Roussos, Joe (2020) Policymaking under scientific uncertainty. PhD thesis, London School of Economics and Political Science.
Text
- Submitted Version
Download (1MB) |
Abstract
Policymakers who seek to make scientifically informed decisions are constantly confronted by scientific uncertainty and expert disagreement. This thesis asks: how can policymakers rationally respond to expert disagreement and scientific uncertainty? This is a work of nonideal theory, which applies formal philosophical tools developed by ideal theorists to more realistic cases of policymaking under scientific uncertainty. I start with Bayesian approaches to expert testimony and the problem of expert disagreement, arguing that two popular approaches— supra-Bayesianism and the standard model of expert deference—are insufficient. I develop a novel model of expert deference and show how it can deal with many of these problems raised for them. I then turn to opinion pooling, a popular method for dealing with disagreement. I show that various theoretical motivations for pooling functions are irrelevant to realistic policymaking cases. This leads to a cautious recommendation of linear pooling. However, I then show that any pooling method relies on value judgements, that are hidden in the selection of the scoring rule. My focus then narrows to a more specific case of scientific uncertainty: multiple models of the same system. I introduce a particular case study involving hurricane models developed to support insurance decision-making. I recapitulate my analysis of opinion pooling in the context of model ensembles, confirming that my hesitations apply. This motivates a shift of perspective, to viewing the problem as a decision theoretic one. I rework a recently developed ambiguity theory, called the confidence approach, to take input from model ensembles. I show how it facilitates the resolution of the policymaker’s problem in a way that avoids the issues encountered in previous chapters. This concludes my main study of the problem of expert disagreement. In the final chapter, I turn to methodological reflection. I argue that philosophers who employ the mathematical methods of the prior chapters are modelling. Employing results from the philosophy of scientific models, I develop the theory of normative modelling. I argue that it has important methodological conclusions for the practice of formal epistemology, ruling out popular moves such as searching for counterexamples.
Item Type: | Thesis (PhD) |
---|---|
Additional Information: | © 2020 Joe Roussos |
Library of Congress subject classification: | H Social Sciences > H Social Sciences (General) Q Science > Q Science (General) Q Science > QA Mathematics |
Sets: | Departments > Philosophy, Logic and Scientific Method |
Supervisor: | Frigg, Roman and Bradley, Richard |
URI: | http://etheses.lse.ac.uk/id/eprint/4158 |
Actions (login required)
Record administration - authorised staff only |