Cookies?
Library Header Image
LSE Theses Online London School of Economics web site

Long memory and fractional cointegration with deterministic trends.

Iacone, Fabrizio (2006) Long memory and fractional cointegration with deterministic trends. PhD thesis, London School of Economics and Political Science (United Kingdom).

[img]
Preview
PDF
Download (8MB) | Preview

Abstract

We discuss the estimation of the order of integration of a fractional process that may be contaminated by a time-varying deterministic component, or subject to a break in the dynamics of the zero-mean stochastic component, and the estimation of the cointegrating parameter in a bivariate system generated by fractionally integrated processes and by additive polynomial trends. In Chapter 1 we review the theoretical literature on fractional integration and cointegration, and we analyse a situation in which a fractional model reconciles two apparently conflicting economic theories. In Chapter 2 we consider local Whittle estimation of the order of integration when the process is contaminated by a deterministic trend or by a break in the mean. We propose a simple condition to assess whether the asymptotic properties of the estimate are unaffected by the time-varying mean, and a test, with asymptotically normal test statistic under the null, to detect if that condition is met. In Chapter 3 we discuss local Whittle estimation when the zero-mean stochastic component is subject to a break: we show that the estimate is robust to instability in the short term dynamics, while in presence of a break in the long term dynamics only the highest order of integration is consistently estimated. We propose a test to detect that break: the limit distribution of the test statistic under the null is not standard, but it is well known in the literature. We also propose a procedure to estimate the location of a break when it is present. In Chapter 4 we consider a cointegrating relation in which a nonstationary, bivariate process is augmented by a deterministic trend. We derive the limit properties of the Ordinary Least Squares and Generalised Least Squares estimates: these depend on the comparison between the deterministic and the stochastic components.

Item Type: Thesis (PhD)
Uncontrolled Keywords: Statistics
Sets: Collections > ProQuest Etheses
URI: http://etheses.lse.ac.uk/id/eprint/1937

Actions (login required)

Record administration - authorised staff only Record administration - authorised staff only

Downloads

Downloads per month over past year

View more statistics