countries
(Busse et al., 2006). At present many countries complement their case-based funding by
other forms of payment (such as fixed budgets), yet for some this is only until they fully im-
plement case-based funding for all hospital costs (France, Germany and the Netherlands).
The objectives for introducing case-based funding also vary: Sweden and Australia have
introduced DRG payments as a method of reducing waiting times (Duckett, 1995; Rauner
et al., 2003); Austria, Germany, France and Australia aim to use them to increase effi-
ciency and reduce costs (Duckett, 1995; Rauner et al., 2003); and Sweden, France and the
Netherlands mention increasing transparency as motivation.

In these countries, in-depth studies have also identified possible instances of adverse
quality effects. In Australia, Duckett (1995) found a decrease in waiting times for urgent
procedures and an increase in activity levels combined with a decrease in expenditures
in Victoria hospitals in the year following DRG implementation. Patient selection was
ruled out, as the overall average case weight had risen, yet concern was expressed about
incentives for gaming and selection in the future. In 2000, Duckett and Jackson expressed
concerns about patients being discharged ‘quicker but sicker’ from hospitals employing
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case-based funding. In Austria, Sommersguter-Reichmann (2000) showed that ownership
of hospitals influences the response to case-based funding. Upcoding was identified as was
cost-shifting between inpatient and outpatient care. Rauner et al. (2003), also identified
premature discharges of patients in case-funded hospitals with higher readmission rates, as
well as cost-shifting and gaming by transferring patients to other hospitals before treatment
was finished, while claiming the full reimbursement fee.

As case-based payment systems are increasingly adopted as the main mechanisms for
paying hospitals it is important to assess the effects this policy has in different settings.
These type of analyses will create a wider pool of evidence from which policy makers are
able to draw better conclusions as to what organizational, system or design features are
best suited to bring out more of the desirable features of the policy. This chapter attempts
to understand what the effect the introduction of case-based payments in England, under
PbR, have had on the quality of providers. The English case is interesting for many reasons.
Since the full implementation of PbR, hospital incomes are exclusively determined by this
payment mechanism. Apart from Germany, which is also in the process of applying a
case payment system, no other country has experience with this. Moreover, in England,
the tariff reflects average costs of cases alone. Aside from France, this is not the case
of any other country. Most countries apply a more complex pricing system to provide
all hospitals with an incentive to improve their performance (Street and Maynard, 2007).
Finally, England adopted a case payment system after paying hospitals through bulk
contracts and budgets, implementing a fast and large transition. These three factors
combined make the English case unique and interesting to study both from a policy and
research perspective.

While there is little dispute as to the case payment’s ability to increase transparency
and curb costs, there is ambiguity as to the exact effect it has on quality. Indeed much
seems to depend on how widely the system is adopted, how the reimbursement is set and
how strictly it is enforced, making it even more difficult to generalize findings from one
context to another. The PbR system in England is one of the main pillars of the Blair
Government’s ‘New NHS’, created with the goal of providing “prompt, convenient, high
quality services” (Secretary of State for Health, 2002). It is important to determine to what
extent this change in payment has succeeded in meeting these objectives, not only from a
policy perspective, but to gain insight as researchers as to what works and what does not.
Part II of this thesis is concerned with creating robust and sensitive quality indicators that
can be used for evaluating policy. This chapter allows us to apply the quality indicators we
have created to a specific policy area, PbR, in order to draw conclusions as to its overall
effectiveness. In the process we are able to demonstrate the indicator’s value added in
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drawing policy conclusions.

5.2 Background

The PbR policy is structured around the HRG, which is the case classification system and
the basis of the national tariff. HRGs were developed in the early 1990s. At that time
they were not used to reimburse providers, but primarily for benchmarking exercises and
to set targets to encourage unit cost reductions (Street and Dawson, 2002). HRGs are
designed to measure health care activity in a way that takes into account the diagnosis,
mix and complexity of patients that will be receiving care. The basis of the national tariff
is an average of all hospital HRG costs for the procedure in question. Separate tariffs exist
for elective and emergency care, as well as for short-stay patients, while specialist work is
excluded. Hospitals also received a separate payment, the Market Forces Factor, which is
based on the geographical price indices for land, labor and building costs.

PbR’s implementation began in 2003/4 where the tariff was first applied to marginal
changes in output for 15 HRGs. The tariff was extended to a further 33 HRGs in 2004/5
(Farrar et al., 2009). For NHS foundation trusts – a new NHS organization introduced in
April 2004 for high performing hospital trusts – PbR was fully introduced to all spells of
care in 2004/51. The policy was extended to included elective activity for all other NHS
trusts 2005/6, and to non-elective and outpatient care from 2006/7 (Audit Commission,
2004, 2005). Errors in the 2006/7 tariff, published on 31 January 2006 resulted in a greater
average increase of the tariff than initially designed. This led to the tariff being withdrawn
and reissued on 17 March 2006 (Boyle, 2009). From this date onwards it has covered all
elective and emergency activity in English hospitals.

As noted previously, case payment systems create a variety of incentives, including:
increased activity for non complex patients, unit cost reductions, expenditure control,
cream skimming, quality skimping and upcoding. From early on studies have being un-
dertaken to examine the effects of the English PbR policy on length of stay, readmissions
and volumes of inpatient and emergency activity. While case-based reforms are usually
focused on improving the efficiency of health care delivery, they do raise concerns about
their effects on quality of care, which may be adversely effected as evidence from the US
experience has suggested (Cutler, 1995; Kahn et al., 1992; Shen, 2003). Moreover, the
Audit Commission (2008) notes that 53% of doctors were wary of the quality effects the
PbR policy would have, and while they also report increases in readmission rates between

1There were 29 foundation trusts by then end of 2004/5 and 34 by the end of 2005/6. Foundation
trusts have more managerial and financial freedom and a different accountability regime than other trusts.
For a more in depth discussion see Ham (2009).
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2003/04 – 2006/07, yet do not find these directly attributable to the PbR policy. Farrar
et al. (2009) also find evidence to suggest a mild increase in acute hospital activity along
with a reduction in unit costs.

Research also suggests changes in the recording of inpatient activity of hospitals. After
the first year of PbR, the Audit Commission (2005) reported little difference in activity
growth or efficiency in foundation trusts apart from a small increase in length of stay.
They report no evidence of gaming amongst the early implementers although do mention
cases of perceived gaming having been reported by some PCTs, including resubmission of
patients using old referrals, artificial discharge of payments and coding and/or undertaking
multiple interventions that are unnecessary in order to increase revenues. Research has
also indicated a change in year to year activity among cases (Farrar et al., 2009; Rogers
et al., 2005; Sussex and Farrar, 2008) although in all authors note that it is unclear whether
this represents a genuine change in activity or a change in the way activity is recorded.
No links have been established between PbR and quality of care, even in cases where this
has been tested (Farrar et al., 2009), although in all studies to date, authors have noted
that the quality variables used (in-hospital mortality, 30-day post surgical mortality and
emergency readmission after hip fracture) may not be sensitive enough to detect change.

In the previous section latent and filtered estimates of hospital quality were created
and analysed over the period 1996 to 2008. In these chapters our findings suggest that
the filtered estimates are more sensitive predictors of quality of care. Chapters 2 and 3
investigated the trajectory of average performance using the latent and filtered indicators
over the period 1996-2008 and the variation of performance amongst hospitals at any
single point in time using the different indicators. While both of these characteristics
differ by indicator and condition, some trends were observed that would benefit from
further investigation, namely a change in the variation of performance in the later years
of the sample and the change in performance from year to year. We believe part of the
changes we have observed earlier on may be related to the introduction of the PbR policy
during this period.

5.3 Methodology

This chapter attempts to examine whether quality of care has been influenced by PbR
through a two step process involving the quality indicators constructed in Part II. The
first step of the analysis investigates the effect PbR has had on levels quality over time,
this step will indicate how quality has changed since the implementation of PbR. However,
it is also of interest to understand whether the system design has influenced quality. It has
been suggested that as the tariff is set according to average cost it incentivizes ‘average’
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performance. The second step considers this issue by investigating what has occurred to
relative hospital performance since the implementation of the policy.

In order to undertake step one it is first necessary to adjust the quality metric that
will be used for the analysis over the time period. In Chapter 2 the latent estimates
were created, these estimates indicate the marginal effect a hospital has on each outcome
measure controlling for patient characteristics. Thus, each point estimated for every year
represents the slope of the risk-adjusted quality curve. We use this information to create
this curve, for each of the four outcome indicators for every hospital, spanning throughout
the years in our sample. We use the value of zero as our starting point, however, one
could easily substitute zero for the mortality rate of that hospital in the same year to get
the true estimate. The filtered estimates created in Chapter 2, have also been used as
measures of quality. Indeed we argue that they are better estimates of true quality as they
are able to reduce more of the noise in each estimate. For this reason we apply the same
technique to create similar filtered quality curves for all four indicators in every hospital.

Using these latent and filtered quality measures, we are then able to examine the effect
PbR has had on each of these outcomes using the following model:

Qk
ht = α + β1Tht + β2

∑
Xht + β3PbR + β4

∑
Cht + εht (5.1)

qk
ht = α + β1Tht + β2

∑
Xht + β3PbR + β4

∑
Cht + εht (5.2)

The two models are estimated separately for each of the seven conditions in the sample.
In the first model, represented by equation (5.1), Qht represents the filtered quality mea-
sures for each of the four quality variables, k, each hospital h, and each year, t, for each
of the seven conditions being investigated. Similarly, the second model, represented by
equation (5.2), qht represents the latent quality measures for each condition. The variable
Tht represents the average tariff received by each hospital for the patients admitted with
the particular condition in question for every year in the sample. The control variables,
∑

Xht, indicate the total caseload and average deprivation, co-morbidity, age, length of
stay of each hospital for every year, again for the particular condition being investigated.
PbR represents the dummy variable included for PbR which takes a value of 1 after 2006,
as that is when the policy became effective for all emergency and elective conditions in
all hospitals. For AMI, which only looks at non-elective procedures, it is constructed to
measure a change from 2005. Finally, ∑

Cht indicates the hospital type, such as founda-
tion trust, independent specialist treatment centre (ISTC) or teaching hospital. Because
foundation trusts and ISTCs were only introduced in from 2004, and hospitals transitioned
into foundation trusts during the period under investigation, these variables are not time
invariant. However the teaching hospital variable will be static, as this did not change
during the period under investigation.

169



5.4. Data

The second step investigates the effect PbR has had on the variation in quality be-
tween hospitals in each year of our sample. The relative performance of hospitals cane
be measured through the normalized latent estimates for each hospital (see Chapter 2).
Recall, that for these estimates the mean latent value has been set to zero, such that any
negative value for any single hospital represents its absolute level below average mortality,
while any positive value represents how high it lies above average mortality. Moreover the
estimates are normalized such that the mean value of every year is equal to zero. Thus
the spread of the data indicates the relative variation from year to year. The equivalent
filtered measures were also constructed (as done in Chapter 3) using the normalized latent
measures.

Using these latent and filtered measures of variation in quality the following models
are able to examine the effect PbR has had on the spread of the performance across time
using the same model:

V k
ht = α + β1Tht + β2

∑
Xht + β3PbR + β4

∑
Cht + εht (5.3)

vk
ht = α + β1Tht + β2

∑
Xht + β3PbR + β4

∑
Cht + εht (5.4)

The explanatory variables indicated in equations (5.3) and (5.4) are the same as in
equations (5.1) and (5.4), while the dependent variable Vht in equation (5.3) represents the
normalized latent quality estimates, for each of the four outcome measures k. Similarly,
in equation (5.4), vht denotes the normalized filtered quality estimates. Both equations
are estimated separately for each of the seven conditions. In the regressions for all four
models above, year dummy variables were included in the analysis. All models were run
using fixed effects, as a result all time-invariant characteristics (such as teaching hospital)
were differenced out of the equation. The sensitivity analysis section reports the results
of the random effects models, and any differences that were observed.

5.4 Data

The basic data used to conduct this analysis is the same as in Part II, and is reviewed
in detail in the data section of Chapter 1. The dependent variables used in the analysis
are the latent and filtered quality indicators constructed in Part II for the four quality
indictors: 30-day in-hospital mortality, 365-day mortality, 28-day readmissions and 365-
day readmissions. For equations (5.3) and (5.4) the latent and filtered measures have been
normalized, such that the mean value of each year is set equal to zero. Thus, any positive
value is indicative of above average performance and any negative value is indicative of
below average performance. For more information on the construction and normalization
of the filtered indicators see Chapter 3.
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Some of the key characteristics that have emerged from the previous analyses are that
different performance measures have different levels of persistence and exhibit different
variation amongst hospitals. However, year-long mortality is almost always the most
persistent variable across conditions. The associations amongst the different outcome
measures also vary by condition for the most part the mortality variables and readmission
variables are positively correlated amongst themselves, although in most cases not very
strongly. However, mortality and readmission variables tend to be negatively correlated
with one another, indicating that higher readmission variables may not always be indicative
of worse quality. The independent variables used in this analysis are discussed below.

Tariff & PbR

Since their implementation in the US in 1983 many countries have begun to use DRGs in
their health systems. Most countries using DRGs, have found it necessary to modify their
design features in order to better suit the institutional, political, and socio-demographic
features of their health care systems (Busse et al., 2006). In this vein, English HRGs are
the English modified version of DRGs, adopted by the Department of Health and Social
Security in the late 1990s (The British Medical Association, 2008). HRGs are an English
measure of case-mix which allow a clinically meaningful grouping where resource use can
be expected to be roughly the same, and thus can have a particular cost ascribed to it.
The HRG case-mix is constructed using the ICD-10 diagnostic codes and the Office of
Population Censuses and Surveys Surgical Operations and Procedures (OPCS) version
4.3 procedural classification codes, while HRG costs are derived from national reference
cost exercises. Street and Dawson (2002) note that due to(NHS, 2005) the organizational
structure of the NHS and its lack of a substantial private insurance sector that would
require detailed billing data, there is no history of routine patient level cost data collection.
Moreover efforts in the mid-eighties to encourage such activities towards this end failed
to spark an interest and were abandoned. As a result most hospitals cost activity on the
basis of top-down allocations.

In the Department of Health jargon, the term ‘episode’ refers to any single proce-
dure/condition being treated in the hospital. Any patient may undergo more than one
episode from the time they are admitted to the hospital until they are discharged. The
total episodes a patient undergoes in this period is referred to as the ‘Hospital Provider
Spell’ (HPS), and is the main unit of currency under PbR. Within an HPS, there may
be episodes that are excluded from the national tariff (such as rehabilitation). The term
‘PbR spell’ is used to identify the episodes which are covered by the tariff, and is derived
from the HPS by the Department of Health. The national tariff is based on the dominant
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HRG for the HPS. The dominant HRG is determined by considering a Department of
Health provided ranking of episode level HRGs2.

In order to calculate the cost for the key HRGs within each point of delivery, compar-
ative costing data is collected based on a nationally agreed upon format specified in the
NHS costing manual3 (Department of Health, 2008). This manual specifies how hospitals
should collect their annual statements of hospital cost structures and providing a break-
down of expenditure by specialities, services or programmes within the hospitals. Using
this share of total hospital expenditure per ‘patient treatment service’ and dividing by the
total number of bed days occupied by patients, the average cost per bed day is estimated.
In order to calculated the HRGs within that speciality the number of bed days for each
HRG is multiplied by the speciality cost per bed day. This bottom-up costing is discussed
in detail in Street and Dawson (2002).

Each NHS provider is then required to select the HRGs that cover at least 80% of
cost and activity at each point of delivery allowing the costing method to focus on the
small number of HRGs that represent a high proportion the cost (Department of Health,
2008). This selection is performed using a so called ‘grouper’ that is provided by the NHS
Information Authority. Data with excess bed days beyond a defined trim-point – calculated
based on the national distribution of length of stay for each HRG – are excluded from these
costs and reported separately in order to prevent outliers from skewing the data. Over
time HRG groupings have been refined and different versions have been released which
are able to explain more the variation in length of stay. The current version being used
is HRG 3.5, in place since the financial year 2003/4. Previous versions include HRG 3.0
and HRG 3.1, constructed and collected by the Department of Health since May 1997.
The national tariff is based 2-year retrospective returns. The newer HRG4 grouper has
been in use for reference costs since April 2007 (for financial year 2006/7 onwards) and for
Payment by Results (PbR) since April 2009 (for financial year 2009 onwards). However
this lies beyond our sample of data.

The average HRG costs averaged across all NHS Trusts form the basis for the calcu-
lation of the national tariff for each HRG. For any patient whose length of stay exceeds
the trim point a per-diem payment will be added to the payment. Per-diem payments
are HRG specific and differ for elective and non-elective activity. The national tariff also
considers local cost differences and adds what is called a Market Forces Factor (MFF).

2In a multi-episode spell where there is more than one occurrence of the highest ranked HRG, the first
episode is taken as dominant. Since only spell level information or HRG related data is derived from the
dominant episode, no issues arise from this (National Health Service, 2005).

3Since 1994, when efforts to encourage the use of HRGs in the care contracting process were first made
official (NHS executive, 1994), multiple guidance documents have been produced to assist hospitals in
apportioning costs to HRGs in this manner.
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The MFF is specific to the each hospital and considers the unavoidable cost differences
associated with the provision of services in different parts of the country. It is constructed
by combining three separate indices which reflect labour and capital differences: the staff
index, the building index and the land index.

The academic literature on case payment systems discusses the different incentives
associated with alternative tariff setting mechanisms (Ellis and McGuire, 1996; Schreyögg
et al., 2006; Street and Maynard, 2007). As discussed previously the English tariff reflects
average costs alone, and is calculated from cost data gathered from all hospitals. This
will encourage hospitals to become ‘average’ rather than to strive to become considerably
more efficient (Street and Maynard, 2007). The English case reports the tariff in monetary
units, unlike other countries which separate price and underlying cost by using a points
system where policy makers decide how much to pay per point (Schreyögg et al., 2006).

At the time of their development in the early 1990s, HRGs were not used to reim-
burse providers, but primarily for benchmarking exercises and to set targets to encourage
unit cost reductions (Street and Dawson, 2002). Currently the PbR tariff is payable for
admitted patient care (elective, non-elective and emergency), outpatient attendances and
accident and emergency admissions. The individual level data provided by Dr Foster in
our dataset contains information on the HRG tariff throughout the entire period of the
sample. Note that while this tariff does reflect approximate unit costs of the patient it
is not the paid to each hospital for the entire period, but only from the years PbR was
phased in. The variable included in our regression reflects the average tariff received by
each hospital for the patients treated for the conditions specified in each year of the sample.

Caseload

The activity within a hospital, in terms of the number of cases treated, is likely to be
related to many of the performance variables being investigated. The relationship between
cases and outcomes is not clear. Increased caseload may result in lower quality due to
overcrowding, or it can result in higher quality as doctors become more experienced.
Moreover higher quality may lead to more cases as demand increases, or it can be the result
of selecting fewer cases. Activity has also been linked to DRG type systems, although it
is not always clear in what way caseload will be affected. The US experience with DRGs
resulted in a decrease in hospital activity (Davis and Rhodes, 1988; Guterman et al.,
1988; Kahn et al., 1990; Manton et al., 1993; Muller, 1993; Rosenberg, 2001), many other
countries have reported increases in activity, such as Australia (Duckett, 1995; Healy et al.,
2006), Denmark (Street and Maynard, 2007), Germany (Böcking et al., 2005; Hensen et al.,
2008; Schreyögg et al., 2005) and England (Farrar et al., 2009; Rogers et al., 2005; Sussex
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and Farrar, 2008). In the case of England, all authors note that the activity increase
occurring in the period since PbR was implemented is hard to interpret as it may represent
a genuine change in activity or a change in the way activity is recorded. The methodology
used later on in this Part (in Chapter 6) allows us to explore the association between
caseload and the quality, moreover it allows us to control for the change in cases when
investigating the effects of PbR on quality. In this chapter, the variable used to measure
caseload was estimated by the number of admissions recorded for each condition in each
hospital every year, hospitals with less than 10 cases per year were dropped from the
sample.

Length of stay

Length of stay (LOS) is an important indicator of performance, commonly used to mea-
sure utilization, efficiency and/or hospital management. It is unclear whether low LOS
is indicative of better or worse quality and efficiency, high LOS may be a reflection of
complexity of case mix (demand) or indeed poor discharge planning (supply). While some
studies have indicated there is little, if any, relation between length of stay and outcome
(Clarke, 1996; O’Brien, 2002), interest in the area remains high. Cost-containment efforts
and payment mechanisms often use length of stay as a proxy for efficient use of resources,
however it is unclear if lower LOS in these cases indicates increased effectiveness and better
planning or inadequate discharge planning or premature discharges. Results from many
countries indicate that a DRG type system is associated with a fall in average length of
stay (Böcking et al., 2005; Davis and Rhodes, 1988; Guterman et al., 1988; Hensen et al.,
2008; Kastberg and Siverbo, 2007; Kahn et al., 1990; Manton et al., 1993; Muller, 1993;
Rosenberg, 2001; Schreyögg et al., 2005), including England (Audit Commission, 2008;
Sussex and Farrar, 2008; Farrar et al., 2009). However, its effect on quality are often
mixed, depending on the factors within the different systems that are driving the change
in LOS. By including LOS in our model we hope to better understand its relation with
quality, as well as to control for changes in LOS when testing for the effects of PbR on
quality. The length of stay variable used in this dataset represents the average length of
stay of patients per hospital for each condition. This average is estimated from the original
patient level data, where there is information on the number of days each patient spend
in the hospital from admission to discharge.

Average severity and deprivation of the patient population

Other hospital characteristics are likely to affect outcomes, such as the characteristics of
the patients that they treat. A hospital treating older, sicker or more deprived patients,
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for example, may have more patients with complications, longer length of stay and worse
outcomes. However, in the construction of the latent estimates, which form the basis
for the filtered estimates, we have already adjusted for co-morbidity, deprivation, age,
gender and type of admission at the patient level. Thus by including these variables in
our regression at this level, we are able to control for systematic biases that could still
be present in the data set and not ‘filtered’ out correctly through the construction of the
quality metrics in Part II. This means that we are controlling for these variables to see if
treating a more severe or more deprived patient population has any overarching effects on
hospital quality. For example, if the hospitals treating more deprived patient populations
suffer from understaffing.

Hospital type

During the period of investigation the hospitals included in the sample studied could
be classified into four types: acute trusts, teaching hospitals and foundation trusts and
ISTCs. An NHS trust provides services on behalf of the English NHS. Each trust is
headed by a board of directors consisting of non executive and executive directors. Trusts
are split into commissioning and non-commissioning trusts. Secondary care services, such
as the ones investigated in this paper, are provided by NHS hospital trusts, otherwise
known as acute trusts. All of the hospitals in our sample are known as acute trusts.
A teaching hospital is a hospital that provides clinical education and training to future
and current doctors, nurses and other health professionals as well as investing in research
and technology, in addition to delivering medical care to patients. Due to these different
functions, this type of hospital is often singled out as having different objectives which can
also contribute to quality improvement. However, under a system of price competition,
teaching hospitals may be disadvantaged by these activities as they may be unable to
drive costs down as easily as their competitors. Presumably in an attempt to avoid such
problems, the English government chose not to take any measures to consolidate subsidies
for research and technology with patient care till after the initial transition period of PbR’s
implementation (Boyle, 2009). In order to test for any differential effects on quality since
PbR in our sample, a dummy variable was created to represent all teaching hospitals.

The idea of NHS foundation trusts developed in part as a way to place more empha-
sis on patient choice and provider competition that the Blair Government emphasized in
their reform agenda published in ‘The NHS Plan’(Secretary of State for Health, 1997) and
‘Delivering the NHS Plan’(Secretary of State for Health, 2002). The original intention
was to give high performing NHS trusts the opportunity to manage their services with
less inference from the Department of Health and with greater involvement from local
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communities, staff and other stakeholders. Moreover, NHS foundation trusts were estab-
lished as public benefit corporations overseen by a new regulator, Monitor, as opposed to
the Department of Health. NHS foundation trusts have freedoms available to them which
acute trusts do not. These include the ability to retain operating surpluses and borrow
money from public and private sectors; to establish private companies and joint ventures;
to vary staff pay from nationally determined terms and conditions. Foundation trusts are
expected to provide services in accordance to the specifications set out in the service agree-
ments negotiated with PCTs, and are regulated by the Care Quality Commission, similar
to acute trusts, but they are also required to comply to the terms of their authorization
as determined by Monitor (Ham, 2009). The government expects all trusts to become
foundation trusts once they have proved their ability to run services as a public benefit
corporation. The first NHS foundation trusts were established in 2004 and increased year
by year.

There is little evidence on the performance of foundation trusts, especially with regards
to PbR. Early evidence suggested that foundation status was a weak signal for strong fi-
nancial management (Mannion et al., 2008) With regards to PbR evidence suggests that
that foundation trusts have seen a greater increase in short stay inpatient admissions from
accidents and emergencies than non-foundation trusts Rogers et al. (2005), but also shorter
lengths of stay (Farrar et al., 2009). However, as well performing trusts are awarded with
foundation trust status and given the different regulatory and financial structures of foun-
dation trusts, which could influence quality. A dummy variable was constructed to examine
control for foundation trusts in all equations. Each trust coded as a foundation trust from
the year that the trust became one, if it became one during the years investigated.

The last type of hospital considered in our investigation is an ISTC. While hospitals
are made up of many departments that share labour and capital resources and treat both
emergency and elective patients, treatment centres are dedicated to the provision of elective
care. They are not required to provide emergency treatment and are designed to specialize
in one or two high-volume procedures and avoid taking on complex operations. In 2003
the Department of Health decided to establish treatment centres throughout England and
to prioritize areas with high waiting times. Shortly after this decision was made, it was
decided that private, or “independent sector”, providers would be allowed to establish
treatment centers to treat NHS patients. By 2008 there were about 100 treatment centers
operating, with about half opened by the private sector (?). Evidence suggests that
treatment centres are treating patients from less deprived areas, who have less diagnoses
and undergo less procedures than patients treated in hospitals (Mason et al., 2010). As
our sample deals with non-elective admissions, there is a very small amount of ISTCs but
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a dummy variable is created to control for hospitals with this status, coded as an ISTC
from the year that it was opened. In most cases there were not enough ISTCs in the
sample, and so they are not included in the analysis.

5.5 Results

The results section is separated by condition, in this section the methodology as applied to
AMI, Stroke and Hip Replacement is presented, while the results for MI, IHD, CCF and
TIA are presented in Appendix D. The first part of the results section for each condition
plots of the average latent and filtered quality measures over time. Using the latent
outcome measures constructed in Chapter 2, which measure the marginal effect a hospital
has on each outcome measure for every year, and the filtered measures created in Chapter
3 from these latent indicators we are able to construct the latent and filtered outcomes over
time. For each condition, the first figure presents these measures, normalized to zero for
the first year of the sample. These plots are of interest as they are the dependent variables
used in models 1 (equation (5.1)) and 2 (equation (5.2)), but also in order to observe the
differences between the latent and filtered estimates. This is followed by a table with the
results of models 1 and 2, which examine the effect of PbR on the eight latent and filtered
quality measures. The results of this section will allow us to determine whether quality
has improved, stayed the same, or worsened since the introduction of PbR, separately for
each condition.

The second part of the results for each condition provide evidence on the change in
relative performance of hospitals in each year. This is of interest because tariffs have
been set at average cost, and thus in theory might be incentivizing average performance.
The results for this section are also separated by condition, presented together with the
results for the first two models. Two more plots are presented which illustrate the ranked
normalized latent and filtered outcome indicators for each hospital respectively, as bound
by 95% confidence intervals for each estimate, for three different years: 2002, 2005 and
2008. These years are selected as the reflect a year before the introduction of PbR (2002),
a year in the middle of the rolling out of the policy (2005) and the last year of our sample
(2008). The x-axis of each plot indicates the hospital rank for that year, while the y-
axis shows the actual value of the outcome measure (latent or filtered). Each point on
the graph represents the hospitals value, and is extended to show the values within the
95% confidence interval. Recall that the latent measures have been normalized, and the
filtered estimates are constructed from the normalized latent measures. Thus, a value of
zero represents the average values, while any point below zero indicates outcomes below
average outcomes and any value above zero illustrates outcomes above average. These
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figures are useful for visualizing the change in relative performance of hospitals over time,
which is used as a dependent variable in models 3 (equation (5.3)) and 4 (equation (5.4)),
but also to observe the difference between the normalized latent and filtered outcome
measures. Finally the last table presents the results of models 3 and 4, which examine the
effect of PbR on the variation of performance amongst hospitals.

AMI

As mentioned previously, the methodology uses the latent and filtered estimates of each
hospital for each year, as calculated in Chapters 2 and 3 to construct hospital quality
estimates over the entire time period available. Figure 5.1 illustrates these quality esti-
mates over time. The latent and filtered curves plotted indicate the same overall trend
in mortality and readmissions over the time period investigated. The filtered curves are
able to filter out much of the noise in the latent estimates and thus show a smoother
trajectory across time. The top left hand panel shows the latent and filtered plots for
30-day mortality. Both curves indicate a decline of about 5% in the period 2000-2008.
The latent curve (solid line), indicates different rates of decline throughout the period,
which are much more pronounced from 2000-2005, and indeed slightly increasing from
2006-2008. As the filtered curve (dashed line) smoothes out the time series it does not
pick this up, and shows a much smoother decline across all years. These characteristics can
also be observed for the year-long mortality plots illustrated in the top right hand panel.
In this plot mortality also falls by around 5%, and the filtered curve smoothes out much
of the spikes in the latent curve. Both bottom panels, illustrating the trend in 28-day and
year-long readmissions, show an increase in readmissions. 28-day readmissions increase
by about 1.5%, while year long readmissions increase by just over 1%. Similarly to the
mortality panels, the filtered estimates provide much smoother curves which smooth out
the variation amongst the different years. This is most pronounced for year-long readmis-
sions, where the filtered curve is noticeably smoother and does not show a large interim
increase in readmissions of 1% in the period 2003-2005.
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Figure 5.1: Average hospital quality over time for AMI.

Models 1 and 2 explore how the hospital level indicators, used to create the hospital
average plotted above, are influenced by the introduction of PbR. The results of these
models are presented in Table 5.1. The R-squared values vary considerably between the
models, ranging from 31% for year-long mortality to 8% for year-long latent readmissions.
The PbR dummy is significant in all models except the latent 28-day readmission model. In
all mortality models it indicates that since PbR has been implemented, mortality has fallen.
The magnitude of the coefficients indicate that PbR is responsible for a 4 − 5% decline
in 30-day mortality and year long mortality. The coefficients on the readmission models,
suggest that since PbR there has been an increase in short and long term readmissions of
around 1 − 2%.

The tariff variable is only significant for the latent 28-day readmission model, and
indicates that a higher tariff is associated with lower readmissions. The average LOS of
AMI patients in each hospital is significant for latent 30-day mortality, latent year-long
mortality and filtered year-long readmissions, such that an increase in LOS is associated
with higher mortality and lower readmissions. Caseload is significant for filtered 30-day
in hospital and year long mortality as well as for latent and filtered 28-day readmissions.
In the filtered models the sign of the caseload variable is positive suggesting that more
cases is associated with higher mortality and lower readmissions. However, the sign on the
latent 28-day readmission variable is positive, suggesting that more cases are associated

179



5.5. Results

with higher readmissions.
Average co-morbidity and deprivation of AMI patients admitted to each hospital are

both significant in many of the models. Average co-morbidity is significant in all filtered
models, as well as the latent 30-day in hospital mortality model. The sign on the latter
coefficient is negative indicating that higher average co-morbidity is associated with lower
30-day mortality, while the signs on all filtered mortality models are positive suggesting
that higher average co-morbidity is associated with higher mortality. Average deprivation
is positively associated with the dependent variable in all latent and filtered mortality
models, indicating that hospitals with higher numbers of deprived patients have higher
mortality. Similarly, the deprivation coefficients are negative for the readmissions models
indicating that hospitals with more deprived patients have higher readmissions. The age
and foundation trust status variables are not significant in any of the models. Teaching
status was dropped from the model as it is time invariant, and the model was run with
fixed effects.

Table 5.1: AMI Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.00100 0.000370 0.00237 0.000203 -0.00272** -0.000150 -0.000699 2.20e-05

(0.00107) (0.000604) (0.00236) (0.000744) (0.00137) (0.000190) (0.00185) (0.000133)

Age -0.127 -0.0223 -0.351 -0.0531 -0.198 0.0183 0.0164 0.0292

(0.498) (0.139) (0.454) (0.204) (0.236) (0.0514) (0.434) (0.0371)

LOS 0.284** 0.0450 0.900*** 0.125 -0.0819 -0.0183 -0.317 -0.0459***

(0.134) (0.0786) (0.156) (0.0952) (0.0952) (0.0250) (0.344) (0.0169)

Cases -0.00468 0.00372* -0.0103 0.00616* 0.00670* -0.00150* 0.00908 -0.000991

(0.00538) (0.00220) (0.00621) (0.00326) (0.00402) (0.000814) (0.00594) (0.000667)

Co-morbidity -7.868** 2.274** 0.204 3.623** -5.061 -0.778* 1.490 -0.910**

(3.168) (1.062) (4.242) (1.547) (3.853) (0.421) (2.421) (0.416)

Deprivation 8.200* 0.652* 12.47** 0.987** -3.930* -0.233* -3.467 -0.193*

(4.477) (0.335) (5.614) (0.483) (2.335) (0.125) (2.625) (0.111)

FT -1.082 -0.318 -1.329 -0.353 0.524 0.116 1.176 0.151

(1.225) (0.664) (1.570) (0.974) (1.153) (0.246) (1.773) (0.186)

PbR(05) -4.032*** -4.957*** -4.931*** -5.487*** 2.308*** 1.680*** 0.821 1.197***

(0.921) (0.595) (1.232) (0.906) (0.749) (0.244) (1.194) (0.216)

Constant 14.67 -4.606 8.663 -5.391 29.62** 1.015 -0.0579 0.00295

(34.68) (9.923) (26.78) (14.27) (11.43) (3.669) (31.03) (2.599)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

N 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,071

R2 0.270 0.305 0.312 0.166 0.146 0.236 0.080 0.191

Hospitals 119 119 119 119 119 119 119 119

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

The second part of the methodology considers how PbR has influenced the relative
performance amongst the hospitals in our sample over time. By ranking the hospitals
according to the different outcome indicators and plotting them for different years, we are
able to observe whether any overall changes in performance have occurred. Figures 5.2
and 5.3 illustrate these plots using the latent and filtered outcomes measures for AMI,
plotted for the years 2002, 2005 and 2008. In Figure 5.2, we are able to see the relative
performance of hospitals in the different years with regards to the four latent outcomes.
As the latent estimates are subject to large volatility (see Chapters 2 and 3), they have
very large outliers. This makes the figures difficult to interpret. In addition, while there
are some differences amongst hospitals between the years, these are very small. However,
the plots with the filtered indicators (Figure 3) indicate a very different pattern. First off,
we notice that the filtered indicators have fewer, and much lower outliers. Secondly the
confidence intervals on each hospital estimate are much larger than those on the latent
indicators. Both of these characteristics were also observed in Chapter 3.

By examining each of the four panels in Figures 5.2 and 5.3 we are able to observe
the trends in relative performance between the years plotted. The top left hand corner of
both figures plots the 119 hospitals according to their ranking on the latent 30-day mor-
tality indicator in each year. In Figure 5.2, we see that from 2002 to 2008 there has been
a gradual drop in mortality among the top performers such that the line has shifted to
the right, indicating better performance overall. However, the curve also appears to have
shifted across the axis, such that all points are further from zero, indicating that there
is more variation in performance across hospitals later on in time. The same trend can
also be observed in the top right hand panel for the latent year-long mortality variables,
although there is more overlap at the tail ends of each curve. It is more difficult to ob-
serve any noticeable change in the readmission curves as they are largely overlapping for
the years plotted. The plots in Figure 5.3, show a much more distinct change in relative
performance across the years plotted. All of the plots the filtered outcome plots indicate a
convergence to the mean from 2002-2008. In both the short and long term mortality plots,
the convergence to the mean, is most noticeable amongst the best performers, who level
out gradually from 2002 to 2005 and then from 2005 to 2008. We see a similar convergence
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for short and long term readmissions, only for these indicators a higher number of hos-
pitals were achieving readmissions above the average rate, as a result of the convergence,
readmissions in the worst performers are levelling out towards the mean value.

Figure 5.2: Relative hospital performance over time for AMI (normalized latent outcome indica-
tors).

Using the normalized latent and filtered outcome indicators for all years in the sample
as dependent variables, we are able to evaluate the impact of PbR on the relative perfor-
mance of hospitals over time. The results of these models, Models 3 and 4, are presented
in Table 5.2 for all eight outcome indicators. The R-squared values indicate how much of
the overall variance in outcomes the different models are able to predict. In most cases
this value indicates that the model performs reasonably well. Generally, there is not that
much difference in the R-squared values between the latent and filtered models, although
the filtered models perform slightly better in most cases. There is one instance of large
variation between the two models in the 28-day readmissions model, where the latent
model predicts nearly 2% of the variance while the filtered model is able to predict about
20%.
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Figure 5.3: Relative hospital performance over time for AMI (normalized filtered outcome indi-
cators).

PbR is significantly associated with the relative performance of hospitals in all models
except filtered year-long readmissions. The coefficient of the PbR dummy is positive for
all mortality models, indicating that since PbR normalized mortality has been increasing
relative to the mean. Recall that the latent estimates (and thus by extension the filtered
estimates) have been normalized such that the mean in every year is equal to zero. Thus
the positive coefficient is explaining the increase in mortality over time as illustrated in
Figure 5.3, where the hospitals with negative latent and filtered values are approaching
zero. However, this only tells us that relative performance in each year is approaching
the mean and not how the mean has been changing over time. The PbR coefficient is
negative for all short term readmission models, and latent year long readmissions. Again
due to the normalization of estimates within each year, this result only tells us about the
relative distribution of performance across time. The negative result indicates that since
the adoption of PbR readmissions in every year are falling towards the mean.

The tariff variable is significant for all of the latent mortality measures, but not for
the filtered measures. The tariff variable is constructed as the average tariff received by
each hospital in each year. Part of the association between tariff and quality for the latent
measures will thus be picking up information on the amount of more ‘expensive’ patients
admitted each year. As the filtered measures incorporate information from different parts
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of the time series and smooth out the values, they will be less sensitive to this information.
The negative sign on the tariff coefficient indicates that hospitals with higher average
tariffs are associated with better mortality outcomes within each year. If we consider that
higher average tariffs are truly a result of higher numbers of expensive patients, than we
can interpret this result as hospitals treating more severe patients have better outcomes.
Interestingly, our variable for co-morbidity is only significant for the filtered measure, and
also negative. As a higher score on the Charlson Co-morbidity score is indicative of more
co-morbidity, this indicates that hospitals treating a more severe patient population on
average have lower mortality outcomes. Co-morbidity is also significant for the filtered
readmission measures, only in these cases the sign is positive, indicating that the higher
the co-morbidity in the patient population being treated, the lower the readmissions for
that hospital.

The average deprivation level of the hospital caseload also proves to be a significant
predictor of hospital quality. While it is significant for both the latent and filtered out-
comes, the signs are different. Deprivation is positively correlated with the latent outcome
indicators and negatively correlated with the filtered indicators. The deprivation indi-
cator measures the average Carstairs score of the patients treated in each hospital each
year. A higher Carstairs score is indicative of higher levels of deprivation. Thus, the
latent model find that hospitals treating a higher number of deprived patients have lower
mortalities, with the filtered model suggests that these hospitals have higher mortalities.
For the readmission models, only the filtered models are significant, and they suggest that
the hospitals treating a higher number of deprived patients have lower readmissions. Age
is not significant in either of the models, as would be expected given that this has been
controlled for in the construction of both indicators.

The number of cases is significant at the 10% level for the latent short term mortality
and readmission indicators, such that fewer cases are associated with lower mortality. This
variable is not significant for the filtered outcome indicators. Caseload is also positively
associated with short and long term latent readmissions, such that an increase in cases
leads to higher readmission rates. This result is also indicated for the filtered long-term
readmissions model. LOS is significantly associated with latent year-long mortality, such
that longer length of stay is associated with higher mortality. Latent year-long readmis-
sions are also correlated with LOS at the 10% level. The positive sign indicates that
higher LOS is linked to lower year-long readmissions. As the model was run using fixed
effects, all the time invariant hospital characteristics were dropped from the model (such
as teaching hospital status). Because foundation trusts were only introduced from 2005
onwards, they were not dropped from the model. However, the dummy for foundation
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trusts is only significant for the latent year-long mortality model, where it is associated
with lower mortality rates.

Table 5.2: AMI Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.00099*** 2.73e-05 -0.00174* -0.000271 -1.72e-05 6.99e-05 0.00279 0.000327

(0.000359) (9.21e-05) (0.000972) (0.000287) (0.000347) (8.57e-05) (0.00196) (0.000262)

Age -0.433 0.0294 -0.174 0.0319 0.114 -0.0160 0.739 -0.00597

(0.359) (0.0230) (0.413) (0.0449) (0.0759) (0.0131) (0.493) (0.0211)

LOS 0.0231 -0.0184 0.735*** 0.0174 -0.00286 -0.00501 -0.553* -0.0440

(0.0820) (0.0115) (0.201) (0.0382) (0.0508) (0.00992) (0.299) (0.0337)

Cases -0.00453* -0.000211 -0.0094*** -0.00105 0.00250* 0.000141 0.00686** 0.000624**

(0.00265) (0.000488) (0.00255) (0.000759) (0.00129) (0.000223) (0.00274) (0.000300)

Co-morbidity 1.373 -0.399*** -3.462* -0.733*** -0.782 0.172* -2.291 0.232**

(2.362) (0.152) (2.031) (0.269) (0.555) (0.100) (1.434) (0.112)

Deprivation 6.087** -0.136*** 1.979** -0.195*** 0.245 0.0603** 0.386 0.0517*

(2.457) (0.0460) (0.942) (0.0724) (0.395) (0.0264) (0.559) (0.0283)

FT -0.464 0.00513 -1.150** 0.0349 0.155 -0.0401 0.310 -0.0717

(0.578) (0.121) (0.555) (0.203) (0.366) (0.0611) (0.540) (0.0723)

PbR(05) 2.140*** 0.121*** 3.227*** 0.213*** -0.944** -0.0603*** -1.341*** -0.0377

(0.481) (0.0351) (0.557) (0.0575) (0.367) (0.0178) (0.483) (0.0364)

Constant 30.10 -1.873 15.73 -0.394 -6.629 0.807 -52.71 -0.746

(20.51) (1.585) (26.53) (3.258) (5.204) (0.976) (35.22) (1.894)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,071 952 1,071 952 1,071 952 1,071 952

R2 0.306 0.310 0.274 0.335 0.018 0.198 0.104 0.108

Hospitals 119 119 119 119 119 119 119 119

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Stroke

The latent and filtered measures used as measures of Stroke quality, calculated for the
different outcomes in models 1 and 2, are plotted in Figure 5.4. Unlike the corresponding
figure for AMI (Figure 5.1), the filtered and latent estimates often show quite a different
trajectory, indicating more noise in the latent Stroke measures than in the latent AMI
measures. Looking at the top left hand panel of Figure 5.4, we are able to observe that 30-
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day in hospital mortality for Stroke has increased, on average, by about 6% during the time
period studied. The top right hand panel also indicates an increase in year long mortality,
although there is a larger difference between the filtered and latent estimates, with the later
reporting a 3% increase by the end of the sample, and the former a 2% increase. Also
the filtered estimate shows a different average mortality trajectory, indicating a much
larger initial rise in mortality from 2000 to 2004, which then falls in the remaining period,
although not down to its initial 2000 level.

Figure 5.4: Average hospital quality over time for Stroke.

The bottom left hand panel indicates the change in 28-day readmissions. While both
latent and filtered estimates indicate a rise over the 2000-2008 period, again the amount
differs. The filtered estimates indicate a rise of about 1.25%, while the latent estimates
indicate a rise of around 0.7%. Again the trajectory demonstrated in average performance
of this indicator is very different for the filtered and latent curve. Finally the bottom right
hand panel indicates the change over time in year-long readmissions. This too shows an
increase in readmissions of around 3% for both latent and filtered estimates. As with the
filtered estimates in the short term readmissions panel, the filtered curve indicates a larger
increase in readmissions than the latent curve.

The latent and filtered quality measures, whose averages are plotted in Figure 5.4,
are used as the dependent variable for models 1 and 2. The results of these models are
presented in Table 5.3, and indicate how the outcomes are influenced by the adoption
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of PbR and other explanatory variables. The R-squared values indicate that the models
do not explain a large amount of the variance in the dependent variables, but range
considerably from 5% to 41%. In all cases the filtered models perform better than the
latent measures, which is to be expected given the properties of the filtered measures as
noted in Chapter 3.

The PbR dummy is significant in most models indicating that the policy is having an
effect on outcomes. PbR is not significant for latent 30-day mortality, and only significant
at 10% for filtered 30-day mortality. The coefficient on the filtered mortality indicator
is positive suggesting that since the policy mortality has increased by nearly 2%. The
coefficient on the latent and filtered year long mortality suggests that since PbR long term
mortality has fallen. The filtered model indicates that this decline is around 5%, where
as the latent model shows a different magnitudes, of about 9% for year long mortality.
The PbR dummy is also significant for latent and filtered 28-day readmissions as well as
filtered year-long readmissions. The coefficient on the latent variable indicates a 2% fall in
short term readmissions since PbR, however the coefficients on the two filtered readmission
variables indicate a rise in readmissions, of around 0.5% for short term readmissions and
over 2% in long term readmissions.

Few of the other explanatory variables are significant in the models. Average tariff,
age, caseload, deprivation and foundation trust status are not significant in any of the
models. Average co-morbidity of patients treated in hospitals is significant in all of the
latent mortality models, and for the latent year-long readmission model. It indicates
that more severe patients have lower mortality and higher readmissions. Average length
of stay is significant at the 10% level for latent 30-day mortality, as well as for year-
long readmissions and significant at the 5% level for latent short term readmissions. Its
coefficient is negative in all these models, indicating that higher average LOS is associated
with lower mortality and readmissions.

Table 5.3: Stroke Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.00275 -7.73e-05 0.00108 -0.000154 0.000611 2.55e-05 0.000800 2.22e-05

(0.00266) (0.000472) (0.00238) (0.000695) (0.000702) (0.000102) (0.00125) (0.000235)

Age 0.308 -0.0231 0.151 -0.0451 -0.182 0.00119 -0.168 0.00946

(0.298) (0.0983) (0.303) (0.152) (0.146) (0.0247) (0.239) (0.0460)

LOS -0.481* 0.0381 -0.282 0.0370 -0.162** 0.00206 -0.333* 0.0247

(0.281) (0.0750) (0.274) (0.109) (0.0757) (0.0145) (0.179) (0.0345)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Cases 0.00636 -4.84e-05 0.00313 -0.000566 0.00116 -0.000417 0.00235 9.44e-05

(0.00846) (0.00170) (0.00767) (0.00262) (0.00226) (0.000412) (0.00412) (0.000844)

Co-morbidity -13.21*** 0.825 -11.76*** 2.065 1.998 0.206 4.531* -0.221

(4.073) (0.958) (4.225) (1.425) (1.691) (0.245) (2.545) (0.512)

Deprivation 0.821 -0.185 0.594 -0.255 -0.825 0.0319 -0.819 -0.000105

(1.779) (0.561) (2.700) (0.878) (0.668) (0.129) (1.443) (0.236)

FT 0.911 0.657 -0.0790 1.228 -0.462 0.114 1.611 0.217

(2.176) (0.565) (2.454) (0.866) (0.701) (0.128) (1.367) (0.246)

PbR(06) -1.279 1.742* -9.362** -4.926*** -2.313*** 0.564*** -2.971 2.336***

(4.931) (0.961) (4.662) (1.449) (0.775) (0.207) (1.914) (0.434)

Constant -5.429 -0.183 8.024 0.128 11.10 -0.413 9.326 -1.148

(22.16) (7.390) (23.66) (11.36) (11.30) (1.865) (17.96) (3.657)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,035 1,035 1,035 1,035 1,035 1,035 1,035 1,035

R2 0.085 0.128 0.159 0.223 0.097 0.411 0.052 0.432

Hospitals 115 115 115 115 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Figures 5.5 and 5.6 present the relative performance over time for Stroke, as measured
by the latent and filtered outcome indicators respectively. Similar to AMI, the latent out-
come indicators have more extreme outliers than the filtered measures and much smaller
confidence intervals around each hospitals outcome. However, the trends in relative hospi-
tal performance in the different years are different. From 2002 to 2008, the latent figures
show a gradual decline in short term mortality, and a gradual increase in short term read-
missions. It is harder to discern a pattern for the long term performance indicators as
there is considerable overlap in the lines, however, it does appear that long term mortality
is lower in 2005 and 2008 as compared to 2002.
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Figure 5.5: Relative hospital performance over time for Stroke (normalized latent outcome indi-
cators).

The filtered indicators in Figure 5.6 are easier to read, partly because there are fewer
outliers and performance is smoothed out. The confidence intervals for each of the hospitals
are larger, indicating the higher levels of uncertainty associated with the filtered estimates.
Similar to AMI there is a convergence to the mean for all filtered outcome measures.
However unlike AMI where the mortality of the below average performers approached
zero in each year, in Stroke the hospitals with above average mortality approach zero in
the later years of the sample. This same pattern can be observed for the readmission
estimates, although to a smaller degree. Moreover a closer look at the year-long mortality
panel reveals that estimates in each year, and especially in 2008 are not converging towards
the mean (zero) but towards a value below it. Thus indicating that hospitals are converging
to slightly below average mortality in 2008.
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Figure 5.6: Relative hospital performance over time for Stroke (normalized filtered outcome
indicators).

The normalized latent and filtered outcome indicators are used in models 3 and 4
to understand the change in yearly relative performance of hospitals since PbR. The R-
squared values indicated that for each outcome, the filtered models are much better at
explaining the variance in the filtered outcomes. The R-squared values range from just
over 40% to just over 70% for the filtered models, compared to a range of nearly 5% to 40%.
The PbR dummy is significant for all mortality models. Where significant, the coefficient
is always negative. This indicates that since PbR, relative mortality rates have been
declining. The PbR coefficient is only significant for filtered long term readmissions, and
negative indicating the same effect for relative performance with regards to readmissions.

The tariff variable is only significant for the filtered mortality models, and suggests that
tariff is positively associated with mortality, such that an increase in tariff is associated
with worse mortality rates. co-morbidity is only significant for latent year-long mortal-
ity and readmissions, where higher co-morbidity is associated with higher readmissions.
Length of stay is only significant in the latent mortality models, where longer length of
stay is associated with lower mortality. Similarly caseload is associated with lower latent
mortality, and higher latent year-long readmissions. Age and deprivation are not signifi-
cant in any of the models. Foundation trusts are associated with higher latent short-term
mortality and lower filtered short-term readmissions.
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Table 5.4: Stroke Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000791** -0.000199 0.000982** -9.76e-05 1.25e-05 2.43e-05 -0.000326 -7.61e-05

(0.000365) (0.000142) (0.000489) (0.000165) (0.000239) (3.35e-05) (0.000355) (9.31e-05)

Age 0.0488 0.0261 0.243 0.0593 -0.159 0.00193 -0.00620 -0.0140

(0.111) (0.0338) (0.167) (0.0460) (0.156) (0.00675) (0.119) (0.0161)

LOS -0.168*** 0.00990 -0.139* 0.00677 -0.0449 0.00263 -0.0272 0.00431

(0.0508) (0.0175) (0.0777) (0.0224) (0.0278) (0.00466) (0.0673) (0.00992)

Cases -0.00486*** -5.18e-05 -0.00536*** 0.000374 0.00111 -0.000102 0.00500** -0.000447

(0.00142) (0.000575) (0.00168) (0.000695) (0.00114) (0.000134) (0.00196) (0.000388)

Co-morbidity -0.722 0.169 -3.266*** -0.247 -0.190 -0.114 -1.047 0.303

(1.070) (0.303) (0.834) (0.385) (0.424) (0.0853) (0.848) (0.209)

Deprivation -0.562 -0.0136 0.605 -0.0283 0.746 -0.0251 1.154 -0.0733

(0.735) (0.175) (0.891) (0.230) (0.658) (0.0709) (1.092) (0.104)

FT 0.703* -0.107 0.643 -0.289 -0.283 -0.0790** -0.0253 -0.0387

(0.369) (0.142) (0.417) (0.204) (0.243) (0.0325) (0.489) (0.0820)

PbR(06) -3.364*** -0.389*** -1.285* -0.439*** 0.285 -0.0302 -0.302 -0.172***

(0.568) (0.0879) (0.700) (0.115) (0.405) (0.0282) (0.720) (0.0593)

Constant 2.427 -1.490 -11.21 -4.786 12.35 0.123 1.911 1.406

(9.091) (2.431) (12.55) (3.243) (11.56) (0.546) (9.565) (1.277)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,035 920 1,035 920 1,035 920 1,035 920

R2 0.224 0.485 0.129 0.507 0.080 0.704 0.048 0.404

Hospitals 115 115 115 115 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Hip Replacement

The sample of data for Hip Replacement is longer for the other conditions, ranging from
1996-2008. The latent and filtered quality indicators for this time period are plotted in
Figure 5.7, using the slopes calculated from the latent measures in Chapter 2. The figures
indicate a very small increase in short and long term mortality, over the entire time period,
of 0.1% and 1% respectively. Moreover, they indicate a decline in readmissions of about
5% for 28-day readmissions and 3% for year-long readmissions. In all four panels the
trajectory of the latent and filtered estimates are very different, with the filtered estimates
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being much smoother, but also in the case of mortality, showing a different trend over
time.

Figure 5.7: Average hospital quality over time for Hip Replacement.

The results for models 1 and 2 are presented in Table 5.5. These models use the
latent and filtered outcome measures presented in Figure 5.7 to understand what factors
have contributed to the change in outcomes over time. The R-squared estimates indicate
that most models explain less than 6% of the variance in the dependent variables. The
exceptions to this is the filtered year-long mortality model which is able to explain nearly
13% of the variance in the dependent variable. Across all conditions, the the filtered model
has a higher R-squared value than the latent model. The PbR dummy is not significant
for most models, aside from the filtered short and long term readmission models, where it
is highly significant. The coefficients for these models indicate that since PbR short and
long term readmissions have fallen by around 0.05%.

Many of the other explanatory variables are also not significant across the different
conditions. Average tariff is not significant for any of the models, while average patient
age is only significant at 10% for filtered 30-day mortality. The coefficient indicates that
an increase in age leads to and increase in mortality. Average LOS is significant for latent
30-day mortality at the 10% level, showing a negative association. Caseload is positively
associated with filtered 30-day mortality, but negatively associated with latent year-long
mortality. Average co-morbidity is positively associated with latent and filtered 30-day and
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year-long mortality, such that hospitals with more severe patients have higher mortality
rates. Average deprivation is also significant, for latent 30-day mortality and filtered year-
long mortality, such that hospitals with more deprived patients have lower latent short
term mortality, but higher filtered year-long mortality. Finally, hospitals with foundation
status are significantly associated with higher filtered year long mortality, and filtered
short and long term readmissions.

Table 5.5: Hip Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000218 -1.82e-07 -0.000918 -2.76e-05 -0.000365 2.54e-05 -0.00121 6.87e-05

(0.000270) (9.04e-06) (0.000621) (2.17e-05) (0.00114) (3.35e-05) (0.00169) (4.69e-05)

Age 0.0363 0.00261* 0.0387 0.000375 0.137 -0.00525 -0.0315 -0.0110

(0.0462) (0.00136) (0.139) (0.00336) (0.246) (0.00588) (0.290) (0.00831)

LOS -0.115* 0.00253 -0.0646 0.00507 0.127 -0.00905 0.419 -0.0141

(0.0597) (0.00184) (0.142) (0.00410) (0.274) (0.00730) (0.423) (0.0103)

Cases -0.000717 6.83e-05** -0.0037** 7.61e-05 0.000207 -0.000158 -0.00116 -4.03e-05

(0.000615) (3.21e-05) (0.00152) (9.56e-05) (0.00277) (0.000155) (0.00417) (0.000205)

Co-morbidity 1.282* 0.0568* 3.486** 0.152* 0.886 -0.0995 0.451 -0.204

(0.745) (0.0327) (1.439) (0.0795) (3.219) (0.129) (4.834) (0.158)

Deprivation -0.748** 0.0186 -1.057 0.0421* -0.0675 -0.0121 -0.653 -0.0554

(0.371) (0.0127) (1.110) (0.0251) (0.907) (0.0486) (1.556) (0.0576)

FT -0.118 -0.00229 -0.233 0.0349* 1.506 0.0666** 2.020 0.0806*

(0.165) (0.00868) (0.326) (0.0205) (0.966) (0.0318) (1.405) (0.0410)

PbR(06) -0.122 0.00324 -0.137 0.00632 -0.0970 -0.0495*** -0.00600 -0.0463***

(0.0890) (0.00405) (0.151) (0.00940) (0.339) (0.0125) (0.480) (0.0156)

Constant -2.931 -0.237** 3.751 0.0806 -9.625 0.0439 4.633 0.334

(4.037) (0.110) (7.350) (0.277) (16.68) (0.470) (20.24) (0.640)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 826 826 826 826 826 826 826 826

R2 0.051 0.057 0.060 0.128 0.015 0.226 0.019 0.109

Hospitals 118 118 118 118 118 118 118 118

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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Figure 5.8: Relative hospital performance over time for Hip Replacement (normalized latent
outcome indicators).

Relative hospital performance over selected years in the sample are illustrated in Fig-
ures 5.8 and 5.9. Figure 5.8 plots the hospitals ranked by the different latent outcome
measures in 2002, 2005 and 2008. While this plot shows fewer outliers than the correspond-
ing figures for AMI and Stroke, they are still apparent at the far ends of the distribution.
Moreover, the range of the latent estimates, plotted on the y-axis, is much smaller than
those of other conditions. This indicates relatively little variation between hospitals in the
outcomes. The only exception to this is for year-long readmissions, where there is more
variation than other Hip outcomes. Similar to the other plots of this type, for the other
conditions, the confidence intervals for each hospital estimate are very small. Using the
curves to try to make a comparison of relative performance over time is very difficult as
the lines tend to overlap considerably. Only for year-long mortality is it possible to see
that the indicators at the ends of the distribution have converged closer to the mean in
2008, as compared to the other two years.

The same plots, using the filtered indicators, are constructed and presented in Figure
5.9. The confidence intervals are larger for the filtered measures as compared to the latent
measures. Also, the range of the indicators is also much smaller, such that there are no
outliers for any of the conditions. Moreover, when comparing the relative performance
of hospitals across the different years using the filtered indicators, it is still difficult to
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detect any apparent change. In fact the three curves for each year overlap almost entirely.
Interestingly, there does not appear to be any convergence to the mean for any of the Hip
Replacement outcome indicators, as we saw for AMI and Stroke. Indeed, looking closely
at the upper left hand panel, showing the trend in 30-day mortality we see the opposite.
The outcomes for 2008 are moving away from the mean as compared to 2005 and 2002.
However this change is very small and does not seem to be occurring in the other three
panels, where it is difficult to detect any substantive change.

Figure 5.9: Relative hospital performance over time for Hip Replacement (normalized filtered
outcome indicators).

Models 3 and 4, specified in equations (5.3) and (5.4), use the filtered and latent out-
come indicators plotted in Figures 5.8 and 5.9 as the dependent variable. The results from
these models are presented in Table 5.6. Similar to the results in Table 5.4, the R-squared
values are quite low suggesting that the latent models only explain between 1-8% of the
variance in most outcomes. Moreover the PbR dummy is only significant for 28-day filtered
mortality, where it indicates a decrease in readmissions. Tariff, co-morbidity, and foun-
dation trust status are all insignificant for all conditions. Caseload is significant in both
filtered readmission models, suggesting that increased cases are associated with declining
readmissions. Similarly, LOS is significantly positively associated with filtered short term
readmissions. Finally deprivation is negatively associated with both latent readmissions
such that an increase in deprivation is associated with an increase in readmissions.
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Table 5.6: Hip Replacement Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.000199 7.08e-06 -0.00101 7.34e-06 0.000334 -1.07e-05 0.00172 -2.34e-05

(0.000193) (5.01e-

06)

(0.000658) (1.31e-

05)

(0.000650) (1.36e-05) (0.00115) (2.16e-05)

Age 0.150*** 0.000532 0.277** 0.000836 0.299** 0.00151 0.302 -0.00455

(0.0391) (0.000860) (0.114) (0.00256) (0.143) (0.00279) (0.209) (0.00353)

LOS 0.0408 -0.000403 0.152* -0.00378 0.0325 -0.00606** -0.0463 -0.00189

(0.0312) (0.00100) (0.0850) (0.00256) (0.164) (0.00266) (0.149) (0.00404)

Cases 0.000558 2.94e-05 -5.43e-05 -7.47e-05 -0.000684 -

0.000194***

-0.00196 -0.000154**

(0.000344) (2.28e-

05)

(0.000830) (5.52e-

05)

(0.00167) (5.41e-05) (0.00237) (6.33e-05)

Co-morbidity 0.204 0.0245 2.762 0.0497 -1.026 0.0582 -3.144 0.0508

(0.596) (0.0189) (2.843) (0.0495) (3.001) (0.0586) (5.065) (0.0751)

Deprivation 0.241 -0.00965* 0.0460 -0.0190 -1.254** 0.00748 -2.244*** 0.0152

(0.307) (0.00556) (0.433) (0.0189) (0.585) (0.0153) (0.631) (0.0179)

FT -0.0153 -0.00211 -0.153 -0.00723 -0.253 0.0131 0.127 0.0406**

(0.0984) (0.00463) (0.239) (0.0124) (0.399) (0.0144) (0.465) (0.0195)

PbR(06) 0.0132 -0.000219 0.0277 -0.0179 -0.00520 -0.0242* -0.163 -0.0214

(0.0972) (0.00447) (0.211) (0.0125) (0.337) (0.0129) (0.427) (0.0156)

Constant -9.888*** -0.0968 -15.60** -0.0343 -23.32** 0.0619 -30.51* 0.509*

(2.580) (0.0653) (6.103) (0.211) (11.68) (0.214) (17.77) (0.274)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 826 826 826 826 826 826 826 826

R2 0.077 0.023 0.084 0.011 0.057 0.044 0.077 0.033

Hospitals 118 118 118 118 118 118 118 118

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Sensitivity Analysis

In order to make sure the results were consistent, but also to test if the effect of time
invariant characteristics, such as teaching status of hospitals, the models were also run
with random effects. The coefficients for these regressions are presented in Appendix
D.5. Indeed the results are consistent, such that the PbR dummies and other explanatory
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variables are significant for the same models indicating similar effects. Teaching status
like foundation trust status in not significant in all models, and varies considerably by
condition. It is significantly associated with higher AMI and Hip readmissions and lower
MI, CCF and Stroke mortality. The coefficients on the latent Stroke mortality outcomes
suggest that teaching hospitals have nearly 10% lower latent mortality than acute care
trusts. However, only in the MI model is it associated with the filtered outcome measures.

As patient selection is a commonly cited effect of case-payment systems we also ran a
model with interaction variables between the PbR dummy and the co-morbidity variable,
and between the PbR dummy and the deprivation variable. The coefficients for all models
are also presented in Appendix D.5. For many of the conditions the interaction effects show
that indeed the quality changes indicated in the results section have do to with changes
in the quality of severe or deprived patients. For AMI, the results of the interaction
model suggest that while the average deprivation of patients admitted to each hospital is
not a significant determinant of filtered quality before the policy, it is after. Indeed the
interaction terms show that since PbR hospitals treating more deprived patients experience
an increase in all mortalities and a decrease in short term readmissions. The interaction
terms for IHD, like AMI, show that prior to the policy hospitals with more severe patients
had higher filtered mortality outcomes overall, and lower year-long filtered readmissions.
Since PbR, hospitals with higher amounts of severe patients have lower mortalities and
higher year long readmissions. Also hospitals treating more deprived patients have higher
mortalities since PbR, but there is not a significant difference between quality, as indicated
by the mortality models, in these hospitals prior to the policy.

The model for Stroke also indicates that prior to PbR, hospitals with a more severe
patient population had higher mortalities. Since PbR, the coefficient on the interaction
term suggests that hospitals treating more severe patients have lower mortalities, and
lower readmissions. Yet the effect of PbR alone, as indicated by the PbR dummy, is to
increase 30-day mortality as well as short and long term readmissions. This appears to
indicate some sort of specialization, where certain hospitals known to be better at treating
Stroke patients get more severe patients and have better results. More in depth research
would be necessary to make any substantive conclusions on this.

The Hip interaction model drops the PbR coefficient due to collinearity, and so we are
unable to interpret the interaction effect. While, the interaction models for the remaining
conditions, MI, CCF and TIA, indicate marginal or no effects of a significant interaction
effect. In the case of MI the interaction terms indicate no difference in quality between
the hospitals with different amounts of severe and deprived patients since PbR. The CCF
and TIA models indicate the interaction effect is only significant for readmissions, such
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that year-long readmissions for hospitals treating more deprived patients are higher since
PbR for CCF and short term readmissions for hospitals treating more deprived patients
are lower since PbR for TIA.

5.6 Discussion

A payment systems is concerned with how, and how much, health care providers are paid.
The mode of payment can create powerful incentives affecting a provider’s behaviour and
these changes in turn will affect quality, quantity, costs, choice of alternative medical
recommendations to various patients, and hence the allocative efficiency, of health inter-
ventions. While payment systems date back to the foundations of medicine itself, new
payment systems emerge as a result of a need to address topical issues, such as rising costs
or demands for increased transparency and accountability. There are various positive and
negative incentives attached to any payment system. Different modes of payment are thus
important to consider not only on a theoretical basis, but also in practice as they will be
shaped by wider system and organizational factors.

When looking at the monetary incentives within any single health system, we may
find different incentives, or different effects of policies, on different conditions due to the
varying degrees of ease associated with reducing costs and/or improving quality for diverse
medical conditions. Indeed this is discussed in much more detail in Chapter 4, where we
see that the treatment quality of hospitals for different conditions may not always be linked
to the same factors. Thus the interpretation of quality change in one area is not always
straightforward to interpret. This chapter attempts to evaluate the effect PbR has had on
the quality of hospitals by assessing the change in our latent and filtered outcomes since
the policy’s implementation in the seven conditions studied throughout this Thesis. Our
results confirm that the policy has had differential effects across the seven conditions.

Models 1 (equation (5.1)) and 2 (equation (5.2)) investigate the latent and filtered
measures of all hospitals using a fixed effects model in order to determine if and how the
quality indicators have changed since the implementation of the PbR policy. The depen-
dent variables for Models 3 (equation (5.3)) and 4 (equation (5.4)) are slightly different, in
that they represent each hospitals relative performance in every year. However, all depen-
dent variables are calculated using the same underlying methodology. The first interesting
result in all four models was that the filtered and latent outcome models did not always
indicate the same effect. In almost all cases the coefficients had a different magnitude
indicating that the policy explained a different amount of change in quality. This is to be
expected as the filtered estimates, by construction, smooth out the latent estimates and
have a much smaller ranges. Thus the coefficients on the PbR dummy in these models
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will, in most cases, indicate a smaller change in quality.
There were also instances where the PbR dummy was significant in the latent model

but not the filtered model or the other way around. Given that the filtered variables have
been show to have a much stronger signal to noise ratio (Chapter 3), we can assume that
where the latent variables are significant and the filtered measures are not the model is
picking up noise in the estimates, however in the reverse scenario the noise is obstructing
the true effect. The later effect seems to be especially pronounced for the readmission
models, where in most cases the latent models are not significant while the filtered models
are.

The construction of the filtered estimates takes into account the variable’s time series
information as well as its relationship with the other indicators. This adjustment elimi-
nates considerable measurement error, still present in the latent variables, and smooths
out large amounts of their variation. Of the four outcome variables studied, our analysis
in Chapter 3 found that year-long readmissions tend to be very noisy while the year-long
mortality estimates almost always have the strongest signal. Indeed, in models 1 and 2,
the PbR dummy is significant in the filtered year-long readmissions models and not the
latent models for all seven conditions. However, when looking at the year-long mortality
models, this is only the case for CCF, which of the seven conditions is the only one where
the signal to ratio estimate for year-long mortality is relatively weak.

The third difference between the PbR effect on the filtered and latent models was in
instances where both models were significant but their coefficients had a different sign, in-
dicating that the policy had different effect on quality. This only occurred in one instance,
regarding Stroke 28-day readmissions. In this case, because of the filtered measure’s abil-
ity to smooth out variations over time, and take into account relationships between the
different outcome measures, we chose the interpretation of the filtered model as the ‘true’
effect on quality. Indeed the R-squared value of the filtered model, which is about 40%,
suggests a better fit of the data compared to the latent model where it is about 10%.
Moreover, in Models 1 and 2, for all of the outcome measures the R-squared estimates are
higher for the filtered models than the latent models, indicating that it is a better fit to
the data.

The differences in significance, magnitude and direction between the coefficients in
the latent and filtered models do not only apply to the coefficient on the PbR dummy,
but also to those of the other explanatory variables. We interpret these results with
the same approach as described above for the PbR coefficient, such that when there are
differences in significance, magnitude and direction the interpretation of the filtered model
is preferred. Yet, when examining the other explanatory variables there are some other
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interesting differences that appear. Recall that the latent measures, and by extension
the filtered measures, have already been adjusted for some of the individual patient level
characteristics such as patient age, co-morbidity and deprivation (see Chapter 2). However
in many instances across the four models and various conditions, we observed that the
average of these indicators for each hospital were significant. In these cases the models are
suggesting that there are differences in quality between hospitals that have different types
of patients, regardless of the differences this has on the individual patient. For example, for
most of the outcome indicators and most conditions, hospitals that had a more deprived
population, on average, had higher mortality outcomes. While more deprived patients
are expected to have worse outcomes, for most conditions there appear to be some wider
systematic factors influencing the quality of hospitals in deprived areas.

The average co-morbidity of population is also often significant, however not always
in a manner that suggests that hospitals treating more severe patients on average have
worse outcomes. Indeed there are a few instances suggesting the opposite, most of these
instances appear in the latent models, and only in one case in a filtered model (for IHD
mortality). If we were to interpret only the latent models, the results would suggest that
in some cases hospitals treating more severe populations on average have better outcomes,
possibly indicating selection. However, the interpretation of the filtered model suggests
that in the majority of cases this effect is noise that was not completely eliminated by
the risk adjustment in the patient level regressions. This highlights the importance in the
selection of quality metric used to analyze quality changes, a finding highlighted in most
of the previous chapters, as the type of indicator used will influence findings substantially.

Indeed, some of the findings from the previous chapters need to be considered in the
interpretation of the models in this chapter. For instance, when trying to understand the
overall implications of the PbR policy on quality, we need to consider the relationship of
the different indicators to each other. In Chapters 2 and 3 we noted that mortality and
readmissions are often negatively associated, such that high readmissions are not always
an indicator of bad quality. For instance when very severe patients are treated at a good
hospital they are more likely to survive, but are also more likely to have a difficult recovery
and be readmitted. In these cases readmissions will be higher for good quality hospitals,
as the patients would have likely died in the poor quality hospital. Taking these findings
into account it is easier to interpret the findings generally and by condition. Overall we
find that PbR does have significant effects on quality, as measures by our eight outcome
indicators.

Aside from influencing the levels of quality we find the that policy also influences the
distribution of quality as well as the relative performance of hospitals with one another,
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which is discussed later on. Yet, the effects the policy has had on outcome indicators vary,
such that it is more beneficial for some conditions than others. In almost all instances
PbR is associated with declining mortality. The is the most pronounced for AMI, where all
quality indicators in Models 1 and 2 are significant and negative, and least pronounced for
MI and Hip Replacement, where none of the quality variables are negative. The amount of
change also varies by condition, ranging from highs of 5−6% declines in AMI and IHD, to
mid range changes around 2−3% for Stroke, MI, TIA and CCF and small changes around
0.03% for Hip Replacement. Moreover, while Stroke year-long mortality is declining since
PbR’s introduction, filtered 30-day mortality is rising. This suggests that while the policy
has benefited longer-term outcomes and those who survive their initial Stroke, the cost
containment may have had adverse effects on initial rates of survival.

The results on readmissions are more mixed, for AMI and IHD, short and long term
readmissions seem to be unequivocally rising. Although in both cases this is only around
1−2%. The filtered models suggest that this is also the case for Stroke readmissions, albeit
with a smaller increase in short term readmissions of about 0.5%. Short term readmissions
are also rising for MI, again around 2%. For the remaining conditions, CCF, TIA and
Hip Replacement – the models suggest falling readmissions. For Hip Replacement this is
by a very small amount, only 0.05%, but in both short and long term readmissions. For
CCF, this is experienced only in long term readmissions, by about 2%, and for TIA only
in short term readmissions by around 0.5%. Yet as noted previously, extra caution needs
to be taken in the interpretation of the effects of the policy on readmissions, as higher
readmissions are not always an indication of poor quality. The effect on readmissions
needs to be interpreted alongside the effect on the other explanatory variables, such as
co-morbidity and deprivation, as well as the mortality outcomes with which they are
correlated. For example, we know from Chapter 3 that mortality and readmissions are
negatively associated for the conditions of Stroke and MI, so the increases in readmissions
could in fact be indicative of quality improvements.

In order to understand the entire effect on quality however it is not enough to compare
the change in levels of quality. It is also of interest to understand what occurs to the
relative performance of hospitals. In the English scenario we expect there to be some
effect in this area because of the way the national tariff is set. As the national tariff is
determined by average costs across hospitals it is likely to incentivize average performance.
Models 3 and 4 examine changes in relative hospital performance within each year, and
the effect PbR has had on this. For MI and CCF there appears to be no significant effect
of PbR on relative performance, and for Hip Replacement and TIA it is only noticeable
in a small subset of the models. Yet in AMI, IHD and Stroke there appears to be a
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strong effect on relative performance, such the policy is encouraging hospitals to converge
to average performance. In practice the interpretation of this effect varies depending on
what is happening to mean performance during this period. For example, Models 3 and
4 suggest that hospitals treating AMI performance are converging to the mean for both
mortality and readmissions. The coefficients on the PbR coefficient suggest that from year
to year there are fewer hospitals with below average mortality, and fewer hospitals with
above average readmissions. However, from Models 1 and 2 we know that mortality during
this period is falling, and readmissions are rising. Thus while hospitals are converging to
the mean, it is the hospitals with above average mortality that are improving and the
hospitals with below average readmissions that are worsening, since the mean is changing.

Using the four models together, we can gather a more complete picture of the changes
occurring in quality after the implementation of the PbR policy for each condition. As
already noted above, Models 1 and 2 indicate that mortality across hospitals is declining
by about 5%. Moreover the explanatory variables indicate that hospitals with more severe
and more deprived patients on average will have worse outcomes. The results from Models
3 and 4, when interpreted alongside the results in Models 1 and 2, tell us that the major
improvements in mortality are driven by the low performing hospitals which are able to
improve mortality gradually to meet the average national level. However, this improvement
is most difficult for hospitals with higher amounts of severe and deprived patients. The
models are also able to tell us about the performance of readmissions during this period.
As already noted Models 1 and 2 indicate that readmissions for AMI are rising, moreover
the same models indicate a negative association between readmissions and average co-
morbidity and deprivation of hospitals. This suggests that the rise in readmissions may
indeed be a reflection of worse quality as the more deprived and severe patients, which
are more likely to be ‘marginal patients’, are correlated with lower readmissions. Indeed,
the results from Models 3 and 4 also suggest that readmissions are falling from hospitals
with above average readmissions. Moreover the models with the interaction terms indicate
that since PbR hospitals treating more deprived patients experience and increase in all
mortalities and a decrease in short term readmissions. As we have already controlled
for these variables at the patient level in the construction of the quality estimates, this
indicates some sort of systematic bias. That is in AMI, PbR is contributing to some other
behaviour that may may be resulting in improved quality for less complex patients, but
worse outcomes for the most severe and deprived. Theory suggests that patient selection
may have this effect, however the cases we are investigating for AMI are non-elective
making selection very difficult. We look at AMI in depth in the next chapter to try and
understand in more detail what factors are at play.
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Interestingly, the policy appears to have had a much smaller effect on MI. Indeed
models 1 and 2 indicate that the policy had no effect on mortality, but did increase short
and long term readmissions by 2-4%. However, we know for this condition that read-
missions and mortality are negatively correlated. Moreover, we find that co-morbidity is
not significantly associated with readmissions but deprivation is, such that more deprived
patients have lower readmissions. MI models 3 and 4 suggest that PbR has had no effect
on relative performance of hospitals, and neither has co-morbidity and deprivation. The
interaction model, also does not show any significant interaction between the policy and
hospitals treating more severe or more deprived patients who are receiving poorer quality
care. Taken together the results indicate that on the whole the policy has had limited ef-
fects for MI patients, although it appears to have disadvantaged the treatment of the most
deprived patients. The policy also appears to have had a limited effect on Hip Replace-
ment outcome, where the results from Model 2, indicate that PbR was only significant in
influencing readmissions, such that they fell but only by about 0.05%. Moreover, the PbR
dummy was not significant at all in models 3 and 4 indicating that relative performance
did not change.

While the effects for AMI and MI appear to be mixed, suggesting that the policy has
only benefited the less severe or less deprived patients, we find more positive results for
IHD and CCF where there appear to be genuine quality improvements all around. The
PbR coefficient on IHD models 1 and 2 suggests that mortality has been declining by about
3-6%. Long term mortality outcomes are worse for hospitals with higher numbers of sever
patients, but deprivation is insignificant in all the mortality models. IHD readmissions
have been rising by 2-3%, However, in all cases hospitals with more deprived patients
have lower readmissions. The results for models 3 and 4 indicate that mortality is rising
from year to year relative to the mean. As the mean is falling, this indicates that the
improvements in mortality are driven by the hospitals with above average mortality whose
mortality is decreasing from year to year since the implementation of the policy. In models
3 and 4 the PbR dummy is not significant for either of the filtered readmission models.
The average co-morbidity variable is also insignificant. Although, the average deprivation
variable indicates that more deprived patients have higher readmissions. Thus, unlike
AMI, the improvement in mortality does not appear to be at the expense of severe patient
groups but a genuine quality improvement. Yet, quality remains worse for hospitals in
deprived areas. The results from interaction models confirm this interpretation as they
indicate that since PbR’s implementation, hospitals with higher amounts of severe patients
have lower mortalities and higher year long readmissions.

Similarly, the results from CCF Models 1 and 2 indicate a decline in mortality since
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the implementation of PbR at around 0.5% for 30-day mortality and nearly 3% in year-
long mortality. The results also indicate a decline in year long readmissions of about
1.5%. Average co-morbidity and deprivation of patients for the different hospitals are not
significant in any of these models. Moreover, Models 3 and 4 suggest that none of these
variables are significant in influencing hospitals relative performance as measured by the
filtered indicators. These results taken together suggest that the policy has resulted in
genuine quality improvements across hospitals.

The results for TIA also suggest an overall improvement in quality. Models 1 and 2
indicate declines in mortality of about 0.6% for 30-day in hospital mortality and nearly 3%
for year-long mortality. Moreover, the filtered normalized indicators in model 4 indicate
that there is no significant change in relative performance. In neither models 2 or 4
is average co-morbidity significant. While higher average deprivation is associated with
higher relative readmissions in Model 4, PbR is not significant in that model.

However, the results for Stroke are more mixed. Model 2 suggests that since PbR
30-day mortality is rising by nearly 2%, however year-long mortality is falling. While
this is coupled with increases in 28-day and year-long readmissions of 0.5–2%. While
the coefficient on the PbR dummy is negative for all three filtered mortality indicators
in Model 3, the interpretation differs because of the different coefficients in Model 2. As
30-day in-hospital mortality was increasing, the negative coefficient in Model 4 indicates
that the hospitals with below average mortality are worsening from year to year. However,
other two mortality indicators were decreasing since PbR, thus the negative coefficient for
year-long mortality indicates a decline in the mortality of the worse performing hospitals.
The PbR dummy is insignificant in Model 4 for short term readmissions, suggesting that
the small increase indicated in Model 2 is felt across hospitals. However, as mortality and
readmission are negatively correlated this can be an indication of improved quality. The
PbR dummy for year-long readmissions in Model 4 is significant and negative. As year-
long readmissions have been increasing since PbR, this tells us that they are increasing
for the hospitals with below average readmissions.

While average co-morbidity and deprivation are not significant in any of the filtered
models. The Stroke interaction models indicate that after PbR, hospitals treating more
severe patients have lower mortalities, and lower readmissions. Yet the effect of PbR alone,
as indicated by the PbR dummy, is to increase 30-day mortality and increase readmissions.
As mentioned previously this could be an indication of specialization, where hospitals that
are known to be good providers of a certain treatment are taking on more cases in this
area. Theory indeed suggests that under a case-payment system, specialization will be
incentivized, as it allows providers to make profits in areas where they are already efficient.
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However, more research is needed to determine if this is what is going on in the case of
Stroke.

Yet, in interpreting the effect of these models it is important to point out that the
way we have classified these conditions, by ICD-10 groups is much broader than individ-
ual HRGs. Indeed within any one condition, we may be looking at the performance of
many HRG groups, which will have varying performance. While it would be desirable
to investigate the effect on each HRG group instead, as this is the unit of payment and
more likely to be associated with quality, the small numbers within each group make this
more difficult and less methodologically sound. The following chapter will look in more
detail at four specific HRG groups to try and understand differences in performance since
the implementation of PbR, however for the purposes of this chapter we would like to
acknowledge that in our interpretation of the change in quality of treating conditions we
will face limitation in understanding how the true quality effects vary by HRG group.

To conclude, we find when applying the hospital quality measures developed in previous
chapters to assess a policy question, that the filtered measures do indeed perform better
than their latent counterparts. While the filtered and latent models indicate the same
trends in readmissions and mortality outcomes in most cases, there differences in the
magnitude of the effect they indicate. Moreover, while the latent models show more of
the other explanatory variables to be significant, they have lower R-squared values. These
differences reflect the filtered measure’s ability to better eliminate noise from the latent
measures and better capture the true quality signal. As the filtered measures are able to
filter out noise and adjust for time trends and associations between outcome indicators
they are able to capture more of the true relationships occurring. For these reasons we
believe in this type of analysis the filtered measures are a more accurate measure of quality.

The other main finding of this chapter is that we are able to link the implementation
of PbR and to quality of hospital care. We find that PbR has a stronger effect on some
conditions, such as AMI, Stroke and IHD, than others, such as TIA, MI and CCF. More-
over, while the PbR policy has reduced mortality across most conditions, it has had all
around positive effects for only a few of the conditions studied, such as MI, IHD, CCF
and TIA – yet for CCF and TIA these are very small improvements. In AMI, where there
have been large changes in mortality and readmissions, we find that the changes are not
beneficial for all hospitals, and it appears that those treating the most deprived and severe
patients have had to skimp on quality. Finally the results for Stroke are most difficult
to disentangle. It appears that the most severe patients have benefited the most as has
fallen, yet the less severe have had worsening quality in terms of rising mortality. While
readmissions are rising - this cannot be unequivocally interpreted as a decline in quality
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due to the indicator’s association with mortality. This results could be explained by some
sort of adverse behaviour such as quality skimping, but more evidence is required to tease
out the true underlying effect. Overall we find that the PbR policy in England has had a
variable impact on health system performance.
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6 The effect of Payment by
Results on the activity and
quality of AMI and Hip
Replacement

6.1 Introduction

Health care providers are economic agents. While there are competing theories as to what
drives a provider’s behaviour, be it utility, income, profit or quantity, most researchers
believe that money is an important variable. In addition, asymmetries of information
between providers and users, and providers and third-party payers, coupled with often
incompatible utility functions, mean the provider may not always be the perfect agent.
Driven by their own economic motives, providers will act in their own best interests.
However, money can be used to alter providers behaviour towards the interests of the
health system and/or their patients. For these reasons the consideration of different pay-
ment systems and the incentives attached to them offer interesting possibilities to policy
makers.

England’s PbR policy was introduced in 2003/04 radically changing the way in which
hospitals are paid. Moving from a system where hospitals received block contracts for
activity, hospitals payment is now determined by the activity they undertake which is
reimbursed at a national tariff determined by national average NHS provider costs. This
type of payment system, known as a case payment system, has become increasingly popular
in the last two decades and is being adopted throughout the world. Evidence from the
experiences of different countries using this type of payment system suggests mixed results
as to the impact it has on quality and efficiency. In part the extent to which these benefits
are accrued seem to be closely related to overall system factors and organization of health
services, but also largely associated with the design of the case-payment itself.

There are many desirable benefits attributed to a case-based payment system and help
to account for its recent popularity, such as increased transparency and efficiency. These
benefits result as the system fosters hospital investment the collection of cost information
that is used to calculate future payments. Moreover, as hospitals are paid according
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to the activities they perform, they are encouraged to respond to patient preferences
and demands. However, for a system to accrue these benefits the policy needs to be
carefully designed to ensure that costs are collected accurately and payments are set
in a way that successfully takes into account patient heterogeneity. Failure to do so
can have serious impacts on behavioural incentives, and in the worst case can lead to
providers turning severe patients away, discharging patients too early, skimping on quality
of care or even reporting false activity. To avoid such unwanted behaviours, the payment
made to hospitals must be able to distinguish between costs that occur because of patient
heterogeneity and the costs that arise because of inefficient service provision.

Heterogeneity in a case payment can be accounted for in different ways, ultimately all
of which are important. One important feature is the number of ‘case groups’ that are
defined in a system. There can be few broad case categories, or much finer groupings based
on more detailed clinical information. Underlying the decision of how detailed to make a
payment system lies a trade-off: a system with fewer and broader payment categories will
be easier and cheaper to monitor and administer, at the expense of increased fairness and
the increased possibility of creating adverse selection incentives, or vice versa. Another
important feature is how to set the rate for the different cases, the rate can reflect average
costs across a subset of providers, or the whole set of providers; marginal costs and even
normative costs. Indeed there is a growing literature on the implications of setting the
case payment rate, noting the different options and the advantages and disadvantages of
each (Ellis and McGuire, 1996; Schreyögg et al., 2006; Street and Maynard, 2007).

Since the implementation of PbR, some work has been done to assess the impact of
the policy on quality, including our work presented in Chapter 5. In the English setting,
Farrar et al. (2009) find evidence to suggest a mild increase in acute hospital activity along
with a reduction in unit costs. Using in-hospital mortality, 30-day post surgical mortality
and emergency readmission after hip fracture as measures of quality, they find no evidence
to suggest quality has declined after the implementation of PbR. The Audit Commission,
2005 reported little difference in activity growth or efficiency in foundation trusts, after the
first year of PbR, apart from a small increase in length of stay. They report no evidence
of gaming amongst the early implementers although do mention cases of perceived gaming
having been reported by some Primary Care Trusts (PCTs), including resubmission of
patients using old referrals, artificial discharge of payments and coding and/or undertaking
multiple interventions that are unnecessary in order to increase revenues. Research has
also indicated a change in year to year activity among cases (Farrar et al., 2009; Sussex and
Farrar, 2008; Rogers et al., 2005) although in all authors note that it is unclear whether
this represents a genuine change in activity or a change in the way activity is recorded.
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Evidence from other countries on the impact of DRG pricing has considered vari-
ous aspects. Keeler et al. (1990) find an increase in sickness at admission following the
introduction of the Prospective Payment System (PPS) as well as increased expected
mortality. Other studies of the US Medicare PPS system, indicate reductions in average
hospital length of stay (Feder et al., 1987; Newhouse and Byrne, 1988; Shen, 2003) and
reductions in costs (Cutler, 1995; Shen, 2003), yet with apparent increases in the length
of stay of long-stay patients (Newhouse and Byrne, 1988). There was also a short term
noticeable shift of treatment from DRG financed inpatient settings to outpatient clinics
which were financed differently (Cutler and Reber, 1998; Ellis and Vidal-Fernandez, 2007;
Newhouse and Byrne, 1988). (Newhouse et al., 1989) found that patients in unprofitable
DRGs were more likely to be found in ‘hospitals of last resort’, also suggesting patient
selection by profitability. Other evidence of patient selection was presented by Meltzer
et al. (2002) who found greater cost decreases for high cost patients than low cost patients,
mirrored by a pattern of reductions in more expensive DRGs. Kahn et al. (1992) note
increased readmissions after patients are discharged quicker from hospital, yet do note
improved processes of care for specific conditions (Kahn et al., 1990, 1992). Similarly,
Ellis and McGuire (1996) identified evidence of selection, under Medicaid’s mental health
services in New Hampshire where expenditures for the sickest patients were reduced under
prospective payment. Carter et al. (1990) investigated changes in Medicare’s Case Mix
Index between 1986-1987 to identify any instances in DRG creep or upcoding, yet found
no evidence to support such behaviour.

Evidence from other countries on the effects of activity-based financing show that while
‘upcoding’ and gaming do exist in the system, these are a rather marginal phenomenon.
There are also reports of down coding, especially in Sweden (HOPE, 2006). There is
limited research on the effect case-based funding has had on the efficiency and quality of
care on these health care systems due to lack of reliable data, and/or a limited time frame
since introduction. Indeed, instances where gaming or upcoding that have been found to
be detrimental to quality of care have been few. In the Australian case, Ellis and Vidal-
Fernandez (2007) reported the gradual appearance of diagnostic coding creep over ten
years of DRGs. While in Austria most evidence of gaming and upcoding took the form of
cost shifting (Sommersguter-Reichmann, 2000; Rauner et al., 2003). In the Swedish case,
Diderichsen (1995) finds an increase in hospitalization rates across diagnostic categories
along with a decrease in length of stay for the age group 80+ after the introduction of
DRGs.

The aim of this chapter is to explicitly consider, in a manner not so far undertaken,
whether the introduction of the PbR has changed the recording of activity within the
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English NHS system. The chapter will focus on the outcomes of four case groups, two in
AMI and two in Hip Replacement. The first condition was chosen as a largely emergency
treatment for heart attack, where the choice of hospital is argued to be of secondary
importance, while the latter is a common elective procedure. In the previous chapter
we identified some interesting quality effects the introduction of this policy had on these
conditions. Indeed, careful investigation of the levels of activity and diagnoses revealed
interesting patterns that would suggest upcoding. However, the literature notes that
during this time period substantial changes have been made in the way data is recorded. It
is thus likely that what appears at a glance to be upcoding, may simply be a manifestation
of better coding. For lack of better terminology we continue to use the term ‘upcoding’ in
this chapter to refer to an increase in activity in a similar more expensive case group at
the expense of another due to coding. In this chapter we are concerned with determining
first if the suspicious activity changes we observe are indeed upcoding, second what the
driver behind this upcoding is, and thirdly what, if any, effect has this had on quality.

In order to analyze the underlying reasons for the changes in hospital activity, and the
possible implications this has had for quality of care, a three step process was undertaken
for both HRG pairs. In the first step a series of regressions are used to examine whether
there substitution occurring between the two HRG groups, and how this is associated
with PbR and the HRG tariff. The second step examines the rate of change in each of the
HRG groups as compared to the change of other factors, to determine what is driving the
apparent substitution effect. The third step aims to investigate what effect the activity
change is having on quality of care. This is done by using the latent and filtered quality
measures constructed in the previous section in a series of regressions to determine what
effect the change in activity has had on quality. If the PbR system has led hospitals to
be more systematic and careful in their coding practices as incentivised by the change in
the payment system this indicates an efficiency gain. However, if upcoding is taking place
as a profit enhancing activity this is the sign of an inefficient system. Our findings are
important to better understand some of the incentives created from the implementation
of the PbR policy.

6.2 Model Specification and Estimation

The literature from DRG experiences in most industrialised countries indicates an increase
in activity following the adoption of a case payment system. Moreover theory suggests that
this type of system provides the incentive to increase activity in higher paying DRGs at the
expense of ones reimbursed at a lower rate. Using data corresponding to the diagnostic
and procedural codes linked to AMI, MI, IHD, Stroke, TIA and Hip Replacement, we
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studied the trend in cases of all HRG groups in our sample over time. Where HRG codes
had overlapping diagnostic or procedural codes we were particularly interested to see how
activity between the cases changed. In 2008 the English system had approximately 540
HRG groups. As presented in Table 6.1, we identified certain HRG pairs corresponding
to the conditions in our data where there could be theoretical possibility of upcoding.
However in most of these groups the number of cases per year did not exceed 100, making
any robust statistical analysis difficult. In most cases where the numbers were large enough
activity change in the two groups moved in the same direction. Two HRG pairs, with large
sample sizes one for AMI cases and one for Hip Replacement cases, presented an interesting
relationship in which activity increased for the higher paying HRG groups while decreasing
for the lower paying groups. These are of further interest as one is predominately an
emergency admission, while the other is a common predominately elective procedure.

Table 6.1: HRG groups in data sample.

Condition ICD-10/ OPCS
4.3 codes

HGR pairs investigated

AMI ICD-10:
I21

• E11 (AMI without complications) & E12 (AMI with
complications)

MI ICD-10:
I22, I23

• E11 (AMI without complications) & E12 (AMI with
complications)

IHD ICD-10:
I20, I25

• E22 (Ischemic heart disease w/out intervention >69 or
with cc) & E23 (Ischemic heart disease with/out
intervention <70 or without cc);
• E24 (Hypertension w/out intervention >69 or with cc)
& E25 (Hypertension with/out intervention <70 or
without cc);
• E35 (Chest Pain w/out intervention >69 or with cc) &
E36 (Chest Pain with/out intervention <70 or without
cc);
• E40 (Other cardiothoracic or circulatory procedures
w/out intervention >18) & E41 (Other cardiothoracic or
circulatory procedures <19).

CCF ICD-10:
I11.0, I13.0, I25.5,
I50.0, I50.1, I50.9,
J81X

• E18 (Heart failure or shock w/out intervention >69 or
with cc) & E19 (Heart failure or shock w/out intervention
<70 or without cc)
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Condition ICD-10/ OPCS
4.3 codes

HGR pairs investigated

Stroke ICD-10:
I60-I67

• A22 (Non-Transient Stroke or Cerebrovascular Accident
>69 or with cc) & A23 (Non-Transient Stroke or
Cerebrovascular Accident <70 or without cc)

TIA ICD-10:
G45.0-G45.4,
G45.8-G45.9,
G46.0-G46.8

• A20 (Transient Ischemic Attack >69 or with cc) & A21
(Transient Ischemic Attack <70 or without cc)

Hip OPCS4.3:
W37-W39
W46-W48 W58

• H80 (Primary Hip Replacement Cemented) & H81
(Primary Hip Replacement Uncemented);
• H82 (Extracapsular Neck of Femur Fracture with
Fixation with cc) & H83 (Extracapsular Neck of Femur
Fracture with Fixation w/out cc);
• H84 (Intracapsular Neck of Femur Fracture with
Fixation with cc) & H85 (Intracapsular Neck of Femur
Fracture with Fixation w/out cc);
• H86 (Neck of Femur Fracture with Hip Replacement
with cc) & H87 (Neck of Femur Fracture with Hip
Replacement w/out cc);
• H88 (Other Neck of Femur Fracture with cc) & H89
(Other Neck of Femur Fracture w/out cc).

More specifically, as presented in Figure 6.1, we found the activity for the AMI HRG
code E11 (AMI with complications) to be rising over time, while the activity for HRG code
E12 (AMI without complications) was falling. This trend was consistent across the whole
sample, and within hospitals, such that activity in E11 increased by about 6000 cases,
almost doubling over the period 2000-2008, and activity in E12 fell to 5000 cases below its
initial level in the same period, with the majority of the decline concentrated in the period
2004-2008 (Figure 6.1). A similar trend was observed for HRG pair H80 (cemented Hip
Replacement) and H81 (uncemented Hip Replacement), where activity increased for the
more expensive H81 and declined for H80 from 2004 onwards (Figure 6.2). While cemented
Hip Replacement and uncemented Hip Replacement are two different procedures, both are
used by doctors to treat patients who require a hip replacement. Cemented replacement
is the older technique (developed about 40 years ago) while uncemented replacement was
developed 20 years ago to avoid the possibility of loosening parts and the breaking off of
cement particles which can occur in the cemented procedure. However, depending on the
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patient’s condition and age a cemented procedure may be preferable as there is a shorter
and easier recovery period. For our purposes we are specifically interested in the sudden
change in activity between these two conditions, as no major medical breakthrough was
made during the time period we are investigating we can assume that the change in activity
is attributable to some other factor.

Figure 6.1: Average AMI cases
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Figure 6.2: Average Hip cases

Detecting Activity Change

The first step of the analysis uses panel data to analyse the activity changes observed in
the HRG groups over the period 2000-2008 for AMI and 1996-2008 for Hip Replacement.
By modelling the activity in the higher paying HRG group against the activity in the
lower paying group, and controlling from other hospital factors, we can detect whether
there is a substitution effect taking place. A fixed effects model is estimated as it allows
us to control for the individual time invariant characteristics of the hospital in order to
assess the predictor’s net effect. Time dummies are also included to control for within
year variation.

E11 = α + β1E12ht + β2Tht + β3
∑

Xht + β4PbR + β5
∑

Cht + εht (6.1)

H81 = α + β1H80ht + β2Tht + β3
∑

Xht + β4PbR + β5
∑

Cht + εht (6.2)

In equations (6.1) and (6.2), the variables E11, E12, H81 and H80 denote the number of
cases admitted to each hospital, h, each year, t, for those HRG groups. Tht denotes the
average tariff received by each hospital for the group of conditions being investigated. In
both models a number of hospital characteristics, Xht, are controlled for including average
age, average deprivation, average co-morbidity and average length of stay of patients
admitted for the condition being investigated. In model (6.2), for Hip Replacement where
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both elective and emergency procedures are treated, an additional variable considering how
many elective patients were admitted is also included. PbR is a dummy variable indicating
the implementation of the PbR policy, this is set at 2005 for the AMI model and at 2006 for
the Hip Replacement model, indicating the different introduction of payment for elective
and non-elective procedures. The variable Cht indicates a group of dummy variables that
indicate whether the hospital is a foundation trust, teaching hospital or independent sector
treatment centre (ISTC)1. Some of these variables represent time-invariant characteristics
and are thus differenced out of the equation under fixed effects. However, they are included
in the random effects estimations conducted in the sensitivity analysis.

Following the estimation of equations (6.1) and (6.2), we modify the model to inves-
tigate how the rate of change in activity with the higher paying HRG groups is related
to the rate of change in activity in lower paying groups, and the rate of change of other
independent variables. This is done taking the value of the year-to-year difference in the
different variables, such that the value for time period t + 1 is subtracted from time pe-
riod t. Note in models (6.1) and (6.2) neither the dummy variable controlling for the
introduction of PbR is differenced nor the time dummies.

∆E11 = α + β1∆E12ht + β2∆Tht + β3∆
∑

Xht + β4PbR + β5
∑

Cht + εht (6.3)

∆H81 = α + β1∆H80ht + β2∆Tht + β3∆
∑

Xht + β4PbR + β5
∑

Cht + εht (6.4)

The variables included in equations (6.3) and (6.4) are the same as those specified in
equations (6.1) and (6.2), only that they indicate differences rather than levels as indicated
by the symbol ∆. Thus the explanatory variables are as outlined above. In all models we
are interested in the significance, sign and magnitude of the coefficient β1 which denotes
the marginal elasticity of substitution between the two HRG groups. A negative sign will
indicate that there is indeed a substitution effect, while the magnitude will indicate the
rate of substitution. Again both models are run with fixed effects and year dummies.

Analysis of Quality Change

The third step of the analysis is concerned with determining what effect the substitution
between cases has on quality. In order to assess this, we use the quality metrics con-
structed in Part II of the thesis, that is the latent and filtered estimates. These metrics
are estimated separately for all HRG groups being considered and used as dependent vari-
ables to determine how the change in activity has influenced quality of care. For this
analysis we use the latent and filtered measures, which are constructed for the AMI and
Hip sub-samples using the methodology outlined in Chapters 2 and 3. Due to limitations

1ISTCs are only included in the Hip Replacement model (Model 1.2).
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in the numbers of patients classified in the H80 group, per hospital, across years, there
were too many gaps in the panel to construct the filtered indicators. For this reason we
only use the latent measures to analyse the quality change for Hip Replacement, but use
both latent and filtered measures to assess AMI quality.

QE11ht = α + β1E12ht + β2Tht + β3
∑

Xht + β4PbR + β5
∑

Cht + εht (6.5)

QE12ht = α + β1E11ht + β2Tht + β3
∑

Xht + β4PbR + β5
∑

Cht + εht (6.6)

QH80ht = α + β1H81ht + β2Tht + β3
∑

Xht + β4PbR + β5
∑

Cht + εht (6.7)

QH81ht = α + β1H80ht + β2Tht + β3
∑

Xht + β4PbR + β5
∑

Cht + εht (6.8)

Each of the quality models (equations (6.5) – (6.8)) estimates how much quality has
changed since the implementation of PbR, controlling for tariff, average deprivation, av-
erage co-morbidity, average length of stay, average age and type of hospital. Again all
models are estimated with fixed effects and year dummies.

6.3 Data Description and Variable Construction

The Sample

The data used to conduct this analysis is the same data used for the other chapters in
this thesis. A detailed description of the data can be found in the Data section of Chapter
1. Our initial investigation began with data selected for all AMI, MI, IHD, Stroke, TIA
and Hip Replacement (see Table 1.2). We chose these conditions as they require prompt
medical attention, are common in the population and thus provides a large annual sample
size to be studied, and most importantly the quality of care provided by the hospital is
known to have a significant impact on patient health outcomes. Of these conditions we
only found pairs of HRGs that indicated a possible substitution of activity in AMI and
Hip Replacement. While Dr. Foster provided data for both conditions over the financial
years 1996-2008, there were problems with the sample sizes of some of the years before
2000 for AMI, and so these years were not included in the analysis.

From this data we extracted all individual cases that were coded under HRG codes E11
and E12 for AMI and HRG codes H80 and H81 for Hip Replacement. In the AMI sample
only emergency admissions were examined, and only for patients with a length of stay
over two days. For the Hip Replacement sample both elective and emergency admissions
were investigated, but any day cases were dropped. This was an attempt to drop any cases
initially misdiagnosed, for example a patient admitted as AMI when suffering general chest
pains. In addition, any hospital trust that had less than 5 admissions in any of the years

216



6.3. Data Description and Variable Construction

investigated was dropped from the analysis as were any primary care trusts, private trusts
acting as NHS providers and social care trusts. The sample size for this selection included
approximately 33, 500 patients per year, and 121 hospitals for AMI and about 330 patients
per year, and 126 hospitals for Hip Replacement.

Hospital Outcomes and Quality

The outcome measures from both samples were used as dependent variables to estimate
the latent and filtered measures. The outcome measures used were 30-day in-hospital
mortality rates, 365-day overall mortality rates as well as 28-day readmission and 365 day
readmission rates. A trust code was used to distinguish each acute trust in the data. As
noted in Chapters 2 and 4, the latent estimates constructed indicate the marginal effect
a hospital has on each outcome measure controlling for patient characteristics. Thus,
each point estimated for every year represents the slope of the risk-adjusted quality curve.
We use this information to create this curve, for each of the five outcome indicators for
every hospital, spanning throughout the years in our sample. We use the value of zero
as our starting point, however, one could easily substitute zero for the mortality rate of
that hospital in the same year to get the true estimate. The filtered estimates created
in Chapter 3, have also been used as measures of quality. Indeed we argue that they
are better estimates of true quality as they are able to reduce more of the noise in each
estimate. For the H81 hip adjustment group the sample size was very limited, resulting
in problems creating the filtered estimates, and gaps in some of the latent estimates.

Hospital Activity

Models 1 and 2 are interested in determining whether there has been a substitution of
cases from HRG E12 to E11 and HRG H81 to H80, given the decline in activity in the
former group and increase in the later. This type of substitution has been reported after
the introduction of a case payment system in the US (Chulis, 1991; Ginsburg and Carter,
1986; Sloan et al., 1988; Carter et al., 1990). Indeed, in their commentary on PbR (Street
and Maynard, 2007) note the possibility of an increase in increased cases, and the cod-
ing of patients with multiple co-morbidities to higher priced HRGs in the first years of
implementation. They predict that this effect will be short lived while hospitals adjust
to counting and coding of activity, until future revisions of the price incorporate such be-
haviours. Caution is required in analysing changes in caseload across similar case groups,
indeed, further examination of the changes in caseload identified in the US by Ginsburg
and Carter (1986) could be justified by the additional complexity of patients hospitalized
(Carter et al., 1990).
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In order to evaluate the factors influencing activity within the two HRG groups and
it is necessary to construct variables that measure the annual activity for each of these
classifications at the hospital level. Going back to the individual sample constructed for
the two HRG pairs, the number of cases for each of these HRG groups was aggregated
for each hospital, separately for each year of the sample, and exported into the newly
constructed panel.

HRGs and the National Tariff

PbR is a case-based hospital funding system, paying hospitals based on their activity.
Under this system PCTs reimburse hospitals for each procedure they perform though a
nationally set tariff. The national tariff is based on HRGs which are designed to measure
health care activity in a way that takes into account the diagnosis, mix and complexity of
patients that will be receiving care. The basis of the HRG tariff is an average of all hospital
costs for the procedure in question. Separate tariffs exist for elective and emergency
care, as well as for short-stay patients, while specialist work is excluded. Hospitals also
received a separate payment, the MFF, which is based on the geographical price indices
for land, labour and building costs. PbR started being implemented in April 2004 to NHS
foundation trusts, being extended to elective activity for all other NHS trusts in April
2005, and to non-elective and outpatient care from April 2007 (Audit Commission, 2004,
2005).
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Table 6.2: National tariffs for AMI and Hip HRGs being investigated

Condition Year HRG

Code

Non-elective

spell tariff (£)

Elective spell

tariff (£)

Non-elective

long stay

trimpoint

(days)

Elective long

stay

trimpoint

(days)

Per day

long stay

payment*

(£)

AMI 2006/7 E11 4,747 4,527 27 59 155

E12 3,111 2,089 16 32 169

Hip H80 7,529 5,176 16 80 213

H81 8,286 4,967 15 94 217

AMI 2007/8 E11 4,866 4,640 30 59 183

E12 3,189 2,141 14 32 191

Hip H80 7,717 5,305 16 98 218

H81 8,493 5,091 15 80 222

AMI 2008/9 E11 4,787 5,006 27 43 159

E12 3,017 2,908 16 19 173

Hip H80 7,308 5,220 67 12 248

H81 7,816 5,587 71 13 213

*for days exceeding trimpoint

Source: Department of Health National Reference Costs (2006/7; 2007/08; 2008/09)

At the time of their development in the early 1990s, HRGs were not used to reim-
burse providers, but primarily for benchmarking exercises and to set targets to encourage
unit cost reductions (Street and Dawson, 2002). Currently the PbR tariff is payable for
admitted patient care (elective, non-elective and emergency), outpatient attendances and
accident and emergency admissions (Table 6.2). A detailed timeline of the implementa-
tion of the PbR policy and HRGs is available in Chapter 1 (Figure 1.1). The individual
level data provided by Dr Foster in our dataset contains information on the HRG tariff
throughout the entire period of the sample. Note that while this tariff does reflect approx-
imate unit costs of the patient it is not the paid to each hospital for the entire period, but
only from the years PbR was phased in. For this reason, two variables are included in the
regression: a variable which reflects the average E11 and E12 tariffs for each hospital for
every year, and a dummy variable which controls for the year that PbR was implemented
for non-elective procedures in all hospitals.
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Hospital Characteristics

The organization of hospitals with regards to management, finances and autonomy plays
an important role in the discussion of quality of care and the behavioural incentives of
providers. International literature has shown different quality and behavioural differences
between for profit and not-for profit hospitals. Indeed findings from the US suggest that
depending on the type of hospital there were more or less likely to engage in upcod-
ing behaviour. More specifically, not-for-profit hospitals were least likely to upcode, for
profit-hospitals more likely and the most likely were hospitals converting to for-profit sta-
tus (Silverman and Skinner, 2004). While assuming that some of the findings from other
countries can be applied cautiously to the case of England, it is important to control for
specific organizational differences that are relevant to English hospitals in our analysis.
During the period of investigation the hospitals included in the sample studied could be
classified into four types: acute trusts, teaching hospitals, foundation trusts and indepen-
dent sector treatment centres (ISTCs). For a detailed discussion on the differences between
these types of institutions see Chapter 5. We include a dummy variable to control for each
of these different institutions.

Other hospital characteristics are likely to affect outcomes and/or behaviour, such as
the characteristics of the patients that they treat. A hospital treating older, sicker or
more deprived patients for example may have more patients with complications, longer
length of stay and worse outcomes. For this reason control variables were included in both
regressions to take this characteristics into account. Developed from the individual level
data that was used to construct the quality variable, four control variables were constructed
which measured the average age, length of stay, deprivation and co-morbidity of patients
treated for the selected sample for each year. Similarly as the sample investigating Hip
Replacement deals with both elective and non-elective treatments, we also constructed
a variable to measure the number of elective treatments to see if these increased since
the implementation of PbR. While these indicators have already been controlled for at
the patient level, including them at the hospital level will identify any systematic biases
associated with them that could not be removed by a simple case-adjustment. For this
reason we include them as control variables in our analysis.

6.4 Results

AMI

In the first step of the analysis, Model 1.1 is used to determine whether there is substitution
occurring between AMI HRG groups E11 and E12 (Table 6.3). The positive sign on the
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variable E12 suggests there is no substitution between the two groups, but that they both
have been increasing over the time period studied. Tariff is positivity and significant at
1% indicating a strong association between tariff and E11 activity. As the model cannot
determine causality in this relationship this can be interpreted either as the higher tariff is
driving more E11 activity, or that more E11 patients are associated with higher tariffs. Age
and co-morbidity are both positive and significant at over 5% indicating that hospitals
with older and more severe patients have higher numbers of E11 cases. The sign on
the PbR dummy is highly significant and indicates that since PbR has been introduced
the number of E11 cases has risen. The average length of stay of each hospital is also
significant but negative suggesting that hospitals with more E11 cases have lower average
length of stay amongst all patients. The only hospital type variable not dropped in the
fixed effects model was the dummy for foundation trusts, as these where phased in during
the time period under investigation, but at different points for the different hospitals.
However, foundation trust is not significantly associated with number of E11 cases. Year
dummies were included in the model, they are highly significant and positive for most
years suggesting an increase in E11 cases throughout the period studied.

The second model, Model 2.1, analyzes how the change in E11 cases year-to-year is
influenced by the rate of change of the other independent variables. This is a stricter test
of the substitution effect, yet again in Model 2.1 there is no evidence of substitution (Table
6.3). The year-to-year change in E12 cases is positive and highly significant, indicating
that activity for both cases has been increasing over the time period studied. Similar to
the levels model, tariff is also positive and highly significant suggesting that a year-to-year
increase in the tariff is associated with a year-to-year increase in E11 cases. No conclusions
can be made concerning the direction of the casual effect. Year to year increases in
average age and co-morbidity are associated with year-to-year increases in E11 cases, and
an increase in year-to-year average length of stay with a decrease in E11 cases. Once
again foundation trust status had no effect on the change in activity. The only difference
between the two models is that while the PbR dummy is positive in the rate of change
model, it is only significant at10%. Moreover, the year dummies, while also included are
never significant.
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Table 6.3: Results for Models 1 & 2.

Model 1.1 (E11) Model 1.2 (∆E11) Model 2.1 (H81) Model 2.2

(∆H81)

E12 0.175***

(0.0269)

∆ E12 0.158***

(0.0150)

H80 -0.285***

(0.0694)

∆H80 -0.116***

(0.0349)

tariff 0.0167*** 0.0169**

(0.00476) (0.00800)

∆tariff 0.0155*** 0.00340**

(0.00535) (0.00152)

Age 1.807** 0.0934

(0.730) (0.599)

∆Age 1.583*** -1.485***

(0.513) (0.436)

LOS -1.031** -6.870***

(0.472) (1.803)

∆LOS -1.135** -2.133***

(0.517) (0.452)

Deprivation 0.198 -1.481

(0.805) (9.743)

∆Deprivation 0.974 0.968

(0.637) (2.829)

Co-morbidity 49.88*** 2.240

(11.68) (10.02)

PbR 12.77** 5.992* 77.63*** 11.37***

(5.116) (3.380) (11.37) (3.535)

FT -2.344 0.622 -20.21** 4.320

(3.650) (2.806) (9.832) (3.556)

ISTC 102.7** 36.31**

(50.53) (14.69)
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H81elective 7.490***

(1.564)

∆H81 elective 1.538*

(0.851)

Year Dummies Yes Yes Yes Yes

Constant -241.7*** -4.571** 40.37 -5.723***

(52.31) (1.954) (39.16) (1.284)

Observations 1,071 952 1,570 1,440

R2 0.408 0.273 0.502 0.144

Number of h 119 119 126 126

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The third and fourth models, presented in Table 6.4, consider what effect the changes
in activity have had on hospital quality using latent measures of quality in each HRG
group as the dependent variable. These latent variables are based upon mortality and
readmissions for each HRG group at different intervals, for the period 2000-2008. The
results below indicate what factors influence hospital quality for patients in the E11 HRG
group as well as the E12 groups. The R-squared values on all mortality models are over
90%, indicating that they are able to predict remarkably well for the E11 and E12 mortality
outcomes. They also perform well for the readmission models, ranging between 40-90%
for both groups.

The results indicate that both E11 and E12 groups have been influenced by the imple-
mentation of the PbR policy, in a similar way. Mortality at all intervals for both groups has
declined since the policy’s introduction, while short term readmissions have risen. There
is a difference in the effect the policy has had on year-long readmission rates, where they
are significantly associated with an increase in the readmissions of the E11 and a decrease
in the readmissions of the E12 group. Changes in E11 caseload only influenced E11 qual-
ity in terms of their effect on 30-day in-hospital mortality, which falls as cases increase.
Changes in E12 caseload only influence year-long E12 readmissions, where an increase in
cases associated with a fall in readmissions. Tariff is not significant in any of the E12
models, but is significant at 10% in the E11 30-day mortality and 28-day readmissions
models. The sign on the tariff coefficients indicate that an increase in tariff is associ-
ated with a decline in mortality and an increase in readmissions. Average co-morbidity
is only significant in year-long mortality models for the E12 group, where hospitals with
more severe patients have higher mortality. Deprivation is significant for both E11 and
E12 groups, such that 30-day in hospital mortality is higher in hospitals that have more
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deprived patients. Higher deprivation is also associated with lower 28-day readmissions,
but for the E12 group only. Average length of stay, and foundation trust status are not
significant for either of the E11 or E12 models.

Table 6.4: Quality effects on AMI patients (latent outcome indicators).

D30ht

E11

D30ht

E12

D365ht

E11

D365ht

E12

R28ht

E11

R28ht

E12

R365ht

E11

R365ht

E12

E11 -0.00102*** -0.000147 -3.27e-06 -6.39e-05

(0.000218) (0.000419) (0.000169) (0.000270)

E12 -4.05e-05 -1.07e-05 6.49e-06 -0.00018***

(4.11e-05) (5.39e-05) (3.93e-05) (6.49e-05)

tariffE11 -2.29e-05* 1.29e-06 1.23e-05* 1.05e-06

(1.33e-05) (1.52e-05) (6.59e-06) (1.06e-05)

tariffE12 2.73e-06 -5.66e-06 -4.70e-06 3.41e-06

(1.07e-05) (1.04e-05) (7.97e-06) (1.52e-05)

LOS 0.00333 0.00158 0.00344 0.00181 -0.00241 0.000487 -0.00251 0.00218

(0.00286) (0.00145) (0.00369) (0.00226) (0.00172) (0.00116) (0.00332) (0.00209)

Co-morbidity 0.0181 0.0108 -0.0715 0.0608** 0.0212 0.0103 0.0229 0.0307

(0.0496) (0.0295) (0.0655) (0.0237) (0.0379) (0.0213) (0.0564) (0.0368)

Deprivation 0.0197*** 0.00816*** 0.000649 -0.00361 -0.00206 -0.00613* 0.00765 -0.000543

(0.00677) (0.00283) (0.00986) (0.00362) (0.00449) (0.00350) (0.00875) (0.00571)

Age 0.00146 -0.00129 -0.00513 -0.00413* -0.00106 -0.000615 -0.00208 -0.00124

(0.00481) (0.00238) (0.00675) (0.00242) (0.00242) (0.00157) (0.00365) (0.00286)

PbR -0.815*** -1.028*** -2.779*** -2.511*** 0.460*** 0.0709*** 0.470*** -0.149***

(0.0234) (0.00908) (0.0327) (0.0129) (0.0132) (0.0107) (0.0274) (0.0189)

FT -0.00779 0.00323 0.00856 -0.000777 -0.00179 -0.0132 -0.0270 -0.0176

(0.0284) (0.0129) (0.0330) (0.0133) (0.0172) (0.00974) (0.0224) (0.0165)

Constant 0.00207 0.0582 0.420 0.199 0.00498 0.0363 0.133 0.0533

(0.295) (0.144) (0.437) (0.181) (0.162) (0.121) (0.273) (0.223)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1,035 1,035 1,035 1,035 1,035 1,035 1,035 1,035

R2 0.936 0.991 0.988 0.997 0.892 0.407 0.711 0.817

Number of h 115 115 115 115 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 6.5 presents the results for the filtered quality models for all outcomes in HRG

224



6.4. Results

groups E11 and E12. The R-squared value for all models is very high, and better in
all cases than the R-squared for the equivalent latent models. The results in Table 6.5
indicate that for the filtered models the PbR dummy is also significant. In all models
the sign indicates the same effect on the rate of change in quality that was indicated by
the latent model. For both E11 and E12 groups, since the adoption of PbR there is a
decrease in mortality. The short term readmission model for E11, suggests that after PbR
readmissions have increased, while the E12 model does not indicate a significant effect.
For year-long readmissions, the E11 model again indicates an increase in readmissions,
with the E12 model indicates that readmissions for that group have fallen.

Of the explanatory variables, very few are significant. E12 cases are significant in
all the E12 models, with a negative sign. As we know E12 cases have been declining
throughout this period, this most likely indicates that a decrease in caseload is associated
with a decrease in mortality and an increase in readmissions. Caseload is not significant
for any of the E11 models. co-morbidity is significant, but again only for the E12 models
and not for any of the E11 models. It suggests that hospitals with higher levels of severe
patients will have higher mortality rates and lower readmission rates. Average deprivation
is only significant in the year long readmission model for the E12 cases, where it indicates
that hospitals with more deprived patients will have lower readmissions. Average length
of stay, average age and foundation trust status are not significant for any of the models.

Table 6.5: Quality effects on AMI patients (filtered outcome indicators).

D30ht

E11

D30ht

E12

D365ht

E11

D365ht

E12

R28ht

E11

R28ht

E12

R365ht

E11

R365ht

E12

E11 -4.13e-06 6.11e-05 -1.13e-05 -1.66e-05

(2.46e-05) (0.000291) (3.46e-05) (6.61e-05)

E12 6.23e-05* 0.000245* -4.2e-05** -7.27e-05*

(3.33e-05) (0.000134) (2.07e-05) (3.68e-05)

tariffE11 -1.71e-06 -1.68e-05* 1.56e-06 3.45e-06

(1.45e-06) (9.85e-06) (1.16e-06) (2.22e-06)

tariffE12 9.50e-06 4.71e-05 -7.31e-06 -1.36e-05

(9.31e-06) (3.62e-05) (5.76e-06) (1.01e-05)

LOS 0.000744 -0.000798 0.000716 -0.00388 -9.67e-07 0.000704 -1.74e-05 0.00154

(0.000611) (0.00124) (0.00265) (0.00481) (0.000312) (0.000821) (0.000640) (0.00144)

Co-morbidity 0.00964 0.0485** 0.0134 0.188** -0.00444 -0.0294** -0.00626 -0.0517**

(0.00692) (0.0214) (0.0632) (0.0845) (0.00700) (0.0131) (0.0138) (0.0235)

Deprivation 0.00211 0.00425 -0.00314 0.0138 -0.000581 -0.00283 -0.00223 -0.00592*
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D30ht

E11

D30ht

E12

D365ht

E11

D365ht

E12

R28ht

E11

R28ht

E12

R365ht

E11

R365ht

E12

(0.00142) (0.00295) (0.00982) (0.00994) (0.00117) (0.00183) (0.00242) (0.00336)

Age -0.000760 -0.00148 -0.00606 -0.00459 0.000703 0.000698 0.00146 0.00117

(0.000460) (0.00248) (0.00437) (0.00915) (0.000463) (0.00140) (0.000938) (0.00237)

PbR -0.809*** -0.933*** -2.092*** -2.001*** 0.386*** 0.00453 0.315*** -0.235***

(0.00342) (0.0113) (0.0255) (0.0394) (0.00284) (0.00641) (0.00567) (0.0108)

FT 0.00181 2.26e-05 0.0240 0.00236 -0.00219 0.000598 -0.00329 0.00138

(0.00223) (0.0116) (0.0250) (0.0464) (0.00268) (0.00714) (0.00531) (0.0127)

Constant 0.0394 -0.00658 0.471 -0.130 -0.0491 0.0215 -0.107* 0.0410

(0.0288) (0.187) (0.295) (0.682) (0.0308) (0.105) (0.0621) (0.176)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1,035 1,035 1,035 1,035 1,035 1,035 1,035 1,035

R2 0.999 0.992 0.987 0.966 0.996 0.794 0.965 0.957

Number of h 115 115 115 115 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Hip Replacement

Model 2.1 investigates the change in activity between HRGs H80 and H81.The negative
sign on the H80 variable in Model 1.2 indicates that there is a substitution effect between
the HRG groups H80 and H81, which is significant at 1% (Table 6.3). Average tariff is
significant and positive such that and increase in activity is associated with an increase
in the average tariff received by each hospital, while an increase in average length of stay
is significantly associated with fewer H81 cases. The PbR dummy is highly significant
and positive, indicating that since the implementation of PbR the number of H81 cases
have increased. Similarly the elective variable indicates that more elective cases result
in more H81 cases. In the Hip Replacement models the hospital type variables come
out significant, such that foundation trusts are more likely to treat fewer H81 cases as
compared to acute trusts, while ISTCs are more likely to treat more H81 cases than acute
trusts. Year dummies are included and are highly significant for all years.

Model 2.2 investigates the year-to-year change in cases and how that is influenced
by the same dependent variables. The results in Table 6.3 show that the effect is still
present and highly significant, such that a yearly increase in H81 is associated with a
yearly decline in H80. Similar to the results for Model 2.1, a yearly increase in tariff is
associated with a yearly increase in H81 activity, while a yearly increase in average length
of stay is significantly associated with a decline in activity. Unlike Model 2.1, change in
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age is highly significant such that an increase in average age from year to year is associated
with a decline in H81 cases. The PbR dummy is highly significant, indicating that since
the implementation of PbR, the year to year change in H81 activity has been increasing.
Similarly the positive sign on the ISTC variable indicates that ISTCs take more H81 cases
year to year as compared to acute care trusts, while the dummy for foundation trusts is no
longer significant. The elective variable, indicating the number of elective H81 operations
each year and the change in number of elective operations for year to year in models
2.1 and 2.2 respectively, indicate that the number of H81 procedures is increasing as an
elective option. Year dummies were included in the analysis and sometimes significant.

Table 6.6: Quality effects on Hip Replacement patients (filtered outcome indicators).

D30ht

H80

D30ht

H81

D365ht

H80

D365ht

H81

R28ht

H80

R28ht

H81

R365ht

H80

R365ht

H81

H80 -2.11e-05 -2.28e-05 1.58e-05 -3.66e-05

(1.93e-05) (4.48e-05) (5.32e-05) (7.57e-05)

H81 1.41e-07 -4.06e-08 3.79e-06 1.40e-05

(1.86e-06) (5.41e-06) (7.19e-06) (9.09e-06)

tariffH80 -5.45e-05 -0.000170* -0.000140 -6.80e-05

(3.95e-05) (9.91e-05) (8.93e-05) (0.000132)

tariffH81 -4.79e-06 -2.88e-05 1.33e-05** 3.04e-05***

(6.36e-06) (2.31e-05) (5.57e-06) (9.96e-06)

LOS 0.00250 -0.000773 0.0148 -0.000619 -0.00396** 0.000357 -0.00147 0.000321

(0.00247) (0.00108) (0.00932) (0.00246) (0.00183) (0.00329) (0.00338) (0.00398)

Co-morbidity -0.0301 0.0162 -0.0861 0.0322 0.00571 -0.0148 -0.0456** 0.0696

(0.0191) (0.0234) (0.0803) (0.0543) (0.0198) (0.0904) (0.0204) (0.122)

Deprivation -0.00142 -0.00878 -0.0284 -0.00934 -0.0199 0.0274 -0.0305 0.00581

(0.00828) (0.00695) (0.0296) (0.0187) (0.0175) (0.0258) (0.0245) (0.0315)

Age 0.000766 -0.000522 0.00340 -0.000605 -0.00486* 0.00249 -0.00621** -0.00314

(0.00127) (0.00181) (0.00614) (0.00207) (0.00253) (0.00381) (0.00288) (0.00511)

PbR -0.135*** -0.0965*** -0.362*** -0.253*** 0.00963 0.0222 -0.250*** -0.0206

(0.0142) (0.0100) (0.0573) (0.0199) (0.0150) (0.0453) (0.0262) (0.0483)

FT -0.0107* -0.0152 -0.0350 0.0106 0.0218 0.0207 0.0189 0.00809

(0.00562) (0.0103) (0.0218) (0.0199) (0.0158) (0.0252) (0.0230) (0.0354)

ISTC -0.0261*** 0.0518*** -0.0366 0.117* -0.0294 -0.111*** -0.108*** -0.190

(0.00750) (0.00787) (0.0415) (0.0621) (0.0267) (0.0272) (0.0285) (0.152)

Constant -0.0552 0.0472 -0.286 0.0479 0.309* -0.194 0.278 0.118
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D30ht

H80

D30ht

H81

D365ht

H80

D365ht

H81

R28ht

H80

R28ht

H81

R365ht

H80

R365ht

H81

(0.103) (0.116) (0.490) (0.145) (0.179) (0.278) (0.180) (0.376)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1,510 1,366 1,510 1,366 1,505 1,273 1,510 1,366

R2 0.744 0.475 0.761 0.609 0.285 0.094 0.681 0.079

Number of h 120 120 120 120 119 119 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Models 7 and 8 look investigate what effect PbR and the changes in caseload had on
quality o f care, using the latent variables constructed for each group. The R-squared
values of the models indicate that the mortality models are able to explain around more
of the variance than the readmission models, and of the two groups the H80 models have
higher R-squared values than the H81 groups. The R-squared values of the H80 mortality
models range between 75-80%, while the H81 groups mortality models explain about 50-
60% of the variance. The R-squared values of the H80 readmission models are nearly 30%
for the 28-day readmission model and nearly 70% for the year-long readmission model, the
respective values for the H81 readmission models are considerably lower at 9% and 8%.
The reason for this difference is most probably due to the large amount of missing values
in the H81 group, which were also prohibitive in creating the filtered indicators.

The PbR dummy is significant for most models, and indicates a decline in mortality,
at all intervals, for both the H80 and H81 conditions. Yet, the magnitude of the coefficient
indicates that the decline in mortality is very small. The PbR dummy only indicates a
decline in year-long readmissions for the H80 group, and is insignificant in all the other
readmission models. Average age is negatively associated with short and long term H80
readmissions, such that hospitals with a higher age group have lower readmissions for
H80. The tariff for H80 is also associated with H80 readmissions, such that an increase
in the tariff leads to more readmissions for this group, while tariff for H81 is negatively
associated with year-long H81 mortality. Finally, foundation trusts status and ISTC status
are significant in many of the models, such that foundation trusts have lower H80 30 in-
hospital mortality as compared to other hospitals, while ISTCs have higher mortalities at
every level for the H81 group, and lower 30-day mortality for the H80 group. ISTCs also
have lower 28-day readmissions for the H81 group, and lower year-long readmissions for
the H80 group.
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Sensitivity Analysis

A fixed effects model was used to estimate all models to control for the individual time
invariant characteristics of the hospitals due to the observed heterogeneity across providers
(Figure 6.3), similarly year dummies were used to control for the observed heterogeneity
across years (Figure 6.3). However, the models were also estimated with random effects,
and the key results remain unchanged. A Hausman test was used to determine which
model is preferred for each case, and the fixed effect model is always indicated for Model
1 and the quality models (Models 3-6), while either estimator can be used for Model 22.
In the random effects model dummy variable could be included for teaching hospitals,
which due to its time-invariant status was dropped from the fixed effects model. However,
the results from the random effects model indicate that teaching status had no significant
effect for any of the conditions. Models 1 and 2 were run using the less expensive case as
the dependent variable to check the consistency of the results.

Figure 6.3: Heterogeneity across cases over provider and time

2When the Hausman test has a significant P-value it suggests that the coefficients estimated by the
efficient random effects estimator are not the same as the consistent fixed effects estimators, and so fixed
effects is preferred. When the P-value is insignificant it is safe to use either random or fixed effects.
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6.5 Policy Implications

The English PbR reimbursement policy is predicated on a single tariff for predicted levels
of activity adjusted by case-mix, regardless of where it is performed. The main rationale
for paying providers in this way is to drive down the costs of those who are providing
services in excess cost of the tariff, thus enhancing the efficiency in provision of health
services. Yet, evidence from the adoption of DRG payments in the US has indicated that
professional discretion plays an important part in determining hospitalization for DRGs,
and that losses in hospital revenues resulting from this type of payment system can be
offset if physicians modify their admission policies to produce more profit, even within the
limits of medical appropriateness (Wennberg et al., 1984). This section looks at data on
tariff to understand how hospital revenues for these two conditions have changed since the
PbR policy.

As noted in the data section, our tariff variable is calculated by adding together all
costs a patient accumulates under their spell of care, including any readmission costs, or
extra length of stay. However, the tariff only represents true costs reimbursed after the
adoption of PbR policy, prior to PbR the variable is only indicative of estimated patient
costs, and so is less reliable. Figure 6.4 and 6.5 consider the change in spending in the
four HRG groups across the time periods studied. In each of the figures, the tariff for each
HRG represents the sum of costs accumulated by all patients in that HRG group for each
hospital in each year. Figure 6.6 depicts the total spending across hospitals over the time
period studied for treating patients in HRGs E11/E12 and H80/H81.

While overall AMI spending has decreased over time, and more noticeably since 2004,
spending on Hip Replacement has been rising throughout the period with no change in the
upward trend during the time PbR was implemented. Figure 6.6 illustrates the variation in
spending across hospitals for each of the four HRG groups in relation to the mean spending
of all hospitals in that year. While it is difficult to discern any change in variation for
most of the HRG groups, there is a clear rise in heterogeneity of spending across hospitals
for HRG H81, especially after 2004. The increased variation in spending across hospitals
is coupled with increased average spending from year to year.
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Figure 6.4: Total AMI spending 2000-2008.

Figure 6.5: Total Hip Replacement spending 1996-2008
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Figure 6.6: Heterogeneity in spending across hospitals over time

6.6 Discussion

The literature on case payment systems identifies many possible positive and negative
incentives attached to this type of provider payment. The positive incentives, such as
increased efficiency and transparency, are particularly desirable for most health systems.
However, this type of payment system also runs the risk of incentivising adverse behaviours
such as gaming, upcoding, and quality skimping. To date there have been no reports of
such behaviours in the English PbR system, however some authors have noted increases in
activity. This chapter considers two particular pairs of HRGs, where there appears to be
an increase in activity for the more highly reimbursed HRG at the expense of its cheaper
counterpart suggesting the possibility of upcoding.

In the case of AMI HRGs E11 (with complications) and E12 (without complications),
Models 1 and 2 indicate an increase E11 cases since the implementation of the PbR policy.
However, this increase is not the result of ‘substitution’ between the two HRG groups. In
theory we would expect substitution to occur in order for providers to receive the higher
tariff for less complicated cases. While tariff is also positively associated with the increase
in activity for the E11 group, this is at least partly attributable to the fact that more cases
lead to higher revenues rather than tariff driving more cases. Models 1 and 2 do indicate
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that the activity in the E11 group is associated with more co-morbid, older patients who
are expected to have an increased likelihood of complications. Indeed, the indicator used to
measure co-morbidity, the Charlson Co-morbidity index, is constructed ex post using the
patient’s clinical data and so it is unlikely that such an indicator would also be manipulated
by providers should they be upcoding. The sensitivity analysis shows that the findings
are consistent when using E12 activity as the dependent variable for models 1 and 2. E12
activity is significantly associated with younger, less severe patients. However, activity
only begins to decline in 2007 and since PbR, indicating that some aspect of the policy is
associated with the activity change.

The results from the Hip Replacement group, on the other hand, do suggest substi-
tution between the H80 and H81 HRG cases. Models 1 and 2 indicate that uncemented
Hip Replacements are performed instead of cemented Hip Replacements, and their in-
crease is significantly associated with the introduction of the PbR policy. While in theory
upcoding is performed in order for providers to profit from the reimbursement difference
between the two cases, it is difficult to support an ‘upcoding’ hypothesis for two different
procedures such as cemented and uncemented Hip Replacement as the tariff is based on
procedural costs. While the tariff variable is positively associated with the increase in the
more expensive case, this is probably due to the increased revenues resulting from more
activity. In Model 2, we see that uncemented procedures are associated with younger
patients. However, this is expected as the uncemented procedure has a longer recovery
period than the cemented alternative. The sensitivity analysis confirms the findings when
using the cemented group as the dependent variable, and the decline in cemented cases is
also positively associated with PbR.

It is difficult to support an argument of ‘upcoding’ for either of the two cases being
investigated. The lack of substitution in the AMI cases leads us to believe that some
other incentive of the policy is responsible for the change in activity. Conversely, in the
case of Hip Replacement, where substitution is occurring, the different costs of the two
procedures (reflected in the tariffs) would make ‘upcoding’ theoretically impossible. This
leads us to believe that some other incentive of the policy is responsible for the change in
hip activity as well. Re-considering the possible incentives attached to such a financing
system, we conclude that the mostly likely explanation for the change in activity is a
result of increased transparency, efficiency and specialization. Prior to the introduction of
HRGs, England had no history of routine cost collection at the patient level. This is due to
the organizational structure of the NHS and lack of a substantial private insurance sector
that would require detailed billing data at this level (Street and Dawson, 2002). The early
introduction of HRGs in the late nineties changed the recording of cost information, as
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did the refinement of HRG groupers. Indeed the large increase in recorded activity for all
four HRGs from 2000 to 2001 is probably the result of a move from HRG grouper 3.1 to
3.5. With the introduction of PbR, coding became even more important as the entirety
of hospital revenues became contingent on the correct recording of information. Thus,
instead of prices leading to mis-coding, upcoding or gaming, we support that the change
in AMI activity is in fact a result of better coding.

Another incentive created by a case-based payment system is for providers to special-
ize in areas where they can make the biggest gain due to their competitive edge (Shleifer,
1985). The national tariff in England is set according to the average cost of treatment
across all hospitals, thus any hospital who can perform a procedure at a lower cost will
make efficiency gains. In a case such as Hip Replacement, where two relatively substi-
tutable treatments are available, one of which is newer and less utilized, it is more likely
that the average cost of the newer treatment across all hospitals will be high and that
more efficiency gains can be made by specializing in this procedure. Moreover, while un-
cemented Hip Replacements require a longer recovery period they are less likely to result
in complications such as breaking off of cement particles, that will result in readmission.
Thus, in the case of Hip Replacement we believe the substitution effect is not driven by
upcoding but instead by an attempt of providers to increase their efficiency.

When considering the results of Models 1 and 2 with these hypotheses in mind, the
findings are much more intuitive. If the change in AMI activity is the result of better
coding, we would expect to see older and more severe patients coded as with complications.
There is no substitution between the cases because in all likelihood the decrease of cases
in AMI without complications may not be the result of increased E11 cases but better
coding overall (resulting in perhaps a different HRG grouping altogether). In the case
of Hip Replacement, the substitution between the two conditions begins once PbR is
implemented, despite both procedures being available for over twenty years. The controls
indicated that younger patients are more likely to receive the uncemented treatment. This
is most likely because the type of surgery yields better results when performed on younger,
healthier patients due to the longer recovery period. However, it may also indicate an
element of selection. Moreover, the choice of uncemented surgery as an elective option has
been increasing in the period investigated. The results from models 3-8, which consider
the effect the activity changes have had on quality, support this conclusion.

In the case of AMI, the effects of PbR are associated with a decrease in 30-day mortality
for both E11 and E12 groups, and a decrease in long term mortality for E12. The change
in cases over time is also associated with a decrease in 30-day mortality. If upcoding were
occurring we would expect to find an improvement in the outcomes of the E11 case, but
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possibly at the expense (or with no change) in the E12 category. Improved mortality in
both groups could occur under increased transparency and better coding as it would result
in better appropriateness of care. In both cases there is no evidence of the policy having
any significant effect on the change in readmissions. However, the model does suggest that
the change in cases is associated with an increase in 28-day emergency readmissions for
both E11 and E12 cases. While the increase in E11 cases may partly account for this we
also need to exercise caution in the interpretation of higher readmissions, which as noted
in previous chapters, may not be an indicator of poor quality.

While we were able to run the AMI model using both the latent and the filtered
estimates, we were limited in our ability to do the same for the hip model due to issues
with sample size across the years. When attempting to construct quality indicators using
this methodology at the level of the HRG group this is likely to be a problem for other
conditions as well given the finer degree of classification. Moreover, that latent measures
constructed will also be subject to wide variation from year to year as a result of the
small sample size. Models 7 and 8 which analyse the change in quality for cemented
and uncemented Hip Replacement indicate that the PbR policy has had a positive effect
on quality overall. Mortality rates at all intervals have fallen for both groups, albeit by
very small amounts. There has been no significant effect on readmissions, apart from the
cemented group where they have fallen. However, it is possible that this is an indication of
worse quality in the H80 case, as we have established that there is a negative relationship
between readmissions and mortality. Moreover, the decline in readmissions is associated
with more severe patients, and is also positively correlated with the change in average
tariff received over time. A decline in quality could possibly be attributed to the fact
that younger patients are being substituted into the uncemented group as surgery is less
likely to be effective on more frail patients. However, it might also suggest an element of
selection – whereby the healthier patients are transferred to the procedure that has the
highest payoff.

Some of the other interesting results concern the type of trust providing treatment.
While the type of trust has no effect on the number of cases or quality in AMI, it is
important in the case of Hip Replacement. Part of the explanation for this difference
most likely stems from the type of procedures being investigated; the treatment for AMI
being considered is all non-elective, whereas the Hip Replacement conditions are a mix
of elective and non-elective care. In the case of Hip Replacement foundation trusts are
found to perform fewer uncemented Hip Replacements, while independent sector treatment
centres perform more. However, the only effect this has on quality is that there is a higher
28-day emergency readmission rate for the ISTCs as compared to acute trusts.
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The final part of our analysis considers what these efficiency gains are costing the
system. This part of the analysis is considerably limited however as it only considers
spending within the HRG groups and not the conditions overall, or the wider setting.
However, as expected the increase in activity in the Hip Replacement cases are resulting
increased spending overall, while the large decline in E12 cases, possibly as a result of
better coding, has decreased spending for the pair of AMI HRGs. More interesting is the
change in variations of spending across hospitals. While there appears to be no noticeable
change in HRGs E11, E12 and H80, there is an obvious increase in the H81 group. Earlier
results indicate an increase in uncemented surgery, H81, as an elective treatment. This
could be a result of the differential pricing between the groups which unintentionally
incentivizes providers to switch into the new technology. In term of costs, it appears that
hospitals are indeed offsetting reductions in revenues resulting from this type of payment
system by produce more profit in this area within the limits of medical appropriateness.

Considering the two case studies, and the relationships we are able to establish between
PbR, activity, quality and spending we see that the payment system is providing strong
behavioural incentives, however we do not find evidence of these incentives resulting in
upcoding behaviour. In the case of AMI, despite the increase in E11 cases and decrease
in E12 cases, the substitution effect is not significant. Instead it appears that this change
in activity occurs because more attention is being paid to coding since its attachment
to a monetary incentive. In the case of Hip Replacement, where there is evidence of a
substitution effect between cemented and uncemented cases, again we do not attribute
this to upcoding but instead to an attempt for providers to make efficiency gains.

Thus at this stage, we find that the PbR policy in England so far yields relatively
positive gains, in terms of increased transparency and efficiency. While spending at the
hospital level seems to be still adjusting to the new policy – we expect that with time
when providers become more familiar with coding practices and costs for all areas will be
adjusted to take into account activity changes such as the one investigated in this chapter
– it will stabilize.
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7 Conclusions & Policy
Recommendations

The ultimate drive to define and collect quality information has been from stakeholders
in order to achieve broadly two purposes: the improvement of quality services, and/or
the holding services to account for the quality of care they provide. The users of quality
information are key stakeholders in the health system, such as clinicians, health service
managers, policy makers, patients, tax-payers, the media, researchers and even industry.
The uses of quality information differ according to the stakeholder’s needs but can be
broadly classified into a spectrum of activities, where one end is focused solely on learning
from data and the other on making judgments from this data. In an extension of Freeman’s
work (2002), Davies (2005) considers the differences between these two approaches, coined
the improvement and accountability approaches respectively.

Table 7.1: Differences between accountability and improvement approaches.

Accountability Approaches Improvement Approaches

Emphasis: Measurement oriented; favouring

verification and assurance

Insight and change oriented; favouring

learning to promote continual

improvement.

Rationale: To provide external accountability

and ensure/renew legitimacy.

To promote internal change and

continuous quality improvement.

Culture Comparisons drawn in order to

make summative judgements on

quality.

Comparisons drawn with a formative

emphasis aimed at learning from

difference and diversity.

Data Presentation: Data presented as league Tables

inviting naming, blaming and

shaming.

Data presentation emphasises informal

benchmarking and acknowledges

‘casual ambiguity’.

Precision Required: High precision needed. Lower precisions acceptable.

Epistemology: Empirical. Validity and reliability

important alongside statistical

assessments of difference.

Interpretive. Use of other data sources

and local information acceptable to

provide contextual and qualitative

understandings.

Source: as adapted in Davies (2005) from Freeman (2002).
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This body of work has been concerned primarily with the accountability approach:
focusing on creating precise measures of quality to make comparisons across providers
and across time. This work would be less suitable for an improvement approach as it
only considers the final outcomes, and does not consider the processes and structures
that contribute to their attainment. When creating quality indicators for either of these
approaches however, it is crucial to be sure that the performance measures being used
exhibit the characteristics of acceptability, feasibility, reliability, sensitivity to change and
validity (Table 7.2). With regards to measuring quality per se we have noted throughout
the chapters that there are numerous specific methodological challenges that need to be
taken into account in order to create good quality measures that meet the above criteria.
We decided to apply the McClellan and Staiger (1999) methodology to create good quality
indicators, as we believe is able to overcome many of the challenges associated with quality
measurement and create indicators that meet these criteria.

Table 7.2: Qualities of Good Performance Measures:

Development of Indicators:

• Face/content validity: the extent to which the indicator accurately measures what it

purports to measure.

• Reproducibility: the extent to which the indicator would be the same if the method by

which it was produced was repeated.

Application of Indicators:

• Acceptability: the extent to which the indicator is acceptable to those being assessed

and those undertaking the assessment.

• Feasibility: the extent to which valid, reliable and consistent data is available for

collection.

• Reliability: the extent to which there is minimal measurement error; that the extent to

which findings are reproducible should they be collected again by another organization.

• Sensitivity to change: the extent to which the indicator has the capacity to detect

changes in the unit of measurement.

• Predictive validity: the extent to which the indicator has the ability to accurately

predict.

This body of work has attempted to evaluate the impact a change in payment mech-
anism has had on quality of providers. In order to be able to assess this impact we first
faced the challenge of creating adequate measures of quality (Chapters 2 and 3) and un-
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derstanding the relationships between them (Chapters 3 and 4). Finally, we were able to
use them to evaluate the PbR policy (Chapters 5 and 6). In this chapter we draw out
the most important findings from each of the chapters, and consider them as a whole.
This exercise allows us not only to assess the findings in their entirety but also to consider
what main lessons and policy recommendations emerge. We begin this exercise by briefly
reviewing some of the most important findings from each chapter, before combining them
to draw overall conclusions. We then go on to consider some of the limitations in data and
methodology which need to be acknowledged in order to correctly interpret the findings.
Finally, we conclude by considering what policy recommendations we can make from this
information, and what areas would benefit from further research.

7.1 Key Findings

The fundamental requirement for any quality measurement technique is to find a suitable
way to filter out the inherent noise that is present in outcome measures. This noise will
be the result of measurement error, confounding variables, systematic error and chance.
Moreover, quality is a multidimensional notion. While outcome measures represent the
final outcome of the health system, and thus are often considered more meaningful that
other measures, they are still fragmented as they consider only one area. Finding a method
that is able to adequately deal with these challenges is difficult, however lacking to do so
will result in inappropriate measures. The first step to applying or even developing an
adequate methodology to measure quality is identifying the key challenges and methods
available to deal with them, as outlined in the introductory chapter.

Measuring Quality

Part II, ‘Measuring Quality’, considers the application of two of the techniques discussed
in the Introductory Chapter to individual patient level data from England. Chapter 2 uses
a latent variable technique to create risk-adjusted measures of quality for each hospital
for the treatment of seven different conditions. These measures are calculated separately
for each year, and provide information about relative hospital performance in that year
controlling for patient characteristics. The results indicate that where there is sufficient
sample size, the latent quality measures are good risk-adjusted indicators with relatively
small confidence intervals. The indicators can be used to examine the relative quality of
each hospital over time, as well as to understand the rate of change in average quality
across hospitals.

When used at the individual hospital level, the indicators can be subject to large
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volatility from one year to the next, especially in hospitals with smaller sample size.
When aggregated and used to examine trends in the rate of change in average quality
across hospitals, the latent measures are able to indicate a different picture from the raw
outcome measures, suggesting that when controlling for case-mix the rate of change in
quality was greater than what appeared to be the case from the raw data. Indeed, this is
consistent with some of the changes reported in standardized mortality rates for hospitals.
There has been some discussion about the pattern of falling risk-adjusted mortality rates
in the literature as crude data is relatively unchanged. Possible explanations include recent
changes in coding, as well as increasing severity of conditions treated by hospitals as milder
cases are increasingly treated in the community or as day cases (Hawkes, 2010b).

While the methodology appears to create risk-adjusted indicators which are consistent
with other risk adjusted measures, is unable to address all the issues identified earlier.
The latent indicators will not be able to separate measurement error and systematic error
from unobserved quality and thus may be a poor measures of true quality in both cases.
Moreover, they are not able to incorporate other dimensions of quality and thus are also
limited as to the extent they provide a complete picture. Indeed, these limitations are
also true of other, more common, risk-adjusted measures, such as standardized mortality
rates.

In order to address these limitations, Chapter 3 uses the latent measures created for
the seven conditions for each year in the sample, and applies a methodology introduced
by McClellan and Staiger (1999). The methodology essentially smoothes out the varia-
tion from the indicators using the times series and cross sectional information from all
indicators. This allows the indicators to pick up more of the quality signal present in
the indicators and filter out more of the systematic bias and noise. The method is easily
applicable to the English data, and indeed the R-squared measures used to evaluate their
predictive and forecast validity indicate that it performs better than it did for the US
data. This methodology allows us to predict future outcomes with very high levels of
certainty. Unlike the US data however, we find the indicator with the strongest signal for
almost all of the seven conditions to be year-long mortality, instead of 30-day mortality.
However, 30-day mortality also has a strong signal, and in most cases is stronger than the
two readmission indicators.

As the methodology uses the cross-sectional information between the different outcome
measures to create the new indicators, we are also able to draw conclusions about the
relationships between them. One notable finding is the relationship between readmissions
and mortality. In many instances these indicators are negatively correlated – suggesting
that higher readmissions may not always be indicative of poor quality, but indeed might
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suggest the opposite. Similar to Chapter 2, the indicators produced can be used to examine
the relative quality of each hospital over time. While the variation from year to year is
smoothed out, the confidence intervals for the quality measures are larger, thus when used
to assess relative performance it is difficult to draw conclusions for any one hospital.

Overall, we find evidence to support the use of this methodology for the construction of
more sophisticated measures of quality that can be used with more confidence to evaluate
the quality of providers.

7.2 Evaluating Quality

General Findings

While the section entitled ‘Evaluating Quality’ uses the indicators developed in Chapters
2 and 3 to assess the impact of the PbR policy, we also use the indicators to evaluate other
areas of quality in Chapters 2 – 4. Chapter 2 uses the latent measures to assess the key
determinants of quality in the period being investigated, while Chapter 3 ranks hospitals
according to the different indicators for a random year, in order to compare the results.
Finally, Chapter 4 considers how the different latent and filtered indicators are related
across the seven conditions for which they are constructed. We briefly review the key
findings from these analyses before going on to review the results from Chapters 5 and 6,
summarized in the following sub-section.

In Chapter 2, the latent quality measures are regressed against lags of themselves as
well as other possible determinants of quality, in order to gain insight as to what factors
influence quality. The results suggest that quality is dynamic for most conditions, although
not for all indicators. Moreover, while many of the lagged quality measures are significant,
their influence on current quality is not always positive as might be expected. Indeed for
some conditions the lagged variable is negative suggesting that poor/good quality in the
past is associated with good/poor current quality. We term the latter effect ‘change’, and
the former ‘path dependency’, however the analysis in Chapter 2 does not allow us to draw
conclusions as to why we see one effect for some conditions and not for others. Moreover,
the results from Chapter 2 do not suggest any conclusive findings on how hospital type
influences quality. For some conditions foundation trusts have higher 30-day mortality, and
specialist trusts lower 30-day mortality, while university hospitals have lower readmissions
for CCF. Of the other exogenous variables, waiting times, caseload and length of stay have
mixed results for the different conditions.

Chapter 4 considers how the different latent and filtered indicators are related across
the seven conditions for which they are constructed. Increasingly we use outcome measures
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of a particular condition to represent ‘quality’. This is common for conditions where evi-
dence suggests their outcome is highly linked to hospital quality, such as AMI (McClellan
and Staiger, 1999). However, it is important to be aware of the relationship between these
indicators and their counterparts for other conditions, to ensure that this generalization
is valid. The results from Chapter 4 indicate that most conditions are very dynamic and
endogenous, such that their own past performance is very highly correlated with current
performance and not highly influenced by performance in other conditions. For most of the
outcome measures studied in the seven conditions, we found that its own past performance
from 3-years prior was often significant in determining its current performance.

In order to test the relationships between the outcomes of different conditions, we
used a VAR model. This type of methodology allows us not only to observe associations
between variables, but also to infer causality through Granger endogeneity tests. Indeed
careful analysis of the Granger causality tests and the regression models allows us to
detect relationships between the different conditions. In many cases this suggests that
performance in one condition is influenced by the performance in another, although for a
very small amount of patients. We identified two types of relationships between conditions,
which we call reinforcing and competing. We define a reinforcing relationship is one
where good quality in the treatment of one condition is positively associated with the
treatment of another. This type of relationship may be found in two conditions that are
treated in a similar unit, where you would expect that quality is linked because of shared
resources. We define a competing relationship as existing where the quality of treatment is
negatively associated between two conditions. We find that this type of relationship exists
for conditions in different units, which may be competing for funding. Moreover, we find
that these relationships appear to be consistent with medical literature and associations
between conditions. This suggests that the quality indicators, and the model, are sensitive
enough to pick up areas where poor treatment in one area will influence the success of
treatment in another.

Given that each condition exhibits reinforcing and competing relationships with other
conditions, we find it difficult to recommend one condition over others as a good quality
indicator for a hospital as a whole. Indeed, our results suggest that focusing on any one
condition alone will not give a well rounded assessment over quality. However, of the
seven conditions chosen, AMI is probably best at assessing hospital quality - at least for
the cardiology department, as it is least influenced by poor outcomes in other areas. Yet
we would caution against using any single condition as a proxy for quality of the hospital
as a whole. In fact, in our evaluation of quality in other chapters we find differences as to
the factors and behaviours that influence quality for each of the seven conditions.
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In Chapter 3 we rank our sample of hospitals according to the raw outcome data, the
latent quality measures and the filtered quality measures for AMI in the year 2005. We find
is that the three methods yield entirely different rankings. As discussed previously, one
of the main motivations for quality measurement is to use indicators to hold providers to
account, often by making information publicly available, attaching incentives to it or using
in to inform providers as to their relative performance. The two methods we use to create
measures of quality, are methodologically sound risk-adjustment techniques. Indeed, the
McClellan and Staiger (1999) method builds upon the latent measures created in Chapter
2 so we would expect some association between them. However, it appears that applying
the McClellan and Staiger (1999) method to the data completely changes the relative
rankings of the hospitals. This implies that the methodological accuracy of the different
methods varies considerably, most likely because the latent variables still contain large
amounts of noise. Moreover, these results suggest that policy makers are very cautious
about how they use risk-adjusted mortality indicators as they may not be accurate.

PbR

Finally, Chapter 5 and 6 use the latent and filtered indicators constructed in Chapters 2
and 3, and the information about the different indicators from Chapters 2–4, to undertake
an in-depth analysis of how PbR has influenced quality in English hospitals. In Chapter 5
we investigate the effect PbR has had on the level quality of care for all seven conditions,
as well as how it has influence the relative performance of hospitals to one and other. Each
analysis is conducted using both the latent and the filtered indicators. Consistent with
our findings in Chapter 3, where the rankings using the latent and filtered indicators were
very different, we find the results of the models to differ. As the filtered indicators are
able to reduce more of the noise and systematic bias from the latent indicators, we base
our findings on those results.

Nevertheless, in the majority of cases, regardless of the indicator used, we find a
consistent effect on quality since the introduction of PbR. Yet, the effect on quality differs
for the different conditions. Our models indicate that PbR has had more of an impact
on some conditions, such as AMI, Stroke and IHD than others, namely TIA, MI and
CCF. Moreover, while the effects of PbR are associated with reduced mortality for most
conditions, it has varying effects on readmissions. Yet, as we know from Chapter 3,
increases in readmissions are not always indicative of worse quality. The results of all
indicators suggest that for AMI, hospitals treating more deprived and severe patients have
had to skimp on quality, while for Stroke patients the less severe patients have exhibited
higher mortality and readmissions.
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In Chapter 6, we look at more detail at two pairs of HRG groups, one for AMI and one
for Hip Replacement where there appears to be ‘upcoding’. Upcoding refers to the transfer
of less severe patients to a more expensive HRG category in order to make more profits.
In both cases we find that ‘upcoding’ per se is not occurring. Instead, in AMI it appears
that due to the policy’s emphasis on coding, which determines hospital reimbursement,
coding of patients has improved. So while there appear to be more cases in the expensive
HRG group, these patients are more severe patients who are properly accounted for. This
in turn has had a positive impact on quality, presumably because severe patients receive
more appropriate treatment.

In the case of Hip Replacement we see the substitution of cases from one group to
the other between two different operations, cemented and uncemented Hip Replacement.
Cemented Hip Replacement is an older technology, while uncemented Hip Replacement
is newer, yet, up until the introduction of PbR it had relatively low uptake. While there
are reasons to select one over the other, it is commonly accepted that for less complicated
patients the newer technology has considerable benefits in the long term. Since PbR, the
use of this technology has increased dramatically, while use of the cemented technique
is falling. Our models do suggest there is a substitution effect occurring between the
two conditions, motivated by the introduction of the policy. We believe the incentive for
this switch is provided by the different rates of reimbursement for the different surgeries.
Since there was a low uptake of the uncemented technique it is likely that the average
cost used as the basis of the tariff was not reflective of true cost of implementing this
technique. Thus, hospitals felt there was more to make an efficiency gains by performing
this procedure over the cemented procedure.

In both cases we find that PbR has had unintended effects on quality, yet in both cases
these are positive effects. By tying reimbursement to coding, hospitals are encouraged to
improve the coding of patients, and thus quality of care, as we see in the case of AMI. For
Hip Replacement, due to the low adoption of the new technology, the tariff encouraged
hospitals to become efficient in its adoption in order to benefit from efficiency gains. Both
these results demonstrate the power financial incentives can have on performance.

7.3 Limitations

Data limitations

The saying goes: “your results are only as good as your data”; and indeed we acknowledge
the necessity to review the known limitations in the data used to conduct this analysis.
While some of the limitations are difficult to overcome, we believe that the McClellan and
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Staiger (1999) method is of the most capable to deal with data variations and inaccuracies.
Moreover, by rigorously studying the data we are able to learn from mistakes and build
upon it to create better data in the future. Nevertheless, it is important to be aware of
these limitations, especially when it comes to drawing policy conclusions from any body
of work that is based upon them.

The underlying data used to conduct the analyses contained in this body of work was
hospital episode statistics (HES data) accessed through Dr. Foster. This is the same data
that is used to create standardized hospital mortality rates, as well as the Dr Foster Good
Hospital Guide, both of which are widespread indicators of quality in England. As the
publication of performance information has become more prevalent internationally, but
also in England, more studies have focused on understanding how ‘good’ the underlying
data used to measure performance are. Indeed the validity and completeness of Dr. Foster
and HES data has been questioned in numerous publications (Hawkes, 2010b,a; McKee
and James, 1997; McKee et al., 1999; Mohammed et al., 2004, 2009; Westaby et al., 2007;
Williams and Mann, 2002).

Williams and Mann (2002) note that many of the NHS data definitions are convoluted
and thus open to misinterpretation, such as the definition used to describe an ‘episode’
or a ‘spell’. They are also concerned with the definition of primary diagnosis as ‘main
condition treated or investigated during the episode of health care’ and the low recording
of secondary diagnosis, at around 10%. This is outlined in more detail in (McKee and
James, 1997; McKee et al., 1999), who notes the serious implications for comparative
research that these omissions may have. However, given our findings in Chapter 6 it
is likely that coding has improved overall since the introduction of payment by results.
Hawkes (2010b) also suggests that improved coding is occurring in hospitals accounting for
what appear to be hospital improvements without any change in underlying performance.

Some authors caution that even mortality may not always be recorded accurately
(Mohammed et al., 2004; Westaby et al., 2007), although not to such a degree that it
would influence standardized hospital mortality rates (Mohammed et al., 2004). Another
issue in the data is the increase use of the code for palliative care. In the past five years
there has been a big increase in this code, from 7% in some hospitals to 50% in others
Hawkes (2010a). Patients coded this way are assumed to have come to the hospital to
die and are coded this way to prevent putting the blame of their death on the hospital.
However, this change in coding will influence quality as is measured by risk-adjusted
mortality.

With regards to the Dr. Foster data in particular, Mohammed et al. (2009) notes that
there are systematic differences in the associations between hospital mortality and the
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factors we have used to adjust for patient case-mix, such as age, emergency admissions
and co-morbidity. While these differences will play a role in influencing standardized
mortality ratios (Wright and Shojania, 2009) they will be accounted for by the McClellan
and Staiger (1999) methodology adopted in Chapter 3. In addition, some of the clinical
audit literature from the US (Hsia et al., 1988) and England (Cox and Koutroumanos,
2010) suggests that there will also be error in the coding of patients, which will vary from
hospital to hospital and by condition. Again, the McClellan and Staiger (1999) technique
adjusts for measurement error and so is arguably best suited for data facing this sort of
variation and inaccuracy. Finally, the Audit Commission (2008) notes that the average
HRG error rate is high, at 9.4% in 2007/8, with considerable variation across hospitals.
Our analysis identified patients using ICD-10 and OPCS 4.3 codes, and only uses the HRG
variable in Chapter 6 where we limit the sample to investigate four specific HRG groups.
Given the limited use of the HRG variable to identify cases, we do not expect this error
rate to influence our results greatly.

Method limitations

While we strongly support that the method used performs very well, we would like to
acknowledge some limitations to our methodology. In all chapters we do not control for
the large amounts of money injected into the English NHS over the period of investigation.
It is highly likely that may of the positive quality effects we observe are related to this
factor, and not to the change in funding policy alone. Moreover, there were significant
changes implemented in other parts of the system which may have contributed to the
changes in quality we observed and to the effects we attribute to PbR, such as changes
in the payment of primary care physicians. Indeed, as we note in the introduction, the
effectiveness of this type of payment-mechanism will be influenced by the organizational
structure within which it operates. However, as all the changes are made in the same
period it is difficult to isolate the effect of one policy from all others.

In the chapters which analyse the effect of PbR on quality the PbR dummy is set
at the year 2005 for AMI and 2006 for the remaining procedures. However, PbR was
implemented over the years 2003-2006 staggered over different conditions, different types
of hospital, and patients admitted through different routes. Given the small sample of
hospitals being examined we did not create staggered variables to control for this. However,
in the sensitivity analyses we did run the model varying the year PbR was introduced.
As it is likely that many of the positive quality effects observed are also a result of the
expectation of PbR, resulting in better coding of patients, this difference may not be so
important. Moreover, the descriptive illustrations of quality over the time period indicate
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that there are significant changes around the period of implementation.

7.4 Policy Recommendations

Using the key findings that have emerged from this study and tacking into account the
limitations of our data and methods, we are able to draw out the most important policy
lessons. This section highlights the main policy recommendations indicated from our
results:

1. Improve data collection techniques at the patient level.
We begin by emphasizing the need for improved data collection that can inform
the development of methodological performance measurement techniques. While
England has large amounts of individual level data that is collected annually, they
would benefit from ensuring that the coding is consistent across different providers.
Other countries, who do not have individual level data, or where it is not made
available, can not benefit from advanced methodological approaches of this sort
which, as highlighted in this theses, are able to perform better than simple risk
adjustment techniques.

2. Acknowledge limitations to simple risk-adjustment techniques.
We believe that aside from improvement in the data used to create quality measures,
all quality measurement techniques should recognize the difficulties associated with
quality measurement. Chapters 1 and 2 note the many difficulties associated with
measuring the quality of providers. Raw measures are inherently noisy, likely to
suffer from systematic bias, measurement error and chance, and are also unidimen-
sional. Moreover, adequate sample size is necessary to create confident measures
of quality. Most current quality measurement technique are not able to address all
these challenges, and thus may not be accurate indicators of quality. Users of quality
information should be made aware of the difficulties involved in measurement and
the uncertainty surrounding these estimates.

3. Exercise caution when using risk adjusted measures in accountability approaches.
Indeed Chapter 3 indicates the extreme differences in rankings that can result from
the use of risk-adjusted quality indicators (the latent measures) as compared to more
accurate measures (filtered measures). This suggests that when using quality indi-
cators to inform policy, or in any of the accountability approaches, policy makers
need to be very careful of the data they are using. Use of noisy data to incen-
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tivize providers, reward or penalize providers or inform decision making can lead to
unwanted effects.

4. Discourage static interpretations of quality.
Chapters 2–4 indicate that the latent and filtered quality indicators are highly dy-
namic. Chapter 4 tells us that in most cases, current outcomes are influenced from
outcomes dating back 3 years. This means that the use of static indicators of quality
should be discouraged, and modelling of quality should be careful to include lags.
Neglecting to do so is likely to lead to incorrect results or interpretations. Indeed
there are many documented relationships in economic theory where the inclusion
of lags is necessary to avoid model misspecification and misinterpretation of theory,
such as the relationship between prices and money (Gujarati, 2003). Drawing from
the methods used to model these types of relationships may prove useful in providing
a more sound methodological platform from which to analyse quality.

5. Avoid generalizing quality effects from one condition to others.
It is often tempting to generalize quality effects apparent from one clinical area to
an entire group of conditions, providers, hospital or system. While there may be
certain factors that do influence quality at a macro level, such as management prac-
tices, financing or structural changes, there are also others which are very specific
such as specialty training and reputation. Chapter 4 indicates that while treatment
quality for different conditions is related, the relation is very small. Moreover, im-
provement in the treatment of quality of one condition does not always translate to
quality improvements in another. Thus making generalized conclusions using only
one medical condition or treatment may be misleading.

6. Exercise caution in the interpretation of readmissions data.
Another indicator which can be misleading is readmission rates. Chapter 3 suggests
that while we usually associate readmissions with lower levels of quality, this may
not always be correct. We find that risk adjusted readmissions are often negatively
correlated with risk adjusted mortality measures. Thus taking action to reduce read-
missions, or penalizing providers for higher readmissions, may be counter-productive.
Policy makers should avoid making decisions based solely on readmissions data, but
instead should use them together with mortality data to better understand the in-
formation they are providing.

7. Use DRGs to improve coding and transparency.
In the use of our quality data to evaluate the English PbR policy, we found that
HRGs (English DRGs) were effective in improving coding and transparency. Chapter
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6 indicated that this improvement had a tangible impact on quality, especially in
the provision of treatment for AMI. Part of the reason this type of system has such
a large effect on coding and transparency in England was due to the nature of the
system. Prior to case-based payment there was little existing culture of recording
cost information, and no incentive to do so carefully. When contrasted with insurance
based systems, such as the US, this leads to poorer quality cost information. From a
policy perspective, good information of this sort is paramount to assessing efficiency
and declining where and how to target policies. We recommend this type of payment
system as a way to improve transparency and the collection of cost information.

8. Incentive payments(bonuses) can be very effective in policy making.
While we recommend a case-based payment system to increase transparency and
improve coding, we also find that the way in which the tariff is set will be crucial
in determining the effectiveness of this payment system. Chapter 6, has illustrated
that even unwillingly small differences in the reimbursement of different conditions
can have large effects on performance. Indeed, in the case of Hip Replacement
we saw that a bonus can lead to large incentives for efficiency, the adoption of
new technologies and changes in behaviour. On the one hand this suggests that
the incentive payments can be a very useful tool for policy makers to incentivize
providers. On the other it suggests that failure to consider all possible incentives
created by a tariff may result in unwanted behaviours, which may also lead to adverse
behaviours.

9. Exercise caution when deciding how to set the DRG tariff.
One way to vary the incentives created by a DRG type system is to vary the way
the reimbursement tariff is set. There is some literature on the existing and theoret-
ical alternatives to this (Ellis and McGuire, 1996; Schreyögg et al., 2006; Street and
Maynard, 2007). While the English tariff is set at average costs across all hospitals,
other alternatives such as normative pricing, or average pricing of top performers
have also been suggested. Given the results observed in Chapter 6 for Hip Replace-
ment and AMI, there may be scope to introduce an introductory coding incentive,
as well as differential pricing of new technologies to encourage uptake.

10. Ensure a good audit system is in place when introducing a financial incentive.
Whatever the tariff setting process chosen, any case-based payment system needs
to have a good, reliable audit system in place. Our work, as well as many other
articles on case-based systems, highlight the scope for the occurrence of unexpected
behaviours in reaction to the policy. In order to learn and benefit from the positive
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behaviours and to catch or prevent the negative behaviours a good audit system is
crucial.

11. Further research on drivers of quality change for each condition.
The findings reviewed in this chapter indicate areas where further research can be
beneficial. In order to better understand why quality has changed in each condition,
over the time period studied, it would be interesting to do more in depth analysis of
each of the conditions. Stroke and TIA in particular exhibit some interesting changes
in quality, and interesting relationship to one another. It would be of interested to
use these quality variable to better understand the factors that influence quality of
Stroke treatment in different providers. For these two conditions, but also for other
five, it would be best to look at the outcome measures together with process and
structural measures. This would give a more complete idea as to what changes are
responsible for influencing quality.

12. Compare with a control group.
These findings would also be more robust if we were able to compare with a control
group. Thus it might be interesting to compare the change in quality in English
hospitals to the change in quality over the same time period in Scottish hospitals.
Since UK devolution in 1998, England and Scotland have diverged substantially in
the reforms they have implemented to their health systems. Prior to 1997, Eng-
land and Scotland funded inpatient care in broadly the same way: health care pur-
chasers and providers negotiated the services that would be provided through bulk
contracts (Ham, 2004). Scotland changed this funding system starting in 1997 by
unifying purchasers and providers under local health boards, and in 2004 started
funding inpatient care through global budgets (Scottish Executive, 2004). In 2004
England moved from the bulk contract system of funding hospital episodes to PbR,
a fix-priced activity based payment system. Thus, UK devolution in 1998 has unex-
pectedly provided one of the best natural tests of how to optimally provide health
care through a NHS system, providing a rare and exciting opportunity for research.

7.5 Closing Remarks

While the tools presented in this thesis have been originally applied to the US, their ap-
plication to the English setting yield interesting results for policy. In the past decade
England has invested effort and money into performance measurement and management
techniques, ranging from the creation of league tables that rank providers according to a
combination of indicators (such as the former Star Ratings and the existing ‘Dr. Foster
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Good Hospital Guide’) to the introduction of new approaches to the evaluation of services
(such as the collection of information on Patient Reported Outcome Measures (PROMs)
for selected secondary procedures). Efforts outside the public sector have also contributed
to the increasing amount of performance information by provider or even health system
that is now available in the public domain. This phenomenon is not unique to England,
it is far more prevalent in the US system, and growing in other European countries such
as the Netherlands, Spain and Germany. While the growing desire to measure, and often
report, provider performance is often driven by laudable intentions such as to improve ac-
countability and transparency, there is still uncertainty surrounding many of the methods
employed to this end.

Perhaps the most popular indicator of performance, indeed one that providers are often
ranked by, is mortality. Indeed mortality is the predominant indicator that contributes
to most of the performance measurement initiatives reported above. Death is an obvious
measure to chose as it is easily measured, common across settings and most importantly
a meaningful indicator to users and providers. However, even when case-adjusted there
are many problems with using mortality as a proxy for quality (Lilford and Pronovost,
2010). Some of the main problems are that it has a low signal to noise ratio, meaning
that there are along a few number of deaths that are preventable by high quality care as
compared to the number of deaths that stem from other causes. Even if we isolate those
conditions, common risk adjustment techniques can only adjust for factors that can be
identified and measured accurately. Even then, depending on the adjustment technique
used results, and thus rankings, are highly variable (Shahian et al., 2010). Not to mention
that in some cases, where systematic bias is present and the variable which is being
adjusted for varies across the units being compared, risk adjustment can exaggerate the
bias is is attempting to reduce. Moreover, most risk-adjusted mortality measures vary
considerably across providers (Lilford and Pronovost, 2010). Our own latent variables,
an example of this type of indicator, varied considerably from year to year and across
providers, when used to rank providers in Chapter 2 we found they were so variable that
it was difficult to draw reliable conclusions. These problems with mortality indicators
question the appropriateness of their use to judge providers.

In this chapter, and indeed in this entire thesis, we focus on the importance of quality
measurement. We argue that in the analysis of outcome measures, such as mortality, so-
phisticated methods are available that allow for more information to be derived from them.
Indeed we find that the marginal difficulty associated with the extra steps in analysing
these indicators yields large benefits as to their ability to capture the true quality signal
that lies within them. This work demonstrates that much information can be derived
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from outcome measures, and their improved performance when used to analyse changes
in quality as compared to simple risk-adjusted measures. However, we question the suit-
ability of using only outcomes to assess provider quality overall. A complete picture of
quality requires more detailed information as to the processes and structures of care that
lead towards them. Outcome measures become more meaningful when they are considered
together with the processes and structures that enabled them. Moreover, other outcomes,
such as PROMs are being increasingly recognized as important in being able to capture fac-
tors such as the patient experience which have been long neglected. As we move to an era
where large scale performance measurement is technologically feasible, and performance
information is used to inform policy, create incentives and justify reforms, policy makers
are in a position to change the way decisions are made. Despite methodological advances
made in risk adjustment techniques and the analysis of mortality rates it is important the
policy makers keep a wider perspective and try to measure the multidimensional aspects
of quality. It is thus imperative that good data collection techniques are adopted, sound
methodological tools are applied, and policy makers move towards making evidence the
basis for policy reforms and initiatives. With good measures of quality we are able to
better assess providers, inform policy and learn from experience. While methodological
techniques for quality measurement are improving, it is important that data collection
efforts continue to improve alongside them.
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A Results for Chapter 2
A.1 MI

The trends in average mortality and readmission rates for MI over the 2000-2008 time
period are presented in Figure A.1. The figure indicates a very small and gradual decline
in average 30-day mortality from 2000 onwards, as well as a steady gradual increase in
average 28-day readmission over time. The average long term readmissions are constant
over the time period. While, average 365-day mortality is constant across time until it
undergoes a large sharp drop in the 2005 – 2006 year.

Figure A.1: Trends across years in average MI outcome measures across hospitals.

The patient characteristics influencing the four MI outcome measures, can be deter-
mined from the Model 1 regression results presented in Table A.1. Age, and co-morbidities
are significantly associated with 30-day and 365-day mortality, where higher age and co-
morbidity is related to higher mortality. Gender, deprivation, and type of admission not
significant for most of the years run. The results indicate that all patient characteristics in-
cluded in the regressions are significant determinants of 28-day and 365-day readmissions.
Higher age, deprivation and co-morbidity are linked to increased readmissions, women also
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have statistically higher readmission rates than men, and in some years patients admit-
ted with elective admission have lower readmissions than those admitted as non-elective.
The trust dummies included for each hospital are highly significant for all four outcome
measures.

Table A.1: Regression results for MI Model 1.

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

30-Day Mortality

2000 5473 0.006*** 0.009 0.003 0.046*** -0.088* yes

(0.000) (0.011) (0.002) (0.005) (0.05)

2001 7621 0.006*** 0.003 0.003* 0.037*** -0.060 yes

(0.000) (0.009) (0.002) (0.004) (0.048)

2002 7922 0.005*** 0.012 -4.14e-04 0.034*** -0.030 yes

(0.000) (0.009) (0.002) (0.004) (0.038)

2003 8492 0.006*** 0.005 -0.001 0.037*** -0.013 yes

(0.000) (0.008) (0.002) (0.003) (0.040)

2004 8982 0.005*** 0.007 7.39e-04 0.036*** -0.003 yes

(0.000) (0.008) (0.001) (0.003) (0.036)

2005 8597 0.004*** -0.003 -0.001 0.037*** -0.002 yes

(0.000) (0.008) (0.001) (0.003) (0.037)

2006 8830 0.005*** -0.003 -0.002 0.030*** 0.040 yes

(0.000) (0.008) (0.001) (0.003) (0.030)

2007 9403 0.004*** 0.001 -0.001 0.032*** 0.030 yes

(0.000) (0.007) (0.001) (0.002) (0.029)

2008 9799 0.004*** 0.004 -4.83e-04 0.030*** 0.027 yes

(0.000) (0.007) (0.001) (0.003) (0.025)

365-Day Mortality

2000 5473 0.011*** 0.009 0.003 0.099*** -0.017 yes

(0.001) (0.013) (0.002) (0.006) (0.062)

2001 7621 0.011*** -0.001 0.006*** 0.079*** -0.008 yes

(0.000) (0.011) (0.002) (0.005) (0.060)

2002 7922 0.011*** 0.015 -2.74e-04 0.082*** -0.037 yes

(0.000) (0.011) (0.002) (0.005) (0.047)
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2003 8492 0.011*** 0.008 0.001 0.082*** 0.082* yes

(0.000) (0.011) (0.002) (0.004) (0.050)

2004 8982 0.011*** -0.009 0.006*** 0.081*** -0.023 yes

(0.000) (0.010) (0.002) (0.004) (0.047)

2005 8597 0.011*** -0.021** 0.002 0.076*** -0.024 yes

(0.000) (0.010) (0.002) (0.004) (0.047)

2006 8830 0.006*** -2.53e-0.4 -0.002* 0.036*** 0.031 yes

(0.000) (0.008) (0.001) (0.003) (0.032)

2007 9403 0.005*** -0.002 -7.31e-04 0.034*** 0.034 yes

(0.000) (0.007) (0.001) (0.003) (0.029)

2008 9799 0.004*** 0.007 -9.35e-04 0.037*** 0.023 yes

(0.000) (0.007) (0.001) (0.003) (0.026)

28-Day Readmission

2000 5473 0.001*** -0.001 0.003* 0.018*** 0.092* yes

(0.000) (0.011) (0.002) (0.005) (0.052)

2001 7621 2.91e-05 0.025*** 0.003* 0.006 0.052 yes

(0.000) (0.009) (0.002) (0.004) (0.050)

2002 7922 4.06e-04 -0.004 0.002 0.006 0.048 yes

(0.000) (0.009) (0.002) (0.004) (0.039)

2003 8492 7.87e-04** 0.014* 0.004*** 0.009*** 0.120*** yes

(0.000) (0.009) (0.001) (0.003) (0.041)

2004 8982 9.91e-04*** 0.007 0.004*** 0.011*** 0.080** yes

(0.000) (0.008) (0.001) (0.003) (0.039)

2005 8597 0.001*** -0.001 0.002 0.008*** 0.023 yes

(0.000) (0.008) (0.002) (0.003) (0.040)

2006 8830 7.50e-04** 0.021** 0.005*** 0.014*** 0.014 yes

(0.000) (0.008) (0.001) (0.003) (0.033)

2007 9403 0.001*** 0.007 0.003** 0.010*** -7.14e-04 yes

(0.000) (0.008) (0.001) (0.002) (0.033)

2008 9799 0.002*** 0.021** 0.003* 0.011*** -0.017 yes

(0.000) (0.008) (0.001) (0.003) (0.032)

365-Day Readmission

2000 5473 0.001 0.038*** 0.009*** 0.028*** 0.164** yes
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

(0.001) (0.014) (0.002) (0.007) (0.066)

2001 7621 0.001** 0.043*** 0.004** 0.018*** 0.153** yes

(0.000) (0.011) (0.002) (0.005) (0.065)

2002 7922 0.001* 0.031*** 0.008*** 0.018*** 0.131** yes

(0.000) (0.011) (0.002) (0.005) (0.051)

2003 8492 0.002*** 0.058*** 0.008*** 0.018*** 0.198*** yes

(0.000) (0.011) (0.002) (0.004) (0.053)

2004 8982 0.002*** 0.031*** 0.007*** 0.016*** 0.082 yes

(0.000) (0.010) (0.002) (0.004) (0.050)

2005 8597 0.002*** 0.024** 0.006*** 0.014*** 0.079 yes

(0.000) (0.011) (0.002) (0.004) (0.050)

2006 8830 0.002*** 0.049*** 0.008*** 0.023*** 0.055 yes

(0.000) (0.011) (0.002) (0.004) (0.041)

2007 9403 0.002*** 0.047*** 0.010*** 0.012*** 0.073* yes

(0.000) (0.010) (0.002) (0.004) (0.042)

2008 9799 0.004*** 0.047*** 0.010*** 0.022*** 0.017 yes

(0.000) (0.01) (0.002) (0.004) (0.039)

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Figure A.2 shows the average rate of change attributable to hospital quality in all four
outcome measures for MI, as measured by the average hospital intercept for each year.
Both mortality panels indicate a negative average intercept, meaning mortality, controlling
for patient factors, is falling from year to year. For 30-day mortality the average intercept
fluctuates, increase at some times and decreasing at others. This means that sometimes the
rate of change is decreasing at an increasing rate and others at a decreasing rate. However,
for year-long mortality the intercepts are decreasing at an increasing rate for most of the
sample. The average latent short and long term readmissions both range around zero.
Short term readmissions are above zero before 2003, suggesting that they were increasing
during this period, albeit at a decreasing rate. After 2003, they are negative until 2005,
suggesting that they were decreasing during this time, but that after 2005 are increasing
again. Long term readmissions are negative for all years apart from 2002, indicating that
they are decreasing throughout the sample, with a brief increase in that year.
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Figure A.2: Trends across years in average latent MI outcome measures across hospitals.

Figures A.3–A.4, show the trend in the latent 30-day and 365-day mortality rates for
four selected hospitals treating patients with MI. The confidence intervals for both figures,
show considerable variation in latent mortality within hospitals. For both short term and
long term mortality, estimates range from about 25% above average to just under 20%
below average. This variation is much larger than that observed in the averages in Figure
A.3. There is also large year-to-year variation, with jumps of 10% in either direction
commonly observed, and in some cases outcomes change by as much as 30% in one year.
Figures A.5 and A.6 show the MI latent readmission measures for the same four hospitals.
The confidence intervals also indicate wide variation, although the variation among latent
readmissions within hospitals is a bit less than it is for latent mortality, at about 15−20%.
There is also year-to-year variation but of a much smaller magnitude than for mortality,
with common yearly fluctuations of about 5%.
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Figure A.3: Trends across years in latent MI 30-day mortality for selected hospitals.

Figure A.4: Trends across years in Latent MI 365-day mortality for selected hospitals.
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Figure A.5: Trends across years in Latent MI 28-day readmissions for selected hospitals.

Figure A.6: Trends across years in Latent MI 365-day readmissions for selected hospitals.
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A.2 IHD

Figure A.7 indicates a declining in average short and long term mortality for IHD. The
downwards trend is barely discernible for 30-day mortality, but clearly pronounced for
365-day mortality. While 365-day mortality is declining for most of the years in the
sample, the decline is particularly pronounced in the year 2005-2006. The trends in average
readmissions indicate constant average 28-day readmissions over the period studied, and
steady declines in the 365-day readmissions. The confidence intervals for all four figures
indicate little variation among the hospitals in the sample.

Figure A.7: Trends across years in average IHD outcome measures across hospitals.

The results from the regressions of the first model of the analysis, where the four
outcome measures are used as dependent variables, are presented in Table A.2. Age,
co-morbidities and admission type are significant predictors of all four outcomes. In all
cases higher age and co-morbidity is associated with worse outcomes, and elective ad-
missions were significantly associated with better outcomes as compared to emergency
admissions. Gender and deprivation are sometimes significant for mortality and readmis-
sions, where women have significantly higher mortality and readmission, and patients with
higher deprivation also have worse outcomes. Patients admitted for elective procedures are
significantly linked to better outcomes than those admitted for non-elective procedures.
The trust dummies included for each hospital are highly significant for all four outcome
measures.
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Table A.2: Regression results for IHD Model 1.

Year N

(total)

Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

30-Day Mortality

2000 118219 0.001*** -6.56 e-04 -1.15e-04 0.017*** 0.014*** yes

(0.000) (0.001) (0.000) (0.001) (0.000)

2001 156680 0.001*** -0.002*** -2.17e-04* 0.017*** 0.014*** yes

(0.000) (0.001) (0.000) (0.000) (0.000)

2002 158862 0.001*** -2.04e-04 -2.20e-04** 0.015*** 0.014*** yes

(0.000) (0.001) (0.000) (0.000) (0.000)

2003 164946 0.001*** -7.49e-04 -1.81e-04* 0.016*** 0.015*** yes

(0.000) (0.001) (0.000) (0.000) (0.000)

2004 170556 0.001*** -6.79e-04 -1.09e-04 0.012*** 0.014*** yes

(0.000) (0.001) (0.000) (0.000) (0.000)

2005 169619 0.001*** -6.79e-04 -9.55e-05 0.011*** 0.015*** yes

(0.000) (0.001) (0.000) (0.000) (0.000)

2006 168015 0.001*** 4.65e-04 -1.91e-04** 0.010*** 0.014*** yes

(0.000) (0.001) (0.000) (0.000) (0.000)

2007 169918 0.001*** -0.001** -8.38e-05 0.0093*** 0.015*** yes

(0.000) (0.000) (0.000) (0.000) (0.000)

2008 166115 0.001*** -4.22 e-04 -2.35e-04*** 0.0083*** 0.012*** yes

(0.000) (0.000) (0.000) (0.000) (0.000)

365-Day Mortality

2000 118219 0.005*** -0.012*** 0.001*** 0.056*** 0.041*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

2001 156680 0.005*** -0.015*** 0.001*** 0.056*** 0.046*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

2002 158862 0.005*** -0.011*** 0.002*** 0.053*** 0.048*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

2003 164946 0.005*** -0.011*** 0.001*** 0.052*** 0.052*** yes

(0.000) (0.001) (0.000) (0.001) (0.002)

2004 170556 0.004*** -0.0096*** 0.001*** 0.047*** 0.050*** yes

(0.000) (0.001) (0.000) (0.001) (0.00142)
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Year N

(total)

Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2005 169619 0.004*** -0.011*** 0.001*** 0.040*** 0.046*** yes

(0.000) (0.001) (0.000) (0.001) (0.001)

2006 168015 0.001*** -0.001 -0.000 0.014*** 0.019*** yes

(0.000) (0.000) (0.000) (0.000) (0.001)

2007 169918 0.001*** -0.001** -9.25e-05 0.010*** 0.016*** yes

(0.000) (0.000) (0.000) (0.000) (0.001)

2008 166115 0.001*** -4.58e-04 -2.26e-04** 0.010*** 0.013*** yes

(0.000) (0.000) (0.00) (0.000) (0.001)

28-Day Readmission

2000 118219 0.001*** -0.001*** 0.003*** 0.014*** 0.088*** yes

(0.000) (0.002) (0.000) (0.001) (0.000)

2001 156680 0.001*** -0.007*** 0.003*** 0.019*** 0.093*** yes

(0.000) (0.002) (0.000) (0.000) (0.002)

2002 158862 0.001*** -0.006*** 0.003*** 0.017*** 0.090*** yes

(0.000) (0.002) (0.000) (0.000) (0.002)

2003 164946 0.001*** -0.005*** 0.003*** 0.016*** 0.091*** yes

(0.000) (0.002) (0.000) (0.000) (0.002)

2004 170556 0.001*** -0.006*** 0.003*** 0.018*** 0.090*** yes

(0.000) (0.002) (0.000) (0.000) (0.002)

2005 169619 0.001*** -0.004*** 0.002*** 0.017*** 0.093*** yes

(0.000) (0.001) (0.000) (0.000) (0.002)

2006 168015 0.001*** -0.001 0.003*** 0.016*** 0.090*** yes

(0.000) (0.001) (0.000) (0.000) (0.002)

2007 169918 0.001*** -0.001 0.002*** 0.0016*** 0.088*** yes

(0.000) (0.001) (0.000) (0.000) (0.002)

2008 166115 0.001*** -0.002 0.003*** 0.016*** 0.082*** yes

(0.000) (0.001) (0.000) (0.000) (0.002)

365-Day Readmission

2000 118219 0.003*** -0.011*** 0.010*** 0.041*** 0.190*** yes

(0.000) (0.002) (0.000) (0.002) (0.003)

2001 156680 0.002*** -0.002 0.009*** 0.036*** 0.182*** yes

(0.000) (0.002) (0.000) (0.001) (0.003)

2002 158862 0.002*** 0.004** 0.009*** 0.037*** 0.180*** yes
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Year N

(total)

Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

(0.000) (0.002) (0.000) (0.001) (0.003)

2003 164946 0.003*** 0.001 0.009*** 0.034*** 0.181*** yes

(0.000) (0.002) (0.000) (0.001) (0.003)

2004 170556 0.002*** -0.001 0.008*** 0.037*** 0.179*** yes

(0.000) (0.002) (0.000) (0.001) (0.002)

2005 169619 0.002*** 0.003 0.007*** 0.034*** 0.175*** yes

(0.000) (0.002) (0.000) (0.001) (0.002)

2006 168015 0.002*** 0.003 0.007*** 0.031*** 0.159*** yes

(0.000) (0.002) (0.000) (0.001) (0.002)

2007 169918 0.002*** 0.006*** 0.007*** 0.031*** 0.157*** yes

(0.000) (0.002) (0.000) (0.001) (0.002)

2008 166115 0.00245*** 0.00334* 0.007*** 0.033*** 0.152*** yes

(0.000) (0.002) (0.000) (0.001) (0.002)

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Figure A.8 shows the trends in the averages of the four latent outcome measures esti-
mated for IHD. Each point represents the average intercept value calculated for each year,
which shows the average effect hospitals are having on each outcome controlling for patient
characteristics. The average intercepts for both short and long term mortality are nega-
tive throughout the time period being investigated. This suggests that during this period
mortality is decreasing, the values are becoming less negative over time, suggesting that
they are decreasing at and increasing rate. Moreover, in both panels the 95% confidence
intervals for the estimates become much smaller towards the end of the sample, suggest-
ing much smaller variation between hospitals in their intercepts. The bottom two panels
present the average hospital intercepts as estimated for short and long term readmissions.
For both, the average values for each year are less then zero suggesting a decreasing rate
of readmissions over time. For many years the averages stay constant, indicating a con-
stant decline in the readmission rate over those periods. Unlike the mortality estimates,
there does not appear to be a narrowing of the confidence interval, indeed for year-long
readmissions the 95% interval is widening. This indicates an increase in the variation of
hospitals from the mean values in the later years of the sample
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Figure A.8: Trends across years in average latent IHD outcome measures across hospitals.

Figures A.9–A.12 show the latent mortality and readmission estimates for four selected
hospitals treating patients with IHD. For all four hospitals and all four outcomes the wide
confidence intervals suggest large within hospital variations in mortality. The 30-day
mortality estimates range from nearly 20% below average to almost 20% above average,
and the 365-day estimates range from about 15% below average to nearly 15% above
average. The variation in both readmission measures, ranges around 20% below and
above average. There is also year-to-year variation in all four figures, ranging around
5 − 10% in either direction
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Figure A.9: Trends across years in latent IHD 30-day mortality for selected hospitals.

Figure A.10: Trends across years in Latent IHD 365-day mortality for selected hospitals.
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Figure A.11: Trends across years in Latent IHD 28-day readmissions for selected hospitals.

Figure A.12: Trends across years in Latent IHD 365-day readmissions for selected hospitals.
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A.3 CCF

The descriptive statistics displayed in Figure A.13 show the pattern of average mortality in
the period 2000-2008. As illustrated, 30-day mortality has declined over this time period.
However, this mortality decline is very small, and has not been consistent throughout
the years. Figure A.13, shows a much larger decline of 365-day mortality rates for CCF
over the same time period. Similar to the trend in average long term mortality in the
other conditions studied, this decline is particularly sharp between 2005-2006. The figure
also indicates an increase in short term readmissions, which is mostly consistent aside
from two small declines in 2002-2002 and 2006-2007. Average long term readmissions
exhibit a relatively stable trend over the period studied. The confidence intervals for all
four outcomes are wider than for the other conditions, suggesting more variation in CCF
outcomes than in the other conditions.

Figure A.13: Trends across years in average CCF outcome measures across hospitals.

The results of the regressions run for the first model, presented in Table A.3, indicate
what patient factors are significant predictors of mortality and readmissions. Age and
co-morbidities are always highly significant predictors of mortality, and deprivation is
sometimes significant. Where, older age, higher deprivation and more co-morbidities are
associated with higher short and long term mortality. Age is not a significant determinant
of both long and short term readmissions for most of the years studied, but co-morbidities
remain highly significant in the same direction. Deprivation is significant in influencing
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long-term readmissions, but not short-term readmissions, such that more deprived patients
have higher rates of long-term readmission. While type of admission is not significant for
the other outcomes, elective admissions were significantly associated with lower long term
readmissions as compared to non-elective admissions. The trust dummies included for
each hospital are highly significant for all four outcome measures.

Table A.3: Regression results for CCF Model 1.

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

30-Day Mortality

2000 2475 0.004*** 0.005 -0.003 0.033*** -0.038 yes

(0.015) (0.001) (0.003) (0.006) (0.042)

2001 3436 0.004*** 0.009 -0.003 0.027*** 0.0089 yes

(0.012) (0.001) (0.003) (0.005) (0.041)

2002 3541 0.004*** 0.003 0.002 0.029*** -0.001 yes

(0.012) (0.001) (0.002) (0.005) (0.037)

2003 3590 0.004*** 2.10e-04 -0.003 0.034*** -0.035 yes

(0.013) (0.001) (0.003) (0.005) (0.034)

2004 3694 0.004*** 0.017 6.51e-04 0.022*** 0.008 yes

(0.012) (0.001) (0.001) (0.004) (0.035)

2005 4102 0.004*** 0.021* -0.001 0.026*** 0.039 yes

(0.011) (0.001) (0.001) (0.004) (0.029)

2006 4417 0.004*** -0.004 -0.004** 0.026*** 0.032 yes

(0.011) (0.001) (0.004) (0.004) (0.026)

2007 4165 0.004*** 0.008 -0.004* 0.031*** 0.085*** yes

(0.011) (0.001) (0.004) (0.004) (0.024)

2008 3817 0.003*** -4.75e-04 -0.005*** 0.028*** 0.071*** yes

(0.010) (0.001) (0.005) (0.004) (0.020)

365-Day Mortality

2000 2475 0.009*** 0.037* -0.003 0.066*** -0.102* yes

(0.001) (0.020) (0.004) (0.008) (0.055)

2001 3436 0.008*** 0.040** -0.002 0.076*** 0.027 yes

(0.001) (0.020) (0.003) (0.006) (0.055)

2002 3541 0.008*** 0.011 0.004 0.062*** 0.049 yes
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

(0.001) (0.020) (0.003) (0.007) (0.050)

2003 3590 0.009*** 0.024 -0.005 0.073*** 0.047 yes

(0.000653) (0.016) (0.003) (0.006) (0.044)

2004 3694 0.009*** 0.024 0.003 0.057*** 0.021 yes

(0.001) (0.016) (0.003) (0.006) (0.047)

2005 4102 0.008*** 0.068*** -0.007*** 0.048*** 0.063 yes

(0.001) (0.015) (0.003) (0.005) (0.040)

2006 4417 0.005*** 0.004 -0.004* 0.029*** 0.058** yes

(0.000) (0.012) (0.002) (0.004) (0.029)

2007 4165 0.004*** 0.007 -0.003 0.030*** 0.099*** yes

(0.000) (0.012) (0.002) (0.004) (0.025)

2008 3817 0.004*** 0.002 -0.006*** 0.031*** 0.079*** yes

(0.000) (0.011) (0.002) (0.004) (0.021)

28-Day Readmission

2000 2475 -0.002*** -0.005 1.69e-04 0.017*** 0.098** yes

(0.001) (0.015) (0.003) (0.006) (0.042)

2001 3436 -6.04e-04 0.021* 0.001 0.017*** 0.075* yes

(0.001) (0.013) (0.003) (0.005) (0.043)

2002 3541 -8.96e-04* 0.021* 0.005** 0.007 0.062* yes

(0.000) (0.012) (0.002) (0.005) (0.037)

2003 3590 2.61e-04 0.003 2.64e-05 0.018*** 0.064* yes

(0.001) (0.012) (0.003) (0.005) (0.034)

2004 3694 -6.91e-04 -0.009 0.002 0.010** 0.045 yes

(0.000) (0.012) (0.001) (0.005) (0.036)

2005 4102 -5.07e-04 0.005 0.002 0.015*** 0.066* yes

(0.000) (0.012) (0.001) (0.004) (0.032)

2006 4417 7.95e-05 0.008 0.004** 0.001 0.046 yes

(0.000) (0.012) (0.004) (0.004) (0.029)

2007 4165 -8.60e-05 -0.005 0.002 0.011*** 0.049* yes

(0.000) (0.012) (0.004) (0.004) (0.026)

2008 3817 -1.53e-04 0.005 0.002 0.011** 0.039* yes

(0.000) (0.012) (0.005) (0.004) (0.023)

365-Day Readmission
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2000 2475 -0.001 0.012 0.003 0.033*** 0.143** yes

(0.001) (0.020) (0.004) (0.009) (0.057)

2001 3436 -3.61e-04 0.010 0.010*** 0.020*** 0.117** yes

(0.001) (0.017) (0.003) (0.007) (0.056)

2002 3541 2.88e-04 0.017 0.010*** 0.015** 0.117** yes

(0.001) (0.017) (0.003) (0.007) (0.050)

2003 3590 0.001 -0.009 0.007** 0.013** 0.162*** yes

(0.001) (0.016) (0.003) (0.006) (0.044)

2004 3694 1.55e-04 -0.013 0.007** 0.007 0.038 yes

(0.001) (0.016) (0.003) (0.006) (0.047)

2005 4102 -2.05e-04 -0.011 0.007** 0.017*** 0.112*** yes

(0.001) (0.016) (0.003) (0.006) (0.041)

2006 4417 -1.15e-04 0.009 0.005** 0.003 0.113*** yes

(0.001) (0.015) (0.003) (0.005) (0.036)

2007 4165 1.29e-04** -0.002 0.007*** 0.003 0.002 yes

(0.001) (0.016) (0.003) (0.005) (0.034)

2008 3817 4.73e-04 -0.006 0.008*** 0.017*** 0.079*** yes

(0.001) (0.016) (0.003) (0.006) (0.030)

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

The average hospital intercept for CCF is graphed for each year studied in Figures
A.14. This indicates the effect hospitals have had on mortality and readmissions in each
year, and how the rate of change of these outcomes over the time period studied. Both
short and long term mortality latent averages are below zero. This indicates that the
average effect hospitals have on mortality is decreasing over time. While the intercepts
become more negative and less negative in different years throughout the sample, short
term mortality seems to be decreasing at a decreasing rate for most years, while year-long
mortality is decreasing at an increasing rate from 2005 onwards. The average hospital
intercepts as calculated for short and long term readmissions are both positive over the
entire period investigated. This suggests that the readmissions attributable to hospital
quality are increasing over time. Again there is some variation in the magnitude of the
average intercept over time, with what appears to be a dip in 2003 in both short and
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long term readmissions. This suggests that readmissions were increasing at a decreasing
rate over that period. For the short and long term mortality intercepts, and the long
term readmission intercepts the confidence intervals become more narrow at the end of
the period. This suggests that there is less variation amongst these outcomes in the later
years of the sample. However, the opposite can be said about short term readmissions,
where the confidence intervals seems slightly wider in the last years as compared to the
first.

Figure A.14: Trends across years in average latent CCF outcome measures across hospitals.

Figures A.15 – A.18 show the latent mortality and readmission rates for four selected
hospitals treating patients with CCF. For all four outcomes there is large within hospital
and year-to-year variation. The confidence intervals suggest within hospital variations
of over 20% above or below average for both short term and long term latent mortality
estimates, and variations of about 10 − 15% above or below average for both short term
and long term latent readmission estimates. Long and short term mortality can vary
substantially from year-to-year, in the case of the small hospital increasing by as much as
40%. However this fluctuation is most probably a result of the small number of patients
treated for CCF annually. There is smaller year-to-year variation amongst the readmission
measures, although this is commonly around 10%.
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Figure A.15: Trends across years in latent CCF 30-day mortality for selected hospitals.

Figure A.16: Trends across years in latent CCF 365-day mortality for selected hospitals.
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Figure A.17: Trends across years in Latent CCF 28-day readmissions for selected hospitals.

Figure A.18: Trends across years in Latent CCF 365-day readmissions for selected hospitals.
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A.4 TIA

The average 30-day mortality for TIA amongst all hospitals in the sample is shown in
Figure A.19. In the time period under investigation, the short-term mortality rates are
relatively constant, apart from a slight jump in mortality in 2002. The average 365-day
mortality rates for TIA, indicates a downwards trend in long term mortality. This trend is
particularly pronounced the in year 2005-2006. Average TIA 28-day readmission exhibit
a clear upwards trend over the 2000-2008 period is observed. The rate of increase is faster
for some years than others, but for the most part is consistently rising throughout the
time period. Finally the average 365-day readmission rates for TIA amongst all hospitals
in the sample are relatively constant except for a jump in mortality rates in 2007.

Figure A.19: Trends across years in average TIA outcome measures across hospitals.

The results of the mortality regressions for Model 1, shown in Table A.4, indicate that
age and co-morbidities are the only significant variables apart from the trust dummies. For
both mortality regressions higher age and higher co-morbidity is associated with higher
mortality. Table A.4 presents the results for the readmission regressions. Short and
long term readmissions are influenced by age, deprivation, co-morbidities and type of
admission, and long term readmissions are also influenced by gender. Older age, increased
deprivation and the presence of co-morbidities are all associated with higher readmissions,
while elective admissions are significantly associated with lower mortality as compared
to non-elective admissions. Where significant gender indicates that men have slightly
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higher 365-day readmissions then women. The trust dummies are also significant for both
readmission regressions.

Table A.4: Regression results for TIA Model 1.

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

30-Day Mortality

2000 9751 3.08e-04*** 4.97e-04 -2.01e-05 0.002* 0.002 yes

(0.000) (0.002) (0.000) (0.001) (0.005)

2001 12853 4.11e-04*** -0.001 1.26e-04 0.005*** 0.005 yes

(0.000) (0.002) (0.000) (0.001) (0.004)

2002 12375 4.90e-04*** -0.001 -1.60e-04 0.008*** 0.007 yes

(0.000) (0.002) (0.000) (0.001) (0.005)

2003 13618 3.81e-04*** -4.12e-04 2.24e-04 0.009*** 0.001 yes

(0.000) (0.002) (0.000) (0.001) (0.005)

2004 14263 4.18e-04*** 3.81e-04 -5.71e-05 0.003*** 0.002 yes

(0.000) (0.002) (0.000) (0.001) (0.004)

2005 14857 3.22e-04*** -6.53e-04 -3.48e-04 0.005*** 0.001 yes

(0.000) (0.002) (0.000) (0.001) (0.004)

2006 15629 3.34e-04*** -0.001 9.85e-05 0.006*** 0.003 yes

(0.000) (0.002) (0.000) (0.001) (0.004)

2007 15620 2.98e-04*** -0.001 -6.60e-05 0.004*** 0.001 yes

(0.000) (0.002) (0.000) (0.001) (0.004)

2008 16577 2.82e-04*** -0.001 -2.13e-04 0.005*** 0.004 yes

(0.000) (0.002) (0.000) (0.001) (0.004)

365-Day Mortality

2000 9751 0.005*** 0.003 0.002 0.053*** -0.001 yes

(0.000) (0.007) (0.001) (0.004) (0.017)

2001 12853 0.006*** 0.002 0.002* 0.054*** 0.010 yes

(0.000) (0.006) (0.001) (0.004) (0.016)

2002 12375 0.006*** 0.005 -2.55e-04 0.048*** 0.028* yes

(0.000) (0.006) (0.001) (0.004) (0.017)

2003 13618 0.00552*** -2.62e-04 0.002 0.055*** 0.025 yes

(0.000208) (0.006) (0.001) (0.003) (0.017)

277



A.4. TIA

Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

2004 14263 0.005*** 0.012** 0.002* 0.052*** -0.005 yes

(0.000) (0.005) (0.001) (0.00318) (0.016)

2005 14857 0.004*** -0.007 -2.58e-04 0.043*** 0.022 yes

(0.000) (0.005) (0.001) (0.003) (0.015)

2006 15629 0.001*** -0.003 1.40e-04 0.013*** 0.0016 yes

(0.000) (0.002) (0.000) (0.001) (0.006)

2007 15620 4.67e-04*** -0.001 -8.17e-05 0.004*** 0.003 yes

(0.00) (0.002) (0.000) (0.001) (0.005)

2008 16577 4.12e-04*** -0.001 -1.02e-04 0.007*** 0.004 yes

(0.00) (0.001) (0.000) (0.001) (0.004)

28-Day Readmission

2000 9751 6.54e-04*** 0.008 0.003*** 0.014*** 0.026* yes

(0.000) (0.006) (0.002) (0.000) (0.005)

2001 12853 3.35e-04* -0.008* 0.001 0.021*** 0.025* yes

(0.000) (0.005) (0.002) (0.000) (0.004)

2002 12375 7.18e-04*** 0.002 0.003*** 0.021*** 0.048*** yes

(0.000) (0.005) (0.002) (0.000) (0.005)

2003 13618 9.30e-04*** -0.006 0.004*** 0.014*** 0.046*** yes

(0.000) (0.005) (0.002) (0.000) (0.005)

2004 14263 4.47e-04*** -0.002 0.002** 0.012*** 0.051*** yes

(0.000) (0.005) (0.001) (0.000) (0.004)

2005 14857 8.23e-04*** -0.001* 0.003*** 0.009*** 0.03*** yes

(0.000) (0.005) (0.001) (0.000) (0.004)

2006 15629 7.84e-04*** 0.001 0.004*** 0.014*** 0.048*** yes

(0.000) (0.005) (0.001) (0.000) (0.004)

2007 15620 9.67e-04*** -0.002 0.002** 0.011*** 0.041*** yes

(0.000) (0.005) (0.001) (0.000) (0.004)

2008 16577 1.03e-04*** -0.001 0.002** 0.016*** 0.031** yes

(0.000) (0.005) (0.001) (0.000) (0.004)

365-Day Readmission

2000 9751 0.004*** 0.006 0.008*** 0.039*** 0.067*** yes

(0.000) (0.009) (0.002) (0.006) (0.023)

2001 12853 0.003*** -0.026*** 0.009*** 0.035*** 0.066*** yes
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Year N (total) Age Gender Carstairs

Score

Co-morbidity Elective Trust

dummies

(0.000) (0.008) (0.001) (0.005) (0.021)

2002 12375 0.003*** -0.015* 0.008*** 0.038*** 0.100*** yes

(0.000) (0.007) (0.001) (0.005) (0.023)

2003 13618 0.004*** -0.012 0.010*** 0.035*** 0.106*** yes

(0.000) (0.008) (0.001) (0.005) (0.023)

2004 14263 0.003*** -0.008 0.007*** 0.039*** 0.085*** yes

(0.000) (0.007) (0.001) (0.004) (0.023)

2005 14857 0.003*** -0.024*** 0.009*** 0.037*** 0.095*** yes

(0.000) (0.007) (0.001) (0.004) (0.022)

2006 15629 0.003*** -0.015** 0.009*** 0.037*** 0.078*** yes

(0.000) (0.007) (0.001) (0.00399) (0.020)

2007 15620 0.004*** -0.017** 0.009*** 0.033*** 0.088*** yes

(0.000) (0.007) (0.001) (0.00427) (0.022)

2008 16577 0.004*** -0.022*** 0.007*** 0.045*** 0.059*** yes

(0.000) (0.007) (0.001) (0.00386) (0.020)

* Significant at p ≤ 0.1

** Significant at p ≤ 0.05

*** Significant at p ≤ 0.01

Figure A.20 graphs the average 30-day latent TIA mortality for the 2000-2008 time
period for mortality and readmissions. The short and long term latent mortality estimates
are below 0 for the entire time period. This suggests that during these years mortality
attributable to hospital quality is decreasing. For both short and long term mortality the
change in the latent estimates over time suggests that initially, mortality is decreasing
at a decreasing rate, but from 2004 onwards it begins to decrease at an increasing rate.
The latent measures calculated for the readmission outcomes are also mostly negative.
The latent estimates for short term readmissions are negative for all years apart from
2001, indicating decreasing TIA readmissions in most of the time period. The year-long
intercepts are always negative, also indicating this decreasing trend, however the slope
suggests that for some years both are decreasing at an increasing rate. Moreover the
confidence intervals for the readmission estimates are becoming wider towards the end of
the sample, indicating increasing variation amongst hospitals. For the mortality intercepts,
a trend is only noticeable for year-long mortality where the confidence intervals become
narrower.
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Figure A.20: Trends across years in average latent TIA outcome measures across hospitals.

Figures A.21 – A.24 show the latent mortality and readmission estimates for the four
selected hospitals treating TIA patients. The variation in latent mortality within hos-
pitals smaller than all other conditions aside from Hip Replacement, it ranges between
1-3% below and above both 30-day and 365-day aggregate mortality measures. Similar to
the other conditions there is wider variation for the small hospital. While there is year-
to-year variation observed within hospitals this does not exceed 2% in either direction of
the estimate. The variation within hospitals is greater for the hospital latent readmission
estimates, where the confidence intervals range from 5-10% below and above the 28-day
aggregate readmission estimates, and around 15% below and above the 365-day aggregate
readmission estimates. In Figure A.21 the small hospital has the widest confidence in-
tervals. Interestingly, the confidence intervals of all hospitals in Figure A.24 experience a
very pronounced convergence towards the mean from 2005 onwards, indicating much less
variation in outcomes in the later years of the sample. There is also year-to-year variation
amongst readmission rates, but rarely does this exceed 5% for either short term or long
term readmissions.
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Figure A.21: Trends across years in latent TIA 30-day mortality for selected hospitals.

Figure A.22: Trends across years in latent TIA 365-day mortality for selected hospitals.
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Figure A.23: Trends across years in Latent TIA 28-day readmissions for selected hospitals.

Figure A.24: Trends across years in Latent TIA 365-day readmissions for selected hospitals.
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B Results for Chapter 3
B.1 MI

Table B.1 shows the parameter estimates of the basic models run for patients classified
as having MI. In these models, none of the quality indicators are very persistent. The
lag coefficients of D30ht and D365ht range around 0.3 − 0.4, and coefficients for R28ht

and R365ht at around 0.04 − 0.06. The sign on R365ht is always negative, and always
positive for the other indicators. The variance of the indicators in the year 2000, indicates
a standard deviation across hospitals of about 9% for D30ht and12% for D365ht. Similarly,
for readmissions the standard deviation across hospitals is about 7% for R28ht and 11%
for R365ht. The variance of the residuals indicate annual standard deviations in a similar
range; corresponding to about 9%, 12.5%, 12.4% and8% for D30ht, D365ht, R28ht and
R365ht respectively. The correlation coefficients on the variables in 2000, and the residuals,
indicate a strong positive association between D30ht and D365ht, as well as R365ht and
R28ht. All other associations are weak.

Table B.1: Estimates of MI multivariate VAR(1) parameters for hospital specific effects.

D30ht R28ht D365ht R365ht

D30h(t−1) 0.255582 -0.068077 -0.380821 0.023963

(0.03826) (0.03517) (0.06342) (0.04909)

[ 6.68086] [-1.93562] [-6.00438] [ 0.48820]

R28h(t−1) -0.055568 0.025542 -0.150551 0.093971

(0.04366) (0.04014) (0.07238) (0.05602)

[-1.27277] [ 0.63636] [-2.07997] [ 1.67751]

D365h(t−1) 0.050689 0.054887 0.832693 -0.102417

(0.01978) (0.01818) (0.03279) (0.02538)

[ 2.56262] [ 3.01825] [ 25.3923] [-4.03541]

R365h(t−1) -0.085410 0.022985 -0.363636 -0.061257

(0.03453) (0.03175) (0.05725) (0.04431)

[-2.47338] [ 0.72402] [-6.35173] [-1.38255]

Residuals
S.D. dependent 0.094031 0.081331 0.197032 0.113909

Correlation of residuals (D30ht) 1.000000 -0.141512 0.534637 -0.310228
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D30ht R28ht D365ht R365ht

Correlation of residuals (R28ht) -0.141512 1.000000 0.155160 0.701684

Correlation of residuals (D365ht) 0.534637 0.155160 1.000000 0.105374

Correlation of residuals (R365ht) -0.310228 0.701684 0.105374 1.000000

Initial Conditions
S.D. dependent in 2000 0.094472 0.073892 0.120822 0.113283

Correlation with D30ht in 2000 - -0.0617 0.7028 -0.2464

Correlation with R28ht in 2000 -0.0617 - 0.1228 0.6479

Correlation with D365ht in 2000 0.7028 0.1228 - 0.1228

Correlation with R365ht in 2000 -0.2464 0.6479 0.1228 -

Sample (adjusted): 2001 2008
Included observations: 904 after adjustments
Standard errors in ( ) & t-statistics in [ ]

The signal to noise estimates for the four outcome measures of MI is plotted in Figure
B.1 against the number of cases treated in each hospital. For this condition the signal to
noise ratios are not as high as for AMI, Stroke and Hip Replacement. This suggests that
the performance indicators for MI are noisier estimates of hospital performance. This may
be the result of larger estimation error, combined with the smaller number of cases for
this condition, resulting in a smaller sample from which to construct the estimates. While
the signal to noise ratio for all measures improves as sample size increases, it still remains
below the other conditions. Of the four measures both mortality estimates outperform the
readmission estimates, and in both cases the year-long measure is better than its short
term counterpart.

284



B.1. MI

Figure B.1: Signal to noise ratio for the four MI outcome measures (year 2005).

Figures B.2– B.5 present the filtered MI measures, their 95% confidence intervals and
the corresponding latent outcome measures derived in Appendix A.1 for selected hospitals.
Similar observations can be made for the filtered measures were for AMI, Stroke and Hip
Replacement above. The filtered measures are able to present much smoother estimates
of performance over time, as compared to the latent measures which increase and decrease
sharply from year to year. The confidence intervals for all conditions, including MI are
nearly twice as large as they were for the latent measures, although this is most likely a
result of the small sample of hospitals available in the English data versus the US data
used by McClellan and Staiger (1999). Again in the small hospital, where the fewer cases
result in much more erratic jumps in the latent measure, the smoothed indicator is much
easier to use in order to make comparisons of performance over time.
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Figure B.2: Filtered and latent estimates for MI D30ht for selected hospitals.

Figure B.3: Filtered and latent estimates for MI D365ht for selected hospitals.
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Figure B.4: Filtered and latent estimates for MI R28ht for selected hospitals.

Figure B.5: Filtered and latent estimates for MI R365ht for selected hospitals.

Table B.2 indicates the R-squared estimates for the predictions made for the MI filtered
outcomes, using different amounts of past data. The R-squared values for MI are high, but
not near perfect as they are for AMI and Hip Replacement. They suggest the estimates are
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very good predictors of performance, especially for mortality. Moreover, they remain good
predictors even when using only one year of data. The R-squared values for the outcome
forecasts are presented in Table B.3. Both the actual and the expected R-squared values
are very high, indicating that the forecasts are also able to predict the true values extremely
well for up to two years after the end of the data set. The similar results for the VAR(1)
and VAR(2) specifications suggest that the forecast performance is not sensitive to the lag
choice specified in the VAR model.

Table B.2: Summary of estimated prediction accuracy using alternative methods of signal ex-
traction. All estimates based on the VAR(1) model from Table B.1.

Expected R2 prediction based on:
All 8 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.979257 0.979107 0.979253 0.979411 0.86238 0.977483

2006 0.981212 0.981341 0.982484 0.982588 0.98259 0.984905

D365ht

2004 0.882788 0.882535 0.882747 0.886962 0.984214 0.960961

2006 0.970821 0.970211 0.933748 0.934264 0.782221 0.777805

R28ht

2004 0.984656 0.984660 0.984659 0.984617 0.961512 0.984237

2006 0.992722 0.992707 0.992502 0.992492 0.992508 0.992510

R365ht

2004 0.864754 0.86511 0.864754 0.864274 0.977453 0.862513

2006 0.972337 0.972063 0.971442 0.971342 0.970737 0.970938

Table B.3: Summary of forecast accuracy using alternative forecasting models. Forecasting 2006-
2008 values using data from 2000-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.9986781 0.9987475 0.9988944 0.998772

2007 (actual) 0.9823117 0.9822435 0.9809794 0.9809223

2008(expected) 0.9974576 0.9975153 0.9974376 0.9975464

2008 (actual) 0.9882959 0.9881461 0.9880028 0.9879705
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All outcomes Same outcome All outcomes Same outcome
D365ht

2007(expected) 0.9689792 0.9713811 0.9811399 0.9809792

2007 (actual) 0.960669 0.9594202 0.9705148 0.9705643

2008(expected) 0.9712172 0.9750321 0.98259 0.9842377

2008 (actual) 0.9507935 0.9486848 0.9723613 0.9717647

R28ht

2007(expected) 0.9954525 0.993432 0.9801697 0.979403

2007 (actual) 0.988189 0.9881358 0.9878182 0.987783

2008(expected) 0.955344 0.9565898 0.9661497 0.9630006

2008 (actual) 0.9538543 0.9537103 0.9532683 0.9533528

R365ht

2007(expected) 0.9917701 0.9915122 0.9746649 0.9715055

2007 (actual) 0.9582364 0.9581847 0.9587629 0.9587073

2008(expected) 0.9766199 0.9814568 0.9740965 0.9739562

2008 (actual) 0.9393019 0.9393542 0.9402394 0.9405488

B.2 IHD

The parameter estimates for IHD presented in Table B.4 show overall more persistent
quality indicators that the previous conditions, especially for D30ht. The coefficient on
the D30ht lag varies between 0.67 − 0.68, and it’s initial variance, and variance of the
residuals indicates very low standard deviations at around 1%; suggesting 30-day mortality
is heavily influenced by its own past performance, with little differences across hospitals.
The coefficients are lower for the other quality indicators at around 0.45 for D365ht, 0.5
for R28ht and 0.3 for R365ht. The initial variance and residual variance for R28ht both
indicate standard deviations of around 2%. The initial variances and residual variances of
D365ht and R365ht are higher, corresponding to a standard deviation of 3.6% and 4% and
2% and 4% respectively. The correlation coefficients between the indicators and residuals
show strong positive associations between D30ht and D365ht, as well as R28ht and R365ht,
but weak associations for all other quality sets.
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Table B.4: Estimates of IHD multivariate VAR(1) parameters for hospital specific effects.

D30ht R28ht D365ht R365ht

D30h(t−1) 0.772371 -0.096571 1.166722 0.019439

(0.02072) (0.03869) (0.17225) (0.15913)

[ 37.2845] [-2.49620] [ 6.77351] [ 0.12216]

R28h(t−1) -0.002239 0.505702 -0.217399 0.048397

(0.01521) (0.02840) (0.12646) (0.11683)

[-0.14723] [ 17.8042] [-1.71910] [ 0.41426]

D365h(t−1) 0.007407 0.004054 0.708119 0.066781

(0.00328) (0.00613) (0.02731) (0.02523)

[ 2.25510] [ 0.66098] [ 25.9288] [ 2.64686]

R365h(t−1) -0.014991 0.002601 -0.140492 0.527053

(0.00601) (0.01122) (0.04998) (0.04617)

[-2.49410] [ 0.23175] [-2.81115] [ 11.4155]

Residuals
S.D. dependent 0.016641 0.021044 0.117278 0.078530

Correlation of residuals (D30ht) 1.000000 0.023460 0.156514 -0.52385

Correlation of residuals (R28ht) 0.023460 1.000000 -0.066481 -0.038846

Correlation of residuals (D365ht) 0.156514 -0.066481 1.000000 0.029961

Correlation of residuals (R365ht) -0.52385 -0.038846 0.029961 1.000000

Initial Conditions
S.D. dependent in 2000 0.015556 0.021142 0.023958 0.042603

Correlation with D30ht in 2000 - -0.1434 0.6986 -0.2566

Correlation with R28ht in 2000 -0.1434 - 0.0168 0.7812

Correlation with D365ht in 2000 0.6986 0.0168 - -0.0335

Correlation with R365ht in 2000 -0.2566 0.7812 -0.0335 -

Sample (adjusted): 2001 2008
Included observations: 849 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Figure B.6 plots the estimates of the signal to noise ratio against the number of cases
for patients admitted for IHD. The ratios for the measures estimated for this condition
are very high. The estimates have been constructed using a large sample of patients,
which contributes to the strong ratios despite the weak signal variance observed in Table
B.4. As cases increase, the signal for all four measures becomes stronger. Indeed, below
500 cases most of the measures are quite weak, although only a small sample of hospitals
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have so few cases. Of the four measures, year long mortality and year long readmissions
consistently out perform 30-day mortality and 28-day readmissions, of which the latter
generally underperforms relative to the other three measures.

Figure B.6: Signal to noise ratio for the four IHD outcome measures (year 2005).

Figures B.7– B.10 present the filtered measures derived for IHD, their 95% confidence
intervals and the corresponding latent outcome measures from Appendix A.2 for selected
hospitals. Once again the filtered measures are able to provide smoother estimates over
time than the latent measures. This makes it easier to observe an overall worsening in
performance in all four hospitals, for all both mortality measures. Figures B.7 and B.8
suggest rising 30-day and 365-day mortality over time. In the same four hospitals 28-day
emergency readmissions as well as 365-day readmissions are falling from above average
or staying stable around the average rate. The confidence intervals surrounding these
measures make it difficult to make any very conclusive results about whether performance
is above or below average at any point in time, as they are very wide. This is most likely
a result of the relatively few hospitals available in the sample.
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Figure B.7: Filtered and latent estimates for IHD D30ht for selected hospitals.

Figure B.8: Filtered and latent estimates for IHD D365ht for selected hospitals.
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Figure B.9: Filtered and latent estimates for IHD R28ht for selected hospitals.

Figure B.10: Filtered and latent estimates for IHD R365ht for selected hospitals.

The R-squared measures for the predictions made for filtered outcomes of IHD, esti-
mated using different amounts of past data are presented in Table B.5. The values are
near perfect and suggest the estimates are very good predictors of performance, especially
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for mortality. The values remain extremely high even when using only one year of data,
but are weakest for the long-term measures. The R-squared estimates presented in Table
B.6 for the forecasts are also very high, for both the VAR(1) and VAR(2) specifications of
the model. This suggests that the filters are extremely good predictors of performance, as
well as being able to make remarkably good forecasts. Moreover the model is not sensitive
to the lag choice specified.

Table B.5: Summary of estimated prediction accuracy using alternative methods of signal ex-
traction. All estimates based on the VAR(1) model from Table B.4.

Expected R2 prediction based on:
All 8 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.999654 0.999652 0.999653 0.999652 0.999530 0.999531

2006 0.999782 0.999774 0.999702 0.999706 0.999792 0.999793

D365ht

2004 0.977067 0.976950 0.977257 0.976960 0.997215 0.997232

2006 0.977641 0.977988 0.907615 0.907003 0.859228 0.858978

R28ht

2004 0.998357 0.998349 0.998350 0.998352 0.998883 0.998909

2006 0.988082 0.988098 0.988040 0.988052 0.989795 0.989880

R365ht

2004 0.990350 0.990255 0.990264 0.990328 0.992136 0.992187

2006 0.957160 0.957129 0.957299 0.957102 0.959742 0.960013

Table B.6: Summary of forecast accuracy using alternative forecasting models. Forecasting 2006-
2008 values using data from 2000-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.9992606 0.999232 0.9990933 0.9990526

2007 (actual) 0.9997973 0.9997938 0.9997545 0.9997534

2008(expected) 0.9993752 0.9993606 0.9992415 0.9992353

2008 (actual) 0.9998603 0.9998556 0.9998349 0.9998349
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All outcomes Same outcome All outcomes Same outcome
D365ht

2007(expected) 0.9988642 0.9987977 0.9959353 0.9950806

2007 (actual) 0.9827728 0.9826841 0.9591145 0.9593199

2008(expected) 0.8647367 0.8607932 0.8378298 0.8269623

2008 (actual) 0.992272 0.9919147 0.9709476 0.9715925

R28ht

2007(expected) 0.9991775 0.9992595 0.9974778 0.9974377

2007 (actual) 0.9895275 0.98956 0.9898381 0.9898477

2008(expected) 0.9972882 0.9976669 0.9899789 0.989258

2008 (actual) 0.9978728 0.9978783 0.9981748 0.9981768

R365ht

2007(expected) 0.9988965 0.9987113 0.9980229 0.9980314

2007 (actual) 0.9588806 0.9588513 0.959781 0.959805

2008(expected) 0.9993992 0.9993255 0.9993939 0.9993185

2008 (actual) 0.668666 0.6688468 0.6715124 0.671193

B.3 CCF

The VAR results for CCF, presented in Table B.7, show very low lag coefficients overall.
Looking closely at each quality measure, the coefficients of each variable’s own lags suggest
that past performance has very little influence on current quality. The most dynamic
quality measure of the lot is D365ht, with a coefficient of around 0.17, with all others less
that 0.1. The initial variance of indicators and the variance of their residuals, indicate
higher variation across hospitals and annually. The standard deviation for both short
term quality indicators (D30ht and R28ht) in the year 2000 is 12%, and 10% amongst
their residuals. The standard deviation is higher for the long term indicators, at 12%
for D365ht 13.4% for R365ht in the year 2000, and at 16% and 17%for the residuals
of D365ht and R365ht respectively. The correlation coefficients amongst indicators and
residuals suggest a strong positive association between the pairs D30ht and D365ht as well
as R365ht and R28ht, and a mild negative association between D30ht and R365ht. All
other pairs have a weak negative correlation.
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Table B.7: Estimates of CCF multivariate VAR(1) parameters for hospital specific effects.

D30ht R28ht D365ht R365ht

D30h(t−1) 0.091842 0.021532 -0.101393 0.104027

(0.04004) (0.03691) (0.04757) (0.05055)

[ 2.29368] [ 0.58330] [-2.13166] [ 2.05785]

R28h(t−1) -0.033167 -0.075961 -0.129367 -0.125635

(0.04308) (0.03971) (0.05117) (0.05438)

[-0.76999] [-1.91283] [-2.52822] [-2.31024]

D365h(t−1) 0.031140 -0.018943 0.234136 -0.063650

(0.03081) (0.02840) (0.03660) (0.03890)

[ 1.01074] [-0.66692] [ 6.39752] [-1.63643]

R365h(t−1) -0.026010 0.049197 0.042751 0.106006

(0.03317) (0.03058) (0.03940) (0.04188)

[-0.78411] [ 1.60873] [ 1.08492] [ 2.53124]

Residuals
S.D. dependent 0.107777 0.098509 0.129701 0.135376

Correlation of residuals (D30ht) 1.000000 -0.269111 0.521298 -0.383715

Correlation of residuals (R28ht) -0.269111 1.000000 -0.014197 0.652999

Correlation of residuals (D365ht) 0.521298 -0.014197 1.000000 -0.060731

Correlation of residuals (R365ht) -0.383715 0.652999 -0.060731 1.000000

Initial Conditions
S.D. dependent in 2000 0.123641 0.121285 0.162693 0.174356

Correlation with D30ht in 2000 - -0.2937 0.5604 -0.3892

Correlation with R28ht in 2000 -0.2937 - 0.1169 0.5774

Correlation with D365ht in 2000 0.5604 0.1169 - -0.0888

Correlation with R365ht in 2000 -0.3892 0.5774 -0.0888 -

Sample (adjusted): 2001 2008
Included observations: 960 after adjustments
Standard errors in ( ) & t-statistics in [ ]

The signal to noise estimates for CCF is presented in FigureB.11, plotted against the
number of cases treated in each hospital. The ratios are relatively low when compared to
those of the other conditions, however they perform better than the signal to noise ratios
of other conditions with such few cases. This is probably because the signal variance of
all measures is relatively high (TableB.7). Unlike the other conditions, 30-day mortality
has the highest signal to noise ratio, followed by year-long readmissions and the other
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variables close behind.

Figure B.11: Signal to noise ratio for the four CCF outcome measures (year 2005).

Figures B.12– B.15 present the CCF filtered outcome measures, their 95% confidence
intervals and the latent outcome measures presented in Appendix A.3. As is observed by
the filtered measures for the other conditions, they are able to smooth out the values of
the latent variables often allowing an easier interpretation of performance at a single point
in time. This is particularly useful in cases where a smaller sample size may lead to more
erratic latent measures, such as with the small hospitals. This is the case in the figures
below, where the filtered estimates for hospital 3, in the upper left hand panel, have used
the time series information from the latent measures to provide a smooth estimate across
time. However, the confidence intervals for the filtered estimates are much larger than of
the latent estimates due to the small sample of hospitals from which they are derived.

297



B.3. CCF

Figure B.12: Filtered and latent estimates for CCF D30ht for selected hospitals.

Figure B.13: Filtered and latent estimates for CCF D365ht for selected hospitals.
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Figure B.14: Filtered and latent estimates for CCF R28ht for selected hospitals.

Figure B.15: Filtered and latent estimates for CCF R365ht for selected hospitals.

Table B.8 indicates the R-squared measures for the predictions CCF filtered outcomes
of, estimated using different amounts of past data. The R-squared high, but not near per-
fect as they are for some of the other conditions. They suggest that the filtered outcomes
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are good predictors of performance for both mortality measures, but slightly less so for
the 28-day readmission measure. The values remain almost identical even when using only
one year of data, but are weakest for the long-term measures. The R-squared estimates
presented in Table B.9 for the forecasts are very high, suggesting that the filters are able
to make remarkably good forecasts in addition to providing good predictions. Moreover
the model is not sensitive to the lag choice specified as the results are very close both the
VAR(1) and VAR(2) specifications of the model.

Table B.8: Summary of estimated prediction accuracy using alternative methods of signal ex-
traction. All estimates based on the VAR(1) model from Table B.7.

Expected R2 prediction based on:
All 8 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.975314 0.975353 0.975196 0.975670 0.972799 0.972910

2006 0.975988 0.976293 0.932016 0.976108 0.978864 0.978588

D365ht

2004 0.945162 0.945132 0.944651 0.945136 0.953034 0.952415

2006 0.966899 0.967043 0.885099 0.966757 0.959355 0.958919

R28ht

2004 0.924133 0.923822 0.923969 0.924196 0.924090 0.924214

2006 0.885111 0.885208 0.966626 0.885587 0.885823 0.885651

R365ht

2004 0.914019 0.913348 0.912940 0.914041 0.9177160 0.918538

2006 0.93241 0.932143 0.975844 0.932243 0.932146 0.931479

Table B.9: Summary of forecast accuracy using alternative forecasting models. Forecasting 2006-
2008 values using data from 2000-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.9737893 0.9740673 0.9760579 0.9763862

2007 (actual) 0.9648712 0.9647909 0.9652303 0.9652056

2008(expected) 0.975627 0.9750905 0.9743466 0.9739609

2008 (actual) 0.9767619 0.9767731 0.9769464 0.9766793
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All outcomes Same outcome All outcomes Same outcome
D365ht

2007(expected) 0.9898384 0.9892356 0.9885849 0.9887405

2007 (actual) 0.9688362 0.9685165 0.9710999 0.9709966

2008(expected) 0.9909006 0.9908916 0.9904666 0.9910005

2008 (actual) 0.9499599 0.95004 0.9568327 0.9567122

R28ht

2007(expected) 0.9873314 0.9872443 0.9799542 0.9780822

2007 (actual) 0.973367 0.9734743 0.9737522 0.9738179

2008(expected) 0.9615405 0.9644274 0.9605659 0.9638652

2008 (actual) 0.961602 0.9620075 0.9619093 0.9618942

R365ht

2007(expected) 0.9982671 0.9985245 0.9977947 0.9975429

2007 (actual) 0.9384079 0.9380842 0.9652056 0.9368232

2008(expected) 0.9412284 0.9414987 0.9340023 0.9359227

2008 (actual) 0.9266524 0.9271426 0.9766793 0.9260207

B.4 TIA

The results for TIA shown in Table B.10, indicate that none of the quality measures are
particularly influenced by their past values. Of these the most persistent dimension of
hospital quality is 365-day mortality, which has lag coefficients ranging from 0.3 − 0.4.
All other quality measures have lag coefficients of 0.1 or less. The variance of quality
measures in the year 2000, shows very little variation across hospitals for D30ht with a
standard deviation of around 1%. There is higher variation for D365ht, R28ht and R365ht,
with standard deviations of 4%, 4% and 6% respectively. There is a similar pattern in the
variance of residuals, indicating little annual variation in D30ht, and higher variation in the
other quality indicators. The annual standard deviation of D30ht corresponds about 1%,
and is around 6%, 4% and 7% for D365ht, R28ht and R365ht. The correlation coefficients
on the quality indicators and their residuals suggest a positive correlation between R28ht

and R365ht, but no other strong association between amongst the other pairs.

301



B.4. TIA

Table B.10: Estimates of TIA multivariate VAR(1) parameters for hospital specific effects.

D30ht R28ht D365ht R365ht

D30h(t−1) 0.119608 0.336481 0.741973 0.361246

(0.03143) (0.09688) (0.29679) (0.24303)

[ 3.80529] [ 3.47316] [ 2.49997] [ 1.48645]

R28h(t−1) -0.044904 0.014876 0.213408 -0.158981

(0.01072) (0.03303) (0.10119) (0.08286)

[-4.19027] [ 0.45038] [ 2.10904] [-1.91875]

D365h(t−1) 0.023533 -0.009371 0.814464 -0.039244

(0.00288) (0.00888) (0.02720) (0.02227)

[ 8.17034] [-1.05562] [ 29.9470] [-1.76219]

R365h(t−1) -7.01E-05 0.038492 0.163180 0.146632

(0.00474) (0.01462) (0.04480) (0.03669)

[-0.01478] [ 2.63193] [ 3.64212] [ 3.99685]

Residuals
S.D. dependent 0.011979 0.034944 0.159175 0.087696

Correlation of residuals (D30ht) 1.000000 0.019324 0.217958 0.036735

Correlation of residuals (R28ht) 0.019324 1.000000 -0.026832 0.146502

Correlation of residuals (D365ht) 0.217958 -0.026832 1.000000 0.072153

Correlation of residuals (R365ht) 0.036735 0.146502 0.072153 1.000000

Initial Conditions
S.D. dependent in 2000 0.011136 0.038484 0.043116 0.038484

Correlation with D30ht in 2000 - -0.0960 0.1432 -0.1025

Correlation with R28ht in 2000 -0.0960 - 0.2381 0.4184

Correlation with D365ht in 2000 0.1432 0.2381 - 0.3878

Correlation with R365ht in 2000 -0.1025 0.4184 0.3878 -

Sample (adjusted): 2001 2008
Included observations: 881 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Figure B.16 illustrates the signal to noise estimates in the observed hospital outcome
measures for TIA plotted against the number of cases treated in each hospital. While
the signal to noise ratios improve when more cases are analysed, they perform relatively
worse than the signal to noise ratios of other conditions estimated for the same amount
of cases. Short term readmissions and short term mortality perform the worst, reflecting
the little signal variation in the VAR parameters. Like most of the other conditions year-
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long mortality has the highest signal to noise ratio the four measures. The poor overall
performance is most probably related to the weak signals and small sample size used to
construct these estimates.

Figure B.16: Signal to noise ratio for the four TIA outcome measures (year 2005).

Figures B.17–B.20 present the filtered outcome measures for TIA, their 95% confi-
dence intervals and the latent outcome measures presented in Appendix A.4. The filtered
estimates for TIA present the same properties observed in the previous conditions. The
filtered estimates are able to smooth out the latent measures using information from pre-
vious time periods and the other outcome measures. Using these measures make it easier
to interpret a single hospital’s relative performance than using the latent measures which
jump sharply from one period to the next. However, the filtered estimates of all condi-
tions, and TIA, have much larger confidence intervals surrounding them. This suggests a
larger degree of efficiency, and is most likely attributable to the small sample size.
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Figure B.17: Filtered and latent estimates for TIA D30ht for selected hospitals.

Figure B.18: Filtered and latent estimates for TIA D365ht for selected hospitals.
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Figure B.19: Filtered and latent estimates for TIA R28ht for selected hospitals.

Figure B.20: Filtered and latent estimates for TIA R365ht for selected hospitals.

Table B.11 indicates the R-squared measures for the TIA filtered outcome predictions,
estimated using different amounts of past data. The results suggest that the predictions
made are extremely good, and almost perfect for some years. Only the one-year mortality
measures in 2006 exhibits a particularly low prediction, when predicted with 3-years and

305



B.4. TIA

1-year of data. However, overall the data is able to predict the true quality remarkably
well. Similarly, the forecasts, presented in Table B.12, are also very high, for both the
VAR(1) and VAR(2) specifications of the model. The year-long mortality forecasts for
2007 and 2008 are the lowest in the VAR(1) specification, however this is improved with
the VAR(2) specification. While the model is not sensitive to the lag choice specified for
all other conditions and years, it appears to improve both the forecasts for this variable.
However, the predictions under this specification fall by nearly 10%.

Table B.11: Summary of estimated prediction accuracy using alternative methods of signal
extraction. All estimates based on the VAR(1) model from Table B.10.

Expected R2 prediction based on:
All 8 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2004 0.999752 0.985212 0.999751 0.999755 0.999755 0.999757

2006 0.999780 0.999781 .9998308 0.999832 0.999812 0.999814

D365ht

2004 0.926829 0.999450 0.926862 0.92724 0.989374 0.989280

2006 0.938555 0.938117 .3441075 0.34271 0.015640 0.017167

R28ht

2004 0.999460 0.927045 0.999448 0.999453 0.999646 0.999648

2006 0.994492 0.994541 .9944965 0.994513 0.994335 0.994315

R365ht

2004 0.985387 0.999755 0.985705 0.98547 0.984629 0.984583

2006 0.991698 0.991751 .9919978 0.991985 0.992142 0.992124

Table B.12: Summary of forecast accuracy using alternative forecasting models. Forecasting
2006-2008 values using data from 2000-2006.

All outcomes Same outcome All outcomes Same outcome
VAR(1), forecasting with VAR(2), forecasting with

D30ht

2007(expected) 0.9979086 0.9975985 0.9995478 0.9995313

2007 (actual) 0.9998127 0.9998112 0.9997479 0..9997458

2008(expected) 0.9984913 0.998384 0.9993958 0.9993626

2008 (actual) 0.9998712 0.9998671 0.9998718 0.9998712
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All outcomes Same outcome All outcomes Same outcome
D365ht

2007(expected) 0.6524382 0.6156154 0.987202 0.9866609

2007 (actual) 0.8305044 0.8277816 0.7114277 0.7084467

2008(expected) 0.68696 0.6435999 0.9817656 0.9847195

2008 (actual) 0.922959 0.9217521 0.7958283 0.7915719

R28ht

2007(expected) 0.9847434 0.9836687 0.9933212 0.9930748

2007 (actual) 0.9960541 0.9960372 0.9961804 0.9961928

2008(expected) 0.9930163 0.9944037 0.9968603 0.9970341

2008 (actual) 0.9953419 0.9953497 0.9955111 0.995513

R365ht

2007(expected) 0.99931 0.9992769 0.9994361 .9994153

2007 (actual) 0.9807389 0.9805277 0.9809509 0.9809542

2008(expected) 0.9981527 0.9981514 0.9975603 0.9971483

2008 (actual) 0.9365411 0.9367729 0.9370904 0.9371955

B.5 Comparison of Indicators

Table B.13: Rankings of 2005 AMI D365ht measures.

Ranking Mean D365ht Hospital Latent D365ht Hospital Filtered D365ht Hospital
Top 10

1 0.087248 89 -10.9951 83 -3.58184 17

2 0.108949 55 -7.33457 119 -3.03305 54

3 0.113143 119 -7.01737 47 -2.52628 22

4 0.116531 52 -6.30999 42 -2.45368 3

5 0.123737 97 -5.81326 45 -2.3618 103

6 0.129032 62 -5.72524 15 -2.03254 18

7 0.141892 45 -5.43161 80 -2.01344 7

8 0.149923 112 -5.26463 91 -1.99536 107

9 0.150538 88 -4.79057 22 -1.79006 44

10 0.155303 19 -4.63651 62 -1.75694 40

Bottom 10
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B.5. Comparison of Indicators

Ranking Mean D365ht Hospital Latent D365ht Hospital Filtered D365ht Hospital
110 0.27566 21 4.33436 21 0.998402 114

111 0.276094 76 4.432666 90 1.038727 41

112 0.276423 61 4.860979 96 1.257631 38

113 0.285 53 4.952693 53 1.294286 33

114 0.291228 41 4.981547 36 1.342004 35

115 0.29912 96 5.641765 107 1.400486 99

116 0.306338 71 7.110268 10 1.55153 66

117 0.312139 3 7.266694 3 2.121651 27

118 0.4 66 7.715625 71 2.203174 9

119 0.426573 43 18.70868 43 2.538532 56

Table B.14: Rankings of 2005 AMI R28ht measures.

Ranking Mean R28ht Hospital Latent R28ht Hospital Filtered R28ht Hospital
Top 10

1 0 66 -17.15334 66 -0.5097684 56

2 0.0410959 80 -13.77112 83 -0.4249609 27

3 0.0537634 62 -9.429364 62 -0.4037885 9

4 0.0758123 57 -7.974833 80 -0.3244067 38

5 0.0769231 43 -6.535955 43 -0.2796607 99

6 0.0824373 88 -4.354861 57 -0.2724753 41

7 0.0873786 113 -3.504739 113 -0.2207526 116

8 0.09375 36 -3.356516 36 -0.2168493 33

9 0.0989209 63 -2.987282 88 -0.1949843 35

10 0.0990415 51 -2.770071 45 -0.1943502 53

Bottom 10
110 0.1564246 85 3.137839 23 0.5282587 83

111 0.1594203 27 3.158059 6 0.5671023 107

112 0.1598916 14 3.614229 27 0.5836549 106

113 0.1601423 23 3.619557 72 0.589515 40

114 0.1606061 16 3.697118 9 0.5981762 3

115 0.1615721 59 4.066902 14 0.6017366 18

116 0.164486 6 4.984622 46 0.7226745 22

117 0.1715976 9 5.005144 16 0.7290823 103

118 0.1856061 19 5.010148 19 0.8328696 17
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B.5. Comparison of Indicators

Ranking Mean R28ht Hospital Latent R28ht Hospital Filtered R28ht Hospital
119 0.1933962 46 5.822222 59 0.8452681 54

Table B.15: Rankings of 2005 AMI R365ht measures.

Ranking Mean R365ht Hospital Latent R365ht Hospital Filtered R365ht Hospital
Top 10

1 0.118881 43 -12.698 43 -0.6166016 56

2 0.167785 89 -12.05263 83 -0.5771485 33

3 0.169675 57 -7.481782 62 -0.4943517 99

4 0.172043 62 -7.190022 89 -0.483924 38

5 0.172524 51 -5.687592 113 -0.4257711 116

6 0.181004 88 -5.204206 33 -0.3740641 9

7 0.182222 99 -4.925087 99 -0.3105961 62

8 0.18932 113 -4.808173 51 -0.2949201 66

9 0.197425 33 -4.342741 88 -0.2844733 41

10 0.200557 102 -4.314243 58 -0.2767854 118

Bottom 10
110 0.278986 27 4.798292 95 0.4114325 5

111 0.280397 78 4.828352 28 0.4298307 67

112 0.283951 72 4.928086 80 0.4988003 3

113 0.284734 95 5.156519 72 0.5044565 50

114 0.285266 86 5.201916 23 0.5073113 77

115 0.288256 23 5.52123 71 0.5493379 18

116 0.292254 71 5.75459 11 0.5793964 17

117 0.292553 11 5.975807 4 0.6079986 40

118 0.301887 46 7.396799 46 0.6340984 106

119 0.4 66 19.4526 66 0.6462436 54
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C Comments for Chapter 4
C.1 MI

The forecast error variance decompositions for MI indicate that its performance is highly
dynamic. For all mortality and readmissions outcomes MI is able to predict over 90%
of its own variance in a 10 year horizon. The results from the MI seemingly unrelated
regressions confirm that performance is very highly dynamic, with all three lags being
significant predictors of current outcomes, such that high outcomes in a previous period
are highly associated with high outcomes in the current period. The Granger causality
results for MI suggest that the lagged values of other conditions do significantly help to
predict some of the MI outcomes, such as AMI, IHD, CCF and Hip Replacement. While
the variance decomposition percentages show that MI explains most of its own forecast
error, these conditions help to explain between 2-6% of the variance for some outcomes.

MI & IHD

The relationship between MI and AMI is discussed in the results section of the chapter.
Moreover the relationship between MI and IHD is very similar to that of AMI and IHD,
such that they have a dynamic reinforcing relationship for 30-day mortality. However,
there is no significant Granger causality conditions as in the case of AMI and IHD. In the
case of short term readmissions there is bidirectional Granger causality between the two
conditions, and IHD explains over 5% of the variation in the forecast error of MI. The SUR
results suggest that they are contemporaneously correlated, such that lower readmissions in
one condition are associated with lower conditions in the other. The coefficient of the IHD
variable in the MI model is very high, indicating that this effect explains a large amount
of the variation in MI readmissions. However, the MI coefficient in the IHD model shows
that MI readmissions explain only a small amount of the variance in IHD readmissions.
Moreover lagged MI is also significant in the IHD model, although with a negative sign,
such that lower lagged MI readmissions lead to higher IHD readmissions. Neither long
term mortality nor long term readmissions are significantly associated between MI and
IHD.
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C.1. MI

MI & CCF

What is most interesting about the MI results is that most relationships between MI and
the other conditions is very different from the relationship of AMI with those conditions.
The relationship between CCF and MI is such that the Granger causality estimates in-
dicate no significant correlation between short or long term mortality. The SUR model
also shows no effect between these two conditions for 30-day mortality. The long term
mortality model indicates that lagged MI mortality is significantly positively associated
with CCF mortality. The readmission models both indicate a dynamic competing rela-
tionship such the two conditions are negatively contemporaneously correlated, but the lag
of one is positively associated with the other. This is different from the relationship we
saw between AMI and CCF, where there was a dynamic reinforcing relationship.

MI & Stroke

Stroke and MI mortality have a dynamic reinforcing relationship for short term mortality,
and a dynamic competing relationship for long term mortality. The SUR readmission
models so no association between MI and Stroke. The Granger causality estimates are
not significant and do not help is in understanding the relationship between the two
conditions. However, exactly the same relationship is observed between TIA and MI.
Given the similarities between TIA and Stroke it is likely that the same factors are driving
the relationship between MI and these two conditions.

MI & TIA & Hip Replacement

Finally, the SUR model for MI indicates that contemporaneous Hip Replacement mortality
is a very strong positive predictor of 30-day mortality. Moreover, in the Hip Replacement
equation contemporaneous MI is insignificant, but lagged MI is positively associated with
hip, such that increasing lagged MI mortality is associated with decreasing hip mortality,
although only weakly. Interestingly, the long-term mortality SUR model indices no asso-
ciation between the two conditions. The 28-day readmissions model indicates a dynamic
competing relationship between the two conditions, which is much stronger for MI than
Hip Replacement. The long term readmissions model also shows a negative contempora-
neous effect of Hip Replacement on MI but only at the 10% level. Moreover, lagged effects
are not significant, nor is the contemporaneous effect of MI on Hip Replacement.
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C.2. IHD

C.2 IHD

The forecast error variance decompositions for IHD indicate that its performance is highly
dynamic. For all mortality and readmissions outcomes IHD is able to predict over 90%
of its own variance in a 10 year horizon. The results from the IHD seemingly unrelated
regressions confirm that performance is very highly dynamic, with all three lags being
significant predictors of current outcomes, such that high outcomes in a previous period are
highly associated with high outcomes in the current period. The Granger causality results
for IHD suggest that the lagged values of many of the other conditions do significantly
help to predict some of the IHD outcomes. While the variance decomposition percentages
show that AMI, Stroke and Hip Replacement explains most of the IHD forecast error, at
about 3-4%.

IHD & CCF

The relationship between IHD and AMI and IHD and MI is explained above. IHD and
CCF are also related, such that IHD short term mortality has a very strong dynamic
reinforcing effect on CCF mortality. That is IHD outcomes are positively associated
with contemporaneous CCF outcomes, and their lag is negatively associated with CCF
outcomes. This is the same effect IHD outcomes have on CCF, only the size of the
coefficients is much smaller, indicating the the effect explains a much smaller amount of the
IHD variance. The SUR model for long term mortality and short term readmissions only
shows a contemporaneous reinforcing effect of one condition on the other. The coefficients
on the long-term mortality variables are lower than the short term mortality model’s,
although in the 28-day readmission model the contemporaneous effect of IHD on CCF is
quite strong. Finally the long term readmissions model indicates a dynamic competing
effect of CCF on IHD, while only IHD lags are significant in positively influencing CCF.
However, the coefficient of the lagged IHD variable is very strong indicating that it explains
a good amount of the variation in CCF.

IHD & Stroke

IHD and Stroke 30-day mortality outcomes, and 28-day readmission outcomes are not
significantly associated. However, year-long IHD mortality and Stroke mortality have a
competing contemporaneous relationship. The coefficient of one condition on another is
very low, however, indicating that this effect is weak. Yet the Granger causality estimates
suggest that lagged outcomes of Stroke are significant in influencing IHD. Moreover, the
year-long readmissions SUR indicates the two conditions have a weak reinforcing effect.
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C.3. CCF

The effect indicates that lagged Stroke readmissions also influence IHD but not the other
way around. Thus, the relationship between IHD and Stroke is such that some Stroke
patients are readmitted with IHD conditions, hence if Stroke mortality is low in one year
it is likely that IHD mortality is slightly higher. Yet, this will only apply to a small amount
of cases.

IHD & TIA & Hip Replacement

TIA and IHD have a dynamic competing relationship for short and long term mortality,
and short term readmissions. Moreover, the Granger causality estimates suggest that
TIA Granger causes short term IHD mortality, while IHD Granger causes short term TIA
readmissions. The long-term readmissions model indicates that IHD is negatively asso-
ciated with contemporaneous TIA readmissions, but only at 10% significance. Finally,
the only significant relationship between IHD and Hip Replacement is when looking at
long-term readmissions. Hip Replacement is positively associated with IHD contempora-
neous readmissions, while contemporaneous and lagged IHD is positively associated with
hip readmissions. The value of the coefficients is very low in all cases though, indicating
this only applies to a small number of cases.

C.3 CCF

CCF performance is highly dynamic as shown by the forecast error variance decomposi-
tions. For all mortality and readmissions outcomes CCF is able to predict over 90% of its
own variance in a 10 year horizon. The results from the CCF seemingly unrelated regres-
sions confirm that performance is very highly dynamic, with all three lags being significant
predictors of current outcomes, such that high outcomes in a previous periods are highly
associated with high outcomes in the current period. The Granger causality results for
CCF suggest that the lagged values of many of the other conditions do significantly help
to predict some of the variance in the CCF outcomes. While the variance decomposition
percentages show that most of the other conditions do not predict more than 2% of the
forecast error variance. The relationship between CCF, AMI, MI and IHD is discussed in
the previous sections.

The Granger causality estimates indicate that CCF and Stroke mortality exhibit uni-
directional causality such that lagged Stroke short and long term mortality influences CCF
outcomes. The SUR models for these outcomes shows a dynamic competing relationship
between the two variables, with higher coefficients in the CCF model. The results for
the readmission indicators are slightly different. The Granger causality estimates indicate
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C.4. Stroke

no significant causality amongst the short term readmissions, but do show that lagged
year-long CCF readmissions influence Stroke readmissions. The short term readmissions
SUR model indicates a dynamic reinforcing effect of Stroke on CCF, but no effect of CCF
on Stroke. While, the long term readmissions SUR model indicates no positive effects.

CCF & Stroke

Heart failure is a known risk factor for Stroke. Thus the competing dynamic relationship
indicates that higher mortality in one of these conditions will result in lower mortality
in the other, however the improvements in the lagged effect of one will translate to im-
provements in the other. As for short-term readmissions, the dynamic reinforcing effect
of Stroke on heart failure, simply indicates that if emergency readmissions increase for
Stroke, a certain amount of that will be from heart failure patients, and thus they are
positively associated with CCF readmissions. While increased lagged CCF readmissions
will result in fewer Stroke readmissions, presumably because there are fewer patients with
this risk factor in the next year.

CCF & TIA & Hip Replacement

TIA and heart failure have a similar relationship, where the Granger causality estimates
suggest that lagged values of CCF Granger cause TIA year-long mortality, and short term
readmissions. While lagged values of TIA Granger cause CCF year-long readmissions.
Moreover, the SUR results for the short term mortality model show a competing dynamic
effect, which is much greater for TIA on CCF than the reverse. In the long run mortality
model, however, only lagged CCF outcomes are significant in positively influencing TIA.
The long term readmissions model shows no significant association between the conditions.
Yet, the short-term model indicates the dynamic competing effect of TIA on CCF, and
only a negative contemporaneous association of CCF on TIA.

The results of the SUR model indicate no significant relationship between CCF and
Hip Replacement apart from a very small effect lagged CCF 30-day mortality has on short
term hip mortality. However this effect is only significant at the 10% level, and has an
extremely small coefficient.

C.4 Stroke

Similar to the other conditions Stroke is highly dynamic. The variance decomposition
estimates for the four conditions indicate that in most cases it is able to predict over 95%
of its own forecast error in a ten year forecast period. This is slightly less for year-long
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C.5. TIA & Hip Replacement

mortality, but still high at 88%. The Granger causality estimates indicate that its lags
are significantly associated with some of the other conditions being investigated such as
TIA, and also that its can be explained by lags of the other conditions. The results of the
SUR models, the Granger causality estimates, and the variance decomposition percentages
allow us to understand some of the relationships between Stroke and the other conditions
in more detail. The relationship with AMI, MI, IHD and CCF have already been discussed
in the previous sections.

Stroke & TIA & Hip Replacement

The Granger causality estimates indicate that lagged values of TIA 30-day mortality are
causally linked to Stroke, whereas lagged values of Stroke 30-day mortality are causally
linked to TIA. The 30-day mortality SUR model indicates no significant effect between the
two variables, while the year-long mortality SUR suggests a dynamic competing relation-
ships between them. Moreover, the coefficients indicate that the effect of Stroke on TIA is
much stronger than the reverse. While the Granger causality estimates are not significant
for any of the readmission indicators, the SUR models indicate a dynamic competing rela-
tionship for short term readmissions and a dynamic reinforcing relationship for long term
readmissions. As mentioned above, a TIA is exactly the same as a Stroke except the pa-
tient will recover in 24 hours. If the patient does not receive appropriate treatment shortly
after they are at a great risk of having a Stroke in the next few weeks. Thus, the dynamic
competing relationships we see for long term mortality and short term readmissions may
be capturing the contemporaneous differences between providers in treating TIA, while
also capturing the lagged effect which indicates that improvement in one area should filter
through to the other. The reverse relationship is indicated for long term readmissions,
which could be capturing the same effect the lagged short term readmissions are.

Stroke and Hip Replacement exhibit no significant relationship in either of the SUR
mortality models. However, they do show a dynamic reinforcing relationship for short-
term readmissions and a dynamic competing relationship in the long-term readmissions
SUR. The value on the coefficients of the short term model are very low, however the
Stroke coefficients on the hip model are quite high. This may indicate that some hip
patients are readmitted with Stroke.

C.5 TIA & Hip Replacement

TIA and Hip Replacement are a very dynamic condition, explaining over 87% and 91%
of the variance is their forecast error over a 10-period respectively. The Granger causality

315



C.5. TIA & Hip Replacement

and variance decomposition percentages indicate which conditions are significantly asso-
ciated with TIA and Hip Replacement outcomes, and how much of the variance they
influence respectively. The relationship between both conditions and the other five con-
ditions included in the models have been explained in detail above. Hip and TIA are not
very strongly related. However, contemporaneous short-term TIA mortality is negatively
associated with 30-day hip mortality. Similarly year-long hip readmissions are negatively
associated with TIA readmissions.
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D Results for Chapter 5
D.1 MI

The average latent and filtered hospital performance for MI is presented in Figure D.1.
The curves illustrated are calculated from the latent and filtered estimates calculated in
Chapters 2 and 3, which represent the marginal effect each hospital is having on different
outcomes. Figure 4.1.1 indicates a decline throughout the period being investigated for
30-day in hospital mortality of about 0.5%, but an increase of about 0.5% for year-long
mortality. In both mortality panels the filtered curves are much smoother than the la-
tent curves which show a larger decline in mortality, of about 1.5% in 2003, that later
improved. The filtered curves in the bottom two panels, representing short and long term
readmissions, are also much smoother representations. The curves indicate an increase in
both short and long term readmissions of about 2% and 4% respectively.

Figure D.1: Average hospital quality over time for MI.

The latent and filtered indicators are used in models 1 and 2 to determine how what
effect PbR had on outcomes. The results in Table D.1 suggest that in most cases they are
unable to predict over 8% of the variance in the dependent variable. Moreover, the PbR
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D.1. MI

dummy is only significant for filtered short and long term readmissions. The coefficient
indicates that since PbR filtered short term readmissions have increased by about 2% and
filtered long term readmissions by about 4%.

The tariff variable is only significant for the filtered 28-day readmission model, and
only at 10%. It indicates that hospitals receiving a higher average tariff have lower short
term readmissions. The average age variable is negatively associated with latent 30-day
mortality, such that hospitals with a higher average age have lower latent mortality out-
comes. Average length of stay is significant in all filtered mortality models, and the filtered
28-day readmission model. In all mortality models an increase in the average LOS of pa-
tients is associated with lower filtered mortality outcomes, but higher 28-day readmissions.
Caseload is significant in all latent mortality models, as well as the latent year-long read-
missions model. The coefficients suggest that an increase in caseload is associated with
a decline in mortality, and an increase in readmissions. co-morbidity is not significant in
any of the models, while average deprivation is significant for all the filtered models. The
signs on the average deprivation coefficients for all the filtered mortality models suggest
that hospitals with higher levels of deprived patients have higher mortalities, and lower
readmissions. Finally, the dummy variable for foundation trust is significant for latent
28-day and year-long readmissions, as well as filtered year-long readmissions. In all cases
it suggests that foundation trusts have higher readmissions.

Table D.1: MI Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.00268 0.000240 -0.00395 0.000285 0.000715 -9.94e-05* 0.000793 -1.32e-05

(0.00249) (0.000227) (0.00395) (0.000238) (0.00121) (5.07e-05) (0.00168) (6.21e-05)

Age -0.512** -0.00839 -0.0788 -0.00776 0.365 0.000623 0.424 -0.000909

(0.248) (0.0388) (0.325) (0.0415) (0.236) (0.0158) (0.260) (0.0138)

LOS 0.111 -0.0503** 0.317 -0.0542** 0.125 0.0118** 0.0748 0.00889

(0.213) (0.0218) (0.351) (0.0249) (0.146) (0.00555) (0.155) (0.00624)

Cases -0.0692*** -0.000714 -0.0653** -0.00101 0.0238 -3.95e-05 0.0672** 0.000170

(0.0262) (0.00245) (0.0269) (0.00266) (0.0168) (0.000723) (0.0273) (0.00114)

Co-morbidity 0.594 0.276 1.321 0.365 -0.0609 -0.0117 -0.0902 -0.0650

(3.724) (0.229) (3.542) (0.268) (2.055) (0.0731) (2.945) (0.0803)

Deprivation 0.901 0.590*** 0.981 0.578*** -0.136 -0.157** -1.472 -0.196***

(1.495) (0.172) (1.417) (0.186) (0.893) (0.0661) (1.348) (0.0745)

FT -5.012 -0.207 -1.458 -0.258 5.060*** 0.112 9.173*** 0.256**
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D.1. MI

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

(3.436) (0.225) (3.718) (0.238) (1.804) (0.0768) (2.893) (0.105)

PbR(06) 7.140 -0.447 4.541 0.474 -2.990 1.753*** -4.866 3.591***

(6.036) (0.601) (5.680) (0.648) (2.384) (0.173) (4.303) (0.192)

Constant 46.19** -0.293 17.21 -0.579 -30.01** 0.240 -35.85* 0.158

(23.24) (2.749) (23.65) (2.968) (15.02) (1.143) (20.04) (1.014)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,017 1,017 1,017 1,017 1,017 1,017 1,017 1,017

R2 0.034 0.059 0.022 0.059 0.050 0.529 0.070 0.798

Hospitals 113 113 113 113 113 113 113 113

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Figures D.2 and D.3 illustrate relative hospital performance for the years 2002, 2005,
2008 using the latent and filtered outcomes. The plots for the latent measures in Figure
D.2 have many similar features to the corresponding plots in the other conditions. The
outcomes fall in a large range, and have many outliers at either end. Moreover, all hospi-
tals have very small confidence intervals for the point estimates of each hospital. The top
two panels show the performance of short and long term mortality – and both indicate
a slight convergence to the mean. For short term mortality this is driven mostly by an
improvement in mortality from the below average hospitals, while for long-term mortal-
ity there is also a decline in the mortality of above average hospitals. The bottom two
panels show hospitals plotted by readmission outcomes, in these panels the curves overlap
indicating that performance in these areas has not changed much in the years investigated.
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D.1. MI

Figure D.2: Relative hospital performance over time for MI (normalized latent outcome indica-
tors).

Hospital performance is plotted according to the filtered outcome measures in Figure
D.3 for the years 2002, 2005 and 2008. As compared to the latent estimates, there less
extreme outliers in either direction, and the range of outcomes is much smaller. The
confidence intervals are also larger for the individual hospital estimates. The top two
panels show the performance of hospitals with regards to short and long term mortalities.
In both panels, relative hospital performance with regards to mortality has converged
towards the mean after 2002, and not changed much from 2005 to 2008. The convergence
towards the mean has been such that there are fewer hospitals with less than average
mortality but also fewer hospitals with more than average mortality in the latter years.
There has been a much smaller convergence to the mean in short term readmissions, and
almost no convergence for long term readmissions.
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D.1. MI

Figure D.3: Relative hospital performance over time for MI (normalized filtered outcome indi-
cators).

Table D.2 presents the results for models 3 and 4 which examine the factors which
influence the normalized latent and filtered outcome measures plotted above. The R-
squared estimates indicated that most models explain 6% or less of the variance in the
dependent variable, apart from the filtered 30-day mortality model which is able to account
for nearly 21%. The PbR dummy is not significant for any of the models. This suggests
that PbR has not had a significant effect on the change relative hospital performance
over this time period. Average age of the treated population and hospital status are
also insignificant. Tariff is only significant at 10% for 30-day in hospital and overall
latent mortality, but also for 30-day filtered mortality. In all three cases it has a negative
coefficient indicating that a higher tariff is associated with lower mortality. These three
models are also all negatively associated with caseload, such that more cases reduces
mortality. Length of stay is positively associated with year-long mortality and negatively
associated with latent and filtered year-long readmissions. This indicate that patients with
a higher length of stay have a higher mortality and lower levels of year-long readmissions.
Finally, average deprivation is positively associated with long-term readmissions, such that
hospitals with a more deprived patient population have higher year-long readmission rates.
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D.2. IHD

Table D.2: MI Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.00345** -0.00329* -0.000104 1.47e-05 2.61e-06 1.89e-05 -2.76e-05 -4.35e-05

(0.00174) (0.00176) (0.00172) (0.000221) (0.000218) (0.000233) (7.70e-05) (7.48e-05)

Age 0.184 0.197 0.238 0.00419 0.00473 0.0147 -0.00272 0.00599

(0.166) (0.181) (0.240) (0.0258) (0.0253) (0.0288) (0.0101) (0.0106)

LOS -0.106 -0.136 0.215* 0.0207 0.0211 0.0236 -0.0123** -0.0181***

(0.124) (0.128) (0.119) (0.0189) (0.0190) (0.0225) (0.00527) (0.00668)

Cases -0.0308*** -0.0286*** 0.00734 -0.000237 -0.000299 -0.000463 -6.56e-06 -0.000199

(0.00812) (0.00850) (0.00964) (0.00148) (0.00145) (0.00159) (0.000585) (0.000658)

Co-morbidity 1.341 0.700 0.430 -0.189 -0.158 -0.281 0.194* 0.109

(1.619) (1.771) (3.170) (0.223) (0.221) (0.243) (0.107) (0.101)

Deprivation 0.718 0.578 -0.638 -0.175 -0.164 -0.189 0.118*** 0.0694

(1.139) (1.147) (1.418) (0.108) (0.108) (0.121) (0.0423) (0.0573)

FT 1.731 1.854 -0.692 0.202 0.199 0.238 -0.0196 -0.0613

(1.098) (1.182) (1.451) (0.154) (0.151) (0.166) (0.0585) (0.0640)

PbR(06) 1.196 2.361 -0.759 -0.000598 0.00378 0.0386 0.00228 -0.00125

(1.562) (1.656) (1.968) (0.0546) (0.0553) (0.0607) (0.0335) (0.0398)

Constant -1.365 -27.31** -19.21 -0.238 -0.232 -0.741 0.256 0.172

(12.46) (13.42) (16.39) (1.652) (1.611) (1.835) (0.650) (0.696)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,017 1,017 1,017 904 904 904 904 904

R2 0.068 0.208 0.016 0.015 0.014 0.021 0.037 0.030

Hospitals 113 113 113 113 113 113 113 113

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

D.2 IHD

The average filtered and latent outcome measures for IHD over the period 2000-2008
are presented in Figure D.4. The top two panels of the figure show the trend in 30-day
in hospital and year-long mortality, both of which have fallen over the period studied.
Short term mortality has fallen by about 4%, while year-long mortality by about 8%. The
filtered estimates smooth out the different rates of change in the years, which in both cases
are largest from 2000-2004. The bottom panel indicates the readmission indicators, and
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suggests that 28-day readmissions have risen by about 2.5%, while year-long readmissions
have risen by about 3%. In all four panels the filtered estimates smooth out some of the
variations in outcomes that appear in the latent measures.

Figure D.4: Average hospital quality over time for IHD.

Models 1 and 2 use the latent and filtered outcome measures presented above as de-
pendent variables, the results of these models are presented in Table D.3. The R-squared
estimates vary considerably by model, estimating over 50% of the variance in most of the
filtered models, and less than 35% for most of the latent models. The coefficients of the
PbR dummy suggest it is significant for most models, apart latent year-long readmissions.
In all latent mortality models, the PbR dummy is negative indicating that since the im-
plementation of the policy, mortality rates have fallen. The magnitude of the coefficient
indicates that the fall is about 3% and 6% for 30-day and year-long mortality respectively.
The coefficient on the PbR dummy in the filtered 30-day and year-long mortality models
are also negative, and also suggest the magnitude of declining mortality is 3% and 6%
respectively. The PbR dummy is positively associated with latent 28-day readmissions,
indicating a near 3% increase since the implementation of the policy. Finally the PbR
dummy is also positively associated with filtered short and long term readmissions, such
that they increase by 2% and 2.5% respectively.

The average tariff of hospitals is significant for both latent and filtered year-long mortal-
ity models, as well as in the latent 28-day readmission model. The sign on the coefficient
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indicates that an increase in average tariff is associated with lower mortality rates and
higher readmission rates. Average age is significant in all the filtered mortality models,
and the latent year-long mortality model. In all cases the sign on the coefficient suggests
that an increase in the average age is associated with a decline in mortality. Average
LOS is not significant in any of the models. Average deprivation is negatively associated
with all of the readmission models, such that hospitals with higher average deprivation
have lower readmissions. Caseload is not significant in any of the models, and foundation
trust status in only significant in the filtered readmission models at 10%. The sign on
the foundation trust dummy variable indicates that hospitals with foundation trust status
have higher readmissions.

Table D.3: IHD Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -5.05e-05 -1.09e-05 -0.0018*** -0.000194** 0.00169*** 0.000126 -0.000257 0.000107

(0.000298) (7.90e-05) (0.000500) (8.81e-05) (0.000286) (0.000109) (0.000404) (8.79e-05)

Age -0.213 -0.202*** -0.557** -0.275*** 0.189 -0.0240 0.353 0.0514

(0.223) (0.0740) (0.270) (0.0757) (0.376) (0.0455) (0.606) (0.0692)

LOS 0.0248 -0.0229 0.663*** 0.00626 0.218 -0.0109 0.512 -0.00474

(0.105) (0.0377) (0.168) (0.0420) (0.194) (0.0462) (0.543) (0.0448)

Cases -0.000759 -0.000200 -0.000678 -0.000259 -0.000310 -8.74e-05 -0.000832 -1.92e-05

(0.000736) (0.000231) (0.000848) (0.000244) (0.000683) (0.000135) (0.00121) (0.000216)

Co-morbidity -2.212 1.154 -0.955 1.691** -1.702 -0.175 1.151 -0.528

(2.439) (0.777) (2.590) (0.792) (4.459) (0.391) (4.824) (0.690)

Deprivation 0.598 0.183 0.915 0.112 -1.852** -0.458** -11.16*** -0.484*

(0.527) (0.188) (0.720) (0.189) (0.727) (0.204) (2.515) (0.249)

FT -0.605 -0.253 -0.750 -0.226 0.754 0.238* 2.109 0.346*

(0.473) (0.188) (0.628) (0.201) (0.925) (0.124) (1.459) (0.180)

PbR(06) -2.987** -2.995*** -6.066*** -6.104*** 2.705*** 1.846*** 1.913 2.468***

(1.315) (0.423) (1.480) (0.452) (0.907) (0.243) (1.806) (0.390)

Constant 15.87 13.32*** 38.31** 18.20*** -16.02 1.608 -24.46 -3.328

(15.69) (5.025) (18.81) (5.116) (23.41) (3.040) (37.44) (4.694)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089

R2 0.222 0.555 0.353 0.796 0.095 0.529 0.161 0.516

Hospitals 121 121 121 121 121 121 121 121

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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D.2. IHD

The latent outcome indicators for IHD, ranked by hospital are presented in Figure
D.5. While the diagrams do indicate outliers for all outcome measures, there are not as
many or as extreme values as in the conditions presented above. However, similar to the
other conditions the confidence intervals for each hospital’s IHD latent outcome estimate
are very small. In the top left hand panel we can see the performance of hospitals with
regards to latent 30-day in hospital mortality. In this figure it is clear that performance
in this area has improved greatly in 2005 and 2008 as compared to 2002, where it was
largely below average. In the right hand panel illustrating year-long mortality, we also
see an improvement in mortality from 2002 to 2008, only it is more gradual, and mostly
felt in the worst performers. The bottom two panels indicating the performance of the
readmission measures, show some increase in short term readmissions, and a slight decline
in 365-day readmissions, as both indicators converge to their mean value.

Figure D.5: Relative hospital performance over time for IHD (normalized latent outcome indi-
cators).

Figure D.6 indicates the relative hospital performance throughout time as measured
by the normalized filtered outcome indicators. There are much fewer outliers in these
measures, and the confidence intervals are also very small, indeed they are noticeably
smaller than in the corresponding diagrams for the other conditions. In all four panels
of Figure D.6, the indicators appear to converge to the mean, such that there is less
variation in relative performance in the latter years of the sample. The change in relative
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performance between 2002 to 2005 is much greater, than the change from 2005 to 2008
in all panels. For short term and long term mortality, this is exhibited mostly by an
improvement in the below average performers, but there is also a decline in the above
average outliers. For both short term and long term readmissions the convergence to the
mean is also apparent. Many of the above average readmissions are falling to mean levels,
but there is also an increase in readmissions that were below average. Also in all cases,
the convergence does not seem to be at 0, indeed for mortality it is at some level below
zero, while for readmissions it is for some level slightly above zero.

Figure D.6: Relative hospital performance over time for IHD (normalized filtered outcome indi-
cators).

The normalized indicators plotted in Figures D.5 and D.6 are used as the dependent
variables for models 3 and 4 are presented in Table D.4. The R-squared values vary con-
siderably by model, ranging from a low of 5% to nearly 55%. The readmissions models,
are generally weaker than the mortality models. The PbR dummy is significant and pos-
itive for all mortality indicators. This indicates that in since PbR relative mortality has
been increasing, such that there are fewer hospitals with below average mortality. Of
the readmission models, PbR is only significant for latent 28-day readmissions, where it
indicates that relative readmissions have fallen since the introduction of PbR. The tariff
variable is only significant for latent short term and long term readmissions, such that a
higher average tariff is positively associated with an increase in short term readmissions,
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and a decrease in long-term readmissions. The average age of patients is significant and
positive for all mortality indicators. This indicates that an increase in average age of pa-
tients is associated with an increase in mortality. Average age is also positively associated
with latent short and long term readmissions, such that higher average age is correlated
with higher readmissions. Average LOS is only associated with latent year-long mortality,
indicating that higher average LOS leads to higher year-long mortality.

Average co-morbidity is negatively associated with all latent mortalities, and also year-
long filtered mortality. This indicates that higher co-morbidity is correlated with lower
mortality. Average deprivation is also negatively correlated with latent short term mortal-
ity, and positively correlated with both filtered readmission models. This indicates that
hospitals with more deprived patients have higher readmissions and lower 30-day mor-
tality. Caseload is not significant in any of the models. Foundation trust status in only
significant in the filtered readmission models, and indicates that foundation trusts have
lower readmissions than other trusts.

Table D.4: IHD Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -8.96e-05 4.85e-05 -4.67e-05 8.76e-05 0.000285** 4.33e-05 -0.00184* 1.32e-05

(6.37e-05) (9.52e-05) (8.62e-05) (0.000122) (0.000139) (9.53e-05) (0.00103) (0.000119)

Age 0.193** 0.0606** 0.429*** 0.105*** 0.289*** 0.0426 0.556*** 0.0150

(0.0861) (0.0273) (0.0958) (0.0292) (0.0791) (0.0282) (0.148) (0.0350)

LOS 0.0103 0.00546 0.203*** -0.000669 -0.0392 -0.0278 0.00169 -0.0201

(0.0556) (0.0211) (0.0601) (0.0266) (0.0659) (0.0314) (0.340) (0.0354)

Cases 2.65e-05 6.42e-05 0.000102 8.03e-05 0.000222 1.29e-05 0.000529 -5.01e-06

(0.000173) (8.86e-05) (0.000213) (0.000103) (0.000202) (6.45e-05) (0.000558) (9.58e-05)

Co-morbidity -1.227* -0.344 -4.367*** -0.656** -1.118 0.0676 1.745 0.0918

(0.632) (0.279) (0.939) (0.297) (0.838) (0.215) (3.940) (0.318)

Deprivation -0.456* -0.0205 -0.793 0.00800 -0.865 0.246** -7.728 0.288**

(0.241) (0.0523) (0.574) (0.0891) (1.229) (0.112) (5.551) (0.140)

FT 0.0491 0.106 -0.00991 0.111 -0.0351 -0.124* -0.403 -0.154*

(0.132) (0.0660) (0.212) (0.0807) (0.241) (0.0691) (0.635) (0.0866)

PbR(06) 1.247*** 0.529*** 3.814*** 1.326*** -0.966*** -0.225 -1.114 -0.110

(0.260) (0.167) (0.331) (0.201) (0.321) (0.142) (1.875) (0.193)

Constant -13.41** -4.957** -30.97*** -8.899*** -18.55*** -2.415 -34.56*** -0.505

(5.661) (1.956) (6.447) (2.076) (5.051) (1.859) (8.777) (2.401)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

N 1,089 968 1,089 968 1,089 968 1,089 968

R2 0.444 0.216 0.540 0.496 0.143 0.085 0.184 0.054

Hospitals 121 121 121 121 121 121 121 121

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

D.3 CCF

Figure D.7 indicates the latent and filtered CCF outcomes over time. Both the filtered
and the latent mortality indicators show a decline in 30-day mortality during the pe-
riod 2000-2008. The former has gradually declined by about a 1%, while the latter has
gradually declined by about 3.5%. While both the filtered and the latent measures are
declining steadily, there is much more year-to-year variation in the latent measures than
in the filtered measures. The bottom two panels show the performance in the readmission
estimates over the same time period. Both the latent and the filtered measures show
an increase in 28-day readmissions of around 0.5% However the latent measures show an
almost double increase up till 2007, before they fall to 0.5%, while the filtered estimates
show a smoother curve over the years. A similar difference between the latent and filtered
curves is indicates in the year-long readmission estimates, where both the filtered and
latent measures show a decline of 2%, but following a different trajectory through time.
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Figure D.7: Average hospital quality over time for CCF..

The latent and filtered indicators plotted in Figure D.7 are used as dependent variables
in models 1 and 2, and the results are presented in Table D.5. These R-squared value of
the models is below 7% in most cases, with the exception of year-long filtered mortality
and year-long filtered readmissions. In all cases the filtered outcome measures are able
to explain more of the variance in the dependent variable than the latent measure. The
PbR dummy is significant for filtered 30-day in hospital mortality and filtered year-long
mortality. In all cases it is negative, indicating a fall in mortality since the introduction
of PbR, by 0.6% and 2.6% respectively. Of the readmission models, the PbR dummy is
only significant for year-long readmissions, where it is also negative and indicates a 1.5%
decline since the implementation of the policy.

Most of the other explanatory variables are not significant. Average tariff, average
co-morbidity and average deprivation are not significant for any of the models. Aver-
age age is significant at 10% for the filtered 30-day mortality and year-long readmission
models. The coefficients suggest that hospitals treating an older age group have higher
short term mortality and lower long term readmissions. Average LOS is only significant
in the latent 30-day mortality model, where it is positively associated with the dependent
variable. Caseload is significant at the 10% level for latent 30-day mortality and both
filtered readmission measures, such that higher caseload is associated with lower mortality
and increased readmissions. Finally hospitals with foundation trust status are positively
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associated with filtered 28-day readmissions, but only at the 10% significance level.

Table D.5: CCF Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000477 7.17e-05 -0.000543 0.000137 -3.78e-05 4.18e-05 -0.000236 8.23e-05

(0.00116) (9.43e-05) (0.00130) (9.54e-05) (0.000901) (3.11e-05) (0.00125) (5.76e-05)

Age -0.0709 0.0196* -0.175 0.0232 0.0492 -0.00617 -0.0823 -0.0221*

(0.216) (0.0113) (0.233) (0.0144) (0.186) (0.00751) (0.207) (0.0118)

LOS 0.298 0.00577 0.544** 0.00543 -0.0380 -0.00102 -0.0375 -0.00678

(0.219) (0.0157) (0.255) (0.0179) (0.176) (0.00636) (0.254) (0.0114)

Cases -0.113* -0.000144 -0.0986 0.00111 0.0537 0.00425** 0.0770 0.00549*

(0.0601) (0.00227) (0.0695) (0.00294) (0.0402) (0.00209) (0.0641) (0.00317)

Co-morbidity 0.979 -0.0949 0.113 0.0390 0.555 0.0826 1.110 -0.0263

(2.149) (0.106) (2.182) (0.127) (1.853) (0.0673) (2.079) (0.0844)

Deprivation 0.933 -0.0602 -0.493 -0.0752 0.0212 0.00195 -0.320 -0.0121

(0.853) (0.0576) (1.125) (0.0711) (0.750) (0.0288) (0.867) (0.0564)

FT 1.518 -0.0642 -0.857 -0.0569 1.127 0.149* 0.817 0.170

(3.248) (0.134) (3.676) (0.187) (2.420) (0.0841) (4.000) (0.134)

PbR(06) 0.578 -0.601** -1.200 -2.642*** -0.483 0.175 -1.528 -1.478***

(3.337) (0.240) (4.030) (0.298) (2.671) (0.154) (3.434) (0.237)

Constant 1.589 -1.518** 10.31 -2.120** -4.838 0.163 4.129 1.379*

(15.03) (0.763) (16.66) (0.956) (12.20) (0.509) (14.65) (0.830)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080

R2 0.017 0.077 0.020 0.507 0.005 0.037 0.006 0.387

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

In order to better understand the changes in relative performance in our outcomes
of interest for CCF, we plot the normalized latent and filtered outcome indicators for
different years. Figure D.8 shows the relative performance of all hospitals on four latent
outcome measures, plotted for the years 2002, 2005 and 2008. Similar to the latent outcome
indicator plots in many of the other conditions, there are many outliers at either end, and
the confidence intervals for each hospital measure are very small. The top left hand panel
shows the short term mortality measures, the curves for the three years are very similar
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and there does not appear to be a distinctive trend in mortality. However, for year-long
mortality, shown in the top right hand panel, we can see a gradual convergence towards
the mean from 2002 to 2008, such that in 2008 there are fewer outliers and more hospitals
are performing closer to average than in the other years. The two bottom panels show the
latent outcome measures for short and long term readmissions. In both of these cases it
is difficult to observe any trend as the curves are largely overlapping.

Figure D.8: Relative hospital performance over time for CCF (normalized latent outcome indi-
cators).

Figure D.9 shows the performance of the hospitals with regards to the filtered outcome
indicators calculated for CCF. Again the range of estimates is much smaller for the filtered
measures than the latent indicators, and there are fewer outliers. Moreover, the confidence
intervals for the hospital estimates are larger than they are for latent outcome measures.
It is difficult to identify a trend in relative performance for any of the indicators. Although
in the mortality panels, there appears to be a very slight flattening of the curve, indicating
less variation amongst hospitals. This is most distinct for the hospitals with below average
mortality, where the line appears to have moved closer to the mean for 2005 and 2008.
There is some evidence of this behaviour for long term readmissions, although mostly
amongst hospitals with higher readmission rates in 2002. While there appears to be a
similar trend for short term mortality, it is much smaller.
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Figure D.9: Relative hospital performance over time for CCF (normalized filtered outcome
indicators).

Models 3 and 4 explore the factors influencing the normalized latent and filtered out-
come indicators, including the effects of the PbR policy. The results in Table D.6 indicate
that the PbR dummy is not significant in any of the models. The tariff variable is only
significant for year-long mortality, both latent and filtered, where it is associated with a
decline in mortality. Average length of stay is associated with higher latent year-long mor-
tality, and lower filtered short-term readmissions. Caseload is significant for both filtered
readmission measures. In both instances, more cases are associated with lower readmis-
sions. Average deprivation of the patients being treated in each hospital is insignificant,
while average co-morbidity is associated with higher latent mortality in all intervals. Fi-
nally foundation trust status is significant for short term readmissions, such that they
have lower readmissions. The R-squared estimates indicate that most models explain only
around 1 − 3% of the variance in the dependent variables.

Table D.6: CCF Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.000100 -9.96e-05 -0.00164** -0.000143* 0.000117 4.21e-05 -0.000847 1.87e-05

(0.000751) (6.25e-05) (0.000761) (8.05e-05) (0.000754) (4.94e-05) (0.000794) (8.12e-05)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Age -0.228 0.0126 -0.164 0.0232 -0.0924 -0.00701 0.0406 -0.0136

(0.142) (0.0125) (0.136) (0.0156) (0.118) (0.00870) (0.140) (0.0126)

LOS -0.133 0.00887 0.324** 0.0101 -0.0383 -0.0130* -0.173 -0.0158

(0.162) (0.0115) (0.145) (0.0147) (0.156) (0.00756) (0.205) (0.0121)

Cases -0.0300 0.00250 -0.0171 0.000903 0.0289 -0.00342** 0.0234 -0.00455*

(0.0248) (0.00215) (0.0242) (0.00272) (0.0190) (0.00171) (0.0281) (0.00255)

Co-morbidity 3.713*** -0.0475 2.880** -0.135 -1.755 0.0564 -0.555 0.0172

(1.359) (0.120) (1.343) (0.146) (1.109) (0.0603) (1.459) (0.0911)

Deprivation 0.832 -0.0267 -0.781 -0.0175 0.254 -0.0407 -0.537 -0.00969

(0.646) (0.0590) (0.767) (0.0697) (0.767) (0.0422) (0.904) (0.0550)

FT 1.627 0.108 1.124 0.0991 -2.816** -0.0937 -2.127 -0.0405

(1.090) (0.0974) (1.216) (0.112) (1.131) (0.0765) (1.685) (0.111)

PbR(06) 0.551 0.00824 -0.602 0.00536 0.898 -0.205 -0.0104 -0.169

(1.534) (0.185) (1.771) (0.235) (1.522) (0.137) (2.036) (0.195)

Constant 13.27 -0.931 9.138 -1.785* 8.432 0.769 1.173 1.104

(10.47) (0.823) (9.844) (1.038) (7.847) (0.631) (10.07) (0.924)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 960 1,080 960 1,080 960 1,080 960

R2 0.033 0.013 0.019 0.017 0.015 0.029 0.012 0.019

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

D.4 TIA

The average TIA latent and filtered indicators for the period 2000-2008 are plotted in
Figure D.10. From this Figure we can observe that TIA mortality has been falling. The
filtered and latent 30-day mortality panel indicates that it has fallen by about 0.6%,
where as year-long mortality has fallen by about 3%. Similar to the other conditions, the
trajectory of the filtered and latent estimates are different, as the filtered estimates smooth
over the large jumps in mortality for some of the years. The bottom two plots illustrate the
change in readmissions over the same period, and indicate that they have been relatively
stable. 28-day readmissions only fall by about 0.2%, while year long readmissions have
almost the same value in 2008 as they did in 2000. However in both cases, the latent curve
indicates some fluctuation from year to year, yet this is never greater than a change of
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0.7%.

Figure D.10: Average hospital quality over time for TIA..

The latent and filtered indicators plotted in FigureD.10 are used as dependent vari-
ables in models 1 and 2. The results for models are presented in Table D.7. The R-squared
values for the models are very mixed, ranging from 1.5%-91%. All readmission models
are relatively poor at explaining the variance in the dependent variables, and in most
cases the filtered mortality models are better than the latent ones. The PbR dummy is
significant for filtered 30-day mortality and both filtered and latent year-long mortality.
In all these cases it is associated with a decline in mortality, of 0.6 for the the short term
model, and around 3% for the year-long models. Of the four readmission models, the PbR
dummy is only significant for the 28-day readmission model, where it is associated with
an 0.4% decline in readmissions. Many of the other explanatory variables are insignificant
for the models, including average tariff, average age, average LOS, caseload and average
co-morbidity. Average deprivation is only significant in the latent year-long readmissions
model where, higher levels of average deprivation are associated with a decline in read-
missions. Foundation trust status is associated filtered year-long readmissions, such that
foundation trusts have lower long-term readmissions.
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Table D.7: TIA Models 1 & 2.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000664 -2.11e-06 -0.000834 -4.38e-05 -0.000286 -3.99e-05 0.000334 -0.000168

(0.000565) (2.44e-05) (0.00177) (0.000104) (0.00169) (9.05e-05) (0.00344) (0.000137)

Age -0.0269 -8.28e-05 -0.0381 -0.00380 -0.0163 -0.00561 0.255 0.000619

(0.0413) (0.00172) (0.120) (0.00841) (0.0966) (0.00590) (0.155) (0.00991)

LOS -0.0735 -0.00186 0.0855 0.000260 -0.126 0.00480 -0.317 0.0235

(0.0874) (0.00435) (0.298) (0.0178) (0.260) (0.0148) (0.568) (0.0227)

Cases -0.00319 4.31e-05 -0.00367 3.81e-05 0.00828 -0.000408 0.0130 -8.36e-05

(0.00322) (0.000105) (0.0110) (0.000450) (0.00840) (0.000424) (0.0160) (0.000756)

Co-morbidity 0.368 -0.0174 4.469** -0.0134 2.359 0.0976 4.694 0.0518

(0.603) (0.0220) (2.068) (0.0914) (1.692) (0.0937) (3.260) (0.143)

Deprivation 0.0897 -0.00342 -0.663 0.0190 -0.577 -0.0279 -2.909*** -0.0440

(0.159) (0.00710) (0.554) (0.0361) (0.411) (0.0311) (1.069) (0.0506)

FT 0.254 0.00260 0.215 -0.0422 0.423 -0.0483 -1.613 -0.141**

(0.314) (0.0112) (0.931) (0.0384) (0.913) (0.0343) (1.698) (0.0579)

PbR(06) -0.563 -0.611*** -3.637*** -2.817*** -2.037 -0.370*** -2.123 -0.00429

(0.461) (0.0207) (1.345) (0.0914) (1.416) (0.0746) (2.474) (0.125)

Constant 1.124 0.0432 -2.209 0.361 -1.254 0.337 -23.92** 0.00230

(2.789) (0.124) (8.793) (0.611) (6.627) (0.430) (11.23) (0.769)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080

R2 0.047 0.883 0.051 0.912 0.018 0.263 0.028 0.014

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

The second part of the methodology plots the relative performance of latent and filtered
outcome indicators for TIA in order to investigate trends in performance over time. Figure
D.11 shows the relative performance of all hospitals on four latent outcome measures,
plotted for the years 2002, 2005 and 2008. All of the latent measure plots have very
narrow confidence intervals for each of the hospital estimates. In the top left hand panel
the plots for 30-day mortality show a gradual move towards the mean from 2002 to 2008.
This change from 2002 to 2005 shows most hospitals with below average mortality moving
towards the mean while hospitals with above average mortality also exhibit an increase in
mortality, however from 2005-2008, all hospitals have moved closer to the mean. In the top
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right hand panel, showing the plots for year-long mortality we see a fall in all mortalities
from 2002-2005, and then a large shit towards the mean values from 2005-2008. The
readmission indicators, in the bottom two panels, do not show any large change between
the different years plotted.

Figure D.11: Relative hospital performance over time for TIA (normalized latent outcome indi-
cators).

The filtered indicators are plotted in Figure D.12. The confidence intervals for the
filtered estimates are larger than those of the latent measure Moreover the range of the
filtered indicators is a lot smaller, and there are fewer outliers than for the latent measures.
For most of the indicators it is difficult to observe any obvious change in the indicators
from one year to the next. However for the year-long mortality panel, there does seem to
be a very gradual change in the relative performance of hospitals from 2002 to 2008, such
that they are all moving closer to the mean.
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Figure D.12: Relative hospital performance over time for TIA (normalized filtered outcome
indicators).

Models 3 and 4 use the normalized latent and filtered outcome indicators plotted
above as dependent variables. The results of these models presented in Table 4.4.2, and
investigate the effect different explanatory variables have had on the latent and filtered
indicators. The R-squared estimates of all models are quite low, around 2%. The PbR
dummy is only significant for the latent mortality models, where it is positively associated
with the dependent variables. This indicates that since PbR there has been an increase
in mortality. We see this effect graphically in Figure D.11. The tariff variable is not
significant for any of the models however. Of the hospital characteristics average age is
significant in the latent and filtered year-long readmission model, where and increase in
the average age of patients is associated with an increase in readmissions. Average LOS
is also significant for latent year-long readmissions, although the sign on the coefficient is
negative, such that an increase in LOS is associated with a decline in readmissions.

Caseload is significant for latent 30-day mortality, latent year-long mortality and both
short and long term latent readmissions. The signs on the coefficients indicate that an
increase in activity is associated with a decline in mortality, but with an increase in read-
missions. Average co-morbidity is negatively associated with latent year-long mortality,
such that an increase in the average co-morbidity of the patients is associated with a
decline in mortality. Average deprivation is positively associated with year-long filtered

337



D.4. TIA

readmissions, such that hospitals with a higher number of deprived patients have higher
readmission rates. Foundation trust status is only significant for short term latent read-
missions, at 1%, such that foundation trusts have higher readmission rates than other
hospitals.

Table D.8: TIA Models 3 & 4.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000461 3.45e-05 0.00100 0.000158 -0.000218 4.64e-05 0.00292 9.55e-05

(0.000319) (2.45e-05) (0.00111) (0.000104) (0.00101) (7.76e-05) (0.00197) (0.000129)

Age 0.00496 0.00247 -0.0413 0.0122* 0.0127 0.00145 0.327*** 0.0225**

(0.0222) (0.00151) (0.0821) (0.00688) (0.0725) (0.00572) (0.109) (0.00999)

LOS -0.0134 -0.00668 0.0218 -0.0309 -0.000263 -0.00818 -0.544* -0.0187

(0.0524) (0.00438) (0.185) (0.0201) (0.153) (0.0130) (0.278) (0.0231)

Cases -0.00166* 4.90e-05 -0.00531* 0.000117 0.00803* 0.000217 0.0139* 0.000293

(0.000900) (9.84e-05) (0.00299) (0.000382) (0.00408) (0.000301) (0.00740) (0.000539)

Co-morbidity -0.465 0.00943 -2.659** -0.0762 -0.495 -0.0449 -1.571 -0.146

(0.366) (0.0225) (1.049) (0.0967) (1.074) (0.0678) (1.694) (0.113)

Deprivation 0.0696 0.00735 -0.475 0.0340 -0.126 0.0395 -0.964 0.139**

(0.120) (0.00912) (0.381) (0.0397) (0.394) (0.0285) (1.092) (0.0676)

FT -0.0437 0.00727 -0.191 0.0101 0.849* -0.00725 0.651 0.0216

(0.140) (0.00771) (0.356) (0.0302) (0.439) (0.0221) (0.755) (0.0430)

PbR(06) 0.469*** -0.000855 1.877*** 0.0158 -1.164* -0.0112 -1.544 -0.0558

(0.166) (0.00802) (0.548) (0.0319) (0.668) (0.0257) (1.681) (0.0472)

Constant -0.403 -0.283** 4.480 -1.198** -0.0604 -0.118 -23.08*** -1.446*

(1.507) (0.113) (5.681) (0.529) (5.610) (0.404) (8.422) (0.744)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 960 1,080 960 1,080 960 1,080 960

R2 0.058 0.023 0.048 0.025 0.024 0.010 0.025 0.026

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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D.5 Sensitivity Analysis

Model 1&2 Random Effects

Table D.9: AMI Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000327 0.000333 0.00147 0.000158 -0.00258** -0.000155 -0.00118 -2.14e-06

(0.000890) (0.000599) (0.00197) (0.000744) (0.00113) (0.000188) (0.00205) (0.000137)

Age -0.0555 -0.00456 0.392 -0.0131 -0.509*** 0.00597 0.0422 0.0105

(0.337) (0.131) (0.380) (0.193) (0.176) (0.0505) (0.348) (0.0372)

LOS 0.259** 0.0537 0.946*** 0.138 -0.144 -0.0212 -0.238 -0.0477***

(0.129) (0.0782) (0.159) (0.0951) (0.100) (0.0251) (0.339) (0.0172)

Cases -0.00493 0.00254 -0.00676 0.00466* 0.0103*** -0.00105 0.0110*** -0.000583

(0.00373) (0.00180) (0.00495) (0.00265) (0.00278) (0.000690) (0.00422) (0.000619)

Co-morbidity -8.107*** 2.067* 0.771 3.383** -7.050 -0.787* 0.999 -0.976**

(2.668) (1.086) (6.268) (1.611) (4.387) (0.442) (2.209) (0.467)

Deprivation 3.285 0.689** 6.208 1.072** -2.125 -0.267** -2.139 -0.223**

(2.416) (0.306) (4.309) (0.429) (1.389) (0.114) (1.544) (0.0953)

FT -2.068 -0.336 -2.155 -0.372 0.849 0.125 1.465 0.162

(1.444) (0.690) (1.941) (1.012) (1.271) (0.256) (1.855) (0.194)

Teach -3.660 -1.101 -13.06 -1.751 4.665 0.523 6.816** 0.377

(4.682) (1.110) (8.786) (1.649) (3.268) (0.523) (3.363) (0.477)

PbR(05) -2.549 -5.673*** -5.400*** -5.307*** 4.647*** 1.839*** 0.710 1.289***

(2.408) (0.868) (1.709) (1.300) (1.147) (0.335) (2.344) (0.263)

Constant 13.81 -4.968 -38.66 -7.064 52.05*** 1.708 -2.020 1.310

(25.23) (9.507) (35.25) (13.71) (18.64) (3.670) (25.87) (2.698)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,071

Hospitals 119 119 119 119 119 119 119 119

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.10: MI Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.00303 0.000232 -0.00454 0.000279 0.000237 -0.000102* 0.000497 -1.84e-05

(0.00233) (0.000228) (0.00363) (0.000238) (0.00113) (5.24e-05) (0.00167) (6.49e-05)

Age -0.525** -0.00466 -0.0341 -0.00365 0.359 -0.000470 0.487** -0.00142

(0.235) (0.0390) (0.289) (0.0416) (0.231) (0.0158) (0.244) (0.0139)

LOS 0.102 -0.0484** 0.316 -0.0527** 0.152 0.0115** 0.0945 0.00882

(0.202) (0.0214) (0.313) (0.0246) (0.147) (0.00570) (0.155) (0.00643)

Cases -0.0643** -0.00189 -0.0520** -0.00214 0.0317** 0.000364 0.0755*** 0.000977

(0.0252) (0.00263) (0.0254) (0.00287) (0.0150) (0.000781) (0.0232) (0.00118)

Co-morbidity 1.248 0.334 1.881 0.424 -0.865 -0.0272 -0.623 -0.0865

(3.543) (0.227) (3.494) (0.265) (2.000) (0.0726) (2.777) (0.0782)

Deprivation 1.709 0.571*** 1.800 0.562*** 0.0731 -0.145** -1.413 -0.183***

(1.307) (0.166) (1.158) (0.179) (0.647) (0.0614) (1.127) (0.0692)

FT -5.199 -0.229 -1.350 -0.282 5.191*** 0.116 9.685*** 0.269**

(3.523) (0.238) (3.849) (0.252) (1.934) (0.0809) (3.021) (0.109)

Teach -6.323 -2.671*** -10.23 -2.689*** -0.802 0.507 4.357 0.538

(5.003) (0.972) (7.857) (1.019) (3.515) (0.399) (3.853) (0.371)

PbR(06) 7.048 -0.440 3.925 0.478 -2.688 1.752*** -5.260 3.573***

(6.147) (0.611) (5.784) (0.660) (2.336) (0.176) (4.332) (0.195)

Constant 47.92** -0.192 15.90 -0.510 -27.27* 0.259 -39.61** 0.126

(21.86) (2.752) (21.48) (2.962) (14.78) (1.111) (18.92) (1.004)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,017 1,017 1,017 1,017 1,017 1,017 1,017 1,017

Hospitals 113 113 113 113 113 113 113 113

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.11: IHD Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 5.26e-06 -2.50e-05 -0.00151*** -0.00021** 0.00142*** 9.68e-05 -1.26e-05 7.68e-05

(0.000277) (8.49e-05) (0.000474) (9.21e-05) (0.000296) (0.000113) (0.000465) (9.20e-05)

Age -0.163 -0.179*** -0.358 -0.236*** 0.0333 -0.0257 0.00157 0.0459

(0.182) (0.0659) (0.229) (0.0695) (0.193) (0.0404) (0.362) (0.0600)

LOS 0.0467 -0.0144 0.680*** 0.0178 0.123 -0.0146 0.523 -0.0126

(0.103) (0.0371) (0.181) (0.0415) (0.171) (0.0443) (0.361) (0.0433)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Cases -0.000632 -0.000252 -0.000429 -0.000308 0.000167 -7.06e-05 9.73e-05 2.10e-05

(0.000629) (0.000204) (0.000712) (0.000217) (0.000502) (0.000132) (0.000921) (0.000196)

Co-morbidity -2.412 0.855 -2.087 1.281 -1.170 -0.153 0.477 -0.406

(2.492) (0.792) (2.638) (0.814) (3.691) (0.379) (4.392) (0.688)

Deprivation 0.217 0.0965 0.305 0.0637 -0.905** -0.266*** -4.107** -0.265**

(0.155) (0.0983) (0.505) (0.128) (0.364) (0.0957) (1.774) (0.105)

FT -0.663 -0.273 -0.850 -0.249 0.856 0.257* 2.339 0.373*

(0.511) (0.202) (0.684) (0.217) (0.976) (0.133) (1.514) (0.194)

Teach -0.115 0.0205 -0.289 0.110 -0.340 0.214 4.175 0.0798

(0.805) (0.394) (1.464) (0.482) (1.543) (0.536) (3.525) (0.552)

PbR(06) -2.799* -3.513*** -5.242*** -7.169*** 2.312** 2.158*** 2.690 2.938***

(1.506) (0.478) (1.730) (0.515) (1.103) (0.274) (1.990) (0.434)

Constant 12.30 11.96*** 24.78 15.76*** -5.260 1.723 -3.412 -2.983

(13.28) (4.629) (16.33) (4.837) (12.55) (2.790) (23.86) (4.243)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089

Hospitals 121 121 121 121 121 121 121 121

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.12: CCF Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000688 5.64e-05 -0.000635 0.000117 -0.000133 4.14e-05 -0.000704 8.06e-05

(0.000939) (9.51e-05) (0.00118) (9.54e-05) (0.000767) (3.25e-05) (0.000983) (5.60e-05)

Age -0.0226 0.0182 -0.123 0.0217 0.0442 -0.00529 -0.0765 -0.0213*

(0.209) (0.0111) (0.226) (0.0142) (0.179) (0.00733) (0.200) (0.0118)

LOS 0.273 0.00737 0.535** 0.00724 -0.0523 -0.00169 -0.0456 -0.00798

(0.205) (0.0158) (0.242) (0.0178) (0.164) (0.00652) (0.236) (0.0113)

Cases -0.0835 -9.32e-05 -0.0814 0.00130 0.0638* 0.00414** 0.0826 0.00539*

(0.0536) (0.00238) (0.0629) (0.00313) (0.0382) (0.00207) (0.0574) (0.00319)

Co-morbidity 0.937 -0.0901 -0.398 0.0409 -0.00934 0.0741 0.303 -0.0396

(2.100) (0.108) (2.152) (0.130) (1.824) (0.0670) (1.995) (0.0854)

Deprivation 0.308 -0.0612 -0.655 -0.0715 0.402 0.00554 0.173 -0.00173

(0.748) (0.0543) (1.130) (0.0683) (0.679) (0.0270) (0.736) (0.0598)

341



D.5. Sensitivity Analysis

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

FT 1.602 -0.0682 -0.698 -0.0556 1.749 0.159* 1.245 0.175

(3.440) (0.141) (3.860) (0.196) (2.572) (0.0890) (4.250) (0.142)

Teach -11.97*** -0.570 -2.930 -0.797 -0.956 0.225 3.564 0.609

(4.027) (0.474) (5.420) (0.536) (3.227) (0.364) (4.086) (0.482)

PbR(06) -0.934 -0.749*** -1.982 -3.458*** -1.056 0.105 -3.246 -2.121***

(3.990) (0.249) (4.798) (0.309) (2.964) (0.169) (4.021) (0.265)

Constant -0.515 -1.307* 7.657 -1.858* -3.602 0.0813 5.052 1.255

(14.31) (0.733) (15.84) (0.962) (12.25) (0.494) (13.88) (0.859)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.13: Stroke Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.00277 -1.33e-05 0.00117 -7.92e-05 0.000347 3.43e-05 0.000133 5.96e-05

(0.00260) (0.000437) (0.00230) (0.000648) (0.000654) (9.57e-05) (0.00114) (0.000227)

Age 0.181 -0.0250 0.00351 -0.0444 -0.148 0.00659 -0.0385 0.00901

(0.216) (0.0905) (0.228) (0.140) (0.124) (0.0218) (0.192) (0.0417)

LOS -0.529** 0.0206 -0.326 0.0202 -0.118* -0.00163 -0.213 0.0112

(0.267) (0.0678) (0.238) (0.0979) (0.0659) (0.0132) (0.160) (0.0319)

Cases 0.00791 0.000692 0.00629 0.000373 0.000384 -0.000154 0.00170 0.000563

(0.00522) (0.00140) (0.00455) (0.00206) (0.00138) (0.000317) (0.00258) (0.000740)

Co-morbidity -12.76*** 0.551 -12.17*** 1.598 1.738 0.126 3.810* -0.325

(3.356) (0.901) (3.621) (1.324) (1.405) (0.223) (2.208) (0.480)

Deprivation -0.0642 0.118 -0.326 0.233 0.291 0.0556 1.313** 0.0688

(0.915) (0.315) (0.997) (0.486) (0.275) (0.0711) (0.545) (0.149)

FT 0.888 0.740 -0.0523 1.367 -0.469 0.135 1.632 0.246

(2.178) (0.590) (2.452) (0.902) (0.746) (0.133) (1.444) (0.258)

Teach -8.915*** -1.156 -9.269*** -1.153 0.892 -0.0237 0.166 -0.710

(2.375) (0.985) (2.746) (1.460) (1.195) (0.211) (2.376) (0.529)

PbR(06) -1.885 1.580* -10.10** -5.096*** -1.944** 0.503** -2.313 2.208***

(4.460) (0.947) (4.209) (1.407) (0.768) (0.200) (1.893) (0.434)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Constant 5.326 0.408 20.52 0.663 9.235 -0.734 1.091 -0.853

(19.55) (6.805) (20.48) (10.46) (9.733) (1.664) (14.87) (3.317)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,035 1,035 1,035 1,035 1,035 1,035 1,035 1,035

Hospitals 115 115 115 115 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.14: TIA Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000693 -1.09e-06 -0.00151 -4.44e-05 -0.000440 -5.50e-05 -0.000796 -0.000172

(0.000555) (2.44e-05) (0.00171) (0.000104) (0.00169) (9.22e-05) (0.00368) (0.000139)

Age -0.0238 -5.85e-05 -0.0311 -0.00254 -0.0449 -0.00474 0.199 0.00196

(0.0385) (0.00165) (0.111) (0.00805) (0.0938) (0.00574) (0.150) (0.00961)

LOS -0.0678 -0.00179 0.259 0.000371 -0.0731 0.00734 -0.0442 0.0235

(0.0829) (0.00426) (0.277) (0.0174) (0.251) (0.0148) (0.583) (0.0226)

Cases -0.00167 8.92e-05 -0.00376 0.000160 0.00710 -0.000218 0.0168 -4.77e-06

(0.00284) (0.000111) (0.00959) (0.000443) (0.00661) (0.000408) (0.0120) (0.000733)

Co-morbidity 0.114 -0.0180 2.442 -0.0301 1.976 0.0724 4.126 0.0179

(0.552) (0.0212) (1.814) (0.0877) (1.453) (0.0861) (2.985) (0.138)

Deprivation 0.148 -0.00450 0.0142 -0.00600 -0.0458 -0.0390 -1.091* -0.0745*

(0.108) (0.00632) (0.416) (0.0285) (0.303) (0.0255) (0.599) (0.0439)

FT 0.249 0.00247 0.202 -0.0434 0.284 -0.0459 -1.873 -0.140**

(0.331) (0.0118) (1.022) (0.0410) (0.944) (0.0361) (1.767) (0.0616)

Teach -0.312 -0.00324 -1.268 -0.0750 0.349 -0.0101 0.475 -0.0256

(0.476) (0.0364) (1.856) (0.167) (1.041) (0.131) (2.665) (0.236)

PbR(06) -0.574 -0.614*** -2.950** -2.825*** -1.661 -0.378*** -1.474 -0.0106

(0.457) (0.0212) (1.412) (0.0941) (1.370) (0.0760) (2.372) (0.127)

Constant 1.080 0.0369 0.0900 0.295 1.226 0.302 -19.66* -0.0445

(2.653) (0.120) (8.150) (0.589) (6.310) (0.414) (10.84) (0.761)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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Table D.15: Hip Replacement Models 1 & 2 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000239 1.78e-07 -0.000822 -2.69e-05 -2.89e-05 2.47e-05 -0.000501 6.75e-05

(0.000278) (9.23e-06) (0.000599) (2.18e-05) (0.00104) (3.41e-05) (0.00149) (4.73e-05)

Age 0.0375 0.00280** 0.0693 0.000793 0.199 -0.00557 0.0333 -0.0116

(0.0551) (0.00141) (0.165) (0.00349) (0.280) (0.00600) (0.298) (0.00843)

LOS -0.104* 0.00253 -0.0597 0.00510 0.0690 -0.00909 0.281 -0.0140

(0.0579) (0.00185) (0.143) (0.00412) (0.256) (0.00737) (0.375) (0.0104)

Cases -0.000831 6.65e-05** -0.00396** 7.42e-05 -0.000469 -0.000157 -0.00156 -3.72e-05

(0.000650) (3.22e-05) (0.00164) (9.59e-05) (0.00250) (0.000154) (0.00392) (0.000204)

Co-morbidity 1.184 0.0560* 3.277** 0.151* 0.964 -0.0986 0.890 -0.203

(0.735) (0.0326) (1.442) (0.0795) (3.226) (0.129) (4.700) (0.158)

Deprivation -0.517 0.0190 -0.884 0.0432* -0.502 -0.0106 -1.132 -0.0531

(0.321) (0.0121) (1.005) (0.0244) (0.719) (0.0463) (1.016) (0.0554)

FT -0.113 -0.00209 -0.188 0.0352* 1.678* 0.0668** 2.245 0.0807**

(0.167) (0.00867) (0.345) (0.0206) (0.994) (0.0319) (1.450) (0.0411)

Teach 3.000 0.160 11.52 0.126 3.766 -0.0840 3.123 -0.121

(1.909) (0.334) (7.217) (0.865) (5.319) (0.617) (5.288) (1.002)

PbR(06) -0.226* 0.0153* -0.0941 0.0374** -0.560 -0.159*** -0.486 -0.144***

(0.136) (0.00822) (0.267) (0.0177) (0.748) (0.0303) (1.033) (0.0401)

Constant -3.605 -0.279** -0.770 0.0269 -16.02 0.0853 -3.444 0.399

(4.741) (0.123) (8.896) (0.312) (18.93) (0.507) (20.57) (0.692)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 826 826 826 826 826 826 826 826

Hospitals 118 118 118 118 118 118 118 118

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Models 3&4 Random Effects

Table D.16: AMI Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.000782* 2.63e-05 -0.00141* -0.000251 -0.000381 5.49e-05 0.000778 0.000191

(0.000465) (8.26e-05) (0.000849) (0.000263) (0.000282) (7.30e-05) (0.00149) (0.000200)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Age 0.160 0.0315 0.185 0.0378 -0.104 -0.0177 0.386* -0.0157

(0.115) (0.0207) (0.113) (0.0367) (0.146) (0.0109) (0.200) (0.0113)

LOS 0.0354 -0.0142 0.704*** 0.0214 -0.0396 -0.00615 -0.331 -0.0346

(0.0358) (0.0105) (0.185) (0.0349) (0.0420) (0.00838) (0.232) (0.0250)

Cases -0.0035*** -9.58e-05 -0.0034*** -0.000632 0.00311*** 6.36e-05 0.00408*** 0.000207

(0.000818) (0.000387) (0.00124) (0.000610) (0.000911) (0.000153) (0.00100) (0.000141)

Co-morbidity 2.498 -0.398** -2.844 -0.732** -2.319** 0.157* -2.652 0.162

(3.137) (0.159) (2.796) (0.297) (0.908) (0.0821) (1.651) (0.113)

Deprivation 0.868 -0.00961 0.670* -0.00401 -0.117 -0.0156 0.235 -0.0476

(0.568) (0.0625) (0.370) (0.101) (0.138) (0.0320) (0.145) (0.0328)

FT -1.438* 0.0141 -1.255** 0.0422 0.234 -0.0358 0.388 -0.0345

(0.871) (0.106) (0.570) (0.178) (0.323) (0.0506) (0.483) (0.0456)

Teach -0.285 0.0519 -1.270 0.148 0.638* -0.0134 1.423** -0.0260

(0.663) (0.230) (0.833) (0.402) (0.368) (0.122) (0.694) (0.146)

PbR(05) 1.711*** 0.415*** 3.930*** 0.741*** 0.0584 -0.175*** -0.934 -0.220***

(0.578) (0.0890) (0.786) (0.140) (0.511) (0.0381) (0.779) (0.0596)

Constant -12.79 -2.122 -11.95** -1.118 11.98 1.052 -22.70 0.586

(10.40) (1.454) (6.039) (2.623) (10.41) (0.748) (14.31) (0.885)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,071 952 1,071 952 1,071 952 1,071 952

Hospitals 119 119 119 119 119 119 119 119

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.17: MI Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.00312** -1.57e-05 -0.00313** 3.43e-06 -0.000414 -1.32e-05 2.59e-05 -1.53e-05

(0.00150) (0.000163) (0.00140) (0.000172) (0.000521) (5.17e-05) (0.00132) (4.78e-05)

Age 0.162 0.00673 0.297 0.0165 0.164 -0.00312 0.239 0.00589

(0.142) (0.0175) (0.223) (0.0200) (0.153) (0.00692) (0.193) (0.00646)

LOS -0.114 0.0227 -0.0597 0.0233 0.232 -0.0122*** 0.162* -0.0163***

(0.107) (0.0170) (0.137) (0.0198) (0.141) (0.00444) (0.0942) (0.00531)

Cases -0.0299*** -0.00181** -0.0236*** -0.00188** 0.0146*** 0.000578* 0.0261*** 0.000851**

(0.00728) (0.000758) (0.00850) (0.000800) (0.00479) (0.000332) (0.00614) (0.000332)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Co-morbidity 1.834 0.0268 1.384 -0.0494 -2.408 0.0830 -0.582 0.00679

(1.386) (0.179) (2.584) (0.196) (1.525) (0.0832) (2.395) (0.0712)

Deprivation 0.975* 0.00495 0.725* 0.00548 0.190 0.0119 -0.244 -0.00215

(0.535) (0.0527) (0.416) (0.0568) (0.254) (0.0161) (0.460) (0.0190)

FT 0.973 0.136* -0.0984 0.162* 1.037 -0.0182 1.217 -0.00390

(0.997) (0.0817) (1.096) (0.0885) (0.746) (0.0282) (1.167) (0.0373)

Teach 0.174 -0.312 -0.0920 -0.293 -0.116 0.0720 1.187 0.140**

(1.669) (0.201) (1.531) (0.210) (0.722) (0.0628) (1.385) (0.0702)

PbR(06) 1.250 -0.0494 0.654 -0.0272 -0.275 -0.00660 -1.756 -0.00182

(1.496) (0.0708) (1.958) (0.0780) (1.041) (0.0311) (1.608) (0.0415)

Constant -1.792 -0.603 -10.78 -1.130 -8.848 0.406 -18.86 0.156

(10.75) (1.302) (13.38) (1.442) (9.643) (0.499) (13.83) (0.491)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,017 904 1,017 904 1,017 904 1,017 904

Hospitals 113 113 113 113 113 113 113 113

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.18: IHD Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -2.58e-05 8.56e-06 -1.82e-05 1.41e-06 0.000143 -1.78e-05 -

0.000819**

-1.92e-05

(6.07e-05) (4.04e-05) (6.45e-05) (4.77e-05) (0.000122) (3.90e-05) (0.000391) (4.42e-05)

Age 0.130** 0.0399* 0.281*** 0.0739*** 0.0980 0.0387 0.192 0.0301

(0.0651) (0.0234) (0.0748) (0.0243) (0.125) (0.0245) (0.152) (0.0275)

LOS 0.0282 0.0152 0.227*** 0.0173 -0.0782 -0.0391* -0.000417 -0.0400

(0.0442) (0.0150) (0.0553) (0.0179) (0.0639) (0.0211) (0.135) (0.0243)

Cases 6.74e-05 1.19e-05 0.000154* 1.97e-05 0.000282*** 2.34e-05 0.000830*** 2.72e-05

(7.54e-05) (3.28e-05) (8.53e-05) (3.62e-05) (0.000104) (2.90e-05) (0.000206) (3.59e-05)

Co-morbidity -1.223*** -0.445** -4.251*** -0.766*** -0.531 0.173 0.547 0.264

(0.465) (0.210) (0.714) (0.215) (0.659) (0.180) (2.134) (0.235)

Deprivation -0.0314 0.0403* 0.111 0.0783** -0.133 0.0443 -0.484 0.0383

(0.0913) (0.0229) (0.149) (0.0313) (0.300) (0.0301) (0.678) (0.0320)

FT 0.0302 0.0893 -0.0208 0.0876 0.0502 -0.0838* -0.0614 -0.106
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

(0.122) (0.0556) (0.194) (0.0658) (0.245) (0.0491) (0.410) (0.0644)

Teach 0.265 0.0547 0.145 0.0876 0.123 0.0722 1.140 0.0213

(0.240) (0.0904) (0.250) (0.104) (0.393) (0.0842) (0.950) (0.0942)

PbR(06) 1.341*** 0.0692 4.175*** 0.124** -0.856*** -0.0776** 0.334 -0.0842

(0.271) (0.0451) (0.318) (0.0508) (0.329) (0.0359) (0.827) (0.0519)

Constant -9.545** -2.926* -21.47*** -5.367*** -5.725 -2.272 -12.93 -1.613

(4.297) (1.641) (5.024) (1.694) (8.418) (1.608) (9.764) (1.848)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,089 968 1,089 968 1,089 968 1,089 968

Hospitals 121 121 121 121 121 121 121 121

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.19: CCF Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -5.69e-05 -5.28e-05** -0.00092** -6.58e-05** -4.14e-05 1.37e-05 -0.000512 1.15e-05

(0.000412) (2.18e-05) (0.000414) (3.33e-05) (0.000301) (2.06e-05) (0.000414) (3.21e-05)

Age -0.113 -0.000390 -0.0969 0.00646 -0.0730 -0.000165 0.00251 -0.00814

(0.124) (0.00961) (0.118) (0.0120) (0.0903) (0.00688) (0.118) (0.00998)

LOS -0.115 0.00572 0.248* 0.00493 -0.0685 -0.0112** -0.257 -0.0183**

(0.153) (0.00937) (0.131) (0.0119) (0.124) (0.00554) (0.188) (0.00840)

Cases -0.00846 0.000862 -0.00566 0.000740 0.0290*** -0.000494 0.0339** -0.000812

(0.0149) (0.00104) (0.0161) (0.00119) (0.0109) (0.000734) (0.0167) (0.00109)

Co-morbidity 2.856** -0.0218 1.584 -0.0772 -1.722* 0.00643 -1.418 -0.0470

(1.195) (0.0814) (1.191) (0.105) (0.886) (0.0457) (1.194) (0.0761)

Deprivation 0.117 -0.0226 -0.567 -0.0152 0.214 0.00467 0.159 0.0185

(0.323) (0.0212) (0.403) (0.0260) (0.227) (0.0164) (0.358) (0.0246)

FT 1.387 0.0861* 1.381 0.0885* -1.032 -0.0287 -0.842 -0.0371

(0.968) (0.0488) (0.960) (0.0528) (0.831) (0.0372) (1.402) (0.0550)

Teach -3.364*** -0.0948 -0.863 -0.0951 -0.601 0.0797 1.229 0.136

(1.026) (0.0842) (1.097) (0.102) (0.735) (0.0636) (1.027) (0.0856)

PbR(06) -0.290 -0.0596 -0.255 -0.0697 -0.162 -0.101*** -0.0965 -0.109**

(1.619) (0.0453) (1.918) (0.0505) (1.497) (0.0371) (2.196) (0.0484)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Constant 6.045 0.0577 4.616 -0.669 7.827 0.139 4.322 0.629

(9.192) (0.701) (8.665) (0.885) (6.449) (0.522) (9.027) (0.782)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 960 1,080 960 1,080 960 1,080 960

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.20: Stroke Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000827** -0.000174 0.00110** -7.36e-05 -0.000251 2.96e-05 -0.000690** -6.01e-05

(0.000352) (0.000140) (0.000504) (0.000161) (0.000279) (2.77e-05) (0.000308) (8.69e-05)

Age -0.0122 0.0161 0.116 0.0461 -0.0708 0.00533 0.0694 -0.00886

(0.0602) (0.0289) (0.105) (0.0391) (0.0708) (0.00591) (0.0770) (0.0136)

LOS -0.188*** 0.00573 -0.169** 0.00333 0.000942 -0.00121 0.0423 -0.00256

(0.0512) (0.0153) (0.0776) (0.0207) (0.0259) (0.00328) (0.0475) (0.00668)

Cases -5.90e-05 0.000244 -0.000110 0.000423 0.000128 1.90e-05 0.00131** 6.18e-05

(0.000927) (0.000269) (0.000960) (0.000379) (0.000361) (5.46e-05) (0.000655) (0.000128)

Co-morbidity -1.056 0.0418 -3.500*** -0.364 -0.00933 -0.156* -0.801 0.143

(0.687) (0.287) (0.680) (0.378) (0.342) (0.0803) (0.745) (0.190)

Deprivation -0.131 0.0826 0.0980 0.141 0.159* 0.0228 0.568*** 0.0168

(0.174) (0.0865) (0.294) (0.127) (0.0813) (0.0181) (0.174) (0.0352)

FT 0.827** -0.0746 0.702* -0.246 -0.416* -0.0537** -0.186 -0.00652

(0.360) (0.124) (0.413) (0.182) (0.223) (0.0259) (0.433) (0.0648)

Teach -2.150*** -0.157 -1.949*** -0.0759 -0.0672 -0.0213 0.135 -0.189*

(0.646) (0.212) (0.691) (0.321) (0.416) (0.0488) (0.598) (0.106)

PbR(06) -4.217*** -0.393*** -2.279*** -0.436*** 0.506* -0.0453* 0.465 -0.190***

(0.545) (0.0818) (0.646) (0.111) (0.285) (0.0258) (0.609) (0.0524)

Constant 6.105 -0.721 -3.086 -3.685 6.162 -0.0615 -2.530 1.115

(4.965) (2.103) (8.000) (2.805) (5.641) (0.465) (6.762) (1.080)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,035 920 1,035 920 1,035 920 1,035 920

Hospitals 115 115 115 115 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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Table D.21: TIA Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff 0.000390 2.83e-05 -0.000192 0.000136 -0.000469 -3.74e-05 -0.000557 3.78e-05

(0.000316) (1.94e-05) (0.000950) (8.92e-05) (0.000901) (5.47e-05) (0.00153) (0.000104)

Age 0.00798 0.00221* -0.000455 0.0126** -0.00565 0.00237 0.222** 0.0204***

(0.0175) (0.00122) (0.0618) (0.00501) (0.0507) (0.00414) (0.0892) (0.00752)

LOS -0.0102 -0.00511 0.187 -0.0273* 0.0418 0.00486 0.175 -0.0120

(0.0512) (0.00327) (0.152) (0.0163) (0.135) (0.00942) (0.218) (0.0187)

Cases 9.18e-06 3.91e-05 3.46e-05 0.000174* 0.00237* 0.000249*** 0.00729*** 0.000277*

(0.000363) (2.56e-05) (0.00129) (9.72e-05) (0.00144) (7.52e-05) (0.00234) (0.000148)

Co-morbidity -0.598** -0.00206 -3.777*** -0.139* -0.319 -0.124** -2.126 -0.242***

(0.254) (0.0187) (0.768) (0.0791) (0.788) (0.0568) (1.443) (0.0908)

Deprivation 0.0514 0.000221 0.0190 0.00116 0.0302 -0.000919 0.226 0.0104

(0.0346) (0.00206) (0.109) (0.0106) (0.104) (0.00606) (0.169) (0.0128)

FT -0.0105 0.00236 -0.0621 0.00328 0.313 -0.0106 -0.246 0.0173

(0.107) (0.00417) (0.215) (0.0163) (0.386) (0.0124) (0.593) (0.0235)

Teach -0.0934 0.00484 -0.367 0.0156 0.238 0.0147 0.280 -0.00245

(0.0940) (0.00700) (0.338) (0.0350) (0.296) (0.0198) (0.675) (0.0404)

PbR(06) 0.355*** -0.000498 1.771*** 0.00693 -0.555 0.0124 0.366 0.0192

(0.129) (0.00542) (0.435) (0.0174) (0.586) (0.0159) (1.470) (0.0269)

Constant -0.464 -0.251*** 3.466 -1.130*** 1.544 -0.0447 -13.74** -1.170**

(1.201) (0.0864) (4.275) (0.380) (3.819) (0.308) (6.732) (0.565)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 1,080 960 1,080 960 1,080 960 1,080 960

Hospitals 120 120 120 120 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.22: Hip Replacement Models 3 & 4 Random Effects.

Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

Tariff -0.000156 5.82e-06* -0.000347 1.16e-05 0.000709* -1.16e-05 0.00212*** -2.11e-05

(0.000118) (3.36e-06) (0.000350) (7.68e-06) (0.000428) (1.11e-05) (0.000819) (1.61e-05)

Age 0.0585* 0.000290 0.157** 0.00230 0.227* 0.00277 0.256 -0.00293

(0.0310) (0.000548) (0.0714) (0.00150) (0.117) (0.00222) (0.160) (0.00253)
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Latent

D30ht

Filtered

D30ht

Latent

D365ht

Filtered

D365ht

Latent

R28ht

Filtered

R28ht

Latent

R365ht

Filtered

R365ht

LOS 0.0468* -0.000273 0.125** -0.00137 -0.0225 -0.00437** -0.132 -0.00201

(0.0246) (0.000686) (0.0584) (0.00181) (0.141) (0.00215) (0.141) (0.00304)

Cases 0.000121 -2.44e-06 -8.13e-08 -9.13e-06 -0.000419 -1.89e-05 -0.00114 -1.34e-05

(0.000127) (5.64e-06) (0.000291) (1.49e-05) (0.000655) (2.13e-05) (0.000901) (3.01e-05)

Co-morbidity 0.141 0.0179 1.229 0.0152 -0.521 0.0276 -2.091 0.0316

(0.593) (0.0119) (2.225) (0.0320) (2.515) (0.0433) (4.288) (0.0578)

Deprivation 0.0807*** -0.00107 0.0509 -0.000721 -0.133 0.00896** -0.408* 0.00478

(0.0289) (0.00140) (0.117) (0.00259) (0.158) (0.00429) (0.246) (0.00598)

FT -0.0871 -0.00173 -0.178 0.00299 0.0384 0.0164 0.428 0.0385**

(0.0937) (0.00352) (0.194) (0.00875) (0.364) (0.0122) (0.424) (0.0162)

Teach 0.155 -0.00441 0.790* -0.00893 1.105* -0.00270 1.631** -0.0111

(0.200) (0.00415) (0.421) (0.00828) (0.589) (0.0149) (0.826) (0.0189)

PbR(06) 0.122 0.00709 0.251 -0.00368 -0.0382 -0.0294* -0.394 -0.0295

(0.0881) (0.00466) (0.178) (0.0126) (0.700) (0.0156) (0.667) (0.0198)

Constant -3.714 -0.0553 -10.68** -0.196* -19.96** -0.0956 -28.93** 0.334*

(2.356) (0.0398) (4.454) (0.110) (9.678) (0.176) (13.83) (0.197)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 826 826 826 826 826 826 826 826

Hospitals 118 118 118 118 118 118 118 118

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Model 2 with Interaction Dummy Variables

Table D.23: AMI Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff 0.000212 -4.34e-05 -9.16e-05 6.58e-05

(0.000631) (0.000753) (0.000196) (0.000123)

Age -0.0298 -0.0650 0.0210 0.0312

(0.130) (0.190) (0.0479) (0.0348)

LOS 0.0829 0.184* -0.0323 -0.0564***

(0.0854) (0.100) (0.0272) (0.0167)

Cases 0.00384* 0.00631* -0.00155* -0.00103

(0.00219) (0.00323) (0.000816) (0.000677)

Co-morbidity 3.710** 6.157** -1.206* -1.278**
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Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

(1.796) (2.580) (0.629) (0.549)

Deprivation 0.418 0.660 -0.132 -0.124

(0.304) (0.463) (0.117) (0.111)

FT -0.651 -0.857 0.246 0.245

(0.589) (0.866) (0.219) (0.168)

Deprivation* PbR 0.626* 0.951* -0.242* -0.176

(0.372) (0.532) (0.139) (0.110)

PbR(05) -2.481 -4.336 0.755 0.641

(2.552) (3.489) (0.858) (0.529)

co-morbidity*PbR -1.642 1.750 0.567 0.188

(4.129) (5.618) (1.385) (0.830)

Constant -6.048 -8.055 1.403 0.361

(9.050) (13.12) (3.400) (2.483)

Year Dummies Yes Yes Yes Yes

N 1,071 1,071 1,071 1,071

R2 0.326 0.194 0.258 0.209

Hospitals 119 119 119 119

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.24: MI Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff 0.000240 0.000284 -0.000100* -1.30e-05

(0.000227) (0.000236) (5.11e-05) (6.21e-05)

Age -0.00874 -0.00769 0.000860 -0.00119

(0.0377) (0.0401) (0.0156) (0.0136)

LOS -0.0507** -0.0543** 0.0120** 0.00865

(0.0220) (0.0252) (0.00556) (0.00624)

Cases -0.000684 -0.000986 -4.41e-05 0.000188

(0.00248) (0.00270) (0.000722) (0.00114)

Co-morbidity 0.276 0.341 -0.0233 -0.0602

(0.303) (0.356) (0.0953) (0.104)

Deprivation 0.595*** 0.581*** -0.159** -0.193**

(0.177) (0.192) (0.0684) (0.0777)

FT -0.194 -0.251 0.107 0.264**

(0.247) (0.260) (0.0815) (0.106)
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Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Deprivation* PbR -0.0288 -0.0198 0.00727 -0.0185

(0.113) (0.123) (0.0356) (0.0460)

PbR(06) 0.0173 0.103 0.0394 -0.00638

(0.447) (0.507) (0.129) (0.158)

co-morbidity*PbR -0.487 0.271 1.679*** 3.599***

(1.015) (1.134) (0.282) (0.345)

Constant -0.268 -0.543 0.243 0.170

(2.765) (2.984) (1.142) (1.009)

Year Dummies Yes Yes Yes Yes

N 1,017 1,017 1,017 1,017

R2 0.059 0.059 0.529 0.798

Hospitals 113 113 113 113

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.25: IHD Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff -6.28e-05 -0.000255*** 0.000143 0.000141*

(8.63e-05) (8.79e-05) (0.000104) (8.51e-05)

Age -0.197*** -0.269*** -0.0240 0.0491

(0.0717) (0.0724) (0.0450) (0.0683)

LOS -0.0305 -0.00275 -0.00805 0.000539

(0.0352) (0.0393) (0.0456) (0.0427)

Cases -0.000211 -0.000273 -8.36e-05 -1.15e-05

(0.000228) (0.000239) (0.000135) (0.000216)

Co-morbidity 1.970*** 2.663*** -0.440 -1.069*

(0.641) (0.654) (0.419) (0.634)

Deprivation 0.113 0.0301 -0.460** -0.453

(0.215) (0.203) (0.221) (0.276)

FT -0.306* -0.289 0.243** 0.373**

(0.184) (0.195) (0.117) (0.179)

Deprivation* PbR 0.120* 0.141* -0.00934 -0.0607

(0.0650) (0.0733) (0.0553) (0.0690)

PbR(06) -2.595*** -3.087*** 0.767 1.673**

(0.883) (0.956) (0.482) (0.814)

co-morbidity*PbR -1.656** -4.512*** 1.455*** 1.608**
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Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

(0.757) (0.793) (0.361) (0.672)

Constant 12.78*** 17.57*** 1.680 -3.036

(4.825) (4.844) (3.001) (4.607)

Year Dummies Yes Yes Yes Yes

N 1,089 1,089 1,089 1,089

R2 0.565 0.802 0.532 0.521

Hospitals 121 121 121 121

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.26: CCF Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff 7.41e-05 0.000140 4.01e-05 8.17e-05

(9.33e-05) (9.39e-05) (3.08e-05) (5.84e-05)

Age 0.0200* 0.0236 -0.00641 -0.0209*

(0.0113) (0.0143) (0.00760) (0.0120)

LOS 0.00539 0.00494 -0.000768 -0.00707

(0.0157) (0.0177) (0.00635) (0.0114)

Cases -0.000433 0.000760 0.00444** 0.00501

(0.00233) (0.00298) (0.00204) (0.00314)

Co-morbidity -0.162 -0.0569 0.131 0.0296

(0.132) (0.149) (0.0905) (0.110)

Deprivation -0.0642 -0.0791 0.00408 -0.0304

(0.0623) (0.0757) (0.0310) (0.0580)

FT -0.0684 -0.0597 0.151* 0.133

(0.133) (0.190) (0.0865) (0.135)

Deprivation* PbR 0.0108 0.00882 -0.00506 0.0728*

(0.0510) (0.0631) (0.0313) (0.0434)

PbR(06) 0.180 0.258 -0.131 -0.149

(0.138) (0.172) (0.104) (0.140)

co-morbidity*PbR -0.997*** -3.810*** 0.286 -1.917***

(0.289) (0.350) (0.227) (0.354)

Constant -1.462* -2.033** 0.119 1.249

(0.767) (0.969) (0.521) (0.836)

Year Dummies Yes Yes Yes Yes

N 1,080 1,080 1,080 1,080
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Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

R2 0.079 0.508 0.038 0.390

Hospitals 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.27: Stroke Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff -1.76e-05 -6.65e-05 3.01e-05 5.61e-05

(0.000454) (0.000670) (9.85e-05) (0.000230)

Age -0.0200 -0.0401 -9.97e-05 0.0105

(0.0948) (0.147) (0.0240) (0.0441)

LOS 0.0396 0.0390 0.00329 0.0260

(0.0724) (0.105) (0.0142) (0.0334)

Cases 0.000142 -0.000289 -0.000387 0.000210

(0.00167) (0.00258) (0.000407) (0.000831)

Co-morbidity 1.155 2.534* 0.310 0.00294

(0.952) (1.424) (0.239) (0.496)

Deprivation -0.160 -0.220 0.0410 0.0171

(0.560) (0.874) (0.128) (0.236)

FT 0.536 1.052 0.0964 0.145

(0.541) (0.830) (0.124) (0.233)

Deprivation* PbR 0.162 0.238 0.0116 0.0914

(0.242) (0.370) (0.0562) (0.106)

PbR(06) -2.953* -4.241* -0.742* -1.914**

(1.559) (2.345) (0.391) (0.738)

co-morbidity*PbR 6.677** 2.162 1.797** 5.532***

(2.718) (4.250) (0.690) (1.204)

Constant -1.329 -1.547 -0.547 -1.820

(7.409) (11.43) (1.869) (3.619)

Year Dummies Yes Yes Yes Yes

N 1,035 1,035 1,035 1,035

R2 0.136 0.230 0.418 0.442

Hospitals 115 115 115 115

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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Table D.28: TIA Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff -2.20e-06 -4.29e-05 -3.85e-05 -0.000166

(2.43e-05) (0.000104) (9.04e-05) (0.000137)

Age -7.54e-05 -0.00384 -0.00567 0.000574

(0.00174) (0.00826) (0.00576) (0.00979)

LOS -0.00175 -0.000480 0.00371 0.0224

(0.00432) (0.0178) (0.0148) (0.0226)

Cases 5.23e-05 -2.36e-05 -0.000499 -0.000181

(0.000109) (0.000441) (0.000403) (0.000740)

Co-morbidity -0.0186 0.00430 0.125 0.0953

(0.0280) (0.109) (0.112) (0.163)

Deprivation -0.00456 0.0257 -0.0181 -0.0352

(0.00735) (0.0373) (0.0306) (0.0499)

FT 0.000714 -0.0318 -0.0331 -0.128**

(0.0119) (0.0375) (0.0315) (0.0554)

Deprivation* PbR 0.00402 -0.0227 -0.0330** -0.0287

(0.00553) (0.0189) (0.0131) (0.0205)

PbR(06) -0.000402 -0.0390 -0.0633 -0.130

(0.0475) (0.140) (0.129) (0.214)

co-morbidity*PbR -0.610*** -2.767*** -0.287 0.179

(0.0766) (0.235) (0.178) (0.333)

Constant 0.0430 0.348 0.317 -0.0401

(0.127) (0.613) (0.418) (0.777)

Year Dummies Yes Yes Yes Yes

N 1,080 1,080 1,080 1,080

R2 0.883 0.913 0.270 0.017

Hospitals 120 120 120 120

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table D.29: Hip Replacement Model 2 with interactions.

Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

Tariff -1.65e-06 -3.37e-05 3.13e-05 7.51e-05

(8.59e-06) (2.12e-05) (3.29e-05) (4.63e-05)

Age 0.00272** 7.16e-05 -0.00507 -0.0113
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Filtered D30ht Filtered D365ht Filtered R28ht Filtered R365ht

(0.00124) (0.00310) (0.00565) (0.00794)

LOS 0.00249 0.00535 -0.00926 -0.0141

(0.00177) (0.00402) (0.00706) (0.0101)

Cases 6.97e-05** 7.30e-05 -0.000156 -4.35e-05

(3.17e-05) (9.55e-05) (0.000151) (0.000200)

Co-morbidity 0.0248 0.107 -0.0422 -0.0944

(0.0319) (0.0832) (0.149) (0.177)

Deprivation 0.0202 0.0471* -0.0172 -0.0616

(0.0133) (0.0255) (0.0486) (0.0564)

FT -0.00204 0.0380* 0.0639* 0.0788*

(0.00831) (0.0199) (0.0330) (0.0414)

Deprivation* PbR -0.00347 -0.0133 0.0132 0.0147

(0.00457) (0.00862) (0.0139) (0.0183)

PbR(06) 0.0778* 0.122 -0.150 -0.270

(0.0435) (0.106) (0.181) (0.220)

co-morbidity*PbR dropped dropped dropped dropped

Constant -0.237** 0.144 -0.127 0.227

(0.101) (0.262) (0.459) (0.624)

Year Dummies Yes Yes Yes Yes

N 826 826 826 826

R2 0.066 0.136 0.230 0.115

Hospitals 118 118 118 118

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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